
 

 

 University of Groningen

Molecular dynamics of sense and sensibility in processing and analysis of data
Wassenaar, Tsjerk Andrys

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wassenaar, T. A. (2006). Molecular dynamics of sense and sensibility in processing and analysis of data.
s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-01-2023

https://research.rug.nl/en/publications/b0c3a19b-9f60-4911-ab23-d9725a2d45a2


13

Chapter 2

Data Processing and Analysis of Results 
using Statistical Methods
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1 Introduction

The major objective of molecular dynamics simulations is to understand physicochemical, 
physiological or biophysical processes at the atomic level. Analysis of data usually involves either the 
investigation of the successive configurations and the structure of atomic motions or the comparison 
of properties to evaluate the effect of differences in the systems. Concerning the la�er, one can think 
of the influence of mutations on the behaviour of a protein, or the effect of ligand binding. In this 
chapter methods are presented for both analysis of the structure of atomic fluctuations and the 
statistical comparison of simulation data. Most of the methods in this chapter find their origin in 
multivariate statistics, of which a brief introduction is given. Many of these methods are used in the 
following chapters or follow from the same principles.
There are several reasons to combine the different methods of analysis into this chapter. First, the aim 
of this chapter is to introduce the methods used subsequently, starting from the common reference 
frame of statistical analysis. Second, this chapter provides a toolbox of methods for the analysis 
and processing of data from molecular simulations. Third, the chapter highlights the assumptions 
and background of the methods for the interested reader. Fourth, while some of the techniques 
described in the following have been applied in molecular dynamics before, others are presented 
here for the first time.

This chapter is divided into several sections. First, some key elements of statistics are presented 
and the structure of the data is explored. Several methods for estimating the variance within a set 
of data are presented. In the second section, several methods are presented for the comparison of 
averages and fluctuations in properties obtained from molecular simulations. In the third section, 
multivariate analysis is discussed, including the principles of principal component analysis (PCA). 
These first three sections essentially form a brief review of (multivariate) statistical methods, with 
emphasis on the possible application to molecular simulations. The fourth section contains a more 
detailed discussion of PCA, including a number of new methods derived from PCA. These new 
methods were specifically developed for the analysis of interacting components (subsystems) in 
molecular simulations. They are given together with their mathematical derivation and justification, 
as appropriate. In the fi�h section, a further extension of these methods is given, which are based 
on a combination of principal component analysis and multiple regression. These methods are 
developed for the investigation of relations between observables and atomic motions or fluctuations. 
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Finally, a number of methods are given for data reduction, based on the statistical techniques 
given in the other sections. These methods comprise a technique for the investigation of the nature 
and importance of rigid body motions in a macromolecular system. Besides, the use of principal 
component analysis as a means of data reduction is briefly discussed. 
Note that throughout this chapter (and the thesis) vectors are represented by lowercase boldface, 
whereas matrices are represented as uppercase boldface. Normal variables are given in italics. The 
prime indicates that the transpose is taken and if not explicitly stated otherwise, the term vector 
refers to a column vector.

2 Statistics

The term statistics refers to the collection of quantitative data as well as to the branch of mathematics 
dealing with the collection, analysis, interpretation, and presentation of numerical data. In particular, 
it is used to refer to the study of likelihood and probability, o�en inferred from limited sample sizes. 
In this section some elementary concepts of statistics are introduced.

2.1 The moments of a distribution

Most distributions can be characterized in terms of their moments. The kth moment of the distribution 
is defined as the mean of the kth power of the deviations of the observed values from a fixed value:

Here p(x) denotes the probability of x. The first moment is the mean of a distribution, also termed the 
expectation or the expected value, which is given by

and corresponds to the centre of mass of the distribution. E is the expectation operator. O�en the 
higher order moments are calculated with respect to the mean. Such moments are called the central 
moments of the distribution. The most important is the second central moment, which is the expected 
value of the square of the deviations about the mean, referred to as the variance
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2.2 Statistical distributions

Among the most important concepts in statistics is the Gaussian or normal distribution, the density or 
probability function of which is given by

and shown in Figure 2.1A.
One reason why this distribution is so important is related to the central limit theorem, which states 
that variates which are the sum of many independent effects tend to be normally distributed as the 
number of effects becomes large. One consequence of this theorem is that a variate, which is the 
average of a number of original variables, has a distribution which is more normal than the original 
distribution and is closer to the mean of the population.
Another important property of the normal distribution is that the sum of a set of normally 
distributed variates is itself normally distributed with a mean equal to 
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Three other distributions are important to mention here. Each of these arises from a transformation 
of a set of normal variates. The first is the chi-squared distribution, which is the distribution of squared 
values. Let a set of variates nxx ,,1   be independent samples from a normal distribution with a 
mean of zero and unit variance. In this case the chi-squared variate with n degrees of freedom is 
given by

which has a skewed distribution as shown in Figure 2.1B. The 100α percentage point of the chi-
squared distribution with n degrees of freedom is denoted 2

;n , where

denotes the probability that the observed value exceeds the given percentage point.

Figure �.�: Statistical distributions.
The densities of four important theoretical 
statistical distributions are shown. A. The 
normal distribution, B. The χ2 distribution 
with degrees of freedom �, �, � and ��, C. The 
variance-ratio (F) distribution with degrees of 
freedom (numerator, denominator) �, �; �, �; �, 
���; ��, �; ��, � and ��, ��, D. The t-distribution 
with degrees of freedom �, �, � and infinite
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Another important distribution is obtained from the ratio of two independent chi-squared variates, 
divided by their respective degrees of freedom:

This distribution is called the variance-ratio or F distribution. This distribution is shown in Figure 
2.1C for a number of combinations of degrees of freedom. The 100α upper percentage point of the 
F-distribution with n1, n2 degrees of freedom is denoted Fα;n1,n2α;n1,n2α , where )(

21 ,; nnFFP FF ( (F FP P   .
The third distribution to be introduced here is the Student’s t-distribution, which is the distribution of 
a random variable t with n degrees of freedom, defined as the quotient of a standard normal variate 
z and the square root of an independent chi-squared variate divided by its n degrees of freedom.

t is a dimensionless quantity and its distribution depends on the degrees of freedom parameter 
n. This distribution is particularly important when dealing with samples for which the variance 
s2 is unknown and has to be estimated from the sample itself. The upper 100α percentage point is 
denoted tα;n where )( ;nttP tt ( (t tP P   . For smaller sample sizes the t-distribution has more density in the 
tails, whereas the distribution tends to a normal distribution if the number of degrees of freedom 
is large. This can be seen in Figure 2.1D, where the Student’s t-distribution is plo�ed for different 
degrees of freedom.

2.3 Confidence intervals and hypothesis testing

2.3.1 Hypotheses

An important area of statistical inference is concerned with the problem of testing the validity of a 
hypothesis regarding distribution functions and their parameters, or the parameters or components 
of a mathematical model. A hypothesis in statistical theory is generally a set of statements which are 
mutually exclusive and complementary. Usually, hypotheses are formulated such that the original 
hypothesis or null hypothesis reflects a situation of no effect or no difference. For example, when 
testing whether two samples originate from a single underlying distribution the null hypothesis, H0H0H , 
and the alternative hypothesis, H1, can be formulated as

and

2.3.2 Errors

If one of two hypotheses reflects the true state, there are two possible types of error in the decision. 
An error of the first kind, or Type I error, is made when Type I error, is made when Type I error H1 is declared true, when in fact H0H0H  is true. When 
H0H0H  is accepted, while H1 reflects the true state, the error made is called an error of the second kind, or a 
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Type II error. The probability of making an error of the first kind is denoted α and is called the size of 
the test or the confidence level. The probability of an error of the second kind is denoted β, and its 
complement 1 – β, is called the power of the test or decision rule. Power analysis is important for the 
design of experiments, but falls out of the scope of this work.

3 Data structure

3.1 Variables

3.1.1 Positions and momenta

For the analysis of results obtained from an MD experiment, and notably for statistical analysis, it 
is necessary to understand the structure of the data. The primary data obtained from a molecular 
dynamics simulation are a series of configurations of the system as a function of time, called the 
trajectory. The configuration of the system at a given time is defined by the positions p and momenta 
q, which are both sets of 3N coordinates. Each configuration can thus be thought of as a point in a 6N coordinates. Each configuration can thus be thought of as a point in a 6N N-
dimensional space, called phase-space. The trajectory, given as a series of successive configurations, 
can consequently be thought of as a path through phase space. Note that the path obtained is only 
one of an infinite number of possible paths.
The trajectory can be represented as a two-dimensional matrix X, whose columns correspond to the 
configurations sampled during the simulation

Though the momenta may be useful, in particular when dealing with non-equilibrium simulations, 
in the following we focus primarily on the positions of the particles. Thus x will generally be used 
to denote the vector of size 3N of particle-coordinates. This vector will o�en be referred to as the N of particle-coordinates. This vector will o�en be referred to as the N
conformation and the conformational space is used to refer to the region of phase-space corresponding 
to these coordinates.
A system in a molecular dynamics simulation has an underlying probability density function or simply 
density function, which describes the probability of finding a given configuration or conformation. 
This probability is linked to the energy of the configuration. The set of all possible configurations 
under a fixed set of external conditions is called the ensemble.
The ensemble can be seen as a stationary process. The distributions of such processes do not depend 
on the time or position from which the sampling started, but remain the same for all points in space 
and time.
According to the ergodic hypothesis the distribution obtained by sampling a single system over 
sufficiently long time properly reflects the distribution of the ensemble. The ergodic hypothesis 
is o�en given in a more casual formulation, namely that the time average of a single system over 
a sufficiently long period of time is equal to the ensemble average or the mean of the underlying 
distribution. However, ergodicity is not limited to the averages and it can be generalized to state 
that the moments of the distribution obtained from a single system over time are defined and equal 
to the moments of the probability density function of the ensemble

 MxxX 1 (2.11)
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In particular, it follows that the system has a mean configuration and a defined covariance matrix. 
Accordingly, these are the expectation values for the time average and sample covariance matrix 
obtained from a simulation, respectively.

3.1.2 Instantaneous properties

It is possible to interpret a given configuration of a system according to a set of rules and to obtain 
a value characterizing the state of the system in terms of a certain property of that system. For 
example, one can take the distance from the system to a reference system according to

or alternatively as

which is called the root mean square deviation. Other properties one can think of are the radius of 
gyration of a solute, the number of hydrogen bonds, according to given criteria for the donor 
– hydrogen – acceptor distance and angle, etcetera. These properties are characterized by the 
dependence on the conformation. As such, they are likely to change over time and for that reason 
will be referred to as instantaneous properties or sometimes as dependent properties. On the other 
hand the term characteristic property will be used for those properties describing an intrinsic property 
of the system, such as the number of each type of residue in the case of a protein. The experimentally 
observed value for an instantaneous property can sometimes be used as a characteristic property.
If an instantaneous property is defined for all configurations of an ensemble, the ergodic hypothesis 
holds for this property as it does for the system itself. Therefore, each of these properties has a 
defined population mean and variance, which are the expectation values of the property average 
and sample variance obtained from a trajectory.

3.2 Estimation of the mean and variance from simulation 
data

A primary goal of molecular dynamics or Monte Carlo simulations is to probe the statistical 
mechanical or thermodynamic ensemble. The ergodic hypothesis provides a basis for the use of 
the moments from the observed distribution as estimators for the distribution of the ensemble. In 
particular, in accordance with the casual formulation of the ergodic hypothesis, the time average

is used as an estimate for the ensemble average or population mean µ (2.2). The time average is an 
unbiased estimator, since the expectation value  
is used as an estimate for the ensemble average or population mean 

 
is used as an estimate for the ensemble average or population mean 

  x E  equals µ. Nevertheless, in practice the time 
scales of a simulation are limited and different simulations yield different time averages, reflecting 
the spread in the underlying distribution. In order to make correct inferences from an observed 
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time average, it is necessary to have an estimate of the natural variation or variance (2.3). From the 
variance it is possible to derive the sampling error in the time average from a simulation.
The most obvious and intuitive estimator for the variance is 2̂ , which is given by

However, inspection of the expectation value shows that 2̂  underestimates the true variance and 
is therefore a biased estimate. The proper estimate for the variance from a series of independent 
samples is given by

The factor N – 1 is introduced to correct for the use of the sample average, which is estimated from N – 1 is introduced to correct for the use of the sample average, which is estimated from N
the same data, rather than the independent mean of the distribution. This factor is referred to as the 
number of degrees of freedom.
In the case of correlated data, such as typically obtained from molecular simulations, s2 in the 
definition given above is also biased and underestimates the real variance. Because of correlations 
between subsequent sample points, the number of degrees of freedom is substantially smaller than 
N – 1. To obtain a proper, unbiased estimate it is necessary to compensate for such correlations.N – 1. To obtain a proper, unbiased estimate it is necessary to compensate for such correlations.N
Several methods have been proposed to deal with this problem. Here, three methods will be 
discussed. The first two of these are established methods, one of which is based on compensating for 
the correlation lengths and the other uses block averaging of data. These methods yield an estimate 
for the variance of the time average rather than for the population variance. The third method, based 
on a so-called bootstrap test, while not new, to the best of my knowledge has not been previously 
applied to obtain robust error estimates for data obtained from molecular dynamics simulations.

3.2.1 Variance estimation on correlated data

The first method here discussed was introduced in molecular dynamics independently by Schiferl[1] 
and by Straatsma et al.[2], but was originally proposed by Jenkins and Wa�s[3]. They considered 
a correlated time series xi, i = 1, …, n, with constant spacing and calculated the variance in the 
obtained time average by compensating for the correlations up to a certain correlation length. For 
the derivations of the estimates given in this section, the reader is referred to the original papers. The 
estimate of Straatsma et al. for the variance in the time average x  is given by

where 2ˆ x  is the (biased) estimator for the variance given by equation 2.17 and τ is the correlation 
length estimated by Straatsma et al. using

where
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s the sum over the time correlations with lags running from 1 through k. Morales et al.[4] proposed 
a different estimator, which was proven by Dietrich and De�e[5] to always equal -0.5 when all 
possible correlation times were take into account. In turn, they proposed two other estimates, which 
were shown to be more robust than the one given by Straatsma et al. According to their results, the 
best estimator for the correlation length is

where

In this expression, which was first given by Jenkins and Wa�s[3], and by Kendall[6], 1x  denotes the 
mean of the first n – k observations and n – k observations and n – k 2x  denotes the average over the last n – k observations of n – k observations of n – k
the series.
Apart from providing an estimate for the variance, the correlation length can also be used to estimate 
the number of independent data points in the series. This is not n, but is equal to )21( 22n . The 
factor 1 + 2τ has previously been termed the sampling ratio.

3.2.2 Block averaging in variance estimation

A different approach to estimate the sampling error or the variance in a time average obtained from 
simulation data was introduced in molecular simulations by Flyvbjerg and Petersen[7]. Rather than 
estimating the correlation length, they proposed the use of a block averaging method.
For the derivation and details of the method the reader is referred to the original paper. Note, the 
proposed method avoids the calculation of time correlations and in addition gives information 
about the quality of the estimate for the variance in the time average. The essence of the method 
is that the original data nxx ,,1   is transformed into a new data set myy ,,1   of half the original 
size, such that

and

Then from the new data set, the variance can be calculated according to

and the estimate of the variance of the time average is given by

This procedure is repeated on the transformed data set, replacing nxx ,,1   with myy ,,1   and n
with m, until m = 2. The series of values for 2

xs  will increase until a fixed plateau value is reached, 
which is the correct estimate for the variance in the time average. Flyvbjerg and Peterson have 
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suggested using the confidence interval on 2
xs  to determine whether the fixed point has been 

reached. For this they give the confidence interval as

However, this is not the correct confidence interval. The variance has a χ2 distribution, which is the 
distribution of sums of squares, with degrees of freedom equal to the number of independent data 
points minus one. For smaller samples sizes (i.e. for a smaller number of blocks) this distribution is 
notably asymmetric, and the correct (asymmetric) confidence interval is given by

such that

where α is the desired confidence level. For a large number of blocks the χ2 distribution converges 
towards a normal distribution according to the central limit theorem.
The best approach to obtain an estimate for the variance using this method is by plo�ing the estimates 
together with the intervals against the number of transformations and infer at which point the fixed 
value is reached, taking the confidence interval into account.

3.2.3 Lifting by the bootstrap for estimation of the variance

In addition to the previous methods, it is also possible to obtain a robust estimate of the variance using 
a technique called bootstrapping[8], or similar methods such as the jackknife[9, 10]. Bootstrapping 
was originally proposed to make inferences about distributions from small samples. It exploits the 
similarity of the sample to the population. From the available sample an approximate or bootstrap
population is reconstructed by replicating it a large number of times, typically thousands to millions. 
From the bootstrap population, a large number of samples can be drawn to estimate e.g. the mean of 
the population. Then the averages from the bootstrap samples can be displayed as a bootstrap sampling 
distribution of which the central 95% provides the desired confidence interval for the population 
mean. In the case of (correlated) time series care has to be taken, since the neglect of dependence 
between original observations can lead to incorrect answers[11]. The use of bootstrap techniques, as 
well as the jackknife, in the case of stationary processes has been discussed by Künsch[12].
Though not widely used in the field, bootstrapping is not new in molecular dynamics. For example, 
Knecht and Grubmüller have used the technique to make inferences about the energy necessary to 
tilt an α-helix into a presumed orientation[13]. The versatility and robustness of bootstrapping make 
this technique also very suitable to make inferences about the moments of the ensemble. 
The only assumption made in the application of the bootstrap is that the distribution sampled in the 
simulation reflects the distribution of the ensemble. Then, each sample randomly drawn from the 
simulation data with replacement, meaning that each observation is put back in the pool such that 
it can be drawn multiple times, corresponds to a random sample from the underlying distribution. 
The average and variance obtained from such a sample are thus unbiased estimates of the mean 
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and variance of the distribution. Repeating the random sampling from the simulation data a large 
number of times leads to distributions for the average and variance obtained from such a sample, 
from which a 95% confidence interval can be constructed, and the estimate of maximum likelihood, 
the mode of the distribution, can be inferred.

3.2.4 Degrees of freedom in correlated data

The degrees of freedom, denoted ν, are a measure for the number of independent observations 
contributing to an estimate, e.g. of the variance. For making statistical inferences and notably for the 
comparisons and the construction of confidence intervals, it is necessary to have a good estimate of 
the number of degrees of freedom. In the method of Straatsma et al.[2] or Jenkins and Wa�s[3], the 
degrees of freedom follow from the correlation length and should be taken as

where n is the number of observations and τ is calculated from equation 2.20 or 2.22. The number of 
degrees of freedom according to the method of Flyvbjerg and Petersen[7] follows from the number 
of blocks at which the estimate of the variance levels off. Finally, if the bootstrap method was used, 
the number of degrees of freedom could be estimated using the correlation length according to 
2.31. However, it is in general also possible to use bootstrap methods directly for comparing data 
sets or for the construction of confidence intervals. Two examples of such methods are given in the 
following section.

4 Comparing simulations

4.1 Comparing two simulations or comparing the results 
from a simulation with experiment

The objective of many studies using molecular dynamics is the comparison of the results from 
simulations with experimental results and/or the comparison of results obtained from simulations 
performed under different conditions with each other. Such comparisons between simulations are 
o�en made by looking at the average values obtained from single trajectories, whereas the comparison 
with experiments usually involved looking whether the average value from the simulation was 
consistent with an experimentally defined confidence interval. These approaches implicitly assume 
that the time average is a sufficiently good estimator of the ensemble average. However, when a 
simulation only covers a limited time, it is necessary to explicitly take the sampling error of the time 
average into account. In addition, the source of the sampling error in an experiment is quite different 
from the source of the sampling error in a simulation. The former is o�en not appropriate to be 
applied to the simulation results. To make a proper comparison with the results from simulations 
it is necessary to explicitly take the sampling error or the natural variance in the simulation into 
account as well as the degrees of freedom in the sample.




21
1


 n

(2.31)



24 Chapter 2

4.1.1 The Student’s t-testt-testt

The most obvious way to account for the variance is to estimate the sampling error from the simulation 
data, according to any of the methods given in the previous section, together with the number of degrees 
of freedom ν. If it is assumed that the samples are normally distributed and the variances are equal, the 
averages can be compared using the well known Student’s t-test. Let x  and y  denote the time averages 
from two different simulations and let 2

xs  and 2
ys  denote the estimates for the variance for each of the 

simulations, corresponding to m and n independent samples. Then the test statistic

has the Student’s t-distribution with 2 nm  degrees of freedom. sp
2 denotes the pooled variance, 

which is the estimate of the population variance obtained from both samples taken together, and is given 
by

For a two-sided test of size α the null hypothesis 210 :  1 1H  is rejected in favour of the alternative 
hypothesis 211 :  1 1H  if

If there is a priori information that the first mean, if different, will be larger than the second, it is also 
possible to perform a one-sided test by evaluating

4.1.2 The Welch t-testt-testt

Sometimes there are indications that the variances are different between the simulations. In particular, 
when comparing the results from a simulation to experiments, the difference in the source of the 
sampling error or variance will generally cause the variances to be different. In that case, a correction 
can be applied to the Student’s t-test, as suggested by Welch[14] to allow assessment of the equality of 
means from distributions with unequal variances. The correction involves a modification of the degrees 
of freedom, which is taken to be

and a change in the calculation of the t-statistic

which is evaluated for a two-sided test of size α against  ;;2tt . The test is then referred to as a Welch t-test. 
Both the Student’s t-test and the Welch t-test assume normal distributions. A basis for this assumption 
is the central limit theorem, which implies that with longer time scales a time average will be more 
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narrowly distributed around the population mean (the ensemble average) and that this distribution 
will be more normal. However, when the time scale is limited, the distribution of time averages can 
be distinctly non-normal, rendering the above tests for comparisons invalid. In that case, one can 
turn to rank tests, such as the Wilcoxon-Mann-Whitney test for the comparison of two samples or to 
bootstrap tests for comparing samples.

4.1.3 The Wilcoxon-Mann-Whitney rank test

The Wilcoxon-Mann-Whitney test, or WMW test for short, is a rank-based test. For these tests the 
observations from the original samples are ranked, and the test is performed on the ranks, rather 
than on the original data. Instead of testing the equality of the means, these tests assess the equality 
of the medians of the distributions. If two samples nxx ,,1  and myy ,,1   are to be compared, the 
test statistic can be calculated as

For large sample sizes, such as the series of values obtained from a simulation, the U-statistic is 
approximately normally distributed under the null-hypothesis of equal medians, even if the 
distributions underlying the samples themselves are not. The mean of the distribution of the U-

statistic is

and the variance is given by

From these parameters an approximate z-score can be calculated using

which can be related to the desired percentage point of the normal distribution N~(0,1), such that the 
null hypothesis of equal medians is rejected for a test of size α if
In the case of smaller sample sizes, the statistic U can be checked against tables of the statistic with U can be checked against tables of the statistic with U
the given sample sizes.
The WMW test can be regarded the equivalent of performing a Student’s t-test on the ranks of the 
pooled samples, rather than on the original samples.

4.1.4 Bootstrap hypothesis test on the equality of means

The equality of means or medians can also be assessed by using bootstrap methods as was briefly 
mentioned before. Two tests are particularly worth mentioning, namely the bootstrap hypothesis test 
on the equality of means[15] and the bootstrap rank Welch test[16]. A key element in both of these tests 
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is the initial transformation of the data sets to make these satisfy the null hypothesis. Then from 
the transformed data sets a large number of samples are drawn and used to build the distribution 
of the desired test statistic. Finally, the probability that the observed value belongs to the obtained 
bootstrap distribution is assessed.
Consider two samples nxx ,,1    and myy ,,1  . These samples are shi�ed to satisfy the hypothesis 
according to

and

where nxx ,,1   and myy ,,1   are the averages of each sample and c is the average of the combined 
samples or the common location parameter. From these transformed samples a large number of 
bootstrap samples are drawn and the corresponding t-distribution is built using

If the observed t-value from the original samples lies beyond the desired percentage point of this 
distribution, the difference between the means of the samples is considered to be statistically 
significant.

4.1.5 Bootstrap rank Welch test for stochastic equality

In addition to the previous tests, it is worth mentioning that recently a new test was introduced by 
Reiczigel et al. for the purpose of comparing stochastic distributions, which are o�en distinctly non-
normal[16]. This test is also based on rank-testing, but uses bootstrapping to evaluate the hypothesis 
of equal medians. It requires no a priori information or assumptions with regards to the shape of 
the distribution. The test was specifically designed to test stochastic equality, reflected by the null 
hypothesis

against the alternative

First, given two samples x = ( nxx ,,1   ) and y = ( myy ,,1   ), let rx and ry denote the sets of the 
ranks of the values of the pooled samples. Then let xrxrx , yryry  and 2

xs , 2
ys denote the averages and 

sample variances of the sets of ranks. Then the Welch statistic can be calculated for the ranked 
samples, according to 2.37, giving RWt .
The distribution of RWt  under the null hypothesis is obtained by transforming the original data sets 
x and y, in a way similar to that previously given. However, rather than shi�ing both samples with 
respect to the sample means, the data is transformed by shi�ing one sample, say y, according to the 
median difference between the samples, such that

where c is the median of all combinations xi – yjyjy .
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Then from the two distributions x and y* a large number of samples are drawn, equal in size to 
the original samples, and the test statistic *

RWt  is calculated for each sample pair. Analogous to 
the previous method, if the observed value for RWt  from the original samples lies beyond the 
desired percentage point of this distribution, the difference between the medians of the samples 
is considered to be statistically significant and thus the underlying distributions are regarded 
stochastically different.

4.1.6 Confidence intervals for the difference between two 
simulations

In addition to knowing whether two means are likely to be equal or not, it is o�en desired to know 
what the range of reasonable values is for the difference between the means of the simulations. 
To this end one can construct a confidence interval. Assuming a normal distribution, the confidence 
interval for the difference between the time averages x  and y on a certain level α is given by

4.2 Comparing two sets of simulations

The tests described above to assess the similarity or statistical equality of two simulations are valid if 
the simulations have reached convergence. However, in most cases the time scales of the simulations 
are too limited to allow convergence to the degree necessary and it is not possible to make a robust 
estimation of the ensemble average and/or the sampling error. If two simulations start from slightly 
different starting configurations and sample for a limited time, they can end up in different localized 
regions of phase space and thus yield different estimators for the ensemble average and possibly 
for the sampling error, despite the fact that the two simulations sample from the same ensemble. 
In this case, one can not rely on the estimators and tests described above, since these will lead to 
a large error of the first kind; a false rejection of the null hypothesis that the samples are from the 
same distribution.
In this work it is proposed to take a different approach to improve the robustness of the test when 
convergence is not reached. Imagine a starting structure as a point on a high dimensional energy 
landscape. Usually, the starting structure will lie in a region with a certain slope, such that the 
landscape more or less determines which route a simulation takes. If a second simulation is started 
from a slightly different configuration, it will take a different path. But, as the underlying landscape 
is the same, these paths are likely to be similar. On the other hand, differences in the simulation 
conditions themselves can affect the underlying energy landscape. In this case a simulation started 
from a slightly different configuration will take a consistently different path over the landscape. This 
assumption is the basis for the tests suggested here and used in chapter 4.
From this perspective, the observed trajectory of a given length l is considered to be a sample 
from the population of all possible paths of length l, starting from a pool of similar starting 
configurations. This population will have a defined set of moments and it is thus possible to define 
a mean path and determine the variance of paths around this mean. Each simulation starting from 
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a random configuration from within the ‘starting pool’ may be considered to be an independent 
sample from the distribution of possible paths. This sample can be characterized by choosing an 
instantaneous property of interest and taking the average over a pre-defined time window. From 
a sample of a number, e.g. five, independent simulations it is then possible to estimate the mean 
of the population and the variance. The number of degrees of freedom follows directly from the 
number of simulations. If the starting configurations are selected randomly from the starting pool, 
the individual simulations may be considered as independent.
If one has two samples obtained using this approach, originating from a common pool of starting 
configurations but with different simulation conditions, it is possible to assess the probability that 
these samples reflect a common underlying distribution of possible paths and should therefore be 
considered equal. If the starting conditions affect the outcome of the simulation, the local energy 
landscape is perturbed and there will be a consistent difference between the distributions of paths.
To assess the similarity or otherwise of samples of simulations thus obtained, any of the tests 
presented in the previous section can be applied, depending on assumptions and a priori or a 
posteriori knowledge of the distributions of paths.

4.3 Comparing two simulations with regards to 
fluctuations

The mean or the median is a logical choice to use as a basis for the assessment of equality of two 
simulations or sets of simulations. However, when dealing with dynamic systems, as is typically 
the case in molecular dynamics, the difference between two simulations performed under different 
conditions may well be in the rate and the amplitude of fluctuations, rather than in mean values. It 
can even be imagined that for some proteins, the difference between the active and the inactive state 
is the result of altered fluctuations, whereas the average structure remains more or less the same[17]. 
In such cases, it is obviously desirable to test the equality of the fluctuations in a certain property 
obtained from a molecular dynamics simulation.
Consider two sample variances, 2

xs  and 2
ys , which are obtained from two simulations or from two 

sets of simulations obtained according to any of the methods above. Let m and n correspond to the 
number of independent samples used to obtain these estimates. Then it is desired to test the null 
hypothesis

against the alternative

at a certain level of confidence or test size α. To this end one can calculate the variance-ratio or 
F-statistic

If the null hypothesis is true, this statistic has the F-distribution (variance-ratio distribution) with 
m – 1, n – 1 degrees of freedom and the null hypothesis of equal variances is rejected for a two-sided 
test of size α if
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From equation 2.52 it can be seen that for the calculation of F and the comparison of two trajectories 
it is also possible to use the total fluctuation rather than an unbiased estimate of the real sampling 
error if the number of degrees of freedom is the same. In that case, these cancel in the equation. 
However, one still needs to have an estimate of the degrees of freedom, to compare the calculated 
F-value with the desired percentage point from the appropriate distribution. The test is usually 
referred to as the F-test for equality of variances. It is worth noting that there have been a number 
of recent studies, in which the F-statistic was used to investigate atomic fluctuations in molecular 
dynamics simulations[18-20].

4.4 Comparing k sets of simulationsk sets of simulationsk

There are many situations in which it is desirable to compare multiple simulations or even multiple 
sets of simulations at once. Practical examples of such cases are the comparison of three different force 
fields by Price and Brooks[21] and the comparison of three different Generalized-Born Models by 
Fan and Mark[22]. Two other examples are given in Chapter 4 of this thesis, namely the comparison 
of simulations performed in different box types and the comparison of three different GROMOS 
force fields. Note, the first of these studies, from Price and Brooks, compared single trajectories, 
without considering the sampling error or the spread of the distribution. In other words, no robust 
statistical assessment was made of the validity of the conclusions.

In order to make a statistically robust comparison of k samples, either simulations or sets of k samples, either simulations or sets of k
simulations, with regard to several discrete levels of a certain condition, most of the tests and 
procedures outlined above can be generalized. For example, one might wish to test whether the 
samples are drawn from the same distribution with a common mean. In other words, to test the 
hypothesis

against the alternative that some of the means are different. Under the assumption that the variances 
of the different samples are equal, this hypothesis can be tested using a technique called analysis of 
variance (ANOVA). The name appears counterintuitive, but indicates the principle of the method, 
i.e. comparing the variance between samples to the variance within samples.

4.4.1 Analysis of Variance

For ANOVA it is assumed that the observed data can be described by the mathematical model

with i = 1, …, k and k and k j = 1, …, ni, where µ is a location parameter common to all observations, τi is the 
additive effect peculiar to the ith treatment or condition and εĳ is a normally distributed random 
variable with mean zero and variance σ2. ni is the number of observations of sample i. This model is 
an example of a general linear model underlying statistical design. Using this model, the hypothesis 
of equal means can now be wri�en as

and the alternative hypothesis is the general model for the observations.
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To test the hypothesis, the total sum of squares (SS) obtained is decomposed into separate terms, 
corresponding to the terms in the model.

which can be expanded to

Here ix  denotes the average for sample i, given by

and x  denotes the overall or grand average

Division of the sums of squares by their respective degrees of freedom gives the means of squares 
(MS), corresponding to the variance contributions due to the model components. Under the null-
hypothesis of equal means, it is expected that the variance between treatments is equal to the 
variance within treatments. To test this, the F-statistic is calculated according to

and H0H0H  is rejected for a test of size α if

The calculations outlined above are usually summarized in an ANOVA table (Table 2.1). The 
comparison of different levels of a single treatment or condition (generally referred to as a factor) is 
called One-Way ANOVA. It is also possible to include more factors, each with a number of different 
levels. As an example, consider the general linear model for a series of experiments in which the 
effects of two factors, e.g. the boxshape and the application or not of rotational constraints (Chapter 
4), were simultaneously assessed:
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Table �.�: One-Way ANOVA. The meaning of the different elements is given in the text.
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In this model, the meaning of µ, τi and εĳk is equal to their meaning in (2.55). However, the inclusion of ĳk is equal to their meaning in (2.55). However, the inclusion of ĳk

one additional factor gives rise to two extra terms, an additive effect νjνjν  peculiar to the jth treatment of 
the second factor and an interaction term γĳ denoting an additive effect specific for the combination 
of the ith treatment of the first factor and the jth treatment of the second factor under consideration. 
Accordingly, the null-hypothesis changes and now is comprised of three partial hypotheses:

This is a Two-Way ANOVA model with interaction. The components and test statistics for the partial 
hypotheses are given in Table 2. It should be noted that the first effect to be tested in such a model is 
the interaction. When the interaction effect is not statistically significant at the given level α, the sum 
of squares of the interaction and the residual sum of squares have to be combined before testing the 
partial hypotheses H0,aH0,aH  and H0,bH0,bH .
The model can be further extended by the inclusion of additional factors. However, the interaction 
terms can become complicated and difficult to interpret. In addition, systematic testing of the effect 
of several factors o�en leads to a complicated and costly experimental setup.
As mentioned previously, ANOVA is applied under the assumption that the variances of the 
different samples are equal. The equality of variances is called homoscedasticity, the opposite of 
which is heteroscedasticity. This requirement can be tested a�er performing ANOVA, by means of 
diagnostic tests. For example, the residuals can be plo�ed to examine whether these follow a normal 
distribution. On the other hand, it is also possible to test the equality of the variances obtained from 
different samples before applying ANOVA, which is discussed later.
If the samples are (expected to be) heteroscedastic, there are several alternatives to ANOVA. For 
example, the Welch correction[14] (2.36) can be used (Welch ANOVA) or it is possible to choose a 
rank based alternative to the parametric ANOVA. In particular, the Kruskal Wallis test[23] is o�en 

Table �.�: Two-Way ANOVA with interaction. The meaning of the different elements is given in the text.
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used as a rank based variant of one-way ANOVA, and can be regarded the equivalent of this test 
performed on the ranks of the pooled samples rather than on the original data. Likewise, a Friedman 
test[24] can be used as a rank based alternative to two-way ANOVA.

4.4.2 Simultaneous confidence intervals for sets of means: multiple 
comparisons

When for a set of samples the hypothesis of equal means is rejected, it is usually desired to know 
which of the sets lead to the rejection. This problem is referred to as that of multiple comparisons, 
which are aimed at making inferences about the members of a family of hypotheses. Such tests are 
constructed in such a way that the probability of making an error of the first kind will be at most α
for the entire family.

There are several methods available to construct a set of simultaneous confidence intervals for 
multiple comparisons. The technique given here is due to Scheffé[25, 26]. Define a contrast of the 
parameters τi of the one-way model (2.55) as any linear function

the coefficients of which have the property

Note that τ1 – τ2 and 3τ1 – (τ2 + τ3 + τ4) are contrasts, whereas τ2 – (τ3 + τ4) is not. In the case of the 
one-way analysis of variance model the simultaneous confidence intervals with the joint coefficient 
1 – α for all contrasts of the τi have the form
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is accepted at the level α if the simultaneous confidence interval for that contrast includes zero.
Alternatives to the test for multiple comparisons (also called multiple contrasts) given above are the 
Bonferroni method[27] and the method of Tukey’s honest significant differences[27, 28].
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4.4.3 Testing the equality of variances from several samples

To assess whether several samples come from distributions with equal variances, there are two tests 
which are commonly applied. The first is Bartle�’s test[29], which has the be�er performance, but is 
sensitive to departures from normality. The second, Levene’s test[30], is less sensitive to departures 
from normality. Here, let it suffice to give the test statistic for Bartle�’s test

where sp
2 is the pooled variance given by

and which is rejected for a test of size α if

5 Multivariate observations

Rather than looking at a single observable, characterizing a simulation over time, it is also possible 
to regard a number of observables simultaneously. In that case, each frame from a simulation yields 
a multidimensional observation vector, resulting in a more complete description of the system. 
The main difference with the univariate analysis is that the common source of the observables 
will generally lead to dependencies or correlation among the different dimensions. By taking the 
correlation structure into account in the analysis, the power of the tests can be increased. This is the 
basis for multivariate statistics. In this section a brief overview is given of multivariate statistics, 
starting from the distribution of an observation vector. Subsequently, several multivariate analogues 
or generalizations of the univariate tests given before will be presented and discussed in the context 
of molecular simulations.
Let x denote a p-dimensional observation vector, defined as

The elements of the vector x are assumed to be continuous unidimensional variables with density 
functions f1f1f (x1), …, fpfpf (xp) and distribution functions F1(x1), …, Fp(xp). The joint distribution function 
of x is given by

If this function is absolutely continuous it is possible to write

where f(f(f u1,…,up) is the joint density function of the elements of x.
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5.1 The moments of multivariate distributions

The moment generating functions for one-dimensional variables can also be applied to distributions 
of vectors or multivariate distributions. The first moment of the distribution of an observation vector 
x is simply the vector of the expectation values of the elements

for which the estimate is the sample average vector

This is an unbiased estimator since each individual element is an unbiased estimator for the mean 
of the univariate observable.
The second (central) moment of a multivariate distribution is the variance-covariance matrix or 
covariance matrix for short. The population covariance matrix is denoted Σ, and is given by

where σi
2 is the variance of variate i and σĳ denotes the covariance between variates i and j, defined 

as

The sample covariance matrix, S, is obtained from the matrix of sums of squares and crossproducts, 
A, given by

This matrix is divided by the number of degrees of freedom to yield S

The maximum likelihood estimate of the covariance matrix

is a biased estimator, analogous to the estimate for the population variance in the univariate case. 
Also note that the correlation between successive sampling points again adds more bias to the 
estimator and to obtain a be�er estimate from a single simulation the methods for error estimation 
as given in the previous section can be generalized.
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If the (fluctuations in the) variates differ by an order of magnitude, it may be be�er to look at the 
correlation rather than at the covariance. The correlation coefficient of two variables xi and xjxjx  is defined 
as

and is a measure for the interdependence between the variables, which is invariant under changes 
of scale and origin. Accordingly, the population correlation matrix P is given by

where 



i

1D  denotes the diagonal matrix of the standard deviations of the variables.

5.2 The multivariate normal distribution

When the nature of the distribution of the multivariate data is important, notably for the testing of 
a hypothesis, it is generally assumed that the data is drawn from an approximately multinormal or 
multivariate normal distribution. There are several reasons for this assumption, which have been 
explained elsewhere. Do note that the assumption has to be rationalized and that in the case of 
obvious deviations from (multi)normality caution must be used.
The density of the multinormal distribution is given by

where Σ is a p×p symmetric positive definite matrix. To illustrate the idea of the multinormal 
distribution, the density function of a bivariate normal distribution is shown in Figure 2.2.

Figure 2.2: The bivariate normal distribution. An example of the density of the bivariate normal 
distribution is shown with mean value )00(ì , variances  102

 An example of the density of the bivariate normal 
2

 An example of the density of the bivariate normal 
11   and 102

 An example of the density of the bivariate normal 
2

 An example of the density of the bivariate normal 
22  ,

covariance 1512   and correlation coefficient 5.0 . The density is calculated 
according to (c.f. 2.85):
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5.3 Testing the equality of two mean vectors

Without going into detail in regards to the derivation, we here give the multivariate analogue of the 
Student’s t-test for the comparison of two (multinormally distributed) multivariate samples[31]. The 
test statistic is Hotelling’s T2T2T , which is given by

The quantity

then has the variance ratio F distribution with degrees of freedom p and N1 + N2N2N  – p – 1. Note that in 
the expression of T2T2T , S is the pooled covariance matrix given by

where A is the matrix of sums of squares and cross-products. The null hypothesis of equal mean 
vectors is accepted for a test of size α if

5.4 The multivariate general linear model: MANOVA

When the objective is to test the equality of several sets of multivariate observations, assumed to be 
drawn from a set of multivariate normal distributions, these can be described by a (multivariate) 
general linear model[32-34], similar to the case of univariate observations. This forms a basis for the 
multivariate analysis of variance or MANOVA, which is used for the comparison of simulations in 
Chapter 4. To illustrate the linear model underlying MANOVA, consider the general linear model 
for one-way ANOVA (2.55) rewri�en in matrix notation

where x is the vector of observations and ε is the vector of random errors. µ is the parameter vector, 
given by

and A is the design matrix, which assures that the ĳth observation only involves the constant µ + τi. 
The design matrix is partitioned into k ni × (k+1) submatrices. Although for multivariate observations 
the model becomes more complicated the principles are the same. 
The procedure for MANOVA is quite similar to that for ANOVA. The outline given here corresponds 
to the analysis of a set of samples obtained with variations in two conditions, including the assessment 
of the statistical significance of interaction between the conditions. For convenience, the results are 
assumed to be tabulated with the columns corresponding to the different levels of the first condition 
and the rows corresponding to the different levels of the second condition. Then each cell contains 
the samples obtained under a specific combination of conditions.
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Similar to the univariate two-way ANOVA with interaction, MANOVA starts with the calculation of 
the total sums of each cell (C), row (A) and column (B) as well as the grand total (G). The elements 
of each sum are given by

where a and b denote the number of columns and rows, respectively, and n denotes the number of 
observations per cell. The subscript h denotes the observable. These sums are then used to construct 
the hypothesis matrices HA, HB and HI, according to the equations given in Table 2.3. I, according to the equations given in Table 2.3. I HA, HB and 
HI are the matrices of sums of squares and cross products (SSCP) for the column treatments, row I are the matrices of sums of squares and cross products (SSCP) for the column treatments, row I

treatments and the interaction, respectively. These matrices correspond to the sums of squares SSA, 
SSB and SSI calculated in univariate ANOVA and given in Table 2. In addition, the I calculated in univariate ANOVA and given in Table 2. In addition, the I residual covariance 
matrix E is constructed, which corresponds to the residual sums of squares. In effect, this comes 
down to a decomposition of the total matrix of sums of squares and cross products ATot similar to 
the decomposition of the total sums of squares 

The matrix E is inverted and for each of the hypothesis matrices the product with the inverted matrix 
is taken, giving three matrices HAE-1, HBE-1 and HIE-1. Note the analogy with the ratio between the 
sums of squares due to a given source and the residual sums of squares in the univariate ANOVA. 
The evaluation of the equality is typically based on the characteristic roots from the resulting 
matrices. 

Table �.�: Two-Way MANOVA with interaction. The meaning of the different elements and the variables 
used in the equations are given in the text.

Source Matrix General Element

Treatments A (rows) HA abn
GGAA

bn
h vGvGuGuGa

i
iviuAuv  

1

1

Treatments B (columns) HB abn
GGBB

an
h vGvGuGuGb

j
jvjuBuv  

1

1

Interaction HI uvBuvAuvuvIuv ehhth 

Residuals E 
   


a

i

b

j
ijviju

a

i

b

j

n

k
ijkvijkvijkijkuijkuijkuv CijvCijvCijuCijun

xxe
1 1 1 1 j1 1j j 1 1 j 1 1 1 1 j1 1j j 1 1 j  1

1

Total T abn
GGxxt vGvGuGuGa

i

b

j

n

k
ijkvijkuuv  

  1 1j1 1j 1 1 j j1 1j j 1





n

k
ijkhijh xC

1
(2.92)


 


b

j

n

k
ijkhih xA

1 1
(2.93)


 


a

i

n

k
ijkhjh xB

1 1
(2.94)


  


a

i

b

j

n

k
ijkhh xG

1 1 1
(2.95)

EHHHA  IBATot (2.96)



38 Chapter 2

Common examples of test statistics available for the evaluation of MANOVA results are Roy’s 
greatest root[35, 36], the Hotelling-Lawley trace statistic[37], the Pillai trace statistic[38] and 
Wilks lambda criterion[39]. In Chapter 4, Wilks lambda criterion is used for the evaluation of the 
MANOVA models. This statistic considers all characteristic roots and is easy to calculate. Wilks 
lambda is calculated according to 

which is approximately distributed as a χ2 variate. 

5.5 Principal Component Analysis

A particularly useful technique in multivariate statistics is principal component analysis. The 
objective of this technique is to extract from a given data set a new set of latent or hidden variables, 
based on the dependence structure of the original variables. Especially when the observables are 
symmetric or when there is no a priori information regarding causality, principal component analysis 
can help to interpret and understand complex multivariate data.
Principal component analysis was first introduced as a method to fit planes by orthogonal mean 
squares[40]. Later it was recognized that the method is particularly useful for the analysis of 
correlation structures[41]. Principal component analysis is widely applicable and is used in a broad 
range of scientific fields, including molecular dynamics.
The use of principal component analysis in molecular dynamics focuses on revealing the structure 
of atomic fluctuations. This will be more thoroughly discussed in the next section of this chapter. 
The aim of principal component analysis is to describe the original data in terms of new variables 
which are linear combinations of the original ones. Given the vector of p observables x, the first 
principal component y1 is the linear combination of the elements of x

for which the sample variance or mean square displacement

is greatest for all coefficient vectors under the constraint that 111 aa . The vector a1 is referred 
to as the first eigenvector and the quantity l1 is called the associated eigenvalue and is the largest 
characteristic root of the covariance matrix.
The definition of the jth principal component of a sample of p-variate observations is the linear 
construct

whose coefficients are the elements of the characteristic vector of the sample covariance matrix S
corresponding to the jth largest characteristic root ljljl . If ji ll  , the coefficients of the ith and jth 
component are necessarily orthogonal; if ji ll  , the elements can be chosen orthogonal, although 
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an infinity of such orthogonal vectors exists. The sample variance of the jth component is ljljl , and the j, and the j

total variance in the system is thus equal to

The importance of the jth component can be measured by

which indicates the fraction of the total variability in the system explained.
The eigen decomposition of the covariance matrix S into a matrix of eigenvectors P and a diagonal 
matrix of eigenvalues D can be wri�en in matrix notation as

This can be rewri�en to

where 2
1

D  is the diagonal matrix of the square roots of the eigenvalues. L is referred to as the matrix 
of loadings, the columns of which indicate how much a variate from the original set is related to the 
different eigenvectors.

6 The structure of atomic fluctuations

In this section, the use of principal component analysis is discussed in the context of molecular 
simulations. First, the general method is explained in some detail, applied to a trajectory obtained 
from a simulation. Then an extension of this general form of principal component analysis is 
presented, which was derived in the course of this work to deal with characteristic motions and 
interactions between subunits in multimeric systems. At the end of this section, a brief discussion 
is given of a related technique called maximum covariance analysis and its possible application in 
molecular simulations.
The fluctuations of particles in a molecular dynamics simulation are by definition correlated due to 
interactions between the particles. The degree of correlation will vary and notably particles which 
are directly connected through bonds or lie in the vicinity of each other will move in a concerted 
manner. The correlations between the motions of the particles give rise to structure in the total 
fluctuations in the system and for a macromolecule this structure is o�en directly related to its 
function or (bio)physical properties. Therefore, the study of the structure of the atomic fluctuations 
can give insight in the behaviour of such macromolecules.
The application of methods to reveal and study the structure of atomic fluctuations commenced 
in 1991[42]. The original method and all of the methods now available are based on principal 
component analysis.

6.1 Principal component analysis in molecular simulations

When applied to the configurations obtained from a molecular dynamics simulation, the new variates 
or principal components correspond to linear combinations of individual atomic motions. In other 
words, a principal component extracted from a trajectory describes a collective motion of a set of 
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particles in Cartesian space. It has been shown that in general a limited number of these collective 
motions account for the main motional features of a solute in a molecular dynamics simulation[43]. 
Furthermore, the smaller principal components correspond to further uncorrelated thermal motions 
of individual particles, which are usually not of interest. These smaller principal components 
can in general be disregarded and it has been suggested that the region of conformational space 
where these thermal motions occur can be separated from the region spanned by the limited set 
of eigenvectors describing the collective motions which are of importance. This la�er region of 
conformational space has been termed the essential subspace, and it has been suggested that this is a 
unique feature of a given system. Hence, the study of the collective motions defining that space is 
sometimes referred to as essential dynamics.
The term essential is in a sense misleading, since there is no statistical ground on which such a 
separation can be based. The division is in fact largely arbitrary and is the equivalent of a scree 
plot.
To extract the principal components from a trajectory obtained from a molecular simulation the 
frames of the trajectory are first fi�ed onto a reference structure using a method of least-squares. 
This is done in order to remove overall translational and rotational motion.

6.1.1 Extracting the principal components from a simulation

Given a trajectory, represented as the m times n data matrix X, the covariance matrix is obtained by 
subtracting the average value for each row from each observation and taking the inner product of 
the resulting matrix

where

Note, this again underestimates the population covariance matrix by some scaling factor. This does 
not influence the nature and order of the principal components though, which are obtained from the 
covariance matrix. However, the sample eigenvalues do underestimate the theoretical eigenvalues 
from the population by the same scaling factor.

6.1.2 The interpretation and use of principal components

In most sciences the interpretation of principal components is difficult and sometimes impossible 
due to the nature of the original observables. Fortunately, the principal components obtained from 
the configurations from a molecular dynamics simulation have a distinct physical meaning and can 
be interpreted in terms of particles moving more or less in concert. In addition, the eigenvectors can 
be used to represent the part of the conformational space in which the events of greatest interest, 
namely the large scale global motions, take place. Projection of a trajectory onto these eigenvectors 
in turn gives an indication of the sampling of conformational space. Notably, the sampling along 
a single eigenvector can be followed by investigating the time evolution of the projection of the 
trajectory according to
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where yi(t) is called the score of the frame at time t on component i. In molecular dynamics, the score 
thus obtained is o�en simply referred to as the projection.
For the first few eigenvectors, the projection o�en shows a time evolution resembling a cosine 
similar to that found for high-dimensional random diffusion[44]. In that regard, the cosine content 
of the projection can be used as a measure of the convergence of the collective motions of a system 
in simulation. By definition, the first few principal components describe the largest scale motions 
observed, which take the longest to converge in their sampling.
In addition to projecting a trajectory to obtain the scores, a trajectory can also be filtered to allow a 
visual inspection of the motion associated with a single component or a limited set of components. 
Note that the use of a set of components rather than individual components may be particularly 
useful in order to include possible non-linear correlations between motions along two or three 
eigenvectors. The filtered frame is then given by

where P* denotes the N×r matrix formed by r selected eigenvectors and y(t) is the vector of size r of 
the scores of the frame for the selected eigenvectors.
It is also possible to calculate degree to which the motion of a particular atom along a certain axis 
(atom-coordinate i) is correlated with a given principal component j. This correlation is given by the 
relation

and is o�en termed the loading of variable i onto component j. The matrix of loadings L is determined 
according to (cf. 2.104)

In molecular dynamics, colouring or arrows can be used to visualize the loadings for a certain 
component. For an example of this, the reader is referred to Figure 5.5.

6.1.3 Fitting a trajectory prior to principal component analysis

As mentioned, the frames of a trajectory are commonly fi�ed to a reference structure to remove 
overall translational and rotational motion in order to highlight intramolecular motions. In most 
cases the fit is performed according to the method of least-squares on all atoms to be used for further 
analysis. The fit can either be mass-weighted or with equal weights for all atoms.
When there is a priori information in regard to the nature of the collective motions of interest, it is 
also possible to prepare the data in such a way that these motions are enhanced by choosing an 
appropriate subset of atoms for the least-squares fit.
If the purpose of a study is to investigate the relation between two domains, linked by a mechanical 
hinge, then by fi�ing the trajectory to just one of the domains, the interdomain motions or the 
fluctuations of atoms belonging to the second domain become exaggerated. This will be reflected in 
the principal components with the first few primarily describing the motion of the second domain 
relative to the first. An example of this is given in Chapter 5, where principal component analysis 
is used to investigate changes in collective motions of a modular receptor (Death Receptor 5) in the 
presence and absence of ligand (TRAIL).
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6.2 Principal component analysis applied to partitioned 
systems

6.2.1 General approach

Principal component analysis can also be extended to investigate relations between subsystems in 
a molecular dynamics simulation. The extension presented here involves expressing the observed 
motions in terms of the characteristic motions of the subsystems and the interaction or covariance of 
these collective motions between the subsystems.
Let A and B be two non-overlapping subsystems of a larger simulation system with p and q variates 
(atom-coordinates) respectively. Then from the respective trajectories of the two subsystems, p and 
q eigenvectors can be extracted, which represent collective motions of particles in subsystems A and 
B. Since these are part of a larger system, they influence each other and the collective motions of the 
subsystems need not be independent. Though in general dependencies limit the sampling obtained 
in a simulation, in many cases they are vital for understanding the system under study and reflect 
a physiological function.
The relationship between the two subsystems in terms of collective motions of the parts is here 
extracted as follows:
Let S be the covariance matrix from the variates of A + B. Then S is a p + q × p + q partitioned matrix

Assuming that S11 and S22 are positive definite, i.e. for all non null a it holds that 0Saa , there 
exist matrices P11 and P22 such that

and

where Pii is the matrix of eigenvectors of Sii and Dii is the corresponding diagonal matrix of 
eigenvalues. Then the total covariance matrix is processed such that the diagonal blocks Sii are 
diagonalized and the off-diagonal blocks reveal the covariances between the principal components 
of the subsystems

Division of the elements of C12 by the square roots of the corresponding eigenvalues gives the 
correlation matrix R12
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Here the matrix 2
1

iiD  denotes the diagonal matrix of the roots of the reciprocal eigenvalues.
In molecular dynamics, the matrices S12 and R12 give the covariances and correlations between 
collective motions from subsystem A and subsystem B. These can be valuable for the investigation 
of the effect of either subsystem on the other. Practical applications of this method are the study of 
the effect of two protein domains on each other, or the effect of a specific cofactor or ligand on the 
characteristic motions of a protein. With regards to the correlation, it should be noted that a high 
value need not be indicative of a significant relation, as the fluctuations involved can be small.
The procedure outlined above can easily be extended to investigate relationship between larger sets 
of subsystems. This involves extending the 2 × 2 partitioned matrices to a set of n × n matrices, with 
n being the number of subsystems to include.

6.2.2 Identical subsystems

In many cases, e.g. haemoglobin, GroES/GroEL and MscL, the functional multimeric protein consists 
of a number of identical subunits, which are indistinguishable with respect to their environment 
(Figure 2.3). The same is true for molecules of bacteriorhodopsin within the purple membrane 
(Chapter 7). In this case it is possible to transform the system such that all of the subunits sample the 
same configurational space. In other words, each subsystem is sampling from its own distribution 
with mean vector µi and covariance matrix Σi, but these mean vectors and covariance matrices are 
equal among the different components, except for their orientation with respect to the common 
coordinate system. This means that each of the subsystems can be transformed such that each of 
the instances of a subsystem is an observation from a common distribution with mean vector µ and 
covariance matrix Σ.
Let A and B denote the two subunits of a homodimeric, symmetric protein. Then let a and b denote 
the configurational observation vectors from these systems. Because the subunits are equal except 
for their orientation, the mean vectors can be interrelated according to

with M a rotation matrix and d a shi� vector. The covariance matrices are related accordingly
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Figure 2.3: Symmetric assemblies of homomultimeric proteins. Many proteins are functional multimers, consisting 
of identical subunits (homomultimeric). If the different components of such a complex are indistinguishable with 
regards to the environment, each state observed for one subunit has an equal probability to occur for any of the other 
subunits. In that case, the trajectories for each individual subunit can be combined to obtain a pooled sample, which 
gives a be�er estimate for the ensemble. These properties can be used explicitly in the design of principal component 
analysis aimed at investigating inter domain motions as well as global motions. Three examples of multimeric systems 
to which this applies are top: the heptameric chaperone GroEL/GroES (lines indicate the symmetry), middle: the 
pentameric mechanosensitive gating channel MscL and bo�om: the tetrameric oxygen carrier hemoglobin.
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In practice, as neither µa nor µb is known, the best way to assure that they are transformed to have 
the same orientation is by fi�ing the frames of the subsystems onto a common reference structure.
Let Ma and Mb denote the matrices which relate both subunits to a reference structure, such that

Then let c denoted the compounded vector consisting of a and b, such that

where the subscripts of r indicate that the subsystems do not need to be equal for a given time t or 
observation i. However, in both cases they originate from the same distribution with mean vector µr

and covariance matrix Σr. The covariance matrix for c is defined by

and can be expressed in terms of the subsystems to give

Since by definition ra and rb have the same distribution, the expectation values for the diagonal 
submatrices are equal. The off diagonal submatrices relate motions of both subsystems to each 
other

Since both the sample covariance matrices for r a and rb are estimates for the same population 
covariance matrix Σr, a be�er estimate for the la�er can be obtained by combining the data sets to r, a be�er estimate for the la�er can be obtained by combining the data sets to r

construct the pooled covariance matrix
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where

is used as the estimate for the population mean.
Given the rotation matrices Ma and Mb, the matrix of sample covariances S12 can be wri�en as

showing how the covariance matrix relating subsystems A and B is related to the covariance matrix 
of the rotated subsystems. Note that the rotation is not needed for the qualitative evaluation of 
the relations, but is needed when it is desired to visually inspect the interactions in the original 
coordinate system.
The extraction of the collective motions follows the same procedure as given before. However, in the 
case of equal subsystems, it is sufficient to determine the eigenvectors from Sr.
This method can easily be generalized for the case of k subsystems, which are indifferent except for k subsystems, which are indifferent except for k
a rotation (and possibly translation). If each observation of each subsystem is repositioned onto a 
reference system by a least-squares fit, the system can be represented by a partitioned vector r with 
subvectors r1 through rk, which all have the same distribution with mean vector k, which all have the same distribution with mean vector k µr and covariance 
matrix Σr. in that case the sample covariance matrix has a distinct pa�ern and is given by

with

and

This covariance matrix is processed, such that the diagonal submatrices are diagonalized and the 
off-diagonal submatrices show the covariances between the principal components of the subsystems 
for each distinct pair of orientations

It is easy to verify that the matrix P is a partitioned matrix with off-diagonal submatrices equal to 0
and submatrices on the diagonal all equal to P*, which is the matrix of eigenvectors of Sr
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6.3 Maximum Covariance Analysis

The principal components of the subsystems obtained using the approach above may have a 
complicated covariance pa�ern C12. Notably, a single component from subsystem A may correlate to 
several components of subsystem B and vice versa. Instead, the fluctuations in the system can also 
be expressed in terms of orthogonal modes for A and B in such a way that the covariance between 
principal components a1 and b1 is maximized and the covariance between any two components ai

and bj is zero for all i ≠ j. This can be done using Maximum Covariance Analysis[45].
In the method of principal components applied to interacting systems outlined above the covariance 
matrices of the subsystems were diagonalized and the covariance pa�ern of these components was 
revealed. In contrast, the objective of maximum covariance analysis is to diagonalize the covariance 
matrix S12. This is done by singular value decomposition (SVD) of that matrix according to

such that U1 and U2 are the matrices of the components for A and B respectively and Λ is the diagonal 
matrix of singular values. The matrix Λ has size r × r, where )1,,min(  nqpr  is the rank of S12. U1

and U2 are column-orthonormal matrices of size p × r and q × r, respectively. The total covariance of 
S12 is equal to the sum of the square of the diagonal values of Λ and the relative importance of the 
kth mode from A and B is given by

The components given by U1 and U2 correspond to the collective motions of particles in subsystems A 
and B, which are column wise linearly correlated between the subsystems and (linearly) uncorrelated 
with other modes from both A and B. Thus the first of these components is that collective motion 
which best describes the interaction between the two subsystems.

7 Relations between atomic fluctuations and 

instantaneous properties

The collective motions identified from the structure in the atomic fluctuations give insight into the 
mechanical behaviour of a macromolecule. However, the physical characteristics are o�en be�er 
understood by examining various instantaneous properties, such as the number of hydrogen bonds 
or the presence or absence of specific elements of secondary structure. In many cases, it is of interest 
to know how specific collective motions correlate with these instantaneous properties and which 
collective motions best describe the changes in these properties. The techniques presented in the 
previous section provide several ways to investigate such relations, which are described here.
The methods described in this section were derived during the work for this dissertation to assess 
specific questions regarding the simulations.
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7.1 Multiple regression relations between instantaneous 
properties and atomic fluctuations

Consider a system X in simulation, of which the positional vector at time t is given by x(t) and the 
trajectory is represented as the data matrix X. From the trajectory a instantaneous property q is 
retrieved, denoted q(t) for the value at time t. This property is expected to be correlated with the 
atomic fluctuations according to a certain pa�ern.
Let c denote the compounded vector, consisting of q and x:

Then the partitioned sample covariance matrix is given by

As a first approach, it is desired to find the linear compound

of the atomic positions having the greatest correlation with q. The vector β consists of the regression 
coefficients of q upon the elements of x. The sample estimate of β is b and is obtained from the 
relation

The maximum correlation between q and x is given by the multiple correlation coefficient

In this way, the relations between an instantaneous property q and the atomic positions x are obtained. 
Likewise, it is possible to obtain a matrix of regression coefficients B, relating the positional vector x
to a number of instantaneous properties q.

7.2 Relations between instantaneous properties and 
collective motions

Rather than obtaining the coefficients for individual atoms, one may look at the relationship between 
a property q or a vector of properties q and the collective motions of a macromolecule. For this one 
can perform regression of q on the projections or scores of the trajectory on a selected number of 
principal components according to the following method.
Given the matrix of scores Y of r selected principal components,

one can construct a combined trajectory data matrix Z, defined as
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where Q is the time series of q is the time series of q is the time series of  or q. Then from the covariance matrix of Z the regression and 
correlation coefficients can be obtain in a manner similar to that given above.

7.3 Relations between instantaneous properties and 
collective motions starting from original data

An alternative approach is to start from a data matrix Z, consisting of the instantaneous property 
time series and the original trajectory:

The covariance matrix of Z can be processed in such a way that the submatrix S22 corresponding 
to the atom coordinates is diagonalized, while the submatrix S11 remains unaltered. The submatrix 
S12, giving the covariances between the instantaneous properties and the atom coordinates, is then 
processed such that the relations between the former and the principal components are revealed.

This method is equivalent to that given in 2.114 for interacting subsystems except that it leaves S11

unaltered.
Note that in certain cases it also makes sense to diagonalize Sq and perform the analysis as in 2.114. 
In particular, with the proper choice of the variables in q, together forming the phase space of a set of 
reaction coordinates, diagonalization of Sq yields a new set of reaction coordinates of which the first 
corresponds to the largest change in the system. As mentioned before, if the scales of the observables 
differ by order of magnitude, it is possibly be�er to use the correlation matrix of q rather than the 
covariance matrix.

7.4 Using maximum covariance analysis

The previous techniques allow the investigation of which collective motions are linked to one or a 
set of given instantaneous properties. Alternatively, it is also possible to determine which mode has 
the highest covariance with a certain instantaneous property. This is also the objective of maximum 
covariance analysis; i.e. to extract from two sets of data the components which maximize the 
covariance. To this purpose the singular value decomposition was introduced in section 6.3. When 
performing the decomposition of the covariance vector from a univariate instantaneous property 
and a full trajectory, only one component will be defined, corresponding to that linear combination 
of atomic fluctuations which is maximally correlated with the instantaneous property

where u is one by definition of the constraints. The correlation between the component and the 
univariate property is given by







X
Q

Z (2.142)






























2221

1211

222221

1211

222221

1211

DC
CS

P0
0I

SS
SS

P0
0I

P
SS
SS

PSPP (2.143)

vvs  u12 (2.144)

vSv 2211

2




s
r 

(2.145)



50 Chapter 2

7.4.1 Inclusion of latent variables for the instantaneous properties

Applying the previous method to a covariance matrix of a set of instantaneous properties and atom 
coordinates, one obtains a set of components for the former as well as for the la�er. Though it 
would be possible to keep the instantaneous properties fixed, it should be noted that these may 
well be be�er described in terms of a new set of latent variables. This is because the instantaneous 
properties at a given time are different projections of the same configuration and are likely to be 
correlated. However, one should normalize the data of the instantaneous properties if the values of 
these differ by an order of magnitude or more.

8 Data reduction

To complete this chapter, three methods for data reduction are presented, which find their basis 
in the statistical methods given in the previous sections. These methods are not directly used in 
the work described in the following chapters, except that the decomposition of the mean square 
displacement into rigid body and residual contributions, used in Chapters 5 and 6, follows from the 
method for structure reduction presented here.
The size and complexity of data collected in molecular simulations calls for methods to reduce 
the dimensionality of the data set, while retaining as much information as possible. Data from 
molecular simulations can be processed in several ways to reduce its complexity. One may express 
the trajectory in terms of a number of instantaneous properties, which sufficiently characterize the 
system. Alternatively, one may express the total fluctuation in the system in terms of a new set of 
variates, describing successively smaller portions of the fluctuation. This generally allows one to 
capture the greater proportion of fluctuations in a limited number of new variates, typically in the 
order of ten to fi�een. Finally, this technique can also be used to reduce the “dimensionality” of a 
molecular structure, by reducing the number of coordinates to consider for analysis. In particular, a 
priori information with regards to semi-rigid bodies can be used to express the structure with fewer 
coordinates, while retaining information on the most important events. All three techniques will be 
discussed more extensively in the following paragraphs.

8.1 Instantaneous properties

A given configuration of atoms can o�en be described in terms of a small number of characteristic 
properties. In the case of a protein, one can think of properties such as the number of hydrogen 
bonds or salt bridges, the solvent accessible surface area, the radius of gyration and the content of 
secondary structure elements. The interpretation of such properties can be regarded as the projection 
of the high-dimensional structural data on the uni-dimensional axis of a characteristic property.
A number of instantaneous properties can be combined to constitute a vector of variables 
characterizing a conformation. The time evolution of this vector will give rise to a trajectory through 
the parameter space of these properties, and can be regarded a substitute for the original trajectory 
to the purpose of further analysis.
Since the different properties are obtained from the same configuration, they need not be independent. 
Rather, these properties will have a distinct correlation pa�ern, which further characterizes the 
system.
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8.2 Principal component analysis

An established method to reduce the size and complexity of a molecular dynamics trajectory is 
the use of principal components. In the previous sections this method was discussed in relation to 
data analysis. The aim of principal component analysis is to express the original data set in terms 
of a new set of variates, which are linear combinations of the original ones. These new variates are 
defined such that the first describes the largest portion of the total fluctuation and the following 
describe successively smaller portions, which are linearly uncorrelated to the previous ones. In 
general, a limited number of these new variates, called principal components, are needed to describe 
the greater part of the total fluctuation. Typically ten to fi�een principal components are enough to 
capture more than 95% of the total motion in molecular dynamics. For further (statistical) analysis 
the original trajectory can usually be replaced by a trajectory consisting of a limited number of 
principal components. This gives a significant decrease in the size of the trajectory, but also reduces 
the complexity, since the principal components are by definition orthogonal.

8.3 Structure reduction

Another possibility to reduce the complexity of a data set obtained from molecular simulations 
is to regard a macromolecule in terms of a limited set of semi rigid bodies rather than atoms. In 
many cases, the functionality of a macromolecule can be explained in terms of semi-rigid domains, 
connected through mechanical hinges. In such cases it is possible to replace each domain with a set 
of four vectors, representing the position of the centre of mass and the orientation of each domain 
in Cartesian space. If a typical domain consists of several hundreds of atoms, this will lead to a 
dramatic decrease in the number of variates.
In Chapter 6 this method is used as a step in the analysis of the active and inactive states of the 
Erythropoietin Receptor (EPOR). This receptor consists of two subunits, each of which contains 
~2300 atoms. Each subunit consists of two distinct domains, which are connected by a linking 
region. Representing each domain by four points gives 16 points describing the orientations of the 
domains.
As the first step in the reduction of a structure, the three principal axes of each pre-defined domain 
in the reference configuration are calculated. Together with the centres of mass, these axes define the 
positions and orientations of the domains. From the sets of coordinates the distances between the 
centres of mass and the Euler angles describing the rotational relationships can be calculated.
The principal axes for each domain can be retrieved from all configurations in a trajectory. However, 
doing so can cause sudden changes in the order of the axes when the domain deforms. Therefore, 
to obtain the principal axes for a domain at a given time t, the corresponding domain from the 
reference structure is fi�ed onto the configuration of that domain. This involves applying a rotation 
and translation. If the same rotation and translation are applied to the four “principal coordinates” 
defining the orientation of the domain in the reference structure, the new orientation of the domain 
is obtained, considering all motion to be rigid body motion. 
Obviously, this technique leads to a loss of data. In particular information regarding the interactions 
of individual atoms is lost. This said, it is possible to quantify how much of the information in the 
trajectory will be lost by decomposition of the root mean-square deviation (RMSD), or rather the 
mean-square deviation.
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The RMSD is a measure for the distance of two configurations in conformational space and is given 
by

The MSD is accordingly the second moment of the conformational distribution around the reference 
configuration r0

In the following the reference structure is assumed to be the average configuration. For a molecule 
consisting of rigid domains, the MSD is considered to consist of two contributions, namely the 
MSDRB due to displacement and reorientation of domains and the MSDRes

or

where rRB is the configuration expected when the domains were true rigid bodies and rRes is the 
difference between the actual configuration and rRB. rRB corresponds to the configuration obtained 
by performing a least-squares fit of each reference domain on the corresponding domain at time t. 
In practice MSDRes is calculated first as the MSD obtained a�er performing a least-squares fit of each 
domain on the corresponding reference domain.
This decomposition of the MSD is used in Chapter 5 to investigate the contributions of rigid body 
and residual motions to the total motility of the Death Receptor 5.

Instead of decomposing the MSD for a given time, it is also possible to express the loss of data or 
the goodness of fit of the data by looking at rigid bodies in terms of the covariance matrix determined 
from the trajectory or the sums of squares and cross-products (SSCP):
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