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Chapter 2

A double approach

2.1 Experimental approach

2.1.1 Powder Diffraction versus Single crystal diffraction

Introduction

Since the discovery of diffraction, single crystal data collection has been
generally used to collect integrated intensity whereas powder diffraction
has been regarded as a more applied technique for phase identification and
quantitative phase analysis. The development of the Rietveld method has
changed this statement. Powder diffraction is nowadays a powerful tool for
structure determination. Moreover, often polycrystalline samples (powders)
are easier to obtain than single crystals, especially in the case of incongruent
melting compounds.

Comparison

The great advantage of powder diffraction is that it does not require the
growing and mounting of a single crystal. For neutron diffraction, a tech-
nique that requires larger samples than X-Ray diffraction, this is a more
important consideration than for its X-ray equivalent. Powders are very
much the standard for neutron diffraction, and single crystal work the excep-
tion. While powder diffraction allows better statistics, single crystal work
one strongly depends on the single tiny crystal that is selected, to do all
analysis. The great disadvantage of powder diffraction is that the three di-
mensional information of the reciprocal space of a crystal is projected into a
one dimensional diffractogram. Nevertheless, powder diffraction is a widely
used technique. Powder diffraction allows various in situ experiments to be
carried out, and also the characterization of mixed phase samples, which is
clearly impossible with single crystals. We can summarize the advantages
and inconveniences of powder and single crystal diffraction in table 2.1.
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14 Chapter 2. A double approach

Single crystal diffraction Powder diffraction
Determination of the crystal structure Identification of compounds or

with high precision and accuracy mixtures of different compounds
Information on ordering in crystals Investigations on homogeneity
Information on thermal motion and Information on stress, strain and

dynamics in crystals crystal size
Very precise bond lengths Quantitative phase analysis

Imprecise for cell parameters Determination of the crystal structure
Precise in fractional coordinates (Usually not as precise as from single

crystal structure analysis)

Table 2.1: Advantages and inconveniences of powder and single crystal diffrac-
tion

2.1.2 Single crystal growth

Introduction

The fabrication of single crystals is very important for both fundamental
research and industrial purposes [1]. Single crystals can be obtained via
various methods. They can be classified in three main categories: crys-
tal growth from the melt, crystal growth from solution and chemical vapor
transport. Each of these methods covers several kinds of particular tech-
niques. However there are four main techniques used for growing transition
metal oxides: flux (high temperature solution), the Bridgman method, the
Czochralski method or by the ”floating zone technique” (growth from the
melt). All the single crystals presented in this thesis were grown by the
floating zone technique.

Growth using Floating Zone Furnace

The floating zone technique is based on the zone melting principle. It is
the same principle which is used also for the Bridgman and Czochralski
methods. Zone melting has been developed initially for purification. Thus
the Floating Zone Furnace gives rise to very pure single crystals. Moreover,
as an advantage to the other zone melting method, there is no use of cru-
cibles reducing possible contamination. In addition, a flux can be used for
incongruent melting materials. While most of the optimal growth rates for
metals lie between 0.5 and 15 cm/h, this value is reduced to 5 mm/h for
transition metal oxides.

The floating zone mirror furnace that we have used for the single crystal
growth is presented in figure 2.1. It is a four mirror floating zone furnace
from Crystal Systems Inc. with halogen lamps having a power of 1500W
each.
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Figure 2.1: The four mirror floating zone furnace that we used (Crystal Systems
Inc., model n◦FZ-T-1000-H-VI-VP).

2.1.3 X-ray and neutron diffraction

Synchrotron versus laboratory sources for X-ray diffraction

All the standard laboratory sources used for X-ray diffraction experiments
generate radiation using the same physical principles but can vary in their
technical details. In our case, we have been using a Bragg-Brentano geom-
etry using a sealed tube generator. The tube of X-rays is made from a
source of electrons and a metallic cathode put in the chamber under high
vacuum. The source of electrons is a filament of tungsten heated by an elec-
tric current, which expels electrons by the thermic effect. A high voltage
from 40kV to 60kV is applied between the source of electrons (cathode) and
the metallic anode and accelerates the electrons. Due to the way in which
radiation is produced, only a discrete number of wavelengths and a broad
background are available. For conventional X-ray diffraction, we have been
using Kα of copper.

The generation of X-rays in a synchrotron radiation source involves a
different technology. From mechanics and the Maxwell equations, it is well
known that charged particles moving under the influence of an accelerating
field emit electromagnetic radiation. This radiation can be used for diffrac-
tion purpose if the charged particles have a high acceleration corresponding
to a speed close to the speed of light. This is realized in a synchrotron ra-
diation facility where the charged particles (electrons or positrons) are kept
circulating within an evacuated cavity on a closed path (the ring) by a num-
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ber of curved magnets (the bending magnets). The different beamlines used
for the different experiments are tangential to the particle trajectory. The
advantage of such facility is the very bright source which is available and
the possibility to tune the wavelength to the value required for a particular
experiment.

Neutron diffraction

Neutron beams are produced by nuclear reactions, such as nuclear fission
or fusion, or by spallation of nuclei by accelerated particles. Since for the
moment nuclear fusion cannot be controlled sufficiently to produce stable
neutron sources, all neutron centers use nuclear reactors (fission) and spal-
lation sources. Spallation is the process in which a heavy nucleus emits a
large number of nucleons as a result of being hit by a high-energy proton.

A number of properties of the neutron make it very useful for the study
of solids. Since, neutrons are uncharged particles and of small dimensions
(about 10−4 the size of an atom), they have a very penetrating power. The
atomic scattering factors for X-rays increase throughout the periodic table
(increase of the number of electrons) while it is not the case for neutrons.
For neutrons, although there is a small increase of nuclear scattering factor
with the mass number of the element, it is largely hidden by resonance
effects which vary in a seemingly arbitrary fashion from atom to atom. As
a result, the neutron scattering factors for different nuclei are in general all
of the same order within a factor 4. The difference between the relative size
of cross-sections (scattering factor) for X-ray and neutron is illustrated in
figure 2.2.

X-ray cross section

H D C O Al Si Fe

Neutron cross section

Figure 2.2: Difference between the relative sizes of the cross-sections between
X-ray and neutron for some elements.

As a consequence, neutron diffraction is more sensitive to the light atoms
like oxygen or hydrogen than X-ray diffraction. In this respect, these two
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techniques are complementary. Another main difference between X-ray and
neutron is related to the size of the electron cloud/nucleus. While the
electron cloud has dimensions of about 1 Å, which is comparable with the
X-ray wavelength, the radius of a nucleus is about 4 orders of magnitude
smaller. It results that the nucleus may be considered as a point scatterer
and there will be no decrease with θ of the neutron scattering factor. An
additional property of the neutron is that it carries a spin and, consequently,
once it interacts with the nuclei of the sample studied, it gives information
about the magnetic properties.

2.1.4 Magnetometer SQUID

SQUIDs (”Superconducting Quantum Interferometer Device”) enable to
measure very small magnetic fields; SQUIDs are very sensitive sensors for
magnetic fluxes. SQUIDs are used in the fields of electronics to biomag-
netism; in addition to magnetic fluxes other physical values can be mea-
sured if they can be adapted to the magnetic flux. Attainable sensitivities
of flux densities (10−14T), of electrical current (10−12 A) and of electrical
resistance (10−12Ω) reflect the high accuracy of a SQUID. The working prin-
ciple of a SQUID is based on the quantum interference of wave functions
that describe the state of the superconducting charge carriers, the so-called
Cooper pairs. Each Cooper pair can be treated as a single particle with a
mass and charge twice that of a single electron, whose velocity is that of the
center of mass of the pair. A SQUID is based on an interferometer loop in
which two weak links (Josephson contacts) are established. A weak link is
realized by interrupting a superconductor by a very thin insulating barrier.
The function of the SQUID is to link the quantum mechanical phase differ-
ence of the Cooper pairs wave functions over a weak link with the magnetic
flux penetrating the interferometer loop.

Input coil

Detection coil
Control

Electronics

B Cryogenic
temperatures

SQUID
sensor

Data acquisition
system

Room temperature

I

Figure 2.3: Scheme of a SQUID magnetometer.

The components of a SQUID magnetometer (Fig. 2.3) typically con-
sist of the following: a detection coil, which senses changes in the external
magnetic field and transforms them into an electrical current; an input coil
which transforms the resulting current into a magnetic flux in the SQUID
sensor; electronics which transform the applied flux into a room temperature
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voltage output; and acquisition hardware and software for acquiring, storing
and analyzing data. Both the SQUID amplifier and the detection coils are
superconducting devices. Thus some type of refrigerant (liquid helium or
liquid nitrogen) or refrigeration device (cryocooler) is needed to maintain
the SQUID and detection coil in the superconducting state. Additional sig-
nal conditioning electronics may be needed to improve signal-to-noise. We
use a MPMS (Magnetic Property Measurement System based on SQUID)
from Quantum Design having the following characteristics: Hmax=7T and
∆T=1.8K-350K.

2.1.5 Dielectric Properties

Capacitance measurement

The absolute complex permittivity of a material is represented by the sym-
bol ε, where ε = ε

′
- jε

′′
[2]. This is related to the dimensionless relative

complex permittivity εr, where εr = ε
′
r - jε

′′
r , by the expression ε=ε0εr, ε0 be-

ing the permittivity of free space, a fixed constant given approximately by ε0

= 8.85×10−12F.m−1. In general, ε depends on temperature and, to a lesser
extent, pressure. It is also frequency dependent, although ε

′
and ε

′′
cannot

vary independently with frequency, since their frequency variations are con-

nected through the Kramers-Krönig relationship (ε
′
(ω) = 1

π

∫∞
−∞

ε
′′
(x)

x−ω
dx): a

drop in ε
′

with increasing frequency is necessarily associated with a peak
in ε

′′
. Except for exceedingly high applied fields, ε is independent of the

magnitude of the applied electric field for all dielectric materials used in
practice, excluding ferroelectrics.

A capacitor filled with a dielectric material has a real capacitance ε
′
r

times greater than would have a capacitor with the same electrodes in vac-
uum. The dielectric filled capacitor would also have a power dissipation W
per unit volume at each point when, resulting from an applied voltage, a
sinusoidal electric field of frequency f and root mean square value E exists
at that point. This power dissipation is given by W = 2πfE2ε

′′
. Thus ε

′′

is a measure of the energy dissipation per period, and for this reason it is
known as the loss-factor.

The complex permittivity is often represented in the Argand plane with
ε
′
as abscissa and ε

′′
as ordinate, giving a curve with frequency as parameter.

This curve represents the complex conjugate ε∗ of the complex permittivity
where ε∗ = ε

′
+ jε

′′
. The segment to the origin makes an angle δ with

the abscissa, such that tan(δ)= ε
′′
/ε

′
. Thus W may be rewritten as W =

2πfE2ε
′
tan(δ). Hence δ is known as the loss angle, and tan(δ) is known as

the loss tangent.

Capacitance is a measure of the amount of electric charge (Q) stored (or
separated) for a given electric potential (V).
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Figure 2.4: Experimental set-up used to measure capacitance.

C =
Q

V
(2.1)

In a capacitor, there are two conducting electrodes which are insulated
from one to another. The charge on the electrodes is +Q and -Q, and
V represents the potential difference between the electrodes. Capacitance
is measured in the SI unit of the Farad, 1F=1C/V. The capacitance can
be calculated if the geometry of the conductors and the dielectric proper-
ties of the insulator between the conductors are known. For example, the
capacitance of a parallel plate capacitor constructed of two parallel plane
electrodes of area A separated by a distance d is approximately equal to the
following:

C = ε
A

d
(2.2)

where C is the capacitance in farads, ε is the permittivity of the insu-
lator used, A is the area of each plane electrode, measured in m2 and d is
the separation between the electrodes, measured in m. The equation 2.2 is
a good approximation if d is small compared to the other dimensions of the
electrodes. This is this geometry that we have used to measure the capaci-
tance and thus the dielectric constant of our different samples (see chapter
5). The set-up used was a home-made sample holder consisting of four stain-
less steel coaxial wires on a stick. This set-up was made by Umut Adem
and Agung Nugroho. The measurement were carried out using programs
written using the software Labview. The different programs were written
by Nandang Mufti. We used two kinds of capacitance bridges. For regular
measurements, we used a PPMS (Physical Properties Measurement System)
of Quantum Design model 6000 (Hmax=9T; ∆T=1.8K-350K) coupled to an
Andeen-Hagerling 2500 capacitance bridge using a frequency of 1kHz. For
frequency dependence, we used an Agilent 4284A (∆f=20Hz-1MHz).
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Pyroelectric current measurement

The pyroelectric effect, whereby a change in temperature in a material en-
genders a release of electric charge, has been known as a physically observ-
able phenomenon for many centuries, being described by Theophrastus in
315 BC [3]. The effect occurs in any material which possesses a polar point
symmetry. Thus, of the 32 possible group symmetries, there are 10 for
which the materials possessing them are pyroelectric. These are, grouped
according to crystal system and using International notation: triclinic (1),
monoclinic (2, m), orthorhombic (2mm), tetragonal (4, 4mm), trigonal (3,
3m) and hexagonal (6, 6mm). Microscopically, the pyroelectric effect occurs
because of the asymmetric environment experienced by electrically charged
species within the crystal structure of the material. In materials the dipole
moment can arise as a consequence of the packing in an ionic crystal, be-
cause of the alignment of polarized covalent bonds in molecular crystals or
crystalline polymers or because of atomic displacements controlled by the
position of hydrogen ions in a hydrogen bonded crystal.

Quantitatively, the pyroelectric effect is described in terms of a vector,

the pyroelectric coefficient −→p , given by the rate of change of
−→
P s with tem-

perature (T). Thus:

∆
−→
P s = −→p ∆T (2.3)

If a thin piece of pyroelectric is electroded as shown in figure 2.5, such
that there is a component (p’) of p perpendicular to the electroded surfaces
(which have area A) then these charges can be detected as a current, ip,
flowing in an external circuit such that:

ip = Ap′dT/dt (2.4)

Usually, the geometry is chosen such that p is oriented perpendicular to
the element electrodes, i.e. p=p’.

p’

Pyroelectric material

Energy input

ip

Figure 2.5: Electroded pyroelectric element showing flow of pyroelectric current
due to change in temperature.

While a random assembly of crystals (polycrystalline/ceramic) cannot
exhibit the polar symmetry necessary for pyroelectricity, the application of
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an electrical field will re-orient the polar axes of the crystallites so that
they have a component parallel to it, producing a net polarization. The

size of the maximum
−→
P s which can be achieved for a random assembly of

crystallites is simply related to the possible number of polar axes in the low
symmetry phase which can be derived from the high symmetry phase. Thus

after poling,
−→
P s would generally not reach the mono-domain bulk value.

From eqn 2.3 and 2.4, we can see that the determination of the polar-
ization is done by integrating the changes of the current flowing through
the material as function of temperature. This is how we effectively mea-
sure the polarization in our material (see chapter 5). For this purpose, we
have used the same sample holder as previously described in figure 2.4. We
measured the pyroelectric current using a electrometer Keithley 617. The
poling process was done using a source unit Keithley 236 with Vmax=1100V.
The implementation for polarization measurement of the home-made set-up
presented in figure 2.4 was done by Nandang Mufti.

2.2 Theoretical approach: Use of group-theory

The following section deals with symmetry arguments in the analysis of
relevant materials. In the first part, we recall the main definitions, that
one needs to know to do symmetry analysis. We illustrate the different
definitions with the example of a group containing six elements which, as
an abstract group we call G2

6. In one of its realizations, this group is the
symmetry group of an equilateral triangle. These group theoretical methods
are used in the study of orbital ordering in RTiO3 (see chapter 3). Further
use of these tools/notions is done in the analysis of the mechanism leading
to ferroelectricity in hexagonal RMnO3 (see chapter 4). After extending
the notions of group theory to magnetic space groups, we treat the case of
the linear magnetoelectric effect. The use of magnetic symmetry is empha-
sized in chapters 5 and 6. The later chapter is presented to illustrate the
importance of group theory as a powerful tool to identify new materials of
importance.

2.2.1 Group theoretical techniques in magnetic structure

analysis

General group theory concepts

We will first introduce notations/definitions in group theory which will be
used later in this chapter and more generally in this thesis [4, 5].
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Definition of a group:

A group G is a set of elements together with a binary composition called
a product such that:

• the product of any two elements in the group is defined and is a
member of the group: if A,B ∈ G then AB ∈ G

• the product is associative: A(BC)=(AB)C for all A, B, C ∈ G

• there exists a unique identity E in the group: EA = AE = A for all
A ∈ G

• every element has a unique inverse element: given A ∈ G there exists
a unique element A−1 such that AA−1=A−1A = E

From the definition of a group, it follows that a group is completely
defined by its multiplication table. In fact, it is sufficient to give a set
of relations involving certain elements from which the whole multiplication
table can be constructed. The minimum set of elements allowing to generate
the group is the set of generators. A set of generators is usually not unique.
The user may choose the one which is the most handy for the purpose
of a given study. In the International Tables of Crystallography [6], the
crystallographic space groups are classified by their symbol. This symbol
contains always a set of generators. However, sometimes it might not be
the most convenient one. In the remaining part of this thesis, we will use
both possibilities: the symbol or another set of generators.

E P P2 Q PQ P2Q
P P2 E PQ P2Q Q
P2 E P P2Q Q PQ
Q P2Q PQ E P2 P

PQ Q P2Q P E P2

P2Q PQ Q P2 P E

Table 2.2: Multiplication table of the group G2
6.

A geometrical realization of a group is the set of symmetry operations
that carry an equilateral triangle, 4ABC, into itself. If the intersection of
the medians of 4ABC is denoted O then the operation P may be thought
of as the 120◦ anticlockwise rotation about a line through O perpendicular
to the plane ABC and Q may be thought of as the reflection in the line AO.
Equally well we could have taken P to be a 120◦ clockwise rotation and Q
to be the reflection in BO or for that matter in CO. In each case we would
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obtain the same group but with its elements labelled differently. This is a
simple example of the non-uniqueness of a set of generators.

Now, we will give several definitions which are necessary to introduce
the notions of group representations.

Homomorphism and Isomorphism

Given 2 groups G and G’, a mapping θ of G onto G’ which preserves
multiplication is called a homomorphism. Thus for a homomorphism θ it
follows that, for all g1,g2 ∈ G,

(θg1)(θg2) = θ(g1g2) (2.5)

If in addition θ is a one-to-one mapping, it is called an isomorphism: G
and G’ are then said to be isomorphic. If θ is an isomorphism and G = G’
then θ is called an automorphism.

Let G = G2
6 and G’=G1

2, the cyclic group of order 2 composed of el-
ements E and P’ with P

′2=E (E being the identity). Then if θ is defined
so that θE=E,θP=E, θP2=E, θQ=P’, and θ(P2Q)=P’, then θ is a homo-
morphism of G2

6 onto G1
2. On the other hand, if it is given that θ is a

homomorphism of G2
6 onto G1

2 then, by virtue of eqn. 2.5, it is sufficient in
order to define θ to specify its action only on the generators of G2

6.

Kernel

If θG=G’ is a homomorphism of G onto G’ then the kernel of θ is the
set of elements of G that is mapped onto the identity of G’.

For instance the kernel of the homomorphism θ defined in the previous
example between the groups G = G2

6 and G’=G1
2 consists of the elements

E, P and P2.

Subgroup

A subset H of a group G that is itself a group under the same binary
composition as in G is called a subgroup of G.

The following are subgroups of G2
6:

• G2
6 itself

• G1
3,consisting of E, P and P2

• G2
1, consisting of E and Q

• G2′
1 , consisting of E and PQ
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• G2′′
1 , consisting of E and P2Q

• G1
1, consisting of the identity E alone

A group has always at least two subgroups, namely the group itself
and the group consisting of the identity alone. Such subgroups are called
improper subgroups. Other subgroups besides these two are called proper
subgroups. Thus G2

6 has 4 proper subgroups.

Group Representations

Now that we have given several definitions about the abstract group theory,
we need to introduce the tools that we will use in the remainder of this
thesis. These tools are inclosed in what we call group representations. We
will continue also here by illustrating when necessary using the case of the
group G2

6 [4, 5].

Matrix group

A matrix group ∆ is a group of non-singular (≡ invertible) matrices. If
all the matrices of the group are unitary then it is said to be an unitary
matrix group. A unitary matrix is a n×n complex matrix U satisfying
the condition UU∗=U∗U=E where E is the identity matrix and U∗ is the
conjugate transpose (also called the Hermitian adjoint) of U. Note this
condition says that a matrix U is unitary if and only if it has an inverse
which is equal to its conjugate transpose U∗. In what follows we shall be
concerned with matrix groups of finite order and with matrices of finite
dimension.

Two matrices D1 and D2 are said to be conjugate if there exists a non-
singular matrix S such that D1=SD2S

−1. Two matrix groups ∆1 and ∆2

are said be equivalent if there exists a non-singular matrix S such that
∆1=S∆2S

−1.
Every matrix group is equivalent to an unitary matrix group. The fol-

lowing symbols will be used in dealing with matrices:

• DT for the transpose of D

• D∗ for the complex conjugate of D

• D† [=(D∗)T ] for the Hermitean conjugate of D

• D̃ [=(D−1)T ] for the contragredient of D
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• dim D for the dimension of D

Trace-Character

The trace of a matrix D is the sum of its diagonal elements written Tr D.
The character of a matrix group ∆ is the function χ defined on all elements
D∈ ∆ such that χ(D)=Tr D.

Representation of a group

A representation of a group G is a homomorphism γ of G onto a group T
of non-singular linear operators acting on a finite-dimensional vector space
V over the complex field. We write γG=TG, for all g∈G.

From this definition, it follows that when γ is a representation then:

• Tg1(Tg2x)=Tg1g2x for all G1, G2 ∈G and for all x ∈V

• TEx=x for all x∈ V; that is, TE is the identity operator

• T−1
g x=Tg−1x for all g ∈ G and for all x ∈ V

If γ is an isomorphism the representation is said to be faithful.
Suppose now that we choose a basis <x| consisting of linearly indepen-

dent vectors x1,x2,...,xd spanning the space V, and let us define matrices
Γx(g) by the equations

Tgxi =
d∑

j=1

xjΓx(g)ij (i = 1 to d) (2.6)

then Γx(g) is said to be the matrix representing G with respect to the
basis <x| in the representation γ. The set of all distinct matrices Γx(G)
is a matrix group and it is the homomorphic image of G under the map-
ping G−→Γx(G), the kernel of the homomorphism being the elements of G
mapped onto the unit matrix.

Let G be the group G2
6, the multiplication table of which is given in table

2.2. A geometrical realization of this group was described in the previous
illustration. This involved an equilateral triable ABC with centroid O. Let−→
OA=−→a ,

−−→
OB=

−→
b and

−→
OC=−→c ; then −→a +

−→
b +−→c =

−→
0 , and the plane of the

triangle forms a vector space V of dimension 2. This, we take to be the
underlying vector space of the representation γ. Take as basis for this

vector space −→x 1 =
−→
b and −→x 2=

−→c . The representation γ maps P and Q
onto elements TP and TQ which are respectively an anti-clockwise rotation
of 120◦ about O and a reflection in the line AO. The operators TP and TQ
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are operators acting on V and from their definition TP

−→
b =−→c , TP

−→c =−→a =-−→
b -−→c , TQ

−→
b =−→c and TQ

−→c =
−→
b . From eqn. 2.6 it follows that

Γx(P) =

(
0 −1
1 −1

)
and Γx(Q) =

(
0 1
1 0

)
(2.7)

Since γ is a homomorphism the rest of the matrix group follows from
multiplication. Thus, for example,

Γx(P
2) = Γx(P)Γx(P) =

( −1 1
−1 0

)
(2.8)

and so on. It can easily be checked that γ is a faithful representation.
However it contains non-unitary matrices. γ is of dimension 2. Thus if
χγ is the character of γ it follows that χγ(E)=2, χγ(P)=χγ(P

2)=-1 and
χγ(Q)=χγ (PQ)=χγ(P

2Q)=0.
Let < x| and < y| be two bases of V defined so that

yk =
d∑

i=1

xiSik (k = 1 to d) (2.9)

where S is non-singular, then

Γy(G) = S−1Γx(G)S for all G ∈ G. (2.10)

That is to say, a change of basis leads to matrix groups Γx(G) and Γy(G),
which are equivalent. Hence, it is possible to choose a basis < z| in V such
that Γz(G) is a unitary matrix group.

Irreducible Representation

Let γ be a representation of G so that T=γG is a group of non-singular
linear operators acting on a vector space V. U is said to be an invariant
subspace of V under T if

• U is a vector subspace of V

• TGx ∈ U for all TG ∈ T and all x ∈ U

If V has no proper invariant subspace under T (that is, no subspace
invariant under T except V itself and the zero-vector) then γ is said to be
an irreducible representation. If there exists a proper invariant subspace
under T than γ is said to be reducible. If V can be split up into the direct
sum of subspaces each of which is invariant under T and each of which is
the carrier space for an irreducible representation of G then γ is said to be
completely reducible.
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There are a number of properties for irreducibility which are useful. In
many quantum mechanical applications each irreducible representation will
display the transformations properties of a set of degenerate eigenfunctions.
Thus, they are preferable than the reducible representations. A represen-
tation is irreducible if, and only if, the only matrices which commute with
all matrices of the representation are scalar multiples of the unit matrix.
Moreover, let G be a group of order |G| with elements g1, g2,...,g|G|. Then
Γ(G) is an irreducible representation if and only if

1

|G|
|g|∑
i=1

|χγ(Gi)|2 = 1 (2.11)

Another important result from the above properties is the decomposition
of a representation in irreducible representations. Let Γ be an arbitrary ma-
trix representation of G with character χ then when Γ has been completely
reduced by suitable equivalence transformations to block-diagonal form it
becomes a direct sum of irreducible representations

∑r
i=1 ciΓ

i, where

ci =
1

|G|
r∑

i=1

riχ(Ci)χ
i∗(Ci) (2.12)

Subduced representations:

We shall give here the definition of a subduced representation. It is of
prime importance in the study of a phase transition. It is on this principle
that we have based part of our analysis for hexagonal RMnO3 (see chapter
4).

Let Γ be an irreducible representation of G, character χΓ(g); then the
number of times that Γ appears in the decomposition of Γj ↑G into irre-
ducible representations of G is equal to the number of times the irreducible
representation Γj appears in Γ ↓H, where H is a subgroup of G. Here Γ ↓H
denotes the restriction of Γ to elements of H and is commonly called the
representation of H subduced by Γ; since H is a subgroup of G it is clear
that Γ ↓H is a representation of H of the same dimension as Γ. Γj ↑G is
called the induced representation of Γj in G.

Magnetic symmetries

Antielements: Polar versus Axial vectors

We discuss in this part the main features of the representation analysis
of magnetic structures [5]. We should keep in mind that the spins are axial
vectors or pseudovectors. This means that they transform like a (polar)
vector under rotations but are invariant under spatial inversion. This is not
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the case for polar vectors (e.g. the polarization) which are not invariant
under spatial inversion. The mathematical expression of the time inversion
operator is defined by R2=E, where E is the identity operator. The dif-
ference between a spin (axial vector) and a polarization for instance (polar
vector) is that a symmetry element acts on the current loop which generates
the spin. We illustrate this statement in figure 2.6 where we look at the
action of an inversion center on a current loop.

i

Figure 2.6: Effect of the inversion center i on a current loop generating a spin

We can see that contrary to a polar vector (e.g. polarization), the di-
rection of the spin is not reversed under the inversion center. In figure
2.6, we see that we have a ferromagnetic coupling between the two spins.
Consequently, for an antiferromagnetic coupling the inversion center will be
broken. In order to describe properly the special properties of the spins,
we need to define new symmetry elements. Historically, they have been in-
troduced as new symmetry operators (so-called antielements) which are the
product of the conventional symmetry elements g with the time inversion
operator R. These new operators are denoted with a prime with respect to
the conventional operators.

g
′
= gR = Rg with R2 = E (2.13)

These new symmetry elements enlarge the number of possible groups
from the conventional 230 space groups from the International Tables of
Crystallography [6]. Indeed, there are 32 crystalline classes which yield
to 90 magnetic classes including the paramagnetic ones (which are in fact
the above 32). These 90 magnetic classes give rise to 1651 magnetic space
groups. These 1651 magnetic space groups contain also the paramagnetic
space groups, which are the known 230 space groups from the International
Tables of Crystallography [6]. They will be usually denoted e.g. Pnma1’
for the paramagnetic phase of a compound crystallizing in the space group
Pnma.
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The magnetic symmetry of a crystal coincides with the group of sym-
metry operations which leave invariant the mean density of electric current
invariant. This group can be obtained by combining the rotations, reflec-
tions and translations forming the crystallographic group G of the crystal,
with the time-reversal operator R. They are mainly 3 kinds of magnetic
groups:

• ”Black and white” magnetic groups M resulting from the combination
of R with half of the symmetry operations of the ordinary point group
G. Such groups can be written:
M=H+(G-H)R

• ”White” groups which also describe a magnetic structure:
M=G

• ”Grey groups” labelled G1
′
which contain the operations of G plus

their combination with R:
M=G+RG

We note that RE=R is by itself a symmetry operation of the group G
′
.

Thus, these groups describe a paramagnetic structure. Black and White
groups and also White groups describe either an antiferromagnetic or fer-
romagnetic structures.

Star and little group G−→
k

of
−→
k

In most of the transitions between a high temperature phase G and
a low temperature phase H, one of the modes of G will become soft (its
frequency goes to zero at TC). This mode is characterized by a wave-vector−→
k . One can define the little-group of

−→
k denoted G−→

k
. The little-group of

G−→
k

is the set of symmetry elements which leave invariant the wave-vector−→
k . If g is a symmetry element of G,

−→
k is said to be invariant by g if g

−→
k -−→

k = 0 or −→n , −→n being a translation of the lattice.

One can define the star of
−→
k . It is the set of inequivalent vectors

−→
k

which are generated by the application of all the elements g of G. Each
−→
k

is an arm of the star. The number of arms in the star of
−→
k is equal to the

index of the subgroup G−→
k

with respect to the group G.

Axial and permutation representations

The effect of symmetry element is two-fold: it will act to change the po-
sition of an atom, and reorientate the magnetic moment, e.g. atom 1 moves
to the position of atom 2, and its moment is reversed. The combination of
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these two results are described by the magnetic representation, Γ. We will
examine these two effects separately.

A symmetry operator g={h|τ} acts on both the position rj of the atom
and on the components α of the axial vector that describes the moment. h
is the rotational part of the symmetry element and τ the translational part
(Seitz notation). The operation that sends rj in the zeroth cell to ri in the
pth cell can be symbolically stated as:

g(j0) −→ (iap) (2.14)

In other terms, the effect of a symmetry operation g is to permute the
column matrix of atom labels, P:

g(P) −→ P
′

(2.15)

This operation is governed by a permutation representation, Γperm, which
has matrices of order NA, where NA is the number of equivalent positions
of the crystallographic site. It is important to note that when a symmetry
operation results in an atomic position that is outside the zeroth cell, a
phase factor must be included that relates the generated position to that in
the zeroth cell. This phase is simply given by:

θ = −2πk.T (2.16)

where T is the translation vector, that relates the original and generated
atoms.

The second effect of this symmetry operation is to transform the spin
components with index α, (α=x,y,z) of the reference spin j into the index
α
′
of the atom ri. These transformations are described by the axial vector

representation, Ṽ , the character of which is given by:

χh
eV =

∑

a=b

Rh
abdet(h) (2.17)

where Rh
ab refers to a specific element a,b of the rotation matrix h, and

det(h) represents the determinant of the rotation matrix Rh, and has the
value of +1 for a proper and -1 for an improper rotation.

The magnetic representation Γ describes both the result of the symme-
try operation on the atomic positions, and on the axial vectors that describe
the magnetic moment. As these effects are independent, the magnetic rep-
resentation is given by their direct product:

Γ = Ṽ × Γperm (2.18)

Or, in terms of the matrices for the representations themselves
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DΓ
h,τh

= D
eV
h ×D

Γperm

h,τh
(2.19)

The Γ representation of eqn. 2.18 is usually reducible. To reduce this
representation, we have to use the formula of eqn. 2.12.

Remark: Whereas for a unitary group there are representations and irre-
ducible representations, for a non-unitary group in which half the elements
are unitary and the other half are anti-unitary, there are corepresentations
and irreducible corepresentations. Grey and Black and White magnetic
groups contain both unitary and anti-unitary operations. One has then
to consider the problem of the representations containing anti-unitary el-
ements. If we write a anti-unitary group M = G+RG as for the grey
paramagnetic groups, where gi are the elements of G and ai=Rgi. If D(gi)
and D(ai) are the matrices associated with the gi and ai respectively, it is not
possible to construct matrix representations of M following the usual com-
position rule for representations of unitary groups: D(hi)D(hj)=D(hihj),
but one can form a corepresentation of M using the alternative composi-
tion rules:

D(gi)D(gj) = D(gigj)

D(gi)D(aj) = D(giaj)

D(ai)D
∗(aj) = D(aigj)

D(ai)D
∗(aj) = D(aiaj)

(2.20)

It has been shown that the irreducible corepresentations of a magnetic
non-unitary group M, can be deduced from the irreducible representations
of the associated crystallographic subgroup G [7]. Three situations are
distinguished depending if the matrices of the considered irreducible repre-
sentations are real or imaginary, and also on the nature of the anti-unitary
operations pertaining to M. If we only consider here the question of essential
interest in the interpretation of magnetically ordered systems, namely the
description of transitions from a paramagnetic to a magnetically ordered
phase, then we can restrict ourselves to the problem of constructing the
irreducible corepresentations of paramagnetic groups. As the time reversal
operator R belongs by itself to the grey groups, it is possible to show that
no degeneracies take place for the energy eigenvalues of the Hamiltonian
of the system. So the representation space has the same dimensionality
for the irreducible corepresentations and for the corresponding irreducible
representations.

Determination of primed and unprimed elements
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In order to determine the magnetic space group and also its magnetic
point group, one needs to know when a symmetry element should be primed
or not. In other words, when the current loop is invariant: by application
of a symmetry element or by its corresponding antielement?

We will illustrate this point by taking the example of the point group
222 (D2, table 2.3).

1 2z 2y 2x Magnetic point group
A 1 1 1 1 222

B1 1 1 -1 -1 22
′
2
′

B2 1 -1 1 -1 2
′
22

′

B3 1 -1 -1 1 2
′
2
′
2

Table 2.3: Irreducible representations for point group D2.

Each line in table 2.3 corresponds to an irreducible representation (IR).
To each IR, we can associate a magnetic point group by keeping the same
elements when the character is +1 and changing them to antielements when
the character is -1 (in the case of real values). For the case of complex
values, there always exists a unitary transformation which can transform
the elements of IRs to real values.

We will consider here and in the remainder of the thesis only the cases
where the magnetic structure is commensurate with the lattice. The corre-
sponding magnetic point groups are given in the last column of table 2.3.
Mathematically, it means that we have two possibilities. If g sends atom 1
on atom 2 thus:

Ṽ (g)S1 = −S2 or + S2

If one obtains -S2, g has to be primed otherwise not. In the investigation
for magnetic symmetry determination, there is in fact another possibility:
Ṽ (g)S1 6= −S2 or 6= +S2. In that case, it means that the symmetry
element g is lost in the magnetically ordered phase.

2.2.2 The magnetoelectric effect

Compounds presenting coexistence of several possible ferroic states have
attracted a lot of attention since several decades due their interesting prop-
erties. Among them, materials presenting simultaneously ferroelectric and
magnetic orders were the subject of intensive studies in recent years [8].
They have interesting properties allowing the manipulation of electric and
magnetic moments by magnetic and electric fields, respectively. We refer
to multiferroics, as compounds presenting ferroelectric order and anti or
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ferromagnetic order. The d0 configuration that is favored for typical ferro-
electrics as BaTiO3 is incompatible with magnetism. This feature explains
the interest generated by these compounds.

However there is another way to generate polarization which is through
the magnetoelectric effect. This effect has been first predicted by Curie in
1894 [9]. He stated that materials that develop an electric polarization in
a magnetic field or a magnetization in an electric field may exist. Later,
based on the prediction of Dzyaloshinskii [10], Astrov showed the existence
of magnetoelectric effect in Cr2O3 [11]. The general expression for the free-
energy of such materials (we will consider here only the linear effect) can
be written in the form:

Φ = Φ0 − αijEiHj (2.21)

αij refers to the components of the magnetoelectric tensor. If an electric
field E is applied to a crystal with potential 2.21, a magnetization will be
produced:

Mj = − ∂Φ

∂Hj

= αijEi (2.22)

And the conjugate expression, one can produce polarization while ap-
plying a magnetic field:

Pi = − ∂Φ

∂Ei

= αijHj (2.23)

Experimentally, since most of the research for new magnetoelectrics is
concentrated on bulk, this is often how is evidenced the magnetoelectric
coupling in these materials. Indeed since, the electric field necessary to
polarize the bulk is usually beyond the reachable value of the experimental
set-ups. While a lot of effort has been put into the search and design of
new magnetoelectric compounds, there is no systematic approach to look
for new materials. However, from the equations 2.22 and 2.23, a systematic
symmetry approach seems to be sufficient in the search for new materials.
Historically, it has been this approach which has been privileged. However
at the revival of the research on multiferroic/magnetoelectric compounds,
this approach has been more or less forgotten.

M like H is an axial vector and P like E is a polar vector. As a con-
sequence of the equations 2.22 and 2.23 (one can express P function of H
and M function of E), a linear magnetoelectric effect will be allowed un-
der the application of a magnetic field when terms like LiMjPk or MiMjPk

are allowed in the free-energy of the system. In these terms, Li is an an-
tiferromagnetic component and Mj a ferromagnetic component. Indeed if
one looks at the minima of the free-energy (eq. 2.22 and 2.23), one can
replace E as a function of M and H as a function of P. However, due to
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the time inversion which reverse the sign of the spins, terms like LiPk or
MjPk won’t be invariant. Consequently, if the free energy of the system
contains terms like LiMjPk or MiMjPk, the system will be able to present a
linear magnetoelectric effect (chapter 6). Later on, we will either derive the
full free-energy of the system by considering the terms which are allowed by
symmetry, either just look for terms like above to predict a possible linear
magnetoelectric effect. We present our results and give examples of pre-
dicted magnetoelectric materials using systematic symmetry investigation
(chapter 6).

In the remainder of this chapter, we will discuss only the linear magne-
toelectric effect since it is the one presenting the most promising for appli-
cations and the easier to probe experimentally. While speaking about the
existence of magnetization, it is obvious that the magnetoelectric effect is
forbidden in all dia and paramagnetic compounds. In terms of symmetry, it
means that the symmetry of these compounds possess R (the time inversion
element) which causes the reversal of the magnetic moment density. The
magnetoelectric effect is also forbidden if the magnetic space group contains
translations multiplied by R because in these cases the point group also pos-
sesses R as a separate element which is equivalent to a dia or paramagnetic
group. We remind the reader that the vector H is an axial vector while
the E vector is a polar vector and in consequence they behave differently
under R. There are in total 122 magnetic point groups which describe 1651
magnetic space groups. These numbers may look very big if one wants to do
a systematic approach. However, we will see that in several magnetic space
groups, the situation regarding the eventual presence of magnetoelectricity
is simplified a lot.

From eqn. 2.21, we can see that αij is a tensor of second rank and
its components change sign under the application of R. The magnetic cen-
trosymmetric space groups do not allow a magnetoelectric effect. However

the ones which possess the element 1
′
resulting from the application of spa-

tial inversion and time inversion can present a magnetoelectric effect. If one
does a systematic analysis of the 122 magnetic point groups, one can see
that the magnetoelectric effect is allowed only in 58 magnetic point groups.
Among these ones, there are only 11 possible forms for the tensor αij. The
general expression of the magnetoelectric tensor is [12]:




α11 α12 α13

α21 α22 α23

α31 α32 α33


 (2.24)

The different forms of the tensor αij are presented in table 2.4 [12].
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Magnetic crystal classes Non zero tensor components αij

1 and 1’ αij for (i,j) ∈ [1,2,3]
2, m’ and 2/m’ α11, α13, α22, α31, α33

m, 2’and 2’/m α12, α21, α23, α32

222, m’m’2 and m’m’m’ α11, α22, α33

mm2, 2’2’2, 2’mm’ and mmm’ α12, α21

4, 4’, 4/m’, 3,
3’, 6, 6’ 6/m’ α11=α22, α12=-α21, α33

4, 4’, 4’/m’ α11=α22, α12=-α21

422, 4m’m’, 4’2m’, 4/m’m’m’,
32, 3m’, 3’m’, 622, α11=α22, α33

6m’m’, 6’m’2, 6/m’m’m’
42’2’, 4mm, 4’2’m, 4/m’mm,

32’, 3m, 3’m, 62’2’, α12=-α21

6mm, 6’m2’, 6/m’mm
4’22’, 4’m’m, 42m, 4’/m’m’m,

42’m’ α11=-α22

23, m’3’, 432, 4’3m’,m’3’m’ α11=α22=α33

Table 2.4: Expressions of the tensor αij in the case of the linear magnetoelectric
effect [12].
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