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Abstract

This paper describes the design of a self-scheduled current controller for doubly-fed induction genera-
tors in wind energy conversion systems (WECS). The design is based on viewing the mechanical angular
speed as an uncertain yet online measurable parameter and on subsuming the problem into the frame-
work of linear parameter-varying (LPV) controller synthesis. An LPV controller is then synthesized to
guarantee a bound on the worst-case energy gain for all admissible trajectories of rotor speed in the op-
erating range. Furthermore, this study investigates the robust performance of the LPV controller with
respect to other bounded machine parameter variations and the impact of the stator voltage dips on the
robustness of the control system. Two closed loop simulation models, one with a conventional control
scheme and the other with an LPV control scheme, are developed for the control of the electrical torque
and the power factor on the rotor side in order to compare the performance of the control systems. Some
simulation results are given to demonstrate the performance and robustness of the control algorithm.

1 Introduction

Doubly fed induction machines (DFIMs) are recently considered to be an attractive solution for wind
energy conversion systems (WECS) since they can be controlled efficiently in a wide speed-variable
range. Suitable control strategies can be used to optimize the power converted from wind energy into
electrical energy both from the stator and the rotor. Control actuation is performed at the rotor side
through slip rings. This allows a reduction of the size of the power converter and, hence, of the cost of
the overall system, especially at high-power levels.

In the regular configuration of variable speed wind turbines, the stator of DFIM is directly connected
to the grid and the rotor is connected with two converters, one in the grid side, the so-called Grid Side
Converter (GSC), and one in the rotor side, the so-called Rotor Side Converter (RSC), coupled by a
DC-voltage link as shown in Figure 1.

1.1 Modelling and control of doubly-fed induction machine

In this paper, a dq reference frame that has the d axis coinciding with the grid voltage vector is adopted.
In this reference frame, the DFIM equations can be written as

ẋr = Arc(ω)xr +Bsvs +Brvr (1)

yr = Crcxr (2)



Figure 1: Variable speed wind turbine system
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vsd ,vsq,vrd,vrq, isd, isq, ird, irq are voltage and current components of the stator and rotor respectively;
Ψsd ,Ψsq are stator flux components; Ls,Lr are stator and rotor inductances; Lm is mutual inductance;

Rs,Rr are stator and rotor resistances; σ = 1− L2
m

LsLr
is the total linkage coefficient; a = 1−σ

σ ; Ts = Ls
Rs

and

Tr = Lr
Rs

denote the time constants of stator and rotor; ω = ωs −ωr is the mechanical angular velocity of
the rotor; ωs is electrical angular velocity of stator (or grid); and ωr is electrical angular velocity of rotor.

In the literature, the classical approach to DFIM vector control [1] allows one to achieve decoupled
control of active and reactive power in both generator and motor operations. The control structure of
DFIM including PI current controllers is described in [2, 3, 4, 5]. In some cases, the cross coupling term
in the rotor equations that includes the mechanical angular speed is eliminated by adding a feed-forward
term to the output of the q-axis controller [3, 6]. In these cases the difficulties of the nonlinear dynamics
of the doubly-fed induction generator (DFIG) are not taken into account, i.e., the model of the machine is
linearized and it is assumed that both the machine parameters required by the control algorithm and the
grid voltage are precisely known. Clearly, such controller designs might result in a closed-loop behavior
that is highly sensitive to a change in operating conditions and/or parameters.

In order to improve the system performance against changes in the machine parameters and exogenous
inputs, an H∞ control approach for an induction generator in windmill power system is proposed in [7]
and for induction motor control in [8]. Recently, the LPV current control approach, which takes the
parameter variations into account directly in the control design, is applied for an induction motor in
[9, 10]. In [10], the electrical angular rotor speed and the estimated magnetizing current are considered
to be varying parameters. The control objective is to track references for the magnetizing current and
the angular electrical rotor speed. A quasi-LPV approach is applied to the design of a stator current
controller and a speed controller. In [9], the same method is employed for the inner current control loop,
and the LPV controller synthesis is extended to a discrete time setting.

Our paper presents an alternative control strategy for DFIMs. The control objective is to track references
for the electrical torque and the power factor. The mechanical angular speed ω in (1) is considered as a
time-varying parameter. This particular choice is motivated by the fact that ω, which causes the system
to be nonlinear, can be measured online. Actually, its value varies by ±30% around the synchronous



speed ωs. Therefore, with −1 ≤ δω ≤ 1 and pω = 0.3, the mechanical angular speed can be expressed as
ω = ωs(1+ pωδω). Thus (1) now becomes affinely parameter dependent and can be rewritten as

ẋr = (Ars +δωArω)xr +Bsvs +Brvr (3)

where Ars,Arω are time-invariant matrices defined by
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Since the system is affinely parameter dependent, this paper is mainly concerned with synthesizing an
affine parameter-dependent controller.

1.2 Rotor side controllers

Besides transferring active and reactive powers between the rotor and the grid, the grid side controller
has to maintain the DC-link voltage at a constant value, while the rotor side controller is aimed to control
active and reactive powers by regulating the electrical torque Te and the power factor ϕg.

Figure 2: Rotor side current control loop

The control structure on the rotor side of DFIM has two loops. The inner loop with controller Krc is
called rotor current control loop. The controller design goal of the rotor current controller Krc is to have
high dynamic performance and robust tracking of the rotor currents. The outer loop with controller Kg

is called electrical torque control loop used for tracking optimal values of electrical torque T re f
e and

power factor ϕre f
g . In Figure 2, Gr represents the plant corresponding to equations (1) and (2); yg is the

controlled output that is estimated from the outputs of the plant. Based on the actual measured values
of the wind speeds and the characteristics of each particular wind turbine, the main control station will
track the optimum torque from a look-up table and use it as the reference value for the power electronics
control stage.

The electrical torque of the DFIM on the dq reference frame aligned to the stator voltage, Ψsd = 0, can
be computed by

Te = −3
2

p
Lm

Ls
Ψsqird . (4)

On the other hand, controlling the reactive power can be implemented by regulating the power factor ϕ.
This factor can be computed as follows

ϕ = arcsin
isq√

i2sd + i2sq

. (5)

The equations (4), and (5) show that the variables of torque and power factor of DFIM can be regulated
via the components of the rotor currents ird and irq.



2 LPV controller synthesis for affinely parameter-dependent systems

2.1 L2-gain performance

Let us consider an LPV system that is described as
 ẋ(t)

zp(t)
y(t)


 =


 A(δ(t))

Cp(δ(t))
C(δ(t))

Bp(δ(t)) B(δ(t))
Dp(δ(t)) E(δ(t))
F(δ(t)) 0





 x(t)

wp(t)
u(t)


 (6)

where the matrices in (6) are affine functions of the parameter vector that varies in the polytope δc with
vertices δ1, ...,δk, that is

δ(t) ∈ δc = conv
{

δ1, ...,δk
}

∆=

{
k

∑
j=1

λ jδ j, λ j ≥ 0,
k

∑
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}
(7)

The optimization problem is to search for an LPV controller that is defined with affine functions as(
ẋc(t)
u(t)

)
=

(
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)(
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)
(8)

such that the closed-loop system of (6) and (8)(
ξ̇(t)
zp(t)

)
=

(
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C (δ(t)) D(δ(t))

)(
ξ(t)

wp(t)

)
(9)

is internally stable and the L2-norm of wp(t)→ zp(t) is bounded by a given number γ > 0 for all possible
parameter trajectories δ : [0,∞) → δc.
Note that the matrices A(·), B(·), C (·), and D(·) in (9) are given as(

A(δ(t)) B(δ(t))
C (δ(t)) D(δ(t))

)
=
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Cp(δ(t))+E(δ(t))Dc(δ(t))C(δ(t)) E(δ(t))Cc(δ(t)) Dp(δ(t))+E(δ(t))Dc(δ(t))F(δ(t))


 .

The characterization of robust stability and performance for the closed-loop system (9) is provided by
the following theorem:

Theorem 2.1 If there exists a constant matrix X � 0 for which


I 0
A(δ) B(δ)

0 I
C (δ) D(δ)




T 


0 X 0 0
X 0 0 0
0 0 −γI 0
0 0 0 1

γ I


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I 0
A(δ) B(δ)

0 I
C (δ) D(δ)


 ≺ 0 holds for all δ ∈ δc, (10)

then the system (9) is uniformly exponentially stable and the L2 gain from wp to zp is bounded by γ. �

Proof: See [11].

Since the system (6) is affinely parameter-dependent with respect to the time-varying parameter δ(t) in
(7), the state-space matrices of (6) range in the polytope defined as follows [12]:
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)
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are parameter independent, the describing matrices for the closed-loop system (9)

are also affine in the parameter, i.e.(
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This implies for the synthesis inequalities (10) that we can replace the search over the polytope δc without
loss of generality by the search over the extreme points δ1, ...,δk of this set. Consequently, condition (10)
can be reduced to a finite set of Linear Matrix Inequalities (LMIs) since it is equivalent to


I 0

A(δ j) B(δ j)
0 I

C (δ j) D(δ j)




T 


0 X 0 0
X 0 0 0
0 0 −γI 0
0 0 0 1

γ I







I 0
A(δ j) B(δ j)

0 I
C (δ j) D(δ j)


 ≺ 0 for all j = 1, ..,k. (11)

2.2 LPV controller synthesis

Elimination of the controller parameters in (11) leads to the following LMI conditions that guarantee the
existence of a polytopic LPV controller [12, 13, 14]:(

Y I
I X

)
� 0 (12)

ΦT
x


XA(δ j)+A(δ j)T X XBp(δ j) Cp(δ j)T

Bp(δ j)T X −γI Dp(δ j)T

Cp(δ j) Dp(δ j) −γI


Φx ≺ 0 (13)

ΦT
y


A(δ j)Y +A(δ j)TY Bp(δ j) YCp(δ j)T

Bp(δ j)T −γI Dp(δ j)T

Cp(δ j)Y Dp(δ j) −γI


Φy ≺ 0 (14)

for j = 1, ..,k, where Φx and Φy form bases for ker
(
BT 0 ET

)
and ker

(
C F 0

)
respectively.

After obtaining X and Y over the constraint LMIs (12)-(14), the controller parameters at each δ j can
be reconstructed by using the projection lemma [11]. Then a vertex controller Kj is any solution that
satisfies (11) for the corresponding index j.
Finally, the controller is implemented as follows: at time t we determine coefficients λ1(t), ...,λk(t)
which represent δ(t) according to (7), and we use

K(t) ∆=
k

∑
j=1

λ j(t)Kj =
k

∑
j=1

λ j(t)
(

Ak j Bk j

Ck j Dk j

)
(15)

as the system matrix for simulation.

3 Gain-scheduling design for the rotor side current controller

3.1 System representation when the rotor angular speed ω is treated as an uncertainty

With ∆ω =
(

δω 0
0 δω

)
, the system (3) can be rewritten as follows:


 ẋr
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zω


 = Grc


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 , wω = ∆ωzω (16)

where
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; yr =
(
ird irq
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.



3.2 H∞ control of the LPV system

A mixed sensitivity T/S loop shaping H∞ optimization is proposed for the rotor current control loop (see
Figure 2). The external control inputs wrc consist of stator voltages and reference rotor currents wrc =(

vsd vsq ire f
rd ire f

rq

)T
. The controller outputs are vr =

(
vrd vrq

)T
. The controller inputs or tracking

errors are er =
(
ercd ercq

)T =
(

ire f
rd − ird ire f

rq − irq
)T

. The measured outputs are yr =
(
ird irq

)T
. The

sensitivity function is Src = (I +GrcKrc)−1 and the complementary sensitivity function is Trc
∆= I −Src.

The interconnection of the system is shown in Figure 3. The weighting function Wrs =
(

Wrsd 0
0 Wrsq

)
is a first-order low-pass filter used to shape the sensitivity for tracking. The weighting function Wrt =(

Wrtd 0
0 Wrtq

)
is a first-order high-pass filter used to shape the complementary sensitivity function to

guarantee the robustness against high frequency un-modelled dynamics.

Figure 3: The interconnection of the system

The standard H∞ control problem is to find a stabilizing LTI controller Krc(ω) at fixed frozen values of
ω such that the H∞-norm of the channel wrc → zrc is smaller than a given number γ.

3.3 Synthesis of gain-scheduled current controller

The gain-scheduled controller synthesis is similar to the classical H∞ synthesis, but both the plant and the
controller are now LPV systems. The optimization problem is to find a stabilizing controller Krc(ω) such
that the L2-gain of the channel wrc → zrc is smaller than γ for all trajectories of ω(t) ∈ [ωmin,ωmax] =
[(1− pω)ωs,(1+ pω)ωs].

The synthesis LMIs (12)-(14) are solved by using the LMI Control Toolbox [15]. If a solution (X ,Y )
is given, the vertex controllers Kj are constructed as solutions of (11). Now we are ready to compute
the polytopic LPV controller by measuring values of ω online and by getting a vertex decomposition as
expressed in (7). Then the state-space matrices describing the LPV controller are also given online by
the interpolation

(
AKrc(t) BKrc(t)
CKrc(t) DKrc(t)

)
=

δmax
w − p(t)

δmax
w −δmin

w

(
AKrc1 BKrc1

CKrc1 DKrc1

)
+

p(t)−δmin
w

δmax
w −δmin

w

(
AKrc2 BKrc2

CKrc2 DKrc2

)

where p(t) = ω(t)−ωs
ωs pw

.



4 Simulations

4.1 Performance of the system with dynamic wind

When the wind speed is less than the rated wind speed, the objective is to maximize the captured energy
by adjusting the rotor speed in order to operate the turbine along the maximum power curve or, in other
words, to keep the tip-speed ratio optimal. As the wind speed increases, the generator is allowed to
accelerate until it reaches its rated speed. The pitch angle values in the power optimization region are
all found close to zero for the given wind turbine. When the wind speed is higher than the rated wind
speed, the input power from the generator is maintained at its rated power by increasing the pitch angle
to keep the electrical power output at rated power. Hence, the pitch angle control is mostly used above
rated wind speed to prevent overload of the generator power. The performances of the controlled system
with the LPV controller under wind speed changes is shown in figure 4.
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Figure 4: The performance of the system with dynamic wind

4.2 Performance comparison of deadbeat and LPV controllers

In this study two complete simulation models, one based on a conventional control scheme that is called
dead-beat control (similar to that in [16]) and the other based on the described LPV framework are
developed for the control of the electrical torque and the power factor on the rotor side in order to
compare the performance of the closed loop systems.

4.2.1 Performance of the system with step changes

Figure 5 shows the performance of the system tested with step changes of the set-point values of ird and
irq. From 0 to 0.05s the stator windings are open. The stator voltages are regulated so as to be equivalent
to grid voltages in amplitude and phase. After that, the stator windings are connected to the grid and the
transient period appears to be about 0.2s. At the beginning of the transient period, the rotor currents may
fluctuate strongly due to sudden increase of stator flux and currents. The simulation results show that the
variations of the rotor currents during the transient period with the LPV controller are much smaller than
those for the deadbeat controller.
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Figure 5: Transient period of voltages and currents with gird synchronization (left: dead-beat controller, right:
self-scheduled controller)

4.2.2 Robustness of the control system against other parameter changes

By varying the values of Ls we see form Figure 6 that the system with dead-beat controller stays stable
if the Ls deviates by[97.9%,101.12%] of its nominal values, while with the self-scheduled controller this
range is [95.8%,150%].
Similarly, by varying the values of Lr we see from Figure 7 that the system with dead-beat controller
stays stable if the Lr deviates by [97.84%,125%] from its nominal value, while with the self-scheduled
controller this range is [95.68%,150%].
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Figure 6: Ls decreases to 2.1% of the normal value (left: dead-beat controller, right: self-scheduled controller)

4.2.3 The impact of stator voltage dips on the robustness of the control system

When the grid undergoes a fault, the sag in the grid voltage will result in an increase of the current in
the stator windings of the DFIM. Because of the magnetic coupling between stator and rotor, this current
will also flow into the rotor circuit and the power converter leading to the destruction of the converter if
nothing is done to protect it. On the other hand, the study in [5] shows that the dynamics of the DFIM has



0 2 4 6 8 10

−4000

−2000

0

Electrical torque (deadbeat)

Time (s)

N
m

Real value
Reference value

0 2 4 6 8 10

−4000

−2000

0

Electrical torque (LPV)

Time (s)

Real value
Reference value

0 2 4 6 8 10
−1000

−500

0

500

1000

1500
Rotor currents (deadbeat)

Time (s)

A

ird
irq

0 2 4 6 8 10
−1000

−500

0

500

1000

1500
Rotor currents (LPV)

Time (s)

ird
irq

Figure 7: Lr decreases to 2.16% of the normal value (left: dead-beat controller, right: self-scheduled controller)

poorly damped poles in the transfer function of an LTI model of the machine. This will cause oscillations
in the flux if the DFIM is affected by grid disturbances. After such disturbances, an increased rotor
voltage will be needed to control the rotor currents. When this required voltage exceeds the voltage limit
of the converter, it is not possible any longer to control the current as desired [17]. Therefore, the control
system should maintain operation and reduce oscillations as much as possible during grid voltage faults.
A comparison of the performance between the dead-beat control and the scheduled control systems in
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Figure 8: The performance of the system when grid voltage is faulty

the presence of grid voltage faults is presented in Figure 8. The grid voltage was dropped down to 25%
of the normal voltage. This phenomenon occurred in a period of 300 msec before it recovered to its rated
value. After that, the grid voltage once again was dropped to 50% of the rated voltage during 200 msec.
The graphs show that the oscillations of torque and currents in the case of self-scheduled control were
remarkably dampened at the grid voltage fault time.

5 Conclusion

The self-scheduled LPV control method has been applied to design the rotor side current controller
for the DFIM in a variable speed wind turbine system, where the online measurable rotor mechanical



angular speed is considered as the time varying parameter. Hence the designed controller maintains the
performance requirements for all trajectories of rotor speed over its variation range in a systematic way.
A classical control approach, the so-called dead-beat controller, is also developed for the control of the
electrical torque and the power factor on the rotor side. Under disadvantageous variations of machine
parameters and for grid voltage dips, simulation results show that the designed LPV controller is far more
robust than the dead-beat controller. Oscillations in the stator and rotor currents are considerably reduced
during the grid voltage faults, and the closed loop system recovers from the faults much faster than in the
conventional case. Hence, the new control scheme improves the performance of the closed-loop DFIM
considerably.
Experiments on a real-time laboratory set up are currently performed, and a more thorough analysis of
the performance improvements are being investigated.
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