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Abstract. Much work has been done to identify species-specific pro-
teins in sequenced genomes and hence to determine their function. We
assumed that such proteins have specific physico-chemical properties that
will discriminate them from proteins in other species. In this paper, we
examine the validity of this assumption by comparing proteins and their
properties from different bacterial species using Support Vector Machines
(SVM). We show that by training on selected protein sequence proper-
ties, SVMs can successfully discriminate between proteins of different
species. This finding takes us a step closer to inferring the functional
characteristics of these proteins.

1 Introduction

Species divergence is mainly caused by variation in gene and protein sequences
but also by differences in the set of genes that is present in a particular species.
Proteins that are specific for a particular species may be responsible for its
adapted phenotype, e.g. its ability to act as a pathogen or its resistance to a
certain drug. Identifying species-specific proteins is thus a relevant aim, and
here we make a small contribution towards its achievement.

In this paper, we have compared the proteins of seven different bacterial
species by extracting numerous protein sequence properties using state-of-the-
art Support Vector Machines. To our surprise, we find that proteins of different
species are significantly dissimilar and can be distinguished based on sequence
properties selected prior to classification. This discrimination does not rely on
any homology criteria but is based only on the biophysical characteristics en-
coded in the sequence. We have also constructed a phylogenetic tree based on the
results of the comparisons, and compared it to the well-documented 16S rRNA
dendrogram of the same bacteria. Interestingly, there is no detectable similarity
between the two dendrograms.
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2 Methodology

Seven Sexually Transmitted Disease-causing bacteria were used for this study.
The protein sequences were obtained from the Los Alamos National Laboratory
[4]. Table 1 shows the total number of proteins of each species in our bacterial
database.

Table 1. Total number of proteins of each species in our database

Name Total number of proteins

Chlamydia trachomatis (CT) 902
Haemophilus ducreyi (HD) 1830

Mycoplasma genitalium (MG) 485
Neisseria gonorrhoeae (NG) 2188

Streptococcus agalactiae (SAG) 2177
Treponema pallidum (TP) 1051

Ureaplasma urealyticum (UU) 614

All the functionally known proteins of every genome and their sequences were
collected and 2579 sequence properties for every protein were extracted. These
include some global properties (e.g. isoelectric point and molecular weight), the
frequency and total number of each amino acid, the frequency and total number
of certain sets of amino acids (e.g. hydrophobic, charged, polar), the number
and size of continuous stretches of each amino acid or amino acid set, secondary
structure predictions obtained using the Prof algorithm [5], the position of puta-
tive transmembrane helices predicted using TMHMM [6], and that of disordered
regions obtained using DisEMBL [7]. A full list of the properties is available at
http://www.dcs.gla.ac.uk/∼alshahib/features.pdf.

Normalization of the features was performed for all features of all proteins at
once, instead of normalization for every individual genome. This is important as
performing normalization of the features for every individual species will cause
slight differences in the scales of the features when combined with the normalized
feature protein values of any other species. These slight differences will cause
unjustified discrimination of the species. Thus it was appropriate to rescale each
feature by its mean and variance [15] with respect to all proteins from all species.

Proteins of every species were combined with every other species (pairwise). A
total of 21 pairwise species comparisons were performed. For every comparison,
undersampling of the negative examples to equal the positive examples [8] was
performed. Five training and test sets were then generated for every comparison
and each was homology-corrected as described in [10]. This is vital because once
the training and test sets are divided for training and testing, one must make
sure that similarity between proteins on both sets is minimal. In other words,
predictions must not be made based on homology of proteins in the training
and test sets but rather on non-homologous proteins. We have thus implemented
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a recursive BLAST strategy to assign proteins that show significant sequence
similarity to each other to the same set (either test or training). For details
see [10].

For every training set of every pairwise species comparison, feature selection
was performed using our FrankSum method [9]. Finally, Support Vector Machine
classification was performed for every pairwise species comparison and the AUCs
were recorded. A polynomial kernel of order 3 with a C value of 1 was used for
SVM classification. The WEKA machine learning package was used for this
task [11].

3 Results

For every pairwise species comparison, five AUCs (obtained on 5 test set–training
set combinations) were recorded. Figure 1 shows the performances achieved when
comparing proteins from different source species.

All species pairs can be readily discriminated, except H. ducreyi and S.
agalactiae, and H. ducreyi and M. genitalium. The median discrimination per-
formance is as high as 91% for the proteins of Treponema pallidum and Ure-
aplasma urealyticum compared against all other species. The worst performance,
for Haemophilus ducreyi, is still a surprising 83%. For any randomly selected pair
of proteins from two species, a correct assignment to its species of origin will be
possible in 85% of cases. This is achieved based solely on the sequence properties
described above. It is all the more unexpected, as the bacteria that we analyse
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Fig. 1. Pairwise species discrimination performances. The AUC for classifiers trained
to distinguish between proteins from each species pair (median of five replicates). The
unrooted tree to the left shows the phylogenetic relationships of the seven bacterial
species, based on 16S rRNA analysis.
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Fig. 2. Dendrogram resulting from pairwise species discrimination using SVMs. The
median of the five AUCs of each pairwise species comparison was used as a distance
measure between the species. See Table 1 for an explanation of the abbreviations.

are biologically very similar, they all occur in the same uniform environment,
inside the urogenital tract of the human body. They naturally differ in their
mechanisms of pathogenicity, but nonetheless their general biology should be
the same and should make use of very similar molecular structures. The fact
that we can identify general species-specific “sequence signatures” is therefore
particularly striking.

In addition to the species–species discrimination, it was interesting to explore
whether using sequence features to discriminate between bacterial species by
machine learning will provide an accurate phylogenetic relationship between the
species. The tree could then be compared to the 16S rRNA phylogenetic tree of
the STD bacteria.

The median of the five AUCs of each pairwise species comparisons was used
as a distance measure between the species in the phylogenetic tree. The OC
[12] hierarchical cluster program was used to construct the dendrogram. For the
16S rRNA tree (Table 3), 16S rRNA sequences were obtained from GenBank for
representative members of each bacterial genus in the dataset, as well as for three
diverse Archaea for use as an outgroup. Sequences were aligned by ClustalW [16],
positions containing gaps were removed, and the remaining alignment subjected
to phylogenetic analysis using Maximum Likelihood (DNAml and Fast DNAml),
Maximum Parsimony (DNAPars) and Neighbor Joining (DNADist+Neighbor),



894 A. Al-Shahib, D. Gilbert, and R. Breitling

SAG

UU

NG

HD

MG

CT

TP

Fig. 3. 16S rRNA Dendrogram resulting from 16S rRNA sequences for the seven bacte-
ria in our database as well as three Archaea outgroups. New species introduced as other
members of the bacterial genus are NM = Neisseria meningitidis (as an alternative
to NG) TD = Treponema denticola (as an alternative to TP) and US = Ureaplasma
parvum serovar (as an alternative to UU). The Archaea include AF = Archaeoglobus
fulgidus, HS =Halobacterium salinarum and PH = Pyrococcus horikoshii. see Table 1
for explanations of the other abbreviations.

using BioEdit. The resulting trees were identical except for a single change in
the NJ tree. A majority-vote consensus tree was generated and rooted using the
Archaea as outgroup.

From Figure 2 we can see that the SVM-based tree shows little similarity to
the phylogenetic tree. For instance, the closely related species pairs Haemophilus
ducreyi/Neisseria gonorrhoeae and Mycoplasma genitalium/Ureaplasma urealyt-
icum are not identified correctly. Only Chlamydia trachomatis and Treponema
pallidum are detected as outliers. However, we have generated random trees and
found that the tree in Figure 2 is indeed closer to the 16S RNA tree than the
majority of random trees, although this similarity is not obvious based on visual
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inspection. This indicates that there is some useful phylogenetic signal contained
in the SVM results. Perhaps more discriminatory sequence properties could be
used for a more accurate construction of the dendogram.

4 Discussion

Comparing protein sequence properties of every species might outline the nat-
ural difference of the species and how evolution has played an essential role in
their divergence. In this paper, we have used a wide range of sequence prop-
erties and have used Support Vector Machines in an attempt to discriminate
between proteins of different species. Interestingly, the discrimination perfor-
mances was as high as 85% AUC (median of all species–species discriminations
performed). This is of course of great biological interest. By extracting useful
information from the sequence, we hope to shed more light on this variation. At
the DNA level, one of the discriminating species-specific features is the varying
GC content. Guanine-cytosine (GC) content has been shown to be a biologically
important attribute in prokaryotes [13]. It is known to be fairly balanced and
tightly controlled across the genome, thus providing high specificity for genome
identification. The Percentage GC content in bacteria can range from 25% to
75%. According to Bentley and Parkhill [13], the GC content of prokaryotes de-
pends on the genome size. The correlation between genome size and GC content
shows larger genomes tend to have higher GC content than smaller genomes
which are AT-rich.

At the amino acid level, we expect preferred amino acids to be different as
a result of varying GC contents at the DNA level. This is supported by earlier
reports [17] which showed that the amino acid composition of 59 bacterial species
was greatly influenced by varying genomic G+C content.

To further elaborate on this, we have recorded the highest 10 selected fea-
tures when comparing the (GC-rich) β-proteobacterium Neisseria gonorrhoeae
with the three (GC-poor) Firmicutes species (Mycoplasma, Streptococcus, and
Ureaplasma). This is shown in Table 2.

The three amino acids alanine, arginine and proline have high GC content in
most of their codons. Our features selected for classification of the proteins agree
with the GC-based prediction, in that four features with enriched GC bases were
selected amongst the top 10 discriminatory features. This is statistically highly
significant and indicates the relevance of varying GC content for our successful
species discrimination.

Further analysis of Table 2 shows the frequent occurrence of the amino acids
lysine (Lys) and arginine (Arg) as relevant features. These amino acids have
been reported earlier to be significantly overrepresented in proteins of particular
functional categories (transcription, translation), indicating the importance of
our selected features for protein function [18].

Finally, our method has demonstrated the discriminatory power of Support
Vector Machine classification as it can use sequence features to discriminate
proteins from different species with high reliability and accuracy.
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Table 2. Top 10 selected features using the Neisseria gonorrhoeae genome. The top 10
selected features for comparing the β-proteobacteria Neisseria gonorrhoeae with the
three Firmicutes species are shown. The amino acids that contain GC-rich codons are
highlighted in bold. Abbreviations: AAs = amino acids, Qt = quarter, div = divided
and no. = number. See text for discussion.

MG vs. NG NG vs. SAG NG vs. UU
The no. of amide AAs div by the

length of the protein

The no. of mean blocks of charged AAs The no. of tiny AAs div by the length

of the protein

The no. of ile AAs div by the length

of the protein

The no. of polar AAs div by the length

of the protein

The no. of pro AAs from the 0% to

50% region of the protein div by the

length of the protein

The no. of lys AAs The no. of ile AAs div by the length

of the protein

The no. of arg AAs in the protein

The no. of lys AAs div by the length

of the protein

The no. of lys AAs in the 1st Qt of

the protein div by the length of the

protein

The no. of ile blocks in the 4th Qt of

the protein div by the length of the

protein

The no. of arg AAs in the 1st Qt div

by the length of the protein

The no. of ala AAs div by the length

of the protein

The no. of lys AAs in the longest lys

block of the protein

The no. of mean blocks of ala AAs in

the 3rd Qt of the protein

The no. of pro AAs div by the length

of the protein

The no. of +ve charged AAs in the 1st

Qt of the protein div by the length of

the protein

The no. of pro blocks in the 25% to

75% region of the protein div by the

length of the protein

The no. of gly AAs div by the length

of the protein

The no. of pro AAs from the 50% to

100% region of the protein div by the

length of the protein

The no. of mean blocks of ala AAs in

the 2nd Qt of the protein

The no. of arg AAs in the 4th Qt of

the protein div by the length of the

protein

The no. of amide blocks in the 4th Qt

of the protein div by the length of the

protein

The no. of mean blocks of lys AAs in

the 1st Qt of the protein

The no. of arg AAs in the protein The no. of pro mean blocks in the pro-

tein

The no. of mean blocks of lys AAs in

the 2nd Qt of the protein

The no. of cys AAs div by the length

of the protein

The no. of ile mean blocks in the pro-

tein

We hope that this work can be extended by exploring further sequence prop-
erties as well as more diverse organisms, to elucidate the underlying biophysical
and evolutionary mechanisms.

References

1. Zuckerkandl, E., Pauling, L.: Evolutionary divergence and convergence in proteins.
In: Evolving Genes and Proteins, pp. 97–166. Academic Press, New York (1965)

2. Robichaux, R.H., Purugganan, M.D.: Accelerated regulatory gene evolution in an
adaptive radiation. Proc. Natl. Acad. Sci. USA 98, 10208–10213 (2001)

3. Gollery, M., Harper, J., Cushman, J., Mittler, T., Girke, T., Zhu, J.-K., Bailey-
Serres, J., Mittler, R.: What makes species unique? The contribution of proteins
with obscure features. Genome Biology 7, R57 (2006)



Discriminating Microbial Species Using Protein Sequence Properties 897

4. STDGEN, Los Alamos National Laboratory Bioscience Division STD Sequence
Databases, http://www.stdgen.lanl.gov

5. Ouali, M., King, R.D.: Cascaded multiple classifiers for secondary structure pre-
diction. Prot. Sci. 9, 1162–1176 (2000)

6. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.L.: Predicting Trans-
membrane Protein Topology with a Hidden Markov Model: Application to Com-
plete Genomes. J. Mol. Biol. 305, 567–580 (2001)

7. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B.: Protein
disorder prediction: implications for structural proteomics. Structure 11, 1453–1459
(2003)

8. Al-Shahib, A., Breitling, R., Gilbert, D.: Feature Selection and the Class Imbalance
Problem in Predicting Protein Function from Sequence. Applied Bioinformatics 4,
195–203 (2005)

9. Al-Shahib, A., Breitling, R., Gilbert, D.: FrankSum: new feature selection method
for protein function prediction. Int. J. Neural Syst. 15, 259–275 (2005)

10. Al-Shahib, A., Breitling, R., Gilbert, D.: Predicting protein function by machine
learning on amino acid sequences – a critical evaluation. BMC Genomics 8, 78
(2007)

11. WEKA machine learning package, http://www.cs.waikato.ac.nz/ml/weka
12. Barton, G.: A cluster analysis program (1993),

http://www.compbio.dundee.ac.uk/Software/OC/oc.html
13. Bentley, S.D., Parkhill, J.: Comparative Genomic Structure of Prokaryotes. Annual

Review of Genetics 38, 771–791 (2004)
14. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., Ishikawa, H.: Genome se-

quence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Na-
ture 407, 81–86 (2000)

15. Bishop, M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1993)

16. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G.,
Thompson, J.D.: Multiple sequence alignment with the Clustal series of programs.
Nucleic Acids Res. 31, 3497–3500 (2003)

17. Lobry, J.R.: Influence of genomic G+C content on average amino-acid composition
of proteins from 59 bacterial species. Gene. 205, 309–316 (1997)

18. Bharanidharan, D., Gautham, N.: Amino acid variation in cellular processes in 108
bacterial proteomes. Arch. Microbiol. 184, 168–174 (2005)

http://www.stdgen.lanl.gov
http://www.cs.waikato.ac.nz/ml/weka
http://www.compbio.dundee.ac.uk/Software/OC/oc.html

	Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning
	Introduction
	Methodology
	Results
	Discussion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




