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Abstract

Qualitative reasoning about mereotopological rela-
tions has been extensively investigated, while more
recently geometrical and spatio-temporal reason-
ing are gaining increasing attention. We propose
to consider mathematical morphologic operators as
the inspiration for a new language and inference
mechanism to reason about space. Interestingly,
the proposed morpho-logic captures not only tradi-
tional mereotopological relations, but also notions
of relative size and morphology. The proposed rep-
resentational framework is a hybrid arrow logic the-
ory for which we define a resolution calculus which
is, to the best of our knowledge, the first such cal-
culus for arrow logics.

1 Introduction

Intelligent agents sensing or exchanging information about
the physical world need ways to represent and reason about
space. For instance, humans navigating new areas may build
‘cognitive maps’ of the environment [Redish, 1999], robots
engaged in a soccer game may use Monte-Carlo-Localization
based on probabilistic representations from the raw sensory
data [Thrun et al., 2001], and crawlers analyze web pages
using relative position and size, such as in the Lixto system
[Gottlob and Koch, 2004], to index the pages. In fact, the way
space is represented and reasoned upon varies tremendously
depending on the nature of the agents and on their tasks.

A paramount criterion for representing space is that of hav-
ing an agile language able to capture basic qualitative as-
pects of space and providing simple reasoning mechanisms
for making diagrammatic deductions. In this line is the study
of part-whole and topological relationships for describing
qualitative aspects of region connections. This study, known
as mereotopology, has been widely investigated by philoso-
phers, logicians and, recently, computer scientists. The best
known proposal in the Al literature is the region connection
calculus (RCC) [Randell ef al., 1992]: a calculus of regions
based on 8§ basic qualitative mereotopological relations. With
RCC one may express that a region is contained into another
one, that it overlaps with another one or that it is discon-
nected. Reasoning is left to composition tables for deter-

mining the spatial relations among regions given the binary
relations.

In general, one wants more from spatial reasoning. A way
of achieving more is that of considering the logic of some
theory of space and then perform deduction using the logic’s
inference mechanisms. [Bennett, 1995] showed that a decid-
able fragment of RCC can be embedded into a multimodal
logic. In general, one is interested in logical theories of space:
Tarski’s axiomatization of elementary geometry is the most
successful example and is the motivation for the recent effort
of considering logical theories of space (see [Aiello et al.,
2006] for a wide set of spatial and spatio-temporal logics).

Our goal in the present treatment is to consider a logical
approach to qualitative spatial reasoning that, without giv-
ing up on the mereotopological expressiveness, is also able
to capture prominent morphological and geometrical proper-
ties of space. To fulfill this goal we turn our attention to a
nifty mathematical theory.

Mathematical morphology (MM), developed in the 60s by
Matheron and Serra for creating methods for the estimation of
ore deposits [Matheron, 1967; Serra, 1982], underlies mod-
ern image processing, where it has a wide variety of applica-
tions. Compared with classical signal processing approaches
it is more efficient in image preprocessing, enhancing object
structure, and segmenting objects from the background. The
idea behind MM is that one can find objects with different
properties by probing an image with so called ’structuring el-
ements’. Although Serra and Materhorn developed their the-
ory for binary images, Morphological operators exist for both
grey scale and color images as well.

The connections between mathematical morphology and
logic were recently highlighted in by Bloch et al. for both spa-
tial reasoning [Bloch, 2000] and agent coordination [Bloch
and Lang, 2002]; while [Aiello and van Benthem, 2002]
spelled out the connections with arrow and linear logics.

We dig into the connections hinted in these works. We
show how mathematical morphology sheds a new light on
spatial reasoning by considering a novel encoding into hybrid
arrow logic and by providing a complete reasoning method
for the introduced logic. Our proposal is not ‘yet another
modal RCC encoding’ as the language we introduce is more
expressive than RCC. For instance, we show that our morpho-
logic is able to express the concept of relative size which is
not expressible in RCC and which introduces a new notion



of granularity. Similarly to Aiello and van Benthem and dif-
ferently from Bloch, in our representation worlds are points
in space, rather than abstract worlds, allowing to reason on
actual images. In [Aiello and van Benthem, 2002] however
only the initial connections among MM and modal logic were
spelled out with no further study, here we take it to the next
step and turn Mathematical Morpho-logic into a powerful
spatial reasoning tool. Finally, we remark that the proposed
logic increases the expressive power in the direction of mor-
phology and vector spaces, and not towards incidence or pro-
jective geometries as in, e.g., [Balbiani et al., 1997].

The remainder of the paper is organized as follows. In Sec-
tion 2, after recalling basic MM definitions, we introduce the
morpho-logic and show how to take advantage of its expres-
sive power. In Section 3 we introduce a resolution calculus
for the morpho-logic which we implemented in Haskell. Fi-
nal considerations are presented in Section 4.

2 Mathematical Morpho-languages

Honoring the mathematical in the name, Mathematical Mor-
phology has an algebraic base [Heijmans and Ronse, 1990].
Its two basic operators, the dilation and the erosion, work on
a complete lattice. For example, the P(ZRQ) together with
the subset relation constitutes a complete lattice. Dilation is
an operator that distributes over the supremum, while Ero-
sion distributes over the infimum. Given a group of automor-
phisms (translations) in a complete lattice (£, <) and a sup-
generating subset [ C £ one can create a group structure on [,
G := (I,+, —,e). Using this group, the translation invariant
dilation and erosion can be written in the following manner

AeB=\/{a+blac Abe B}
AoB=\/{z€llA. <B}

dilation €))]
erosion 2)

An example of a dilation is shown in Figure 1 where a bi-
nary image containing a region denoting India is dilated by a
small disk region. Applying the dilation and erosion succes-
sively, one can create the so called opening and closing. An
opening is an erosion followed by a dilation with the same
structuring element and is used to remove connections be-
tween regions. A closing is a dilation followed by an erosion
with the same structuring element and is used to fill holes of a
certain size in a region. Incidentally, one may also recognize
the Minkowski addition in the definition of dilation.

2.1 Morpho-logic

Arrow logic is a form of modal logic where the objects, rather
than being possible worlds, are transitions structured by var-
ious relations [Venema, 1996], in particular there is a binary
modality for composition of arrows and a unary modality for
the inverse of an arrow. Such a language naturally models
a vector space which, in turn, is the most intuitive underly-
ing model of mathematical morphology. The connections be-
tween arrow logics and mathematical morphology were first
highlighted in [Aiello and van Benthem, 2002]. Let us first
recall the basic arrow logic with its truth definition.

Definition 2.1 (arrow logic) Let PROP be a set of proposi-
tion letters, then the well formed formulas F' of the arrow
logic are:

F = plel=plo V| @ plp @ 9,
where p € PROP, e is a distinguished identity element, and
o, P EF
A model consists of a set of arrows, a ternary, a binary and
unary relations, and a valuation function.

Definition 2.2 (arrow logic semantics) An arrow model M
is a tuple (W, C, R, I, v) in which W is a set of arrows, C' C
WxWxW, RCW xWand1 C W. Furthermore, v
is a valuation function such that v : PROP — P(W). The
truth of formulas is defined in a model at a given arrow w in
the following way (omitting the usual base case and boolean
connectives).

Mywlke iff
MuwlFop  if

(w)yel

there exists av € W such that
(w,v) € Rand M, v I+ ¢

there exists v,v' € W such that
(w,v,v") € C, M,v - ¢ and
MV IE Y

For a concrete example of arrow models, clinching the fit
with vector spaces and mathematical morphology, consider
the meaning of addition for the @ operator, of vector nega-
tion for the ® and of identity vector to e, i.e.,

o (2,y,z)eCifx=y+z

o (r,y) e Rifz =—y

o (x)elifr=e

In this way the definition of the interpretation of ¢ & ¥
goes from {w|Jv,v" € Wt (w,v,0v') € C, M,v |-
pand M,v" Ik 9} to being {w|Tv,v" € Wsit.w = v +
v, v € v(ip)andv' € v(¥)} = {v+ Vv € v(p),v €
v(1)} where we have lifted the valuation function to the for-
mulas. Note the similarity with the set defined in Equation 1.
In axiomatizing the language such that the relations behave
as described above, the axiom x + (—x) = e poses a prob-
lem because this axiom is not valid for arbitrary subsets of
the universe. Only if the subsets are singletons, the axiom is
true. To avoid this problem and finally arrive to usual vector
spaces, we introduce a set of nominals which provide the ex-
pressive power to differentiate among worlds, that is, among
arrows. We thus have the power to force a singleton set. We
are entering the realm of hybrid logics.

Where in modal logic there is no explicit reference to the
world at the language level, in hybrid logic instead one can
refer to specific worlds in a model. The nominals thus are
labels for the elements of W. From the language point of
view, the nominals have the same function as propositions.
Semantically, nominals have the restriction that the valuation
function maps a nominal to a singleton set. Furthermore, the
language contains the satisfaction operator @;¢, with the in-
tuitive meaning of bringing the valuation of the formula ¢ to
the world labeled 7, i.e., a world that satisfies 7.

We are now in the position to define the Morpho-logic. The
morpho-logic is a theory in the hybrid arrow logic whose ax-
ioms are shown in Table 1. We present it as an extension of
the arrow logic of Definition 2.1 in the following way.

MwlFpdy iff



Definition 2.3 (morpho-logic) Let ATOM = PROP UNOM be
a set of proposition letters and names, then the well formed
formulas F' of the morpho-logic are:

F = ale|=plp V| @ plp ® |Q;p
where a € ATOM, ¢ € NOM and ¢, € F.

The semantics defined in Definition 2.2 is straightforwardly
extended by introducing truth definitions for the at @ operator
and for the nominals as follows:

M,wlka iff w € v(a) witha € ATOM
M,wl@Q;p iff there exists av € W such that
M,vlFiand M, vk ¢

From here on, we overload the terms dilation and erosion
from mathematical morphology to the morpho-logic and de-
fine them as ¢ ® ¢ and ¢ © 1 = —(—¢p ® 1)), respectively.

Assl) [(p@ g @dr—p®(qdr)
Ass2) [pad(g@er)— (pdqg ®r
(comm) | pBg—qgDp

(revl) | = ® (p) — @(=p)

(rev2) ®(—p) — ~(®p)

(rev3) KXp—p

(revd) 1O Ri—e

@1d1) pde—p

(id2) p—opDe

(versl) [ @(p®q) — (®p) D (®9)
(vers2) | p® —~((®p) B q) — g

Table 1: The morphological axioms.

Having defined the morpho-logic and its axioms, the next
natural question to ask is what are the laws which the opera-
tors of the morpho-logic obey. The answer comes from look-
ing at their mathematical morphological counterparts. We do
not report here the full axiomatization of the hybrid arrow
language as it can be found in [de Freitas et al., 2002], but
rather report the new axioms with morphological significance
(Table 1). As a point of notation, we use K45, for the ax-
iomatization of the hybrid arrow-logic.

Of all the axioms presented in Table 1, the axiom (rev4) is
the most notable one. The purpose of the axioms is to give the
relations C, R and I a group semantics. One of the group ax-
ioms is  + (—x) = e. The algebraic counterpart of & is (-+),
the + operator lifted to the complex group of G. (+) operates
on sets, and a{+) — a = e only holds if a is a singleton. In
axiom (rev4), the nominals represent the singleton sets. This
is best seen by looking at the atoms as sets of worlds. Since
the set belonging to a nominal must be a singleton set we have
met the precondition of the group axiom.

We are now ready to state the completeness result and
sketch its proof. Here, by completeness we mean that given a
set of frames F a set of axioms A is complete with respect to
F if it for each formula ¢ it is the case that F |= ¢ implies
A .

Theorem 2.4 (completeness) The axioms presented in Ta-
ble 1, together with Ky a1, and the extended set of derivation

rule, are complete with respect to the set of frames defined by
the axioms in Table 1.

Proof. First, we note that the axioms in Table 1 are Sahlqvist
formulas. Second, the relations C' are R versatile, in the sense
of [Venema, 1993]. In fact, the axioms (versl) and (vers2)
make C' versatile and axiom (rev3) accounts for R’s versatil-
ity. In [Venema, 1993] it is shown that every Sahlqvist for-
mula is di-persistent for the set of versatile frames. Finally,
generalizing Theorem 5.3.16 in [Cate, 2005] to the hybrid ar-
row logic, we have that the axioms are complete for the family
of frames they define. QED

(a) map (b) China

(c) India (d) IndiapC

(e) (IndiasgC)AChina

Figure 1: Finding the EC relation between China and India.

2.2 Expressive power and QSR

The morpho-logic combines the power of talking about re-
lational structures from a local perspective, typical of modal
languages, with expressing global properties using the nomi-
nals to ‘jump’ globally from one point to another in the mod-
els, typical of hybrid ones. The first effect of the extra hybrid
power is that we are able to define a difference operator:

Dp=-e®yp

where we use the formulation found in [Venema, 1993]. The
meaning of the difference operator D¢ is that it is true in a
world w if there exists a world v such that v # w in which ¢



is satisfied. Using this modality, we can define the universal
modality
Up=9pAN-D-p

expressing the fact that a formula is true in the entire model.

Let us now consider the expressive power in terms of qual-
itative spatial reasoning (QSR). The morpho-logic is able to
express topological and morphological properties of points
and regions. First, we turn our attention to the best-known ex-
ample of topological calculus, the region connection calculus
[Randell ef al., 1992]. The RCC language uses the primitive
C(z,y) holding among two regions x,y if « and y are con-
nected and then derives a number of relations indicating the
overlapping, the being part or being disconnected of regions.
In the morpho-logic, the concept of connectedness is encoded
using dilations: two regions A and B are connected if A ® C
overlaps with B. C denotes the notion of connectivity that is
being used. In discrete binary images for example this could
be 4- or 8-connectivity. A possible encoding of RCC in the
morpho-logic is shown in Table 2.

DC(z,y) U—(z Ay)

EC(x,y) ~U-((z @ C)Ay) ANU=(x Ay)

PO(z,y) —U=(z Ay) AUz — y)A
~U(y — z)

r=y U(r < y)

TPP(z,y) Ulx —y) AUy — 2)A

NTPP(z,y) Ulx —y) AUy — x2)A
U((.’JS D C) — y)

TPP~(x,y) Uly — x) AUz — y)A
~U(ysC) — )

NTPP Yz,y) | Uly — 2) A=U(z — y)A
Ullye C) — )

Table 2: RCC-8 relations.

Let us now consider an example in the domain of binary
images using the RCC relations as defined via the morpho-
logic. For instance, we want to check whether India and
China are neighboring countries (EC relation) in the map
shown in Figure 1. We only show how to compute the part
of the formula with the dilation inside. It turns out that the
image (the model) verifies the EC relation and we can thus
safely conclude that indeed India and China are neighbors.

Interestingly, one can use the geometric expressive power
in the morpho-logic to go beyond mere topological relations
and thus being more expressive than RCC. In fact, taking ad-
vantage of the dilation operation, one is able to define a no-
tion of relative size. We say that x is smaller than y, and write
St(x,y) if

St(x,y) = Bi N (TPP(x®i,y)V NTPP(x ©i,y))
where E7 is the existential modality defined as dual of the
universal one: F := —U—, and TPP and NTTP are the
RCC tangential proper part and non-tangential proper part,
respectively. This definition of smaller than takes advantage
of the fact that a dilation with a singleton set is equivalent to a
translation. In plain words, the region x is smaller than region
y, if there exists a translation such that x is a proper part of y.

3 Reasoning via Resolution

The morpho-logic is an expressive formalism to represent
spatial properties of points and regions of space capturing
topological and morphological content. The next natural
question to ask is how one can use it to reason about space.
We introduce a resolution calculus for the moprho-logic that
is also, to the best of our knowledge, the first resolution pro-
cedure for an arrow language.

3.1 Resolution for reasoning in the morpho-logic

Resolution is a refutation theorem-proving technique [Bach-
mair and Ganzinger, 2001]. If in model checking one works
with a specific model and verifies whether a formula is true,
in theorem proving one is concerned with verifying whether
there is a model for a formula. In a refutation theorem prover
the goal is to show that there is no model for its negation. Be-
fore introducing the resolution calculus for the morpho-logic
in the next section, we consider how theorem proving sheds
light on mathematical morphology logical view on reasoning
about space and benefits mathematical morphology in return.

In traditional spatial reasoning calculi (such as RCC or
Allen’s one dimensional interval calculus [Cohn and Haz-
arika, 2001]) a paramount task is that of defining composi-
tion tables for the calculi relations. A composition table is
a compact representation for assessing which relation holds
among two locations based on knowledge of other relations.
For example, suppose that there is a relation R; between lo-
cation a and b, and a relation Rs between b and c. The entry
in the composition table tells us which relations are possible
between a and c. Composition tables are created resorting
to human reasoning, an ad-hoc program performing exhaus-
tive search, or a theorem prover. A successful example of the
latter is Bennett’s use of resolution for reasoning with RCC
relations encoded in intuitionistic logic [Bennett, 1994]. By
having resolution for the morpho-logic it is also possible to
create composition tables for morphological relations. Not
only, it is also possible to check dynamically the validity of
formulas and the composition of any two given relations ex-
pressible in the morpho-language.

Conversely, a resolution based theorem prover is also a
powerful tool in the hands of the mathematical morphology
expert. In mathematical morphology one of the typical tasks
is that of identifying filters, verify their formulation, and then
test experimentally their effectiveness on collections of im-
ages. For example, the salt-and-pepper filter, used to filter
out noise from an image, is known to be idempotent. The task
of design and verification of the filter is based on the exper-
tise of the mathematical morphology scientist. With a resolu-
tion based theorem prover the verification of filter properties
can be automated. Furthermore, if one couples the theorem
prover with a formula generator, one has a way of identifying
new and potentially useful filters.

3.2 The resolution calculus

The resolution calculus for the morpho-logic builds on the
fact that nominals are available, making it possible to per-
form resolution recursively inside the modal operators. Res-
olution rules can be applied to clauses. A clause is a set



of formulae and is true if one of the formula in the clause
is true. We extend the resolution calculus for the basic hy-
brid logic presented in [Areces er al., 2001] by means of
the additional rules shown in Tables 3, 4, 5. The first set of
rules (Table 3) deals with the binary & and unary ® modal-
ities, where the symbol & is the dual of & and is defined as
@Y = (- @ —1)). Equivalently, ® is the dual of ® and is
defined as ® = = ® —. The second set of rules (Tables 4, 5)
deals with the axioms of the morpho-logic (Definition 1). We
can now formally define morpho resolution.

Cliu{@;@p} CloU{@;~®(—j)}
(@) ClL UCLU{@, 0}

Clu{Q;,~®¢}
Clu{@;—®(—j)} where jis new
Clu{@;nf(=¢)}

Cly U{Q;pdip}
(@) Cly U{Qi~(—j18j2) }
Cll U Clg @] {@jlso ) @jzdj}

Clu{Q;=(pav)}

ClU{Q;—~(—j1©~j2)} where j; and j,
clu {@jlnf(_‘SD)} are new
Clu{Q@,nf(—)}

Cly U{Q;®p}

(RCVI) Cll U {@7,_'@_'%0}
Cly U{Q;~@-p}
Reve)  —ar (@ a0
Cl u{Q;=®(—j)}
Revs) o, 0@, ~a (-}
Clh U{Q;=(=j1©7j2)}
(Revy,) ClbU{Q;,~®~ji1}
Cll U Clg U {@16}
Cll U {@16}
- - For some
Clu{Q;~(-je®-j)}
(Revs, ) j € NOM
not new

Clyu{Qje} Clau{Q;,—p}

(1dy ) Cls U{Qi=(= j18j2)}
ClLuCl U {@iﬁﬁp}
(1d3) Cly U{Q;—edp}

Cliu{Q;p)}

Where n f is the following rewrite system:
® Y —nf P
* ®(p) =nf "R7P
* 9B Y —ny (- oY)
* PV —np (o At
o Qi =g @

Table 3: Morpho resolution rules for the morpho modalities.

Definition 3.1 (morpho resolution) Given a morpho for-
mula @, a refutation by morpho resolution of y is a sequence
of morpho clauses C1,...,C,, such that for all i € {1..n}
either

1. Ciisin g, or
2. Cjyis a resolvent of C}, Cy, according to a morpho rule

where C,, is the empty clause and a morpho rule is one of the
rules in Tables 3, 4, 5, or in [Areces et al., 2001 ].

If there exists no such refutation, ¢ is satisfiable. We say that
 is valid if there is a refutation of —¢ (i.e., ¢ is unsatisfi-
able). We write - ¢ for a valid .

Looking at the rules, one can note that all the rules assume
that the formula’s are of the form @;¢. This assumption can
be made because if @, is satisfiable, ¢ is satisfiable as well.
So checking the satisfiability of a set of clauses C' is equiv-
alent to checking the satisfiability of {C{|C] = {Q;p|p €

Table 4: Morpho resolution rules for the morpho axioms I.

C;}, C; € C}. For example, checking the satisfiability of two
clauses of the form {®p} U C; and {—-®-p} U Cs is equiva-
lent to checking the satisfiability of the clauses {@Q;®@p} U Cy
and {@;—~®-p} U C2. Applying the resolution rules, the ®
is unfolded by the (—®) rule creating {Q,5} U C; U Cs and
{@;=p} U C; U C, for some new nominal j. Then, the (®)
rule is used to create {@;p} U Cy U Cy. Using the resolution
rule, we can now create a new clause of the form C; U Cs.
From the formal point of view, we want to be sure that rea-
soning with the resolution calculus is correct and complete.
The following theorem does the job. For the full proof we re-
fer the reader to [citation to tech. report omitted] and provide
only a proof sketch here.

Theorem 3.2 (completeness) Given a set of clauses ¥ of the
morpho-logic, % is unsatisfiable if and only if there exists a
refutation of X using the morpho resolution of Definition 3.1.

Proof. The proof of refutational completeness works by
showing that if there is no refutation, a model of ¥ exists
on which all the axioms are valid. QED

4 Concluding Remarks

Driven by the Mathematical Morphology view of space, we
introduced a language based on hybrid arrow logic to reason
about space. The logic, which is a theory in the hybrid arrow
logic defined by the axioms of Table 1, is a powerful lan-
guage to express morphological as well as mereotopological
properties of space. To reason in the morpho-language we



Cli U{Qi=(= j18-72)}
Cly U{Qj, = (= 5197s2) }
ClsU{G,,4} CliU {64, 0}
Cls U {@826}
(Ass1) ClhhuCluCl3UuClU
Cls U{Qj, —(= k1@—k2)}
CliUCl UCIl3 UClyUCls U{Qy, ¢}
ClLuClbuClz3UClyUCls U {@kgd)}
ClLuClaUCIlsUClysuCls U {@]’25}
Cli U{@i=(= j1@-72)}
Cla U{Q@;,=(= 51©7s2)}  Cls U{Qj,p}
ClaU{Q,, v} Cls U{Q,,¢}
(ASS ) ClLuCl, UCl3UClaU
> Cls U{Qj, = (~ k1@—k2)}
ClbuClUClsUuClauCls U {@k1¢}
ClhuClaUClsUuClyUCls U {@k2f}
ClbuCla UClsuClyuCls U {@jlga}
Cli U{Q@;=~(=j1®j2)}
(Comm)  —&7, T{@~(= j2@1))
Cli U{Q@in@st Clp U{Qi (= j1@j2)}
ClLuCl U {@1',ﬁ(ﬁ klﬁﬁkz)}
(Versl) ClyuCl; U {@i_‘(_‘ klﬁ—\kz)}
CluCla U {@iﬁ@ﬁjl}
ClLuCl; U {@i_‘@_\jQ}
ClU{Q@i~(= j1©j2)}
(Versz) — ClU{Qj,~(=i®-® 1)}
Clu{@; (i@~ ®ja2)}

Table 5: Morpho resolution rules for the morpho axioms II.

introduced a resolution calculus. To the best of our knowl-
edge, this is the first resolution calculus for arrow logics.
We proved completeness of our language and calculus, while
leaving open for future research issues of complexity [Renz
and Nebel, 1999].

We implemented the morpho resolution in Haskell as
an extension of the HyLoRes theorem prover [Areces and
Heguiabehere, 2001]. We used the theorem prover for the cor-
rectness of a number of theorems (including theorems based
on the ‘smaller than’ definition of Section 2). We leave for
future research the enhancement and evaluation of the im-
plementation. The theorem prover is of particular usefulness
when showing that the morpho-logic is not only interesting in
Al for performing spatial reasoning, but is also a tool for the
computer vision expert that needs to check, or perhaps even
generate, new morphological filters.
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