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It is shown that the intrinsic geometry associated with equilibrium thermodynamics, namely 
the contact geometry, provides also a suitable framework in order to deal with irreversible 
thermodynamical processes. Therefore we introduce a class of dynamical systems on contact 
manifolds, called conservative contact systems, defined as contact vector fields generated by 
some contact Hamiltonian function satisfying a compatibility condition with some Legendre 
submanifold of the contact manifold. Considering physical systems' modeling, the Legendre 
submanifold corresponds to the definition of the thermodynamical properties of the system and 
the contact Hamiltonian function corresponds to the definition of some irreversible processes 
taking place in the system. Open thermodynamical systems may also be modeled by augmenting 
the conservative contact systems with some input and output variables (in the sense of automatic 
control) and so-called input vector fields and lead to the definition of port contact systems. 
Finally complex systems consisting of coupled simple thermodynamical or mechanical systems 
may be represented by the composition of such port contact systems through algebraic relations 
called interconnection structure. Two examples illustrate this composition of contact systems: 
a gas under a piston submitted to some external force and the conduction of heat between two 
media with external thermostat. 

Keywords: irreversible thermodynamics, contact structure, Hamiltonian systems. 

1. Introduction 

Hamiltonian systems are defined by two objects: firstly their geometric structure 
(symplectic or pseudo-Poisson bracket and Dirac structure) which amounts to define 
some skew-symmetric tensor fields on the state space, and secondly a generating 

*This work has been partially supported by the project European GeoPleX (IST-2001-34166). 
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function, called Hamiltonian function. This geometric structure characterizes funda- 
mental properties of physical systems stemming from variational formulations, the 
existence of symmetries or constraints [1, 20, 6, 9, 3], or the topological intercon- 
nection structure of circuits [25] and mechanisms [23]. For physical systems, the 
Hamiltonian function is given by the total energy of the system. Hamiltonian systems 
are well suited for the formulation of reversible physical systems where the dissipa- 
tion is neglected, as it is often the case in mechanics or electromagnetism [3, 18]. 
Hamiltonian systems have also been extended to model open physical systems, i.e. 
systems exchanging energy with their environment, in the context of control by 
introducing input-output and port Hamiltonian systems [4, 36, 39, 38, 7, 40, 21]. 

In the case when dissipation is taken into account, Hamiltonian systems have been 
extended by considering tensor fields which are no more skew-symmetric, defining 
a so-called Leibniz bracket [33, 7]. However, in this case, the Hamiltonian function 
is no more invariant, and the dissipative Hamiltonian system does not represent the 
conservation of energy. It may be observed that the Hamiltonian function corresponds 
more precisely to the free energy of the system, in the sense of thermodynamics, and 
that the dissipative Hamiltonian system corresponds to models of physical systems in 
thermal equilibrium. The simultaneous expression of irreversibility and conservation 
of energy is obtained by taking into account the properties of matter defined in 
terms of its internal energy [5, 8]. The irreversibility appears in the form of entropy 
source terms coupling the energy dissipation in any physical domain with entropy 
creation. Precisely these entropy creation terms are the obstacle which prevent to 
cast the entropy balance equation into the Hamiltonian frame as may be illustrated 
on the very elementary example of heat conduction [10]. 

In order to overcome this contradiction, we shall use an alternative geometric 
structure, the contact structure [3, 20], which may be associated with thermodynamic 
systems. Indeed, the description of the properties of matter leads to an enormous 
variety of complex constitutive laws, elaborated in the frame of reversible ther- 
modynamics [35]. The geometric structure of thermodynamics has been elaborated 
in terms of contact geometry, endowing the Thermodynamic Phase Space (denoted 
TPS) with a contact structure [13, 14, 5, 17, 26--28]. Reversible thermodynamic 
transformations have been expressed as contact vector fields generated by some 
function related to state functions associated with the thermodynamic properties 
of the system [31, 29, 30]. Finally, some contact vector fields associated with 
irreversible thermodynamic transformations for systems near equilibrium have been 
proposed in [16]. 

In this paper we shall propose a class of dynamic systems defined by contact 
vector fields that may be seen as the lift of Hamiltonian systems on the TPS 
as well as an extension of these systems that allow to cope with irreversible 
thermodynamic processes. The first aim is to show precisely the extension of 
Hamiltonian systems needed to express simultaneously the irreversibility associated 
with dissipative phenomena and the conservation of energy. The second aim is to 
define a class of irreversible open systems which may be associated with systems 
arising from irreversible thermodynamics. 
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In Section 1 we shall recall the basic concepts of contact geometry in the 
context of reversible thermodynamics. In Section 2, we shall lift Hamiltonian 
systems, possibly dissipative, onto the TPS and define an associated contact vector 
field. In Section 3 these contact vector fields are generalized to a class of systems 
called conservative contact systems defined for isolated as well as open systems. 

2. Contact structures for reversible thermodynamics 

The first geometric formulation of thermodynamics has been given by Gibbs 
[13, 14] and has then been developed by Carath6odory [5], Hermann [17], leading 
later to formalization by Mrugala and coworkers [26, 27, 31]. In this section 
we shall briefly recall in which sense the contact geometry is associated with 
the Thermodynamic Phase Space (TPS) and reversible thermodynamics, following 
closely [26, 31]. Along this section we shall also recall some fundamental objects 
of contact geometry used in this paper, and refer the reader to [20, l, 3] for their 
detailed presentation. 

2.1. Thermodynamic Phase Space and contact structure 

The contact structure emerges in relation with the description of the thermodynamic 
properties of matter. Indeed, these thermodynamic properties are defined by n + 1 
extensive variables (such as internal energy, volume, number of moles of chemical 
species, entropy) and by the so-called fundamental equation defining the internal 
energy as a function U of the remaining n extensive variables 1 [13, 14]. The 
fundamental equation defines a n-dimensional submanifold of IR n+l denoted by N" 
in the sequel and characterizing the thermodynamic properties of some system in the 
space of extensive variables. However, in practice, the thermodynamic properties are 
defined using n additional variables, the intensive variables (such as pressure, chemical 
potential and temperature) which may be directly related with measurements. The 
Thermodynamic Phase Space is the space of first jets over A/', and the submanifold 
defining the thermodynamic properties is the 1-jet of U. As a consequence the 
Thermodynamic Phase Space associated with the differentiable manifold N" of 
extensive variables, may be identified with the manifold IR x T'A/" [20]. This 
construction actually endows the TPS with a contact structure which is briefly 
recalled below. 

Let now AA denote a (2n + 1)-dimensional, connected, differentiable smooth 
manifold. 

DEFINITION 1 [20]. A contact structure on .A// is determined by a 1-form 0 of 
constant class (2n + 1). The pair (.AA, 0) is then called a contact manifold, and 0 
a contact Jbrm. 2 

I A variable is qualified as extensive when it characterizes the thermodynamical state of the system and its 
total value is given by the sum of its constituting parts. In this paper we shall define the extensive variables 
as being the basis variables on which the fundamental equation is defined. 

2For clarity, as we only consider trivial contact structure, we do not make a distinction between contact 
and strictly contact structures as in [20]. 



178 D. EBERARD, B. M. MASCHKE and A. J. VAN DER SCHAFT 

Consider some differentiable manifold A/'. Define its associated space of 1-jets of 
functions on .A/', denoted by 7- and called in the sequel Thermodynamic Phase Space 
associated with A/'. It may be shown [20] that this space of 1-jets is identifiable 
with 

7- --- • × T*.Af, (l) 

and is endowed with a trivial contact structure defined by 0. According to Darboux 
theorem [15], the contact form is globally given by 

n 

0 = dx  ° - Z p idxi '  (2) 
i = 1  

in the canonical coordinates (x °, x 1 . . . . .  x ~, Pl . . . . .  Pn). 

EXAMPLE 1. For a simple thermodynamic system, the Thermodynamic Phase 
Space is defined in the following canonical coordinates: x ° denotes the energy U, 
and the pairs (x i, Pi) denote the pairs of conjugated extensive variables (the entropy 
x 1 = S, the volume x 2 = V, and the number of mole x 3 = N) and intensive 
variables (the temperature Pl : T, minus the pressure P2 : - P ,  and the chemical 
potential P3 = #). In this case, the contact form is the Gibbs form 

0 = dU - TdS  + P d V  - I~dN. (3) 

2.2. Thermodynamic properties and Legendre submanifolds 

Actually the thermodynamic properties expressed in the TPS may also be defined 
as the submanifold where Gibbs' form vanishes, that is points where the Gibbs 
relation is satisfied [17, 3, 26]. This corresponds to the definition of a canonical 
submanifold of a contact structure, called Legendre submanifold (playing an analogous 
role as Lagrangian submanifolds for symplectic structures). 

DEFINITION 2 [20]. A Legendre submanifold of a (2n + 1)-dimensional contact 
manifold (A//, 0) is an n-dimensional integral submanifold £ C A4 of 0. 

Legendre submanifolds may be defined locally by some generating functions as 
follows. 

THEOREM 1 [2]. For a given set of  canonical coordinates and any partition 
I LJ J of  the set of  indices {1 . . . . .  n} and for  any differentiable function F(x  i, p j )  
of  n variables, i ~ I, j E J, the formulae 

OF OF OF 
x ° = F - p j - -  x J - PI : (4) 

Opj'  Opj'  Ox 1 

define a Legendre submanifold of 1I~ 2n+l denoted £V. Conversely, every Legendre 
submanifold in ]R 2n+l is defined locally by these formulae, for  at least one of  the 
2 n possible choices of the subset I. 
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This corresponds to the practical definition of the thermodynamic properties of 
thermodynamic systems where the generating functions are called t he rmodynamic  

potent ia ls ,  such as the enthalpy or the free energy. 

EXAMPLE 2. Consider the properties of an ideal gas which is usually defined 
by the so-called state equation. One way to express its thermodynamic properties 
in the TPS endowed with the contact form 

0c :---- d G  + S d T  - V d P  - # i d N  i (5) 

is to use as coordinates the temperature T, the pressure P and the number of moles 
N. In this case the generating function is the Gibbs free energy G: 

5 
G ( T ,  P,  N )  = - N R T ( 1  - In(T/T0)) - N T ( s o  - R l n ( P / P o ) ) ,  

2 
(6) 

where R is the ideal gas constant and P0, T0, So are some references. The variables 
are given by x '° = G, x' = (T,  P, N )  and p' = ( - S ,  V, #). The associated Legendre 
submanifold is then 

x '° = G ( T ,  P ,  N )  = U ' ( T ,  P,  N), 

OG 5 
P'I = - S ( T ,  P,  N )  --  '0~ --  Nso  + - N R l n ( T /  - R N l n (  P / Po), 

aG ! 

P2 = V ( T ,  P,  N )  - a P  - N R T / P ,  

a G  5 
p'  - -  - R T -  T S / N .  3 = # ( T ,  P ,  N )  - ON 2 

Notice that the coordinate x '° corresponds to the internal energy expressed in the 
independent coordinates (T,  P.  N )  and that the third equation corresponds to the 
state equation P V  = N R T  of an ideal gas. 

However, one may choose as well as coordinates of the Legendre submanifold, 
the extensive variables: the entropy S, the volume V and the number of moles 
N via the Legendre transform ( x ' ° , x  ' , p ' )  ~-~ (x ° , x ,  p)  given by x ° =  U, x = 
(S, V, N), p = ( T , - P ,  lz). In this case the generating function is the internal 
energy 

aG OG 3 
U ( S ,  V, N )  = G - P - T - -  --  N R T o e x p [ f ( S ,  V, N)] (7) 

OP a T  2 

obtained by the Legendre transform of G, and where the second equation of the 
previous Legendre submanifold provides 

y ( S ,  V, N )  = (S  - Uso + R N l n ( N R T o )  - R N I n ( V P o ) ) / ( 3 R N ) .  (S) 

The contact form is then given by (3), and the Legendre submanifold describing 
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the properties of the gas is now 

x ° = U(S, V, N) = 

pl = T(S, V, N) -- 

P2 = P(S, V, N) = 

P3 : #(S,  V, N) - - -  

expressed by 

3 
-NRToexp[y(S ,  V, N)], 
2 
OU 

-- To exp[y (S, V, N)], 
OS 

OU 
= NRToexp[y(S,  V, N)] /V ,  

OV 

8U 
ON -- (S R - S/U)Toexp[y(S,  V, N)] 

(9) 

2.3. Contact vector fields and reversible transformations 

Finally we shall recall the expressions of transformations of thermodynamic 
systems, which have the main property to leave invariant Legendre submanifolds 
defining thermodynamic properties. This is represented in the geometric language 
by contact transformations. We recall the definition of a particular class of vector 
fields, called contact vector fields, which preserves the contact structure, as well as 
the definition of the Jacobi bracket on the space of smooth functions on the TPS 
[1, 3, 20]. We then give illustrations of reversible transformations which have been 
treated in detail in [29, 30]. 

PROPOSITION 1 [20]. A vector field X on (A4, 0) is a contact vector field if 
and only if there exists a differentiable real-valued function p on .All such that 

/2(X) 0 = p 0, (10) 

where L(X) .  denotes the Lie derivative with respect to the vector field X. If p = 0 
then X is called an infinitesimal automorphism of the contact structure. 

Analogously to the case of Hamiltonian vector fields, one may associate 
a generating function to any contact vector field. Actually there exists an iso- 
morphism • between contact vector fields and differentiable function on A4, which 
associates a contact vector field X to a function called contact Hamiltonian. 

PROPOSITION 2. The map 

Op(X) = i(X)O, (11) 

where i(X).  denotes the contraction of a form by the vector field X, defines 
an isomorphism from the vector space of contact vector fields in the space of 
smooth real functions on A4. The function f = Op(X) is called contact Hamiltonian 
associated with the vector field X denoted by 

X f  = dp- l ( f ) ,  (12) 

where ~-1 is the inverse isomorphism. 
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The contact vector field Xf may be expressed in canonical coordinates in terms 
of the generating function f as follows, 

( ~ ~'t'k/~'~ ~'~ Of'~ 0 Of ('~_ 1 ~'t'~O ) k ~ = l \  OxkOpk~f-'{Of 0 OPk 0 ) X f =  f -  pk~27~.l~Tg~o+-~d~o pk~-7~ " + . (13) 
k=l 

It is worth noting that the set of contact vector fields forms a Lie subalgebra of 
the Lie algebra of vector fields on M [20]. 

PROPOSITION 3 ([20], p. 20). The isomorphism do defined in Proposition 2 
defines on differentiable functions on M,  the following Lie bracket called Jacobi 
bracket, 

{f, gl = i([X.f , Xg])O. (14) 

Its expression in canonical coordinates is given by 

{f,g} = 

(15) 
Let us consider an example of such contact vector fields in the context of 

thermodynamics given by Mrugata [30] and associated with reversible transformations 
of thermodynamic systems. 

EXAMPLE 3 [30]. Consider a thermodynamic system defined by the Legendre 
submanifold 12, generated, in canonical coordinates, by a thermodynamic potential 
di)(X i, pj), for i ~ I, j E J, I U J = {1 . . . . .  n}, as the internal energy U, the 
enthalpy H, etc. Examples of invariant transformations, in the sense that the 
trajectories starting on 12, stay on it, are given by the contact vector fields Xf  
with contact Hamiltonians such as 

0do 
f = x ° - do + pj - -  f = PV - NRT. (16) 

Opj 

In thermodynamics, these correspond to basic reversible transformations. It is inter- 
esting to note that in the first case of these reversible transformations, the contact 
Hamiltonian is entirely defined by the generating function (a partial Legendre 
transform) of the Legendre submanifold defining the thermodynamic properties. 

An important property of the reversible transformations is that they leave invariant 
the Legendre submanifold associated with its thermodynamical properties. This may 
be checked by using the following result [31, 30]. 

THEOREM 2. [31] Let (M,  O) be a contact mani[old and denote by 12 a Legendre 
submanifold. Then X f is tangent to 12 if and only if f is identically zero on 12. 

Notice that by definition, contact Hamiltonians defining reversible transformations, 
such as (16), satisfy the invariance condition of Theorem 2. In the sequel this 
invariance condition will play a fundamental role in the definition of extensions of 
these vector fields. 
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3. Lift of Hamiltonian dynamics to the Thermodynamic Phase Space 

In this section, as a preliminary step towards the definition of contact systems 
including phenomenological laws, we shall consider the lift of reversible port 
Hamiltonian systems as well as of dissipative Hamiltonian systems. 

In the first part we shall consider port Hamiltonian systems [22, 39, 38] and their 
lift to the TPS associated with their state space N "3 defined in Eq. (1) [11]. In this 
way we shall define a first class of contact systems generated by internal contact 
Hamiltonian associated with the drift Hamiltonian vector field, and by interaction 
contact Hamiltonians associated with input vector fields. In the second part, we 
shall lift a dissipative Hamiltonian system [7, 33] to some extended TPS [12]. This 
space is obtained by considering two additional variables, namely the entropy and 
the temperature of some external thermostat. For this class of systems we shall 
define a contact vector field generated by a contact Hamiltonian which generates 
the entropy creation associated with energy dissipation. 

3.1. Lift of port Hamiltonian systems 

Let us first recall briefly the definition of a port Hamiltonian system [22, 39] 
defined on a pseudo-Poisson manifold .N'. Consider an n-dimensional differential 
manifold A/" endowed with a pseudo-Poisson bracket {., .}gen (i.e. Jacobi's identities are 
not necessarily satisfied). Denote by A its associated pseudo-Poisson tensor, and by A # 
the vector bundle map A # : T'N" ~ TN" satisfying A(ot, r )  = (or, A#(fl)), ¥(ol, r )  
T'N" x T*N'. A port Hamiltonian system [22, 39] is defined by a Hamiltonian 
function Ho(x) ~ C~(N'), an input vector u(t) = (Ul . . . . .  Um)(t) T E 1~ m function of 
t, m input vector fields gl . . . . .  gm on N', and the equations 

m 

k = A#(dxHo(x)) + ~_, ui(t) gi(x), 
i----I 

yJ = £(gj)Ho(x), 

(17) 

where y -- (yl . . . . .  ym) is called the port output variable (or port conjugated output), 
and /2(.) denotes the Lie derivative. Port Hamiltonian systems are extensions of 
Hamiltonian systems which allow to model reversible physical systems which are 
open in the sense that they undergo some exchange of energy with their environment 
[22, 39]. They appear naturally in the modeling of driven mechanical systems [40] 
or electrical circuits [24, 39]. Interpreting the Hamiltonian function H0 as the total 
energy of a physical system, it appears that the energy is not conserved but satisfies 
the following power balance equation, 

m 
d Ho yi 

- -  ~ U i , (1 8) 
dt 

i = 1  

3Notice that we will still denote by Af the state space, although its components are no longer usually 
called extensive variables but energy variables. However, energy (resp. co-energy) variables play analogous 
fundamental role in the Hamiltonian framework as extensive (resp. intensive) variables in thermodynamics. 
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where the product of the port-conjugated input and output variables is the flow of 
energy into the system through its boundary. 

Despite the fact that port Hamiltonian systems represent reversible physical 
systems, one may still have a thermodynamic perspective on them, and define some 
analogue of the TPS. Indeed, consider as space of extensive variables the manifold 
R x A/" ~ (x °, x), and the fundamental equation x ° = Ho(x). The Hamiltonian function 
H0 (or, in the same way, its graph) defines some analogue of the thermodynamic 
properties for a reversible system in the space of extensive variables R x A/" ~ (x °, x). 
Using (1), one may associate with the base manifold A/', the (2n + l)-dimensional 
TPS 

R x T*.A/" ~ x' = (x °, x, p), (19) 

endowed with the canonical contact form (2). The l-jet of the function H0 may be 
identified with the Legendre submanifold generated by Ho(x) of the TPS IK x T'A/', 
and characterizes an analogue of thermodynamic properties for the port Hamiltonian 
system 4. The lift of the port Hamiltonian system (17) on the TPS R × T*.A/" may 
be defined as the following control contact system. Its construction is completely 
analogous to the control Hamiltonian systems defined on symplectic manifolds 
[4, 36]. Consider the internal contact Hamiltonian 5 

K0 = - A ( p ,  dxHo), (20) 

and the interaction contact Hamiltonians 

Kj = uj(t).i(gj)(dxHo - p). (21) 

The lift of the port Hamiltonian system (17) on the Thermodynamical Phase Space 
R × T*.A/" is then defined as the control contact system 

dx' £ 
dt - XK0 + XKj =: X(x', u). (22) 

j = l  

Notice firstly that, by construction, the two contact Hamiltonians (20) and 
(21) satisfy the invariance condition of Theorem 2 with respect to the Legendre 
submanifold /2H0 generated by the Hamiltonian Ho(X). Hence they generate contact 
vector fields that leave invariant /2H0, and so does their linear combination X(x', u). 
By construction the restriction to the Legendre submanifold £H0 of the conservative 
system generated by these contact Hamiltonians, projected on the x-coordinates, 
gives the dynamic equation of (17) [l l] 6. Secondly, it is interesting to note that 
the Legendre submanifold is generated by the internal Hamiltonian H0 of the port 

4This Legendre submanifold is the analogue for the contact manifold R x T*Af of the Lagrangian submanifold 
generated by Ho(x) in the cotangent bundle T*.N'. 

5Note that this internal contact Hamiltonian K0 = E(A#(dxHo(x)))(p) is precisely the Hamiltonian function 
of the lift of the vector field A#(d~.H0(x)) on the cotangent space T'A/'. 

6Moreover its projection on the conjugated p-coordinates is related to its adjoint variational system. And it 
has been shown that the invariance condition of the Legendre submanifold ZIH0 may be related to the power 
balance equation (18) [11[. 
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Hamiltonian system which has the dimension of  energy for models of physical 
systems, and that the contact Hamiltonians have the dimension of power. The 
internal contact Hamiltonian (20) is defined by the pseudo-Poisson tensor, and the 
interaction Hamiltonians (21) are defined by the input vector fields; they may be 
interpreted as some virtual power associated with the interconnection structure of 
the physical system giving rise to the dynamics [24, 39]. 

3.2. Lift of  Hamil tonian  systems with dissipation 

We consider now the case of an autonomous dissipative Hamiltonian system [7] 
and its lift to the TPS. 

Set .Af as an n-dimensional differentiable manifold endowed with a pseudo- 
Poisson tensor denoted by A, and a symmetric positive 2-contravariant tensor denoted 
by A. The tensor B = A - A endows the manifold N" with a Leibniz structure 
[33], and defines the vector bundle maps B~R • T ' N " - ~  T.Af satisfying 

B(u,/3) = (u, B~(/3)), 'v' (oe,/5) E T'N" x T*N'. (23) 

A dissipative Hamiltonian system [33] with energy function H0 is then defined by 
the differential equation 

2 ---- B~(dxHo(x)). (24) 

The Hamiltonian function H0 is not an invariant of such systems and its time 
variation is 

dHo 
- A(dxHo(x), dxHo(x)). (25) 

dt 

Interpreting the Hamiltonian function as the energy of a physical system, this is the 
power balance equation expressing the loss of energy induced by some dissipative 
phenomenon. 

In the sequel we shall lift this dissipative Hamiltonian system to a contact system 
in such a way to express simultaneously the first principle of thermodynamics 
(conservation of the total energy of the system) and the second principle (positive 
entropy creation). Therefore, in the first step, we shall define an augmented state 
space using a thermodynamic perspective. Indeed, the power balance equation (24) 
may also be interpreted as the conversion of the energy (expressed by the Hamiltonian 
Ho(x)) into some heat flow. This heat flow is accumulated in the form of the 
internal energy which, for instance, may be the energy of some thermostat to which 
the system is coupled. This internal energy may be defined by 

U(S) = To S (26) 

where To E II~_ is the constant temperature delivered by the thermostat, and S 6 R 
is its state, its entropy 7. With the system composed of the dissipative Hamiltonian 

OU =To, 7This thermostat corresponds to some simple thermodynamic system with constant temperature T = ~ -  
with finite entropy but infinite heat capacitance. The total energy of the system coupled to the thermostat 
becomes He(x, S) = HO(X) + TO S, and its Legendre transform with respect to S is then H0 which may now 
be interpreted as the free energy of the whole system. 
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system coupled with the thermostat, one may associate the space of extensive 
variables, an (n + 2)-dimensional manifold R × .M~ ~ (x °, x, S) with .N'e = A/" × 
denoting the extended base space of the coupled system. The coupled system may be 
endowed with some thermodynamic properties defined by the fundamental equation 
x ° =  He(x, S) where He denotes the total energy of the coupled system, 

He(x, S) := Ho(x) + U(S) =- Ho(x) + ToS. (27) 

Using (1), one may associate with the base manifold A/'e, the extended TPS 

T~ := ~ × T*A/'e ~ (x °, x, S, p, Ps), (28) 

where the intensive variable Ps conjugated to S corresponds to the temperature of 
the thermostat. This extended TPS is endowed with the contact form 0e defined in 
canonical coordinates by 

Oe := dx ° - £ Pi d x i  - psdS.  (29) 
i=1 

The function He(x, S) defined in (27) generates the Legendre submanifold 

{ OHe _ OHe _ } 
~C~H e = X 0 = He(x, S), x, S, p - i~x Ox Ps OS To (30) 

This Legendre submanifold is simply the product of the Legendre submanifold 
generated by H0 on the TPS ~ × T*Af of the reversible pseudo-Hamiltonian system 
(with A = 0) according to Section 3.1 and the trivial manifold {(S, T) = (S, To), S c 
R} C R 2 corresponding to the definition of the thermostat. 

In the second step we shall define a contact vector field on the TPS (28) that 
is a lift of the dissipative Hamiltonian system in the following sense: it expresses 
conservation of the total energy H~ and the entropy balance equation associated 
with the dissipated energy (25). Therefore consider the contact Hamiltonian 

Ke := - B ( p ,  dxHo(x)) - PS A(d~Ho(x), dxHo(x)). (31) 
To 

It consists of the sum of two terms. The first term is bilinear in the intensive 
variables p and in the differential d~Ho and depends on the Leibniz tensor B. It is 
defined in a very similar way as for the contact Hamiltonian (20) associated with 
reversible Hamiltonian systems where the pseudo-Poisson tensor A is replaced by 
the Leibniz tensor B. The second term is deduced from the invariance condition 
(Theorem 2), and is defined solely by the symmetric bracket A associated with the 
dissipation. It may be noted that this term is no more linear in the differential d~Ho. 
This is a distinguishing feature of irreversible processes: the nonlinearity allows to 
take into account the entropy creation due to irreversibility. 

By construction, this contact Hamiltonian Ke vanishes on the Legendre subman- 
ifold £t4~ and hence the contact vector field generated by Ke leaves it invariant. 
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Its restriction to £t4e, projected to the extensive variables (x, S) is 

/c = B~R(dxHo(x)), 
(32) 1 

= --A(dxHo(x),  dxHo(x)) =: ~. 
To 

The first equation is simply the definition of the dissipative Hamiltonian system 
(24). The second equation gives the variation of the entropy S of the thermostat 
and corresponds to the entropy balance equation with ¢z being the entropy creation 
due to the dissipation. The heat flow To ~ into the thermostat is precisely the flow 
of energy dissipated in the physical domain with state variables x E .A/'. 

Furthermore the generating function He defining thermodynamic properties of the 
augmented system is now conserved, 

dHe To 
- B(dxHo(x), dxHo(x)) + ~oA(dxHo(x), dxHo(x)) = 0. (33) 

Hence the contact vector field XKc expresses simultaneously the irreversibility in 
terms of entropy creation, and energy conservation. 

REMARK 1. It is important to note that the previous construction may be easily 
adapted to the case where one assumes some nontrivial thermodynamic properties 
(i.e. not assuming that the system is isothermal and in equilibrium with a thermostat) 
defined by some other Legendre submanifold £ of the extended TPS. The second 
nonlinear term of the contact Hamiltonian K e defined in (31) has then to be modified 
in order to ensure the invariance condition Kelz; = 0 (cf. Theorem 2). 

REMARK 2. In [16], pp. 311-317, Grmela presents a comparable construction of 
a contact vector field associated with dissipative Hamiltonian systems. The system 
represents a physical system in thermal equilibrium at the constant temperature To. 
The dynamics in the extensive variables x 6 A/" = R" near the equilibrium is given 
by the dissipative Hamiltonian system 

o¢ 
)c = (To J - D) Ox (34) 

where J is a skew-symmetric matrix, D a positive definite matrix and ~b(x) is 
a potential function defining the thermodynamic properties. This system is lifted 
to the TPS R x T*.A/" ~ ~2n+1 9 (x 0, x, p) as a contact vector field with contact 
Hamiltonian 

10d~D049 _ To f f  j O q5 
qJ(x, p) = +~pt  D p 2 0 x  0--~ Ox" (35) 

It may be noted that the contact Hamiltonian satisfies the invariance condition of 
Theorem 2 and hence leaves invariant the Legendre submanifold generated by 4~. 
However, the difference with respect to the construction that we have proposed 
above is that the temperature appears as a constant parameter, and that the pair of 
entropy and temperature variables do not appear in the definition of the state space. 
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As a consequence the entropy balance equation is not expressed and the potential 
~b is not an invariant of the dynamics 

dq~ _ O~b DOqS. (36) 
dt Ox ~x 

4. Conservative control contact systems 

In this section we shall propose a general definition of contact systems representing 
both the invariance of the thermodynamic properties of a system (defined by Gibbs 
relations) and the fluxes due to thermodynamical nonequilibrium conditions. In 
a first part we shall consider isolated systems whose dynamics is generated solely 
from some internal nonequilibrium conditions. In a second part, we shall extend 
these systems to open systems for which part of the dynamics is generated by 
some nonequilibrium conditions of the system with its environment. The third part 
concludes with the definition of pairs of conjugated variables, called port variables, 
enabling the expression of such interactions with the environment and related to 
a global power balance equation. 

4.1. Isolated systems 

In this paragraph we shall define a class of systems which generalize the lifted 
dissipative systems presented in Section 3.2. This class of systems expresses the two 
fundamental features of irreversible thermodynamics: the dynamics leaves invariant 
thermodynamic properties, and the dynamics is defined by some fluxes generated 
by some phenomenological laws associated with the thermodynamic nonequilibrium. 

DEFINITION 3. A conservative contact system is defined as a set (.M, 0, £,  K0), 
where (A/I, 0) is a contact manifold, £ a Legendre submanifold and K0 a contact 
Hamiltonian satisfying the invariance condition (i.e. K0 is identically zero on /2). 
The dynamics is then given by the differential equation x ' =  Xx0. 

A conservative contact system is simply a dynamical system defined on a contact 
manifold by a contact vector field which furthermore satisfies the invariance condition 
of Theorem 2 with respect to some Legendre submanifold. In terms of modeling 
o f  physical systems, the Legendre submanifold defines the thermodynamic properties 
of a physical system. This might be the state equations of an ideal gas presented 
in an Example 1, or the (free) energy of a reversible Hamiltonian system as 
presented in Section 3.1. The contact Hamiltonians generating the vector field 
corresponds to dynamical phenomena due to nonequilibfium conditions. We have 
seen two examples of such contact Hamiltonian for reversible Hamiltonian systems 
(the nonequilibrium condition consists in this case in the interdomain coupling 
represented by the Poisson tensor), and dissipative Hamiltonian systems in Section 3. 
However, contact Hamiltonians may be quite general functions allowing to cope with 
a great variety of phenomenological laws, near thermodynamical equilibrium or not. 

We shall conclude with two simple examples: a gas in a cylinder undergoing 
some nonadiabatic transformation, and the heat conduction between two gases. 
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EXAMPLE 4. A gas in a cylinder under a piston. Consider in this example 
a gas contained in a cylinder closed by a piston subject to gravity (see Fig. 1). 

X pot 

F 

_.__2' 
m 

U, x s , x v x N 

1 g 

Fig. 1. A gas in a cylinder under a piston. 

The thermodynamic properties of this system may be decomposed into the 
properties of the piston in the gravitation field and the properties of the perfect 
gas. The properties of the piston in the gravity field are defined by the sum of the 
potential and kinetic energies: 

1 H0 = - -  x kin2 + mgx  p°t, 
2m 

where x p°t denotes the height of the piston and X kin its kinetic momentum. The 
properties of the perfect gas may be defined by its internal energy U(x  s, x v, x N) 
where x s denotes the entropy variable, x v the volume variable and x m the number 
of moles. The properties of the total system gas and piston are defined in the TPS 

~GP = Ii~ X ~10 ~ {X 0, X S, X V, X N, xPOt, xkin, Ps, Pv, PN, Ppot, Pkin}, (37) 

and are given by the potential H ( x ' )  = U(x  s, x v, x N) + H0(X p°t, xkin). The Legendre 
submanifold Z; generated by H is given by 

OU c a T ,  Pslc  = OS 

3U £ & - P '  
Pv lc  - 8V  

3U & # ,  
PN[£ = ~ £ 

Ppot Z; = m g  = F ,  

X kin A 
Pkinl£-  ---- v, 

(38) 

m 

where T is the temperature, P the pressure, # the chemical potential of the gas, 
F the gravity force, and v the velocity of the piston. 
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The gas in the cylinder under the piston may undergo a nonreversible trans- 
formation when the piston moves. We assume that in this case a nonadiabatic 
transformation due to mechanical friction s , and that the dissipated mechanical energy 
is converted entirely into a heat flow in the gas. Consider the contact Hamiltonian 

Ktot = Krnec - (Pv q- P) Av - (Pkin -- V) AP + Pkin -- T v v v, (39) 

where v is the friction coefficient defining the mechanical energy dissipation, P, v 
and r are the functions defined in (38), and 

Kmec=--(Ppot, Pkin)(O_l l o ) ( F  ) . (40)  

This contact Hamiltonian is composed of four terms. The first one is precisely the 
contact Hamiltonian associated with the piston moving in the gravity field alone, 
that is the contact Hamiltonian K0 in (20) of a lifted Hamiltonian system. The last 
term is a quadratic term in the velocity v associated with the mechanical friction, 
analogous to the nonlinear term of the contact Hamiltonian (31) associated with 
dissipative Hamiltonian systems. The second and third terms are associated with the 
coupling between the piston and the gas by relating the force F e and pressure P 
on the piston and the velocity v of the piston and the variation of volume f~ 

F e ] - A  

where A denotes the area of the piston. 
It is immediately seen that the contact Hamiltonian satisfies the invariance 

condition Kirr[£-= O. The dynamics restricted to the Legendre submanifold and 
projected on the extensive coordinates is 

dx s £ dS OKtot 1 A 
- -  - -  - -  V V  2 ~ ( 7 ,  

dt dt Ops T 

dXdtV £ _ d__dtV __ OopvKtOt __ A v, 

dXdtU £ ,  _ _  ddtN _ 30pNKtOt = 0, 

dxp°t  /2 dz 0Ktot 
- -  - -  - - V ~  

- ~  d-t aPpot 

d x  kin £ _ drr _ 0 g t o  t 

dt dt 0Pkin 
- - - -  F + A P = - m g  + AP, 

(42) 

gNotice that another (equivalent) way to model irreversibility is to introduce the viscosit), coefficient of the 
gas, providing the same dynamics. 
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where z denotes the height, and a the irreversible entropy creation associated with 
the mechanical friction. The last equation is simply Newton's law applied to the 
piston, the fourth is the definition of the velocity. The third equation indicates that 
the system is closed (there is no exchange of matter). The second equation indicates 
that the motion of the piston induces a variation of the volume of the gas. And 
the first one is the entropy balance where irreversible creation of entropy due to 
mechanical friction is transformed into an entropy flow in the gas. 

It is interesting to note that this formulation of an irreversible transformation 
of a gas-cylinder system encompasses the formulation of reversible transformation 
using a port Hamiltonian system defined on a Dirac structure proposed in [19] (by 
setting v = 0, the entropy variation becomes .~s= 0, hence characterizes reversible 
transformations). 

The next example concerns a classical example of irreversible system: heat 
conduction with Fourier's law. 

EXAMPLE 5. Heat conduction. Consider two simple thermodynamic systems, 
indexed by 1 and 2 (for instance two ideal gases), which may interact only through 
a heat flow through a conducting wall. The thermodynamic properties of each ideal 
gas are described in the composed TPS 

7-  ~--- ]~ X ~12  ~ X' = (X O, X/, pji)i=l,2j=l ..... 3 (43) 

where the x/ denote the coordinates of the extensive variables and PJi of the 
conjugated intensive variables of the system i. Assume that the thermodynamic 

properties of each system are generated by the internal energy Ui(x/) for i = 1, 2 
and j = 1 . . . . .  3 (for an ideal gas given in Example 2). The thermodynamic 
properties of the composed system are simply obtained by considering the Legendre 
submanifold £ u  generated by the potential U = U1 + U2. 

The two systems may exchange a heat flux Q according to Fourier's law 
(~ = X(T1-  T2), where X 6 11~_ denotes Fourier's heat conduction coefficient. The 
heat transfer dynamics is described by the conservative contact system on £ with 
the internal contact Hamiltonian 

Ko(x') = (P11, Plz)tR(p11, Plz)A~((T1, T2) t) ---- R(p)A(p, T), (44) 

where 
~( 1 1 ) Ti-- OUi (xj) ' i = 1 , 2 ,  

R(p) = lf2 P-ll ' OPli 
and A ~ denotes the vector bundle map associated with the canonical symplectic 
Poisson tensor A on R2. Note that this multiplicative R destroys the Hamiltonian 
structure (Poisson or Dirac structure) and allows to take into account entropy 
production via nonlinear generating flux laws. By construction, the contact Hamiltonian 
K0 satisfies the invariance condition of Theorem 2, and leaves invariant the Legendre 
submanifold £, that is, it satisfies Gibbs' relation. Let us now write the restriction 
of the vector field X~ 0 to the Legendre submanifold £. Consider first its projection 
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on the temperature coordinates PI1, PI2. Using the fact that the systems are isochore 
av together with the definition of the calorific capacitance Cv = 5-~-, one obtains 

d ~ \Oxi] ' (OK° 0x12~ ]OK°'~t£ (-Cvl-'~'(TI-T2))Cv2_,)~(T1 - T2) (45) p 1 2 ) '  = J'2) = - -  • 

These two equations are simply the energy balance equations written in terms 
of the temperature and using the calorimetric relations, for each of the simple 
thermodynamical systems 1 and 2. Consider now the projection on the entropy 
coordinates, 

~.(T~ - T2))  

l ,  : )   ,Zpli'0p 2/Ic ' 
(46) 

which corresponds to the entropy balance equation written for each simple thermo- 
dynamic system. It may be seen that this system resembles a Hamiltonian system, 
however the multiplicative modulus 

R(TI, T2) = )~ T2 T1 

renders the relation between the entropy flows dS/dt and the temperatures nonlinear. 
This is again an illustration in which sense the contact formulation allows to 
encompass irreversible phenomena in opposite to Hamiltonian systems. Finally, we 
may consider the projection on the energy coordinate x °, 

-~ = -  R(T1, T2)+ ~Pl ~ x  l A , = 0 ,  (48) 
T2 T2 

which indicates that the potential U, i.e. the internal energy, is conserved on 
trajectories on the Legendre submanifold. Furthermore, it is worth noting that the 
entropy source term, given by 

( 1 1 )  
= > 0, (49) O" 81-1-82 : 0 T2 T1 

is a positive term which vanishes at the thermodynamic equilibrium (7"1 = T2). 

4.2. Nonisolated systems 

In this section, we shall extend the previously defined conservative contact 
systems in order to cope with models of open thermodynamical systems. Therefore 
we shall follow a construction very similar to the definition of Hamiltonian control 
systems [4, 36, 32]. Namely we shall introduce additional contact Hamiltonians, 
called interaction contact Hamiltonians, which will represent the interactions of the 
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system with its environment. First, we shall give the definition of these conservative 
control contact systems and illustrate it with simple examples. Second, we shall 
define pairs of conjugated port variables by considering a power balance equation. 

Let us first extend the definition of conservative contract systems to control 
systems as follows. 

DEFINITION 4. A conservative control contact system is defined as a conservative 
contact system together with input vector fields, i.e. as the set (.M, 0, L:, L/, K0, . . . ,  
Km) where (Ad, 0) is a contact manifold, £ a Legendre submanifold, U the input 
space, with m ÷ 1 contact Hamiltonians satisfying the invariance condition 

Kj I£ = O, j -= 0 . . . . .  m, (50) 

and the dynamics is given by the differential equation 

dx'  m 
= XKo(Xt) ÷ Z XKj (xt' U j) .~- X(x' ,  u). (51) 

dt j = l  

The system's dynamics is composed of two terms. The first term consists of 
the drift dynamics Xxo which defines precisely a conservative contact system with 
respect to the Legendre submanifold £ in the sense of Definition 3. The second 
term is composed by the linear combination of m contact fields generating also 
m conservative contact systems with respect to the Legendre submanifold £. All 
these vector fields satisfy the invariance condition of Theorem 2 with respect to 
the Legendre submanifold £. Obviously, their linear combination X(x' ,  u) satisfies 
as well the invariance condition, and leaves £ invariant. 

In the context of thermodynamic systems, this system may be interpreted as 
follows. The Legendre submanifold £ represents the thermodynamic properties of 
the system. The internal contact Hamiltonian K0 represents the law giving the fluxes 
in the closed system due to nonequilibrium conditions in the system (for instance 
due to heat conduction or chemical reaction kinetics). Finally the interaction contact 
Hamiltonians Kj give the fluxes due to the nonequilibrium of the system with its 
environment. The invariance conditions guarantee the fundamental thermodynamic 
principle: thermodynamic properties are invariant under the dynamics. In other words, 
Gibbs' relations are satisfied along irreversible transformations. 

In order to illustrate this definition, let us consider the following examples. 

EXAMPLE 6. Lift of  a port Hamiltonian system as conservative control contact 
system. The lift of a port Hamiltonian system to its TPS is a conservative control 
contact system with the internal contact Hamiltonian given by (20), and interaction 
contact Hamiltonians (21). Notice that the interaction contact Hamiltonians are linear 
in the input functions ui. 

The second example consists in Example 5 (heat conduction between two 
simple thermodynamic systems) which is now assumed to interact with an external 
thermostat. 
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EXAMPLE 7. Heat  conduct ion continued. Consider again the example of two 
simple thermodynamic systems, indexed by 1 and 2 (for instance two ideal gases) 
which may interact through a heat flow through a conducting wall. But consider 
now that one of the systems, indexed by 2, interacts through a heat flow with 
a thermostat with constant temperature Te; the heat conduction coefficient will be 
denoted ~-e. The interaction with the thermostat at temperature Te is given by the 
interaction contact Hamiltonian 

gint(X', Te) • )~e (P12 - T2) + Te In ~ . (52) 

Notice that this interaction contact Hamiltonian is affine in the control variable Te. 
By construction, it satisfies the invariance condition of Theorem 2. The restriction 
of its associated vector field to the Legendre submanifold projected on the energy 
coordinate is 

dx°  c d U  
dt  --  dt  - )re (Te -- P12),  (53) 

which is simply the energy balance equation. The projection on the temperature 
_ ou gives coordinates, using the fact that the systems are isochore and C v i -  7Y,  

~ 7 ( P l I ,  Pl  = (]/'1 T2) t = 
~ CV2 -1 )~(V 1 --  W2) ] ' Cv2  l)ve(Te - T2) 

(54) 
which is precisely the dynamics of the isolated system (45) augmented with the 
second term corresponding to the heat flux from the environment into the system 2. 
The projection on the entropy coordinates gives: 

- + ( 5 5 )  
dt  d t  T2 T~ 0 T2 )re (1/T2 - 1/Te) Te 

which are the entropy balance equation (46) of the isolated system augmented with 
a second term which describes the entropy flow in the system 2 due to the heat 
flow from the thermostat. 

The third example concerns a gas in a cylinder with moving boundary, that is a 
subpart of Example 4. 

EXAMPLE 8. Gas in a cylinder with moving boundary. The dynamics of an ideal 
gas in a cylinder with a moving boundary (the surface of the piston) undergoing 
some mechanical work, may be defined as a conservative control contact system. 
This system is defined on the TPS Tgas = IR × ]R 6 9 (x °, x j ,  p j)  where x i denote 
the extensive variables and Pi the conjugated intensive variables. Its thermodynamic 
properties are given by the Legendre submanifold already defined in (9). As the gas 
is considered to be in equilibrium with the control volume, the drift dynamics is 
of course zero. And the external mechanical work provided by an external pressure 
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pe, and variation of volume f~ leads to the interaction contact Hamiltonian 

Kga s = (P2 - P )  f~,, (56) 

where by definition the pressure of the gas is P = P2[£. The restriction of the 
system to the Legendre submanifold followed by a projection on the extensive 
variables gives the dynamics dS 

- -  ~ 0 7 

dt 
dV  
dt f~ '  (57) 

d N  
O. 

dt 

4.3. Energy balance equation and port variables 

In this paragraph we conclude with some considerations on the definition of 
output variables conjugated to the input variables in the sense that they define 
a power balance equation. Indeed, the definition of control Hamiltonian systems and 
the time variation of the Hamiltonian function (or some Legendre transformation 
with respect to the inputs) lead to the definition of outputs conjugated to the inputs, 
and include these systems in the class of dissipative systems [41, 4, 36, 39]. From 
a thermodynamic point of view, each pair of conjugated variables consists of an 
intensive variable and the rate of its conjugated extensive variable, such as for instance 
the pair entropy flow and temperature, or the pair molar flow and enthalpy. Any pair 
has the property that it allows to express either continuity or discontinuity of some 
flows, or the equilibrium or nonequilibrium conditions at the boundary of the system. 

In order to define such pairs of conjugated variables, let us first write the time 
derivative of an arbitrary function V ~ C~( .M).  A straightforward calculation leads 
to the following equality [12], 

dV m . 
at = s° + 4 ,  (58) 

j = l  

where s ° is the internal source term defined by 

V 0 Ko (59) 
s ° = { K o , V } +  Ox o, 

and s t is the external source term associated with the input uj 

= {Kj, V} + V °Kj 
Ox---g. (60) 

If, furthermore, there exists a function y~(x ' ,u j )  such that s t = uj y~, then (58) 
may be written in the form 

d V  m . 

= Z u J  y~ + s v ,  (61) 
dt j = l  

and y~ is called the V-conjugate output variable. 
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REMARK 3. If the interaction contact Hamiltonians are linear functions of the 
inputs, that is, there exists a f u n c t i o n  /~j SHCh t h a t  Kj(x',uj)• Kj(x)  uj, then 
there exists a port-conjugate output variable 

• O K j  (62) 
= v )  + v ax 

This is the case of the lift of a port Hamiltonian system, and the gas in a cylinder 
with moving piston. 

If, on the whole TPS, the equality (61) is satisfied with the following conditions: 
(i) the function V is bounded from below, (ii) the source term Sv is smaller or 
equal to 0, then the control contact system would be dissipative and the function 
V is then called a storage function [41, 38]. In the particular case when the source 
term is zero, the system is said to be lossless. However, through a few examples 
we shall see that for thermodynamic systems, the definition of conjugate output 
variables and the balance equation should be rather considered on the restriction of 
the control conservative contact system to its Legendre submanifold. 

Let us first consider the lift of a port Hamiltonian system considered in Section 3.1. 

EXAMPLE 9. Port-conjugate variable and power balance equation of a lifted 
port Hamiltonian system. Consider as a first case the lifted port Hamiltonian system 
(20)-(22), and the time derivative of the internal Hamiltonian /4o. Then the source 
term writes 

SIlo = a(dxHo(x), dxHo(x)) = 0. (63) 

Hence the source term sH0 is zero on the whole thermodynamic phase space, and 
this amounts to saying that the internal Hamiltonian is a conserved quantity on the 
whole thermodynamic phase space. It is remarkable that the nullity of the source 
term SH o (everywhere on the TPS) is equivalent to the invariance condition of the 
contact field K01£ = 0. The H0-conjugate output defined by the interaction contact 
Hamiltonian K j  = (dHo - p, g j) reads 

Y~o = £'(gj ) Ho. (64) 

Notice that they are precisely the port outputs of a port Hamiltonian system defined 
in (17). Hence, the power balance equation (18) is satisfied both for the port 
Hamiltonian system and its lift to the TPS. 

Consider now an example including an irreversible system like the heat conduction 
in Example 5. 

EXAMPLE 10. Heat conduction with thermostat: port-output and power balance 
equation. We shall consider example of the heat conduction between two simple 
thermodynamic systems and with a thermostat as treated in the Examples 5 and 7. 
We shall analyze here the variation of a natural candidate function for a power 
balance equation: the internal energy U of the system. A straightforward calculation 
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shows that the source term with respect to the internal energy is 

sv = R(p~)A T2 ' Ta + Ox -~p ] 

-- ~X -~P A(OUTOR) \\P12] ( (p I l l  , (T1))T2 " 

\ \ p ~ 2 1  (65) 

This time, the source term does not vanish on the whole TPS, but it does when 
restricted to the Legendre submanifold E~, which is the only physically meaningful 
dynamics. 

Consider now the port-conjugate output with respect to the internal energy U 
of the system 

OgintOU P12-T2 [ ( 1  1 )  ] 
OP12 Ox 2 -- ~-e - - P 1 2  T2 = )~e Te P~2 T2 ]re. (66) 

This leads us to define the port-conjugate output 

(~e 1 )  T2, (67) YUtot : ),e e l2  

the restriction of which to the Legendre submanifold is precisely the entropy flow 
into the environment -~.e (Te-  T2)/Te conjugated to its temperature ire. 

5. Conclusion 

In the first instance we have defined a class of contact systems, called conservative 
contact systems, allowing us to describe the dynamics of isolated irreversible 
thermodynamic systems. They are defined on some contact manifold by two objects: 
a Legendre submanifold of the contact structure, and a contact vector field. In the 
context of physical systems' modeling, these objects may be interpreted as follows. 
The Legendre submanifold describes thermodynamic properties of some physical 
system according to the classical differential-geometric formulation of equilibrium 
thermodynamics. The contact vector field is associated with some phenomenological 
laws induced by some thermodynamical nonequilibrium conditions in the system, and 
are generated by contact Hamiltonians being the virtual power associated with these 
phenomena. Furthermore this contact Hamiltonian should satisfy a compatibility 
condition with the Legendre submanifold, actually should vanish on it, hereby 
ensuring the invariance of the thermodynamic properties along the trajectories. The 
class of conservative contact systems has been shown to encompass models such as 
reversible Hamiltonian systems, and reversible as well as irreversible thermodynamic 
transformations. 

In the second instance we have completed this class of systems in order to cope 
with models of open thermodynamic systems. Therefore we have defined an interaction 
contact Hamiltonian associated with phenomenological laws describing the interaction 
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of the system with its environment according to some phenomenological laws 
associated with nonequilibrium conditions between the system and its environment. 
We have shown that this class of systems, called control conservative contact 
systems, encompasses the class of port Hamiltonian systems as well as coupled 
mechanical and thermodynamical systems. Finally, we have defined pairs of power 
conjugated variables associated with the energy flow at the boundary of the system 
when restricted to the Legendre submanifold. 

In our perspective, the definition of the class of conservative contact systems 
opens the way for further investigations in two main directions. It remains open 
to define some additional characterizations of a class of contact Hamiltonians 
(and related Legendre submanifolds) which agree with the second principle of 
thermodynamics in the sense that one may deduce an entropy creation term. 
Moreover, the definition of irreversible transformations using contact functions, could 
also open the way for the definition of irreversible phenomenological laws far 
from equilibrium and the investigation of global stability properties of irreversible 
thermodynamic systems. Another open investigation aera concerns the nonlinear 
control of physical systems. Indeed, the definition of nonlinear contact Hamiltonians 
opens the way for the definition of power continuous interconnection structures 
generalizing the interconnection of Hamiltonian systems using Dirac structures 
[40, 37]. As a consequence the class of nonlinear control laws used in the 
so-called Passivity Based Control - -  Interconnection and Damping Assignment [34] 
could also be generalized and leads to novel stabilizing controllers. 
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