

 University of Groningen

An Evaluation of ADLs on Modeling Patterns for Software Architecture
Waqas Kamal, Ahmad; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Waqas Kamal, A., & Avgeriou, P. (2007). An Evaluation of ADLs on Modeling Patterns for Software
Architecture. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/cd6c4bc2-937e-444a-9a02-1852bfc94063

An Evaluation of ADLs on Modeling Patterns for
Software Architecture

Ahmad Waqas Kamal, Paris Avgeriou

Department of Mathematics and Computer Science
University of Groningen, the Netherlands

a.w.kamal@rug.nl, paris@cs.rug.nl

Abstract. Architecture patterns provide solutions to recurring design problems
at the architecture level. In order to model patterns during software architecture
design, one may use a number of existing Architecture Description Languages
(ADLs), including the UML, a generic language but also a de facto industry
standard. Unfortunately, there is little explicit support offered by such
languages to model architecture patterns, mostly due to the inherent variability
that patterns entail. In this paper, we analyze the support that few selected
languages offer in modeling a limited set of architecture patterns with respect to
four specific criteria: syntax, visualization, variability, and extensibility. The
results highlight the strengths and weaknesses of the selected ADLs for
modeling architecture patterns in software design.

Keywords: Software Architecture, Architecture Patterns, Modeling, ADLs,
UML.

1 Introduction

Architecture patterns [20] [26] entail solutions to recurring architecture design
problems and thus provide a systematic way to architecture design. They offer re-use
of valuable architectural knowledge, understanding, and communication of software
architecture and support for quality attributes [26]. Architecture patterns are usually
described and therefore modeled as configurations of components and connectors [4].
The components comprise the major subsystems of a software system and they are
linked through connectors, which facilitate flow of data and define rules for
communication among components. Examples of connectors are shared variable
accesses, table entries, buffers, procedure calls, network protocols, etc. [22].
Connectors play a major role in modeling patterns for software architecture design.

In current software engineering practice, architecture patterns have become an
integral part of architecture design, and often modeled with the use of Architecture
Description Languages (ADLs): specialized languages for explicit modeling and
analysis of software architecture [5]. UML is also used in practice for modeling
software architecture, and we shall include it in the general category of ADLs, even
though it is not strictly speaking an ADL. These languages are required to not only

model general architecture constructs, but also pattern-specific syntax and semantics.
Indeed, few ADLs, like Aesop [4], UniCon [21], and ACME [7] provide some
inherent support for modeling specific concepts of architecture patterns. However,
ADLs lack explicit support for modeling patterns, and are too limited in the
abstractions they provide to model the rich concepts found in patterns [2] [4] [7].

In this paper, we attempt to evaluate the strengths and weaknesses of existing
ADLs for modeling architecture patterns. We establish a comparison framework that
is composed of features needed in ADLs for effectively modeling architecture
patterns. Using this framework, we evaluate the most popular or commonly used
ADLs, with respect to four of the most significant architecture patterns. The
comparison framework consists of the following criteria:

 Syntax – expressing pattern elements, topology, constraints and
configuration of components and connectors

 Visualization – graphical representation for modeling patterns

 Variability – the ability to express not only individual solutions but the
entire space of solution variants

 Extensibility – capability to model new patterns

Our purpose is to evaluate the capabilities of ADLs with respect to modeling
architecture patterns. It is not a scorecard to compare one ADL against other ADLs;
rather it facilitates architects to select ADLs that best meet their needs to model
architecture patterns. The focus of this paper is on domain independent languages. For
the evaluation, we have selected six languages: UML, ACME, Wright, Aesop,
UniCon and xADL. To make the aforementioned criteria workable, we use four
different architecture patterns, namely Layers, Pipe-Filter, Blackboard, and Client-
Server. The selection of these ADLs and patterns is not exhaustive but serves the
purpose for a first evaluation of ADLs w.r.t. modeling patterns.

The remainder of this paper is organized as follows. In section 2, we introduce the
theoretical background of patterns and current state of the practice in modeling
patterns. Section 3 explains the comparison framework, while the evaluation of the
languages is presented in section 4. Section 5 contains related work and Section 6
wraps up with conclusions and future work.

2 Theoretical Background and State of the Practice

Architecture Patterns

During the last decade, there has been a considerable effort for the systematic re-use
of architecture patterns as solutions to recurring problems at the architecture design
level [9] [10] [18]. Numerous architecture patterns are in use and this list is growing
continuously [9] [29]. Some of the research activities in the pattern community for the
past few years have been: discovery of new patterns [26] [27], combined use of
patterns as pattern languages [1] [14], and using patterns in software architecture
design [4] [7] [8] [21].

Among a number of software patterns that exist in the literature, architectural
patterns, and design patterns [23] are the most widely known and used. It is difficult
to draw a clear boundary between both types of these patterns, because it depends on
the way these patterns are perceived and used by software architects. The work in
POSA [26] lists some traditional architectural patterns, while work in GOF [27] lists
23 specific solutions to design problems. GOF is more concerned about object-
oriented issues of the system design, while the work in POSA is more concerned
about architecture issues, i.e. high-level components and connectors. In this paper we
focus on the latter.

Another terminological difference that often causes confusion is that between
architecture patterns [26] and architecture styles [33]. These two terms come from
two different schools of thoughts. Their commonality lies in that both patterns and
styles specify a certain structure, e.g. the ‘Layers’ pattern/style decomposes system
into groups of components at a particular level of abstraction and enforces
communication rules. Their differences are the following:

 In the architecture patterns perspective, patterns specify a problem-solution
pair, where problem arises in a specific context and a proven general solution
addresses that problem. A context depicts one or more situations where a
problem addressed by the pattern may occur. Moreover, the patterns capture
common successful practice and at the same time, the solution of the pattern
must be non-obvious [1].

 In the architecture styles perspective, styles are defined as a set of rules that
identify the types of components and connectors that may be used to compose
a system [18]. Architecture styles are more focused on documenting solutions
in the solution domain [18]. The problem and the rationale behind a specific
solution receive little attention [1].

These two schools of thought have more or less converged admitting that they are
indeed referring to the same concepts [26] [34]. We concur with this trend. For the
sake of simplicity, we shall use only the term ‘architecture pattern’ in this paper.

Modeling Architecture Patterns

Many researchers have focused on using the inherent as well as the extensible support
of ADLs to model architecture patterns [2] [4] [6] [15]. Many of these ADLs focus on
the use of components and connectors as architecture building blocks [13] and some
provide built-in support to model patterns in software design. For instance, ACME
supports templates that can be used as recurring patterns, Aesop allows pattern-
specific use of vocabulary, and UniCon provides syntax and graphical icons support
for a limited set of patterns. While describing architectures using ADLs, the architects
mostly focus on the components as a central locus of computation for decomposing
system functionality and use connectors as communication links between
components. Furthermore, in an effort to bring ADLs closer to each other, some
researchers are working with integrative approaches among ADLs [7], and among
ADLs and UML [6]. However, these practices are still in an experimental phase, and

there is yet no proven approach to model architecture patterns effectively.
Unfortunately, the current practice of modeling architecture patterns is still un-
systematic and ad-hoc.

3 Evaluation Framework

The framework elements defined in this section are used to assess the support offered
by ADLs to model patterns. Four elements make up this evaluation framework:
syntax, visualization, variability, and extensibility.

 Syntax. We define syntax as pattern-specific elements and rules that govern
the modeling of architecture patterns e.g. grouping in Layers,
communication links, topology in Client-Server, etc.

 Visualization. Graphical support for modeling patterns can be helpful in
visual composition of pattern elements and graphical icons to represent
pattern elements.

 Variability. Architecture patterns are characterized by an inherent variability,
as they not only provide a unique solution to a problem but an entire solution
space. The chosen variants in the different variation points affect the design,
and quality attributes of the system. For instance, bypassing Layers in the
layered pattern can affect maintainability. An important aspect of our work is
to see how the variability in modeling patterns is addressed by ADLs.

 Extensibility. Discovery of new patterns and inclusion in the existing list of
patterns requires extensibility of the ADLs. It is possible that the
introduction of new patterns may entail new modeling elements, may
introduce new constraints and rules etc. Therefore ADLs need to be extended
to be able to model newly discovered patterns

4 Modeling Patterns in ADLs and UML

To evaluate the suitability of ADLs for modeling architecture patterns, we have
selected UML [3] [6] and five ADLs for evaluation: ACME [7], Wright [8], Aesop
[4], UniCon [21], and xADL [30]. Each of these languages provide unique support for
modeling certain concepts of architecture patterns. UML provides explicit
extensibility support for expressing pattern elements. ACME is used as an ADL and
as an interchange platform between different ADLs and provides templates for
capturing common recurring solutions. Wright provides enriched communication
protocols. Aesop has a generic vocabulary of extensible architecture elements for
expressing patterns. UniCon supports abstractions for a limited set of traditional
architecture patterns. Finally, xADL uses XML tags and schemas to provide
extensibility support for expressing pattern elements. The selection of these ADLs is
based on: a) their popularity for designing software architectures [19]; b) their
maturity for modeling patterns [16]; c) their capability for describing software

architectures [5]; and d) their generalized nature and independence of specific
domains.

We have selected four patterns for the evaluation: Layers, Pipe-Filter, Blackboard,
and Client-Server. We selected these patterns because they are the most commonly
used in practice and they represent a number of different domains and concerns.
Layers demands grouping of components, Pipe-Filter handles streams of data, Client-
Server is frequently used in distributed systems, and Blackboard is for dynamic
configurations. Although we limit ourselves to only four patterns, we emphasize that
our study is not meant to be exhaustive. However, an analysis of the most
representative patterns is able to highlight the pros and cons of the different ADLs in
modeling patterns. In the following sub-sections, we use the evaluation criteria
defined in the previous section to evaluate each of these languages.

4.1 Syntax

UML: UML is intended as a modeling language for many different areas and it lacks
considerably in expressing pattern elements. For instance, pipes in a Pipe-Filter
pattern do not match with UML connectors, since UML connectors cannot have an
associated state or interface. Such shortcomings can be solved through the extension
mechanism of UML, where its metamodel can be extended with profiles to express
architecture patterns. In specific, a UML profile is comprised of tagged values,
metaclasses, and stereotypes, that may be defined to support pattern-specific syntax
[6]. UML also provides explicit support through the Object Constraint Language
(OCL) to express constraints for modeling pattern elements. Thus, to fully express
most of the architecture patterns and to define interactions among pattern elements,
the UML metamodel elements must be extended.

ACME: In addition to the core ontology of seven basic architecture design elements,
ACME provides a template mechanism, which can be used for abstracting common
reusable architectural idioms and patterns [7]. ACME allows defining user specified
constraints on architecture elements to model patterns. Violations of these constraints
are automatically checked by ACME studio. To apply constraints on architecture
elements, ACME allows two kinds of rules specification: invariants, violations of
which are errors and heuristics, violations of which generate warnings [15]. For
instance, a heuristic rule can be defined to flag a warning message if a particular filter
has more than two ports.

Wright: Rich connector support in Wright makes it a good option for patterns that
heavily rely on connector and protocol specifications. Wright provides connector
protocols as roles and glues, where glues can be used to define and constrain the
behavior of interacting components. In Client-Server pattern, this role and glue
specification for connectors allows constraining which clients can communicate to
which server at architecture level. The glue specification can be used further to
describe how clients and servers fit into the configuration [8] [17]. Furthermore,
Wright constructs can be used in modeling dynamic systems [28], which is helpful in

Blackboard and Client-Server patterns. For instance, clients can be aware of the state
of a server at run-time to use the services more efficiently [29].

Wright provides support for constraints checking with the use of accompanying
tools. For instance, with use of the FDR tool [24], Wright syntax can be checked for
deadlocks in Client-Server, cyclic graphs in Pipe-Filter, and compatibility checking,
etc. However, Wright demands conversion of its description into CSP [24] first so that
the CSP compatible tools [24] like FDR can work for automated checking.

Aesop: Aesop is a system for developing pattern-specific architecture design
environments for specifying pattern elements, topology, and constraints, etc. [4]. It
provides a generic list of seven elements (i.e. components, connectors, ports, roles
etc.), which can be customized to represent pattern-specific elements. This
customization is based on the principal of sub-typing: a pattern-specific vocabulary of
design elements by providing subtypes of basic architecture elements [4]. For
example, in the Pipe-Filter pattern, a port class can be sub-typed as Input and Output,
and a role class can be sub-typed as Source and Sink. In addition, Aesop provides first
class connector support, thus connectors can literally perform the same computation
as done by components. This gives an advantage to Aesop in modeling patterns that
require complex communications e.g. TCP/IP and Remote Procedure Call (RPC) in
Client-Server.

UniCon: UniCon provides support for a limited set of built-in types of abstractions
(i.e. specialized set of architecture elements) to represent pattern elements. In specific,
UniCon supports connector abstractions of type Pipe, ProcedureCall, RPC,
RealTimeScheduler, DataAccess, and PLBundler [21]. For instance, when modeling a
Pipe-Filter pattern, the connector abstraction for the pipe provides support for
specifying the number of connections, input ports, output ports, source roles, and sink
roles, etc. Thus, only the existing abstractions available in UniCon can be used to
specify constraints and to represent pattern elements. This makes it a weak option for
modeling patterns, which are not supported by existing abstractions in UniCon.

xADL: xADL provides five XML (Extensible Markup Language) based tags to
represent architecture elements, namely <Architecture>, <Component>,
<Connector>, <ComponentType>, and <ConnectorType> [30]. xADL contains the
inherent features of XML, which allow to extend tags for expressing pattern elements.
Each tag can be enforced with pattern elements specific constraints. For instance, in a
pipe-filter pattern, ComponentType defines nature of filter (e.g. message passing, data
computation, data conversion etc.), and ConnectorType defines nature of pipe (e.g.
input and output type of parameters). xADL supports type of connections using XML
DTDs (Document Type Definitions) [33], which means different kinds of connections
to express pattern elements can be used by specifying DTDs. Furthermore, these
DTDs can be used to constrain the behavior of interacting pattern elements. For
instance, a filter port can define the type of messages it receives using DTDs. Since
tags in xADL represent general concepts to express architecture elements, manual
work with these tags is required to fully express patterns.

Table 1 provides a brief description of the syntax support offered by each ADL for
modeling patterns.

Table 1. Syntax Support for Patterns in the ADLs

Patterns

ADLs

LAYERS PIPE-
FILTER

BLACK
BOARD

CLIENT-SERVER

UML 2.0 Strength: Package
metaclass support in UML
can be used to group
components

Weakness: UML
Aggregation, Composition
and Package structure are
not suitable to model all
concerns of a layered
pattern

Strenght:
Connector
metaclass in
UML can be
extended to
express pipes

Weakness:
weak support
for pipe
representation

Weaknes:
Connectors
have fixed
interfaces
which affects
dynamic
configuration

Strength: UML profile
can be extended to
express client-server
components and to define
constraints on client-
server topologies

Weakness: UML profile
in itself provides weak
connector support for
complex communication

ACME Strength: ACME
templates can be used to
express grouping among
components

Strength:
Templates can
be defined in
ACME to
express filters,
pipes and data
flow links

Weakness:
Dynamic
composition of
components
and connectors
is weakly
supported

Strength: Templates can
be used to express client-
server components and
configuration constraints
for defining
communication links and
topologies

Wright Strength: Roles and glue
specification can be used
to express layered
information flow
constraints

Strength:
Wright
provides roles
and glue
support for
expressing
pipes and to
define data
flow
connections
among filters

Strength:
provides
constructs to
describe
dynamics of
the
components
and provides
events support
to notify the
state change of
the
components

Strength: Compatibility
checking of clients and
server is well supported,
Deadlock detection is
addressed by the use of
roles and glues, allows
complex topologies,
reconfiguration
supported, dynamism
supported

Weakness. Topological
constraints not explicitly
addressed

AESOP Strength: Pattern-specific elements and constraints can be expressed by defining and
extending sub-types of the generic elements: components, connectors, configuration, ports,
roles, bindings, etc.

Weaknes: Configuration rules not very well supported for dynamic composition

Patterns

ADLs

LAYERS PIPE-FILTER BLACK
BOARD

CLIENT-
SERVER

UniCon Weakness: Fixed pattern
elements specific
abstractions is a problem
to express layererd
pattern specific
constraints

Strength: Implicit
abstractions
support for
expressing pipes
and filters

Strength:
Dynamic
configuration and
analysis supported

Weakness: Fixed
set of abstractions
to represent
pattern elements
is a problem to
define flexible
configuration
rules

Strength: Rich
abstractions to
represent
communication
links supported e.g.
connecor
abstractions for
procedure call,
RPC,
RealTimeScheduler
for real-time
communication,
etc.

xADL Strength: Grouping
structure can be extended
to express Layers

Stength: Tags can
be extended to
express pipes and
filters

Stength:
Dynamic
configuration of
architecture
elements
supported, Events
can be used to
inform the
connected
elements about
the state change

Stength: A varity
of communication
protocols can be
specified by
specifying new
kinds of DTDs and
tags

4.2 Visualization

UML: A number of UML tools have been developed with explicit support for visual
software designing e.g. IBM Rational Rose, Rational Software Architect, ArgoUML,
etc. However, none of the tools developed for UML specifically focus on modeling
architecture patterns. As a solution, few of the UML tools provide visual support to
extend UML metamodel elements. For instance, Rational Rose allows user to create
stereotypes, which are extensions to UML metaclasses, to model pattern elements.
Still, UML tools are weak in providing explicit visualization support to model
patterns and it largely depends on the way these UML tools are used to configure
architecture elements for modeling patterns.

ACME: ACME has the advantage that with the introduction of ACME studio, which
is an extension to Eclipse, it provides explicit visualization support to model specific
patterns. The ACME studio editor provides three views: overview of the files in the
project, textual source of the architecture and architecture diagrams with visibility of
modeled patterns. To model specific patterns, ACME studio allows one to directly
associate pattern elements with their corresponding architecture elements. For
example, a component can be created by selecting a pattern type as filter, server, etc.
In addition, ACME studio provides visualization support to view pattern elements at

both abstract and detail level. For instance, a selected filter can be expanded to view
its internal structure of pipes and filters.

Wright: Wright does not provide specific visualization support for modeling patterns.

Aesop: For visual modeling of patterns, Aesop supports a palette of pattern specific
architecture elements and an interface that allows tools to manipulate architecture
descriptions [4]. The graphical palette represents pattern-specific customized
architectural elements for the modeling of architecture patterns. For example, pattern-
specific graphical icons can be included in the palette e.g. pipes, filters, server, etc. In
addition, Aesop stores architecture descriptions as objects in its object base and
external tools can access this object base to provide visual editors for modeling
patterns, creation and manipulation of objects, etc. [4]. Furthermore, Aesop provides a
coloring scheme to identify mismatched connections. For instance, in a Pipe-Filter
pattern, a color can be used to highlight incorrectly attached pipes [25].

UniCon: UniCon provides a specialized set of graphical icons to support traditional
patterns like Pipe-Filter, Client-Server, etc. These graphical icons are provided in
UniCon’s default listing of component and connector types e.g. cloud for abstract
binding, pipe, clock for real time communication, etc. For compatibility checking,
UniCon provides graphical support to identify mismatched connections. For example,
when a connection with mismatched signature is proposed, the editor facilitates
including a connector that can translate the calling signature to the declared signature
[21].

xADL: xADL benefits from associated XML compliant tools that can be used for
visual description of software architecture (e.g. XSV [31] and XML Spy [32]).
However, xADL does not provide specific visualization support for modeling
architecture patterns and it mainly depends the way these tools are manually used by
the architects to express architecture patterns.

Table 2 gives a brief description of visualization support offered by each ADL for
modeling patterns in general.

Table 2. Visualization Support for Patterns in ADLs

UML
2.0

Strength: UML tools support visual composition of components and connectors, which can
be used for modeling specific concepts of architecture patterns

Weakness: UML does not provide explicit support for modeling architecture patterns

ACME Strength: ACME studio provides explicit visualization support to model few selected
patterns

Wright Weakness: No specific visualization support provided for modeling architecture patterns

AESOP Strength: Pattern-specific architecture elements with distinctive colors can be visually
created. Pattern elements can be composed for modeling specific patterns.

UniCon Strength: For a specific list of patterns, UniCon provides good graphical support for
modeling patterns and to convert graphical diagrams into textual description

Weakness: UniCon provides graphical support for modeling only few patterns.

xADL Weakness: No specific visualization support provided for modeling architecture patterns

4.3 Variability

UML: Fixed interfaces, weak connector support and lack of explicit support to
express pattern elements is a problem for modeling variability in patterns. Extending
UML, as discussed in previous sections, is an explicit way to model pattern
variability. However, even the extension to UML metamodel can address a limited
variability in patterns. First, because pattern variability at detail level of design is not
addressed at a higher level of abstraction to represent architecture elements as done in
UML. Secondly, OCL constraints need to be explicitly addressed for each specific
variability issue for modeling patterns. For instance, an OCL constraint restricting no
more than two ports attached to a filter will always fail in the operation to add a third
port to a specific filter and some sort of extension to OCL description is required.

ACME: ACME defines a weak typing system with a fixed set of types e.g. seven
architectural elements of its core ontology and data types of Integer, Boolean, and
String [11]. This provides ACME both an advantage and disadvantage in modeling
patterns variability. An advantage is that being a standard interchange platform
between ADLs, ACME provides a generalized support to represent architecture
elements, which is extensible to model variability in patterns. For instance, a filter in
Pipe-Filter pattern resembles a generic ACME component with input and output
ports. This allows using a filter in all required contexts by considering it as a mere
component endowed with the properties of a filter. However, this flexibility in the
language has a negative impact on the analysis of modeled variability as no explicit
type checking support is provided in ACME.

Wright: Flexible glue specification provides support for modeling pattern-specific
variability. The glue specification for connectors allows pattern elements of same type
to be represented as logically separate type of entities. For instance, each pipe in a
pipe-filter pattern can express its own glue specification to connect with filters.
Therefore, a pipe can be connected on one end to a filter and on the other end to a file,
while other pipes in the same chain may be connected on both ends to filters. This
strong representation of connections among architectural elements gives advantage to
Wright in modeling specific variability by providing each architectural connection
specific glue specification. Furthermore, rich specification of connector allows
distinctively identifying variants of connectors e.g. pipes, procedure calls, etc.

Aesop: As discussed in previous sections, Aesop facilitates creation of environments
to define patterns. These pattern definitions are compiled during environment creation
time. While modeling patterns in software design, it does not support any kind of
variability, which is not included in the original definition of the pattern. For instance,
in the pipeline pattern, a filter is always initialized with only one input and one output
port. A variability requirement to add a fork in pipeline will always fail in adding a

new port. Furthermore, pattern-specific customization of classes requires architect to
handle variability constraints at its own with least help from language.

UniCon: UniCon provides a limited set of abstractions to represent pattern elements
and connections. This puts a huge constraint in modeling specific type of variability
in UniCon as it allows representing connections from only existing types of
abstractions. For instance, a procedure call can be replaced with a different
connection from only available types of connections.

xADL: xADL defines schemas named: options (optional components, connectors,
and links), variants (variant component and connector types), versions (versions in the
form of graphs for components, connectors, and interfaces) [30]. These features
supported by each schema can be used to model limited variability in patterns. The
use of options and variants gives architects freedom to specify pattern elements of
different types (e.g. different types of filters) in a single xADL document, and then
instantiate any of the pattern elements during architecture design. Furthermore, xADL
supports a programming language style type system for specifying pattern elements
[30]. Thus, architects can define different variants of the pattern elements as types of
component, connector, and interfaces. For instance, a filter type can be extended to
specify one or more filters with different properties.

4.4 Extensibility

UML: UML is considered weak to represent elements of architecture patterns, which
is a drawback to model new patterns as well. However, UML’s metamodel can be
extended to model new patterns. Medvidovic et al. [6] provides UML extension
mechanism with the use of UML metaclasses, which can be effectively used to
provide extensibility support to model new patterns. For instance, new stereotypes can
be created and constraints specific to new patterns can be applied on these
stereotypes.

ACME: ACME allows templates to specify recurring patterns, which is helpful in
modeling patterns that come-up even with new syntax definitions. These templates
are quite flexible supporting new definition of components and connectors.
Furthermore, it allows defining new constraints for interaction among components.
However, defining architecture elements in ACME requires following the typing
discipline applied in ACME as discussed in previous sections. Its typing discipline
with a fixed set of data types has the disadvantage that it does not support connections
that require new data types.

Wright: Enriched connector support and flexible properties specification makes
Wright a preferable extensible language to model new patterns that heavily rely on
communication specification. For instance, the Remoting Error pattern [29] can
benefit from glue and protocol specification to detect and handle network failures,
server crashes, and un-reliable networking objects, etc.

Aesop: Aesop provides a generic list of elements that can be customized to fulfill the
requirements to model new patterns. The principal of sub-typing introduced in Aesop
can be used to express new pattern elements as sub-types of generic architecture
elements. This makes Aesop an attractive option to model new patterns by defining
new pattern specific design environments.

UniCon: UniCon provides support for only built-in component types like module,
computation, shared data, filter, process, general etc., and built-in connector types like
Pipe, ProcedureCall, DataAccess, etc. [21]. It specifies type ‘general’ for all other
types of components that are not supported by it and provides no extension facility to
specify new kind of connectors. This puts a huge constraint on modeling new patterns
that demand new compositional elements. The benefit that UniCon offers by
providing implicit support for modeling few patterns is questioned by its rigidness to
support new type of components and connectors.

xADL: xADL, also called ‘extension ADL’ [33], shows high promises for
extensibility to express newly discovered architecture patterns. xADL use of schemas
supports extension to express new types of components, connectors, interfaces,
connections and configuration rules. Similar to UML stereotyping extensions
described in previous sections, xADL supports extensibility by new tags and
attributes. However, extension mechanism of XML itself imposes some restrictions to
express pattern elements as it offers a weak support in applying constraints on new
pattern elements.

5 Related Work

The idea to compare ADLs for their suitability to design software architectures has
already been investigated from different viewpoints [5], [19], etc. However, none of
the approaches presented so far have specifically focused on comparison of the ADLs
for their support to model architecture patterns. Most of the work to date, has focused
on the use of mere components and connectors to design software architecture,
neglecting the pattern rules for the composition of architecture elements. In our work,
we have specifically focused on modeling patterns in few selected ADLs to analyze
their support to model patterns.

Medvidovic et al. [5] provide a comparison framework to compare architecture
modeling features and tool support offered by a number of ADLs. Their work is
focused on components, connectors and their configuration. They highlight the
inconsistency with which different ADLs specify semantics to configure components
and connectors, and the problems for specifying non-functional properties. Our work
is complimentary to this general survey of ADLs, as we focus on the use of patterns to
design software architecture.

Shaw et al. [18] analyze patterns for their topology, configuration, data, and control
issues. Their work is based on the feature selection among patterns to guide the
architects to choose a pattern that is best suited to solve the problem at hand. The
framework they propose accommodates patterns in the categories of communicating

processes and dataflow networks. They also specify association of specific patterns
with their description languages. However, their work is more focused on the
selection of patterns to solve the problems, with little attention on challenges to model
these patterns in ADLs. Our work is different in the sense that we specifically focus
on patterns to relate them with different ADLs to provide a comparison among ADLs
for their support in modeling patterns.

In our previous work [2], we have used architecture primitives as an extension to
UML metamodel elements to model patterns. Although this work is focused on UML
2.0, the same approach can be used for other ADLs as long as the selected ADL
supports the extension mechanism to handle the semantics of the primitives. The key
idea in this approach is that the languages that can be extended to facilitate syntactic
and semantic of architecture primitives can be used to model pattern variability.

6 Conclusion and Future Work

We have evaluated a few selected ADLs for their support to model architecture
patterns. An evaluation framework that looks into syntax, visualization, variability,
and extensibility was used to serve this purpose. We find that most of the ADLs
specify strong notational, analysis and tool support to design software architectures.
Furthermore, some of these ADLs provide inherent support to model patterns but at a
detailed level, nearly all of the ADLs fail to capture the rich concepts found in
patterns. Furthermore, ADLs differ largely in their scope to model patterns. Few
ADLs are popular for modeling patterns due to their specialized nature for providing
abstraction support to represent pattern elements. However, none of the ADLs deal
with the variability issues for modeling patterns in general. For each ADL discussed
in this paper, some of the strong and weak points were highlighted for their support to
model patterns.

UML claims to be a standard design language and provides good tool support, but
in many aspects, we find UML to lack significantly from other ADLs in modeling
patterns. Specifically, the pattern elements do not match with the UML notations to
design software architecture and some sort of UML extension is required to fill this
gap.

We find extension mechanism for some of the ADLs as an effective way for
modeling patterns. ADLs, like UML and Aesop, provide a generic list of
customizable elements to express pattern specific elements. However, the
shortcoming of this approach stems from the use of the ADLs itself. Specifically, the
extension mechanism of UML is awkward to use because the extended classes are
neither a part of metamodel nor are they model elements [2].

Other than simple pattern representation, ADLs are weak for their accompanying
visualization and tool support. Some languages like Aesop, Wright, and UniCon
provide tools for type and constraint checking, but their support is limited for the
specific use of tools, such as FDR for Wright and RMA for UniCon.

Our work leaves several open questions in modeling patterns with the existing
ADLs. It highlights the need for a paradigm to model patterns that can work
independently of hard rules inherent in ADLs. In addition, ADLs differ extensively in

their syntax and graphical notations and ADLs still lack the presence of a widely
accepted generalized vocabulary of elements for modeling patterns.

References

1. Paris Avgeriou and Uwe Zdun: Architectural Patterns Revisited - A Pattern Language, In
proceedings of the 10th European Conference on Pattern Languages of Programs
(EuroPLOP), pp. 1-39, Irse, Germany, (2005)

2. Paris Avgeriou and Uwe Zdun: Modeling Architecture Patterns using Architecture
Primitives, OOPSLA’ 05, ACM (October 2005)

3. Morgan Bjorkander and Cris Kobryn: Architecting Systems with UML 2.0, IEEE Computer
Society, 0740-7459/03, IEEE (July 2003)

4. David Garlan, Robert Allen and John Ockerbloom: Exploiting Style in Architectural Design
Environments, In Proceedings of the ACM SIGSOFT’94 Symposium on Foundations of
Software Engineering, New Orleans, LA (December 1994)

5. Nenad Medvidovic and Richard N. Taylor: A Classification and Comparison Framework
for Software Architecture Description Languages, IEEE Transactions on Software
Engineering, vol. 26, no. 1, (January 2000)

6. Nenad Medvidovic, David S. Rosenblum, David F. Redmiles and Jason E. Robbins:
Modeling Software Architectures in the unified modeling language, ACM Transactions on
Software Engineering and Methodology, vol. 11, no. 1, pp. 2-57, (January 2002)

7. David Garlan, Robert Monroe and David Wile: ACME: An Architecture Description
Interchange Language, Proceedings of CASCON 97, Toronto, Ontario, pp. 169-183,
(January 1997)

8. Robert Allen and David Garlan: A Formal Basis For Architectural Connection, ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 3, pp. 213-249, (July
1997)

9. Michael Kircher and Prashant Jain: Pattern-Oriented Software Architecture, Volume 3,
Wiley Series in Software Design Patterns, ISBN 0-470-84525-2

10. Robert T. Monroe, Andrew Kompanek, Ralph Melton and David Garlan: Architectural
Styles, Design Patterns and Objects, Carnegie Mellon University, IEEE Software, 0740-
7459/97, (January 1997)

11. Robert Allen and David Garlan: A Case Study in Architectural Modelling: The AEGIS
System, Computer Science Department Carnegie Mellon University, Pittsburgh, PA 15213

12. Richard P. Draves, Michael B. Jones and Mary R. Thompson: MIG – The Mach Interface
Generator, Department of Computer Science Carnegie-Mellon University, Pittsburgh, PA,
15213 (November 1989)

13. Eoin Woods and Rich Hilliard: Architecture Description Languages in Practice Session
Report, Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA'05), pp. 243-246, (November 2005)

14. The 1998 Pattern Languages of Program Conference, August 11-14 1998, Monticello,
Illinois, USA

15. ACME Studio, http://www.cs.cmu.edu/~acme/AcmeStudio/tutorials.html
16. Architecture Description Languages – A technology roadmap,

http://www.sei.cmu.edu/str/descriptions/adl.html
17. Robert Allen and David Garlan: Formalizing Architectural Connection, 16th International

Confernence on Software Engineering, Sorrento, Italy, 0270-5257/94, IEEE (May 1994)
18. Mary Shaw and Paul Clements: A Field Guide to Boxology: Preliminary Classification of

Architectural Styles for Software Systems, Computer Science Department and Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, IEEE, 0730-3157/97, PA
15213 (1997)

19. Paul C. Clements: A Survey of Architecture Description Languages, Proceedings of the 8th

International Workshop on Software Specification and Design (IWSSD’96), 1063-6765/96,
IEEE (1996)

20. Mary Shaw: Some Patterns for Software Architectures, Pattern Languages of Program
Design, pp.255-269, Vol. 2, Addison-Wesley Longman Publishing Co., Inc, MA, USA,
ISBN 0-201-895277, (1996)

21. Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young and
Gregory Zelesnik: Abstractions for Software Architecture and Tools to Support Them,
IEEE Transactions on Software Engineering, Vol. 21, no. 4, pp. 314-335, (April 1995)

22. Nikunj R. Mehta, Nenad Medvidovic and Sandeep Phadke: Towards a Taxonomy of
Software Connectors, Proceedings of the 22nd international conference on Software
engineering, pp. 178-187, Limerick, Ireland, ISBN 1-58113-206-9, (2000)

23. Tommi Mikkonen: Formalizing Design Patterns, Proceedings of the 20th international
conference on Software engineering, Kyoto, Japan, pp. 115-124, ISBN 0-8186-8368-6,
(1998)

24. Tools for CSP, http://web.comlab.ox.ac.uk/oucl/publications/books/concurrency/tools
25. Ralph Melton: The Aesop System: A Tutorial, The Able Project, Carnegie Mellon

University, Pittsburgh PA, 15213
26. Frank Buschman, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal.:

Pattern Oriented Software Architecture: A System of Patterns, John Wiley & Sons, ISBN 0
471 95869 7

27. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns:
Elements of Reusable Object Oriented Software, Addison-Wesley Professional Computing
Series (1995)

28. Robert Allen, Remi Douence and David Garlan: Specifying and Analyzing Dynamic
Software Architecture, Proceedings of the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE'98), Lisbon, Portugal, (March 1998)

29. Markus Volter, Michael Kircher and Uwe Zdun: ‘Remoting Patterns: Foundations of
Enterprise, Internet and Realtime Distributed Object Middleware, Wiley Series in Software
Design Patterns, ISBN 0-470-85662-9, (2004)

30. Eric M. Dashofy, Andre van der Hoek and Richard N. Taylor: A Highly-Extensible, XML-
Based Architecture Description Language’, Department of information and computer
science, University of California Irvine, CA 92697, USA

31. World Wide Web Consortium, Validator for XML
scchemas,http://www.w3.org/2000/09/webdata/xsv, September, 2000.

32. Altova GmbH: XML Spy Software, http://www.xml-spy.com, January, 2001
33. Zhang Jingjun, Zhang Yang and Li Furong: Combinatorial Model and Aspect-Oriented

Extension of Architecture Description Language, 0-7803-8932-8, IEEE, (2005)
34. Len Bass, Paul Clements and Rick Kazman: Software Architecture in Practice, 2nd Edition,

Addison-Wesley Professional, ISBN 0321154959, (2003)

