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Nonlinear Cross Gramians and Gradient Systems

Tudor C. Ionescu and Jacquelien M. A. Scherpen

Abstract— We study the notion of cross Gramians for non-
linear gradient systems, using the characterization in terms of
prolongation and gradient extension associated to the system.
The cross Gramian is given for the variational system asso-
ciated to the original nonlinear gradient system. We obtain
linearization results that precisely correspond to the notion of
a cross Gramian for symmetric linear systems. Furthermore,
first steps towards relations with the singular value functions of
the nonlinear Hankel operator are studied and yield promising
results.

I. INTRODUCTION
In this paper, we give an extension of the cross Gramian

notion for nonlinear gradient systems. The gradient systems
are an important class of nonlinear systems , endowed with a
pseudo-Riemannian metric on the state-space manifold, such
that the drift is a gradient vectorfield with respect to this
metric and a potential function and the input vectorfields
are gradient with respect to the same metric and output,
see e.g [2], [13] and references therein. Examples of gradi-
ent systems include nonlinear electrical circuits and certain
dissipative systems. The linear counterpart is a symmetric
system. With respect to model reduction, for linear systems
it is showed in [1], [3], [12], that exploiting the symmetry,
model reduction becomes more efficient. This is based on the
notion of cross Gramian, that is the solution of a Sylvester
equation, which can be solved in an efficient way. The cross
Gramian for a symmetric system contains information about
controllability and observability at the same time, moreover
the squared matrix is the product of the controllability
and observability Gramians. The Hankel singular values are
the eigenvalues of the cross Gramian. Moreover, the cross
Gramian can be obtained using only one of the Gramians of
the system and the metric.
For nonlinear systems the problem is more complicated.
The notion of symmetry for a nonlinear system is now best
studied by considering nonlinear gradient systems. We use
the associated prolongation and gradient extension and the
results in [2] . A nonlinear system is gradient if the two latter
systems have the same input-output behaviour. Using this
property and its consequences, we give the definition of the
cross Gramian for the variational system (which is a gradient
system, too). Furthermore, we give a nonlinear counterpart
of the Sylvester equation. Using the cross Gramian and
the theory of Hankel singular values as in [5], [9], first
steps towards proving that the squared eigenvalues of the
nonlinear cross Gramian are directly related to the Hankel
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singular values of the system, are set. In this case, instead
of balancing, only solving a nonlinear Sylvester equation, a
metric and an eigenvalue decomposition suffice for obtaining
the Hankel singular values of the gradient system.
The paper is outlined as follows. In Section II we give an
overview of the cross Gramian technique for linear systems.
In Section III, we give a review of the definitions of the
prolongation and gradient extension and the property of
a nonlinear system being gradient itself. In Section IV,
we analyze some linearization results which motivate the
reasoning in Section V, where the definition of the nonlinear
Gramian is presented and the conjecture about the relation
for singular value functions is stated.

A nonlinear system is defined here as:{
ẋ = f(x) + g(x)u
y = h(x) , (1)

where x ∈ M is the state vector, u ∈ Rm is the vector of
inputs and y ∈ Rp is the output. M is a smooth manifold, of
dimension n. We make the following assumptions:

1) f(x), g(x), h(x) are smooth vectorfields;
2) the system is square, i.e. m = p;
3) x0 is an asymptotically stable equilibrium point and

h(x0) = 0;
4) (1) is zero-state observable and asymptotically reach-

able from x0.

Assumption 4 is related to the minimality of the system,
since we reduce minimal realizations, see [10].

II. LINEAR SYSTEMS CASE AS A PARADIGM

If the system (1) is linear, then it can be written as:{
ẋ = Ax+Bu
y = Cx

, (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are constant
matrices. In this case, the assumptions 1, 3 are automatically
satisfied and assumption 4 is equivalent to the minimality of
the system. A linear system has a corresponding unique dual
system defined as:{

ż = AT z + CTud

yd = BT z
. (3)

Because (1) is controllable and observable, and these prop-
erties are dual, it follows immediately that the dual (3) is
controllable and observable, i.e minimal, too.
The definition of the cross Gramian for a linear square
system is:
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Definition 1. [12] Let 2 be a square system. Then the
cross Gramian X is defined as the solution of the Sylvester
equation:

AX +XA+BC = 0. (4)

If the system is asymptotically stable, then the cross

Gramian can be defined as: X =
∫ ∞

0

eAtBCeAtdt. �

The cross Gramian possesses some interesting properties
being related to the Hankel operator and the Hankel singular
values of a linear square system.

Theorem 2. [12] For square linear systems the non-zero
eigenvalues of the cross Gramian X are the non-zero eigen-
values of the Hankel operator H(u) =

∫∞
0
h(t− τ)u(τ)dτ .

�
However, the singular value problem is different, that is the
singular values of the cross Gramian are not the Hankel
singular values of the system. Still, there is a relation of
majorization between the two as shown below.

Proposition 3. [12] For a square linear system, the follow-
ing relations hold:

∑k
i=1 σi ≥

∑k
i=1 πi and

∑n
i=k+1 σi ≤∑n

i=k+1 πi, where σi are the Hankel singular values and πi

are the singular values of X and k is the index for which
σk � σk+1 . �

For symmetric systems, the cross Gramian X has more
attractive properties, useful for model reduction.
First we give the definition of a symmetric linear system:

Definition 4. [1],[3],[12] A square linear, minimal system
G(s) = C(sI −A)−1B, with the state-space realization (2)
is called symmetric if G(s) = GT (s), or equivalently, if there
exists an invertible matrix T such that: ATT = TA,CT =
TB, i.e. the system and its dual are input-output (externally)
equivalent. �

Remark 5. Since BT = CT and CT = T−1B, we
immediately have that the coordinate transformation matrix
T is symmetric. �

In, for instance [1], [12], model reduction based on the
balancing procedure, for this type of systems is considered.
The symmetry property is exploited, making the procedure
more efficient. Basically, the Sylvester equation from Defi-
nition 1 is solved and the cross Gramian is obtained. It will
directly provide the Hankel singular values of the system.
We refer to the results presented in [12], [1], [3]. We will
summarize these in the sequel.
Defining the controllability Gramian as W and the observ-
ability Gramian as M , they are the solutions of the following
Lyapunov equations, respectively:

AW +WTA+BBT = 0 (5)

ATM +MA+ CTC = 0. (6)

The following theorem summarizes the properties of X in
relation with W and M :

Theorem 6. [12], [3] Let (2) be a square symmetric system
in the sense of Definition 4, satisfying assumptions 3 and 4.

Then W > 0 and M > 0 and the following relations are
equivalent:

i. the cross Gramian X is a solution of (4);
ii. X2 = WM ;
iii X > 0;
iv. if T = TT is the symmetry transformation, then:

X = WT = T−1M ;
v. the Hankel singular values of (2) are the eigenval-

ues of X .

�
For symmetric systems, when compared to the classical
balancing procedure, there are two advantages: the first
is that instead of solving two Lyapunov equations, whose
computational complexity is known to be a drawback, only
one Sylvester equation is solved. The second advantage
consists of avoiding in this way the balancing procedure.
Since the Hankel singular value satisfy σi =

√
λi, λi ∈

λ(WM), i = 1, ..., n, the problem of finding them turns
into an eigenvalue problem.

III. A BRIEF REVIEW OF GRADIENT SYSTEMS

The nonlinear extension of the notion of symmetric sys-
tems is the gradient systems. The property of a system being
gradient is described in terms of necessary and sufficient
conditions satisfied by the prolongation (variational) system
and the gradient extension associated with (1). We will give
a brief overview of the results in [2], [13].

Definition 7. [2], [13] A nonlinear system (1) is called a
gradient system if,

1) there exists a pseudo-Riemannian metric G, on the

manifold M, given as
m∑

i,j=1

gij(x)dxi ⊗ dxj , with

gij(x) = gji(x) smooth functions of x, and the matrix
G(x) = [gij(x)]i,j=1...n invertible, for all x,

2) there exists a smooth potential function V : M→ R,

such that the system (1) can be written as: ẋ = gradGV (x)−
m∑

i=1

uigradGhi(x), x ∈ Rn

yi = hi(x), i = 1, ...,m
. (7)

�
In local coordinates x1, x2, ..., xn ∈ M, the system can

be written as: ẋ = −G−1(x)
∂TV

∂x
(x) +G−1(x)

∂Th

∂x
(x)u

y = h(x)
. (8)

Next, we present the definition of the prolonged system
associated with (1).

Definition 8. [2] The prolongation Σp of (1) is defined by:
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

ẋ = f(x) + g(x)u

v̇ =
∂f(x)
∂x

v +
m∑

j=1

uj
∂gj(x)
∂x

v + g(x)up

y = h(x), yp =
∂h(x)
∂x

v

, (9)

where v ∈ TM, the tangent bundle of the manifold M.
However, a pseudo-Riemannian metric on the cotangent
bundle T ∗M of the manifold M does not exist. In this case
a torsion-free affine connection is used in order to define a
pseudo-Riemannian metric GC on the cotangent bundle. For
our purpose, we will directly give the local expression of the
gradient extension of (1). The coordinate free definition and
more details upon the metric GC can be found in [2].

Definition 9. The gradient extension of (1) is defined by:

ẋ = f(x) + g(x)u

ṗ =
∂T (f(x) + g(x)u)

∂x
p

+F(gij(x),
∂gij(x)

∂xk
, fk(x), u, g(x), p) +

∂h(x)
∂x

ug,

y = h(x), yg = gT (x)p, i, j, k = 1...n.
(10)

Remark 10. Notice that for the linear system (2) the
prolongation is the system itself written twice: ẋ = Ax+Bu

v̇ = Av +Bup

y = Cx, yp = Cv
. (11)

The gradient extension contains the system itself and the
dual of the prolonged variable part, yielding: ẋ = Ax+Bu

ṗ = AT p+ CTug

y = Cx, yg = BT p
. (12)

�

Remark 11. According to [2, Corrolary 3.3, 3.6] (1) is
zero-state observable if and only the prolonged system is
zero-state observable and the zero-state observability of (1)
implies the zero-state observability of the gradient extension,
under more technical conditions. �

The main result, useful for our purpose, is:

Theorem 12. [2, Theorem 5.4, Corrolary 4.4] Let (1) be
as in Assumption 4. Assume there exists a torsion-free affine
connection on M and that the system is compatible with it.
Then, under additional technical conditions, (1) is a gradient

control system, as in Definition 7, if and only if the prolonged
system Σp and the gradient extension Σg have the same
input-output behaviour. �

Remark 13. In the linear systems case, this result becomes
a property between the system itself and its dual counterpart,
which immediately leads to the definition of symmetric
systems. The metric is given by the matrix T , showing that a
linear symmetric system is a particular case (linear version)
of the gradient system. �

Lemma 14. [2, Lemma 5.5, 5.6] If (1) is a gradient
control system, then there exists a diffeomorphism φ(x, v) =
(x,G(x)v), such that (x, p) = φ(x,G(x)v), where G(x) is
the matrix associated to the metric and v and p satisfy (11)
and (12), respectively. �

Remark 15. For linear systems this means, indeed that p =
Tv. �

IV. LINEARIZATION RESULTS

Suppose x0, u = 0 is an equilibrium point and assume that
h(x0) = 0. Taking Taylor series expansion for the system
above, we can write (−G−1(x0)∂T V

∂x (x0) = 0):

ẋ = G−1(x0)
∂2V

∂x2
(x0)(x− x0)

+

 n∑
i,j=1

∂gij

∂xi
(x0)

∂V

∂xj
(x0)


i,j=1...n

(x− x0) + ...

Since ∂V
∂xj

(x0) = 0, j = 1, ..., n, then the linearization of
the gradient system (7) yields:

ẋ = −G−1(x0)
∂2V

∂x2
(x0)x+G−1(x0)

∂Th

∂x
(x0)u

y =
∂h

∂x
(x0)x

.

(13)

Lemma 16. The system (13) is a gradient (symmetric)
system with the metric T = G(x0).
Proof: Denote by G = G(x0), Q = ∂2V

∂x2 (x0). Since V is
smooth, Q is symmetric. G, by definition is symmetric and
invertible. Then:

H(s) = C(sI +G−1Q)−1G−1CT

= C
[
G−1(sI +QG−1)G

]−1
G−1C

= CG−1(sI +QG−1)CT = HT (s).

�
If for (7) assumptions 3 and 4 hold, then Lc(x) and

Lo(x) exist in the neighbourhood of x0, are positive and
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Lc(x0) = Lo(x0) = 0. They also fulfill the Hamilton-
Jacobi controllability and Lyapunov observability equations,
respectively, see [8]. Taking the Taylor expansions, we get:

Lc(x) =
∂Lc

∂x
(x0)x+

1
2
xT ∂

2Lc

∂x2
(x0)x+ ...

and

Lo(x) =
∂Lo

∂x
(x0)x+

1
2
xT ∂

2Lo

∂x2
(x0)x+ ...

Let W and M are the controllability and the observability
Gramians, respectively, of (13) and assume W > 0, M > 0,
i.e. (13) is controllable and observable. Then:

M =
∂2Lo

∂x2
(x0),W−1 =

∂2Lc

∂x2
(x0).

The asymptotic reachability of the nonlinear systems im-
plies its accessibility and this implies the controllability of
the linear system, see [10]. Since the linearized system is
assumed symmetric, controllability implies observability, and
this implies the local zero-state observability of the nonlinear
system. So, locally there exists a duality of the controllability
and observability property, which motivates the search for a
cross-Gramian for the nonlinear gradient system.
The linearized system is gradient and then, according to
Theorem 6, iv., we have that near x0:(

∂2Lo

∂x2
(x)

)−1

G(x) = G−1(x)
∂2Lc

∂x2
(x).

Remark 17. Given a system (1), the linearization of the
prolonged system Σp around x0, v = 0, u = up = 0, we
obtain the linear system (11) and the linearization of the
gradient extension Σg around x0, p = 0, u = ug = 0, gives
(12) with the transformation p = Tv,G(x0) = T . since the
duality in properties takes place between the v part and the
p part of the two systems, we are going to extract these parts
from the nonlinear system and study them. �

V. NONLINEAR CROSS GRAMIANS

In this section, we will make an analysis of the variational
part of the prolonged system. Denote by:

Σ′
p :


v̇ =

∂(f(x) + g(x)u)
∂x

v + g(x)up

yp =
∂h(x)
∂x

v

, (14)

where x is considered a parameter varying according to (1).
Since for the original system assumption 4 holds, the pro-

longed system is zero-state observable, according to Remark
11, which makes Σ′

p zero-state observable as well. Since
the system is asymptotically stable, by the definition of its

variational associated system, the latter is also asymptoti-
cally stable. By Theorem 12, Σ′

p has the same input-output
behaviour as the system Σ′

g , given by:

ṗ =
∂T (f(x) + g(x)u)

∂x
p

+F(gij(x),
∂gij(x)

∂xk
, fk(x), u, g(x), p) +

∂Th(x)
∂x

ug

yg = gT (x)p

,

(15)
where x again is a parameter varying as in (1). According
to Lemma 15, there exists a coordinate transformation such
that p = ψ(x, v), given by ψ(x, v) = G(x)v, where G(x) is
symmetric and invertible (as in the definition of (7)) and
is given by the pseudo-Riemannian metric. Applying the
coordinate transformation on Σ′

p, we get:

G(x)g(x) =
∂Th(x)
∂x

and
∂h(x)
∂x

G−1(x)p = gT (x)p.
(16)

Remark 18. In the linear systems case, everything fits
with the definition and characterization of the property of
symmetry. Moreover, the linearization of Σ′

p and Σ′
g around

an equilibrium point (x0, 0, 0, 0) yields the v part and p part
of (11) and (12), respectively, with p = Tv, T , invertible
and symmetric. �

Based on the local existence of the cross Gramian, we
make an analysis of the observability function of Σ′

p. In this
case, u = 0, up = 0 and Σ′

p becomes:
v̇ =

∂f(x)
∂x

v

yp =
∂h(x)
∂x

v

. (17)

The zero-state observability and asymptotic stability of Σ′
p

imply the existence of the observability function Lo(x, v) >
0, Lo(x0, 0) = 0, defined as:

Lo(x, v) =
1
2

∫ ∞

t

yT
p (τ)yp(τ)dτ

and satisfies the nonlinear Lyapunov equation:

∂Lo(x, v)
∂v

∂f(x)
∂x

v +
1
2
vT ∂

Th(x)
∂x

∂h(x)
∂x

v

= −∂Lo(x, v)
∂x

f(x)
. (18)

Since the system is linear in v, without loss of generality,
we can write Lo(x, v) as:

Lo(x, v) =
1
2
vTL(x)v
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with L(x) symmetric, positive definite and with smooth
elements.

Due to (16) and to the coordinate transformation v =
G−1(x)p, we can rewrite the above Lyapunov equation as:

pTG−1(x)L(x)
∂f

∂x
v +

1
2
pT g(x)

∂h

∂x
v = −∂Lo(x, v)

∂x
f(x).

(19)
In the sequel, we determine the nonlinear counterpart of

the Sylvester equation which in the linear case gives the cross
Gramian. Taking the derivative with respect to v and using
(16), we get:

∂2Lo(x, v)
∂v2

∂f(x)
∂x

v +
∂T f(x)
∂x

∂TLo(x, v)
∂v

+G(x)g(x)
∂h(x)
∂x

v = −∂
2Lo(x, v)
∂v∂x

f(x).
(20)

Applying the coordinate transformation, p = G(x)v, on (17)
we get:

∂T f(x)
∂x

p+ F(gij(x),
∂gij(x)

∂xk
, fk(x), p) = G−1(x)

∂f

∂x
.

(21)
Premultiplying the equation with vT and using (21) we

obtain:

pTG−1(x)L(x)
∂f(x)
∂x

v + pT ∂f(x)
∂x

G−1(x)L(x)v

+ pT g(x)
∂h

∂x
v = −vT ∂

2Lo(x, v)
∂v∂x

f(x) + ...

(22)

Remark 19. In the linear systems case, (20) becomes:
vTMAv + vTATMv + pTBCv = 0. Since v = T−1p, we
get:

pTT−1MAv + pTAT−1Mv + pTBCv = 0. (23)

Using the symmetry property, this immediately leads to the
Sylvester equation (4). Moreover, the relation X = T−1M
is satisfied as in Theorem 6 . Equation (23) becomes

XA+
1
2
BC = 0.

�
From this point of view, we call X (x) = G−1(x)L(x)

the cross-Gramian matrix associated to Σ′
p and it is the

solution of (19). In order to explain the cross Gramian
and its importance we present in a nutshell the study of
Hankel singular values for a nonlinear system (1) as in [5],
[9]. Suppose that (1) is asymptotically reachable from x(0),
then the controllability function Lc(x) exists and is positive
definite, with Lc(x0) = 0.

If H(u) is the Hankel operator of the system then for finding
out the Hankel singular values of the system the differential
problem is solved: (dH(u))∗H(u) = λu. A solution for this
problem is given by the following result:

Lemma 20. [5] If, there exists λ 6= 0 such that

∂Lo

∂x
(x(0)) = λ

∂Lc

∂x
(x(0)),

then λ is an eigenvalue of the (dH(u))∗H(u) operator, with
the corresponding eigenvector u = C†(x(0)), where C(u) is
the controllability operator associated to (1). �

Remark 21. In the linear case, this problem becomes:
Mx(0) = λW−1x(0). Since W > 0, we can write
WMx(0) = λx(0) and if, moreover, the system is gradient,
then, according to Theorem 6 we have: X2x(0) = λx(0), X
being the cross Gramian. This means that λ is the squared
Hankel singular value σ, which for a symmetric system is
an eigenvalue of X . �

Still, in order to make the connection between λ’s and the
Hankel singular values of (1) the Hankel norm is involved.
The following results give the relation:

Theorem 22. [5] Suppose that the linearization of (1) has
non-zero distinct Hankel singular values. Then, there exists
a neighbourhood U of 0 and ρi(s) > 0, i = 1, ...n such
that: min{ρi(s), ρi(−s)} ≥ max{ρi+1(s), ρi+1(−s)} holds
for all s ∈ U, i = 1, ..., n − 1. Moreover, there exist ξi(s),
satisfying the following:

Lc(ξi(s)) = s2/2, Lo(ξi(s)) = ρi(s)s2/2
∂Lo

∂x
(ξi(s)) = λi(s)

∂Lc

∂x
(ξi(s)), λi(s) = ρ2

i (s) +
s

2
dρ2

i (s)
ds

.

(24)

Even more, if U = R, the Hankel norm of the system is
sups ρ1(s). �

The ρi(s) are a clear extension of the Hankel singular
values for a nonlinear system and they can be obtained from
the Hankel singular value functions of the nonlinear system,
as defined in [8]. The following result establishes this link:

Theorem 23. [9] If (1) is in input-normal, output-
diagonal form, i. e. Lc(x) = xTx/2, Lo(x) =
xT diag(τ1(x), ..., τn(x))x/2, then

ρ2
i (xj) = τi(0, ..., xj , ..., 0), i 6= j

ρ2
j (xj) = τj(0, ..., xj , ..., 0) +

1
2
∂τj
∂xj

(0, ..., xj , ..., 0)xj
.

(25)

�
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Returning to our case, we state the following

Conjecture 24. Let (1) be a nonlinear gradient system with
the associated variational system Σ′

p. Then if λi, i = 1, ..., n
satisfy Theorem 24, then they are the squared eigenvalues of
X (x).

Since, the λ’s are connected to Σp associated to (7), it
means that if they are related to the eigenvalues of the cross
Gramian, the Hankel singular values can be obtained from
solving an eigenvalue problem for X (x).

The advantage is that instead of solving one nonlinear
Lyapunov equation, for observability and one Hamilton-
Jacobi equation for controllability, we solve the Lyapunov
equation for determining the observability function of Σ′

p,
and together with the metric G(x) we obtain the cross
Gramian, which in its turn provides λ.

Remark 25. For linear systems this falls into place with the
theory for symmetric systems, see Remark 22 . �

Then using Theorem 24, the Hankel singular values of
the original system are obtained, avoiding the balancing
procedure.

VI. EXAMPLE
Given a double mass double spring system, we compute

the cross Gramian of the gradient systems associated to it.
The system is given by:{

m1ẍ1 + k1(x1) + k2(x1, x2) = 0
m2ẍ2 − k2(x1, x2) + u = 0 , (26)

where x1, x2 are the displacements, m1,m2 > 0 are the
masses and k1(x1), k2(x1, x2) are the corresponding elastic
forces, with the initial conditions x1(0) = 1, x2(0) = 0. The
potential energy of the system is given by V (x), smooth,
such that ∂V (x)

∂x = k1(x1),
∂V (x)

∂x = k2(x1, x2). We choose
k1(x1) = −x3

1 and k2(x1, x2) = x1−x2 (constant and equal
to 1, elastic coefficients). We take m1 = m2 = 1 and so the
metric is G(x) = I2. The associated gradient system is:

ẋ =
[

−x3
1

x1 − x2

]
+

[
2
1

]
u, y = x1. (27)

Denote L(x(t)) = [lij(x(t))]i,j=1,2 = [lij(t)]i,j=1,2.
Writing equation (19) associated to (27), for all v ∈ TM and
noticing that ∂lij(x)

∂x f(x) = dlij(t)
dt , we obtain the following

parameter-varying system to be solved:
dl11(t)
dt

= 3x2
1(t)l11(t)− l12(t)− 1

dl12(t)
dt

=
(

3
2x

2
1(t) + 1

)
l12(t) + l22(t)

dl22(t)
dt

= l22(t)

. (28)

Solving system (27) for u(t) = 0, t > 0, x1(0) = 1 we

get x1(t) =
1√

2t+ 1
. Substituting in (28) we obtain a time

varying system. We solve this it using approximation of 3rd
order and obtain:

L(t) = X (t) =
[

3 + 10t+ 9t2 + 2t3 −t− 3
2 t

2 − 1
6 t

3

−t− 3
2 t

2 − 1
6 t

3 1 + t+ 1
2 t

3 + 1
6 t

3

]
The eigenvalue functions of the cross Gramian are given

as:

λ1(t) = 3 + 10t+ 10t2 − 3t3 +O(t4)

λ2(t) = 1 + t+ 0.9t3 +O(t4).

VII. CONCLUSIONS AND FUTURE WORK
We present here the nonlinear counterpart of the cross

Gramian for gradient systems. We do this in terms of the
variational system. The reason is that in the next step we
want to prove that the eigenvalues obtained from the cross
Gramian are related in a direct manner to the Hankel singular
values of the system. For later concern we will also take into
account the computational aspect of solving equation (19).
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