

 University of Groningen

Point-Based Visualization of Metaballs on a GPU
Kooten, Kees van; Bergen, Gino van den; Telea, Alex

Published in:
GPU Gems 3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kooten, K. V., Bergen, G. V. D., & Telea, A. (2007). Point-Based Visualization of Metaballs on a GPU. In H.
Nguyen (Ed.), GPU Gems 3: Programming Techniques for High-Performance Graphics and General-
Purpose Computation (pp. 123-150). Addison-Wesley Longman.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/0b38bf6b-f671-41ce-89ea-32798af96c39

Point-Based Visualization of
Metaballs on a GPU
Kees van Kooten
Playlogic Game Factory

Gino van den Bergen
Playlogic Game Factory

Alex Telea
Eindhoven University of Technology

Chapter 7

In this chapter we present a technique for rendering metaballs on state-of-the-art
graphics processors at interactive rates. Instead of employing the marching cubes algo-
rithm to generate a list of polygons, our method samples the metaballs’ implicit surface
by constraining free-moving particles to this surface. Our goal is to visualize the meta-
balls as a smooth surface by rendering thousands of particles, with each particle cover-
ing a tiny surface area. To successfully apply this point-based technique on a GPU, we
solve three basic problems. First, we need to evaluate the metaballs’ implicit function
and its gradient per rendered particle in order to constrain the particles to the surface.
For this purpose, we devised a novel data structure for quickly evaluating the implicit
functions in a fragment shader. Second, we need to spread the particles evenly across
the surface. We present a fast method for performing a nearest-neighbors search on
each particle that takes two rendering passes on a GPU. This method is used for com-
puting the repulsion forces according to the method of smoothed particle hydrodynam-
ics. Third, to further accelerate particle dispersion, we present a method for transferring
particles from high-density areas to low-density areas on the surface.

7 Point-Based Visualization of Metaballs on a GPU 123

107_gems3_ch07 6/16/2007 3:59 PM Page 123
FIRST PROOFS

Chapter 7 Point-Based Visualization of Metaballs on a GPU124

7.1 Metaballs, Smoothed Particle Hydrodynamics, and
Surface Particles
The visualization of deformable implicit surfaces is an interesting topic, as it is aimed at
representing a whole range of nonrigid objects, ranging from soft bodies to water and
gaseous phenomena. Metaballs, a widely used type of implicit surface invented by Blinn
in the early 1980s (Blinn 1982), are often used for achieving fluid-like appearances.

The concept of metaballs is closely related to the concept of smoothed particle hydrody-
namics (SPH) (Müller et al. 2003), a method used for simulating fluids as clouds of
particles. Both concepts employ smooth scalar functions that map points in space to a
mass density. These scalar functions, referred to as smoothing kernels, basically represent
point masses that are smoothed out over a small volume of space, similar to Gaussian
blur in 2D image processing. Furthermore, SPH-simulated fluids are visualized quite
naturally as metaballs. This chapter does not focus on the dynamics of the metaballs
themselves. We are interested only in the visualization of clouds of metaballs in order to
create a fluid surface. Nevertheless, the proposed techniques for visualizing metaballs
rely heavily on the SPH method. We assume that the metaballs, also referred to as fluid
atoms, are animated on the CPU either by free-form animation techniques or by
physics-based simulation. Furthermore, we assume that the dynamics of the fluid atoms
are interactively determined, so preprocessing of the animation sequence of the fluid
such as in Vrolijk et al. 2004 is not possible in our case.

The fluid atoms in SPH are basically a set of particles, defining the implicit metaball
surface by its spatial configuration. To visualize this surface, we use a separate set of
particles called surface particles, which move around in such a way that they remain on
the implicit surface defined by the fluid atoms. These particles can then be rendered as
billboards or oriented quads, as an approximation of the fluid surface.

7.1.1 A Comparison of Methods
The use of surface particles is not the most conventional way to visualize implicit sur-
faces. More common methodologies are to apply the marching cubes algorithm (Loren-
son and Cline 1987) or employ ray tracing (Parker et al. 1998). Marching cubes
discretizes the 3D volume into a grid of cells and calculates for every cell a set of primi-
tives based on the implicit-function values of its corners. These primitives interpolate
the intersection of the implicit surface with the grid cells. Ray tracing shoots rays from

107_gems3_ch07 6/16/2007 3:59 PM Page 124
FIRST PROOFS

the viewer at the surface to determine the depth and color of the surface at every pixel.
Figure 7-1 shows a comparison of the three methods.

Point-based methods (Witkin and Heckbert 1994) have been applied much less
frequently for visualizing implicit surfaces. The most likely reason for this is the high
computational cost of processing large numbers of particles for visualization. Other
techniques such as ray tracing are computationally expensive as well but are often easier
to implement on traditional CPU-based hardware and therefore a more obvious choice
for offline rendering.

With the massive growth of GPU processing power, implicit-surface visualization seems
like a good candidate to be offloaded to graphics hardware. Moreover, the parallel na-
ture of today’s GPUs allows for a much faster advancement in processing power over
time, giving GPU-run methods an edge over CPU-run methods in the future. How-
ever, not every implicit-surface visualization technique is easily modified to work in a
parallel environment. For instance, the marching cubes algorithm has a complexity in
the order of the entire volume of a metaball object; all grid cells have to be visited to
establish a surface (Pascucci 2004). An iterative optimization that walks over the surface
by visiting neighboring grid cells is not suitable for parallelization. Its complexity is
therefore worse than the point-based method, which has to update all surface particle
positions; the number of particles is linearly related to the fluid surface area.

By their very nature, particle systems are ideal for exploiting temporal coherence. Once
the positions of surface particles on a fluid surface are established at a particular mo-
ment in time, they have to be moved only a small amount to represent the fluid surface
a fraction of time later. Marching cubes and ray tracing cannot make use of this charac-
teristic. These techniques identify the fluid surface from scratch every time again.

7.1 Metaballs, Smoothed Particle Hydrodynamics, and Surface Particles 125

Figure 7-1. Methods of Visualizing Implicit Surfaces
(a) Marching cubes, (b) ray tracing, and (c) the point-based method.

(a) (c)(b)

107_gems3_ch07 6/16/2007 3:59 PM Page 125
FIRST PROOFS

126

7.1.2 Point-Based Surface Visualization on a GPU
We propose a method for the visualization of metaballs, using surface particles. Our pri-
mary goal is to cover as much of the fluid surface as possible with the surface particles, in
the least amount of time. We do not focus on the actual rendering of the particles itself;
we will only briefly treat blending of particles and shader effects that create a more con-
vincing surface.

Our method runs almost entirely on a GPU. By doing so, we avoid a lot of work on
the CPU, leaving it free to do other tasks. We still need the CPU for storing the posi-
tions and velocities of the fluid atoms in a form that can be processed efficiently by a
fragment shader. All other visualization tasks are offloaded to the GPU. Figure 7-2
gives an overview of the process.

Chapter 7 Point-Based Visualization of Metaballs on a GPU

Figure 7-2. The Fluid Simulation Loop Performed on the CPU Together with the Fluid Visualization
Loop Performed on the GPU
In essence, the visualization is a simulation in its own right.

107_gems3_ch07 6/16/2007 3:59 PM Page 126
FIRST PROOFS

Our approach is based on an existing method by Witkin and Heckbert (1994). Here,
an implicit surface is sampled by constraining particles to the surface and spreading
them evenly across the surface. To successfully implement this concept on GPUs with
at least Shader Model 3.0 functionality, we need to solve three problems:

First, we need to efficiently evaluate the implicit function and its gradient in order to
constrain the particles on the fluid surface. To solve this problem, we choose a data
structure for quickly evaluating the implicit function in the fragment shader. This data
structure also optionally minimizes the GPU workload in GPU-bound scenarios. We
describe this solution in Section 7.2.

Second, we need to compute the repulsion forces between the particles in order to ob-
tain a uniform distribution of surface particles. A uniform distribution of particles is of
vital importance because on the one hand, the amount of overlap between particles
should be minimized in order to improve the speed of rendering. On the other hand, to
achieve a high visual quality, the particles should cover the complete surface and should
not allow for holes or cracks. We solve this problem by computing repulsion forces
acting on the surface particles according to the SPH method. The difficulty in perform-
ing SPH is querying the particle set for nearest neighbors. We provide a novel algo-
rithm for determining the nearest neighbors of a particle in the fragment shader. We
present the computation of repulsion forces in Section 7.3.

Finally, we add a second distribution algorithm, because the distribution due to the
repulsion forces is rather slow, and it fails to distribute particles to disconnected
regions. This global dispersion algorithm accelerates the distribution process and is
explained in Section 7.4.

In essence, the behavior of the particles can be defined as a fluid simulation of particles
moving across an implicit surface. GPUs have been successfully applied for similar
physics-based simulations of large numbers of particles (Latta 2004). However, to our
knowledge, GPU-based particle systems in which particles influence each other have
not yet been published.

7.2 Constraining Particles
To constrain particles to an implicit surface generated by fluid atoms, we will restrict
the velocity of all particles such that they will only move along with the change of the
surface. For the moment, they will be free to move tangentially to the surface, as long as
they do not move away from it. Before defining the velocity equation for surface parti-
cles, we will start with the definition of the function yielding our implicit surface.

7.2 Constraining Particles 127

107_gems3_ch07 6/16/2007 3:59 PM Page 127
FIRST PROOFS

7.2.1 Defining the Implicit Surface
For all of the following sections, we define a set of fluid atoms {j: 1 ≤ j ≤ m}—the
metaballs—simulated on the CPU with positions aj, and a set of surface particles
{i: 1 ≤ i ≤ n} with positions pi. The fluid atoms define a fluid surface, which we are
going to visualize using the fluid particles. The surface is computed as an isosurface of a
fluid density function The function depends on the evaluation position x and
a state vector representing the concatenation of all fluid atom positions. Following
the SPH model of Müller et al. 2003, the fluid density is given by

using smoothing kernels Wa(r, ha) to distribute density around every atom position by a
scaling factor sa. The smoothing kernel takes a vector r to its center, and a radius ha in
which it has a nonzero contribution to the density field. Equation 1 is the sum of these
smoothing kernels with their centers placed at different positions. The actual smooth-
ing kernel function can take different forms; the following is the one we chose, which is
taken from Müller et al. 2003 and illustrated in Figure 7-3.

7.2.2 The Velocity Constraint Equation
To visualize the fluid isosurface described in Section 7.2.1, we will use the point-based
method of Witkin and Heckbert 1994. This method proposes both an equation for
moving particles along with the surface and an equation for moving the surface along

W h
h

h h
poly 6 9

2 2 3
315

64 0
r

r r
,() =

−() <⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

π

if

otherwise
, with h = 1.

F s W ha a j a
j

m

x q x a, , ,() = −()
=

∑
1

(1)

F x q, .()
q

128 Chapter 7 Point-Based Visualization of Metaballs on a GPU

0.2 0.4 0.6 0.8 1

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

W
(r

,h
)

| r |

Figure 7-3. The Smoothing Kernel

107_gems3_ch07 6/16/2007 3:59 PM Page 128
FIRST PROOFS

with the particles. We require only the former, shown here as Equation 2. This equa-
tion yields the constrained velocity of a surface particle; the velocity will always be tan-
gent to the fluid surface as the surface changes.

where is the constrained velocity of particle i obtained by application of the equa-
tion; Di is a desired velocity that we may choose; is the concatenation of all fluid
atom velocities; Fi is the density field F(x, q) evaluated at particle position pi; and

are the derivatives of the density field F(x, q) with respect to x and q, respec-
tively, evaluated at particle position pi as well.

We choose the desired velocity Di in such a way that particles stay at a fixed position on
the fluid surface as much as possible. The direction and size of changes in the fluid
surface at a certain position x depend on both the velocity of the fluid atoms influenc-
ing the density field at x, as well as the gradient magnitude of their smoothing kernel at
x. This results in the definition of Di, shown in Equation 3. We denote this component
of Di by because we will add another component to Di in Section 7.3.

with

equals

evaluated at particle position pi, which equals

−
∂ −()

∂

W ha j ax a

x

,

Fi
x ,

Fi
q

�q
�pi

� �
p D

D qx q

x x
x

i i
i i i i

i i
i

F F F

F F
F= −

⋅ + ⋅ +
⋅

φ
, (2)

∂ ()
∂

F

j

x q
a
,

Fi
aj

w
F h

j
i i

aj
i j

=
⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

− <

0

if

otherwise

p a
.

D

a

i
env

j
i

j
j

m

j
i

j

m

w

w
= =

=

∑

∑

�
0

0

, (3)

Di
env,

7.2 Constraining Particles 129

107_gems3_ch07 6/16/2007 3:59 PM Page 129
FIRST PROOFS

130

evaluated at pi (omitting sa). This is simply the negative gradient of a single smoothing
kernel centered at aj, evaluated at pi. Summarizing, is a weighted sum of atom
velocities with their weight determined by the length of

To put the preceding result in perspective: In our simulation of particle movement, the
velocity of the particles will be defined by Equation 2. The equation depends on the
implicit function with its gradients at particle positions and a desired velocity Di, which
in turn consists of a number of components, and These components are influ-
enced by fluid atom velocities and surface particle repulsion forces, respectively. The first
component is defined by Equation 3; the second component is discussed in Section 7.3.
The implementation of the algorithm appears in Listing 7-1.

Listing 7-1. Implementation Part 1: Pseudocode of a Fragment Program Simulating the Velocity of
a Surface Particle

void mainvel()
{
//Perform two lookups to find the particle position and velocity
//in the corresponding textures.
position = f3tex2D(pos_texture, particle_coord);
velocity = f3tex2D(vel_texture, particle_coord);

//Compute the terms of Equations 2 and 3.
for each fluid atom //See Listing 7-2.
{
fluid_atom_pos, fluid_atom_vel; //See Listing 7-2 for data lookup.
r = position - fluid_atom_pos;
if |r| within atomradius
{
//Compute density “F”.
density += NORM_SMOOTHING_NORM * (atomradius - |r|*|r|)^3;
//The gradient “Fx”
gradient_term = 6 * NORM_SMOOTHING_NORM * r *

(atomradius – |r|*|r|)^2;
gradient -= gradient_term;
//The dot product of atom velocity with
//the gradient “dot(Fq,q’)”
atomvelgradient += dot(gradient_term, fluid_atom_vel);
//The environment velocity “wj*aj”
vel_env_weight += |gradient_term|;
vel_environment += vel_env_weight * fluid_atom_vel;

}
}

Fi
aj.�aj,

Di
env Di

rep.

Di
env

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 130
FIRST PROOFS

Listing 7-1 (continued). Implementation Part 1

//Compute final environment velocity.
vel_environment /= vel_env_weight;

//Compute repulsion velocity (incorporates velocity).
//See Listing 7-4 for querying the repulsion force hash.

//Compute desired velocity.
vel_desired = vel_environment + vel_repulsion;

//Compute the velocity constraint from Equation 2.
terms = - dot(gradient, vel_desired) //dot(Fx,D)

- atomvelgradient //dot(Fq,q’)
- 0.5f * density; //phi * F

newvelocity = terms / dot(gradient, gradient) * gradient;

//Output the velocity, gradient, and density.
}

7.2.3 Computing the Density Field on the GPU
Now that we have established a velocity constraint on particles with Equation 2, we
will discuss a way to calculate this equation efficiently on the GPU. First, note that the
function can be reconstructed using only fluid atom positions and fluid atom veloci-
ties—the former applies to terms Fi, and the latter to and There-
fore, only atom positions and velocities have to be sent from the SPH simulation on
the CPU to the GPU. Second, instead of evaluating every fluid atom position or veloc-
ity to compute Equation 1 and its derivatives—translating into expensive texture
lookups on the GPU—we aim to exploit the fact that atoms contribute nothing to the
density field outside their influence radius ha.

For finding all neighboring atoms, we choose to use the spatial hash data structure
described in Teschner et al. 2003. An advantage of a spatial hash over tree-based spatial
data structures is the constant access time when querying the structure. A tree traversal
requires visiting nodes possibly not adjacent in video memory, which would make the
procedure unnecessarily expensive.

In the following, we present two enhancements of the hash structure of Teschner et al.
2003 in order to make it suitable for application on a GPU. We modify the hash func-
tion for use with floating-point arithmetic, and we adopt a different way of construct-
ing and querying the hash.

Fi
x, Fi

q, Di
env; �q Di

env.

7.2 Constraining Particles 131

107_gems3_ch07 6/16/2007 3:59 PM Page 131
FIRST PROOFS

132

7.2.4 Choosing the Hash Function
First, the spatial hash structure we use is different in the choice of the hash function.
Because we have designed this technique to work on Shader Model 3.0 hardware, we
cannot rely on real integer arithmetic, as in Shader Model 4.0. As a result, we are re-
stricted to using the 23 bits of the floating-point mantissa. Therefore, we use the hash
function from Equation 4.

with

where the three-vector of integers B(x, y, z) is the discretization of the point (x, y, z)
into grid cells, with Bx, By, and Bz its x, y, and z components, and s the grid cell size. We
have added the constant term c to eliminate symmetry around the origin. The hash
function H(x, y, z) maps three-component vectors to an integer representing the index
into an array of hash buckets, with hs being the hash size and p1, p2, and p3 large primes.
We choose primes 11,113, 12,979, and 13,513 to make sure that the world size could
still be reasonably large without exceeding the 23 bits available while calculating the
hash function.

7.2.5 Constructing and Querying the Hash
Before highlighting the second difference of our hash method, an overview of
constructing and querying the hash is in order. We use the spatial hash to carry both
the fluid atom positions and the velocities, which have to be sent from the fluid simula-
tion on the CPU to the fluid visualization on the GPU. We therefore perform its con-
struction on the CPU, while querying happens on the GPU.

The implementation of the spatial hash consists of two components: a hash index table
and atom attribute pools. The hash index table of size hs indexes the atom attribute
pools storing the fluid atoms’ positions and velocities. Every entry e in the hash index
table corresponds to hash bucket e, and the information in the hash index table points
to the bucket’s first attribute element in the atom attribute pools, together with the
number of elements present in that bucket. Because the spatial hash is used to send
atom positions and velocities from the CPU to the GPU, we perform construction on
the CPU, while querying happens on the GPU. Figure 7-4 demonstrates the procedure
of querying this data structure on the GPU.

B x y z x c s y c s z c s, , , , ,() = +()⎢⎣ ⎥⎦ +()⎢⎣ ⎥⎦ +()⎢⎣ ⎥⎦()

H x y z p x y z p x y z p x y z hsx y z, , , , , , , , mod ,() = () + () + ()()1 2 3B B B (4)

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 132
FIRST PROOFS

We will now describe the second difference compared to Teschner et al. 2003, relating
to the method of hash construction. The traditional method of constructing a spatial
hash adds every fluid atom to the hash table once, namely to the hash bucket to which
its position maps. When the resulting structure is used to find neighbors, the tradi-
tional method would perform multiple queries per fluid atom: one for every grid cell
intersecting a sphere around its position with the radius of the fluid atoms. This yields
all fluid atoms influencing the density field at its position. However, we use an inverted
hash method: the fluid atom is added to the hash multiple times, for every grid cell
intersecting its influence area. Then, the GPU has to query a hash bucket only once to
find all atoms intersecting or encapsulating the grid cell. The methods are illustrated in
Figure 7-5. Listing 7-2 contains the pseudocode.

Performance-wise, the inverted hash method has the benefit of requiring only a single
query on the GPU, independent of the chosen grid cell size. When decreasing the hash
cell size, we can accomplish a better approximation of a grid cell with respect to the
fluid atoms that influence the positions inside it. These two aspects combined mini-
mize the number of data lookups a GPU has to perform in texture memory. However,
construction time on the CPU increases with smaller grid cell sizes, because the more
grid cells intersect a fluid atom’s influence radius, the higher the number of additions of
a single atom to the hash. The traditional hash method works the other way around: a
decreasing grid cell size implies more queries for the GPU, while an atom will always be
added to the hash only once by the CPU. Hardware configurations bottlenecked by the
GPU should therefore opt for the inverted hash method, while configurations bottle-
necked by the CPU should opt for the traditional hash method.

7.2 Constraining Particles 133

H(x,y,z)

Hash Index Table

(s,t),n

(x,y,z)

Atom Attribute Pool

Figure 7-4. Querying the Hash Table
When the GPU wants to query the hash table on the basis of a surface particle position (x, y, z), it
calculates a hash value H(x, y, z) used as an index into the hash index table. Because for every
bucket the data in the atom attribute pool forms a contiguous block, it can then be read by the GPU
with the obtained position (s, t) and number of elements n returned by the hash index table.

107_gems3_ch07 6/16/2007 3:59 PM Page 133
FIRST PROOFS

134

Listing 7-2. Implementation Part 2: Pseudocode for Querying the Hash

float hash(float3 point)
{
float3 discrete = (point + 100.0) * INV_CELL_SIZE;
discrete = floor(discrete) * float3(11113.0f, 12979.0f, 13513.0f);
float result = abs(discrete.x + discrete.y + discrete.z);
return fmod(result, NUM_BUCKETS);

}

void mainvel(
. . .
const uniform float hashindex_dim, //Width of texRECT
const uniform float hashdata_dim,
const uniform samplerRECT hsh_idx_tex : TEXUNIT4,
const uniform samplerRECT hsh_dta_tex_pos : TEXUNIT5,
const uniform samplerRECT hsh_dta_tex_vel : TEXUNIT6,
. . .

)
{
//Other parts of this program discussed in Section 7.2.2

Chapter 7 Point-Based Visualization of Metaballs on a GPU

Figure 7-5. Comparing Hash Methods
Left: The traditional hash method. Right: The inverted hash method.
The white dot represents a fluid atom, the black dot a surface particle. The red squares and green
rounded squares encapsulate the dashed grid cells that are visited for addition of the fluid atom
and the surface particle’s hash query, respectively. The area of these squares is determined by the
size of the circular influence area around either a surface particle or a fluid atom, depending on the
hash method. For example, the large square in the traditional method shows multiple additions of a
fluid atom, while for the inverted method, it shows multiple queries of the surface particle.

107_gems3_ch07 6/16/2007 3:59 PM Page 134
FIRST PROOFS

Listing 7-2 (continued). Implementation Part 2

//Compute density F, its gradient Fx, and dot(Fq,q’).
//Calculate hashvalue; atomrange stores length and 1D index
//into data table.
float hashvalue = hash(position);
float2 hsh_idx_coords = float2(fmod(hashvalue, hashindex_dim),

hashvalue / hashindex_dim);
float4 atomrange = texRECT(hsh_idx_texture, hsh_idx_coords);
float2 hashdata = float2(fmod(atomrange.y, hashdata_dim),

atomrange.y / hashdata_dim);

//For each fluid atom
for(int i = 0; i < atomrange.x; i++)
{
//Get the fluid atom position and velocity from the hash.
float3 fluid_atom_pos = f3texRECT(hsh_dta_texture_pos, hashdata);
float3 fluid_atom_vel = f3texRECT(hsh_dta_texture_vel, hashdata);

//See Listing 7-1 for the contents of the loop.
}

}

7.3 Local Particle Repulsion
On top of constraining particles to the fluid surface, we require them to cover the entire
surface area. To obtain a uniform distribution of particles over the fluid surface, we adopt
the concept of repulsion forces proposed in Witkin and Heckbert 1994. The paper de-
fines repulsion forces acting on two points in space by their distance; the larger the dis-
tance, the smaller the repulsion force. Particles on the fluid surface have to react to these
repulsion forces. Thus they are not free to move to every position on the surface anymore.

7.3.1 The Repulsion Force Equation
We alter the repulsion function from Witkin and Heckbert 1994 slightly, for we would
like particles to have a bounded region in which they influence other particles. To this
end, we employ the smoothing kernels from SPH (Müller et al. 2003) once again,
which have been used similarly for the fluid density field of Equation 1. Our new func-
tion is defined by Equation 5 and yields a density field that is the basis for the genera-
tion of repulsion forces.

7.3 Local Particle Repulsion 135

107_gems3_ch07 6/16/2007 3:59 PM Page 135
FIRST PROOFS

136

where Wp is the smoothing kernel chosen for surface particles, hp is the radius of the
smoothing kernel in which it has a nonzero contribution to the density field, and sp is a
scaling factor for surface particles. Our choice for Wp is again taken from Müller et al.
2003 and presented in the equation below, and in Figure 7-6. We can use this smooth-
ing kernel to calculate both densities and repulsion forces, because it has a nonnegative
gradient as well.

The repulsion force at a particle position pi is the negative gradient of the density
field.

To combine the repulsion forces with our velocity constraint equation, the repulsion
force is integrated over time to form a desired repulsion velocity We can use sim-
ple Euler integration:

where Δt = tnew − told.

D D fi
rep

new i
rep

old i
rept t t() = () + ⋅ Δ , (7)

Di
rep.

f p p p pi
rep

i i p i j p
j

n

s W h() = −∇ () = − ∇ −()
=

∑σ , .
1

(6)

fi
rep

W h
h

h h
hspiky r

r r
,() =

−()⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

<
=

15

0
16

3

π

if

otherwise
, with ..

σ x x p() = −()
=
∑s W hp p i p
i

n

, ,
1

(5)

Chapter 7 Point-Based Visualization of Metaballs on a GPU

0.2 0.4 0.6 0.8 1

14

12

10

8

6

4

2

0

W
(r

,h
)

| r |

Kernel

Kernel gradient

toward center

Figure 7-6. The Smoothing Kernel Used for Surface Particles
The thick line shows the kernel, and the thin line shows its gradient in the direction toward the center.

107_gems3_ch07 6/16/2007 3:59 PM Page 136
FIRST PROOFS

The final velocity Di is obtained by adding and

The total desired velocity Di is calculated and used in Equation 2 every time the surface
particle velocity is constrained on the GPU.

7.3.3 Nearest Neighbors on a GPU
Now that we have defined the repulsion forces acting on surface particles with Equa-
tion 6, we are once again facing the challenge of calculating them efficiently on the
GPU. Just as we did with fluid atoms influencing a density field, we will exploit the
fact that a particle influences the density field in only a small neighborhood around it.
A global data structure will not be a practical solution in this case; construction would
have to take place on the GPU, not on the CPU. The construction of such a structure
would rely on sorting or similar kinds of interdependent output, which is detrimental
to the execution time of the visualization. For example, the construction of a data
structure like the spatial hash in Section 7.2.3 would consist of more than one pass on
the GPU, because it requires variable-length hash buckets.

Our way around the limitation of having to construct a data structure is to use a render
target on the video card itself. We use it to store floating-point data elements, with
construction being performed by the transformation pipeline. By rendering certain
primitives at specific positions while using shader programs, information from the ren-
der target can be queried and used during the calculation of repulsion forces.

The algorithm works in two steps:

First Pass
1. Set up a transformation matrix M representing an orthogonal projection, with a

viewport encompassing every surface particle, and a float4 render target.

2. Render surface particles to the single pixel to which their center maps.

3. Store their world-space coordinate at the pixel in the frame buffer.

4. Save the render target as texture “Image 1,” as shown in Figure 7-7a.

Second Pass
1. Enable additive blending, and keep a float4 render target.1

2. Render a quad around every surface particle encapsulating the projection of their
influence area in image space, as shown in Figure 7-7b.

D D Di i
env

i
rep= + . (8)

Di
env Di

rep:

7.3 Local Particle Repulsion 137

1. On many GPUs, 32-bit floating-point blending is not supported, so blending will be performed with
16-bit floating-point numbers. However, the GeForce 8800 can do either.

107_gems3_ch07 6/16/2007 3:59 PM Page 137
FIRST PROOFS

138

3. Execute the fragment program, which compares the world-space position of the
particle stored at the center of the quad with the world-space position of a possible
neighbor particle stored in Image 1 at the pixel of the processed fragment, and then
outputs a repulsion force. See Figure 7-7c. The repulsion force is calculated accord-
ing to Equation 6.

4. Save the render target as texture “Image 2,” as shown in Figure 7-7d.

When two particles overlap during the first step, the frontmost particle is stored and
the other one discarded. By choosing a sufficient viewport resolution, we can keep this

Chapter 7 Point-Based Visualization of Metaballs on a GPU

Figure 7-7. The Repulsion Algorithm
(a) The particles (in black) are mapped to the screen pixels (the dashed lines), and their world
positions are stored. (b) A quad is drawn around a particle; for every pixel within a certain radius
(the disk), a position is read and a repulsion force is calculated. (c) The collection of forces after all
quads are rendered. (d) The forces that remain after additive blending.

(a) (b)

(c) (d)

107_gems3_ch07 6/16/2007 3:59 PM Page 138
FIRST PROOFS

loss of information to a minimum. However, losing a particle position does not harm
our visualization; because the top particle moves away from the crowded area due to
repulsion forces, the bottom particle will resurface.

The second step works because a particle’s influence area is a sphere. This sphere be-
comes a disk whose bounding box can be represented by a quad. This quad then con-
tains all projected particle positions within the sphere, and that is what we draw to
perform the nearest-neighbor search on the data stored in the first step.

Querying the generated image of repulsion forces is performed with the same transfor-
mation matrix M as the one active during execution of the two-pass repulsion algorithm.
To query the desired repulsion force for a certain particle, transform its world-space
position by using the transformation matrix to obtain a pixel location, and read the
image containing the repulsion forces at the obtained pixel.

We execute this algorithm, which results in an image of repulsion forces, separately
from the particle simulation loop, as demonstrated in Listing 7-3. Its results will be
queried before we determine a particle’s velocity.

Listing 7-3. Fragment Shader of Pass 2 of the Nearest-Neighbor Algorithm

void pass2main(
in float4 screenpos : WPOS,
in float4 particle_pos,
out float4 color : COLOR0,
const uniform float rep_radius,
const uniform samplerRECT neighbour_texture : TEXUNIT0

)
{
//Read fragment position.
float4 neighbour_pos = texRECT(neighbour_texture, screenpos.xy);

//Calculate repulsion force.
float3 posdiff = neighbour_pos.xyz - IN.particle_pos.xyz;
float2 distsq_repsq = float2(dot(posdiff, posdiff), rep_radius *

rep_radius);
if(distsq_repsq.x < 1.0e-3 || distsq_repsq.x > distsq_repsq.y)
discard;

float dist = sqrt(distsq_repsq.x);
float e1 = rep_radius - dist;

7.3 Local Particle Repulsion 139

107_gems3_ch07 6/16/2007 3:59 PM Page 139
FIRST PROOFS

140

Listing 7-3 (continued). Fragment Shader of Pass 2 of the Nearest-Neighbor Algorithm

float resultdens = e1*e1/distsq_repsq.y;
float3 resultforce = 5.0 * resultdens * posdiff / dist;

//Output the repulsion force.
color = float4(resultforce, resultdens);

}

7.4 Global Particle Dispersion
To accelerate the particle distribution process described in Section 7.3, we introduce a
particle dispersion method. This method acts immediately on the position of the sur-
face particles simulated by the GPU. We change the position of particles based on their
particle density—defined in Equation 5—which can be calculated with the same near-
est-neighbors algorithm used for calculation of repulsion forces. Particles from high-
density areas are removed and placed at positions in areas with low density. To this end,
we compare the densities of a base particle and a comparison particle to a certain
threshold T. When the density of the comparison particle is lowest and the density
difference is above the threshold, the position of the base particle will change in order
to increase density at the comparison position and decrease it at the base position. The
base particle will be moved to a random location on the edge of the influence area of
the comparison particle, as shown in Figure 7-8, in order to minimize fluctuations in
density at the position of the comparison particle. Such fluctuations would bring about
even more particle relocations, which could make the fluid surface restless.

It is infeasible to have every particle search the whole pool of surface particles for places
of low density on the fluid surface at every iteration of the surface particle simulation.
Therefore, for each particle, the GPU randomly selects a comparison particle in the
pool every t seconds, by using a texture with random values generated on the CPU.
The value of t can be chosen arbitrarily. Here is the algorithm:

For each surface particle:
1. Determine if it is time for the particle to switch position.

2. If so, choose the comparison position and compare densities at the two positions.

3. If the density at this particle is higher than the density at the comparison particle,
with a difference larger than threshold T, change the position to a random location
at the comparison particle’s influence border.

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 140
FIRST PROOFS

To determine the threshold T, we use a heuristic, minimizing the difference in densities
between the two original particle positions. This heuristic takes as input the particle
positions p and q, with their densities before any position change and It then
determines if a position change of the particle originally at p increases the density differ-
ence between the input positions. The densities at the (fixed) positions p and q after the
particle position change are and respectively. Equation 9 is used by the heuristic
to determine if there is a decrease in density difference after a position change, thereby
yielding the decision for a change of position of the particle originally located at p.

Because the original particle would move to the edge of influence of the comparison
particle—as you can see in Figure 7-8—the following equations hold in the case of a
position change.

σ σ

σ σ

p p

q q

k
1 0

1 0

= −

= ,
(10)

σ σ σ σp q p q1 1 0 0

2 2
−() < −() . (9)

σp1
σq1

,

σp0
σq0

.

7.4 Global Particle Dispersion 141

Figure 7-8. The Dispersion of Particles
The black dots are surface particles, and the circles represent their influence areas. Dashed circles
are neighboring particles’ influence areas. On the left is surface particle x, with its density higher
than surface particle y on the right. Therefore x might move to the edge of y’s influence area.

107_gems3_ch07 6/16/2007 3:59 PM Page 141
FIRST PROOFS

142

where k is the value at the center of the particle smoothing kernel, spWp(0, hp). Using
Equation 9, substituting Equation 10, and solving for the initial density difference, we
obtain Equation 11:

Equation 11 gives us the solution for our threshold T:

Still, it depends on the application of the dispersion algorithm if this threshold is
enough to keep the fluid surface steady. Especially in cases where all particles can decide
at the same time to change their positions, a higher threshold might be desired to keep
the particles from changing too much. The effect of our particle distribution methods
is visible in Figure 7-9. Both sides of the figure show a fluid simulation based on SPH,
but in the sequence on the left, only particle repulsion is enabled, and on the right,
both repulsion and dispersion are enabled. The particles sample a cylindrical fluid sur-
face during a three-second period, starting from a bad initial distribution. Figure 7-9
shows that our particle dispersion mechanism improves upon the standard repulsion
behavior considerably. We can even adapt the particle size based on the particle density,
to fill gaps even faster. (You’ll see proof of this later, in Figure 7-11.)

No matter how optimally the particle distribution algorithm performs, it can be aided
by selecting reasonable starting locations for the particles. Because we do not know
where the surface will be located for an arbitrary collection of fluid atoms, we try to
guess the surface by positioning fluid particles on a sphere around every fluid atom. If
we use enough surface particles, the initial distribution will make the surface look like a
blobby object already. We assign an equal amount of surface particles to every fluid
atom at the start of our simulation, and distribute them by using polar coordinates
(r, θ) for every particle, varying θ and the z coordinate of r linearly over the number of
surface particles assigned to a single atom.

Because particle dispersion acts on the positions of particles, we should query particle
densities and change positions based on those densities during the position calculation
pass in Figure 7-2. Listing 7-4 demonstrates a query on the repulsion force texture to
obtain the surface particle density at a certain position.

T s W hp p p= ()1
2 0, . (12)

σ σ σ σ σ σp q p q p qk k
0 0 0 0 0 0

1
2− − < −() = −() > . (11)

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 142
FIRST PROOFS

7.4 Global Particle Dispersion 143

Figure 7-9. The Distribution Methods at Work: Surface Particles Spread over a Group of Fluid
Atoms in the Form of a Cylinder
Every second a snapshot is taken. The left series uses only the repulsion mechanism, while the series on
the right also uses distribution. Apart from the distribution speed, the dispersion method also has the
advantage that surface particles do not move around violently due to extreme particle repulsion forces.

107_gems3_ch07 6/16/2007 3:59 PM Page 143
FIRST PROOFS

144

Listing 7-4. Excerpt from a Fragment Program Simulating the Position of a Surface Particle

void mainpos(
. . .
in float4 particle : TEXCOORD0,
out float4 color : COLOR0,
const uniform float time_step,
const uniform samplerRECT rep_texture : TEXUNIT5,
const uniform float4x4 ModelViewProj)

{
//ModelViewProj is the same as during repulsion calculation
//in Listing 7-3.

//oldpos and velocity passed through via textures

float3 newposition;
float normalintegration = 1.0;

//Perform the query.
float4 transformedpos = mul(ModelViewProj, oldpos);
transformedpos /= transformedpos.w;
transformedpos.xy = transformedpos.xy * 0.5 + 0.5;
transformedpos.xy = float2(transformedpos.x * screen_width,

transformedpos.y * screen_height);
float4 rep_density1 = texRECT(rep_texture, transformedpos.xy);

//1. If it’s time to compare particles (determine via a texture or
// uniform parameter)
//2. Make a query to obtain rep_density2 for another
// particle (determine randomly via texture).
//3. If the density difference is greater than our threshold,
// set newposition to edge of comparison particle boundary
// (normalintegration becomes false).

if(normalintegration)
newposition = oldpos + velocity*time_step;

//Output the newposition.
color.xyz = newposition;
color.a = 1.0;

}

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 144
FIRST PROOFS

7.5 Performance
The performance of our final application is influenced by many different factors.
Figure 7-2 shows three stages that could create a bottleneck on the GPU: the particle
repulsion stage, the constrained particle velocity calculation, and the particle dispersion
algorithm. We have taken the scenario of water in a glass from Figure 7-10 in order to
analyze the performance of the three different parts.

We found that most of the calculation time of our application was spent in two areas.
The first of these bottlenecks is the calculation of constrained particle velocities. To
constrain particle velocities, each particle has to iterate over a hash structure of fluid
atom positions, performing multiple texture lookups and distance calculations at each
iteration. To maximize performance, we have minimized the number of hash collisions
by increasing the number of hash buckets. We have also chosen smaller grid cell sizes to
decrease the number of redundant neighbors visited by a surface particle; the grid cell
size is a third to a fifth of a fluid atom’s diameter.

The second bottleneck is the calculation of the repulsion forces. The performance of
the algorithm is mainly determined by the query size around a surface particle. A
smaller size will result in less overdraw and faster performance. However, choosing a
small query size may decrease particle repulsion too much. The ideal size will therefore
depend on the requirements of the application. To give a rough impression of the actual
number of frames per second our algorithm can obtain, we have run our application a
number of times on a GeForce 6800, choosing different query sizes for 16,384 surface
particles. The query sizes are visualized by quads, as shown in Figure 7-10.

7.5 Performance 145

Figure 7-10. Surface Particle Query Area Visualized for a Glass of Water, Using 16,384 Particles
Blending is used to show the amount of overdraw, with a white pixel corresponding to 30 or more
overlapping particles. The bright quads at the lower right corner represent the queried area for a
single particle. The performance increases from 40 frames/sec in the leftmost scenario to 65
frames/sec in the middle, and 80 frames/sec on the right.

107_gems3_ch07 6/16/2007 3:59 PM Page 145
FIRST PROOFS

146

7.6 Rendering
To demonstrate the level of realism achievable with our visualization method, Figure 7-10
shows examples of a fluid surface rendered with lighting, blending, surface normal curva-
ture, and reflection and refraction. To render a smooth transparent surface, we have used
a blending method that keeps only the frontmost particles and discards the particles be-
hind others. The challenge lies in separating the particles on another part of the surface
that should be discarded, from overlapping particles on the same part of the surface that
should be kept for blending.

To solve the problem of determining the frontmost particles, we perform a depth pass
to render the particles as oriented quads, and calculate the projective-space position of
the quad at every generated fragment. We store the minimum-depth fragment at every
pixel in a depth texture. When rendering the fluid surface as oriented quads, we query
the depth buffer only at the particle’s position: the center of the quad. Using an offset
equal to the fluid atom’s radius, we determine if a particle can be considered frontmost
or not. We render those particles that pass the test. This way, we allow multiple overlap-
ping quads to be rendered at a single pixel.

We perform blending by first assigning an alpha value to every position on a quad,
based on the distance to the center of the quad. We accumulate these alpha values in an
alpha pass before the actual rendering takes place. During rendering, we can determine
the contribution of a quad to the overall pixel color based on the alpha value of the
fragment and the accumulated alpha value stored during the alpha pass.

Finally, we use a normal perturbation technique to increase detail and improve blend-
ing of the fluid surface. While rendering the surface as oriented quads, we perturb the
normal at every fragment slightly. The normal perturbation is based on the curvature of
the fluid density field at the particle position used for rendering the quad. The curva-
ture of the density field can be calculated when we calculate the gradient and density
field during the velocity constraint pass. Using the gradient, we can obtain a vector the
size of our rendered quad, tangent to the fluid surface. This vector is multiplied by the
curvature, a 3×3 matrix, to obtain the change in normal over the tangent vector. We
only store the change in normal projected onto the tangent vector using a dot product,
resulting in a scalar. This is the approximation of the divergence at the particle position
(while in reality it constitutes only a part of the divergence). This scalar value is stored,
and during surface rendering it is used together with the reconstructed tangent vector
to form a perturbation vector for our quad’s normal.

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 146
FIRST PROOFS

7.7 Conclusion
We have presented a solution for efficiently and effectively implementing the point-
based implicit surface visualization method of Witkin and Heckbert 1994 on the GPU,
to render metaballs while maintaining interactive frame rates. Our solution combines
three components: calculating the constraint velocities, repulsion forces, and particle
densities for achieving near-uniform particle distributions. The latter two components
involve a novel algorithm for a GPU particle system in which particles influence each
other. The last component of our solution also enhances the original method by accel-
erating the distribution of particles on the fluid surface and enabling distribution
among disconnected surfaces in order to prevent gaps. Our solution has a clear per-
formance advantage compared to marching cubes and ray-tracing methods, as its com-
plexity depends on the fluid surface area, whereas the other two methods have a
complexity depending on the fluid volume.

Still, not all problems have been solved by the presented method. Future adaptations of
the algorithm could involve adaptive particle sizes, in order to fill temporarily originat-
ing gaps in the fluid surface more quickly. Also, newly created disconnected surface
components do not always have particles on their surface, which means they are not
likely to receive any as long as they remain disconnected. The biggest problem, how-
ever, lies in dealing with small parts of fluid that are located far apart. Because the re-
pulsion algorithm requires a clip space encapsulating every particle, the limited
resolution of the viewport will likely cause multiple particles to map to the same pixel,
implying data loss. A final research direction involves rendering the surface particles to
achieve various visual effects, of which Figure 7-11 is an example.

7.7 Conclusion 147

Figure 7-11. Per-Pixel Lit, Textured, and Blended Fluid Surfaces
Left: A blobby object in a zero-gravity environment. Right: Water in a glass.

107_gems3_ch07 6/16/2007 3:59 PM Page 147
FIRST PROOFS

148

7.8 References
Blinn, James F. 1982. “A Generalization of Algebraic Surface Drawing.” In ACM Trans-

actions on Graphics 1(3), pp. 235–256.

Latta, Lutz. 2004. “Building a Million Particle System.” Presentation at Game Devel-
opers Conference 2004. Available online at http://www.2ld.de/gdc2004/.

Lorensen, William E., and Harvey E. Cline. 1987. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.” In Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pp. 163–169.

Müller, Matthias, David Charypar, and Markus Gross. 2003. “Particle-Based Fluid
Simulation for Interactive Applications.” In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159.

Parker, Steven, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan.
1998. “Interactive Ray Tracing for Isosurface Rendering.” In Proceedings of the Con-
ference on Visualization ’98, pp. 233–238.

Pascucci, V. 2004. “Isosurface Computation Made Simple: Hardware Acceleration,
Adaptive Refinement and Tetrahedral Stripping.” In Proceedings of Joint
EUROGRAPHICS3—IEEE TCVG Symposium on Visualization 2004.

Teschner, M., B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross. 2003.
“Optimized Spatial Hashing for Collision Detection of Deformable Objects.” In
Proceedings of Vision, Modeling, Visualization 2003.

Vrolijk, Benjamin, Charl P. Botha, and Frits H. Post. 2004. “Fast Time-Dependent
Isosurface Extraction and Rendering.” In Proceedings of the 20th Spring Conference on
Computer Graphics, pp. 45–54.

Witkin, Andrew P., and Paul S. Heckbert. 1994. “Using Particles to Sample and Con-
trol Implicit Surfaces.” In Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, pp. 269–277.

Chapter 7 Point-Based Visualization of Metaballs on a GPU

107_gems3_ch07 6/16/2007 3:59 PM Page 148
FIRST PROOFS

