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Modeling for control of
an inflatable space
reflector, the linear 1-D
case∗

T. Voß†, J.M.A. Scherpen‡, and A.J. van der Schaft§

Abstract: In this paper we develop a mathematical model of the dynamics for

an inflatable space reflector, which can be used to design a controller for the shape of the

inflatable structure. Inflatable structures have very nice properties, suitable for aerospace

applications. We can construct e.g. a huge light weight reflector for a satellite which

consumes very little space in the rocket because it can be inflated when the satellite is in

the orbit. So with this technology we can build inflatable reflectors which are about 100

times bigger than solid ones. But to be useful for telescopes we have to actively control

the surface of the inflatable to achieve the desired surface accuracy. The starting point of

the control design is modeling for control, in our case port-Hamiltonian (pH) modeling.

We will show how to derive an infinite and also finite dimensional port-Hamiltonian model

of a 1-D Euler-Bernoulli beam with piezo actuation. In the future we will also focus on

2-D models.

Keywords: flexible structure, port-Hamiltonian, distributed, discretization

1 Introduction

Inflatable structures are a very promising technology for space applications [4].
With this emerging technology we are able to build up to 100 times bigger space
crafts, which are up to 10 times cheaper in terms of costs but still use the same
space in the orbiting device. But inflatable structures have one big disadvantage
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†University of Groningen, Faculty of Mathematics & Natural Sciences, Nijenborgh 4, 9747 AG
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and that is the lack of stiffness and weight of the material.
Due to the fact that any inflatable structure is build of a polymer casing, it

is clear that an inflatable structure is not able to have the same surface accuracy
as a rigid body. This disadvantage makes it at the moment hard to use inflatable
structures in high accuracy situations.

The solution for this problem is to use smart materials which have the possi-
bility to change their properties on demand, e.g. piezoelectric polymers [9]. Because
these materials are made of polymers it is possible to build extremely thin actuators
which then can be bonded to the casing of our inflatable structure.

In this paper we show how to develop a model for a 1-D flexible structure with a
piezoelectric element as actuator in the port-Hamiltonian (pH) modeling framework
[1]. The here proposed approach is somewhat different to [5, 10], because we aim
at different configurations of the piezoelectric composite, we also propose how to
derive a lumped model for a small piece of the beam (local model) and show how
to interconnect these local models to derive a pH-model of the complete beam. We
approach the problem with to purpose to extend it to the 2-D and 3-D cases in the
future.

In Section 2 we introduce the basic physical relations which we use to formulate
our model. After this is accomplished we define in Section 3 a distributed pH
model for a piezoelectric beam which is based on the ideas of [5], but we focus on
a specific beam model (Euler-Bernoulli beam). Additionally we also show how to
discretize the distributed model in a finite differences approach. The result of the
discretization is a lumped model which describes the dynamics of a small part of
the beam. To achieve a lumped model which represents the full dynamics of the
beam we have to interconnect the local models, see Section 4. Finally in Section 5
we show how the proposed model can be used to define a model for a piezoelectric
composite, which will be a possible actuator for the shape control of an inflatable
structure.

The proposed model can also be used for modeling other structure, namely any
flexible structure with a piezo actuation e.g. for vibration control in civil engineering.

2 Background on Continuum dynamics and the
piezoelectric effect

In this section we briefly introduce the physics we use in the following sections. In
this paper we focus only on linear materials and small/linear strains [2, 7].

We first take a look at the constitutive equations of our model. If we consider
a beam without a piezo actuation we know from Hooke’s Law that the stress-strain
relations can be described as

σ = CEε,

where we used the common matrix notation instead of the tensor notation. Here σ
is the stress, ε the related strain and CE a matrix which relates the stress and the
strain. In general σ and ε are second order tensors of dimension 3, e.g. σij describes
the stress in the i.j direction (i, j ∈ {1, 2, 3}), and CE is a fourth order tensor. The
subscripts corresponds to directions in our coordinate system, 1 corresponds to x,
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2 to y and 3 to the z direction.
For piezoelectric material we additionally have that the piezo effect induces

an additional strain in the material which is caused by an electrical field (actua-
tion property). Similarly the deformation of the piezoelectric element also changes
the electrical field in our element (sensing property). So the coupled constitutive
relations for piezo electric material [8] can be described as

[

σ
D

]

=

[

CE −eT

e εe

] [

ε
E

]

. (1)

Here D is the electrical displacement and E is the electrical field in the piezo element,
εe is the electrical permittivity and e is the piezoelectric constant of the material.

The strain ε in our beam is related to the deformation u of the beam. The elec-
trical field and the electrical displacement can be described by Maxwell’s equations.
So we can state the compatibility equations as

εij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, Ei = −
∂ϕ

∂xi
, ρe =

∑

i

∂Di

∂xi
, (2)

here ϕ is the electrical potential and ρe is the electrical charge density. Note: x1 = x,
x2 = y and x3 = z.

The dynamical equilibrium of piezoelectric material can be described by New-
ton’s laws (balance of mechanical forces). We can state it as

ρüi =
∑

j

∂σij

∂xj
+ fi (3)

where ρ is the density of the material and fi is a component of the body force acting
on the material.

3 Port-Hamiltonian modeling of an piezoelectric
Euler-Bernoulli beam

In this section we want to introduce a port-Hamiltonian (pH) model, see [1, 6, 5],
for a flexible piezoelectric beam, described in the Euler-Bernoulli framework. We
assume that a body force is acting on the beam (fi). We will first derive an infinite
dimensional pH model and then spatially discretize this model to get a discretized
pH model. The discretization we use here is based on finite differences, but there
are also other discretization methods for distributed pH systems, see [3].

3.1 Infinite dimensional model

To derive the distributed pH model for our beam, we first have to define the dis-
placements which take place in our beam. For an Euler-Bernoulli beam it is in
general assumed that the displacement takes place in the x and z direction only. So
we have pure bending. The displacement vector can be described as
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u(x, z) = [u0(x) − zφ(x), 0, w(x)]T

where u0(x) is the displacement of a material point at the neutral line of the beam
and w(x) describes the deflection of the beam from the undeformed configuration,
φ(x) is defined to be the slope of the beam so φ(x) = ∂w

∂x
, see Figure 1.

deformed

undeformed

x

z

∂w
∂x

−z ∂w
∂x

w(x)

u0(x)

Figure 1. Deformation of a
beam under external influences

If we now derive all strains with (2) we know
that for an Euler-Bernoulli beam it holds
that all strains are zero except the one in
the x-direction which is given as,

ε11(x, z) =
∂u0

∂x
(x)−z

∂φ

∂x
(x) = ε0(x)−zκ(x).

Because all other strains are zero we neglect
the subscripts for the strain.

Before we define the energies stored in
the beam due to bending we have to define
the geometry of the beam. The beam will
have the length L (x ∈ [0, . . . , L]) a height
of b − a (z ∈ [a, b], a < b), and a width
which is non-uniform but symmetric (y ∈

[−g(x), g(x)]). A non-uniform width of the beam is needed to be able to tune the
induced strain depending on the position along the x-axis. So we see that the cross
sectional area (in the yz-plane) of the beam is depending on the position along
the beam. In the sequel, we denote A(x) as A, but we have to keep in mind the
dependency on x, see Figure 2.

z

y
A(x)

a

b

g(x)

Figure 2.
Cross sectional area
of the beam

Now we also state some assumptions for the electrical field E
of the piezoelectric beam. To be able to connect the beam to
an electrical power source the upper and on the lower side of
the beam are covered with an electrode. Due to the applied
potential an electrical field will be created. We assume that
the electrical field has only a z-component and varies linearly
over the thickness of the piezo (Ez $= 0, Ex = Ey = 0), see
[7]. Therefore, we can define Ez to be

Ez = E2z + E1.

Because of Maxwell’s equations (Ez = − ∂
∂z
ϕz) it follows that the electrical potential

between the two electrodes is quadratic in z direction

ϕz =
1

2
ϕ2z

2 + ϕ1z + ϕ0.

Hence we have the following relation between the applied potential and the induced
electrical field,

E1 = −ϕ1, E2 = −ϕ2.
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Now we formulate equations for the energy stored in the beam. First we take a
look at the kinetic energy of our beam. If we define p = ρu̇ to be the moment at a
specific point in the beam we can express the kinetic energy in the beam as

K =

∫ L

0

∫

A

‖p‖2

ρ
dAdx.

It is easy to see that the kinetic energy defined as a volume integral, but p depends
only on x. In consequence, we can express the kinetic energy as a line integral if we
integrate first over the cross sectional area of the beam,

∫

A

‖p‖2

ρ
dA =

∫

A

(u̇0 − zφ̇)2 + ẇ2dA.

Then we can rewrite the kinetic energy as

K =
1

2

∫ L

0

ρ
(

Au̇2
0 − 2I0u̇0φ̇+ Iφ̇2 + Aẇ2

)

dx =
1

2

∫ L

0

p̃T M−1p̃dx,

where

p̃ =





ρA −ρI0 0
−ρI0 ρI 0

0 0 ρA









u̇0

φ̇
ẇ



 = M
∂

∂t
ũ,

where p̃ =
[

p1 p2 p3

]T
, ũ =

[

u0 φ w
]T

.
Note that I =

∫

A
z2dA $= 0 and I0 =

∫

A
zdA = 0 ∀x ∈ [0, L], if we choose

centroidal coordinates (a = −b).
The potential energy stored in our beam consist of mechanical and electrical

energy. The potential energy can be described as

P =
1

2

∫ L

0

∫

A

[

ε
E

]T [

CE e
−e εe

]T [

ε
E

]

dAdx

As we did for the kinetic energy we now calculate the integral over the cross sectional
area of the potential energy to define the potential energy as a line integral.

We first put our attention to the mechanical potential energy,
∫

A

σεdA =

∫

A

σdAε0 +

∫

A

−zσdAκ = κ
(

CEAε0 − CEI0κ− eAE1 − eI0E2

)

ε0

+
(

−CEI0ε0 + CEIκ+ eI0E1 + eIE2

)

κ.

The same we do for the electrical potential energy,
∫

A

DE dA =

∫

A

DzdAE2 +

∫

A

DdAE1 = (eAe0 − eI0κ+ εeAE1 + εeI0E2) E1

+(eI0ε0 − eIκ+ εeI0E1 + εeIE2) E2.

So we can rewrite our constitutive equations (1) for the 1D case as
[

σ̃

D̃

]

=

[

CEN1 −eNT
2

eN2 εeN3

] [

ε̃

Ẽ

]

,
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where

σ̃ =

[

σ1

σ2

]

, D̃ =

[

D1

D2

]

, ε̃ =

[

ε0
κ

]

, N1 =

[

A −I0

−I0 I

]

,

N2 =

[

A −I0

I0 −I

]

,N3 = |N1| .

With this definition we are able to rewrite our energy function in the following way

P =
1

2

∫ L

0

[

ε̃

Ẽ

]T [

CEN1 −eNT
2

eN2 εeN3

] [

ε̃

Ẽ

]

dx.

So the Hamiltonian of a 1D piezoelectric beam is given as

H(p̃, ε̃, Ẽ) = K(p̃) + P (ε̃, Ẽ).

Together with the equations of motion (3) we can define the distributed port-
Hamiltonian model as







˙̃ε
˙̃p
˙̃E







=





0 ∂
∂x

I2 0
∂
∂x

I2 0 0
0 0 0









∇ε̃H
∇p̃H
∇ẼH



 +





0 0
I3 0
0 −I2

















f1

f2

f3

ϕ̇1

ϕ̇2













y =





0 0
I3 0
0 −I2





T 



∇ε̃H
∇p̃H
∇ẼH



 ,

with In is the unit matrix of size n.
For this equation we used the fact that ż = 0 because the cross sectional area

of our beam does not vary in time so

Ė = Ė1 + zĖ2 = −
∂ϕ̇

∂z
= −ϕ̇1 − zϕ̇2.

3.2 Spatial discretization

Next we want to derive a finite dimensional pH model which describes the dynamics
for an element at spatial position xL of length ∆x based on the forces acting on
the boundary’s of the element. To do this we first define the following flows and
effort at the boundary’s. We define the right boundary to xR = xL + ∆x. Here
the subscripts L and R are used to identify a state at the left and right boundary,
respectively. The discretization in this chapter will be done via finite differences
∂
∂x

f(x) ≈ 1
∆x

(f(x + ∆x) − f(x)).

flows efforts

u̇0(xL) = fL
d u̇0(xR) = fR

d σa
1 (xL) + ∆xf1 = eL

d + ef1
σa

1 (xR) = eR
d

φ̇(xL) = fL
r φ̇(xR) = fR

r σa
2 (xL) + ∆xf2 = eL

r + ef2
σa

2 (xR) = eR
r

ẇ = fp ρe
1 = fe

1 f3∆x = ep φ̇e
2 = ee

2

ρe
2 = fe

2 φ̇e
1 = ee

1
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We know that the strains ε0 and κ are defined as spatial derivatives of u0 and φ,
respectively. So we define the following discretized equations of motion

κ̇aε̇a0 = u̇R
0 − u̇L

0 = fR
d − fL

d , κ̇a = φ̇R − φ̇L = fR
r − fL

r .

With this formulation of strain we have to rewrite the constitutive equations in the
following way,

[

σ̃a

D̃a

]R

=

[

1
∆x

CEN1 −eN2
1

∆x
eN2 εeN1

] [

ε̃a

Ẽa

]

.

If we define the discretized moments pa to be

p̃a = ∆xMu,

we can define the equations of moments for them to be

˙̃pa =

[

σ̃a

0

]R

+

[

σ̃a

0

]L

+ ∆x





f1

f2

f3



 =





eR
d

eR
r

0



 −





eL
d

eL
r

0



 +





ef1

ef2

ef3



 .

Then we have everything we need to define the port-Hamiltonian model, which is
given as







˙̃εa

˙̃pa

˙̃Ea







=





0 −I2 0
I2 0 0
0 0 0



∇xH +









I2 0 0 0 0
0 −I2 I2 0 0
0 0 0 1 0
0 0 0 0 −I2









u

y =









I2 0 0 0 0
0 −I2 I2 0 0
0 0 0 1 0
0 0 0 0 −I2









T

∇xH,

where

∇xH =
[

eR
d , eR

r , fL
d , fL

r , fp, fe
1 , fe

2

]T
, u =

[

fR
d , fR

r , eL
d , eL

r , ef1
, ef2

, ef3, ee
1, ee

2

]T

According to the discretization, the Hamiltonian is given as

H =
1

2∆x
p̃aM−1p̃a +

1

2

[

ε̃a

Ẽa

]T [

1
∆x

CEN1 −eN2
1

∆x
eN2 εeN1

]T [

ε̃a

Ẽa

]

4 Interconnection of the lumped port-Hamiltonian
model

Next we construct a lumped port-Hamiltonian model for the full piezoelectric beam.
The model derived in Section 3 represents the dynamics of a small element at a
specific point x. To derive a model which represents the full beam we first divide
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our beam in n sub parts with length ∆x = L
n
. Then we define n local pH models

which we have to interconnect such that we have the global model of the beam.
To be able to interconnect the model we identify the inputs and outputs of

our local system to be able to connect them to the left and right local model. The
inputs and outputs of the local piezoelectric beam model are given as

Inputs Outputs

fR
d = u̇0(xR) ef2

= ∆xf2(xL) eR
d = σa

1 (xR) fL
r = φ̇(xL)

fR
r = φ̇(xR) ep = f3∆x eR

r = σa
2 (xR) fp = ẇ

eL
d = σa

1 (xL) φ̇e
1 = ee

1 fL
d = u̇0(xL) ρe

1 = fe
1

eL
r = σa

2 (xL) φ̇e
2 = ee

2 fL
r = φ̇(xL) ρe

2 = fe
2

ef1
= ∆xf1(xL) fL

d = u̇0(xL)

First we identify the ports which are due to external influences or due to internal
influences (induced by port-Hamiltonian model at xi−1 or xi+1). It is obvious that
the external power ports, induced by external mechanical and electrical sources, are

External Inputs External Outputs

ef1
= ∆xf1(x) fL

d = u̇0(x)

ef2
= ∆xf2(x) fL

r = φ̇(x)
ep = f3∆x fp = ẇ

φ̇e
1 = ee

1 ρe
1 = fe

1

φ̇e
2 = ee

2 ρe
2 = fe

2

Through these ports we can exchange energy with the outside world.
The internal ports of the system at xi are used to exchange energy with the

systems at xi−1 and xi+1. It is easy to see that the output of the system at xi is
the input for the system at xi+1 and vice versa. Similarly the output of the system
xi−1 is the input of xi. This gives us the following ports to the system at xi+1 and
xi−1.

Inputs from Outputs for

xi+1 xi−1 xi+1 xi−1

fR
d = u̇0(xR) eL

d = N(xL) eL
d = N(xL) fL

d = u̇0(xL)

fR
r = φ̇(xR) eL

r = M(xL) eL
r = M(xL) fL

r = φ̇(xL)

The schematics of the described power exchange are shown in Figure 3.

5 Modeling of a symmetric piezoelectric composite

In this section we want to define a system that describes the dynamics of a piezo-
electric composite. The composite consists of a base layer to which on both sides a
piezoelectric layer is bonded. The model of a single layer was already given in Sec-
tion 3. The reason why we chose a piezoelectric composite which has a piezoelectric
patches at both sides is that with this we can induce twice the actuation force, if we
let deform both patches in the same way. It is also possible to use one piezoelectric
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ef1
, ef2

, ep

fR
d , fR

r

eL
d , eL

r

eR
d , eR

r

fL
d , fL

r
Hi−1 Hi Hi+1

fe
1 , fe

2

fp, fd
L, fL

r

ee
1, ee

2

Figure 3. Interconnection of discretized pH-models

patch as a sensor and the other as an actuator. This are big advantages compared
to a composite where we have only one piezoelectric patch attached to the base
layer. Since the material of the two piezoelectric layers is the same, the constitutive
equations for them are the same, see (1).

Therefore, we first define the connection between the layers. Because in our
final system the piezo-electric layers are bonded to the base layer, the strains in all
3 layers are the same. These constraints assure the perfect bonding so

εb = εp1
= εp2

.

In the sequel we will use the subscript b to identify the base layer, the subscript p1

for the upper piezo-electric layer, and the subscript p2 for the lower piezo-electric
layer. From the continuity of strain it also automatically follows that the ub =
up1

= up2
⇒ u̇b = u̇p1

= u̇p2
.

z

yg(x)

hp

hb

d

Figure 4.
Cross sectional area
of the composite

Before we try to express the total stored energy as a line
integral we have to define the geometry of our system, see
Figure 4. We assume that the base layer has a constant
thickness (2d) and a constant height 2hb while the length is
L. We also define that the origin of the yz-Plane is in the
center of mass of the base layer. So the cross sectional area
of the base layer Ab is [−d, d]× [−hb, hb]. With this it follows
that Ib,0 =

∫

Ab
zdAb = 0. On top of the base layer the piezo-

electric layer is bonded. The height of the layer is hp and
the width is depending on x (2g(x)). We also assume that
the width is symmetric with the x-axis. Then we define the

cross sectional area of the piezo-electric layer Ap1
(x) as [−g(x), g(x)]× [hb, hb + hp].

Under the base layer we also have attached a piezo electric patch which has the
same geometry so that the cross sectional area Ap2

is [−g(x), g(x)]×[−hb,−hb − hp].
With this given geometry we can formulate the total stored energy as a line integral.

Remark 1: If we take a look at the constants I, I0 and A for every layer
we find the following relations, Ib,0 = 0, Ap1

= Ap2
, Ip1,0 = −Ip2,0, Ip1

= Ip2
.

The energy stored in the composite will be the sum of the energy’s stored in
the three layers,

Htot = Hb + Hp1
+ Hp2

.
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In Section 3 we already defined the model for a piezo-electric beam as a line integral.
The model for the base layer is the same except that all electrical terms are zero.
And thus we can now combine these models to derive a model which describes the
dynamics of the piezoelectric composite. First we find a global expression for the
total kinetic energy as a line integral. The total kinetic energy is given as

Ktot =
1

2

∫ L

0

p̃T
b M−1

b p̃b + p̃T
p1

M−1
p1

p̃p1
+ p̃T

p2
M−1

p2
p̃p2

dx,

where

p̃b = Mb
∂

∂t
ũ, p̃pi = Mpi

∂

∂t
ũ, Mb =





ρbAb 0 0
0 ρbIb 0
0 0 ρbAb





Mpi =





ρpApi −ρpIpi,0 0
−ρpIpi,0 ρpIpi 0

0 0 ρpApi



 .

Now we can combine the kinetic energy in the following way

Ktot =
1

2

∫ L

0

p̃T
totM

−1
totp̃totdx,

with

p̃tot = Mtot
∂

∂t
ũ, Mtot = Mb + Mp1

+ Mp2
.

Next we do the same for the mechanical potential energy. It is the sum of the
mechanical potential energy’s of the three layers, so

Ptot = Pb + Pp1
+ Pp2

.

From Section 3 we already have an expression as a line integral for each po-
tential energy. So we have to combine these expression to get the total potential
energy. So

Ptot =
1

2

∫ L

0

ε̃T CE
b Nb,1ε̃+

2
∑

i=1

[

ε̃

Ẽpi

]T [

CE
p NT

pi,1
eNpi,2

−eNT
pi,2

εeNT
pi,3

] [

ε̃

Ẽpi

]

,

where

Nb,1 =

[

Ib 0
0 Ab

]

, Npi,1 =

[

Ipi −Ipi,0

−Ipi,0 Api

]

,Np1/2,2 =

[

Api −Ipi,0

Ipi,0 −Ipi

]

Npi,3 = |Npi,2| , ε̃ =

[

ε0
κ

]

, Ẽp1
=

[

Ep1,1

Ep1,2

]

, Ẽp2
=

[

Ep2,1

Ep2,2

]

.

We are able to rewrite this potential energy if we use the following constitutive
equations





σ̃

D̃p1

D̃p2



 =





C11 −CT
21 −CT

31

C21 C22 0
C31 0 C33









ε̃

Ẽp1

Ẽp2



 ,
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!

where

C11 = CE
b Nb,1 + 2CE

p (Np1,1 + Np2,1) , C21 = eNp1,1,

C22 = εeNp1,3, C31 = eNp2,1, C33 = εeNp2,3.

With this definition we are able to rewrite our energy function as

H =
1

2

∫ L

0

p̃T
totMp̃tot +





ε̃

Ẽp1

Ẽp2





T 



CT
11 CT

21 CT
31

−CT
21 CT

22 0
−CT

31 0 CT
33









ε̃

Ẽp1

Ẽp2



 dx

The equations of motion for our system are defined in the same way as in Section 3
except that we now have two electrical fields. With this in mind we can formulate
the following port-Hamiltonian model











˙̃ε
˙̃ptot

˙̃Ep1

˙̃Ep2











=





0 ∂
∂x

I2 0
∂
∂x

I2 0 0
0 0 0













∇ε̃H
∇p̃totH
∇Ẽp1

H

∇Ẽp2
H









+





0 0
I3 0
0 −I4

























f1

f2

f3

ϕ̇p1,1

ϕ̇p1,2

ϕ̇p2,1

ϕ̇p2,2





















y =





0 0
I3 0
0 −I4





T








∇ε̃H
∇p̃totH
∇Ẽp1

H

∇Ẽp2
H









.

Remark 2: The discretization can be done in the same way as it is done in
Section 3.2, therefore we will not state it here.

6 Concluding remarks

In this paper we have determined a model for an inflatable structure in an pH
framework. The modeling was done in a pH formulation in such a way that it can be
used for an energy based control methods. The achieved model is a linear pH model
which can easily be used to represent the dynamics of a piezo electric composite
beam. Also the fact that the system can be expressed as an interconnection of
subsystems simplifies the way to express a more complex system.

For the future we aim at including large/nonlinear deformations in the pH
model. Additionally we want to derive a 2D-model.
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