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Pex14 was initially identified as a peroxisomal membrane protein 
that is involved in docking of the soluble receptor proteins Pex5 and 
Pex7, which are required for import of PTS1‑ or PTS2‑containing 
peroxisomal matrix proteins. However, Hansenula polymorpha 
Pex14 is also required for selective degradation of peroxisomes 
(pexophagy). Previously we showed that Pex1, Pex4, Pex6 and 
Pex8 are not required for this process. Here we show that also in 
the absence of various other peroxins, namely Pex2, Pex10, Pex12, 
Pex13 and Pex17, pexophagy can normally occur. These peroxins 
are, like Pex14, components of the peroxisomal translocon. Our 
data confirm that Pex14 is the sole peroxin that has a unique dual 
function in two apparent opposite processes, namely peroxisome 
formation and selective degradation.

Introduction

Autophagy is a highly conserved process that is responsible for the 
recycling of cytoplasmic components by the vacuole/lysosome.1 Both 
selective and non-selective autophagic processes have been described 
(ref. 2). Pexophagy involves the selective degradation of peroxisomes. 
In the methylotrophic yeast Hansenula polymorpha, pexophagy is 
induced upon a shift of methanol‑grown cells to glucose.3,4 This 
process, termed macropexophagy, initiates with the recognition 
and subsequent sequestration of a single peroxisome by multiple 
membrane layers, followed by fusion of the outer sequestering 
membrane layer with the vacuole membrane and finally degradation 
of the entire organelle by vacuolar enzymes.5

Besides numerous autophagy‑related (ATG)6 genes, also the 
peroxisomal membrane protein Pex14 was shown to play an essen-
tial role in pexophagy, most likely in the initial recognition of the 
organelle to be degraded by the autophagy machinery.3,7,8 Initially, 
Pex14 was identified as a peroxin involved in matrix protein import 
as it is thought to recruit the PTS1 and PTS2 receptor proteins, 
Pex5 and Pex7, respectively, to the peroxisomal membrane.9,10 Later 
studies identified two other components of the receptor docking 

complex, Pex13 and Pex17. A second protein complex in the 
peroxisomal membrane that is involved in matrix protein import 
is formed by three RING finger proteins, Pex2, Pex10 and Pex12. 
Both the docking and RING finger complexes can associate to form 
a super‑complex.11,12 Here we show none of the peroxins of the 
peroxisomal translocon besides Pex14 are essential for pexophagy.

Material and Methods

Organisms and growth. The H. polymorpha strains used in this 
study are listed in Table 1. Cells were cultivated at 37˚C using 
either YPD medium (1% yeast extract, 1% peptone, 1% glucose), 
or mineral medium (as described previously, ref. 13). For analysis 
of peroxisome degradation, cells were precultivated using mineral 
medium containing 0.25% (w/v) ammonium sulphate and 0.25% 
(w/v) glucose as sole nitrogen and carbon sources respectively. 
Cells were subsequently shifted to 0.05% (w/v) glycerol and 0.5% 
(w/v) methanol as carbon sources. Exponential glycerol/methanol 
cultures were shifted to medium containing 0.5% (w/v) glucose to 
induce pexophagy.7 When required, media were supplemented with  
30 mg/ml leucine or appropriate antibiotics. For growth on plates, 
2% agar was added to the media. Escherichia coli DH5a was used 
as host for propagation of plasmids using LB supplemented with 
appropriate antibiotics at 37˚C as described.14

Construction of strains. Each of the pex strains as well as wild‑ 
type and mutant atg1 were transformed with either SphI‑linearized 
pHIPX4 N50.PEX3.GFP15 or pHIPZ4 N50.PEX3.GFP16 (as 
described, refs. 14 and 17). producing N50.Pex3.GFP under the 
control of the alcohol oxidase promoter.

Microscopy. For fluorescence microscopy, 1 ml cell culture was 
supplemented with 2 mM FM 4‑64, incubated for 45 minutes 
at 37˚C and analyzed with a Zeiss Axioskop microscope (Carl 
Zeiss, Göttingen, Germany). Electron microscopy was performed 
as described previously (ref. 18). Ultrathin sections of unicryl‑ 
embedded cells were used for immunocytochemistry, using poly-
clonal antiserum against GFP and gold‑conjugated goat anti‑rabbit 
antiserum.

Biochemical methods. Cell extracts were prepared as detailed 
previously (ref. 15). Equal volumes of the cultures were subjected 
to SDS‑polyacrylamide gel electrophoresis, followed by western blot 
analysis.19,20 Blots were probed with rabbit polyclonal antiserum 
against alcohol oxidase, Pex10 or GFP followed by detection using 
either the Protoblot immunoblotting system (Promega Biotec) 
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or BM Chemiluminescent Western blotting kit 
(Roche Molecular Biochemicals, Almere).

Blots were scanned using a densitometer 
(Biorad GS‑710, Hercules, CA, USA) and 
quantified using Image J (version 1.37); three 
measurements were performed on each band of 
three individual experiments per strain.

Results

To investigate whether besides Pex14 other 
peroxins of the docking or RING finger 
sub‑complexes are required for glucose induced 
pexophagy, we studied degradation of peroxisome 
remnants in single PEX deletion strains (pex2, 
pex12, pex13 and pex17). The degradation of 
peroxisomal membrane remnants was monitored 
by the analysis of the levels of the peroxisomal 
membrane protein Pex10, using western blotting 
and anti‑Pex10 antibodies.3

Development of various peroxisome remnants21 was induced by 
growing the cells on a mixture of glycerol and methanol, followed 
by a shift of these cells to glucose‑excess conditions. The levels of 
the peroxisomal membrane protein Pex10 gradually decreased in all 
mutants similar to the wild‑type controls, although the kinetics of 
degradation may slightly vary (as shown in Fig. 1A). This is exem-
plified by the data from pex17 cells that showed a relatively slow 
decrease of Pex10. As a negative control, atg1 cells were analyzed in 
which pexophagy is blocked.22 In these cells the Pex10 levels did not 
significantly decrease upon a shift of the cells to glucose medium.

To confirm degradation of the organelles in the vacuole, we also 
used an artificial marker protein, consisting of the first 50 N‑terminal 
amino acids of Pex3 fused to enhanced Green Fluorescent Protein 
(eGFP; N50.Pex3.GFP). The first 50 N‑terminal residues of Pex3 
contain targeting information for the peroxisomal membrane and 
serve as specific anchor to mark the peroxisomal membrane with 
GFP. However, this short peptide of Pex3 is not functional in peroxi-
some biogenesis or degradation.15

Electron microscopy showed that the hybrid protein also normally 
sorted to the peroxisome remnants (shown for pex13, Fig. 1B). In 
fluorescence microscopy, these remnant structures are visualized as 
single fluorescent spots per cell.23 We also introduced the N50.PEX3.
GFP expression cassette in two control strains, namely in wild‑type 
and atg1 cells.

Western blot analysis revealed that upon a shift of N50.Pex3.
GFP‑producing wild‑type cells from glycerol/methanol to glucose, 
the levels of the hybrid protein gradually decreased (Fig. 1C). The 
decrease of the protein levels of peroxisomal alcohol oxidase (AO) 
indicated that synthesis of N50.Pex3.GFP did not influence degrada-
tion of a homologous marker protein. Degradation of peroxisomal 
proteins was paralleled by the appearance of green fluorescence in 
the vacuoles as shown in Figure 1D, in contrast to full length Pex3 
which is removed from the peroxisomal membrane before uptake of 
the organelle by the vacuole.24 In H. polymorpha atg1 cells producing 
N50.Pex3.GFP, however, N50.Pex3.GFP and AO levels did not 
decrease (Fig. 1C) and GFP‑fluorescence was not observed in the 
vacuoles (Fig. 1D).

In addition to pex2, pex12, pex13 and pex17 we now also studied 
the fate of peroxisomal ghosts in pex10 cells. Each of the pex mutants 

producing N50.Pex3.GFP was pre-cultivated in media containing 
glycerol/methanol and exposed to excess glucose conditions. Western 
blot analysis revealed that upon the shift N50.Pex3.GFP levels 
decreased in all mutant strains, similar to the wild‑type control 
(Fig. 2A, shown for pex10 cells; Fig. 2B, quantification). Also by 
this method, the kinetics of degradation was slowest in pex17 cells. 
Fluorescence microscopy revealed that in all cases green fluorescence 
appeared in the vacuole (Fig. 2C; only shown for pex13 cells). To 
confirm that in pex17 cells the peroxisomal remnants were indeed 
subject to pexophagy, we analyzed pex17 cells by electron microscopy 
upon a shift of glycerol/methanol grown cells to glucose. Shortly 
after induction of pexophagy, additional membranes were formed 
around the peroxisomal remnants, a typical feature of the initial 
stages of pexophagy (Fig. 3).4 Taking together these and earlier data, 
we conclude that of all H. polymorpha peroxins available yet, solely 
Pex14 is involved in selective peroxisome degradation.
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Figure 2. (A) Western blot analysis showing the decrease in N50.Pex3.GFP 
upon a shift of pex10 cells from glycerol/methanol to glucose media. Blot 
is decorated with a‑GFP antibodies. (B) Quantification of N50.Pex3.GFP 
levels in each strain, depicted here as the residual amount of N50.Pex3.GFP 
protein levels 2 hours after the shift, adjusting the initial amount at T = 0 to 
100%. (C) Fluorescence microscopy of pex13 cells producing N50.Pex3.
GFP. The cells contain a single fluorescent spot located adjacent to the vacu-
ole (marked by FM 4‑64). After 1 hour of cultivation on glucose, vacuolar 
GFP is evident, indicating degradation of (part of) these structures. Figure 3. (A) Sequestration of a peroxisomal remnant (by an autophagosome) 

as observed in pex17 cells 30 minutes after the shift from glycerol/metha-
nol to glucose. The organelle is sequestered by multiple membrane layers.  
(B) A higher magnification of the part indicated in (A) is shown. M,  
Mitochondrion; N, Nucleus; V, Vacuole; P, Peroxisome; AP, Autophagosome. 
The bar represents 0.5 mm in (A) and 0.1 mm in (B).
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