

University of Groningen

Iron catalyzed oxidation chemistry

Berg, Tieme Adriaan van den

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Berg, T. A. V. D. (2008). Iron catalyzed oxidation chemistry: from C-H bond activation to DNA cleavag. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Iron Catalyzed Oxidation Chemistry From C-H bond Activation to DNA Cleavage

Tieme A. van den Berg

© Tieme A. van den Berg, Groningen 2008

Printed by PrintPartners Ipskamp BV, Enschede, the Netherlands.

The research described in this thesis was carried out in the Stratingh Institute of Chemistry, University of Groningen, the Netherlands.

The work described in this thesis was supported financially by NRSC-Catalysis.

ISBN: 978-90-367-3553-7 (printed version) ISBN: 978-90-367-3554-4 (digital version)

RIJKSUNIVERSITEIT GRONINGEN

Iron Catalyzed Oxidation Chemistry From C-H bond Activation to DNA Cleavage

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 14 november 2008 om 13.15 uur

door

Tieme Adriaan van den Berg

geboren op 12 februari 1979 te Utrecht

Promotor :	Prof. dr. B.L. Feringa
Copromotor :	Dr. J.G. Roelfes
Beoordelingscommissie :	Prof. dr. J.B.F.N. Engberts Prof. dr. L. Que, Jr. Prof. dr. J. Reedijk

"Science has not yet taught us if madness is or is not the sublimity of the intelligence."

-Edgar Allan Poe-

Contents

Preface	xi
Chapter 1	
Oxidative cleavage of DNA	1
1.1 An introduction to DNA	2
1.2 Types of DNA cleavage	3
1.2.1 DNA hydrolysis	4
1.2.2 Photochemical cleavage of DNA	4
1.2.3 Oxidative DNA cleavage	5
1.3 Bleomycin	6
1.3.1 Structure of bleomycin	6
1.3.2 Redox chemistry of Fe(BLM) with molecular oxygen	9
1.3.3 Mechanism of DNA cleavage by Fe ^{II} (BLM)	11
1.3.4 Summary oxidative DNA cleavage by bleomycin	12
1.4 Oxidative DNA cleavage with synthetic metal complexes	13
1.4.1 Important structural models for bleomycin	13
1.4.2 Important spectroscopic models	15
1.4.3 Important functional models	18
1.4.3.1 Iron complexes	18
1.4.3.2 Copper complexes	20
1.5 Conclusions	24
1.6 References	25
Chapter 2	
Methods used in the oxidation of DNA	35
2.1 Introduction	36
2.2 Use of plasmid DNA as benchmark substrate	37
2.3 Statistical analysis	39
2.4 Other methodologies	43
2.4.1 Nicked DNA as benchmark substrate	43
2.4.2 Linear DNA as benchmark substrate	44
2.5 Summary and conclusions	45
2.6 Experimental section	45
2.7 References and notes	46

Chapter 3

Aerobic oxidation of DNA with non-heme iron complexes	49
3.1 Introduction	50
3.1.1 DNA cleavage with Fe(N4Py) complexes	50
3.1.2 Outline of this chapter	51
3.2 Aerobic DNA oxidation	52
3.2.1 DNA oxidation followed in time	53
3.2.2 Single strand vs. double strand cleavage pathway	54
3.2.3 Rate of the reaction	56
3.3 Nature of the active species	59
3.3.1 Reactive oxygen species scavengers	59
3.3.1.1 Enzymatic ROS scavengers in DNA oxidation in the absence of DTT	59
3.3.1.2 Enzymatic ROS scavengers in DNA oxidation in the presence of DTT	61
3.3.1.3 Oxidation of DNA in the presence of DMSO	62
3.3.1.4 Discussion of DNA oxidation in the presence of ROS scavengers	63
3.3.2 Spectroscopic studies	65
3.4 Summary and conclusions	66
3.5 Experimental Section	67
3.6 References and notes	68
Chapter 4	
Dinuclear iron complexes for direct double strand DNA cleavage	71
4.1 Introduction	72
4.1.1 Dinuclear complexes for DNA oxidation	72
4.1.2 Target complexes for direct double strand oxidative DNA cleavage	73
4.2 Synthesis of the dinuclear complexes	74
4.2.1 Synthesis of the ligands	74
4.2.2 Complexation of the ditopic ligands to iron(II)	75
4.3 DNA oxidation experiments	77
4.3.1 Oxidation of supercoiled pUC18 plasmid DNA	77
4.3.2 Oxidation of nicked DNA	80
4.4 Topology of dinuclear complexes	82
4.4.1 Ligand synthesis	82
4.4.2 DNA oxidation experiments	83
4.5 Summary and conclusions	84
4.6 Experimental section	86
4.7 References and notes	91

Chapter 5	
Towards a higher degree of double strand DNA cleavage	93
5.1 Introduction	94
5.1.1 Trinuclear complexes	94
5.1.2 Dinuclear complexes with an intercalator	95
5.2 Synthesis of the target ligands	96
5.2.1 Tritopic ligands	96
5.2.2 Ditopic ligands with an intercalator	99
5.3 DNA oxidation experiments	102
5.3.1 DNA oxidation with trinuclear complexes	102
5.3.2 DNA oxidation with dinuclear complexes with an acridine	104
5.4 Summary and conclusions	106
5.5 Experimental section	107
5.6 References and notes	116
Chapter 6	
Catalytic oxidation of alkanes with Fe(N4Py) and peracids	119
6.1 Introduction	120
6.1.1 The chemistry of Fe ^{II} (N4Py)	120
6.1.2 Focus of this chapter	122
6.2 Catalytic oxidation with peracids as oxidants	123
6.3 Nature of the hydrogen abstracting species	127
6.3.1 Catalytic probes	127
6.3.2 Spectroscopy and spectrometry	128
6.3.3 Nature of the oxidative species	130
6.4 Fate of the catalyst	132
6.5 Summary and conclusions	134
6.6 Experimental Section	136
6.7 References and notes	137
Chapter 7	
Discussion, conclusions and future prospects	141
Appendix	149
Samenvatting	151

Dankwoord