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The Hopf-saddle-node bifurcation for fixed

points of 3D-diffeomorphisms: the Arnol’d

resonance web

Henk Broer Carles Simó Renato Vitolo

Abstract

A model map Q for the Hopf-saddle-node (HSN) bifurcation of fixed points
of diffeomorphisms is studied. The model is constructed to describe the dy-
namics inside an attracting invariant two-torus which occurs due to the pres-
ence of quasi-periodic Hopf bifurcations of an invariant circle, emanating from
the central HSN bifurcation. Resonances of the dynamics inside the two-torus
attractor yield an intricate structure of gaps in parameter space, the so-called
Arnol’d resonance web. Particularly interesting dynamics occurs near the mul-
tiple crossings of resonance gaps, where a web of hyperbolic periodic points is
expected to occur inside the two-torus attractor. It is conjectured that hete-
roclinic intersections of the invariant manifolds of the saddle periodic points
may give rise to the occurrence of strange attractors contained in the two-
torus. This is a concrete route to the Newhouse-Ruelle-Takens scenario. To
understand this phenomenon, a simple model map of the standard two-torus
is developed and studied and the relations with the starting model map Q are
discussed.

1 Introduction

Recently, there has been renewed interest in certain codimension two (local) bifurca-
tions of fixed points of diffeomorphisms. See [8, 15, 16, 17, 26] and references therein.
Among these, the Hopf-saddle-node (HSN) bifurcation for 3D diffeomorphisms is de-
fined as follows: let Fα : R3 → R3 be a C∞-family of diffeomorphisms, where α ∈ Rp
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is a multi-parameter. We say that Fα is an HSN-family of diffeomorphisms if

F0(0) = 0, and spec DF0(0) = {eiω0, e−iω0 , 1}, (1)

where the complex conjugate eigenvalues satisfy the non-resonance conditions

einω0 6= 1 for n = 1, 2, 3, 4. (2)

The values n = 1, 2, 3, 4 in (2) are the so-called strong resonances [1, 14, 24]: they
are excluded since, for those values, the contribution of resonant terms appears in
the 3-jet. Moreover, to have a HSN bifurcation, one must impose certain generic
conditions on the 3-jet of the map F , including a transversality condition for the
unfolding of the linear part DF of the map at the origin, see [8].

In [8] we construct and study a model family of 3D maps for the HSN bifurcation
of fixed points near a 1:5 resonance, which is the lowest order resonance compatible
with (2). Due to the construction of the model map, a quasi-periodic Hopf bifurca-
tion of invariant circles occurs, where an invariant circle loses stability, turning from
an attractor into a repellor, and a two-torus attractor shows up. Particular atten-
tion is devoted to the intricate bifurcation structure existing near a 1:5 resonance
‘bubble’ on the locus of quasi-periodic Hopf bifurcations.

In the present paper, we examine the structure of the parameter space induced
by the occurrence of resonant dynamics inside the two-torus attractors, further away
from the quasi-periodic Hopf bifurcation. To this purpose, we study a parametrised
family Q of maps, given by

Q :




x
y
z



 7→




Re (eiω(x + iy)[1 − γ(γµ + az + γz2)])
Im (eiω(x + iy)[1 − γ(γµ + az + γz2)])

z + γ(1 − x2 − y2 − z2)



+




γ3ε1(y

4 + z4)
γ3ε2(x

4 + z4)
γ3ε3(x

4 + y4)



 . (3)

The family Q depends on the three real parameters (γ, µ, ω) and is given in the real
coordinates (x, y, z) ∈ R3. The coefficients a = a1 + ia2 ∈ C and εj ∈ R, j = 1, 2
are constants which are assumed to belong to a fixed compact set. The present
paper contains a summary of results concerning model map Q, mostly obtained by
numerical means.

An outline of this paper follows. In Sec. 2, in order to clarify the purpose of
map Q we sketch its construction, referring to [26, Sec. 4.1.2] and to [8] for details.
Then a description of some of the dynamical phenomena observed for Q is given in
Sec. 3. In Sec. 4 we study a simple map defined on the standard two-torus, aimed at
modelling and understanding the behaviour of Q, and describe the regular-chaotic
transitions. Then in Sec. 5 we look, in the original map Q, for phenomena similar
to those of the simple model map. Open problems and future research lines are
discussed in Sec. 6.

2 Model construction and purpose

The construction of model map Q in (3) is here only sketched, since it follows the
same steps as in [8], also see [26, Sec. 4.1.2] for details. The starting point is
a version of Takens’s Theorem [24] which allows to approximate any HSN family
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of diffeomorphisms by the time-one map of a HSN family of vector fields. To be
precise, let F : R3 × Rp → R3 × Rp be a HSN family of diffeomorphisms such that
conditions (1) and (2) hold for Fα defined by F (x, α) = (Fα(x), α), x ∈ R3 and
α ∈ Rp. Then there exists a vector field TF defined on R3×Rp → R3 ×Rp such that

F = T 1
F + M, (4)

where T 1
F denotes the time-one map of the flow of TF and the 3-jet of M at the

origin is zero. Moreover, TF is an HSN family of vector fields (see [8, Theorem 1] for
the definition and the proof of (4)). A truncated simplified normal form for vector
fields having an HSN bifurcation of equilibria is the following:

Yβ1,β2,ω(w, z) =

(
(−β2 + iω)w − awz − wz2

−β1 − sww − z2

)

, (5)

see [14, Lemma 8.11] and [8, Lemma 6]. Here (β1, β2, ω) are real parameters, whereas
w = x+iy ∈ C and z ∈ R are the phase variables and a = a1+ia2 ∈ C is a constant.
Typically, for the analysis of vector fields time scalings are allowed, since one works
modulo orbital equivalence; therefore, ω is usually considered as a nonzero constant.
In our case, however, the parameter ω plays a very important role in connection with
resonances in the dynamics on invariant circles and invariant two-tori.

Briefly speaking, the construction of model map Q (3) runs as follows: we start
from the vector field Yβ1,β2,ω in (5), apply a parameter transformation and a rescal-
ing of time and variables, compute an (approximate) time-1 map, and add certain
perturbative terms of order four. By (4), this construction is likely to be represen-
tative for a large class of HSN-diffeomorphisms. We emphasise that our construc-
tion focuses on dynamical phenomena occurring in a specific region of the (β1, β2)-
parameter plane for one of the four possible unfolding types of Yβ1,β2,ω. Therefore,
to clarify our setting we briefly recall the bifurcation diagram of the vector field
Yβ1,β2,ω. Since the latter is axially symmetric, a planar reduction may be derived:

ṙ = r(−β2 − a1z − z2),

ż = −β1 − z2 − sr2,
(6)

where a1 is the real part of the coefficient a in (5). According to the signs of s and a1,
the topological structure of the phase portrait of the reduced system (6) belongs to
one of four classes (if a time-reversal is allowed [14]). The unfolding case of present
interest is (s = 1, a1 < 0), for which both Hopf and heteroclinic bifurcations occur.
The bifurcation diagram of the planar system (6) consists of the curves S, P, H,
which are saddle-node, pitchfork, and (Andronov-)Hopf bifurcations of equilibria,
respectively, and HET which is a curve of heteroclinic bifurcations of equilibria, see
Figure 1. Two ‘polar’ equilibria O± = (±√−β1, 0), both of saddle type, exist in
regions 2 up to 6. Furthermore, a third equilibrium C coexists with O± in regions
3, 4, 5. The equilibrium C is attracting in region 3 and repelling in regions 4 and
5. Entering region 4 from region 3 across curve H, the equilibrium C loses stability
through a Hopf bifurcation. Thereby, an attracting limit cycle T is created, which
persists throughout region 4.

The dynamics of the three-dimensional family Yβ1,β2,ω is easily reconstructed
from that of the planar reduction (6). The equilibria O± of (6) correspond to
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Figure 1: Unfolding of the HSN bifurcation for vector fields: bifurcation diagram of
the planar system (6) in the case s = 1, a1 < 0, from [14, §8.5]. Phase portraits in
the (r, z)-plane are given on the right.

equilibria of Yβ1,β2,ω belonging to the z-axis. On the curve P the equilibrium O+

loses stability through a Hopf bifurcation, and a limit cycle C is created. Across
curve H, the limit cycle C loses stability through a Nĕımark-Sacker [14] bifurcation,
where an attracting torus T is created. Then T merges into a heteroclinic sphere-
like structure on the curve HET and disappears.

Due to non-degeneracy of the Hopf bifurcation, the curve H is expected to per-
sist in any HSN family of vector fields Xα, α ∈ R2, which can be written as a
perturbation of Yβ1,β2,ω (modulo changes of variables and parameters and orbital
equivalence). Therefore, there exists a parameter domain characterised by the exis-
tence of a normally hyperbolic attracting two-torus of Xα. Loosely speaking, such
domain is the dynamical equivalent of region 4 in Figure 1 for Xα. However, the so-
called Arnol’d resonance ‘tongues’ appear in the parameter plane, with tips attached
to H and extending into the region of existence of the normally hyperbolic torus.
For α in the interior of such tongues, the two-torus is phase-locked : there exists a
pair of limit cycles, to be denoted as La and Ls, such that La is an attractor, Ls

is of saddle type, and
T = La ∪ W u(Ls), (7)

where W u(Ls) denotes the unstable manifold of Ls. In this case, generically the two-
torus is only finitely differentiable (see [6, 7] for a similar situation). Further away
from the Hopf curve H, the torus might lose its smoothness and even get destroyed.
This sort of dynamical phenomena has a counterpart in families of diffeomorphisms
having a HSN bifurcation. Main focus of this paper is to try to understand (some of)
the corresponding bifurcation patterns. Before discussing the generic expectations
for diffeomorphisms, however, we briefly sketch the construction of model map Q (3).

We start from vector field Yβ1,β2,ω (5), in the unfolding case a1 < 0, s = 1. The
area of interest in the (β1, β2)-parameter plane is bounded by a dashed triangle in
Figure 1 (left panel): it is a sector containing region 4 and parts of regions 3 and 5.
Only negative values of β1 are considered. New parameters (γ, µ) are introduced by

β1 = −γ2, β2 = γ2µ, (8)

where γ > 0 and µ ∈ R. The effect of this reparametrisation is to ‘blow-up’ the
dashed sector in Figure 1 near the origin. Moreover, the variables and the time
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of (5) are rescaled as follows:

w = γŵ, z = γẑ, t = t̂/γ. (9)

The effect of this scaling is to keep the sizes of the limit cycle C and of the torus
T of order O(1) as γ → 0. In the new variables and parameters, dropping all hats,
the vector field in (5) reads

Yγ,µ,ω =

(
(−γµ + iω/γ)w − awz − γwz2

1 − z2 − |w|2
)

. (10)

We obtain an approximate time-γ map of the vector field Yγ,µ,ω by performing one
step of length γ of the Euler integration formula. This yields the axially symmetric
map S:

S :

(
w
z

)

7→
(
eiωw[1 − γ(γµ + az + γz2)]

z − γ(−1 + |w|2 + z2)

)

. (11)

Note that this map is the first term in the right hand side of (3). The second and
last step of the construction is to add ‘generic’, non-axisymmetric terms of order
four to map S. In [8], since we restricted to a neighbourhood of the 1:5 resonance,
we chose suitable resonant terms of order four. In the present work, since we intend
to examine a wide interval for ω, we do not confine ourselves to the vicinity of a
specific resonant frequency. Therefore, we introduce the perturbation term

γ3ε1(y
4 + z4)

∂

∂x
+ γ3ε2(x

4 + z4)
∂

∂y
+ γ3ε3(x

4 + y4)
∂

∂z
, (12)

where εj ∈ R, j = 1, 2, 3, which yields (3). The purpose of adding such perturbation
term is to have higher order terms in Q which are ‘generic’, in the sense that they
contain monomials which are resonant with respect to ω for ‘many’ resonant values
of ω. The coefficients εj and γ are perturbation parameters. However, we shall treat
them as constants in the rest of this paper.

We now sketch our generic expectations for model map Q (3). Referring to Fig-
ure 1, for parameters in the interior of region 4 the vector field Yβ1,β2,ω (5) possesses
an invariant two-torus T which is normally hyperbolic and attracting. The winding
number on T might be rational or irrational: in the first case, one has (generically)
a phase-lock configuration as in (7). By construction and by normal hyperbolicity, in
suitable regions of the parameter space (γ, µ, ω) the limit cycle C and the two-torus
T of the vector field Yγ,µ,ω (10) are expected to persist as a normally hyperbolic
invariant circle and a two-torus, respectively, for map Q (and are denoted by the
same symbol). By quasi-periodic bifurcation theory [4, 3], the Hopf bifurcation
curve H of vector field Yγ,µ,ω turns into a frayed Cantor-like bifurcation boundary
for map Q (as well as for any map obtained by generic perturbation of the time-γ
map of Yγ,µ,ω). Roughly speaking, by crossing H along curves in parameter plane
such that the circle attractor C has a fixed, Diophantine rotation number, C loses
stability and the torus attractor T branches off. The Cantor-like Hopf boundary H
is interspersed by resonance ‘bubbles’ where either the circle or the torus (or both)
may cease to exist: the main goal of [8] was to understand the bifurcation scenarios
involved near the ‘bubbles’ along H. In the present paper we focus on the dynamics
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inside the two-torus T of map Q, away from H. As opposed to the vector field
case, two types of resonances are possible: one type is related to the fast ‘longitudi-
nal’ rotation and the other to the relatively slow ‘latitudinal’ rotation. Either type
occurs in tongue-shaped regions in the (γ, µ, ω)-parameter space, having all kinds
of orientations. The pattern formed by these resonance tongues is referred to as
the Arnol’d resonance web. The related bifurcation scenarios are the main point of
interest of the present paper.

We note that the dynamics on the two-torus can be resonant in two different
ways: either simple resonance, giving rise to attracting and repelling invariant circles
on the invariant torus, or double resonance, when the dynamics along invariant
circles becomes in turn phase locked (for one or several of the circles). The last case
produces the apparition of periodic points on the torus. The relative position of the
manifolds of these hyperbolic periodic points can originate complicated dynamics,
to be discussed in the next sections.

The choice of Euler’s explicit method to go from the flow of (10) to map (11)
is particularly relevant for the structure of the resonance gaps. To understand
why, consider a planar conservative linear system like ẋ = ax + by, ẏ = cx − ay.
The map induced by Euler’s method with step size γ is linear and its matrix has
determinant 1−(a2 +bc)γ2. Therefore, the numerical method produces an expansive
(respectively, dissipative) map in the case that the origin is a centre (respectively,
a saddle). Other integration methods have different behaviour around these points
or the determinant differs from 1 by O(γk), k > 2. On the invariant torus of vector
field Yγ,µ,ω the flow is close to conservative. When passing to the map we can have
values of the parameters for which the two frequencies of the torus dynamics satisfy
a double resonance condition, giving rise to periodic points as mentioned in last
paragraph. Were the map exactly conservative in the torus, generically half of the
periodic points would be centres and the other half would be saddles. Using Euler’s
method the centres always become unstable foci: in this way it is prevented that they
become attractors. On the other hand the saddles become dissipative. If homoclinic
tangles exist, this allows the possibility that strange attractors are created inside
the surface of the torus. This would constitute a first concrete example of route to
the Ruelle-Takens scenario [18, 19].

3 Two-torus dynamics: the Arnol’d resonance web

In this section we discuss the dynamics on the two-torus T of model map Q (3) by
means of numerical simulations. Throughout the section, the coefficients of Q are
fixed at the values ε1 = ε2 = ε3 = 1, a1 = −1, a2 = 1/

√
2,. Moreover, the parameter

γ is kept fixed at 0.1. throughout the rest of the paper: therefore, all results are
presented and discussed in the (µ, ω)-parameter plane.

We begin by presenting a ‘Lyapunov diagram’ of Q in Figure 2 (top panel).
The procedure followed to obtain the Lyapunov diagram is explained in [8, 23, 26].
Here it suffices to say that a fine grid in the parameter plane is scanned searching
for attractors and, for all parameter values for which an attractor is detected, the
Lyapunov exponents

ℓ1 ≥ ℓ2 ≥ ℓ3
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colour Lyapunov exponents attractor type

red ℓ1 > 0 = ℓ2 > ℓ3 strange attractor

yellow ℓ1 > 0 > ℓ2 > ℓ3 strange attractor

blue ℓ1 = 0 > ℓ2 = ℓ3 invariant circle of focus type

green ℓ1 = ℓ2 = 0 > ℓ3 invariant two-torus

black ℓ1 = 0 > ℓ2 > ℓ3 invariant circle of node type

grey 0 > ℓ1 > ℓ2 = ℓ3 periodic point of focus type

fuchsia 0 > ℓ1 = ℓ2 ≥ ℓ3 periodic point of focus type

pale blue 0 > ℓ1 > ℓ2 > ℓ3 periodic point of node type

white no attractor detected

Table 1: Legend of the colour coding for Figure 2: the attractors are classified by
means of the Lyapunov exponents (ℓ1, ℓ2, ℓ3). Note that attracting periodic points
are almost never detected: no grey, fuchsia, or pale blue are distinguishable in
Figure 2.

are computed. The attractors are then classified on the basis of ℓ1, ℓ2, ℓ3 according
to the colour coding specified in Table 1.

The Cantor-like Hopf bifurcation boundary H is visible as a vertical line near the
value µ ≈ 0.97. This matches, with good approximation, with estimates obtained
by analytical means for map S (11), see [8, Lemma 2]. The blue region at the right
of the picture is a parameter domain where the invariant circle C exists and it is
attracting and of focus type in the normal direction. At the left of H, the two-torus
T exists and it is attracting. Moreover, in the green regions T is quasi-periodic:
both frequencies in its rotation vector are irrational and, moreover, they are not
resonant with each other. Several tongue-shaped gaps emerge from H (at its left):
these correspond to resonances inside the two-torus attractor. As said above, two
types of resonances may occur on T : one related to the fast ‘longitudinal’ rotation,
and the other one related to the relatively slow ‘latitudinal’ rotation. Close to H,
the ‘longitudinal’ resonances are predominant in the parameter plane and may be
identified with the tips of the tongue-shaped gaps. Further away from H, these gaps
intersect with each other, as well as with thinner gaps corresponding to ‘latitudinal’
resonances. This gives rise to a pattern which we refer to as the Arnol’d resonance
web. An illustration of this web is given in Figure 2 (bottom panel), which is a
magnification of Figure 2 (top).

Quasi-periodic saddle-node bifurcations of invariant circles [3, 4] bound each of
the resonance gaps. At the gap boundaries we expect the whole range of phenomena
described in [2, 10, 11, 12, 13, 10, 22, 25, 27, 28]. These quasi-periodic saddle-node
bifurcations take place inside T , in the sense that inside the gaps (at least for
parameter values near the gap edges) the two-torus still persists and it is ‘phase-
locked’: there exist invariant circles La and Ls (possibly, periodically invariant),
where La is an attractor and Ls a saddle, such that T = La ∪ W u(Ls). This is
the equivalent of (7) for diffeomorphisms. In the interior of a gap this phase-locked
two-torus may cease to exist. One possibility is that La becomes of focus type (in
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µ

Figure 2: Top: Lyapunov diagram of the map Q in the (µ, ω/(2π))-parameter plane.
For the colour code see Table 1. Bottom: magnification of top picture near a region
characterised by several resonance gap crossings.
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 0.22
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 0.219

 0.2195

 0.22

 0.2205

 0.41  0.42  0.43

 0.2196
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 0.22

 0.418  0.42  0.422

Figure 3: Top: the same parameter domain as in Figure 2 bottom is plotted, this
time displaying the order of resonance inside T . Colour coding: blue for resonances
of order less than 22 (mainly in diagonal, almost horizontal or almost vertical strips),
red for order between 22 and 62 and green for larger order. Bottom left: magni-
fication of top plot near one of the resonance gap crossings. Parameter gaps with
resonances of different orders (inside T ) are displayed in different colours. Bottom
right: magnification of left. The black dot at the junction of the strips shows the
approximate location of the parameter values at which the attractors La,1 and La,2

in Figure 4 and the attractors in Figure 8 occur.

the normal direction): thereby, the torus becomes a C0-manifold. This is in fact
observed in map Q: for example, a large part of the resonance gap near the lower
left corner of Figure 2 (bottom) is coloured in blue, indicating the presence of an
invariant circle of focus type (compare Table 1), whereas near the gap edges the
same invariant circle is of node type (parameter region coloured in black). Another
possibility for the destruction of the torus is the occurrence of a homoclinic tangency
of the stable and unstable manifolds of Ls: this is a generalisation of the dynamical
scenarios described in [7], where the role of a periodic point of saddle type is played
by the invariant circle Ls. In this case, however, for nearby parameter values the
circle attractor La still persists due to normal hyperbolicity. This scenario is more
difficult to locate by numerical means.

A particularly rich structure exists near multiple ‘crossings’ of various resonance
gaps. In Figure 3 (bottom panels) several resonance gaps are plotted near one of
these crossings. Assume that for some initial condition on the invariant two-torus
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the rotation vector (ρ1, ρ2) is defined, where ρ1 and ρ2 are the two rotation numbers
in the longitudinal and latitudinal directions. Then a resonance occurs if

k1ρ1 + k2ρ2 + k3 = 0 (13)

for some kj ∈ Z (not all of them equal to zero) and the order of the resonance
is defined as |k1| + |k2| + |k3|. At the crossing of the two large resonant strips in
Figure 3 bottom the values of ρ1, ρ2 are close to 16/73 and 1/73, respectively. Res-
onances are associated to the solutions of the Diophantine equation 16k1 + k2 +
73k3 = 0. In Figure 3 bottom, the strip close to the diagonal of the first quad-
rant satisfies (k1, k2, k3) = (5,−7,−1), while for the diagonal of the second quad-
rant and for the near-horizontal and near-vertical strips the respective values are
(4, 9,−1), (1,−16, 0), (9, 2,−2). This exhausts the resonances of order less than 22
which appear in the (µ, ω)-parameter window in the bottom panels.

We stress that infinitely many gaps and gap crossings (associated to the solutions
of Diophantine equation for double resonances) could be expected to occur near the
boundary of any given gap. Correspondingly, the transition between two nearby gaps
would imply infinitely many quasi-periodic saddle-node bifurcations. It is unclear
if the existence of some very narrow gaps is prevented by the presence of gaps
associated to resonances of lower order.

Moreover, sequences of heteroclinic tangency bifurcations of two saddle-like peri-
odic points are involved in certain cases. The latter scenario is illustrated in Figure 4.
Two attracting invariant circles La,1 and La,2, occurring at different parameter val-
ues, are plotted in Figure 4 top left and right, respectively. The bottom panel of
the figure displays both invariant circles using the angles

θ1 = arctan(y/x), arctan(z/(
√

x2 + y2 − b),

always in the correct quadrant and where b has been taken equal to 1/
√

2. It is
clearly seen that the circles nearly coincide along arcs which are roughly horizontal
and separate near a saddle. As one can expect the saddles which seem to exist in
the invariant two-torus have period 73.

A possible theoretical scenario for the transition from La,1 to La,2 is the fol-
lowing. The invariant two-torus T persists for all parameter values in a connected
neighbourhood N of the two values for which La,1 and La,2 occur. Depending on
the parameter values, the two-torus T is phase-locked either to La,1, or to La,2, or
to neither of them. Consider the dynamics restricted to the two-dimensional surface
given by the invariant two-torus T . Two periodic orbits P± of saddle type occur
on T . In a narrow parameter subset of N , the unstable manifold W u(P+) and
the stable manifold W s(P−) have transversal heteroclinic intersections (and tangen-
cies). When approaching the heteroclinic structure formed by W u(P+) ∪ W s(P−),
the invariant circle La,1 is destroyed. Then the circle La,2 ‘reappears’ right after
the region of heteroclinic intersections is crossed. A qualitative sketch is given in
Figure 5 (A) and (B): both situations are obtained by perturbing the time-one map
of an integrable vector field defined on the two-torus S1 ×S1, the dynamics of which
is sketched in Figure 5 (C).

The above scenario is suggested by the ‘swapping’ between the ‘vertical straight
segments’ of La,1 and La,2, as illustrated in Figure 4 bottom. Notice that there are
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Figure 4: Top left (resp. right): Attracting invariant circle La,1 (resp. La,2),
occurring for ω = 0.219783, µ = 0.41907 (resp. same ω, µ = 0.41909) near the
boundary of the large resonance gap in green (resp. in red) close to the black
point in Figure 3 bottom. Projection on the (x, z)-plane. The ‘front half’ of La,1

(resp. La,2), i.e., all points (x, y, z) for which y > 0, is plotted with blue (resp.
magenta) thicker dots, the back half in green. Bottom: Simultaneous projection on
a “standard torus” of both invariant circles La,1 and La,2. See text.

(A)La,1

P− P+

(B)

P− P+

La,2 (C)

P− P+

Figure 5: (A) Qualitative sketch of the positions of the attracting invariant circle
La,1 and of the stable and unstable manifolds of the periodic points P± inside the
two-torus attractor T . (B) Same as (A) for the attracting invariant circle La,2.
(C) Sketch of dynamics for the time-one map of a Hamiltonian vector field on the
two-torus S1 × S1, of which (A) and (B) are perturbations, see text for details.
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roughly straight segments of La,1 and La,2 lying quite close to each other. According
to the explanation proposed above, this is due to the fact that both invariant circles
pass through a narrow ‘corridor’ bounded by the manifolds W u(P+) and W s(P−),
compare Figure 5 (A) and (B). The above scenario is studied by a model map on
the two-torus in next section.

4 A simple model map on the two-torus

The simplest possibility to describe dynamics in the two-torus with a double reso-
nance is to take a map with fixed points. The map can be obtained as a perturbation
of the time ε flow of a Hamiltonian, e.g. by integrating the flow using Euler’s method.
We consider T2 as [0, 1]2 modulus 1. A suitable family of Hamiltonian functions is

H =
1

2π
(cos(2πx) + (1 − µ) cos(2πy)), µ ∈ [0, 1) (14)

having (0, 0) and (1/2, 1/2) as elliptic fixed points and (0, 1/2), (1/2, 0) as saddles.
Using the simplest case µ = 0 in (14) presents the problem that the separatrices
x±y = 1/2 are exactly preserved by Euler’s method. For µ > 0 they are on different
levels of the energy. To “move the separatrices” so that they become close for the
flow (and, hence, for the map) one can use the classical trick of “rotated planar
vector fields”. That is, the Hamiltonian vector field is rotated by 2πα for a suitable
value of α. The final map reads

(
x
y

)

7→
(

x
y

)

+ ε

(
cos(2πα) − sin(2πα)
sin(2πα) cos(2πα)

)(
−(1 − µ) sin(2πy)

sin(2πx)

)

mod 1.

(15)
The concrete values ε = 0.1, µ = 0.5 have been used and α has been taken as free
parameter.

A suitable domain for our purpose is α∈ [α0±2×10−8], with α0 =−0.0108670402.
Figure 6 displays the maximal Lyapunov exponent ℓ1 as a function of α in the se-
lected interval. For α−α0 < 0 and not too close to zero, the situation is familiar: for
most parameter values there are attracting invariant circles with irrational rotation
number, corresponding to ℓ1 = 0, and small (dense) gaps associated to resonances,
identified by a negative maximal Lyapunov exponent. Three of these invariant cir-
cles can be seen in Figure 7 left. They do a full loop (we recall that we are plotting
modulo 1 in the vertical direction). The two circles on the sides of the plot ex-
ist for α = −0.00886704 (that is, at the left of α0) whereas the third exists for
α = −0.01286704, at the right of α0. Of particular interest is the parameter region
of transition between the two.

The tiny gaps where ℓ1 < 0 on the left of Figure 6 left correspond to attracting
periodic orbits of periods 96, 98, 100, . . . (from left to right). The large gap on the
left of Figure 6 right corresponds to period 110. Conversely, for α−α0 > 0 and not
too close to zero, there are two invariant circles (because of the symmetry of (15)).
They cross the square in the vertical direction. The related gaps on Figure 6 left
correspond to periods 48, 49, 50, . . . . The large gap on the right of Figure 6 right
corresponds to period 55.
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Figure 6: Maximal Lyapunov exponent for (15) as a function of α. In the horizontal
axis the value of α − α0 is used. Right: magnification of left plot.

For α close to α0 the invariant manifolds of the saddle fixed point at (0, 1/2)
approach each other and have transversal intersections for some range of α. Moving
to the interior of this range the invariant circle, in the passage near the saddle, be-
comes tangent to the stable foliation of the saddle, for some values of α (one smaller
than α0, the other greater than α0). From that point on, the circle cannot exist (it
would have unbounded length). Then either periodic attractors, or periodic strange
attractors or global strange attractors, exist. The situation has many features in
common with the scenarios described in [7] and reflects the relevance of the motion
of the invariant manifolds as a function of the parameters, as already stressed in
[20, 21].

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.2

-1e-05

 0

 1e-05

-1e-05  0  1e-05

Figure 7: Left: the two curves to the left and right sides of the plot are the invariant
circle attractors of (15) for α = −0.00886704. The other closed curve is the invariant
circle attractor for α = −0.01286704.. Right: the attractors of (15) (either invariant
circle, periodic orbit or strange attractor) are simultaneously plotted for α varying
between −0.010867042 and −0.010867038 with step 10−10. Note that in all these
figures we have plotted the variables (x − 1/2, y) to have the saddle fixed point at
the origin.
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5 Going back to family Q

Finally, guided by the observations of Sec. 4 we would like to see analogous behaviour
in the map Q. A suitable place is a neighbourhood of the black point in Figure 3,
moving in the horizontal line ω = 0.219783, which is the value used for the invariant
circles of Figure 4. However, any attempt to draw a diagram for the maximal
Lyapunov exponent ℓ1, similar to Figure 6, gives estimates very close to zero (say,
absolute value less than 10−7, even using 109 iterates after some transient).

Looking for the change of resonance associated to the change in the invariant
circle between Figure 4 left and right, we have arrived to an interval of width 2×10−13

around µ = µ0 = 0.419081283215. For that value the observed results are not
compatible with the existence of an invariant circle. As before, the computation
of ℓ1 does not allow to draw conclusions on the occurrence of strange attractors.
Figure 8 displays the computed attractors for µ = µ0 and for µ± = µ0 ± 10−13.
Also the representation in the standard two-torus T2 and a magnification of the
projections on (x, y) are displayed (from a total of 108 iterates, the fraction falling
inside the selected window is roughly 1/600 of the total). From this last picture it
is clearly seen that the projection of the attractor for µ = µ0 is quite thick. Much
more than one can expect from the mere influence of round off errors. A picturesque
invariant circle attractor is plotted at the bottom right part of the figure.

To have a better idea of the character of these attractors we have used the
following method:

1. Search for a part of the attractor that in some projection is roughly horizontal.
Select a suitable window.

2. Compute a large number of iterates (after a transient) only keeping those ones
falling inside the window.

3. Fit the data (e.g. y as a function of x) by polynomials of increasing order until
no significant reduction of the residual variance is achieved.

4. The residual standard deviation, or the width on the vertical direction of the
set of points after subtracting the fitting, gives an idea about how close to
a curve is the attractor. One can also check how this standard deviation or
width changes as a function of the total number of iterations.

The results for the attractors in Figure 8 are the following. Applying the above
method to the attractors in Figure 4, the obtained residual widths are of the order
of 10−13, which is a reasonable effect of round off for a large number of iterates.
Therefore, these attractors can be quite safely considered as invariant circles. On
the other hand, for µ = µ0 the observed width is ≈ 2× 10−3. But for µ− and µ+ the
widths are ≈ 2× 10−4 and ≈ 6× 10−6, respectively. One can conclude that none of
these attractors are invariant circles. Therefore, the clear effects of the interaction
of resonances (as in the model of Sec. 4) seem to occur here at an extremely narrow
scale.

Note that an explanation of the results displayed in Figure 8 requires to take
into account round off errors. For the fixed value ω = 0.219783, the range between
µ− and µ+ has been scanned using step 10−15. To figure out the effect of round off,
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Figure 8: Attractors for Q on ω = 0.219783 and a tiny range in µ around µ0 =
0.419081283215. Top: the attractors look like invariant circles for µ− = µ0 − 10−13

(Lµ
−

, left) and µ+ = µ0 + 10−13 (Lµ+
,right). As in Figure 4 the projection on

(x, z) is shown and the thicker points (in blue and magenta) are those with y > 0.
Middle left: attractor for µ = µ0, its front part is plotted in red. This attractor
looks like sometimes being close to Lµ

−

other times close to Lµ+
. Middle right: a

magnification of a simultaneous projection on the (x, y) plane of the three attractors
occurring at µ−, µ+, µ0 (in blue, magenta, and red respectively). Bottom left: a
simultaneous projection of the three attractors on the standard torus T

2 = [−π, π]2

by the transformation used in Figure 4. The attractor for µ = µ0 is plotted after
the other two have been plotted and covers them both. Bottom right: a picturesque
invariant circle attractor in the resonance 13 : 11 : −3. Projection on (x, y). In red
(resp. green) the points with z > 0 (resp. z < 0).
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several different runs have been done, using computers with different architecture,
different languages, different compiling options, and programmes done by different
persons. The range in which plots like the one in the middle of Figure 8 (or even
more fuzzy) have been obtained is [µ0 − 50× 10−15, µ0 +53× 10−15], with variations
in ±10−15 depending on the run. A reason for that can be that the splitting of the
separatrices of the invariant manifolds involved in the creation of chaotic behaviour,
when transversal homo/heteroclinic points exist, is of the order of 10−13.

6 Conclusions and future research

The results of the numerical exploration of the model map Q (3) agree very well
with the theoretical expectations, based on standard and quasi-periodic bifurcation
theory and normal hyperbolicity, discussed at the end of Sec. 2. However, the
present exploration reveals many intricate phenomena, that can only be understood
by means of further specific investigation. A particularly rich bifurcation structure
is detected near crossings of (multiple) resonance gaps. Near some of the wider gap
crossings strange attractors appear (see Figure 2, bottom panel). It is still unclear
whether the two-torus T breaks down in this case. Heteroclinic bifurcations of
saddle periodic points, taking place inside the two-torus, are conjectured to occur
in the transition between nearby resonance gaps. This might provide a route for
the creation of a strange attractor contained inside the two-dimensional surface of
the normally hyperbolic two-torus; therefore, this would constitute the first concrete
example of the Newhouse-Ruelle-Takens scenario [18, 19]. A future project here is
to identify in map Q the dynamical phenomena observed in the model map of the
two-torus discussed in Sec. 4. We also foresee that new phenomena are likely to
occur.
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