

University of Groningen

The human HSP70/HSP40 chaperone family

Hageman, Jurre

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Hageman, J. (2008). The human HSP70/HSP40 chaperone family: a study on its capacity to combat proteotoxic stress. s.n.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

CHAPTER 2

Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library

Jurre Hageman and Harm H. Kampinga

Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, the Netherlands.

Cell Stress and Chaperones. In press.

Abstract

In this manuscript, we describe the generation of a gene library for the expression of HSP110/HSPH, HSP70/HSPA and HSP40/DNAJ members. First, the HSP genes were collected from the gene databases and the gene families were analyzed for expression patterns, heat inducibility, subcellular localization and protein homology using several bioinformatics approaches. These results can be used as a working draft model until data are confirmed by experimental approaches.

In addition, we describe the generation of a HSPA/DNAJ overexpression library and tested the effect of different fusion tags on HSPA and DNAJ members using different techniques for measuring chaperone activity. These results show that we have cloned a high quality heat shock protein expression library containing most members from the HSPH, HSPA, DNAJA and DNAJB families which will be useful for the chaperone community to unravel the function of the highly diverse family of human molecular chaperones.

Introduction

Il organisms except some hyperthermophilic archaea contain the family of HSP110/ HSPH, HSP70/HSPA and HSP40/DNAJ chaperones (1). HSPA and DNAJ proteins function as molecular chaperones to assist in processes such as translation and transport of proteins across membranes.

The HSPA machine consist of the core HSPA protein along with a transient array of different co-factors such as DNAJ, HSPH, BAG-1, HIP, CHIP and HSPBP1 (2). The HSPH/HSPA and DNAJ families are protein families consisting of many members and as a whole, the HSPH/ HSPA/DNAJ gene family is the largest chaperone gene family found in humans.

It is thought that many of its members are specialized (3). For instance, members of the HSPA, DNAJ and HSPH family exist that are only expressed under stress conditions suggesting that these are specialized to function in the proteotoxic stress response (4). Constitutively expressed members are found as well and such members are found in several cellular compartments such as the cytosol, mitochondria and the ER suggesting that cellular compartmentalization has driven some of the HSPA/DNAJ gene expansion (5). In addition, some members have only been found at specific developmental stages or in specific cell types indicating the need for specialized members for specific substrates expressed only during specific developmental stages or in certain specialized cell types.

In contrast to the gene expansion as a result of compartmentalization, the gene expansion as a result of cellular specialization or organism development is poorly understood. It has been suggested that HSPA and DNAJ proteins bind small hydrophobic regions (6;7); yet there is great diversity and multiplicity within these families for which most members have not yet been studied in detail.

Although the various chaperone genes are now relatively well annotated, the molecular function for most of its members is currently unknown. For each of the families, only a single or restricted number of proteins have been studied in detail. Here, we used bioinformatics approaches to study the different HSPH, HSPA and DNAJ members (8). Thereafter, we describe the construction of a human HSPH/HSPA/DNAJ expression library.

Materials and methods

Bioinformatics

HSP gene retrieval

HSPH, HSPH and DNAJ genes were collected from NCBI Gene (9). Mouse orthologs were identified using NCBI Homologene (10). Protein molecular weights were calculated using the clone manager 7 suite (Sci-Ed Software).

Est count analysis

Expression data based on tissue specific and developmental stage specific EST numbers were collected from the NCBI UniGene database (10). EST numbers are displayed as counts per million.

	Gene	Protein	Alternative Name	Human	Mouse	Locus	Protein	Calculated
	Name	Name		GeneID	ortholog ID	(human)	length (aa)	Mass (kD)
HSPH	HSPH1	HSPH1	HSP105	10808	15505	13q12.3	858	96.9
	HSPH2	HSPA4	HSPA4, APG-2; HSP110	3308	15525	5q31.1-q31.2	840	94.3
	HSPH3	HSPA4L	HSPA4L, APG-1	22824	18415	4q28	839	94.5
	HSPH4	HSPH4	HYOU1; GRP170	10525	12282	11q23.1	999	111.3
HSPA	HSPA1A	HSPA1A	HSP70-1, HSP72, HSPA1	3303	193740	6p21.3	641	70.0
	HSPATE	HSPAIB	HSP/U-2 hum20t hum20t	3304	15511	6p21.3	641	70.0
	HSPATE	HSPA1L	Heat-shock 70kD protein-2	3305	15402	14a24.1	630	70.4
	HSPA5	HSPA5	BIP GRP78 MIE2	3309	14828	9a33-a34 1	654	70.0
	HSPA6	HSPA6	heat shock 70kD protein 6 (HSP70B')	3310	X	1023	643	71.0
	HSPA7	HSPA7		3311	х	1q23.3	?	?
	HSPA8	HSPA8	HSC70, HSC71, HSP71, HSP73	3312	15481	11q24.1	646/493	70.9/53.5
	HSPA9	HSPA9	GRP75, HSPA9B, MOT, MOT2, PBP74, mot-2	3313	15526	5q31.1	679	73.7
	HSPA12A	HSPA12A	FLJ13874, KIAA0417	259217	73442	10q26.12	1296	141.0
	HSPA12B	HSPA12B	RP23-32L15.1, 2700081N06Rik	116835	72630	20p13	686	75.7
	HSPA13	HSPA13	Stch	6782	110920	21q11	471	51.9
	HSPA14	HSPA14	HSP70-4, HSP70L1, MGC131990	51182	50497	10p14	509	54.8
DNAJA	DNAJA1	DNAJA1	DJ-2; DjA1; HDJ2; HSDJ; HSJ2; HSPF4; hDJ-2	3301	15502	9p13-p12	397	44.9
	DNAJA2	DNAJA2	DNJ3; mDj3; DNAJ3; HIRIP4	10294	56445	16q11.1-q11.2	412	45.7
	DNAJA3	DNAJA3	Tid-1; Tid1I	9093	83945	16p13.3	480	52.5
	DNAJA4	DNAJA4	Dj4; Hsj4	55466	58233	15q24.1	397	44.7
DNAJB	DNAJB1	DNAJB1	HSPF1; HSP40	3337	81489	19p13.2	340	38.2
	DNAJB2	DNAJB2	HSJ1; HSPF3; DNAJB10	3300	56812	2q32-q34	324/277	35,6/30,6
	DNAJB3	DNAJB3	Hsj3, Msj1, MSJ-1	414001	10004	1 D (MIII)	242	20.7
	DNA IB5	DNA IB5	Hsc40 Hsc40: HSD40.3	25822	56323	0n13.2	3/8/2/1	30 1/26 0
	DNAJB6	DNA IB6	Mri: mDi4	10049	23950	7036.3	326/241	36.1
	DNAJB7	DNAJB7	Di5: mDi5	150353	57755	22g13.2	309	35.4
	DNAJB8	DNAJB8	mDi6	165721	56691	3021.3	232	25.7
	DNAJB9	DNAJB9	Mdg1; mDj7; ERdj4	4189	27362	7q31	223	25.5
	DNAJB11	DNAJB11	Dj9; ABBP-2; ERdj3	51726	67838	3q28	358	40.5
	DNAJB12	DNAJB12	Dj10; mDj10	54788	56709	10q22.2	375	41.9
	DNAJB13	DNAJB13	Tsarg	374407	69387	11q13.4	316	36.1
	DNAJB14	DNAJB14	EGNR9427; FLJ14281	79982	70604	4q23	379/294	42,5/33,5
DNAJC	DNAJC1	DNAJC1	MTJ1; ERdj1; ERj1p; DNAJI1	64215	134181	0p12.33-p12.32	554	63.9
	DNAJC2	DNAJC2	Zrf1; Zrf2; MIDA1	27000	22791	7q22	621	72.0
	DNAJC3	DNAJC3	p58; mp58; Prkri; DNAJc3; p58IPK; DNAJc3b	5611	100037258	13q32	504	57.6
	DNAJC4	DNAJC4	HSPf2; Mcg18	3338	57431	11q13	135	15.2
	DNAJC5	DNAJC5	Csp	80331	13002	20q13.33	198	22.1
	DNAJC5B	DNAJC5B	CSP-Deta	85479	66326	8012.3	199	22.5
	DNAJC5G	DNAJC5G	MGC10/182	200120	231096	2µ23.3	169	21.4
	DNAJC0	DNA IC7	Ttc2: mDi11: mTnr2	5029	56354	17011.2	913	55.5
	DNAJC8	DNAJC8	AL 024084: AL 1019262	22826	68598	1n35.2	264	31.0
	DNAJC9	DNAJC9	AU020082	23234	108671	10g22.3	260	29.9
	DNAJC10	DNAJC10	JPDI: ERdi5	54431	66861	2032.1	793	91.1
	DNAJC11	DNAJC11	FLJ10737	55735	230935	1p36.23	559	63.3
	DNAJC12	DNAJC12	Jdp1; mJDP1	56521	30045	10q22.1	198/107	23,4/12,5
	DNAJC13	DNAJC13	Rme8; RME-8; Gm1124	23317	235567	3q22.1	2243	254.4
	DNAJC14	DNAJC14	HDJ3; LIP6; DRIP78	85406	74330	12q13.13	702	78.6
	DNAJC15	DNAJC15	DNAJd1	29103	66148	13q14.1	150	16.4
	DNAJC16	DNAJC16	mKIAA0962	23341	214063	1p36.1	782	90.6
	DNAJC17	DNAJC17	C87112	55192	69408	15q15.1	304	34.7
	DNAJC18	DNAJC18	MGC29463	202052	76594	5q31.2	358	41.5
	DNAJC19	DNAJC19	TIM14; TIMM14	131118	67713	3q26.33	116	12.5
	DNAJC20	DNAJC20	JAC1; HSC20	150274	100900	22q12.1	235	27.4
	DNAJC21	DNAJC21	GS3; JJJ1; DNAJA5;	134218	78244	5p13.2	576/531	67,1/62,0
	DNAJ022	DNA IO22	FLJ13236; Wurst	79962	72778	12q13.12	341	38.1
	DNAJC23	DNAJG23	Secos, Al049014	11231	140740	6q21	760	88.0
	DNAJC24	DNAJC24	DPH4; zinc tinger, CSL-type containing 3	120526	99349	11p13	149	17.1
	DNAJC25	DNAJC25	bA16L21.2.1; DnaJ-like protein	548645	х	9q31.3	360	42.4
	DNAJC26	DNAJC26	GAK ; cyclin G associated kinase	2580	231580	4p16	1311	143.2
	DNAJC27	DNAJC27	RBJ ; Rabj	51277	217378	2p23.3	273	30.9
	DNAJC28	DNAJC28	Orf28 open reading frame 28; C21orf55	54943	246738	1q25	454	51.1
	DNAJC29	DNAJC29	SACS; Sacsin	26278	50720	13q12	4432	504.6
	DNAJC30	DNAJC30	WBSCR18	84277	66114	7q11.23	226	26.0

Table 1: Overview of the human HSP70/HSP40 gene family

Affymetrix gene array

Investigation of genome-wide heat induced transcriptional activation was described previously (11). These experiments were performed in Hela cells using a 1.5 hour heat shock at 43 °C. Recovery times were 0.5, 2 and 4 hours at 37°C. Affymetrix gene array data were downloaded (11) and linear induction was calculated from the 2log fold change. Affymetrix uses different annotations for its probe sets. _at suffix designates a unique probe set, whereas the _s_at and _x_at suffixes designate probe sets that can cross hybridize with multiple genes. In the case of redundant probe sets, _at suffix were selected by default. In the case of no available _at suffix, the first probe set was selected routinely.

Subcellular localization analysis

Predictions on subcellular localizations were performed using pSort, pTarget, CELLO, Multiloc and Proteome analist (12-16). Sequences from complete gene families were uploaded as fasta files. In each case, only the first rank localization is displayed. For all predictors, the default settings for mammalian or animal proteins were used. The presence of prenelation motifs was determined using the PrePS web server (17).

Protein Alignments

Primary amino acid alignments were performed in ClustalX2 using the neighbour-joining algorithm and Blosum matrixes at the default settings (18). Bootstrap analysis was performed using 1000 random number generator seeds and 1000 bootstrap trials. Phylograms were made by importing the homology tree output of ClustalX in TreeView (19). The distance is depicted in the scale bar of Figure 1 as 0.1 amino acids substitutions per position.

Library cloning and validation

Gene Cloning

Detailed information about the plasmids used in this study can be found in Figure 2. Briefly, tetracycline-inducible HSP expression plasmids were constructed as follows. First, the GFP and the V5 tag, harbouring a Kozak consensus ATG initiation codon and lacking a stop codon, were cloned in the pcDNA5/FRT/TO vector (Invitrogen). Subsequently the coding sequence of the different chaperones was amplified using the primers listed in table 8. As a template source, cDNA was made from total RNA as previously described (20). As a source of total RNA, QPCR Human reference Total RNA (Stratagene) was used which is a mixed source of RNA from the following cell line derivations: Adenocarcinoma, mammary gland; Hepatoblastoma, liver; Adenocarcinoma, cervix; Embryonal carcinoma, testis; Glioblastoma, brain; Melanoma, skin; Liposarcoma, Histiocytic lymphoma, macrophage, histocyte; Lymphoblastic leukemia, T lymphoblast; Plasmacytoma, myeloma, B lymphocyte. DNAJB4, DNAJB5 and DNAJB8 were amplified from cloned full length cDNAs purchased from Open Biosystems (clone ID: DNAJB4: 4340658, DNAJB5: 4684829 and DNAJB8: 5296554). The fragments were cloned in pcDNA5/FRT/TO GFP lacking a stop codon resulting in a N-GFP-cDNA-C protein. The presence of the correct gene was sequenced verified. Protein expression was verified by Werstern blotting. Subsequently, fragments were subcloned to pcDNA5/FRT/TO V5 and pcDNA5/FRT/TO.

Luciferase refolding Assay

Cell lysis and luciferase activity measurements were done as previously described (21). Luciferase activity was plotted relative to the percentage of activity in an unheated control. Error bars on plots represent standard deviations.

Filter trap assay

To determine protein aggregates, the filter trap assay was performed as previously described (22). Briefly, 10, 2 and 0.4 μ g of protein extracts were applied onto 0,2 μ m pore Cellulose Acetate membrane pre-washed with FTA + 0.1% SDS. Mild suction was applied and the membrane was washed 3 times. Aggregated proteins trapped in the membrane were probed with a mouse anti-GFP antibody JL-8 (Clontech) at a 1:5000 dilution or a mouse anti-V5 antibody (Invitrogen) at a 1:5000 dilution followed by HRP-conjugated anti-mouse secondary antibody (Amersham) at 1:5000 dilution. Visualization was performed using enhanced chemiluminescence and Hyperfilm (ECL, Amersham).

Results

Bioinformatic analysis on the HSPH, HSPA and DNAJ gene family

Collecting the HSPH, HSPA and DNAJ gene family

In order to get a comprehensive overview of the gene family, we first extracted all human HSPH, HSPA and DNAJ family members from the NCBI gene database. It should be noted that beside these protein encoding genes, we found many pseudogenes scattered throughout the human genome. Typically, pseudogenes show types of decay such as frame-shifts, stopcodons or gaps. For the HSPA family alone, already 30 pseudogenes have been documented (5). For gene selection, we extracted the annotated non-pseudo genes from the NCBI gene bank (9). We found 4 HSPH chaperones, 13 HSPA chaperones and 49 DNAJ chaperones. The genes including the protein name, the old and alternative names, the NCBI human gene ID, the mouse orthologue gene ID, the human gene locus, the protein length and the calculated molecular mass are listed in Table 1. Classically, human chaperones were ranked according to molecular mass. However, as can be seen from table 1, many HSP genes deviate from this and contain only a HSP-like domain such as the HSP70 ATPase domain or the HSP40 DNAJ domain. For instance, while many HSP40/DNAJ proteins are around 40 kD, the sizes of proteins within this family range from 16 kD (DNAJC15) to 254 kD (DNAJC13). For this reason, a revised nomenclature was recently suggested (Table submitted to Cell Stress and Chaperones).

HSPA6 and HSPA7 were not found in mice. Although HSPA7 contains an internal frame shift and might be a pseudogene, bypassing the frame shift will result in a protein with a full length homology to HSPA1A. Thus, the HSPA7 protein with a full length homology to HSPA1A might be produced and this has recently been explained elsewhere (5).

Patterns of tissue specific HSPH, HSPA and DNAJ expression

Cellular specialization may require specialized chaperone proteins and therefore may be responsible for part of the chaperone gene expansion. The expression pattern of most chaperone genes is currently unknown. An estimation of the expression pattern can be made by

	1 HdSH	HSPH2	HSPH3	HSPH4	HSPA1A	HSPA1B	HSPA1L	HSPA2	HSPA5	HSPA6	HSPA7	HSPA8	HSPA9	HSPA 12A	HSPA12B	HSPA 13	HSPA14
adipose tissue	152	76	0	76	684	608	0	0	608	76	0	989	76	76	0	0	76
adrenal gland	180	120	0	210	1740	390	0	60	360	90	0	3780	510	90	0	90	30
ascites	99	199	24	124	49	49	0	0	648	0	0	2720	923	0	0	24	24
bladder	199	0	66	33	663	1161	0	0	199	99	33	1990	431	0	0	232	99
blood	120	24	8	88	555	80	0	8	161	112	8	3069	386	0	0	40	40
bone	125	153	0	97	153	0	0	0	501	13	27	1267	320	0	13	55	55
bone marrow	142	61	0	447	40	81	0	40	610	20	0	1688	447	0	0	40	20
Dialit	2/0	100	34	201	000	102	5	034	120	9	0	1057	330	0/	20	100	07
connective tissue	02 90	123	20	103	247	40	12	20	247	12	6	2145	400	26	20	60	26
connective tissue	192	61	0	120	724	40	13	122	122	13	0	2145	61	20	0	00	20
	115	180	0	189	02	37	0	122	671	0	0	1315	278	13	0	83	02
esonhagus	246	98	49	689	2710	1724	0	246	1182	98	49	1921	542	0	0	49	197
eve	61	109	23	85	180	56	14	42	185	14	14	1043	137	42	0	94	42
heart	55	33	11	55	1638	365	11	66	188	33	11	2170	232	22	66	33	22
intestine	127	131	4	233	1028	165	0	72	416	16	8	3552	271	4	4	33	29
kidney	159	65	37	301	889	221	9	192	122	9	4	4628	348	56	42	94	18
larynx	81	0	0	81	245	81	0	0	613	0	0	695	81	0	0	0	81
liver	62	48	9	302	316	72	14	4	326	0	0	1238	273	0	0	33	33
lung	124	97	23	198	1475	162	8	17	210	76	2	1174	239	0	17	50	20
lymph	112	90	0	112	0	0	0	0	45	0	0	1373	315	0	0	0	0
lymph node	185	108	0	10	0	10	0	0	174	0	0	566	152	0	0	87	217
mammary gland	71	155	6	1237	589	97	25	12	719	12	6	2280	563	6	0	71	58
mouth	295	191	29	280	1372	132	0	162	132	0	14	1918	575	0	0	29	103
muscle	147	83	27	166	258	55	0	27	110	9	0	2949	342	27	0	27	27
nerve	316	63	0	253	2658	253	0	0	379	0	63	1202	189	379	0	0	63
ovary	38	87	0	136	58	87	0	0	428	19	0	1558	87	29	19	48	38
pancreas	69	78	0	130	380	157	0	4	390	18	0	808	125	0	0	27	27
parathyroid	48	0	48	0	0	0	0	0	48	0	0	484	436	48	0	0	339
pharynx	0	48	0	48	24	0	0	24	96	0	0	2144	144	0	0	24	24
pituitary gland	597	59	0	59	119	0	59	59	537	59	0	1732	179	119	0	0	59
placenta	88	84	10	119	165	17	0	225	306	0	56	908	221	14	56	77	70
prostate	41	115	15	120	1131	193	5	20	366	10	5	1560	146	20	0	36	47
salivary gland	0	147	0	49	0	0	0	147	49	0	0	394	98	0	0	49	49
skin	127	189	0	140	6002	1405	19	146	1/4	18	4	2022	205	18	110	14	47
spieen	205	10	0	55 72	5952	1405	10	92	493	20	10	2029	295	10	10	10	20
tootic	205	432	222	274	102	42	105	543	403	0	2	2030	322	21	0	172	20
thymus	135	36	12	110	1821	406	105	12	202	159	0	4270	258	21	12	49	61
thyroid	166	41	20	220	500	312	20	0	1835	0	0	1335	584	104	20		62
tonsil	58	117	20	58	58	0	20	58		ő	0	469	0	0	20	0	234
trachea	381	19	152	991	2345	801	0	57	38	190	57	3318	209	0	19	247	38
umbilical cord	0	0	0	798	0	0	0	726	145	0	0	1597	145	0	72	0	0
uterus	89	115	17	200	722	273	8	111	585	8	4	2381	290	21	8	81	34
vascular	173	0	19	924	962	57	0	19	173	0	0	8356	423	38	0	115	0

Table 2: Expression levels of HspH and HspA genes in various human tissues. Number of transcripts per million are indicated.

assessing the relative number of Expressed sequence tags (EST) per tissue using the Unigene database (23). However, some caution should be taken as the Unigene assignments of ESTs to individual genes is not necessarily accurate (i.e. poor sequence quality and related sequences lead to incorrect 'binning' of some ESTs).

The expression estimates are displayed in Table 2 (HSPH/HSPA), Table 3 (DNAJA/B) and Table 4 (DNAJC). The peak expression for each tissue is indicated in bold. As expected, HSPA8 shows a high expression in most tissues (Table 2). In contrast, HSPH3, HSPA1L, HSPA6, HSPA7, HSPA12A and HSPA12B show very low levels in most tissues. HSPH3 and HSPA1L show the highest expression in the testis which is in agreement with literature (24;25). HSPA6 is absent under non stress conditions and only expressed upon severe heat shock conditions (26). The expression of HSPA1A is extremely variable ranging from being absent in lymph

Table 3: Expression levels of DnaJA and DnaJB genes in various human tissues.	Number	of tran-
scripts per million are indicated.		

	VAJA1	VAJA2	VAJA3	VAJA4	VAJB1	VAJB2	VAJB4	VAJB5	VAJB6	VAJB7	VAJB8	VAJB9	VAJB11	VAJB12	VAJB13	VAJB14
	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā	ā
adipose tissue	532	76	76	0	1065	76	152	0	152	0	0	76	0	152	0	76
adrenal gland	180	104	30	0	210	74	30	60	180	0	0	0	40	120	0	30
bladder	165	124	66	0	100	66	0	0	1324	0	0	33	49	23	0	49
bladdei	169	90	88	32	128	24	32	8	161	0	0	32	56	32	0	32
bone	125	194	60	0	125	83	27	27	125	0	0	27	41	27	0	02
bone marrow	183	20	61	20	244	20	122	2,	120	0	0	2/	40	40	0	0
brain	264	62	115	54	191	84	72	45	221	Ő	3	66	31	58	ő	26
cervix	268	20	82	82	164	20	20	0	82	0	0	41	82	20	0	0
connective tissue	93	26	53	20	93	26	53	6	200	0	0	60	26	20	6	20
ear	122	0	0	0	61	0	0	0	61	0	0	0	122	0	0	0
embryonic tissue	305	46	55	0	120	41	32	37	236	0	0	18	74	27	0	50
esophagus	98	98	246	49	246	49	344	0	344	0	0	0	0	147	0	0
eve	208	52	23	42	227	94	23	42	170	4	0	33	66	33	0	37
heart	143	44	33	88	265	22	166	55	199	0	0	99	121	66	0	0
intestine	165	123	80	29	237	33	12	12	191	0	0	29	42	63	0	25
kidney	202	23	47	14	197	42	117	32	225	0	0	117	18	84	0	18
larynx	0	163	0	40	0	40	0	163	204	0	0	0	40	0	0	0
liver	196	96	38	33	177	48	144	9	172	0	0	38	38	24	4	14
lung	171	47	50	70	275	79	23	17	162	0	0	47	62	59	2	41
lymph	90	22	90	0	67	90	22	0	157	0	0	0	112	22	0	0
lymph node	76	43	32	54	76	32	0	10	76	10	0	10	32	65	0	152
mammary gland	129	90	90	71	362	25	25	12	317	0	0	45	38	58	0	51
mouth	29	88	118	88	88	44	14	0	354	0	0	29	14	29	0	14
muscle	203	120	101	27	166	55	92	64	166	0	0	27	18	83	0	55
nerve	189	0	126	189	696	189	189	0	63	0	0	63	63	126	0	0
ovary	136	87	107	9	185	48	9	38	116	0	0	9	19	19	9	0
pancreas	116	27	51	41	199	65	13	4	176	0	0	51	65	55	0	55
parathyroid	0	0	0	48	145	0	0	48	48	0	0	0	48	96	0	0
pharynx	578	48	48	24	120	0	0	0	506	0	0	24	24	72	0	96
pituitary gland	478	59	0	119	298	119	59	59	179	0	0	59	0	0	0	59
placenta	133	91	49	10	186	66	31	3	154	0	0	169	116	56	0	63
prostate	99	62	52	26	235	52	10	57	115	0	0	47	104	68	10	20
salivary gland	98	49	197	0	98	0	147	0	98	0	0	98	0	197	0	0
skin	170	61	70	75	226	61	42	51	396	0	0	9	42	61	0	23
spleen	129	92	55	18	591	18	0	18	295	0	0	55	55	55	0	36
stomacn	205	20	61	41	102	41	41	0	236	0	0	51	102	10	0	10
testis	2//	114	63	51	546	30	24	18	253	24	39	8/	27	48	15	15
tnymus	12	49	49	24	184	36	73	0	196	0	0	73	24	24	0	12
triyrold	208	140	62	20	104	125	41	20	104	20	0	20	146	20	0	0
tonsii	100	57	58	247	58	117	10	0	152	0	0	114	58	1/6	20	10
undurieal cord	190	5/	19	241	228	19	19	0	152	0	0	114	0	19 14E	38	19
	286	111	25	42	324	39	47	34	252	0	0	21	34	140 5F	12	25
vascular	200 481	38	38	42 0	211	0	423	34 0	288	0	0	77	0	19	0	23 0

(node), parathyroid and umbilical cord to being expressed at very high levels in the spleen. As for the HSPH/HSPA family, the DNAJ family shows a highly variable expression profile (Table 3 and 4). The highest expressed members throughout tissues are DNAJA1, DNAJB1 and DNAJB6 indicative for being "housekeeping" DNAJ chaperones although they all are lacking in a few tissues. As for the HSPA/HSPH families, the DNAJ family shows testis specific members (DNAJB7, DNAJB8, DNAJC5B, DNAJC5G). In general, with the exception of the testis, most HSP genes do not show an expression restricted to only a single tissue. In addition, peak levels per tissue are highly variable from gene to gene, providing no direct correlative clue for any specific partnerships between the diverse family members.

Patterns of developmental expression

We also used the Unigene database to look for developmental specific expression patterns (Table 5). The results show that HSPs are differentially expressed at different developmental stages. HSPA1A shows a large variation throughout different developmental stages. Interest-

ingly, many DNAJC members are expressed during embryogenesis but are repressed in the neonate or infant (DNAC4-6 and DNAJC16-20). Only a minority of the genes were expressed the highest at adult stages.

Heat induced transcription

Although HSPs were originally identified as heat inducible proteins, most members are identified according to presence of typical domains such as the HSP70 ATPase domain or the HSP40 DNAJ domain. For most of these members, it is currently unknown whether they are induced by heat. To investigate this, we used Affymetrix gene array data (11) and performed a biased search on the heat inducibility for HSPH, HSPA and DNAJ members (Table 6). We used an arbitrary threshold of 2-fold induction to define heat inducibility. Using this threshold we found that HSPH1, HSPA1A, HSPA1B, HSPA1L, HSPA6, DNAJB1, DNAJB2, DNAJB4 and DNAJB6 are the major heat inducible genes in Hela cells. Thus, the majority of HSPs are not heat inducible. Of course, it must be noted that these patterns could be different for other cell lines and other heat conditions.

Subcellular localization

Determination of HSP localization is essential to understand its biochemical function. Unfortunately, high throughput analysis of HSP localization without the use of possible interfering tags is currently impossible due to the lack of specific antibodies. As subcellular localization signals share common characteristics, computational methods have been developed to predict the subcellular localization of proteins (27). We selected several publicly available localization prediction methods which accept large batches of protein sequences and which were able to predict all of the major subcellular localizations. The selected methods were Wolf PSORT (12), pTarget (13), CELLO (15), Multiloc (16) and Proteome Analyst (14). In addition, we searched the human protein database (28) for experimentally verified HSP localizations. As can be seen from Table 7, there are large variations in the prediction using the various programs. Therefore, we first searched for the prediction method that showed the highest accuracy for biochemical verified HSP members such as HSPA1A/HSP70 (cytosol/nucleus), HSPA1B/HSP72 (cytosol/nucleus), HSPA8/Hsc70 (cytosol/nucleus), HSPA5/ Bip (ER), HSPA9/Grp75 (mitochondria), DNAJA3/Tid1 (Mitochondria), DNAJB1/HSP40 (cytosol/nucleus), DNAJB9/ERdJ4 (ER) DNAJB11/Erdj3 (ER), DNAJC1/ERdJ1 (ER), DNAJC10/ ERdj5 (ER) and DNAJC19/TIM14 (mitochondria). Out of these 12 known localized proteins the following number of correct predictions were found: Wolf PSORT: 7, pTarget: 10, CELLO: 8, Multiloc: 7 and Proteome Analyst: 10. Thus, Proteome Analyst and CELLO showed the highest correct prediction. However it should be noted that at this stage, all prediction are potentially unreliable and should be used carefully. The scoring of the most reliable prediction method does rely on a relatively low number of verified chaperone proteins and the most reliable prediction program could therefore change in the future once more proteins will be experimentally verified.

We used the PrePS web server to predict farnesylation of chaperones. As shown in Table 7, DNAJA1 and DNAJA4 are predicted to be prenylated by farnesyltransferase which is in agreement with literature (29). In addition, DNAJB2b was predicted to be prenylated by geranylgeranyltransferase I as shown in the literature (30).

Homology of HSPH, HSPA and DNAJ paralogs

Next, we computed protein similarity trees based on the alignments of the HSP protein sequences using the Neighboring-joining clustering method (31). Figure 1 shows the output of

Fable 4: Expression levels of DnaJC genes in various human tissues. Number of transcripts p	er
nillion are indicated.	

	DNAJC1	DNAJC2	DNAJC3	DNAJC4	DNAJC5	DNAJC5B	DNAJC5G	DNAJC6	DNAJC7	DNAJC8	DNAJC9	DNAJC10	DNAJC11	DNAJC12	DNAJC13	DNAJC14	DNAJC15
adipose tissue	0	0	0	76	0	0	0	0	152	152	0	0	228	0	0	0	0
adrenal gland	60	0	30	0	0	0	0	0	210	210	30	30	90	0	30	60	30
ascites	24	74	0	24	49	0	0	0	249	199	24	49	124	74	24	349	24
bladder	0	33	33	0	33	0	0	0	66	132	66	0	0	0	99	99	0
blood	24	40	56	0	80	0	0	0	64	499	16	8	32	0	8	161	0
bone	111	27	0	27	69	0	0	0	69	181	27	97	55	41	55	222	41
bone marrow	0	20	40	40	0	0	0	20	81	183	20	61	20	122	20	40	0
brain	16	15	18	21	64	4	1	231	84	54	17	73	114	19	31	58	40
cervix	0	82	0	0	20	0	0	0	61	164	20	0	123	82	61	82	20
connective tissue	66	0	6	46	53	6	0	0	33	233	33	100	33	106	113	200	167
ear	61	0	0	0	0	0	0	0	0	61	122	183	0	0	0	0	61
embryonic tissue	37	41	9	23	50	0	4	4	88	189	32	157	78	0	27	115	9
esophagus	0	0	197	0	0	0	0	0	147	49	49	197	0	0	0	0	0
eye	28	14	4	75	137	0	0	23	109	128	23	33	47	9	28	132	52
heart	22	22	0	44	33	0	0	11	44	177	33	33	55	0	66	55	121
intestine	84	29	16	93	123	0	0	12	67	131	72	38	59	16	25	67	72
kidney	61	37	28	112	18	0	0	18	61	94	37	61	122	18	28	65	94
larynx	122	40	0	122	81	0	0	0	0	0	0	0	0	0	40	163	0
liver	72	95	14	0	38	0	0	4	62	134	19	148	24	24	24	100	28
lung	65	32	17	133	109	2	0	14	59	174	50	65	65	20	17	168	29
lymph	22	22	45	22	90	0	0	45	337	157	0	22	878	45	22	22	22
lymph node	0	32	21	130	119	0	0	0	21	76	43	272	32	0	87	43	87
mammary gland	25	58	19	45	116	12	0	6	97	64	19	90	90	19	32	155	38
mouth	14	0	14	59	0	0	0	0	29	44	0	88	162	0	147	147	29
muscle	0	0	36	18	110	0	0	18	18	83	0	46	147	18	27	92	36
nerve	0	0	0	0	63	0	0	253	0	0	63	63	0	0	0	63	0
ovary	29	38	9	87	77	0	0	0	38	224	19	29	48	0	38	107	0
pancreas	37	4	4	55	74	0	0	9	46	65	4	102	32	69	18	69	46
parathyroid	193	0	0	290	0	0	0	0	48	581	0	48	0	387	145	0	96
pharynx	0	0	24	0	0	0	0	0	24	963	0	24	24	0	48	192	48
pituitary gland	0	0	0	59	59	0	0	59	0	0	0	59	0	0	119	0	119
placenta	49	17	31	21	1/	10	0	42	66	151	45	38	59	10	42	98	42
prostate	41	20	10	94	94	0	0	0	115	89	15	52	/8	10	41	89	73
salivary giand	0	0	0	0	0	0	0	0	147	100	10	70	0	197	98	49	0
skin	00	47	14	28	85	0	0	14	00	160	42	70	00	9	103	151	33
spieen	30	73	18	30	55	0	0	10	92	/3	10	110	203	0	0	18	55
stomacn	41	30	10	30	82	45	20	10	113	123	10	82	141	10	41	41	30
tesus	10	12	21	40	30	45	39	9	57	40	40	330	141	12	00	102	39
thymus	73	30	0	12	0	0	0	0	30	12	12	123	110	0	24	159	12
tnyrold	62	20	0	41	20	0	0	0	125	20	0	83	62	0	41	83	0
trachee	20	76	U 114	58	10	0	U	0	58 57	117	U	56	293	0	67	293	58 10
uachea umbiliael eard	38 200	01	72	U	19	0	U	0	5/ 145	38	U	048	133	0	5/	38	19
unullical cord	290	55	12	U	0	0	U	0	145	140	10	217	0	0	10	175	0
uterus	34	55	8	4	55	U	U	10	111	149	12	205	80	4	42	1/5	29
vascular	19	19	57	U	19	U	U	19	115	5/	U	209	19	U	115	38	11

these alignments depicted as phylograms. Three subfamilies can be derived from Figure 1A. As expected, the first contains all the HSPH/HSP110 members. The second subfamily contains the cytosolic predicted HSPA proteins HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA6, HSPA8 and is flanked by the ER localized HSPA5 and the mitochondrial localized HSPA9 protein. The third sub-family consists of the distantly related HSPA12A and HSPA12B proteins. Thus a high number of highly related HSPA proteins are localized in the cytosolic/nuclear compartment. To date, the reason for so many highly related cytosolic HSPA proteins is unknown.

DNAJ proteins can be divided in three sub families on the bases of the primary amino acid composition and are classified as type A, B and C proteins (32). Type A proteins are the closest human orthologues of the *E. coli* DNAJ and contain, besides an extreme N-terminal J-domain, a glycine/phenylalanine-rich region, a cysteine rich region, and a variable C-terminal domain. Type B proteins contain an N-terminal J-domain, a glycine/phenylalanine-rich region. Type C DNAJ proteins contain only the J domain that is not necessarily restricted at the N-terminus but can be positioned at any place within the protein (32). DNAJA is a highly related family of proteins and DNAJA3 (the mitochondrial localized member) is the most distantly related member (Figure 1B). For the DNAJB family, three ma-

	DNAJC16	DNAJC17	DNAJC18	DNAJC19	DNAJC20	DNAJC21	DNAJC22	DNAJC23	DNAJC24	DNAJC25	DNAJC26	DNAJC27	DNAJC28	DNAJC29	DNAJC30
adipose tissue	0	0	0	0	0	0	0	304	0	0	152	0	0	76	0
adrenal gland	0	0	0	60	0	30	0	30	30	60	60	30	0	0	0
ascites	49	0	24	0	24	24	24	49	0	24	99	0	0	0	0
bladder	0	33	0	33	0	0	0	0	33	166	66	0	0	0	0
blood	16	0	8	0	8	40	0	32	24	64	96	0	8	16	40
bone	0	0	0	0	13	13	0	83	13	69	55	0	13	13	13
bone marrow	61	0	0	101	0	0	0	162	61	101	0	0	0	20	0
brain	15	20	119	70	3	17	6	39	9	53	73	22	2	65	24
cervix	0	20	0	0	0	20	0	103	20	41	41	0	0	0	41
connective tissue	13	6	20	6	6	20	0	60	0	80	33	6	0	26	13
ear	0	0	0	61	0	0	0	489	0	61	0	0	0	0	61
embryonic tissue	13	13	23	37	4	41	0	74	27	32	64	9	4	74	4
esophagus	0	0	0	49	0	0	0	0	0	0	0	0	0	0	0
eye	47	9	28	28	9	14	0	66	0	37	42	71	0	28	23
heart	11	0	0	55	22	33	0	55	0	11	22	33	0	0	66
intestine	50	0	0	127	12	21	33	50	12	50	135	8	0	25	25
kidney	32	4	23	75	32	14	32	70	14	127	61	37	0	32	32
larynx	0	40	0	0	0	81	0	900	0	0	0	0	0	0	81
liver	9	14	0	19	4	38	0	81	9	67	19	0	0	23	28
lung	35	14	5	32	26	23	2	106	5	85	73	32	2	29	35
lymph	0	0	0	0	45	0	0	0	0	22	22	0	0	22	0
lymph node	152	21	0	43	0	10	0	43	0	32	141	0	0	32	32
mammary gland	0	25	6	51	0	38	19	136	19	64	64	6	0	12	25
mouth	14	44	0	14	0	0	0	74	0	74	59	0	0	0	0
muscle	36	18	46	92	0	27	0	55	18	18	36	27	0	46	0
nerve	63	0	0	0	0	0	0	63	0	63	126	0	0	0	0
ovary	29	0	9	9	0	38	19	38	9	9	136	29	0	0	38
pancreas	4	0	0	27	4	27	13	51	51	204	46	51	0	4	27
parathyroid	0	0	0	48	0	0	0	48	0	48	242	0	0	0	96
pharynx	48	0	0	0	0	24	0	0	24	72	0	0	24	24	0
pituitary gland	0	0	59	179	0	0	0	0	0	59	179	0	0	0	0
placenta	31	24	7	35	7	17	3	56	3	77	80	7	0	3	3
prostate	15	5	5	335	10	41	0	146	20	83	52	26	0	0	26
salivary gland	0	49	0	147	0	0	0	0	49	147	295	0	0	0	0
skin	4	4	4	28	14	23	0	28	0	75	42	0	0	14	18
spleen	18	0	0	0	0	0	0	36	0	18	36	0	0	18	36
stomach	0	51	10	0	0	92	10	41	0	72	41	20	10	0	41
testis	33	6	147	33	3	15	3	102	21	48	87	72	18	9	18
thymus	12	0	24	12	0	36	0	36	0	0	123	12	0	0	0
thyroid	41	104	0	41	62	41	0	125	0	41	62	20	0	0	0
tonsil	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
trachea	38	38	0	19	0	0	0	209	0	0	114	0	19	38	19
umbilical cord	0	0	0	0	0	0	0	145	0	0	0	0	0	72	0
uterus	8	4	29	21	4	12	8	76	12	89	34	4	0	76	17
vascular	0	0	0	96	0	19	19	19	0	57	0	0	0	77	57

Table 4 continued: Expression levels of DnaJC genes in various human tissues. Number of transcripts per million are indicated.

jor subfamilies are found (Figure 1C). The first consists of the members DNAJB2, DNAJB6 DNAJB7 and DNAJB8, the second of the members DNAJB1, DNAJB4, DNAJB5, DNAJB9, DNAJB11 and DNAJB13 and the third of the members DNAJB12 and DNAJB14. Although different C-termini could be defined based on the primary amino acid level within the DNAJB family, at present, no clear biochemical function can be assigned to one of these subfamilies. The DNAJC family (Figure 1D) shows the highest divergence of all families. Based on these results we decided to clone the HSPH, HSPA, DNAJA and DNAJB family. As the DNAJC family is highly diverse, we omitted this family for library construction.

Cloning the HSPH, HSPA and DNAJ gene families

Selection of an expression system

For cloning a human expression library to perform reverse genetic screens, we used a robust and versatile system with a high degree of flexibility; the Flp-In T-Rex tetracycline inducible expression system. The core promoter of this construct contains the full human cytomegalovi-

Table 5: Expression levels of Hsp genes at variousdevelopmental stages. Number of transcripts per millionare indicated.

	embryoid body	blastocyst	fetus	neonate	infant	juvenile	adult
HSPH1	254	32	165	160	168	394	127
HSPH2	98	208	61	0	42	89	132
HSPH3	0	0	15	0	42	0	13
HSPH4	254	224	181	224	0	538	185
HSPA1A	84	80	713	448	168	896	274
HSPA1B	70	32	155	128	42	215	105
HSPA1L	0	0	14	0	0	0	1
HSPA2	0	32	24	320	0	35	67
HSPA5	819	529	174	64	126	269	438
HSPA6	0	0	7	64	0	0	17
HSPA7	0	0	1	0	0	0	12
HSPA8	1102	1283	2208	6509	8999	7371	2014
HSPA9	339	288	211	577	337	789	265
HSPA12A	14	32	22	32	253	107	28
HSPA12B	0	0	8	64	0	0	13
HSPA13	84	96	77	0	84	0	54
HSPA14	56	64	52	0	253	35	52
DNAJA1	197	304	140	64	844	358	158
DNAJA2	56	80	51	64	84	89	86
DNAJA3	56	80	40	0	42	125	52
DNAJA4	0	0	75	0	0	53	45
DNAJB1	127	96	155	320	211	430	236
DNAJB2	42	48	47	0	0	53	77
DNAJB4	56	16	38	256	42	107	36
DNAJB5	28	80	82	0	168	0	24
DNAJB6	127	336	147	416	253	251	207
DNAJB7	0	0	3	0	0	17	0
DNAJB8	0	0	5	0	0	0	2
DNAJB9	28	0	22	0	126	89	57
DNAJB11	42	128	51	32	0	17	66
DNAJB12	42	16	33	64	42	0	51
DNAJB13	0	0	0	0	0	0	2
DNAJB14	42	48	26	64	42	17	38

rus (CMV) promoter followed by two tetracycline repressor binding sites. Thus, in cell systems engineered to express the tetracycline repressor, tetracycline can be used for regulated expression of the gene of interest. whereas full CMV strength promoter activity will be achieved in cell systems which do not contain the tetracycline repressor (33). In addition to regulated expression, the vector contains an FRT recombination site for the Flp recombinase mediated stable integration of the vector at a specific site in an engineered FRT site harboring cell line (34). The eukaryotic selection marker lacks a start codon which selects for a site specific integration in the target genome. We selected the Flp-In T-Rex 293 cell line. a modified human embryonic kidney (Hek-293) cell line that expresses the tetracycline repressor and harbors a single copy of the FRT site at an active site in the genome. The Hek-293 cell line has been used extensively as a model for protein folding diseases and is widely known for its ease of manipulation (35). A summary of the Flp-In T-Rex system is depicted in Figure 2.

Construction of vector fusion tags

Specific antibodies against most of the recently identified human heat shock proteins are not available. To verify the expression of the different proteins, we used a subset of frequently used protein tags. In some cases, protein tags interfere with the native function of the protein (36). Therefore, caution must be taken with the interpretation of the results obtained. In general, experiments using this library can always be confirmed using the non-tagged version. Although the protein expression can not be confirmed with the untagged version, one can easily compare the biological effects detected in a particular assay.

As a first step towards a vector library for the expression of different heat shock proteins, we selected different protein tags harboring different biological properties. eGFP was selected for subcellular localization studies. As a second (smaller) tag, we used the V5 tag, consisting of only 14 amino acids for which high affinity anti-bodies are commercially available. In addition, we used a hexa-histidine tag for protein precipitation experiments (Figure 2).

To reduce cloning efforts, an N-terminal fusion tag was preferred. In this setting, we could maintain the natural stop codon in the gene of interest, which allows for simple shuttling from

tagged to non-tagged constructs. However, it should be mentioned that N-terminal fusion tags could interfere with the import in subcellular organelles such as the ER or mitochondria and non-tagged versions are in such cases preferred.

An overview of the fusion tag cloning primers and procedure is shown in Figure 2. The PCR product of the eGFP gene lacking a stop-codon was cloned in pcDNA5/FRT/TO. For V5 and His tags, the corresponding oligos where annealed and cloned directly in the pcDNA5/FRT/TO vector.

Cloning the chaperone library

The focus of our gene library is on the cytosolic and nuclear expressed chaperones. Therefore, we selected the HSP70/HSPA proteins which are putatively expressed in the cytosol or the nucleus (Table 7). For the HSP40/ DNAJ family of proteins, we selected the major part of the DNAJA and DNAJB subfamily which are the closest orthologs to E. coli DNAJ. As a certain human cell type typically only expresses a subset of its genes, we used pooled RNA from 10 different human cell lines as a source for cDNA synthesis and gene amplification. No amplification products were obtained for DNAJB4. DNAJB5 and DNAJB8. Instead, these genes were amplified from commercially obtained cDNA

Table 5 continued: Expression levels of Hsp genes at various developmental stages. Number of transcripts per million are indicated.

	embryoid body	blastocyst	fetus	neonate	infant	juvenile	adult
DNAJC1	70	0	61	128	0	107	44
DNAJC2	56	64	33	32	42	17	35
DNAJC3	28	0	22	32	0	17	17
DNAJC4	28	0	58	0	0	0	46
DNAJC5	84	80	31	0	0	35	79
DNAJC5B	0	0	0	0	0	0	5
DNAJC5G	0	16	0	0	0	0	2
DNAJC6	14	0	58	0	0	71	27
DNAJC7	70	64	63	128	0	107	90
DNAJC8	127	192	105	160	84	161	131
DNAJC9	42	32	36	32	126	17	23
DNAJC10	240	144	73	160	84	358	72
DNAJC11	56	128	72	64	42	35	52
DNAJC12	0	0	40	0	0	0	30
DNAJC13	28	16	77	0	42	0	47
DNAJC14	155	160	81	32	0	35	115
DNAJC15	14	16	59	0	0	0	50
DNAJC16	0	16	12	0	0	53	26
DNAJC17	0	32	5	0	0	0	14
DNAJC18	14	64	118	0	42	0	16
DNAJC19	14	64	84	0	0	17	68
DNAJC20	14	0	21	0	0	0	8
DNAJC21	70	48	36	32	0	0	35
DNAJC22	0	0	0	0	0	0	7
DNAJC23	70	80	81	64	0	143	94
DNAJC24	28	32	7	0	0	0	6
DNAJC25	56	16	56	64	0	0	67
DNAJC26	56	96	47	0	0	35	69
DNAJC27	0	16	51	0	0	0	13
DNAJC28	0	16	14	0	0	0	1
DNAJC29	70	112	75	64	0	17	14
DNAJC30	14	0	47	0	0	35	22

plasmids (Open Biosystems, Huntsville, AL). In addition, the HSPA6 gene was not amplified from the pooled cDNA. As this gene did not contain any introns, we amplified it directly from human chromosomal DNA. The yeast HSP70 gene SSA1, and the prokaryotic HSP70 gene DNAK were amplified from genomic *Saccharomyces cerevisiae* and *Escherichia coli* DNA respectively. An overview of the cloning procedure can be found in Figure 2 and the cloning details can be found in Table 8. We used a nested PCR approach for the HSPH gene family as the sequence start and end of these members is highly similar. The PCR products were purified, digested and cloned in the pcDNA5/FRT/TO GFP vector. The constructs were sequence verified for the presence of the correct insert. Thereafter, expression was verified by Western blot analysis (data not shown) and the genes were subcloned in the pcDNA5/FRT/TO V5, pcDNA5/FRT/TO HIS and the pcDNA5/FRT/TO vector.

 Table 6: Heat induced transcription of hsp genes. Affymetrix gene array data. data are shown as fold change compared to an unheated control

Family	Gene Symbol	0.5 hour	2 hours	4 hours	Probe Set ID
HSPH	HSPH1	0.9	2.6	3.1	206976_s_at
	HSPH2	0.9	1.5	1.3	208814_at
	HSPH3	0.9	1.8	2.0	205543_at
	HSPH4	1.0	1.0	1.2	200825_s_at
HSPA	HSPA1A	1.1	2.3	2.0	200799_at
	HSPA1A /// HSPA1B	1.2	4.4	3.3	200800_s_at
	HSPA1L	0.9	2.6	1.1	210189_at
	HSPA2	0.9	1.0	0.9	211538_s_at
	HSPA5	0.9	1.2	1.4	211936_at
	HSPA6	1.3	64.1	5.8	117_at
	HSPA8	0.9	1.1	0.9	208687_x_at
	HSPA9B	0.9	0.9	1.0	200690_at
	HSPA12A	0.9	0.8	0.7	214434_at
	HSPA13	0.9	0.8	0.8	202557_at
	HSPA14	1.0	0.9	0.9	219212_at
DNAJA	DNAJA1	1.0	1.5	1.5	200880_at
	DNAJA2	0.9	0.9	0.8	209157_at
	DNAJA3	0.9	0.9	0.7	205963_s_at
	DNAJA4	1.1	1.9	1.2	220395_at
DNAJB	DNAJB1	1.0	5.7	2.8	200664_s_at
	DNAJB2	1.1	2.1	1.4	202500_at
	DNAJB4	0.8	3.0	1.0	203810_at
	DNAJB5	0.9	1.0	1.0	212817_at
	DNAJB6	0.8	1.7	2.0	208810_at
	DNAJB9	0.6	1.2	0.8	202843_at
	DNAJB12	1.0	0.8	0.9	202865_at
	DNAJB12	1.1	1.1	1.2	214338_at
	DNAJB14	0.6	0.7	0.4	219237_s_at
DNAJC	DNAJC1	1.3	1.0	1.1	218409_s_at
	DNAJC3	1.0	0.8	1.0	208499_s_at
	DNAJC4	1.0	1.0	1.1	206781_at
	DNAJC6	0.8	0.7	0.7	204720_s_at
	DNAJC7	1.0	1.2	1.4	202416_at
	DNAJC8	0.8	0.8	0.9	212490_at
	DNAJC9	0.9	0.9	1.0	213088_s_at
	DNAJC10	0.9	0.8	0.8	221782_at
	DNAJC11	1.0	0.9	1.0	215792_s_at
	DNAJC12	1.0	0.8	0.8	218976_at
	DNAJC13	1.0	0.9	0.8	212467_at
	DNAJC15	1.0	1.0	1.0	218435_at
	DINAJC16	0.7	0.8	0.5	212908_at
	DNAJC17	1.1	1.0	1.2	219861_at
	DNAJC22	1.0	1.0	1.0	210595_at
	DNAJC23	0.8	0.8	0.7	201914_s_at
	DNAJC28	1.1	1.0	1.1	202281_at
	DNA.IC29	0.9	1.1	1.0	2203/2_at
	DINAJU23	1.0	0.6	0.7	213262_at

		wolf	ptarget	cello	multiloc	prot. analyst	consensus	experimental	prenylation
HSPH	HSPH1	с	С	С	с	с	с	-	no
	HSPH2	с	С	n	С	с	с	g	no
	HSPH3	с	с	n	n	с	С	с	no
	HSPH4	e	m	С	e	e	е	e	no
HSPA	HSPA1A	С	С	с	р	с	С	с	no
	HSPA1B	с	с	с	р	с	с	с	no
	HSPAIL	c	С	c	p	c	c	c	no
		C	C	C	μ	C	C	11	10
	HSPAG	e	C C	e	e	e	e	e	no
	HSPA8	c c	c	c	n	C C	c c	C	no
	HSPA9	m	m	m	m	m	m	m	no
	HSPA12A	m	-	m	m	-	m	-	no
	HSPA12B	с	n	m	p	-	-	-	no
	HSPA13	е	е	с	e	е	е	е	no
	HSPA14	х	р	с	С	с	с	-	no
DNAJA	DNAJA1	с	С	n	С	е	с	с	yes FT
	DNAJA2	с	С	n	n	e	cn	с	no
	DNAJA3	m	m	m	m	m	m	m	no
	DNAJA4	С	С	n	С	e	С	а	yes FT
DNAJB	DNAJB1	n	n	с	С	с	с	с	no
	DNAJB2a	n	n	c	c	-	cn	с	
		11	11	0	C	-		-	yes FIGGII
	DNA IB5	c c	n	c	c	6	с С	-	no
	DNAJB6a	n	0	x	c	-	c	c.	no
	DNAJB6b	c	c	c	c	-	c	c	no
	DNAJB7	n	c	0	n	-	n	-	no
	DNAJB8	с	С	С	n	-	с	-	no
	DNAJB9	х	e	с	х	с	xc	e	no
	DNAJB11	х	е	с	е	е	е	e	no
	DNAJB12	m	n	с	n	e	n	-	no
	DNAJB13	с	С	с	С	с	с	-	no
	DNAJB14a	С	С	с	n	e	С	-	no
-	DNAJB14b	с	С	x	n	с	с	-	no
DNAJC	DNAJC1	a	n	n	e	n	n	e	no
	DNAJC2	n v	-	11	11	11		-	10
	DNA ICA	<u>,</u>	с р	c n	e n	C C	с р	C	no
	DNA.IC5	c c	C II	x	x	e	CX	v	no
	DNAJC5B	č	c	x	a	e	c		no
	DNAJC5G	с	n	x	С	e	с	-	no
	DNAJC6	n	n	n	n	с	n	n	no
	DNAJC7	n	С	n	С	с	с	с	no
	DNAJC8	n	n	n	n	e	n	I.	no
	DNAJC9	с	e	С	С	-	с	-	no
	DNAJC10	а	e	с	g	е	е	e	no
	DNAJC11	c	с	n	n	-	cn	-	no
	DNAJCIZA	C C	C C	11		-	c	-	10
	DNA IC13	a	-		c	-	c c	d	no
	DNA.IC14	c	n	m	n	e	n	e	no
	DNAJC15	x	c	m	n	m	m	-	no
	DNAJC16	е	e	m	q	с	е	-	no
	DNAJC17	с	С	n	c	n	с	-	no
	DNAJC18	с	с	n	n	e	cn	-	no
	DNAJC19	х	m	m	m	m	m	m	no
	DNAJC20	m	m	n	m	m	m	m	no
	DNAJC21a	n	n	n	n	n	n	-	no
	DNAJC21b	n	c	n	n	n	n	-	no
	DNAJC22	a	e	a	У	ce	ae	â	00
	DNAJC23	a	n	n	e	e	ne	e	no
	DNAJC24	2	C C	11	د م	с с	ac	- a	10
	DNAJC26	a	m	n	n	c	n	c	no
	DNAJC27	c	с	с. С	с. С	a	 с	-	no
	DNAJC28	m	m	m	m	9	m	-	no
	DNAJC29	c	c	n	n	-	cn	-	no
	DNAJC30	m	e	m	x	с	m	e	no

Table 7: Prediction of Hsp subcellular localization

legend: nuclear (n), mitochondrial (m), Golgi (g) ER (e), peroxisomes (p), extracellular (x), plasma membrane (a), outher membrane (o), cytoplasmic vesicle (v), nucleolus (l), endosome (d), cytoskeleton (k), lysosome (y), farnesyltransferase (FT), geranylgeranyltransferase 1 (GGT1)

Figure 1: Phylograms for the HSPH/A (A), DNAJA (B), DNAJB (C) and DNAJC (D) families. Primary amino acid alignments were performed using the Neighbour-joining algorithm using a Blosum scoring matrix in ClustalX (see methods for details). Bootstrap values are indicated on the branch-points.

Figure 2: Schematic overview of the library construction. (A) The pcDNA5/FRT/TO vector system together with the cloned fusion tags. (B) List of the cloned molecular chaperones. (C) Schematic representation of the FRT locus within the FIp-In T-REx HEK-293 cell line. (D) Primer sequences for the construction of the indicated fusion tags.

Validation of the library

To test the effect of the different protein tags, two different biochemical assays were used. First, the effect of the tag on the ability of HSPA1A to assist the refolding of heat-denatured luciferase was tested (37). Therefore, we used constructs containing the HSPA1A gene down-stream and in frame with the GFP tag, the V5 tag and the pcDNA5/FRT/TO vector lacking a tag and compared the efficacy in the stimulation of luciferase refolding. The GFP tag significantly reduced the activity of the HSPA1A protein (Figure 3A), whereas the V5 tag showed little to no significant effect on HSPA1A activity. Yet, modulation of HSPA1A related refolding by the co-factor BAG-1 (38) could be achieved with all tagged versions (Figure 3B). Thus, HSPA1A N-terminally tagged with eGFP may be less active related to non-tagged versions but seems unaffected in its ability to cooperate with its cofactors.

To test the effect of tagging DNAJ like proteins, we used a filter trap assay to detect aggregation of polyglutamine proteins such as mutant Huntingtin. Aggregated Huntingtin is SDS insoluble and retains trapped in a non-protein binding cellulose acetate membrane and DNAJB1 is known to be able to inhibit this aggregation (22;39). We used constructs containing the DNAJB1 gene downstream and in frame with the GFP tag, the V5 tag and the pcDNA5/FRT/ TO vector lacking a tag and compared the efficacy of DNAJB1 in the suppression of mutant huntingtin aggregation. As shown in Figure 3C, untagged DNAJB1 strongly suppresses mu-

Table 8:	Summary	of the	library	cloning
----------	---------	--------	---------	---------

Family	Gene	5'-oligo	3'-oligo	Site 1	Site 2
HSP110	HSPH1	CTCCCAGGGTTTCTTATCAG	GATTTTAATCACAGCCCTCTTG	NA	NA
	HSPH1*	CACAGATATCACCATGTCGGTGGTGGGGGTTG	CGCGATCCTCGAGCTAGTCCAAGTCCATATTAACAG	Eco RV	Xhol
	HSPH2	ACCCACTGGAAGGACTTAGG	GAGCTCCTGCCATGTAAGTC	NA	NA
	HSPH2*	GACAGATATCACCATGTCGGTGGTGGGCATAGAC	GACTGCGGCCGCGGAATCAATCAATGTCCATTTCAG	Eco RV	NotI
	HSPH3	GCAATAGCCCAGAAGAGGAC	GATGGACCCCGTGGTTACTTG	NA	NA
	HSPH3*	GACGGATATCACCATGTCTGTGGTTGGCATTGAC	GATCGCGGCCGCAGACTTAGTCCACTTCCATCTC	Eco RV	NotI
HSP70	HSPA1A	ACCAGAGGATCCACCATGGCCAAAGCCGCGGCGAT	ATCACTGCGGCCGCCTAATCTACCTCCTCAATGG	Bam HI	Not1
	HSPA1L	CACAGATATCACCATGGCTACTGCCAAGGGAAT	GACTGCGGCCGCTTAATCTACTTCTTCAATTGTGGGGC	Eco RV	Not1
	HSPA2	CACACAGGATCCACCATGTCTGCCCGTGGCCCGGCT	GACTGCGGCCGCTTAGTCCACTTCTTCGATGGTGG	Bam HI	NotI
	HSPA6	GACAGATATCACCATGCAGGCCCCACGGGAGCT	GACTGCGGCCGCTCAATCAACCTCCTCAATGA	Eco RV	NotI
	HSPA8	CACACAGGATCCACCATGTCCAAGGGACCTGCAGTTG	GACTGCGGCCGCTTAATCAACCTCTTCAATGGTGGG	Bam HI	NotI
	HSPA14	CACACAGGATCCACCATGGCGGCCATCGGAGTTCA	GACTGCGGCCGCCTAAGATGCTATCTCAATAGAGATTG	Bam HI	NotI
	DNAK	ACCAATGGATCCACCATGGGTAAAATAATTGGTATC	AATAATGCGGCCGCCCCGTGTCAGTATAATTACC	Bam HI	NotI
	SSA1	TACTAAGGATCCACCATGTCAAAAGCTGTCGGTATTG	TAGTATGCGGCCGCTTAATCAACTTCTTCAACGGTTGGACC	Bam HI	NotI
HSP40	DNAJA1	CACAATGGATCCACCATGGTGAAAGAAACAACTTACTACG	GACTGCGGCCGCTTAAGAGGTCTGACACTGAAC	Bam HI	NotI
	DNAJA2	ATCCACGGATCCACCATGGCTAACGTGGCTGACACG	GACTGCGGCCGCTTACTGATGGGCACACTGCAC	Bam HI	NotI
	DNAJA3	ATTCGAGGATCCACCATGGCTGCGCGGTGCTCCACA	GACTGCGGCCGCGGCTGGGATATCATGAGGTA	Bam HI	NotI
	DNAJA4	ATAGCTGGATCCACCATGGTGAAGGAGACCCAGTA	GACTGCGGCCGCTCATGCCGTCTGGCACTGCAC	Bam HI	NotI
	DNAJB1	CACAATGGATCCACCATGGGTAAAGACTACTACCAGACG	GACTGCGGCCGCCTATATTGGAAGAACCTGCTCAAG	Bam HI	NotI
	DNAJB2a	ATCGATGGATCCACCATGGCATCCTACTACGAGATC	TACGATGCGGCCGCTCAGAACACATCTGCGGGTTTC	Bam HI	NotI
	DNAJB2b	ATCGATGGATCCACCATGGCATCCTACTACGAGATC	TACGATGCGGCCGCTCAGAGGATGAGGCAGCGAG	Bam HI	NotI
	DNAJB3	TACTACGGATCCACCATGGTGGACTACTACGAGGT	TACTGTGCGGCCGCTTACTGAGTATTGATGCGAAGCAG	BamHI	NotI
	DNAJB4	TGCAAAGGATCCACCATGGGGAAAGACTATTATTGC	GACTGCGGCCGCCTATGAGGCAGGAAGATGTTTCC	BamHI	NotI
	DNAJB5	GATCGCGGCCGCACCATGGGAAAAGATTATTACAAGATTCTTGGG	GATATCGGGCCCCTAGGAACAGGGTAGGTGCTGC	NotI	Apal
	DNAJB6b	GATATAGGATCCGGAACCATGGTGGATTACTATGAAGTTCT	GATATTGCGGCCGCTTACTTGTTATCCAAGCGCAG	Bam HI	NotI
	DNAJB6a	TATATAGGATCCACCATGGTGGATTACTATGAAGTTCT	TATATAGCGGCCGCCTAGTGATTGCCTTTGGTCG	Bam HI	NotI
	DNAJB7	GATTACGATATCACCATGGTGGATTACTATGAAGT	GATTACGCGGCCGCTTAACAATTCCTTTTGGTAGACTTC	Eco RV	NotI
	DNAJB8	AAGTAAGGATCCACCATGGCTAACTACTACGAAGTG	GATATAGCGGCCGCCTACTTGCTGTCCATCCATTTG	Bam HI	NotI
	DNAJB9	GATCGCGGCCGCACCATGGCTACTCCCCAGTCAAT	GATATCGGGCCCCTACTGTCCTGAACAGTCAG	NotI	Apal
	DNAJB10	ATCGATGGATCCACCATGGCATCCTACTACGAGATTC	TACGATGCGGCCGCTCAGAACACATCTGCTGGCTTC	Bam HI	NotI

tant Huntingtin aggregation containing a polyQ tract of 74 residues. Both the V5 and the GFP tagged showed an equal slight reduction on the aggregation suppression, but yet retained substantial activity. Thus, N-terminal tagging sometimes does influence the maximal activity of the chaperones tested. This implies that after performing experiments with our tagged HSPs, confirmation with untagged versions is required.

Discussion

The HSPH/HSPA and DNAJ families are large gene families with many poorly studied individual members. We used bioinformatics approaches to study the expression, the localization and the homology of these families. These approaches generated large datasets which will be useful for the systematic biochemical analysis of these family members. It was found that HSPs are expressed at highly variable levels in different tissues. So far, no clear patterns were seen for paired expression of certain members within e.g. the HSPA and DNAJ family in most tissues. Although it is valid to search for the highest expressing tissue for a particular transcript, it is difficult to compare the level of different transcripts for a particular tissue. This is believed to be partly caused by the fact that different messengers may have large differences in mRNA stability. Interestingly, we did find some pattern for the testis. A testis specific HSPA transcript was found (HSPA1L) as well as testis specific DNAJ members (DNAJB7, DNAJB8, DNAJC5B and DNAJC5G). This could indicate that HSPA1L cooperates with one of these DNAJ members.

We also studied the expression levels of HSPs during various developmental stages. The results of the peak expression per transcript show that there is a wide variation in HSP expression throughout different developmental stages but many DNAJC members peak at the blastocyst and fetal stages, indicating that there is a need for specialized DNAJ members early in development.

Computational analysis of the human HSPH/HSPA/DNAJ family

Figure 3: The effect of different fusion tags on HSPA1A (A) and (B) or DNAJB1 (C). (A) Luciferase refolding assay using GFP. V5 and untagged HSPA1A versions. Cells were transfected with different tagged versions of HSPA1A together with a plasmid encoding firefly luciferase. HSPA1A expression was induced using tetracycline. The day after transfection, the cells were heated at 37°C or 45°C for 30 minutes and reincubated for 1 hour at 37°C to allow luciferase refolding. Thereafter, cells were lysed and measured for luciferase activity. The percentage of luciferase activity is plotted relative to the activity in unheated control cells (100%). (B) Modulation of tagged HSPA1A versions by BAG-1. Cells were treated as in (A) but also co-transfected with a BAG-1 encoding plasmid as indicated. (C) Filter trap assay showing aggregation of expanded Huntingtin. GFP, V5 and untagged versions of DNAJB1 were used as indicated. Cells were transfected with different tagged versions of DNAJB1 together with a plasmid encoding GFP tagged Huntingtin containing either 23Q or 74Q. DNA-JB1 was induced by tetracycline. Two days after transfection, cells were lysed and the lysates were loaded on a cellulose acetate membrane. After transblotting, blots were

immunostained for GFP to detect aggregated Huntingtin. GFP-tagged DNAJB1 alone did not show any signal on the membrane (not shown).

Surprisingly, the heat inducibility of the different HSPs was only restricted to a limited number of members within each family (HSPH1, HSPA1A/B, HSPA6, DNAJB1, DNAJB2, DNAJB4 and DNAJB6). This could mean that HSPA1A or HSPA6 cooperate with HSPH1 and one of these DNAJ members following stress conditions. Interestingly, no heat inducible DNAJC member was found indicating that DNAJC members do not function in the stress response. It should be noted, however, that the array did not contain probes corresponding to all DNAJC members.

Analyzing the cellular distribution and homology of different HSP members showed that a very homologous subfamily of the HSPA family is predicted to be expressed in the cytosol (HSPA1A/B, HSPA1L, HSPA2, HSPA6 and HSPA8). This indicates that only a minority of the gene duplication occurred as a result of compartmentalization. It is unclear at this stage if this homologous subgroup of HSPA chaperones is regulated by the same subset of co-factors

and if they bind the same subset of client proteins. It will be highly interesting to answer these questions by using available biochemical approaches. For this purpose, we cloned a large collection of chaperone encoding genes in a tetracycline inducible vector system. Different tags with different properties were used in order to detect expression levels (V5), study subcellular localization in living or fixed cells (GFP/V5) or to enrich the expressed protein from crude cell lysates (His). In addition, non-tagged versions were made to verify obtained biological effects. This expression library will be useful to systematically study the biochemical and cell biological features of these poorly characterized HSPs and might help answer the intriguing question why we have so many HSPA and DNAJ chaperones.

Acknowledgements

We would like to thank Maria A.W.H. van Waarde for expert assistance on biochemical analysis. We thank Eefje Pelster, Alette H. Faber and Reinier Bron for assistance on gene cloning. Lenja Bystrykh (department of Cell Biology, section Stem Cell Biology, University Medical Center Groningen, the Netherlands) is kindly acknowledged for help on the Unigene EST collection and Ron Dirks (section Biochemistry, Radbout University, Nijmegen, the Netherlands) for help on the Affimetrix gene array data. Russell S. Thomas (CIIT Centers for Health Research, NC, USA) is acknowledged for providing the array data sets. This work was supported by Innovatiegerichte Onderzoeksprogramma Genomics Grant IGE03018.

References

- Gribaldo, S., Lumia, V., Creti, R., de Macario, E. C., Sanangelantoni, A., and Cammarano, P. (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein, J. Bacteriol. 181, 434-443.
- 2. Kampinga, H. H. (2006) Chaperones in preventing protein denaturation in living cells and protecting against cellular stress, Handb. Exp. Pharmacol. 1-42.
- 3. Sahi, C. and Craig, E. A. (2007) Network of general and specialty J protein chaperones of the yeast cytosol, Proc. Natl. Acad. Sci. U. S. A 104, 7163-7168.
- 4. Albanese, V., Yam, A. Y., Baughman, J., Parnot, C., and Frydman, J. (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells, Cell 124, 75-88.
- Brocchieri, L., Conway de, M. E., and Macario, A. J. (2008) hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions, BMC. Evol. Biol. 8, 19.
- Rudiger, S., Schneider-Mergener, J., and Bukau, B. (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone, EMBO J. 20, 1042-1050.
- Rudiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries, EMBO J. 16, 1501-1507.
- 8. Brocchieri, L., Conway de, M. E., and Macario, A. J. (2007) Chaperonomics, a new tool to study ageing and associated diseases, Mech. Ageing Dev. 128, 125-136.
- 9. Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2007) Entrez Gene: gene-centered information at NCBI, Nucleic Acids Res. 35, D26-D31.
- Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L. Y., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D. J., Madden, T. L., Maglott, D. R., Ostell, J., Miller, V., Pruitt, K. D., Schuler, G. D.,

Sequeira, E., Sherry, S. T., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusov, R. L., Tatusova, T. A., Wagner, L., and Yaschenko, E. (2007) Database resources of the National Center for Biotechnology Information, Nucleic Acids Res. 35, D5-12.

- Page, T. J., Sikder, D., Yang, L., Pluta, L., Wolfinger, R. D., Kodadek, T., and Thomas, R. S. (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival, Mol. Biosyst. 2, 627-639.
- 12. Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., ms-Collier, C. J., and Nakai, K. (2007) WoLF PSORT: protein localization predictor, Nucleic Acids Res. 35, W585-W587.
- 13. Guda, C. (2006) pTARGET: a web server for predicting protein subcellular localization, Nucleic Acids Res. 34, W210-W213.
- Szafron, D., Lu, P., Greiner, R., Wishart, D. S., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A., and Meeuwis, D. (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations, Nucleic Acids Res. 32, W365-W371.
- Yu, C. S., Chen, Y. C., Lu, C. H., and Hwang, J. K. (2006) Prediction of protein subcellular localization, Proteins 64, 643-651.
- Hoglund, A., Donnes, P., Blum, T., Adolph, H. W., and Kohlbacher, O. (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition, Bioinformatics. 22, 1158-1165.
- 17. Maurer-Stroh, S., Koranda, M., Benetka, W., Schneider, G., Sirota, F. L., and Eisenhaber, F. (2007) Towards complete sets of farnesylated and geranylgeranylated proteins, PLoS. Comput. Biol. 3, e66.
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics. 23, 2947-2948.
- Page, R. D. (1996) TreeView: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci. 12, 357-358.
- Hageman, J., Eggen, B. J., Rozema, T., Damman, K., Kampinga, H. H., and Coppes, R. P. (2005) Radiation and transforming growth factor-beta cooperate in transcriptional activation of the profibrotic plasminogen activator inhibitor-1 gene, Clin. Cancer Res. 11, 5956-5964.
- Michels, A. A., Nguyen, V. T., Konings, A. W., Kampinga, H. H., and Bensaude, O. (1995) Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment, Eur. J. Biochem. 234, 382-389.
- 22. Carra, S., Sivilotti, M., Chavez Zobel, A. T., Lambert, H., and Landry, J. (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells, Hum. Mol. Genet. 14, 1659-1669.
- 23. Schuler, G. D. (1997) Pieces of the puzzle: expressed sequence tags and the catalog of human genes, J. Mol. Med. 75, 694-698.
- Held, T., Paprotta, I., Khulan, J., Hemmerlein, B., Binder, L., Wolf, S., Schubert, S., Meinhardt, A., Engel, W., and Adham, I. M. (2006) Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development, Mol. Cell Biol. 26, 8099-8108.
- Ito, Y., Ando, A., Ando, H., Ando, J., Saijoh, Y., Inoko, H., and Fujimoto, H. (1998) Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man, J. Biochem. 124, 347-353.
- Noonan, E. J., Place, R. F., Giardina, C., and Hightower, L. E. (2007) Hsp70B' regulation and function, Cell Stress. Chaperones. 12, 219-229.
- 27. Sprenger, J., Fink, J. L., and Teasdale, R. D. (2006) Evaluation and comparison of mammalian subcellular localization prediction methods, BMC. Bioinformatics. 7 Suppl 5, S3.
- Mishra, G. R., Suresh, M., Kumaran, K., Kannabiran, N., Suresh, S., Bala, P., Shivakumar, K., Anuradha, N., Reddy, R., Raghavan, T. M., Menon, S., Hanumanthu, G., Gupta, M., Upendran, S., Gupta, S., Mahesh, M., Jacob, B., Mathew, P., Chatterjee, P., Arun, K. S., Sharma, S., Chandrika, K. N., Deshpande, N., Palvankar, K., Raghavnath, R., Krishnakanth, R., Karathia, H., Rekha, B., Nayak, R., Vishnupriya, G., Kumar, H. G., Nagini, M., Kumar, G. S., Jose, R., Deepthi, P., Mohan, S. S., Gandhi, T. K., Harsha, H. C., Deshpande, K. S., Sarker, M., Prasad, T. S., and Pandey, A. (2006) Human protein reference database--2006 update, Nucleic Acids

Res. 34, D411-D414.

- 29. Terada, K. and Mori, M. (2000) Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70, J. Biol. Chem. 275, 24728-24734.
- Chapple, J. P. and Cheetham, M. E. (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation, J. Biol. Chem. 278, 19087-19094.
- 31. Gascuel, O. and Steel, M. (2006) Neighbor-joining revealed, Mol. Biol. Evol. 23, 1997-2000.
- Hennessy, F., Nicoll, W. S., Zimmermann, R., Cheetham, M. E., and Blatch, G. L. (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions, Protein Sci. 14, 1697-1709.
- Knopf, C. W., Zavidij, O., Rezuchova, I., and Rajcani, J. (2008) Evaluation of the T-REx transcription switch for conditional expression and regulation of HSV-1 vectors, Virus Genes 36, 55-66.
- 34. Garcia-Otin, A. L. and Guillou, F. (2006) Mammalian genome targeting using site-specific recombinases, Front Biosci. 11, 1108-1136.
- 35. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J. Gen. Virol. 36, 59-74.
- Muller-Taubenberger, A. (2006) Application of fluorescent protein tags as reporters in live-cell imaging studies, Methods Mol. Biol. 346, 229-246.
- Michels, A. A., Kanon, B., Konings, A. W., Ohtsuka, K., Bensaude, O., and Kampinga, H. H. (1997) Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells, J. Biol. Chem. 272, 33283-33289.
- Nollen, E. A., Brunsting, J. F., Song, J., Kampinga, H. H., and Morimoto, R. I. (2000) Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity, Mol. Cell Biol. 20, 1083-1088.
- 39. Rujano, M. A., Kampinga, H. H., and Salomons, F. A. (2007) Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine, Exp. Cell Res. 313, 3568-3578.