
 

 

 University of Groningen

Modeling Architectural Patterns’ Behavior Using Architectural Primitives
Waqas Kamal, Ahmad; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Waqas Kamal, A., & Avgeriou, P. (2008). Modeling Architectural Patterns’ Behavior Using Architectural
Primitives. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/37bee49b-03ba-48cc-86be-88f91e8945de


R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 164–179, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Modeling Architectural Patterns’ Behavior Using 
Architectural Primitives 

Ahmad Waqas Kamal and Paris Avgeriou 

Department of Mathematics and Computer Science 
University of Groningen, The Netherlands 

a.w.kamal@rug.nl, paris@cs.rug.nl 

Abstract. Architectural patterns have an impact on both the structure and the 
behavior of a system at the architecture design level. However, it is challenging 
to model patterns’ behavior in a systematic way because modeling languages do 
not provide the appropriate abstractions and because each pattern addresses a 
whole solution space comprised of potentially infinite solution variants. In this 
paper, we advocate the use of architectural primitives for systematically model-
ing architectural patterns in the behavioral view. These architectural primitives 
are found among a number of architectural patterns and serve as the basic build-
ing blocks for modeling patterns’ behavior. The main contribution of this work 
lies in the discovery of architectural primitives, defining architectural primitives 
using UML, and capturing the missing pattern semantics by using UML’s 
stereotypes.  

Keywords: Architectural Patterns, Architectural Primitives, Modeling, UML. 

1   Introduction 

Architectural patterns provide solutions to recurring design problems that arise in a 
specific context [1] [2]. These patterns propose a particular structure and behavior that 
can be tailored to the specific needs of the problem at hand [3] [4]. The solution of an 
architectural pattern is a model; applying the pattern results in incorporating that model 
into the software architecture of a specific system. One of the most significant aspects 
of modeling architectural patterns is the patterns’ behavior, which are mostly repre-
sented as scenarios that define the run-time actions of the patterns [4]. Such a run-time 
behavior is vital for the pattern implementation as it shows the way ‘pattern partici-
pants’ collaborate and communicate with each other to express a pattern. We use the 
term ‘participants’ to mention the modeling elements that work in association to ex-
press architectural patterns. Unfortunately, modeling architectural patterns’ behavior in 
a systematic way remains a challenging task mostly due to the following reasons:  

a) Pattern participants do not match the architectural abstractions of commonly 
used modeling languages. 

b) Architectural patterns’ behavior can potentially be modeled in infinite differ-
ent ways to balance the forces related to the problem at hand. 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 165 

Architecture Description Languages (ADLs) (e.g. ACME [5] or Wright [6]) and 
UML [7] have traditionally been used for modeling architectural patterns. Few of 
these languages focus specifically on modeling patterns’ behavior while few others 
provide general architectural abstractions that can be extended to express patterns. 
UML is one such widely known modeling language that offers a generalized set of 
interaction elements to describe behavioral aspects of software architecture. However, 
both ADLs and UML provide only limited support for modeling patterns [8] because 
the architectural abstractions provided by these languages do not match the pattern 
participants and because they do not provide mechanisms for modeling the infinite 
variability of pattern behavior. 

In our previous work, we have identified a set of architectural primitives in the 
Component-Connector view [9] and the Process Flow view [10]. We consider the 
primitives as key participants in modeling patterns and use them as the fundamental 
modeling elements to express a pattern in system design. These primitives offer reus-
able modeling abstractions that can be used for systematically modeling pattern vari-
ants. In this paper, we extend our work by focusing on architectural primitives in the 
behavioral view. We show how few primitives, which are already used for modeling 
patterns in the structural view, can be used for modeling patterns in the behavioral 
view as well. We illustrate our approach by presenting how the behavior of three 
typical architectural patterns can be modeled with the help of these new primitives. 
Furthermore, since primitives alone do not capture the entire semantics of the pat-
terns, we show how to identify the missing semantics and express them through a 
vocabulary of pattern-specific objects and messages. 

The remainder of this paper is structured as follows: in Section 2, we motivate  
our choice of selecting UML’s collaboration diagram for modeling patterns’ behavior. 
In Section 3, we present our approach for representing patterns and primitives as 
modeling abstractions using an extension of the UML. Section 4 gives detailed infor-
mation of the primitives discovered during our work. In Section 5, we use primitives 
and a vocabulary of design elements, for modeling three selected patterns. Section 6 
elaborates on related work and Section 7 discusses the future work and concludes this 
study. 

2   The Unified Modeling Language in the Behavioral View 

Although any modeling language can be used for modeling architectural primitives as 
long as the selected modeling language supports an extension mechanism to handle 
the semantics of the primitives, the UML is our choice in this work. The motivation 
behind the selection of UML is: a) UML is a widely known de facto modeling lan-
guage; b) UML provides explicit extension mechanisms; and c) UML supports a 
variety of diagrams for describing the behavioral aspects of software architecture, 
such as Use case, Sequence, Collaboration, Statechart, and Activity. Each of these 
diagrams serves specific purposes to describe software design, which at times overlap 
with each other. These diagrams use particular UML modeling elements, which can 
be extended to meet the specific needs of modeling a system. In this paper, the re-
quirements that we consider for modeling patterns’ behavior are as follows: 



166 A.W. Kamal and P. Avgeriou 

- Pattern elements operations: The operations performed by pattern partici-
pants show the true essence of pattern behavior. The operation parameters, 
return values, and operation type should be represented in the design. 

- Relationships among pattern elements: The relationships define the nature of 
interactions performed by the objects, such as the order of occurrence of the 
operations, multiplicity, and direction of flow etc. 

- Pattern behavior in response to user/system interaction: Capturing the be-
havior of pattern participants that can explain the major dynamics of the pat-
tern when a specific event or user/system action takes place. 

Depending on the purpose, the UML supports a variety of diagrams for modeling 
different aspects of system behavior. A brief description of each UML diagram for 
modeling system behavior and their comparison to the requirements listed above is 
given as follows: 

- Use Case Diagrams describe the interaction between actors – who initiate the ac-
tion – and the system. The interaction is usually described using a sequence of 
steps. Use cases are usually defined at a higher level where the system design is 
considered as a black box, and emerges from the requirements used for designing 
the system. The use case diagrams, being at a higher level of abstraction, are not 
a close match to the requirements listed above because our focus lies on detail 
level interactions and operations among pattern participants. 

- Sequence diagrams use objects, events, and arrows to depict scenarios by ex-
changing messages between objects when a specific event occurs. They usually 
show the execution of a typical example. Sequence diagrams are a close match to 
the requirements listed above as they show the sequence of operations entailed by 
the architectural patterns, occurrence of events to invoke specific operations, and 
use messages to show the interaction among pattern participants. 

- Statechart diagrams show interactions with other objects inside or outside the 
system. A state shows the execution of a specific function when an event occurs. 
State diagrams are more focused on transition of states among objects while our 
focus lies on interaction among objects, which makes these diagrams a weak op-
tion for modeling patterns’ behavior in context of the requirements listed above.  

- Collaboration diagrams depict scenarios as flow of messages. Collaboration dia-
grams are very similar to sequence diagrams. However, an obvious difference is 
that collaboration diagrams show the teamwork of messages while sequence dia-
grams shows the stepwise execution of messages. Similar to the sequence dia-
grams, we consider collaboration diagrams as a close match to our work since 
collaboration diagrams can show the operations taking place between the pattern 
participants, the relationship, and occurrence of specific events. 

- Activity Diagrams show an operation that is invoked when a specific event oc-
curs. The activity diagram focus on using threads for the transfer of control and 
data among objects and hence more often used for synchronization checks [7]. 
These diagrams too are not a close match to the requirements listed above, as ac-
tivity diagrams do not explicitly show the relationships and interactions among 
pattern participants. 

 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 167 

Thus, we focus on capturing the interaction mechanism between pattern participants 
using either the sequence diagrams or collaboration diagrams. While sequence dia-
grams are more restricted to time-bound occurrence of events, the collaboration dia-
grams are the best choice in this work, which rely on interactions and relationships 
among objects in a time-independent manner. However, both types of these diagrams 
are comparative in nature and can be converted from one form to the other.  

3   Extending UML to Represent Patterns and Primitives 

UML is a widely known modeling language and is highly extensible [7]. There are 
two approaches for extending UML: extending the core UML metamodel or creating 
profiles by extending metaclasses. Our work focuses on the second approach, i.e. we 
create profiles specific to the individual architectural primitives. To capture the miss-
ing patterns semantics and to express the discovered architectural primitives, we ex-
tend the UML metaclasses using UML profile mechanism. That is, we define the 
primitives and pattern participants as extensions of existing metaclasses of UML 
using stereotypes and constraints as follows: 

- Stereotypes: We use stereotypes to extend the properties of existing UML meta-
classes. For instance, the Message metaclass is extended to generate a variety of 
primitives and specialized messages between pattern participants. 

- Constraints: We use the Object Constraint Language (OCL) [11] to place addi-
tional semantic restrictions on extended UML elements. For instance, constraints 
can be defined on associations between objects, navigability, direction of com-
munication, etc.  

a. The UML 2 Metamodel 
For the primitives presented in this paper, we mainly extend or use the following 
metaclasses of the UML 2.0 interaction metamodel to express the primitives: 

- Messages are used to perform operations on the objects. Messages define a spe-
cific kind of communication in an interaction and connect the MessageEnds, 
which store references to the adjacent objects that need to be connected. 

- Interaction provides connection between connectable elements using message 
ends. It uses namespace to store the sequence of operations taking place in the 
collaboration diagrams. 

- MessageEnd connects the source object to the target object, where the source and 
target objects own the message ends. 

We have also used the following UML metaclasses in order to express the constraints 
on UML metamodel: 

- EventOccurence is a specialization of the MessageEnd. The message operations 
use the MessageEnds to send and receive events. 

- ExecutionOccurence is represented by two event occurrences, the start event oc-
currence and the finish event occurrence. 



168 A.W. Kamal and P. Avgeriou 

 

Fig. 1. Part of the UML Interaction metamodel used for defining primitives 

4   Architectural Primitives 

This section presents a continuation to our previous work where we have listed sev-
eral architectural primitives in Component-Connector view [9] and the Process Flow 
view [10]. In this section, we present seven primitives discovered in the behavioral 
view that are repetitively found as abstractions in a number of patterns. The aim of 
our work is to capture common recurring solutions at an abstraction level that can be 
used to model architectural patterns’ behavior, hence providing a better reusability 
and systematic support to model patterns. Following, we list the primitives discovered 
during our work and present the UML profile elements as a concrete modeling solu-
tion for expressing these primitives. 

4.1   Documenting an Architectural Primitive: Push-Pull 

Textual Description: Push, Pull, and Push-Pull structures are common abstractions in 
many software patterns. They occur when a target object receives a message sent by a 
source object (Push), or when a receiver receives information by generating a request 
(Pull). Both structures can also occur together at the same time (Push-Pull). 

Known uses in patterns 

- In the Model-View-Controller [4] pattern, the model pushes data to the view, and 
the view can pull data from the model. 

- In the PIPE-FILTER [4] pattern, filters push data, which is transmitted by the 
pipes to other filters and even pipes can request data from source filters (Pull) to 
transmit it to the target filters. 

- In the PUBLISH-SUBSCRIBE [4] pattern, data is pushed from the framework to 
subscribers and subscribers can pull data from the framework. 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 169 

- In the CLIENT-SERVER [4] pattern, data is pushed from the server to the client, 
and the client can send a request to pull data from the server. 

Modeling Issues: Semantics of the push-pull structure is missing in UML diagrams. It 
is difficult to understand whether a certain operation is used to push data, pull data, or 
both. A major problem in modeling the above listed patters in UML is that although a 
Push-Pull structure is often used to transmit data among objects, it cannot be explic-
itly modeled using UML interaction diagrams.   

Modeling Solution: To capture the semantics of Push-Pull properly in UML, we  
propose a number of new stereotypes for dealing with the three cases: Push, Pull, and 
Push-Pull. Figure 2 illustrates these stereotypes according to the UML 2.0 interaction 
model. 

 

Fig. 2. UML Stereotypes For Modeling the Push-Pull Structure 

<<Push>>: A stereotype that extends the ‘Message’ metaclass and attaches to mess-
sage ends that connect adjacent objects.  
 
-- A Push message has only two ends 

inv: self.baseMessage->size() = 2 

-- A Push message should be represented by a directed Message only 

inv: self.baseMessage.type.MessageEnd->select( 
Message = Core::MessageKind::directed).class->any(true) 
 

-- The following constraint specifies the presence of interaction link between connected ele-
ments 

inv: self.enclosingInteraction->select( 
oclAsKindOf(Message)->exists(I:Interaction | I.PushEnd) 
 

<<Pull>>: A stereotype that extends the ‘Message’ metaclass and owns Message 
Ends that connect adjacent objects. 
 
-- A Pull message has only two ends 

inv: self.baseMessage.end->size() = 2 



170 A.W. Kamal and P. Avgeriou 

-- A Pull message should be represented by a directed Message only 

inv: self.baseMessage.type.MessageEnd->select( 
Message = Core::MessageKind::directed).class->any(true) 
 

-- The interaction contains the message ends owned by the adjacent objects 
 

inv : self.enclosingInteraction-> se-
lect(oclAsKindOf(Message)->exists(I:Interaction | I.PullEnd) 
implies 
select(oclAsKindOf(Message)->exists(I:Interaction | 
I.PushEnd) 

 
<<PullEnd>>: A stereotype that extends the MessageEnd metaclass and contains a 
number of operations that serve the purpose of Pull operations between connected 
elements. 
 

inv: self.baseMessageEnd->forAll(i:Core:: MessageEnd |  
PullEnd.baseMessageEnd->exists (j | j=i) 

 
<<PushEnd>>: A stereotype that extends the MessageEnd metaclass and contains a 
number of operations that serve the purpose of Push operations between connected 
elements. 
 

inv: self.baseMessageEnd->forAll(i:Core:: MessageEnd |  
PushtEnd.baseMessageEnd->exists (j | j=i) 

4.2   More Architectural Primitives 

Due to space restrictions, we do not go into the detailed definition for the rest of the 
architectural primitives discovered in this work. Instead, we present a shortened mod-
eling solution. 
 
I. Callback 
Textual Description: In a callback interaction between objects, an object B invokes an 
operation on object A, where object B keeps a reference to object A. Usually the call-
back function is invoked when a run-time event happens.  
 
Known Uses in Patterns: MODEL-VIEW-CONTROLLER [4], OBSERVER [4], 
PUBLISH-SUBSCRIBE [4] 
 
Modeling Issues: A major problem in modeling these patterns in UML is that even 
though callback is an active participant in the patterns, it can not be semantically 
represented in the interaction diagrams. A UML interaction diagram can depict the 
presence of a callback structure but it cannot be distinctively identified. It is hard to 
distinguish between many operations taking place between objects and the callback-
specific operations.  
 
Modeling Solution: To capture the semantics of callback primitive properly in UML, we 
use the following stereotypes: <<Callback>>, <<EventEnd>>, and <<CallbackEnd>>. 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 171 

The <<Callback>> extends the Message metaclass while the <<EventEnd>> and 
<<CallbackEnd>> extend the MessageEnd metaclass. A callback invocation is always 
preceded by an event occurrence and the callee object must have subscribed itself to the 
caller object beforehand. In this case, the kind of message communication must be of 
signal type [7] where the EventOccurence takes place at the sender object (EventEnd) 
while the EventExecution takes place at the receiver end (CallbackEnd).  
 
II. Forward-Request 
Textual Description: Forward-Request primitives are used to depict the presence of a 
request forwarding mechanism. Forward-Request messages decouple the underlying 
system from the external objects. 
 
Known Uses in Patterns: PEERS [2], BROKER [4], CLIENT-SERVER[9], FOR-
WARD-RECEIVER [2], MARSHALLER [2] 
 
Modeling Issues: A Forward-Request typically differs from simple function calls, 
return calls, and other forms of communications among objects. The Forwarder  
object decouples the underlying system implementation from external function calls 
and converts incoming data into matching data format without introducing further 
dependencies. Moreover, in certain cases, the forwarder objects can receive return 
values that are forwarded to the source objects. However, UML elements cannot 
structurally express the presence of Forward-Request operations in software design.  
 
Modeling Solution: To capture the semantics of Forward-Request properly in UML, 
we propose the following new stereotypes: <<Forward-Request>>, <<ForwardEnd>>, 
and <<ReceiverEnd>>. The <<Forward-Request>> extends the Message class and 
uses the <<ForwardEnd>> and <<ReceiverEnd>> to connect the adjacent objects. 
Both the <<ForwardEnd>> and <<ReceiverEnd>> extend the MessageEnd metaclass 
and are owned by the forwarder and receiver objects respectively. To execute an op-
eration,, the <<ForwardEnd>> invokes the sendMessage operation, which is inter-
cepted by the receiver object using the <<ReceiverEnd>>. 
 
III. Command 
Textual Description: Calling a method in the target object typically involves invoking 
a specific method or procedure in the target object. The invocation operation is usu-
ally carried out on the occurrence of a specific event. 
 
Known Uses in Patterns: MODEL-VIEW-CONTROLLER [4], PRESENTATION-
ABSTRACTION-CONTROL [2], LAYERS [4] 
 
Modeling Issues: A command typically differs from data, events, and other forms of 
communications among objects. However, UML elements cannot structurally distin-
guish the presence of command operations in software design.  
 
Modeling Solution: To capture the semantics of Command primitive properly in 
UML, we propose two new stereotypes: <<Command>>, and <<CommandEnd>>. 
The <<Command>> extends the Message class and uses the <<CommandEnd>> to 



172 A.W. Kamal and P. Avgeriou 

invoke command on the target object when a specific event occurs. The <<Comman-
dEnd>> extends the MessageEnd metaclass and is owned by the command invocation 
object.  
 
IV. Asynchronous Message 
Textual Description: In an asynchronous communication, the message sender contin-
ues with its operation without waiting for any reply from the message receiver. 
 
Known Uses in Patterns: PIPE-FILTER [4], CLIENT-SERVER [2], BROKER [4] 
 
Modeling Issues: The patterns listed above often use Asynchronous messaging. UML 
supports the invocation of asynchronous messages when a specific event occurs. 
However, it does not enforce any constraints in distinctively recognizing the asyn-
chronous operations. Various architectural patterns use degrees of asynchrony in their 
operations. In the most common form of asynchronous communication, the sender’s 
data is buffered in queues without waiting for the recipient to pick the data. The cur-
rent UML collaboration diagrams support the Asynchronous messaging; however, 
there are two major issues: 

- Even though the UML diagrams have a support for Asynchronous messaging, 
they do not differentiate between the return values from the target objects. It is 
an ambiguous ‘hint’ to determine whether the return value is merely a notifica-
tion event about the receipt of message or the actually processed data. 

- Asynchronous messages are often buffered in queues until the target object noti-
fies about its availability using events, often much later in the time. Such a 
structure cannot be un-ambiguously determined in UML interaction diagrams 
where a number of operations among objects are taking place at the same time. 

Modeling Solution: We use the <<AsynchMessage>> stereotype along with the exist-
ing UML interaction diagram functions for modeling the asynchronous communica-
tion among the objects. The <<AsynchMessage>> extends the Message metaclass and 
uses the existing MessageSend and MessageReceive operations to guarantee that the 
invocation flag is active whenever an operation is invoked. We further constrain the 
Asynchronous communication to ensure that the method that invoked the operation is 
not bound to receive the results and only a notification event can inform the receipt of 
message.  
 
V. Synchronous Message 
Textual Description: In a synchronous communication, the sender waits till the re-
ceiver finishes the activated operation. 
 
Known Uses in Patterns: PIPE-FILTER [4], CLIENT-SERVER [2], BROKER [4] 
 
Modeling Issues: The patterns listed above often use Synchronous messaging. UML 
denotes a synchronous message with a solid arrowhead. We specify additional con-
straints on UML synchronous messages to provide a clear depiction of synchronous 
message.  
 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 173 

Modeling Solution: We add a simple extension to the UML metamodel by proposing 
the <<SynchMessage>> stereotype for modeling the synchronous communication 
between objects. The <<SynchMessage>> extends the Message metaclass and uses 
the existing UML synchmessage operations to ensure that: a) a synchronous message 
is always represented with a directed association; b) an end-to-end connection is es-
tablished with the target object, which owns the EventEnd and returns a flag each 
time a data processing is completed; and c) a return operation is mandatory for the 
synchronous communication to update the status of the operation that invoked the 
synchronous communication.  
 
VI. Call-Slave 
 
Textual Description: The objects called slaves provide sub-services on behalf of a 
master object. The master also keeps reference to all the slave components. 
 
Known Uses in Patterns: MASTER-SLAVE, PRESENTATION-ABSTRACTION-
CONTROLLER [2], WHOLE-PART [2] 
 
Modeling Issues: The call-slave structure is a key participant in modeling patterns 
when a task is delegated to a number of sub-objects. In such a case, the dependent 
objects work as slaves and usually do not invoke any operations on the surrounding 
elements. UML interaction diagrams can depict such a structure but cannot express 
the semantics in the diagrams. 
 
Modeling Solution: We propose the following stereotypes to model the Call-Slave 
primitive: <<CallSlave>>, <<Slave>>, and <<Master>>. The <<CallSlave>> extends 
the Message metaclass and provides a selfMessage operation to invoke operations that 
further call upon slave objects. Both the <<Slave>> and <<Master >> represent the 
objects with further constraints such that only the <<Master>> object can access the 
<<Slave>> objects. 

5   Modeling Architectural Patterns Using Primitives 

In this section, we use the primitives described in the previous section to model 
known variants of three selected architectural patterns: Pipe-Filter, Model-View-
Controller (MVC) and Client-Server. As aforementioned in the introduction, primi-
tives capture only part of the semantics of the patterns, since there are semantics spe-
cific to individual patterns and not recurring in several patterns. Therefore, in order to 
complete the behavioral modeling of patterns, we need to find the missing pattern 
semantics and express them through a stereotyping scheme. Due to space limitation, 
we only provide detailed OCL constraints for the Pipe-Filter, while we omit the OCL 
code for the MVC and Client-Server. 

5.1   Pipe-Filter 

The Pipe-Filter pattern consists of a chain of data processing filters, which are con-
nected through pipes. The output of one filter is passed through pipes to the adjacent 



174 A.W. Kamal and P. Avgeriou 

filter. The elements in the Pipe-Filter pattern can vary in the functions they perform. 
For instance, pipes can buffer data, form feedback loops or fork/join structures, filters 
can be active or passive etc. Each such function can be described with a specific sce-
nario to depict the behavior of the pattern. The primitives discovered so far address 
many such variations. We select the Push, Pull, and Synchronous Message primitives 
from the existing pool of primitives. The rationale behind the selection of these primi-
tives is as follows: 

- The Push and Pull primitives are used to express the pipes that transmit streams 
of data between filters. 

- Data is sent from one filter to the next filter in the chain using synchronous op-
erations. 

Missing Pattern Semantics: Despite the reusability support offered by the selected 
primitives, the Pipe-Filter pattern semantics cannot be fully expressed in design be-
cause the feedback, pipe, and filter structure are still missing. We apply the Feedback 
stereotype on the Push primitive to capture the presence of feedback loop in the Pipe-
Filter pattern. Such a structure represents data being pushed from one filter object to 
another filter object using the feedback loop. The original Push primitive, as de-
scribed in section 4, extends the UML metaclasses of Message and MessageEnd. The 
feedback stereotype further specializes the Push primitive by stereotyping it as Feed-
back without introducing new constraints.  

 
<<Feedback>>: A stereotype that is applied on the Push primitive for expressing the 
Feedback operation in the Pipe-Filter pattern. The semantics of a feedback operation 
are similar to Push and Pull data streams operation.  

The second stereotype named ‘Filter’ that we use from the existing vocabulary of 
design elements is defined as follows: 
 
<<Filter>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends.  
 
-- A Filter object owns the MessageEnds of the associated pipes such that within an 
interaction, it owns the receiver end of source pipe and the sender end of next pipe in 
the chain 
 

inv: self.enclosingInteraction-> 
select(oclAsKindOf(Object)->exists(I:Interaction | 
I.MessageOut) implies self.enclosingInteraction-> 
select(oclAsKindOf(Object)->exists(I:Interaction | 
I.MessageIn) 

 
<<MessageOut>> A stereotype that extends the MessageEnd class and owned by the 
filter objects 
 

inv: self.enclosingInteraction->select( 
oclAsKindOf(Message)->exists(I:Interaction | I.MessageOut) 

 
<<MessageIn>> A stereotype that extends the MessageEnd class and owned by the 
filter objects 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 175 

inv: self.enclosingInteraction->select( 
oclAsKindOf(Message)->exists(I:Interaction | I.MessageIn) 

 
The fifth stereotype that we use from the existing vocabulary of design elements is the 
‘Pipe’ that is defined as follows: 
 
<<Pipe>>: A stereotype that extends the Message metaclass of UML and attaches the 
MeesageEnd of source object to the MessageEnd of the target object.  

 

Fig. 3. Modeling Pipe-Filter Pattern Using Primitives and Design Elements 

As shown in the figure above, the first filter object pulls data from the source ob-
ject,  and after processing pushes this data to the next filter in the chain. The second 
filter sends data back to the first filter using feedback pipe for further processing, and 
sends the final processed data to the sink. 

5.2   Model-View-Controller 

The behavior of MVC pattern relies on the functions performed by the following 
elements: Model, View, and Controller. The Model provides the functional core of the 
application and notifies views about data changes. Views retrieve information from 
the model and display it to the user. Controllers translate events into requests to per-
form operations on the view and model elements.  

As a first step, we map the MVC pattern to the list of available primitives. We se-
lect the callback and command primitives for modeling the MVC pattern. The ration-
ale behind the selection of these primitives is as follows: 

- The view subscribes to the model to be called back when some data change oc-
curs.  

- Controller issues a command request on the model and view objects when some 
event occurs.  

Missing Pattern Semantics: However, not every aspect of the MVC pattern can be 
modeled using the existing set of primitives. For instance, the Model, View, and Con-
troller objects are not mapped to any primitives discovered so far. Keeping in view 
the general nature of these objects and their mandatory use in modeling different 



176 A.W. Kamal and P. Avgeriou 

variants of the MVC pattern, we include the <<Model>>, <<View>> and <<Control-
ler>> stereotypes in the existing vocabulary of pattern elements, as described below.  

 
<<Model>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Controller and View objects.  

 

Fig. 4. Modeling the MVC Pattern Using Primitives and Design Elements 

<<Controller>>: A stereotype that extends the Object metaclass of UML and owns 
message ends for interaction with Model and View objects. 
 
<<View>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Model and Controller objects. 

5.3   Client-Server 

In a typical Client-Server pattern variant, the server offers operations that are accessed 
by the clients and even clients can perform domain-specific operations at their own. 
Usually a broker pattern is used to establish connections between client and server. 
The client sends request to the broker asking to fulfill a specific task. The broker in 
response looks for the appropriate server and assigns the task to the server. The server 
provides the functional core of the application and uses the broker to send information 
back to the clients.   

As a first step, we map the Client-Server pattern to the list of available primitives. 
We select the forward-request, asynchronous, and command primitives for modeling 
the Client-Server pattern. The rationale behind the selection of these primitives is as 
follows: 

- The Server issues a command request to the clients when some event occurs.  
- The Client and Server side proxies synchronously forward requests to other  

objects. 

 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 177 

Modeling Pattern Semantics: However, not every aspect of the Client-Server pattern 
can be modeled using the existing set of primitives. For instance, the Client, and the 
Server objects are not mapped to any primitives discovered so far. Keeping in view 
the general nature of these objects, we provide reusability support by making these 
two pattern participants available in the existing vocabulary of design elements.  

<<Client>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Server and mediator objects.  
<<Server>>: A stereotype that extends the Object metaclass of UML and owns mes-
sage ends for interaction with Client, surrounding objects, and mediator objects. 

 

Fig. 5. Modeling the Client-Server Pattern Using Primitives and Design Elements 

6   Related Work 

The work described in this paper is based on our previous work [9] where we present 
an initial set of primitives for modeling architectural patterns in the component-
connector view. However, the idea to use primitives for software design is not novel 
and has been applied in different software engineering disciplines [12]. The novelty of 
our work lies in the use of primitives for systematically modeling the behavior of 
architectural patterns. 

Using different approaches, other researchers have been working actively on the 
systematic modeling of architectural patterns. Garlan et. al. [13] propose an object 
model for representing architectural designs. They characterize architectural patterns 
as a specialization of object models. However, each such specialization is built as an 
independent environment, where each specialization is developed from scratch using 
basic architectural elements. Our approach significantly differs as our focus lays on 
reusing primitives and pattern participants, which are defined as specializations of 
UML elements. 

Werner et. al. [14] uses message sequence charts to propose a language that is ca-
pable enough to fully express the behavioral specification of systems using use cases 
and scenarios. Their work focuses on the execution of scenarios when different kinds 
of events occur for message calls of type e.g. asynchronous message, synchronous 



178 A.W. Kamal and P. Avgeriou 

message. In our approach, we also use messages as a base for interaction but our fo-
cus revolves around modeling patterns where we use primitives and pattern partici-
pants’ definitions as reusable abstractions. 

7   Conclusion and Future Work 

The combination of architectural primitives and the vocabulary of design elements 
offers a systematic way to model patterns’ behavior in system design: the primitives 
and the design elements are reusable architectural abstractions in the form of extended 
UML elements; the semantics of the primitives and subsequently of the patterns can 
be validated by checking the OCL constraints; the patterns can be manually or auto-
matically detected in the system design. In this paper, we have extended our existing 
pool of primitives with the discovery of seven more primitives in the behavioral view. 
Moreover, with the help of some example patterns, we demonstrated the feasibility of 
our approach for modeling architectural patterns using primitives.  

To express the discovered primitives and design elements vocabulary, we have 
used UML2.0 for creating profiles. Compared to earlier versions, UML2.0 has come 
up with many improvements for expressing architectural elements. However, we  
still find UML a weak option in modeling many aspects of architectural patterns,  
e.g. having weak messaging support. As a solution to this problem, we regard the 
extension mechanism of the UML as an effective way for describing new elements. 
Moreover, the application of the profiles to the primitives allows us to maintain the 
integrity of the UML metamodel. By defining primitive-specific profiles, we enable 
the user to apply selective profiles in the model.  

As future work, we would like to advance the automation of our approach by de-
veloping a tool, which supports modeling pattern variability, documenting design 
decisions, analyzing the system quality attributes, consistency checking between the 
structural and the behavioral views, and source code generation. We believe that in 
different architectural views, more primitives will be discovered in the near future, 
which will provide a better re-usability support to the architects for systematically 
expressing architectural patterns. 

References 

[1] Avgeriou, P., Zdun, U.: Architectural Patterns Revisited - A Pattern Language. In: Pro-
ceedings of the 10th European Conference on Pattern Languages of Programs (Eu-
roPLOP), Irsee, Germany, pp. 1–39 (2005) 

[2] Buschmann, F., Henney, K., Schmidt, C.D.: Pattern-Oriented Software Architecture: On 
Patterns and Pattern Languages. John Wiley & Sons, Chichester ISBN 978-0-471-48648-0 

[3] Harrison, N., Avgeriou, P.: Pattern-Driven Architectural Partitioning – Balancing Func-
tional and Non-Functional Requirements. In: First International Workshop on Software 
Architecture Research and Practice (SARP 2007), Silicon Valley, USA, p. 21. IEEE, Los 
Alamitos (2007) 

[4] Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Soft-
ware Architecture: A System of Patterns. John Wiley & Sons, Chichester (1996) 



 Modeling Architectural Patterns’ Behavior Using Architectural Primitives 179 

[5] Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange Lan-
guage. In: Proceedings of CASCON 1997, Toronto, Ontario, pp. 169–183 (1997) 

[6] Allen, R., Garlan, D.: A Formal Basis For Architectural Connection. ACM Transactions 
on Software Engineering and Methodology 6(3), 213–249 (1997) 

[7] Unified Modeling Language: Superstructure, version 2.0, Final Adopted Specification, 
ptc/03-08-02, http://www.omg.org/cgi-bin/doc?formal/05-07-04 

[8] Kamal, A.W., Avgeriou, P.: An evaluation of ADLs on modeling patterns for software 
architecture design. In: 4th International Workshop on Rapid Integration of Software En-
gineering Techniques, Luxembourg (2007) 

[9] Zdun, U., Avgeriou, P.: Modeling Architecture Patterns using Architecture Primitives. In: 
20th annual ACM SIGPLAN conference on Object oriented programming systems lan-
guages and applications, pp. 133–146 (2005) 

[10] Zdun, U., Avgeriou, P., Hentrich, C., Dustdar, S.: Architecting as Decision Making with 
Patterns and Primitives. In: Proceedings of the Third Workshop on Sharing and Reusing 
architectural Knowledge (SHARK), pp. 11–18. ACM, New York (2008) 

[11] Object Constraint Language Specification versions 1.1, OMG standard, 
http://umlcenter.visual-paradigm.com/umlresources/ 
obje_11.pdf 

[12] Mehta, N.R., Medvidovic, N.: Composing Architectural Styles from Architectural Primi-
tives. In: Proceedings of the 9th European Software Engineering Conference held jointly 
with 10th ACM SIGSOFT international symposium on foundations of software engineer-
ing, Helsinki, Finland, pp. 347–350 (2005) 

[13] Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design Environ-
ments. In: Proceedings of the ACM SIGSOFT 1994 Symposium on Foundations of Soft-
ware Engineering, New Orleans, LA, pp. 175–188 (1994) 

[14] Damm, W., Harrel, D.: LSCs: Breathing Life into Message Sequence Charts, Formal 
Methods in System Design. Kluwer Academy Publishers, Dordrecht (2001) 


	Modeling Architectural Patterns’ Behavior Using Architectural Primitives
	Introduction
	The Unified Modeling Language in the Behavioral View
	Extending UML to Represent Patterns and Primitives
	Architectural Primitives
	Documenting an Architectural Primitive: Push-Pull
	More Architectural Primitives

	Modeling Architectural Patterns Using Primitives
	Pipe-Filter
	Model-View-Controller
	Client-Server

	Related Work
	Conclusion and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




