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ADAPTIVITY AND GROUP INVARIANCE IN MATHEMATICAL MORPHOLOGY

Jos B. T. M. Roerdink

Institute of Mathematics and Computing Science
University of Groningen

The Netherlands

ABSTRACT

The standard morphological operators are (i) defined on Eu-

clidean space, (ii) based on structuring elements, and (iii) in-

variant with respect to translation. There are several ways to

generalise this. One way is to make the operators adaptive

by letting the size or shape of structuring elements depend on

image location or on image features. Another one is to ex-

tend translation invariance to more general invariance groups,

where the shape of the structuring element spatially adapts in

such a way that global group invariance is maintained. We re-

view group-invariant morphology, discuss the relations with

adaptive morphology, point out some pitfalls, and show that

there is no inherent incompatibility between a spatially adap-

tive structuring element and global translation invariance of

the corresponding morphological operators.

Index Terms— Group morphology, adaptive morphol-

ogy, space-variant structuring elements.

1. INTRODUCTION

Mathematical morphology is an approach to image analysis

that studies image transformations with a simple geometrical

interpretation. Small subsets, called structuring elements, of

various forms and sizes are translated over the image plane

to perform shape extraction. The classical approach is char-

acterised by the following two properties: (i) the structuring

element is fixed, i.e., does not depend on the spatial location

at which it is centered; (ii) the basic image operations are in-

variant under translation. This can be extended to grey value

images, using a lattice formulation, see [1–3].

Generalisations fall into two major categories:

1. Translation invariance is replaced by various other forms

of invariance, with their associated group morphologies.

2. Structuring elements become dependent on position or the

input image itself, leading to adaptive morphology.

In both cases the size or shape of structuring element becomes

dependent upon the spatial location, but for reasons which are

entirely different.
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The literature on adaptive morphology shows a rather

confusing picture. First, a large set of different terms for the

location-dependence of structuring elements is in use, with

sometimes subtle differences of meaning: “space-variant”,

“spatially variant”, “adaptive”, “spatially adaptive”, “ex-

trinsic”, “intrinsic”, “adaptive neighbourhood”, “adaptive-

weighted”, “dynamic”. Another confusion concerns the

statements in various papers which use “space-variant” as

equivalent with “not translation invariant” [4, 5].

The goal of this paper is to shed some light on these is-

sues. The main arguments put forward below can be sum-

marised as follows:

• Care is required when deriving properties of morphological

operators involving the word “adaptive”. A distinction be-

tween location adaptivity and input adaptivity is essential.

• There is no inherent incompatibility between a spatially-

variant structuring element and global translation invari-

ance (or other types of group invariance) of the associated

morphological operators.

2. PREVIOUS WORK

2.1. Group morphology
We mention a few examples of binary image transformations

on a set E with different types of symmetry. For surveys of

the resulting group morphology, see Heijmans and Ronse [6,

7] for the case of abelian symmetry groups, Roerdink [8]

for the case of arbitrary (abelian and non-abelian) symmetry

groups, as well as the book by Heijmans [3].

In Euclidean morphology, E = R
2 or E = Z

2 and the

image operations are invariant under the group of Euclidean

translations. All translated structuring elements have the

same size, shape, and orientation.

In Circular morphology [6, 9], E = R
2 \ {0}, and the

image transformations comprise the abelian group generated

by rotations and scalar multiplication w.r.t. the origin. The

size of the structuring element at a point x is proportional to

the distance of x to the origin, and the orientation depends on

the angle which the line from the origin to x makes with the

horizontal axis.
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In Perspective morphology one requires invariance of

image operations under object translation parallel to the im-

age plane [8]. In this case the structuring element has to be

adapted according to the law of perspective.

Other group morphologies are generated by the similarity,

affine, spherical or projective groups [8]. These are different

from the three morphologies described above in the sense

that the corresponding group is non-abelian. Another marked

difference from the abelian case is that structural group-

invariant openings and closings can in general no longer be

decomposed into products of group-invariant dilations and

erosions [8].

2.2. Adaptive morphology

Location-adaptive structuring elements. A first form of

“adaptivity” is to make the structuring element, now called

structuring function, dependent on the location in the image.

The structuring function is fixed a priori, i.e., does not depend

on the input image. In [10] this approach is called ‘extrinsic’.

Dilations and erosions without any invariance property

were first considered by Serra [2, Ch.2]. Let P(E) denote

the set of all subsets of a set E ordered by set-inclusion. A

mapping δ : P(E ) → P(E ) is a dilation if and only if there

exists a function N : E → P(E ), called structuring function,

such that

δ(X) =
⋃

x∈X

N(x). (1)

This statement can be interpreted as follows. Attach to each

point x of E a subset (“neighbourhood”) N(x) of E. Then

the dilation δ(X) is the union of all the subsets which are

attached to points of X .

Recall that a pair of transformations (ε, δ) on P(E) is

called an adjunction, if for all subsets X and Y of E the fol-

lowing equivalence holds: δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ). It is

easy to see that the erosion ε associated by adjunction to the

dilation δ in (1) is given by

ε(X) = {y ∈ E : N(y) ⊆ X}. (2)

The formulas (1)-(2) reduce to the classical case when the

structuring function is chosen as N(x) = Ax with A a fixed

structuring element; here Ax = {a + x : a ∈ A} denotes the

translate of A along the vector x. Similar expressions for the

grey-scale case exist.

A systematic analysis of morphological operators with

location-adaptive structuring elements for both binary and

grey scale images was made by Bouaynaya et al. [4, 5]

(called “spatially-variant morphology” by them). A “locally

adaptable” morphology for binary images was considered by

Cuisenaire [11], who used disks with a position dependent

radius as structuring elements.

Input-adaptive structuring elements. The second form of

adaptivity is to make the structuring element depend on the

local features of the input image (thereby, the structuring ele-

ment also becomes dependent on the location in the image).

Lerallut et al. [12] have introduced morphological amoe-
bas as filter kernels which adapt themselves to the local con-

tent (such as contour variations) of the grey-scale input image.

In this case, the structuring function depends on f ,

N (f)(x) = {y : dλ(x, y) ≤ r}

where dλ is the so-called amoeba distance which depends on

the intensities of the input image f itself.

Another approach was followed by Braga Neto [13], who

called it adaptive neighbourhood morphology. Here the struc-

turing function is given by N (f)(x) = Rf
m(x), where Rf

m(x)
are input-adaptive regions defined in terms of m-th order con-

nectivity. Later work along similar lines was presented by De-

bayle et al. [10], who called this type of adaptivity ‘intrinsic’.

3. INPUT-ADAPTIVE MORPHOLOGICAL
OPERATORS

Let L = Fun(E, T ) denote the complete lattice of grey scale

functions with domain E, whose range is a complete lattice

T of grey values. Consider the mappings δ : L → L and

ε : L → L defined by

δ(f)(x) =
∨

y∈Ñ(f)(x)

f(y), x ∈ E

(3)

ε(f)(x) =
∧

y∈N(f)(x)

f(y), x ∈ E

where the reflected neighbourhood Ñ (f) is defined by

y ∈ N (f)(x) ⇐⇒ x ∈ Ñ (f)(y).

Note that, since the neighbourhoods depend on the input f ,

the mappings f → δ(f) and f → ε(f) are in general not a

dilation and erosion, i.e., do not commute with suprema and

infima, respectively (nor do they form an adjunction, hence

products δε and εδ are not guaranteed to satisfy the algebraic

properties of opening and closing). So one should not call

these operators (adaptive) “dilation” and “erosion”.

This fact seems to be often overlooked in the literature.

For example, Debayle et al. simply state that the adjunction

property for their input-adaptive operators is inferred from the

lattice theory of increasing mappings [10, page 151]. Braga

Neto, in his work on alternating sequential filters with input-

adaptive structuring elements [13], refers for proofs of their

algebraic properties to theorems which only hold for the case

of location-adaptive structuring elements. Similarly, Bouay-

naya et al. [4, 5], in their work on spatially variant morphol-

ogy, mention several forms of input adaptive morphology,

such as [10, 12], as examples covered by their general frame-

work; in fact, their proofs only cover the location-adaptive

case.
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To make our point as clearly as possible, we will attempt

a proof of the adjunction property of the operators in (3),

and show at which point the proof is obstructed by the input-

dependence of the structuring element. Subsequently, we give

an explicit counterexample for the binary case.

Obstruction of the adjunction property. To form an adjunc-

tion, the operators δ(f) and ε(f) defined by (3) would have

to satisfy the following equivalence:

δ(f) ≤ g ⇐⇒ f ≤ ε(g) (4)

Let us try to prove it along the usual lines.

δ(f) ≤ g
⇐⇒

δ(f)(x) ≤ g(x) ∀x ∈ E
⇐⇒ { definition δ }∨

y∈Ñ(f)(x) f(y) ≤ g(x) ∀x ∈ E
⇐⇒

f(y) ≤ g(x) ∀y ∈ Ñ (f)(x), ∀x ∈ E
⇐⇒ { definition reflected neighbourhood }

f(y) ≤ g(x) ∀x ∈ N (f)(y), ∀y ∈ E
⇐⇒

f(y) ≤ ∧
x∈N(f)(y) g(x) ∀y ∈ E

To complete the proof, the right hand side of the inequal-

ity in the last line above should equal ε(g)(y), that is,∧
x∈N(g)(y) g(x). However, this is not the case, as the in-

fimum in the last line is over the neighbourhood N (f) instead

of N (g). So the proof fails for the input-dependent case.

Counterexample. Consider a binary image f on Z
2 with

4-connectivity and let B be the “cross” structuring element

(center pixel with its 4-connected neighbours). Let Bx be the

translate of B by x. A pixel x is called a 1-pixel (foreground)

when f(x) = 1 and a 0-pixel (background) when f(x) = 0.

A 1-pixel is called isolated when there are no 1-pixels that are

4-connected to it. Define the adaptive neighbourhood as

N (f)(x) =

{
Bx if x is a non-isolated 1-pixel of f

{x} otherwise
(5)

Then the operator δ in (3) is not a dilation, i.e., does not com-

mute with supremum (union). Take the example in Figure 1,

where cells with a black dot denote 1-pixels and empty cells

denote 0-pixels. The images f and g both contain only iso-

lated 1-pixels (note that 4-connectivity is used). Therefore,

the operator δ does not change them, i.e., δ(f) = f , δ(g) = g.

But the union f ∨ g contains non-isolated 1-pixels, so that its

dilation results in the image on the lower right. Clearly, in

this case δ(f ∨ g) 
= δ(f) ∨ δ(g), hence δ is not a dilation.

For the same reason, ε in (3) is not an erosion, nor is (ε, δ) an

adjunction (or δε an opening, or εδ a closing).

In order to convert (3) to proper dilation and erosion we

•
•

f

•

g

• •
•

f ∨ g

•
•

δ(f)

•

δ(g)

• •
• • • •
• • •

•
δ(f ∨ g)

Fig. 1. Example showing that the operator δ defined in (3) is
not a dilation when the structuring function is defined by (5).

introduce the following notation.

δa(f, f0)(x) =
∨

y∈Ñ(f0)(x)

f(y)

(6)

εa(f, f0)(x) =
∧

y∈N(f0)(x)

f(y).

Now the partial mappings f → δa(f, f0) and f → εa(f, f0)
(i.e., with f0 fixed) are indeed a dilation and erosion with a

space-variant structuring element.

Summarizing, to be able to talk about adaptive dilation

and erosion [10], or about adaptive neighbourhood alternating

sequential filters [13], one has to fix the adaptive neighbour-
hoods N (f0)(x) once they have been derived from an initial

input image f0. Then one can apply the operators in (6) to

any input image f , and also use combinations of them to con-

struct adaptive opening, closing, alternating sequential filters,

etc., using the same adaptive neighbourhoods N (f0) in all of

them. One of the few papers we found which explicitly men-

tions this is the work by Lerallut et al. [12, section 2.2.2] (they

call f0 the “pilot image”).

4. ADAPTIVE NEIGHBOURHOOD MORPHOLOGY
WITH GLOBAL INVARIANCE

Having clarified the notion of adaptive neighbourhood dila-

tion and erosion by introducing the notation (6), we can now

also address the question when such operators can be called

translation-invariant.

Let f be an input image and define the translation fh of

f over the vector h by fh(x) = f(x − h) for all x ∈ E.

Assume that the structuring function is invariant with respect

to translation of f in the following sense:

N (fh)(x) = (N (f)(x − h))h. (7)
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In the cases of morphological amoebas or adaptive neighbour-

hood morphology mentioned above, it is easy to see that this

formula holds: when the input image is translated, the corre-

sponding amoebas or adaptive neighbourhoods will be trans-

lated accordingly.

Assuming (7) holds, the operators in (3) are easily shown

to be translation invariant:

(δ(f))h = δ(fh), (ε(f))h = ε(fh).

This translation invariance does not contradict the theorem

that the only translation-invariant dilations or erosions have a

fixed structuring element, since ε and δ do not form an ad-

junction on L.

Under the same condition (7), the adaptive dilation and

erosion in (6) are translation-invariant in the following sense.

When we translate both input image and pilot image, and then

carry out the adaptive dilation, the result is the same as when

translating the output of the adaptive dilation (and similarly

for the erosion). In other words,

(δa(f, f0))h = δa(fh, f0
h), (εa(f, f0))h = εa(fh, f0

h)

This type of translation invariance is desirable by the same ar-

gument as for the classical morphological operators [1]. That

is, when the image is obtained by a camera and the camera is

slightly moved, the result of the image operation (adaptive or

not) should move accordingly. Of course, in practice transla-

tion invariance can only be true modulo boundary effects, but

this does not in the least diminish its fundamental importance.

One can now extend translation invariance to other types

of group invariance for adaptive neighbourhood operators by

extending the set of structuring elements attached to each

pixel location, just as for the group morphologies with non-

adaptive structuring elements. We will consider the details

elsewhere.

5. CONCLUSIONS

We have recapitulated the various roles of spatial dependence

of the structuring element in mathematical morphology. On

the one hand, it allows to generalise translation invariance by

letting the shape of the structuring element spatially adapt in

such a way that global group invariance is maintained. On the

other hand, morphological operators can be made adaptive by

letting the size or shape of structuring elements depend on

image location or local image features. We demonstrated that

one has to be careful when speaking of dilation and erosion, or

other types of morphological operators, in the input-adaptive

case. Finally, we have shown that there is no inherent incom-

patibility between a spatially-variant structuring function and

global translation invariance (or other types of group invari-

ance) of the corresponding morphological operators. When

interpreted in an appropriate way this type of invariance is

perfectly sensible from a practical point of view.
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