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Abstract—On shared memory multiprocessors, synchroniza-
tion often turns out to be a performance bottleneck and the
source of poor fault-tolerance. By avoiding locks, the significant
benefit of lock (or wait)-freedom for real-time systems is that
the potentials for deadlock and priority inversion are avoided.
The lock-free algorithms often require the use of special
atomic processor primitives such as CAS (Compare And Swap)
or LL/SC (Load Linked/Store Conditional). However, many
machine architectures support either CAS or LL/SC, but not
both. In this paper, we present a lock-free implementation of
the ideal semantics of LL/SC using only pointer-size CAS, and
show how to use refinement mapping to prove the correctness
of the algorithm.

I. INTRODUCTION

We are interested in designing efficient data structures
and algorithms on shared-memory multiprocessors. On such
machines, processes often need to coordinate with each
other via shared data structures. In order to prevent the
corruption of these concurrent objects, processes need a
mechanism for synchronizing their access. The traditional
approach is to explicitly synchronize access to shared data
by different processes to ensure correct behaviors of the
overall system, using synchronization primitives such as
semaphores, monitors, guarded statements, mutex locks, etc.

Due to blocking, the classical synchronization paradigms
using locks can incur many problems such as long delays,
convoying, priority inversion and deadlock. Using locks also
involves a trade-off between coarse-grained locking which
can significantly reduce opportunities for parallelism, and
fine-grained locking which requires more careful design and
is more prone to bugs.

Over the past two decades the research community has
developed a body of knowledge concerning ”Lock-Free” and
”Wait-Free” algorithms and data structures. In contrast to
algorithms that protect access to shared data with locks,
lock-free and wait-free algorithms are specially designed
to allow multiple threads to read and write shared data
concurrently without corrupting it. The significant benefit
of lock (or wait)-freedom for real-time systems is that
by avoiding locks the potentials for deadlock and priority
inversion are avoided.

It was shown in the 1980s that all algorithms can be imple-
mented wait-free. However, the resulting performance does

not in general match even naive blocking designs. It has also
been shown [13] that the widely-available atomic conditional
primitives, CAS and LL/SC cannot provide starvation-free
implementations of many common data structures without
memory costs growing linearly in the number of threads.
Wait-free algorithms are therefore rare, both in research and
in practice, and we are most interested in designing lock-free
implementations.

A number of researchers[3], [5], [7], [9], [15] have pro-
posed techniques for designing lock-free implementations.
The lock-free algorithms often require the use of special
atomic processor instructions such as CAS (compare and
swap) or LL/SC (load linked/store conditional). However,
Current mainstream architectures support either CAS or
LL/SC with restricted semantics (but not both), which are
susceptible to the ABA problem [14].

The ideal semantics of the atomic primitives LL/SC are
inherently immune to ABA problem. However, for practical
architectural reasons, no processor architecture supports the
ideal semantics of LL/SC. Designing efficient algorithms to
bridge the gap has been the subject of many researchers’
interest. However, most of the research is focused on im-
plementing only small LL/SC objects, whose value fits in a
single machine [4], [8], [9], [11].

In this paper, using only pointer-size CAS we present a
practical lock-free implementation of the ideal semantics of
LL/SC Multiword objects (whose value does not have to fit
in a single machine word) without causing ABA problem.

A true problem of lock-free algorithms is that they are
hard to design correctly, even when apparently straightfor-
ward. To ensure our implementation is not flawed, we used
the higher-order interactive theorem prover PVS [6] for
mechanical support. All invariants as well as the simulation
relation have been completely verified with PVS.

Overview. In Section 2 we present we present preliminary
material which we require throughout this paper. In Section
3, we give a lock-free implementation of the ideal semantics
of LL/SC Multiword objects. In Section 4, we provide
an overview of the proof and a description of the role of
the proof assistant PVS in it. In Section 5,we draw some
conclusions.
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II. PRELIMINARY

The machine architecture that we have in mind is based
on modern shared-memory multiprocessors that can access
a common shared address space in a heap. There can be
several processes running on a single processor. Variables
in shared context are visible to all processes running in
associated parallel. Variables in private context are hidden
from other processes.

We assume a universal set V of typed variables, which
is called the vocabulary. A state s is a type-consistent
interpretation of V , mapping variables v ∈ V to values s�v�.
We denote by Σ the set of all states. If C is a command,
we denote by Cp the transition C executed by process p, and
s�Cp�t indicates that in state s process p can do a step C that
establishes state t. When discussing the effect of a transition
Cp from state s to state t on a variable v, we abbreviate s�v�
to v and t�v� to v′. We use the abbreviation Pres(V ) for∧

v∈V (v′ = v) to denote that all variables in the set V are
preserved by the transition.

A. The Semantics of Synchronization Primitives

Traditional multiprocessor architectures have included
hardware support only for low level synchronization prim-
itives such as CAS and LL/SC, while high level synchro-
nization primitives such as locks, barriers, and condition
variables have to be implemented in software.

CAS atomically compares the contents of a location
with a value and, if they match, stores a new value at
the location. The semantics of CAS is given by equivalent
atomic statements below. We use angular brackets 〈. . .〉
to indicate atomic execution of the enclosed specification
command1.

proc CAS(ref X : Val; in old, new : Val) : Bool =
〈 if X = old then X := new; return true

else return false; fi 〉
LL and SC are a pair of instructions, closely related to the

CAS, and together implement an atomic Read/Write cycle.
Instruction LL first reads the content of a memory location,
say X, and marks it as “reserved” (not “locked”). If no
other processor changes the content of X in between, the
subsequent SC operation of the same process succeeds and
modifies the value stored; otherwise it fails. The semantics
of LL and SC are given by equivalent atomic statements
below, where me is the process identifier of the acting
process.

proc LL(in X : Val) : Val =
〈 S.X := S.X ∪ {me}; return X; 〉

proc SC(ref X : Val; in Y : Val) : bool =
〈 if me ∈ S.X then

1Note that , this is allowed only in the specification of the algorithm.

S.X := ∅; X := Y ; return true
else return false; fi 〉

B. Refinement mappings

In practice, the specification of systems is concerned
rather with externally visible behavior than computational
feasibility. We assume that all levels of specifications under
consideration have the same observable state space Σ0, and
are interpreted by their observation functions Π : Σ →
Σ0. Every specification can be modeled as a four-tuple
(Σ,Π,Θ,N ) where (Σ,Θ,N ) is the transition system [2].

A refinement mapping from a lower-level specification
Sc = (Σc,Πc,Θc,Nc) to a higher-level specification Sa =
(Σa,Πa,Θa,Na), written φ : Sc � Sa, is a mapping
φ : Σc → Σa that satisfies:

1) φ preserves the externally visible state component:
Πa ◦ φ = Πc.

2) φ is a simulation, denoted φ : Sc � Sa:

① φ takes initial states into initial states: Θc ⇒ Θa◦φ.
② Nc is mapped by φ into a transition (possibly

stuttering) allowed by Na:
Q∧Nc ⇒ Na ◦φ, where Q is an invariant of Sc.

Below we need to exploit the fact that the simulation only
quantifies over all reachable states of the lower-level system,
not all states. We therefore explicitly allow an invariant Q
in condition 2 ➁. The following theorem is stated in [1].

Theorem 1 If there exists a refinement mapping from Sc to
Sa, then Sc implements Sa.

Refinement mappings give us the ability to reduce an
implementation by reducing its components in relative isola-
tion, and then gluing the reductions together with the same
structure as the implementation.

III. THE LOCK-FREE IMPLEMENTATION OF LL /SC

Let us assume there are P (≥ 1) concurrently exe-
cuting sequential processes. To distinguish private persis-
tent variables of different processes, every persistent pri-
vate variable name can be extended with the suffix “.”
+ “process identifier”. In particular, pc.q is the program
location of process q, it ranges over all defined integer labels.

The specification Sa of LL/SC can then be given as
shown in Fig. 1. In the specification, we model the Node
as an array of the N shared variables in the heap under
consideration, which can be of any type (e.g. Val). The
indices of the Node are the addresses (or the pointers)
to shared variables. We can thus simply regard the shared
variable X (under consideration) as a synonym of an index
of the Node, and its value is stored in Node[x]. As before,
the action enclosed by angular brackets 〈. . .〉 is defined as
atomic statement.

We now turn our attention to the lock-free implementa-
tion using only pointer-size CAS, which is given by the
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Constant
P = number of processes;
N = number of shared variables;

Shared variable
Node: array [1 . . . N ] of Val;
S: array [1 . . . N ] of Set;

Private variable
pc: {a1; a2};
me: ProcID;

proc LL(in x : 1 . . . N) : Val =
a1: 〈S[x] := S[x] ∪ {me}; return Node[x]; 〉
proc SC(in x : 1 . . . N ; Y : Val) : Bool =
a2: 〈if me ∈ S[x] then

S[x] := ∅; Node[x] := Y ; return true
else return false; fi 〉

Initial conditions
Θa: ∀p: 1 . . . P : pc.p = a1 ∨ pc.p = a2

Figure 1. The Specification Sa of LL/SC

algorithm shown in Fig. 2. This lock-free implementation is
inspired by our previous work [12].

In the lock-free implementation, the shared variable
indir[x] acts as pointers to the shared node x under
consideration(i.e., the shared variable), while node[mpp] is
taken as a “private” node of process p though it is declared
publicly: other processes can read it but cannot modify it.

IV. CORRECTNESS

In this section we will prove that the concrete system Sc

implements the abstract system Sa. Formally, like we did in
[10], [14], we define

Σa � (Node[1 . . . N ], S) × (pc, me, x, Y)P

Σc � (Node[1 . . . K], indir[1 . . . N ],
prot[1 . . . K]) × (pc, x, Y , mp, m, mybuf)P

Πa(Σa) � Node[1 . . . N ]
Πc(Σc) � node[indir[1 . . . N ]]
Na � Na0 ∨ Na1 ∨ Na2

Nc �
∨

10≤i≤34 Nci
.

The transitions of the abstract system can be described:
∀s, t : Σa, p : 1 . . . P :

s�(Na0)p�t � s = t (to allow stuttering)
s�(Na1)p�t � pc.p = a1 ∧ pc ′.p = a2

∧ S’[x.p] = (S[x.p] ∪ me)
∧ Pres(V − {pc.p, S[x.p]})

s�(Na2)p�t � pc.p = a2 ∧ pc ′.p = a1

∧ ((me ∈ S[x.p] ∧ S′[x.p] = ∅ ∧ Node′[x.p] = Y
∧ Pres(V − {pc.p, Node[x.p], S[x.p]}))

∨ (me /∈ S[x.p] ∧ Pres(V − {pc.p})))
The transitions of the concrete system can be described

in the same way. Here we only provide the description of

Constant
P = number of processes;
N = number of shared variables;
K = N + 2P ;

Shared variable
Node: array [1 . . . K ] of Val;
indir: array [1 . . . N ] of 1 . . . K ;
prot: array [1 . . . K ] of 0 . . . K;

Private persistent variable
pc: [c10 . . . c34];
mp: 1 . . . K ;

proc LL(in x : 1 . . . N) : Val =
loop

c10: m := indir[x];
c12: mybuf := Node[m];
c14: prot[m]+ +;
c16: if m = indir[x] then

return mybuf ;
else

c18: prot[m] −−;
fi;

end;
proc SC(in x : 1 . . . N ; Y : Val) : Bool =
c20: Node[mp] := Y

loop
c22: m := indir[x];
c24: if CAS(indir[x], m, mp) then
c26: prot[m]−−;
c28: if prot[m] = 1 then

mp := m;
else

c30: prot[m] −−;
repeat

choose mp from 1 . . . K
c32: until CAS(prot[mp], 0, 1)

fi;
return true;

else
c34: prot[m] −−;

return false;
fi;

end.
Initial conditions

Θc: (∀p: 1 . . . P : (pc.p = c10 ∨ pc.p = c20)
∧ mybufp = N+p)

∧ (∀i: 1 . . . N : indir[i] = i)
∧ (∀i: 1 . . . K : prot[i] = (i ≤ N+P ? 1 : 0))

Figure 2. The Lock-free implementation Sc of LL/SC

concrete transitions c16: ∀s, t : Σc, p : 1 . . . P :

s�(Nc16)p�t � pc.p = c16
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∧ ((m.p = indir[x.p] ∧ pc ′.p = c20)
∨ (m.p �= indir[x.p] ∧ pc ′.p = c18))

∧ Pres(V − {pc.p})
To prove that Sc implements Sa, we define the state

mapping φ: Σc → Σa by showing how each component
of Σa is generated from components in Σc:

∀i: 1 . . . N : Nodea[i] = Nodec[indirc[i]]
∀i: 1 . . . N : Sa[i] = {p: 1 . . . P |pcc.p /∈ {c10; c20; c22}

∧ xc.p = i ∧ mc.p = indirc[xc.p]}
∀p: 1 . . . P : pca.p = (pcc.p ∈ [c10 . . . c18] ? a1 : a2)

where the subscript indicates the concrete or abstract system
a variable belongs to, and the remaining variables in Σa are
identical to the variables occurring in Σc.

A. Proving the invariants with PVS

When we started to investigate the algorithm, it soon
became apparent that we could use PVS as a proof assistant.
In PVS, we defined the state space in terms of the shared
and private variables, like the following:

N, P: posnat
K: posnat = N+P*2
Process: TYPE = range[P]
Index: TYPE = range[N]
Val: TYPE
State : TYPE = [#

% shared variables
Node : [ range(K) − > Val ],
indir : [ Index − > range(K) ],
prot : [ range(K) − > nat ],
...

% private variables:
pc : [ Process − > nat ],
mp : [ Process − > range(K) ],
...

% local variables of procedures:
m : [ Process − > range(K) ],
x : [ Process − > Index ],
mybuf : [ Process − > Val ],
...

#]

The code of Section 3 can be easily transformed into
a transition system. For example, using s and t of type
state and p of type Process, line c16 is represented by the
definition:

step16(p, s, t): bool =
pc(s)(p) = 16 AND
if m(s)(p) = indir(s)(x(s)(p)) then

t = s WITH [ (pc)(p) := 20 ]
else

t = s WITH [ (pc)(p) := 18 ]

Since our algorithm is concurrent, the step is defined as
the disjoint of all atomic actions.

% transition steps
step(p,s,t) : bool =

step10(p,s,t) or step12(p,s,t) or ...
step20(p,s,t) or step22(p,s,t) or ...
...

We then started to guess and prove several invariants
as described in the next sections. This improved our un-
derstanding and our confidence in the correctness of the
algorithm. Finding invariants in an algorithm one does not
really understand requires a good intuition, but is mainly a
lot of work. The notion of stability for an proposed invariant
can be proved by their corresponding Theorem or Lemma
in PVS like:

% Theorem about the stability of invariant I1
IV−I1: THEOREM

forall (s,t : state, p : Process ) :
step(p,s,t) AND I1(s) AND I4(s) AND I5(s)
=> I1(t)

To ensure that all proposed invarinats be proved stable, we
construct a global invariant INV by conjoining all proposed
invariants, and discharge a particular proof for its stability.

% global invariant
INV(s:state) : bool =

I1(s) and I2(s) and I3(s) and ...
...

% Theorem about the stability of the global invariant
IV−INV: THEOREM

forall (s,t : state, p : Process ) :
step(p,s,t) AND INV(s) => INV(t)

After the stabilities of all proposed invarinats have been
checked separately, we define Init as an initial condition
that must be satisfied by all proposed invariants.

% initial state
Init: { s : state |

(forall (p: Process):
pc(s)(p)=10 or pc(s)(p)=20) and

(forall (i: Index):
indir(s)(i)=i) and

...
}

% The initial condition can be satisfied
IV−Init: THEOREM

INV(Init)

The role of PVS was plain verification. We ourselves
invented the invariants. In the more difficult proofs of
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preservation of some invariants, we also had to guide the
choices of case distinctions.

B. Invariants

We establish some invariants for the concrete system Sc,
that will aid us in proving the refinement.

I1: p �= q ∧ pc.p /∈ [c26 . . . c32] ∧ pc.q /∈ [c26 . . . c32]
⇒ mp.p �= mp.q

I2: pc.p /∈ [c26 . . . c32] ⇒ indir[x] �= mp.p
I3: x �= y ⇒ indir[x] �= indir[y]

In the expression of invariants, free variables p and q range
over 1 . . . P , and x and y range over 1 . . . N . Invariants
I1 and I2 indicate that, for any process p, node[mp.p]
can be treated as a “private” node of process p since only
process p can modify that. Invariant I3 implies that all
shared nodes are different. To prove the invariance of I1
to I3 , we postulate

I4: ∀i: 1 . . . K: prot[i] = �({x: 1 . . . N | indir[x] = i})
+�({p | (pcp /∈ [c26 . . . c32] ∧ mpp = i)

∨ (pcp = c26 ∧ mp = i)})
+�({p | pcp ∈ [c16 . . . c34] ∧ pc.p �= c32 ∧ mp = i})

I5: pc.p ∈ [c20 . . . c34] ∧ pc.p �= c32 ∧ mp.q = m.p
⇒ pc.q ∈ [c26 . . . c32]

Invariant I4 precisely describe the counter prot[i] for each
i ∈ 1 . . . K. Invariant I5 implies that process p cannot read
the “private” node of other process q.

Consequently, we have the main reduction theorem for
the lock-free implementation using CAS:

Theorem 2 The abstract system Sa defined in Fig. 1 is
implemented by the concrete system Sc defined in Fig. 2,
that is, ∃φ : Sc � Sa.

V. CONCLUSION

We are interested in designing efficient data structures
and algorithms on shared-memory multiprocessors. On such
machines, lock-free algorithms offer significant reliability
and performance advantages over conventional lock-based
implementations. The lock-free algorithms often require the
use of special atomic processor primitives such as CAS or
LL/SC. However, many machine architectures support either
CAS or LL/SC with restricted semantics.

In this paper, we first present a lock-free implementation
of the ideal semantics of Multiword LL/SC object using
only pointer-size CAS without causing ABA problem. Then
to ensure our algorithm is not flawed, we use refinement
mapping to prove the correctness of the algorithm, and the
higher-order interactive theorem prover PVS for mechanical
support.
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