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Stability of quantized time-delay nonlinear systems: A

Lyapunov-Krasowskii-functional approach

Claudio DE PERSIS, Frédéric MAZENC

Abstract— Lyapunov-Krasowskii functionals are used to de-
sign quantized control laws for nonlinear continuous-time
systems in the presence of time-invariant constant delays in
the input. The quantized control law is implemented via
hysteresis to avoid chattering. Under appropriate conditions,
our analysis applies to stabilizable nonlinear systems for any
value of the quantization density. The resulting quantized
feedback is parametrized with respect to the quantization
density. Moreover, the maximal allowable delay tolerated by
the system is characterized as a function of the quantization
density.

I. INTRODUCTION

Quantized control systems ([4], [9]), are systems in which

the control law is a piece-wise constant function of time

taking values in a finite set. The design of quantized control

systems is based on a partition of the state space. One value

of the control law is associated to each set of the partition,

and whenever the state crosses the boundary between two

sets of the partition, the control law takes the new value

associated to the set which the state has just entered.

When dealing with the problem of stabilizing the origin of

the state space for linear discrete-time systems, the paper

[4] has shown the effectiveness of logarithmic quantization

in which the partition of the state space is coarser away from

the origin and denser in its vicinity. It has also introduced the

notion of quantization density, that is the number of regions

of the partition per unit of space. Intuitively, the larger is

the quantization density, the easier is the quantized control

problem, since as the quantization density gets larger, the

quantized control law approaches a control law without quan-

tization. The paper [9] deals with a similar problem but for

nonlinear continuous-time systems which can be made input-

to-state stable with respect to the quantization error. Recently,

the paper [1] has investigated quantized control systems in

the framework of discontinuous control systems, discussing

appropriate notions of solutions, namely Krasowskii and

Carathéodory solutions. In this framework, the effect of

quantization is viewed as an additional disturbance whose

effect is attenuated by a Lyapunov redesign of the control

law. Namely, given any nonlinear continuous-time process

which is stabilizable by a continuous feedback, and given

any value of the quantization density, it is always possible
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to find a new feedback depending on the quantization density,

in such a way that the process in closed-loop with the

quantized control law is practically stable with a basin of

attraction which can be made arbitrarily large. Other notions

of robustness (namely, robustness in the sense of the L2-

gain) in connection with quantized control problems have

been examined in [6] and [1]. Moreover, in the former, an

adaptive quantized control scheme has been investigated.

Since quantized controls take values in a finite set, they

lend themselves to be implemented over a finite data-rate

communication channel. Data transmitted over a channel are

usually delivered at the other end of channel after a delay.

The problem of quantized control systems in the presence of

delays then arises very naturally. Such a problem has been

examined for the first time in [10], where the connection

between Razumikhin-type theorems and the ISS small-gain

theorem established in [17] was exploited. In recent years,

besides [17], other contributions in the area of nonlinear

time-delay systems have appeared (see, for instance, [13],

[14], [12], [15], [7], [8], [11], [5] and references therein).

In particular, the paper [11] has proposed a Lyapunov-

Krasowskii-functional approach to study the stabilizability

of nonlinear systems in the presence of a delay in the input.

The aim of this paper is to pursue the approach of [11]

in the analysis and design of quantized time-delay control

systems. Besides the use of Lyapunov-Krasowskii func-

tionals, there are other important features of the approach

which make our paper different from other contributions.

We implement the quantized control with the hysteretic

mechanism suggested in [6] to avoid chattering. It is known

from [2] that, in the case no delay is present, the analysis

of such hysteretic solutions can be reduced to the analysis

of Krasowskii and Carathéodory solutions considered in [1].

In the case of quantized time-delay systems, the adoption of

the hysteretic solution is desirable. First, because it allows

us to avoid technical issues related to more general notions

of solutions of time-delay quantized (that is, discontinuous)

systems. Second, the existence of more general solutions

such as Carathéodory solutions is guaranteed only under

additional conditions (see e.g. [1]). Another feature which

is worth mentioning is that, as in [1], our analysis applies to

stabilizable nonlinear systems for any value of the quantiza-

tion density, provided that suitable conditions are satisfied.

Then, the quantized feedback which stabilizes the closed-

loop system despite the delay turns out to be parametrized

with respect to the quantization density.

Our approach leads to a set of conditions to design quantized

control systems which are robust with respect to delays.
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Since we employ the results of [11] based on Lyapunov-

Krasowskii functionals, our conditions represent an alterna-

tive to the conditions derived using Razumikhin-like theo-

rems in [17], [10]. Other conditions could be derived using

recent results on input-to-state stability of time-delay systems

via Lyapunov-Krasowskii functionals ([15], and [5] where a

few comments in this regard have been presented). However,

this investigation is beyond the scope of the paper.

In the next section, we present a few preliminaries, such as

the definition of the quantizer and the notion of solution we

adopt. The main result along with the standing assumptions

are examined in Section III. Conclusions are drawn in

Section IV.

Due to space limitations we can not give the proof of the

result. The interested reader can find it in the unabridged

version of the paper available on-line ([3]).

Notation, definitions

• R≥0 (respectively, R>0) denotes the set of non-negative

(positive) real numbers.

• Let r1, r2 be two real numbers such that r1 < r2.

Let C1([r1, r2], R
m) (respectively, C

1
([r1, r2], R

m))
denote the set of continuously differentiable (respec-

tively, piece-wise continuously differentiable) functions

φ(·) : [r1, r2] → R
m.

• Norms. | · | stands for the Euclidean norm, ||φ||c =
supt∈[r1,r2] |φ(t)| stands for the norm of a function φ ∈
C1([r1, r2], R

m).
• sgn(r), r ∈ R, denotes the sign function, i.e. the

function such that sgn(r) = 1 if r > 0, sgn(r) = −1 if

r < 0, and sgn(r) = 0 if r = 0.

• To simplify the notation we will frequently use the

notation of the Lie derivative. More precisely, if f :
R

n → R
n is a vector field and h : R

n → R is a

scalar function, we may use the notation Lfh(x) for
∂h
∂x (x)f(x).

• A continuous function k : [0,∞) → [0,∞) is of class

K provided it is zero at zero and strictly increasing.

A class K∞ function is a class K function which in

addition is unbounded.

• We shall often omit arguments of functions to simplify

notation.

• For a real-valued function z(t), we denote by z(t+) the

right limit limm>t,m→t z(m).

II. PROBLEM FORMULATION

We are interested in investigating the stability property of

systems when the feedback control law undergoes quantiza-

tion and delays. This problem arises in (idealized) scenarios

in which a finite bandwidth channel lies in the feedback loop

and introduces a delay. In the sub-sections below, we recall

what is meant by quantization and what is a quantizer, we

introduce the quantized time-delay system and the notion of

solution we adopt, and finally the formulation of the problem.

A. Quantizers

To the purpose of describing our system in more formal

terms, we introduce the following multi-valued map, which

-

6Ψ(u)

u

1 − δ

1 + δ

u0

u0

1 + δ

u1

1 + δ

u0(1 + δ)−2

u1

u0(1 + δ)−1 u0(1 − δ2)−1u1(1 + δ)−1

Fig. 1. The multi-valued map Ψ(u) for u > 0, and with j = 1.

will be referred to henceforth as the quantizer. Let u0 > 0
and 0 < ρ < 1 be real numbers, let ui = ρiu0 and

U = {0,±ui,±ui(1 + δ)−1, i = 0, 1, . . . , j}, with j ≥ 1 an

integer. Let δ = (1 − ρ)(1 + ρ)−1 and

Ψ(u) =






























uisgn(u)
ui

1 + δ
< |u| ≤ ui

1 − δ
, 0 ≤ i ≤ j

ui

1 + δ
sgn(u)

ui

(1 + δ)2
< |u| ≤ ui

(1 + δ)(1 − δ)
,

0 ≤ i ≤ j

0 0 ≤ |u| ≤ 1

1 + δ
uj .

(1)

A picture of the map is given in Fig. 1. Observe for later

use that

ρ =
1 − δ

1 + δ
(2)

and

ui =

(

1 − δ

1 + δ

)i

u0 , ∀i ∈ {0, 1, . . . , j} . (3)

A few remarks are in order:

• The range of the quantizer, i.e. its interval of definition,

is [− u0

1−δ , u0

1−δ ]. We do not define Ψ(u) for |u| > u0

1−δ ,

since we will design the parameter u0 in such a way

that the control |u(t− τ)|, which is the actual argument

of the map Ψ, never exceeds this upper bound.

• The logarithmic quantizer with a finite number of

quantization levels, which is a truncated version of the

quantizer with an infinite number of quantization levels,

was introduced in [4], Section V, and it is as follows:

Ψ(u) =











uisgn(u)
ui

1 + δ
< |u| ≤ ui

1 − δ
, 0 ≤ i ≤ j

0 0 ≤ |u| ≤ 1

1 + δ
uj .

(4)

Compared with (4), the quantizer (1) considered in

this paper has additional quantization levels. To have

a pictorial representation of the quantizer (4), one can

refer to Fig. 1 and remove the quantization levels
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labeled as u0

1+δ and u1

1+δ . The new quantization levels

in (1) are added to avoid chattering (see the Remark in

Subsection II-B below).

• The parameter ρ can be viewed as a measure of the

quantization density, since the smaller is ρ, the coarser

is the quantizer ([4]). In fact, by (2), as ρ approaches

0, δ approaches 1, that is the width of the sector bound

in Fig. 1 gets larger and, given an interval of fixed

length on the u-axis in Fig. 1, Ψ(u) will have fewer

quantization levels as u ranges over that interval.

• In the quantizer (1), the parameters δ, u0, j appear.

Throughout the paper, we shall assume that δ can take

any value in the interval (0, 1) (i.e. the quantization

density can be equal to any value). On the other hand

the positive real number u0 (which defines the range

of the quantizer) and the integer j (which gives the

number of quantization levels) are to be designed.

Although it would be more correct to denote explicitly

the dependence of Ψ on u0, j, i.e. to have Ψj,u0
(u),

this is not pursued in the paper to avoid cumbersome

notation.

B. Quantized time-delay systems

We are interested in investigating the stability of the

quantized time-delay system

ẋ(t) = f(x(t)) + g(x(t))Ψ(u(t − τ)) , (5)

with x(t) ∈ R
n, n ≥ 1, f(x), g(x) locally Lipschitz func-

tions, and τ a positive real number, when u(t) = z(x(t)),
with z(·) a continuously differentiable real-valued function

to be designed. Since Ψ(u(t−τ)) is a multi-valued function,

we must specify the rule by which Ψ(u(t − τ)) takes value

in U depending on its argument u(t − τ).
Consider the initial condition ϕ ∈ C1([−2τ, 0], Rn) and

let T < τ be a suitable positive number. For t ∈ [0, T ) we

focus our attention on Ψ(z̄(t)), where to ease the notation

we have set z̄(t) := z(ϕ(t − τ)). At time t = 0, depending

on |z̄(0)|, the value taken by the quantizer is specified as

follows:

Ψ(z̄(0)) =










uisgn(z̄(0)),
1

1 + δ
ui < |z̄(0)| ≤ 1

1 − δ
ui, 0 ≤ i ≤ j

0, 0 ≤ |z̄(0)| ≤ 1

1 + δ
uj .

(6)

For all t ∈ [0, T ), we describe the law by which Ψ(z̄(t))
evolves as the argument z̄(t) varies. Before that, in order

to have a concise description, we rename the quantization

levels as follows:

ũk :=











uk/2 k even

u(k−1)/2

1 + δ
k odd, k = 0, 1, . . . , 2j + 1 ,

and moreover we set ũ2j+2 := 0. The evolution of Ψ(z̄(t))
obeys the law below (a pictorial representation of the law is

given by the directed graph in Figure 2), where the symbol

∧ denotes the logical conjunction ‘and’:

|Ψ(z̄(t))| = ũk ∧ |z̄(t)| =
ũk

1 + δ
⇒ |Ψ(z̄(t+))| = ũk+1,

for k = 0, 1, . . . , 2j + 1

|Ψ(z̄(t))| = ũk ∧ |z̄(t)| =
ũk

1 − δ
⇒ |Ψ(z̄(t+))| = ũk−1,

for k = 1, 2, . . . , 2j + 1
|Ψ(z̄(t))| = ũk ∧ |z̄(t)| = ũk−1 ⇒ |Ψ(z̄(t+))| = ũk−1,

for k = 2j + 2.
(7)

If no one of the conditions on the right-hand side of the

implications above is satisfied, then Ψ(z̄(t+)) = Ψ(z̄(t)).
We now specify the solution we adopt for the system

ẋ(t) = f(x(t)) + g(x(t))Ψ(z̄(t)) (8)

with t ∈ [0, T ). Set t0 = 0, let Ψ(z̄(t0)) be as in (6), compute

Ψ(z̄(t+0 )) according to (7) above, and consider the solution

x(t) of

ẋ(t) = f(x(t)) + g(x(t))Ψ(z̄(t+0 )) (9)

starting from the initial condition x0 = ϕ(0), on the interval

[t0, t1], where t1 is a time at which z̄(t) satisfies one of

the conditions which forces Ψ(z̄(t)) to take a new value,

provided that the solution of (9) can be extended up to t1.

By definition, Ψ(z̄(t)) = Ψ(z̄(t+0 )) for all t ∈ [t0, t1], and

on [t0, t1], x(t) is equivalently the solution of (8). Then, set

x1 = x(t1), compute Ψ(z̄(t+1 )), and consider the solution of

ẋ(t) = f(x(t)) + g(x(t))Ψ(z̄(t+1 )) (10)

starting from x1, and defined on [t1, t2], where t2 is a time

at which a new transition occurs. Iterating this argument,

one finds a sequence t0, t1, . . . , tk, tk+1 (for some integer

k ≥ 0, and where we have conventionally set tk+1 = T ) of

switching times, and the solution x(t) of (8) on [0, T ) is a

C
1

function of time such that, for each i = 0, 1, . . . , k, for

all t ∈ [ti, ti+1), it satisfies

ẋ(t) = f(x(t)) + g(x(t))Ψ(z̄(t+i )) .

Remark. We now explain why chattering is avoided thanks

to the introduction of additional levels in the quantizer (see

also [6]). As a matter of fact, by the definition of (1), each

time Ψ(z̄(t)) makes a transition from one value to another,

some (dwell) time will elapse before a new transition can

occur1. This can be illustrated with the help of Fig. 1, where

u is replaced by z̄(t). Suppose that, at time t, Ψ(z̄(t)) = u0

and z̄(t) hits the point u0

1+δ . Then Ψ(z̄(t)) takes the new

value u0

1+δ (see Fig. 1). After the switching, the function z̄(t)
can increase and eventually hits the point u0(1 − δ2)−1, or

decrease and eventually hits the point u0(1+ δ)−2. In either

case, before a new transition takes place, some time will

elapse, because the function z̄(t) must cover an interval of

finite length with finite speed. In fact, for a given C1 initial

1For some classes of nonlinear systems, it is possible to estimate a lower
bound on such a dwell time ([2]). This is particularly important in the case in
which the quantized controller is implemented over a network, since it gives
indications on the data-rate needed to transmit the quantized information.
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Ψ(u) = −ũ0 Ψ(u) = −ũ1

u = −

ũ0

1 + δ

u = −

ũ1

1 − δ

u = −

ũ1

1 + δ

u = −

ũ2

1 − δ

. . . Ψ(u) = −ũ2j+1

u = −

ũ2j

1 + δ

u = −

ũ2j+1

1 − δ

Ψ(u) = 0

u = −

ũ2j+1

1 + δ

u = −ũ2j+1

Ψ(u) = ũ2j+1

u =
ũ2j+1

1 − δ

u =
ũ2j

1 + δ

u = ũ2j+1

u =
ũ2j+1

1 + δ

. . . Ψ(u) = ũ1

u =
ũ2

1 − δ

u =
ũ1

1 + δ

Ψ(u) = ũ0

u =
ũ1

1 − δ

u =
ũ0

1 + δ

Fig. 2. The directed graph illustrates the law (7) which describes the evolution of Ψ(u(t)) as u(t) = z̄(t) varies. Each edge connects two nodes, and is
labeled with the condition which triggers the transition from the starting node to the destination node.

condition ϕ, the time derivative of z̄(t) = z(ϕ(t − τ)) is

continuous and bounded on [0, T ), and in particular:

|dz̄(t)

dt
| ≤ max

|x|≤R
|∂z(x)

∂x
| · max

t∈[−2τ,−τ ]
|dϕ(t)

dt
| .

If, on the other hand, we were adopting the quantizer (4),

Ψ(z̄(t)) would have taken the value u1 rather than u0

1+δ .

Immediately after the switching, it could happen that z̄(t)
cannot decrease, thus forcing a transition to the previous

value, which would in turn trigger a new transition to u1,

and this would continue to happen again and again. It is

precisely to avoid such fast transitions that new quantization

levels were added. This addition can be seen as a way to add

hysteresis to the quantized system, and we will refer to (1)

as a quantizer with hysteresis.

For the analysis to follow, the following observation is

important. For each t ∈ [0, T ), such that t ∈ [ti, ti+1), i =
0, 1, . . . , k, if |z̄(t)| < u0(1 − δ)−1, then the solution x(t)
of (8) satisfies the differential inclusion

ẋ(t) ∈ f(x(t)) + g(x(t))K(Ψ(z̄(t))) , (11)

where K(Ψ(u)), with u = z̄(t), is such that

K(Ψ(u)) ⊆



















{v ∈ R : v = (1 + λδ)u , λ ∈ [−1, 1]} ,
(1 + δ)−1uj < |u| ≤ (1 − δ)−1u0

{v ∈ R : v = λ(1 + δ)u , λ ∈ [0, 1]} ,
|u| ≤ (1 + δ)−1uj .

(12)

This is easily verified bearing in mind that, by the definition

(1) of the map Ψ(u), Ψ(u) ∈ K(Ψ(u)) for all |u| < u0(1−
δ)−1.

C. Problem formulation

Because the quantizer outputs a zero value in the vicinity

of the origin, asymptotic stability of the origin of (5) is

not possible to achieve (except in exceptional cases without

interest). We are rather interested in the following property:

Definition. The system

ẋ(t) = f(x(t)) + g(x(t))v(t − τ) , (13)

with τ ≥ 0 is semi-globally practically stabilizable by

quantized feedback if for any ε < R < 0 there exist a law

z(x), a real number u0 > 0 and an integer j ≥ 1 such that

the solution of

ẋ(t) = f(x(t)) + g(x(t))Ψ(z(x(t − τ))) , (14)

starting from R = {ϕ ∈ C1([−2τ, 0], Rn) : ||ϕ||c ≤ R}
enters Bε, the closed ball of radius ε, at some finite time

ts ≥ 0, and remains in that set for all t ≥ ts.

In the remaining sections, we propose a solution to the

problem formulated above.

III. STANDING ASSUMPTIONS AND MAIN RESULT

A. Basic assumptions

The result to be derived below for the system (13) holds

under the following standing assumptions.

(A1) There exist a continuously differentiable positive def-

inite and proper Lyapunov function V (x), two class K∞

functions κ1, κ2, a positive definite continuous function

W (x) and a continuously differentiable real-valued function

z(x), which is zero at the origin, with W (x) and z(x) both

depending on δ, such that, for all x ∈ R
n,

κ1(|x|) ≤ V (x) ≤ κ2(|x|) ,
∂V

∂x
[f(x) + g(x)(1 + p)z(x)] ≤ −W (x) , p ∈ [−δ, δ] .

(15)

Remark. The uncertainty in the input channel is mod-

eled through the parameter p, whose range depends on

the quantization density through δ. Such uncertainty takes

into account the effect due to quantization, as it should be

evident from (12). Assumption (A1) amounts to require the

system ẋ(t) = f(x(t)) + g(x(t))u(t), with no delay, to be

stabilizable in the presence of quantization. The design of a

stabilizing quantized feedback is carried out e.g. in [1] (see

also Subsection III-B below).

The next two assumptions require the system to be robust

with respect to delays. In particular they are needed to

guarantee that no finite-escape time phenomenon will occur,

and that the solution stays bounded for all the times. These

conditions also appear in [11] (where no quantization was

present), although in a slightly different form. The difference

is due to the fact that the quantization effect adds up to the

delay effect, and in the conditions below also the quantization

parameter δ plays a role. For more comments on these two

assumptions the Reader is referred to [3].

(A2) Let Ω be a positive real number which satisfies Ω ≥
16τ . For all x ∈ R

n, for all ξ ∈ C
1
([0, 2τ ], Rn), for all λ1 ∈

[−1, 1] and for all λ2 ∈ C
0
([0, τ ], R) such that λ2(m) ∈

[1 − δ, 1 + δ] for all m ∈ [0, τ ], the inequality

−1

4
W (x)−T (x, ξ, λ1, λ2)−

1

Ω

∫ 2τ

0

W (ξ(ℓ))dℓ ≤ 0 , (16)
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with

T (x, ξ, λ1, λ2) = LgV (x)(1+

+λ1δ)

∫ 2τ

τ

H(ξ(ℓ), ξ(ℓ − τ), λ2(ℓ − τ))dℓ ,

H(a, b, c) = Lfz(a) + Lgz(a)cz(b) ,

holds.

(A3) There exists a nondecreasing function κ3(·) of class

C1 such that for all x ∈ R
n, for all L ≥ 0 and for all

λ ∈ [−1, 1], the inequality

−1

2
W (x) + sup

|a|≤L

{LgV (x)(1 + λ)[z(a) − z(x)]} ≤

≤ κ3(L)[V (x) + 1]
(17)

holds.

B. Comments on the Assumption (A1)

A number of ways to have Assumption (A1) fulfilled are

discussed below.

Lyapunov Redesign. Suppose that, for the system (13), are

known a function V of class C2, and a function ζ(x) of class

C1 such that, instead of (15), only the weaker condition

LfV (x) + LgV (x)ζ(x) = −W̃ (x) , (18)

with W̃ (x) a continuous positive definite function, is satis-

fied. Introduce the control law

z(x) = ζ(x) − α(x)LgV (x) , (19)

with α(x) a positive function to be chosen later. Then we

have

∂V

∂x
[f(x) + g(x)(1 + p)z(x)]

=
∂V

∂x
[f(x) + g(x)ζ(x)] − α(x) |LgV (x)|2 +

+pLgV (x) [ζ(x) − α(x)LgV (x)]

≤ −W̃ (x) − α(x)(1 + p) |LgV (x)|2 + pLgV (x)ζ(x)

≤ −W̃ (x) − α(x)(1 − δ) |LgV (x)|2 + δ |LgV (x)| |ζ(x)| .

A simple completion-of-the-squares argument shows that

∂V

∂x
[f(x) + g(x)(1 + p)z(x)] ≤ −3

4
W̃ (x) ,

provided that

α(x) ≥ δ2

1 − δ

|ζ(x)|2
W̃ (x)

. (20)

Hence, the control law (19), with α(x) defined above and

such that limx→0 α(x)LgV (x) = 0, guarantees the fulfill-

ment of Assumption (A1) with W (x) = 3W̃ (x)/4.

Sontag’s universal stabilizer [16]. Consider the system

ẋ = f(x) + g(x)[1 + p]u , (21)

with x ∈ R
n, u ∈ R, p ∈ [−δ, δ], δ ∈ [0, 1). Let us assume

that a control Lyapunov function V (x) is known for the

system (21) with p = 0, and set

V̇ (x) = a(x) + [1 + p]b(x)u , (22)

with a(x) = LfV (x) , b(x) = LgV (x). Since V is a control

Lyapunov function for (21) with p = 0, b(x) = 0 implies

a(x) < 0 when x 6= 0. Next, consider the control given by

Sontag’s formula:

u(x) = K
−a(x)−

√
a(x)2+b(x)4

b(x) when b(x) 6= 0 ,

u(x) = 0 when b(x) = 0 ,
(23)

and where K is a positive real number to be selected

later. Then, when b(x) 6= 0, the derivative of V along the

trajectories of (21) in closed-loop with u(x) defined in (23)

satisfies

V̇ (x) = a(x) + [1 + p]b(x)K
−a(x) −

√

a(x)2 + b(x)4

b(x)
= a(x) − [1 + p]Ka(x) − [1 + p]K

√

a(x)2 + b(x)4

= [1 − (1 + p)K]a(x) − [1 + p]K
√

a(x)2 + b(x)4 .
(24)

We choose K = 2
1−δ > 0. Then, when a(x) ≥ 0, we have

V̇ (x) ≤ −a(x) − [1 + p]K
√

a(x)2 + b(x)4 , (25)

and, when a(x) < 0,

V̇ (x) = a(x) − [1 + p]K(a(x) +
√

a(x)2 + b(x)4) < 0 .
(26)

When b(x) = 0, then

V̇ (x) = a(x) < 0 if x 6= 0 . (27)

Under the small control property ([16]) one can prove that the

control law introduced above is smooth everywhere except

at the origin where it may be only continuous. However, in

many cases, the control law turns out to be also continuously

differentiable at the origin, and then a continuously differen-

tiable function z(x) which guarantees the inequality (15) is

obtained.

Lyapunov stable systems. Consider again system (21), and

assume that a Lyapunov function V (x) such that a(x) ≤
0, and b(x) 6= 0 when x 6= 0 and a(x) = 0, is known.

Then, selecting u = −ξ(x)b(x), where ξ is any C1 positive

function, we obtain, for all x ∈ R
n

V̇ (x) ≤ a(x) − [1 − δ]ξ(x)b(x)2 (28)

and the function a(x)− [1− δ]ξ(x)b(x)2 is negative definite.

Inequality (15) then holds with z(x) = −ξ(x)b(x) and

W (x) = −a(x) + [1 − δ]ξ(x)b(x)2.

Dissipation inequality [6], [1]. Consider the system (13).

Suppose that a Lyapunov function V (x) is known such that

for all x ∈ R
n

LfV (x) − 1

4
(1 − δ2) (LgV (x))2 ≤ −W̃ (x) .

Then, for any p ∈ [−δ, δ] it is also true that

LfV (x) − 1

4
(1 − p2) (LgV (x))

2 ≤ −W̃ (x) .

Define now z(x) = −1

2
LgV (x) and observe that the in-

equality above rewrites as
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LfV (x)+
1

4
p2 (LgV (x))

2
+z(x)LgV (x)+z(x)2 ≤ −W̃ (x) ,

or, equivalently,

∂V

∂x
(f(x)+g(x)z(x))+

1

4
p2 (LgV (x))2+z(x)2 ≤ −W̃ (x) .

(29)

We remark incidentally ([1]) that the latter inequality implies

the existence of a control u = z(x) which renders the system
{

ẋ = f(x) + g(x)u + g(x)w ,
z = u ,

strictly dissipative with respect to the supply rate q(w, z) =
−z2 + p−2w2.

Observe now that

pz(x)LgV (x) ≤ 1

4
p2 (LgV (x))

2
+ z(x)2

and therefore (29) implies that

∂V

∂x
(f(x) + g(x)z(x)) + pz(x)LgV (x) ≤ −W̃ (x) ,

that is (15) with W (x) = W̃ (x).

C. Main result

We are ready to state the main result of our work. As

already made clear in the problem formulation (see Defini-

tion in Subsection II-C), the two main design parameters are

the range u0 and the number j of levels of the quantizer.

Intuitively, to design u0 we need to quantify the “overshoot”

of the state variable and we expect this to depend on the size

of the initial condition. Regarding the number of quantization

levels j, it is not hard to figure out that in general the closer

one wants to confine the state to the origin (i.e. the smaller ε
is in the Definition in Section II-C), the larger the number of

quantization levels must be. On the other hand, having fixed

the width of the quantizer, the number of the quantization

levels will increase with the range u0 and in turn with R.

Such a dependence is made clear in the statement below.

Proposition 1: Let us assume that the system (13) sat-

isfies Assumptions (A1) to (A3). Then the origin of (13)

is semi-globally practically stabilizable by quantized feed-

back. Namely, there exist a positive, continuous and non-

decreasing function u0(·) : R≥0 → R>0, and a positive

continuous function j(·, ·) : R
2
≥0 → R>0 such that, for

any R > ε > 0, if u0 ≥ u0(R), j ≥ j(ε, R) and z
is the feedback provided by Assumption (A1) satisfying

(15), then the solution of (14) starting from R = {ϕ ∈
C1([−2τ, 0], Rn) : ||ϕ||c ≤ R} enters Bε, the closed ball of

radius ε, at some finite time ts ≥ 0, and remains in that set

for all t ≥ ts.

The proof is omitted and can be found in [3]. A few

comments are in order. The proof is based on a Lyapunov-

Krasowskii functional given by the sum of the Lyapunov

function V (x) in Assumption (A1) and a term which at time

t depends on the state x(·) restricted to the interval [t−2τ, t].
Hence, in order to use such a Lyapunov-Krasowskii func-

tional, we need to first prove that all solutions of the closed-

loop system we consider exist for all t ∈ [−2τ, 2τ ]. To this

purpose, we only make use of the Lyapunov function V (x).
Then we prove that the solutions can be extended beyond 2τ ,

showing that the Lyapunov-Krasowskii functional is bounded

for all the time and finally that the solutions converge in

finite time to a ball around the origin of radius ε. The proof

is constructive and provides the explicit expression for the

quantizer parameters u0 and j.

IV. CONCLUSION

We have presented a Lyapunov-Krasowskii functional ap-

proach to solve the problem of determining quantized feed-

backs with delay which semi-globally practically stabilize

the origin of nonlinear systems. For a fairly general family

of systems, and given any value of the quantization density,

we have characterized the maximal allowable constant delay

which the closed-loop system can tolerate. A problem which

in our opinion would be interesting to investigate is how, for

systems with a well-defined relative degree, our result can

be propagated via the backstepping technique.
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