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Abstract— We propose a coordination algorithm for robotic
multi-agent systems with leader-follower structures so that
when a leader moves with a constant velocity, its followers can
compute the leader’s velocity after measuring their distances
to the leader for a finite number of times. One feature of the
proposed algorithm is that no active communication is needed,
and as a result, the algorithm becomes advantageous in the
application of robotic sensor networks where energy efficient
algorithms are highly desirable to maximize network lifespan.
The algorithm makes use of the Cayley-Menger determinant
which is a powerful tool from distance geometry. It is shown
that the proposed algorithm has the potential to be applied
to robotic swarms in a challenging scenario where each robot
is installed with only range sensors and cannot measure the
position of a target directly.

Keywords: autonomous agents, leader-follower structure,
range measurement, Cayley-Menger determinant

I. INTRODUCTION

Recent advances in sensor-equipped autonomous robotic
platforms have enabled the evolution of sensing systems into
large-scale, distributed, cooperative, mobile sensor networks.
Correspondingly, there is an emerging trend worldwide to
utilize robotic sensor networks to infrastructure security, en-
vironment and habitat monitoring, industrial sensing, traffic
control and so on [1]. There has been much research in
the control of robotic multi-agent systems for automating
cooperative tasks, see e.g. [2]. In particular, for each robotic
agent in a multi-agent team, various simple local cooperative
strategies have been proposed in order to achieve the emer-
gence of desired collective behavior in the group level [3],
[4], [5].

In this context, it is of special interest to study informa-
tion architectures within a robotic multi-agent system that
can guarantee efficiency and adaptability when executing
complex tasks in an unknown environment [6]. One popular
choice of such information architectures is the so called
leader-follower structure where a leader is chosen to guide its
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fellow teammates to accomplish a given task. The advantage
of the leader-follower structure is that while simple cooper-
ative control strategies are utilized by the followers to keep
the team adaptive and flexible in an complex and unknown
environment, sophisticated control strategies and prioritized
objectives can be designed into the leading agent. However,
one shortcoming inherent in the leader-follower structure is
that task-specific guiding information needs to be constantly
propagated from the leader to its followers and this creates
a heavy communication burden especially considering the
stringent power constraints in sensor networks.

The goal of this paper is to design computational algo-
rithms for the followers in a robotic team such that the
leader’s information can be inferred by the followers without
active communication. To be more concrete, we consider
an idealized but fundamentally important scenario where a
leader is moving with a constant velocity and a follower
is trying to figure out the leader’s velocity. What makes
this problem challenging is that in some of the practical
applications, the follower may be installed with only range
sensors for the consideration of cost and thus cannot easily
localize a target in its own coordinate system. Furthermore,
when no active communication is allowed in this scenario,
the usual approach for the leader to constantly broadcast its
position information is no longer an option. The approach
that we propose to attack this problem is to let the follower
repeatedly measure its distance to the leader at discrete
time instants and then process the data using the Cayley-
Menger determinant which is a convenient tool from distance
geometry.

The rest of the paper is organized as follows. In Section
II, we formulate the problem of coordination with the leader
through repeated range measurements. The Cayley-Menger
determinant and its related properties are introduced in
Section III. We discuss the main coordination algorithm in
Section IV and apply it to robotic swarms in Section V.
Finally, concluding remarks are made in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate the problem of coordination
without active communication that we want to study. We
consider a leading agent l and a following agent f in the
plane. Agent l is moving with a constant velocity v that is
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unknown to the follower f . Agent f cannot communicate
with the leader l to acquire agent l’s position and can only
measure the distance d(t) between itself and agent l through
its range sensor. We assume that agents l and f are in generic
positions; in other words, they do not coincide with each
other in the beginning and agent f ’s initial position is not in
the line that is determined by agent l’s initial position and
direction of movement. We also assume that agent l will be
within the disc, which is centered at agent f ’s initial position
with radius to be agent f ’s sensing range, for a sufficiently
long time. Another assumption is that agent f always has a
map of its own motion in its own coordinate system. The

pf

v
pl

Fig. 1. The leader moving with constant velocity v is within the sensing
range of the follower.

problem is to devise a computation algorithm for agent f
that enables it to infer agent l’s velocity v after a minimum
number of discrete measurements of d(t).

There are a couple of remarks we want to make with
respect to this formulation of the problem.

Remark 1: Algorithms that depend only on sensor range
measurements are of particular importance in the design
and application of robotic sensor networks [7], [8]. For
the reader who is interested in more detail about range
sensing technology in robotic systems, please refer to [9]
and references therein.

Remark 2: In the formulation of the problem, we require
that the leader l moves with constant velocity. This can
be seen as an approximation of the leader’s movement in
a relative short period of time when the leader is doing
some non-stationary but slow maneuvering. Also in the
formulation of the problem, we have flexibility in designing
the follower f ’s motion. In fact agent f may stay stationary
during the whole measurement and computation process, but
as becomes apparent later in the paper, it is advantageous for
agent f to carry out some controlled local movement when
taking range measurements to solve the formulated problem
efficiently.

Remark 3: It would be sufficient to solve the problem if
we were to localize the moving leader l using range mea-
surements. In fact some existing algorithms suggest that it is
possible to achieve localization in this context [10], [7], [11].
However, this turns out to be unnecessary and there exists
much simpler and computationally efficient approaches. In
this paper, we will present a solution to the problem that does
not involve localization computations and thus avoids solving

the associated nonlinear optimization problems. Of course,
the calculations which are performed yield information that,
together with measured data, would be enough to localize
the moving leader if desired; but the calculations to do this
would go beyond those required for our purposes.

The approach that we propose takes advantage of a pow-
erful tool in distance geometry, called the Cayley-Menger
determinant. This tool has been successfully applied by the
authors to the sensor network localization problems [10]. In
the next section, we give a brief review about its definition
and main properties that are related to the computational
approach that we propose later in the paper.

III. CAYLEY-MENGER DETERMINANTS

We first look at the definition for the Cayley-Menger
determinant.

A. Definition

The Cayley-Menger Matrix of two sequences of n points,
{p1, . . . , pn} and {q1, . . . , qn} ∈ R

m, is defined as

M(p1, . . . , pn; q1, . . . , qn)
Δ
=⎡

⎢⎢⎢⎢⎢⎣

d2(p1, q1) d2(p1, q2) · · · d2(p1, qn) 1
d2(p2, q1) d2(p2, q2) · · · d2(p2, qn) 1

...
...

. . .
...

...
d2(pn, q1) d2(pn, q2) · · · d2(pn, qn) 1

1 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ (1)

where d(pi, qj), i, j ∈ {1, . . . , n} is the Euclidean distance
between the points pi and qj . The Cayley-Menger bideter-
minant [12] of these two sequences of n points is defined
as

D(p1, . . . , pn; q1, . . . , qn)
Δ
= detM(p1, . . . , pn; q1, . . . , qn)

(2)
This determinant is widely used in distance geometry

theory [13], [12] which deals with Euclidean geometry in
spaces where distance is defined and invariant. When the two
sequences of points are the same, M(p1, . . . , pn; p1, . . . , pn)
and D(p1, . . . , pn; p1, . . . , pn) are denoted for convenience
by M(p1, . . . , pn) and D(p1, . . . , pn) respectively, and the
latter is simply called a Cayley-Menger determinant.

The Cayley-Menger determinant provides another way of
expressing the hyper-volume of a “simplex” by using only
the lengths of the edges. A simplex of n points is the smallest
(n − 1)-dimensional convex hull containing these points.
The hyper-volume V of the simplex formed by the points
p1, . . . , pn is given by [12]

V 2(p1, . . . , pn) =
(−1)n

2n−1((n − 1)!)2
D(p1, . . . , pn) (3)

We can check equation (3) for the following low dimensional
cases:

• For n = 2, D(p1, p2) = 2d2(p1, p2), and V (p1, p2) =
d(p1, p2).

• For n = 3, the simplex is the triangle formed by p1, p2,
and p3. Then V (p1, p2, p3) is the area of this triangle.
Let a, b, c be the lengths of the three edges of the
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triangle, namely a = d(p1, p2), b = d(p2, p3), c =
d(p3, p1). Let s denote the semi-perimeter s = 1

2
(a +

b + c). Then from Heron’s formula [14], we know that
V (p1, p2, p3) =

√
s(s − a)(s − b)(s − c). Hence, it is

easy to check that V 2(p1, p2, p3) = −1

16
D(p1, p2, p3).

• For n = 4, the simplex is the tetrahedron formed by
p1, p2, p3, and p4. We can obtain Euler’s formula
[15] relating the volume of a tetrahedron with its edge-
lengths: V 2(p1, p2, p3, p4) = 1

288
D(p1, p2, p3, p4).

Now we present the main properties of the Cayley-Menger
determinant.

B. Properties of the Cayley-Menger determinant

The following theorem is a classical result on the Cayley-
Menger determinant and is later generalized in [16].

Theorem 1: Consider an n-tuple of points p1, . . . , pn in
m-dimensional space. If n ≥ m+2, then the Cayley-Menger
matrix M(p1, . . . , pn) is singular, namely

D(p1, . . . , pn) = 0 (4)
A stronger statement can be made as follows in terms of the
rank of the Cayley-Menger matrix.

Theorem 2: (Theorem 112.1 in [13]) Consider an n-
tuple of points p1, . . . , pn in m-dimensional space with n ≥
m+1. The rank of the Cayley-Menger matrix M(p1, . . . , pn)
is at most m + 1.
In fact, the rank of M(p1, . . . , pn) equals m+1 if and only if
at least m+1 points of the n points are in generic positions.
A similar statement made in terms of the cofactors of the
Cayley-Menger determinant can be found in Corollary 1 of
[16].

Using the main properties of the Cayley-Menger determi-
nant, it is possible to describe the geometric relationships
between relative distances by algebraic equations.

C. Geometric relationships as algebraic equations

We consider four points p0, p1, p2 and p3 in the plane and
the distances between them, as shown in Figure 2 below, are
denoted by di, i = 1, . . . , 6, respectively. From Theorem 1

p
0

p
1

p3

p
2

d
2d

1

d
4

d
3

d
6d

5

Fig. 2. Six distances between four points in the plane.

we know that D(p0, p1, p2, p3) = 0. Then the distances di

must satisfy the following equation:

det

⎡
⎢⎢⎢⎢⎣

0 d2
1 d2

2 d2
3 1

d2
1 0 d2

4 d2
5 1

d2
2 d2

4 0 d2
6 1

d2
3 d2

5 d2
6 0 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ = 0 (5)

The algebraic equation (5) provides a concise description
about the geometric relationships for distances between
points in the plane. This becomes essential in the devel-
opment of the main algorithm in the next section. Similar
algebraic expressions also exist for distances in three di-
mensional space. Since we have confined ourselves in the
problem formulation in Section II to study two dimensional
problems, we skip the results in three dimensional space in
this paper.

IV. MAIN ALGORITHM

In this section, we present the main algorithm to solve
the leader-follower coordination problem using the Cayley-
Menger determinant. For clarity of the discussion, we assume
that the follower j’s range measurements are precise. The
proposed algorithm consists of two steps. The first step is to
compute the speed |v| of the leader; and the second step is
to compute the direction of v.

A. Computation of the speed |v|

It is obvious that agent f cannot determine |v| by just
taking one range measurement. Then the questions are how
many more range measurements are needed and when and
how these additional measurements should be taken. By
pure geometric arguments, one can easily see that it is still
not sufficient to determine |v| by just taking two range
measurements. Now we will show that it is possible for
agent f to compute |v| by taking three range measurements.
In fact, a more careful examination using tools in graph
rigidity theory [6] reveals that three range measurements are
indeed the minimum number of measurements required to
have a unique solution of |v|. Since a detailed discussion on
graph rigidity theory is beyond the scope of this paper, we
have kept the discussion on the required minimum number
of measurements in an intuitive level.

As indicated in Figure 3, we propose to let agent f
measure, at a fixed position, the distances d1, d2 and d3

with respect to agent l at times 0, T and 2T where T is
some positive constant.

Remark 4: During the time interval [0, 2T ], agent f may
remain stationary or hover around and come back to its
initial position at T and 2T . The latter situation applies to
Dubins vehicle [17] type of mobile robots and those UAVs
that cannot easily remain stationary in the air.

Remark 5: At the end of this sub-section, we will re-
lax the constraint that the measurement times are equally
spaced. Note that the motion of f is unconstrained between
the measurement times. Note further that different motion
requirements will be imposed on f in the second step of the
algorithm when the direction of motion is determined.
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Fig. 3. The follower f measures the distances d1, d2 and d3 at times 0,
T and 2T .

Let x denote the distance traveled by agent l over a period
of time T . Then agent l’s speed |v| = x

T
. Let y = x2,

l1 = d2
1, l2 = d2

2 and l3 = d2
3. Now consider the tetrahedron

formed by pf , pl1, pl2 and pl3 as shown in Figure 3 and
compare it with the tetrahedron shown in Figure 2. In view of
equation (5), we can obtain the algebraic equation describing
the geometric relationships between x, d1, d2 and d3 as
follows:

det

⎡
⎢⎢⎢⎢⎣

0 y 4y l1 1
y 0 y l2 1
4y y 0 l3 1
l1 l2 l3 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ = 0 (6)

It can be computed that equation (6) is equivalent to

−8y3 + (8l1 − 16l2 + 8l3)y
2

+(−2l21 − 8l22 − 2l23 + 8l1l2 − 4l1l3 + 8l2l3)y = 0

There are three solutions to this cubic equation, which are
y1 = 0 and y2 = y3 = l1−2l2+l3

2
. Since x has to be positive,

it must be true that

x =

√
d2
1 − 2d2

2 + d2
3

2
(7)

Then there is a unique solution for speed |v| which is

|v| =

√
d2
1 − 2d2

2 + d2
3

2

/
T (8)

Equation (7) can be checked in special cases. For example,
if agent f ’s two range measurements at time 0 and time 2T
are equal to each other, i.e. d1 = d3, then we know that in
Figure 3 the line determined by pl2 and pf is perpendicular
to the leader l’s linear trajectory determined by pl1 and pl3

because pl2 is the midpoint between pl1 and pl3. Hence, in
this case the value of x can be easily computed by using the
Pythagoras’ Theorem:

x =
√

d2
1 − d2

2

which agrees with equation (7) when d1 = d3.
In fact, the strategy for agent f discussed in this subsection

can be further generalized. It is not needed for the agent
f to measure its distances to the leader l at exactly the
time instants 0, T and 2T . Now assume agent f takes the

measurements in sequence at times T1, T2 and T3. Then the
distances traveled by agent l over [T1, T2] and [T2, T3] are
(T2−T1)|v| and (T3−T2)|v| respectively. Again, let l1 = d2

1,
l2 = d2

2 and l3 = d2
3 and denote |v|2 by z. Then similar

to equations (5) and (6), one can use the Cayley-Menger
determinant again to write down an algebraic equation:

det

⎡
⎢⎢⎢⎢⎣

0 (T2 − T1)
2z (T3 − T1)

2z l1 1
(T2 − T1)

2z 0 (T3 − T2)
2z l2 1

(T3 − T1)
2z (T3 − T2)

2z 0 l3 1
l1 l2 l3 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

= 0 (9)

From this equation, one can solve for z and then solve for
|v|.

B. Computation of the direction of v

In order to figure out the direction of movement of
the leader, agent f has to perform some local movement
and cannot remain stationary. Here we propose a possible
maneuvering strategy that continues the discussion in the
previous subsection where range measurements d1, d2 and
d3 are taken at times 0, T and 2T .

As indicated in figure 4, we require agent f to start a
linear motion at time 0 with a given constant velocity s,
take a measurement d4 at time T/2 and then return to its
initial position to take the planned measurement d2 at time
T .

pf1

d
1

s

h
1

pl1 pl4

pf2

pl2v

d
2

d
4

Fig. 4. Three measured distances d1, d2, d4 and one computed distance
h1.

After 2T , we have obtained |v| using the algorithm dis-
cussed in the previous subsection. Then we can compute the
distances |pl1pl4| = |pl4pl2| = |v|T/2. Now we examine the
distances between the four points pf1, pl1, pl4 and pl2. There

is only one unknown |pf1pl4|
Δ
= h1 which can be computed

by solving the equation in the form of the Cayley-Menger
determinant of the corresponding four points:

D(pf1, pl1, pl4, pl2) = 0.

Similar to the process of computing the value of x in (7),
one can find that this equation gives us the solution

h1 =

√
d2
1 + d2

2

2
−

|v|2T 2

4
.
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To find the direction of the velocity v, we need to solve
for the value of the angle α as indicated in Figure 4. We first
note that in the triangle formed by the points pf1, pf2 and
pl4, using the law of cosines, we have

∠pf1pf2pl4 = cos−1

(
|s|2T 2/4 + d2

4 − h2
1

|s|Td4

)

and

∠pf1pl4pf2
= cos−1

(
h2

1 + d2
4 − |s|2T 2/4

2h1d4

)
.

Then applying the law of cosines to the triangle formed by
the points pf1, pl1 and pl4, we have

∠pf1pl4pl1 = cos−1

(
|v|2T 2/4 + h2

1 − d2
1

|v|Th1

)

Finally, we examine the triangle formed by the points pf2,
pl4 and the intersection point of the lines pf1pf2 and pl1pl4,
we have

α = π − ∠pf1pf2pl4 − ∠pf1pl4pl1. (10)

However, with only the value of α, there is still a flip
ambiguity for the direction of v with respect to the linear
trajectory of the follower’s movement. To see this, if we flip
over the whole diagram in Figure 4 with respect to the line
pf1pf2, all the computations still hold. To get rid of the flip
ambiguity, the follower can take some range measurements
while making a linear motion in a different direction in the
time interval (T, 2T ). Then there must be a unique solution
which fits all the range measurement data with respect to
both of the two linear motion trajectories.

Remark 6: In fact, it is not necessary for the agent f to
follow a linear trajectory in the second time interval (T, 2T ).
Any motion that is not in the direction of s should be
sufficient to get rid of the flip ambiguity in the direction
of v.

The manoeuvering strategy discussed in this subsection is
just one possible way to obtain the direction of v. There
are other approaches and some of them may be especially
simple in certain scenarios. For example, consider the case
illustrated in Figure 5. When the agent f is moving with
constant speed around a circle that contains its initial po-
sition, it may record k, the rate of change of the distances
to the leader. If the measurements are made continuously in
real time, it is possible to identify an angle, denoted by β,
for which the value of k is the smallest at β and the largest
at π+β. Then the direction determined by β in the follower
f ’s local coordinate system is the direction of motion of
the leader l. Although such a simple scheme may become
very useful in certain settings, the strategy making use of the
Cayley-Menger determinant can be applied to a wider range
of applications in general.

Combining the discussions in subsections IV.A and IV.B
together, we have designed an algorithm for the follower
f to obtain the velocity of the leader f using only range
measurements without active communication. This algorithm

pf2

v

pf1

x

x

y

y

vf1

vf2
+

Fig. 5. Determine the direction of v by recording the rate of change of
the distance to the leader.

is distributed because it does not need centralized coor-
dination and only makes use of local information. Thus
this algorithm can be easily applied to a scalable team of
autonomous mobile agents. In the next section, we discuss
briefly how the idea of coordination with the leader without
active communication can be applied to design coordination
rules for robotic swarms.

V. APPLICATION IN ROBOTIC SWARMS

We now consider a team of mobile autonomous agents
with a leader l that is moving with a constant velocity v. All
the agents cannot communicate actively with one another. All
the followers are equipped with range sensors and have no
knowledge about the leader l’s velocity v. For a follower i,
we say agent j is its neighbor if and only if agent j is within
agent i’s sensing range. Thus the neighbor relationships in
this robotic multi-agent system can be conveniently described
by a directed graph where each vertex corresponds to an
agent and there is a directed edge from vertex j to vertex i
if and only if agent j is a neighbor of agent i. We say such
a graph is connected if it is possible to reach all the vertices
corresponding to the followers from the vertex corresponding
to the leader by traversing directed edges of the graph. In
this section, we want to show that, by adopting the strategy
described in Section IV and under some mild assumption
about the connectivity of the group, it is possible for all the
followers to compute the velocity v after a finite time and
as a result the whole group can move as a cohesive swarm
with the same group velocity v in the end.

For the clarity of discussion, we assume that all the
followers are initially stationary; and to keep the discussion
general, we assume only a small subset of the followers
can sense the leader directly. In order to figure out the
velocity of its neighbors, each follower uses the strategy to
follow two different straight lines over [0, T ] and [T, 2T ] and
takes range measurements with respect to all its neighbors
at time 0, T/2, T and 2T as suggested in Section IV. Note
that the measurements at times 0, T and 2T are made at
the corresponding agent’s initial position. We assume that
all the agents are interconnected initially in such a way
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that the neighbor relationships remain fixed during the local
maneuvering period [0, 2T ]. Suppose the computations of
velocities are completed sufficiently fast, then at the end of
this maneuvering period, leader l’s immediate followers can
identify an agent that is moving with constant velocity for the
whole period of [0, 2T ]. Denote the set of these agents by F1.
Then at 2T , all the agents in F1 knows which neighboring
agent is the leader as well as the velocity v and they start to
move with the constant velocity v.

For all the followers that are not in the set F1, they start
another maneuvering period at 2T . Let F2 be the set of
agents who are immediate followers of F1 ∪ {l} at 2T .
Then at 4T , all the agents in F2 can compute the velocity
v and start to move with this velocity. If the whole group
is connected all the time, then after a finite time, all the
followers will be able to figure out v and move with the
other agents in the group with the same velocity v. Hence,
we have achieved a cohesive swarm of agents using only
range measurements.

Remark 7: In the discussion, we have assumed that all
the agents’ clocks are synchronized. This requirement can
be relaxed. We only need to have an upper bound for the
differences between the rates of the agents’ clocks. One only
needs to make sure that Tm, the length of T measured by the
slowest clock among the agents’, should be less then 2TM

where TM is the length of T measured by the fastest clock
among the agents’. If this is guaranteed, an agent will always
be able to distinguish an agent moving with the desired
velocity v from all the other fellow followers who are still
doing local manoeuvering to figure out the velocity v. So the
discussion in this section can be generalized to asynchronous
situations.

In this coordination scheme, no location information is
propagated, measured or computed. So we have achieved a
strategy which not only requires no active communication,
but needs no location information as well. It has been a chal-
lenging problem in the field of cooperative control of robotic
teams to design coordination rules without using location
information. The discussion in this section sheds some light
on the possible ways to attack this problem by utilizing range
measurements with tools in distance geometry.

VI. CONCLUDING REMARKS

In this paper, we have discussed a coordination algorithm
for autonomous robotic agents which enables a follower to
compute the leader’s velocity using only range measurements
without active communication. The main idea is to utilize the
Cayley-Menger determinant in distance geometry to express
geometric relationships between distance measurements as
algebraic equations. We also discussed briefly the potential
to apply the proposed algorithm to a more general problem
of coordinating robotic swarms with leader-follower infor-
mation structures.

In the ongoing work, we are studying the coordination
algorithms that take into account various measurement errors.
Similar problems have been studied before in the context
of sensor network localization. Tools in distance geometry

prove to be helpful in finding innovative solutions to this
challenging problem. In the future, we will be interested in
extending the results in this paper to the case where the
leader moves with a slowly varying velocity. We will also
try to study similar problems in three dimensional space.
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