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Adaptive control of port-Hamiltonian systems

D.A. Dirksz and J.M.A. Scherpen

Abstract— In this paper an adaptive control scheme is pre-
sented for general port-Hamiltonian systems. Adaptive control
is used to compensate for control errors that are caused by un-
known or uncertain parameter values of a system. The adaptive
control is also combined with canonical transformation theory
for port-Hamiltonian systems. This allows for the adaptive
control to be applied on a large class of systems and for being
included in the port-Hamiltonian framework.

I. I NTRODUCTION

Adaptive control has proved to be a very useful method
for controlling systems which are sensitive to parameter
uncertainty. With adaptive control it is possible to estimate
parameter errors and to compensate for those errors. This
can improve the performance of the controlled system. In
[11] some adaptive control methods were discussed which
explicitly incorporate parameter estimation in the control law.
Furthermore, basic adaptive control is described in [19] for
linear, nonlinear, single-input and multi-input systems. The
recursive methodology of backstepping is described in [8]
for nonlinear and adaptive control design. Adaptive control
for stabilization and tracking control of Euler-Lagrange (EL)
systems was described in [12]. More recent results in the field
of nonlinear applied adaptive control are presented in [1],
which rely upon the the notions ofimmersion and invariance.

In this paper we want to describe an adaptive control
scheme in the port-Hamiltonian (PH) framework. PH sys-
tems were introduced as a generalization of conventional
systems [10]. They describe a large class of (nonlinear)
systems including passive mechanical systems, electrical
systems, electromechanical systems and mechanical systems
with nonholonomic constraints [17]. In [4] canonical trans-
formation was presented for PH systems. With canonical
transformation a PH system can be transformed into another
one while preserving the structure of the original system. The
canonical transformation theory is interesting since it makes
it possible to stabilize systems that cannot be stabilized by
conventional state-feedback without canonical transforma-
tion. Some examples can be found in [3] and [5]. It has
also been shown that the control methodologies Passivity-
Based Control (PBC) and Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC) are special
cases of stabilization by canonical transformation.

For adaptive control of PH systems with uncertain pa-
rameters little is known. For PH systems [2] presented the
use of an adaptive internal model to overcome sinusoidal
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disturbances, but the system parameters were assumed to be
known. In [20] simultaneous stabilization of PH systems was
investigated. Here adaptive control was applied to deal with
uncertain parameters. Although the results hold for general
time-invariant PH systems, the assumptions limit the class
of systems since a restriction is made on the form of the
Hamiltonian.

Here we introduce an adaptive control scheme for general
PH systems. The adaptive control compensates for input
errors caused by not exactly knowing the value of the
necessary system parameters. Compared to [20] we have
weaker assumptions, deal with time-varying systems and the
systems are not required to have the desired equilibrium
point. Stabilization techniques can still be used to realize
desired equilibrium points. It is also possible to extend the
adaptive scheme to deal with a class of input disturbances.
We will then use the general results to apply adaptive
tracking control for fully actuated standard mechanical PH
systems. The results are different than the well known
Slotine-Li method [18], [19]

In the next section we briefly summarize canonical trans-
formation and stabilization of PH systems. Since it is a
general methodology which includes the PBC techniques it is
an interesting method to determine the control input for PH
systems. For this reason we choose stabilization by canonical
transformation as control methodology and later on extend
these results to realize adaptive control. In section III we
introduce the problem of control with parameter uncertainty
and present the PH adaptive control scheme. The adaptive
control scheme is then applied on a special case in section
IV, tracking control of fully actuated mechanical systems.
Concluding remarks are given in section V.

Notation: To simplify expressions, the arguments of func-
tions are left out if clear from the context. Furthermore,|| · ||
denotes the Euclidean vector norm and|| · ||p theLp-norm.

II. CANONICAL TRANSFORMATION AND STABILIZATION

Describe a nonautonomous PH system by

ẋ = (J(x, t) − R(x, t)) ∂H
∂x

(x, t) + g(x, t)u

y = g(x, t)⊤ ∂H
∂x

(x, t)
(1)

where x = (x1, ..., xn)⊤ is the vector of system states,
J(x, t) is the skew symmetric interconnection matrix
J(x, t) ∈ R

n×n, R(x, t) a symmetric damping matrix
R(x, t) ∈ R

n×n, g(x, t) the input matrixg(x, t) ∈ R
n×l,

l ≤ n, u is the control input vector andy the output vector.
The HamiltonianH(x, t) is defined as the sum of kinetic
and potential energy of the system.
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Canonical transformation is widely used for analysis of the
structure of dynamical systems in classical mechanics. In [4]
canonical transformations for PH systems were introduced.
There it was shown how PH systems are stabilized by using
the canonical transformation. We now present the relevant
results of [4] and [5].

Lemma1: Consider the PH system described by (1).
Suppose thatH(x, t) is positive definite, that∂H

∂t
≤ 0 and

that the system is zero-state detectable1. Then the feedback
u = −C(x, t)y with C(x, t) ≥ ǫI > 0 rendersx = 0
globally asymptotically stable. ⊳

Lemma2: The generalized Hamiltonian system (1) is
transformed into another one by any time-invariant, non-
singular, coordinate transformation. ⊳

Definition 1: A set of transformations

x̄ = Φ(x, t) (2)

H̄ = H(x, t) + U(x, t) (3)

ȳ = y + α(x, t) (4)

ū = u + β(x, t) (5)

that changes the coordinatesx into x̄, the HamiltonianH

into H̄, the outputy into ȳ and the inputu into ū is said to
be a generalized canonical transformation for the PH system
if it transforms a PH system (1) into another. ⊳

The class of generalized canonical transformations are char-
acterized by the following theorem:

Theorem1: Consider the PH system described by (1). For
any scalar functionU(x, t) and any vector functionβ(x, t),
there exists a pair of functionsΦ(x, t) andα(x, t) that yields
a generalized canonical transformation. The functionΦ(x, t)
yields a generalized canonical transformation withU(x, t)
andβ(x, t) if and only if there existK(x, t) = −K(x, t)⊤

andS(x, t) = S(x, t)⊤ such thatR + S ≥ 0 and the partial
differential equation (PDE)

∂Φ

∂(x, t)

(

(J − R)∂U
∂x

+ (K − S)∂(H+U)
∂x

+ gβ

−1

)

= 0 (6)

holds. The change of outputα(x, t) and the matrices̄J(x, t),
ḡ(x, t) and R̄(x, t) are given by

α = g⊤(x, t)
∂U

∂x
(x, t) (7)

J̄ =
∂Φ

∂x
(J + K)

∂Φ

∂x

⊤

(8)

ḡ =
∂Φ

∂x
g(x, t) (9)

R̄ =
∂Φ

∂x
(R + S)

∂Φ

∂x

⊤

(10)

⊳

1A dynamical system with inputu, output y and statex is said to be
zero-state detectable if(u, y) = (0, 0) ⇒ x → 0.

The result is that system (1) is transformed into the system

˙̄x =
(

J̄(x̄, t) − R̄(x̄, t)
)

∂H̄
∂x̄

(x̄, t) + ḡ(x̄, t)ū

ȳ = ḡ(x̄, t)⊤ ∂H̄
∂x̄

(x̄, t)
(11)

Before describing the stabilization theorem the definition of
decrescent is given, a concept used for stability analysis of
nonautonomous systems.

Definition 2 ([7], [19]): A scalar function W (x, t) is
said to be decrescent ifW (0, t) = 0 and if there exists a
time-invariant positive definite functionW1(x) such that

∀t ≥ 0, W (x, t) ≤ W1(x)

⊳

Theorem2: Consider the PH system described by (1) and
transform it by the generalized canonical transformation with
U(x, t) andβ(x, t) such thatH+U ≥ 0. Then the new input-
output mappinḡu 7→ ȳ is passive with storage function̄H if
and only if

∂(H + U)⊤

∂(x, t)

(

(J − R)∂U
∂x

− S
∂(H+U)

∂x
+ gβ

−1

)

≥ 0 (12)

Suppose that (12) holds, thatH + U is positive-definite and
that the system is zero-state detectable. Then the feedback
u = −β − C(x, t)(y + α) with C(x, t) ≥ ǫI > 0 renders
the point x̄ = 0 globally asymptotically stable. Suppose
moreover thatH + U is decrescent and that the transformed
system is periodic. Then the feedback renders the system
uniformly asymptotically stable. ⊳

This section has summarized the theory of stabilization of PH
system by canonical transformation. The theory was chosen
because of the interesting properties of PH systems and
because of dealing with general time-varying PH systems.
This makes it applicable to tracking control problems. Fur-
thermore, the method works even when a system cannot be
stabilized by conventional state feedback without canonical
transformation.

III. PARAMETER UNCERTAINTY AND ADAPTIVE

CONTROL

Adaptive stabilization

In the previous section it was shown how canonical
transformation is used to stabilize a PH system. However,
the canonical transformation theory requires full information
about the system. Not exactly knowing system parameters
can result in a control input which does not lead to the
desired behavior of the system. We can describe the control
input signalu in terms of a nominal part (based on nominal
system parameters) and an unknown part (based on the un-
known errors in the parameters). We will make the following
assumption.

A. 1: The control inputu for system (1) can be expressed
in terms of the unknown vectorz = (z1, ..., zm)⊤:

u = u0(x, t) + ∆(x, t)z (13)
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where∆(x, t) is a matrix of known functions. ⊳

In (13) the input signal is expressed as the sum of a nominal
input u0(x, t), the input based on the nominal parameters,
and a term depending on the unknown vectorz. The vector
z is the vector of parameter errors; the vector containing
the unknown differences between the real parameters of the
system and the nominal parameters. The unknown term in
(13) can then also be seen as the error in the required input
signal. Theorem 2 showed that, when there is no uncertainty,
a system can be asymptotically stabilized by the control input

u = −β(x, t) − C(x, t) (y + α(x, t)) (14)

In the case of parameter uncertainty we assume that (14) can
be written in the form (13). Only applying the nominal input
u0(x, t) to system (1), with

∆̄(x̄, t) = ∆(Φ−1(x̄, t), t) (15)

= ∆(x, t) (16)

results in the transformed system

˙̄x =
(

J̄(x̄, t) − R̂(x̄, t)
)

∂H̄
∂x̄

(x̄, t) − ḡ(x̄, t)∆̄(x̄, t)z

ȳ = ḡ(x̄, t)⊤ ∂H̄
∂x̄

(x̄, t)
(17)

with

R̂(x̄, t) = R̄(x, t) + ḡ(x̄, t)C(x̄, t)ḡ⊤(x̄, t) (18)

instead of the desired system (11) withū = −C(x̄, t)ȳ. It
has already been mentioned that errors in the control input
can cause the system to show undesired behavior. Adaptive
control is here proposed to compensate for the errors in the
control input, which are caused by errors in the parameter
values.

Before giving our adaptive control theorem we recall
Barbalat’s lemma [7], [9], often used for analysis of nonau-
tonomous systems.

Lemma3 (Barbalat): Let ϕ(t) : R → R be a uniformly
continuous function on[0,∞). Suppose that the limit of
∫ t

0
ϕ(τ)dτ as t tends to infinity exists and is finite. Then,

lim
t→∞

ϕ(t) = 0 (19)

⊳

Theorem3: Consider system (1) for which the parameter
values are uncertain. Assume that assumption A.1 holds.
Assume furthermore that

A. 2: There exist a scalar functionU(x, t) and a vector
function β(x, t) such that (6) and (12) hold andH + U is
positive definite.

A. 3: The Hamiltonian of the transformed system̄H(x̄, t)
can be described in terms of kinetic and potential energy, i.e.,

H̄(x̄, t) = T̄ (x̄, t) + V̄ (x̄) (20)

with T̄ (x̄, t) and V̄ (x̄) the kinetic and potential energy of
the transformed system, respectively.

A. 4: For the kinetic energȳT (x̄, t) we have

lim
ȳ→0

T̄ (x̄, t) = 0 (21)

A. 5: The limit

lim
t→∞

||∆(x, t)|| (22)

does not exist. That is,∆(x, t) stays non-constant ast → ∞.

A. 6: The system is zero-state detectable andȳ can be
measured.

Then, the control input

u = u0(x, t) + ∆(x, t)ẑ (23)

with C(x, t) ≥ ǫI > 0, ẑ the estimate ofz and adaptation
law

˙̂z = −Ka∆⊤(x, t)ȳ (24)

with Ka a diagonal positive definite matrix renders the
system (1) globally asymptotically stable in̄x = 0.

Proof. Define the parameter estimation error byz̄ = ẑ−z.
The closed-loop system realized by input (23) and adaptation
law (24) can be described in PH form by2

[

˙̄x
˙̄z

]

=

[

J̄ − (R̄ + ḡCḡ⊤) ḡ∆̄Ka

−Ka∆̄⊤ḡ⊤ 0

][

∂H
∂x̄
∂H
∂z̄

]

ȳ = ḡ⊤ ∂H
∂x̄

(25)

wherethe arguments have been left out for notational sim-
plicity, with the Hamiltonian

H = H̄(x̄, t) +
1

2
z̄⊤K−1

a z̄ (26)

Take (26) as Lyapunov candidate function. Then

Ḣ ≤ −ȳ⊤Cȳ

≤ −ǫ||ȳ(t)||2 (27)

with ǫ a positive constant. The Lyapunov candidate function
(26) is lower bounded and application of Barbalat’s lemma,
lemma 3, with ϕ = Ḣ indicates thatȳ → 0 as time
t → ∞. SinceḢ → 0 the function (26) becomes constant.
Assumption A.4 then implies that the kinetic energyT̄ (x̄, t)
goes to zero ast → ∞. Since (26) can be written in the
form

H = T̄ (x̄, t) + V̄ (x̄) +
1

2
z̄⊤K−1

a z̄ (28)

x̄ and z̄ become constant. The closed-loop dynamics of (25)
can then be reduced to

˙̄x =
[

J̄ − (R̄ + ḡCḡ⊤)
] ∂H

∂x̄
+ ḡ∆̄z̄ (29)

Since x̄ becomes constant we have that˙̄x = 0 as t → ∞.
The matrix∆̄ is non-constant sōz → 0 else we have that
˙̄x 6= 0. Since z̄ → 0 the zero-state detectability assumption
with (29) andȳ → 0 implies thatx̄ → 0 as t → ∞. ¤

2Sincez is constant˙̄z = ˙̂z.
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Remark1: If the function (26) is decrescent, by theorem
2 uniform asymptotic stability can then be claimed for system
(1). ⊳

Theorem 3 shows how adaptive control can be realized in
the PH framework, for general nonautonomous PH systems.
It should be noted that assumptions A.3 and A.4 hold for
a large class of physical PH systems. The update law forẑ

follows from requiring that the interconnection matrix of the
closed-loop system (transformed system with estimator) to be
skew-symmetric. Assumption A.5 can limit the application
for stabilization problems. However, as will be shown in the
next section, it can be applied for tracking problems. We
also want to remark that theorem 3 can be extended to deal
with input disturbances. Any input disturbance described by a
linear combination of an unknown constant term and a known
function, which stays non-constant, can can be canceled by
applying adaptive control to estimate the unknown term.

Example: vibration isolation

Figure 1 shows a mass-spring-damper (MSD) system with

m
q

ck f

d

m
q

ck f

d

Fig. 1. Mass-spring-dampersystem.

massm > 0, k > 0 the positive spring constant,c > 0 the
damping constant, input forcef and (input) disturbance

d(t) = A sin(ωt + φ) (30)

with A,ω, φ positive constants. Describe a standard mechan-
ical system in PH form by
[

q̇

ṗ

]

=

[

0 I

−I −D(q, p)

]

[

∂H
∂q
∂H
∂p

]

+

[

0
G

]

u

y = G⊤ ∂H
∂p

(31)

with q = (q1, ..., qk)⊤ the vector of generalized configuration
coordinates,p = (p1, ..., pk)⊤ the vector of generalized
momenta,I the identity matrix,D(q, p) ∈ R

k×k the (positive
definite) damping matrix,G the input matrix andy the output
vector. The Hamiltonian of the system is equal to the sum
of kinetic and potential energy:

H(q, p) =
1

2
p⊤M−1(q)p + V (q) (32)

whereM(q) = M⊤(q) > 0 is the system mass matrix and
V (q) the potential energy. For fully actuated systems the
input matrix can be taken, without loss of generality, equal
to the identity matrix,G = I. In [16] it is shown how
sensitive equipment supported by a vibrating structure can

be modeled as a MSD system. The objective in designing
an active isolation system is to add a force actuator working
in parallel with the spring and dashpot, similar to figure 1.
Taking the suspension frame of a wafer stepper/scanner as
example, the forcef will be supplied by a piezo actuator. It
is well known that piezo material exhibits hysteresis effects.
In [19] it is explained how hysteresis can cause self-sustained
oscillations, which can be approximated as a sinusoidal
disturbance with a known base frequency. This can simplify
both modeling and control design of a system with a complex
nonlinearity like hysteresis.

Assume thatω is known, butA andφ are not. It is possible
to re-write the disturbanced in the form

A sin(ωt + φ) = A (sin(ωt) cos(φ) + cos(ωt) sin(φ))

= A cos(φ)
| {z }

z1

sin(ωt) + A sin(φ)
| {z }

z2

cos(ωt)

The adaptive control scheme can be applied to estimatez1

andz2, since the matrix∆(x, t) will not be constant (because
of the sine and cosine functions). For this example canonical
transformation is not necessary. For the simulation we take
m = 1, k = 20, c = 10, A = 1, ω = 1 and φ = 0. For the
adaptive control we takeKz = 100, with a nominal value of
zero for A. Figure 2 shows simulation results for how PH
adaptive control stabilizes the system and the estimation of
the disturbance amplitude converges toA.

0 5 10 15 20
−5

0

5

10

15
x 10

−3

Time (s)

P
os

iti
on

 (
m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time (s)

Â

Fig. 2. Trajectories for the MSD system under sinusoidal distur-
bance and adaptive control. Initial conditions:[q(0) p(0) Â(0)] =
[0 0 0]

Although simple, the example is also interesting because
an equivalent RLC electrical network can be described. This
can be thought of a RLC network where the source has a
disturbance of known frequency, but unknown amplitude and
phase.

In the next section we apply the presented adaptive control
scheme to tracking control of standard fully-actuated me-
chanical systems.

IV. T RACKING CONTROL OF FULLY ACTUATED

MECHANICAL SYSTEMS

Adaptive tracking control

The example in the previous section did not require
coordinate transformation, i.e.,̄x = x. Here, we apply
theorem 3 to realize adaptive tracking control of fully-
actuated standard mechanical systems, described by (31). In
the introduction it was already mentioned that tracking is
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realized by transforming the system into and error system,
which is then asymptotically stabilized. Transformation of
a fully actuated standard mechanical system into an error
system by canonical transformation was shown in [5], with
(q̄, p̄)⊤ = Φ(q, p, t):

q̄ = q − qd(t) (33)

p̄ = p − M(q)q̇d(t) (34)

and qd(t) the desired trajectory which is assumed to be
known and twice differentiable. Theorem 3 extends the
results of [5] to realize adaptive tracking control, under the
assumptions

A. 7: The desired trajectoryqd(t) ∈ C2 is assumed to be
known, non-constant in infinity and

||qd(t)||, ||q̇d(t)||, ||q̈d(t)|| < B (35)

with B a positive constant. ⊳

A. 8: The mass matrixM(q), the damping matrixD(q, p)
and the potential energy termρ(q) can be expressed in terms
of unknown real parametersz1, ..., zm:

M(q) =

m
∑

i=1

Mi(q)zi + M0(q)

D(q, p) =
m

∑

i=1

Di(q, p)zi + D0(q, p) (36)

ρ(q) =
m

∑

i=1

ρi(q)zi + ρ0(q)

⊳

Remark2: We want to remark that assumptions A.7 and
A.8 are not extra assumptions for application of theorem 3.
They are assumptions made for the specific class of standard
mechanical systems such that assumptions A.1 and A.5 in
theorem 3 are satisfied. ⊳

For tracking control a non-constant∆(x, t), assumption A.5,
can be assured since for a desired trajectory the changes
in the desired positions will cause a change in the desired
velocities and accelerations. However, the method cannot
be assured to work for stabilization since convergence of
velocities to zero may still result in a steady-state error.
Remember that the adaptation law is driven by the velocity
errors.

In the literature about adaptive tracking control of fully
actuated mechanical systems [6], [11], [12], [15], [18] and
[19], to name a few, the error signal is usually redefined.
The method proposed in this paper does not require such
a definition of the error signal. The adaptive input, which
compensates for errors, together with the skew-symmetry
of the interconnection matrix of the error system directly
results in the adaptation law for the uncertain parameters and
passivity of the error system. It is also interesting to note that
the error system resulting from the canonical transformation
[5] and the error system with adaptation given in this paper
are both PH. The (adaptive) tracking results for EL systems

[12],[19], also give a passive error system, however, the
resulting error system is not of EL form anymore, and is
thus not so easy to analyze.

Example: 2R planar manipulator

The adaptive tracking control is applied on a fully actuated
2 DOF planar manipulator (2R planar manipulator). The
system is shown in figure 3. The manipulator has links with

θ2

θ1

x

y

Fig. 3. 2R planar manipulator.

length li, anglesθi, massmi, the center of the mass is
denoted byri and the moment of inertiaIi with i = 1, 2.

The system works in the horizontal plane so gravity
influence can be neglected. The Hamiltonian can then be
defined by only kinetic energy:

H(q, p) =
1

2
p⊤M−1(q)p (37)

with q = (θ1, θ2)
⊤ andp = M(q)q̇. Define the constants

a1 = m1r
2
1 + m2l

2
1 + I1

a2 = m2r
2
2 + I2

b = m2l1r2

The mass/inertia matrix becomes

M(q) =

[

a1 + a2 + 2b cos θ2 a2 + b cos θ2

a2 + b cos θ2 a2

]

(38)

The system is fully actuated with input signalu = (u1, u2),
which are the control torques on the two joints. The damping
matrix is assumed to be constant,D = diag{d1, d2}. For
simplicity the system parameters are chosen to be all equal
to one. Furthermore we haveKp = diag{20, 20} andKd =
diag{10, 10}, whereKp is the matrix of controller gains and
Kd the matrix of the additional (injected) damping constants.
The desired joint angles are

q1d(t) = θ1d(t) = c1 sinω1t (39)

q2d(t) = θ2d(t) = c2 sinω2t (40)

wherec1 = c2 = ω1 = ω2 = 1. It is assumed that the values
of the massesm1,m2 and the values of the damping matrix
d1, d2 are uncertain/unknown. Table I shows the nominal
and real values used in this example. Figure 4 shows the
trajectories for the manipulator and figure 5 the estimation
of the uncertain parameter values. It can be seen that the
tracking errors converge to zero and that the estimation of
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TABLE I

UNCERTAIN PARAMETER VALUES

Parameter Nominal Real

m1 1.2 1
m2 1.2 1
d1 0 1
d2 0 1
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Fig. 4. Error trajectories for the 2R planar manipulator with
uncertainty and adaptive control. Initial conditions:[q(0) p(0)] =
[0 0 0 0].
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Fig. 5. Estimationof uncertain parameters.

the parameter values converge to the real values. It should
be pointed out that figure 5 does not show the trajectories
of ẑ, but of ẑ plus the nominal parameter values (given in
table I).

V. CONCLUDING REMARKS

In this paper adaptive control of general PH systems was
presented. The adaptive control scheme was combined with

canonical transformation theory for PH systems. This allows
the adaptive control scheme to be applied on a large class of
systems and for being included in the PH framework. The
advantages are the insightful PH structure.

Two examples were used to show the application of the
PH adaptive control scheme. The results showed how the
adaptive control estimates and compensates for the errors of
the uncertain parameters such that trajectories converge to the
desired trajectories. It is obvious that with more unknown
parameters there are more parameters which have to be
estimated. This can be expected to take more time and so
the speed of convergence of the tracking error decreases.
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