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Adaptive control of port-Hamiltonian systems

D.A. Dirksz and J.M.A. Scherpen

Abstract—In this paper an adaptive control scheme is pre- disturbances, but the system parameters were assumed to be
sented for general port-Hamiltonian systems. Adaptive control  known. In [20] simultaneous stabilization of PH systems was
is used to compensate for control errors that are caused by un- ;. estigated. Here adaptive control was applied to deal with
known or uncertain parameter values of a system. The adaptive .
control is also combined with canonical transformation theory gnce_rtaln .parameters. Although the resu_lts ho.ld _for general
for port-Hamiltonian systems. This allows for the adaptive time-invariant PH systems, the assumptions limit the class
control to be applied on a large class of systems and for being of systems since a restriction is made on the form of the
included in the port-Hamiltonian framework. Hamiltonian.

Here we introduce an adaptive control scheme for general
PH systems. The adaptive control compensates for input

Adaptive control has proved to be a very useful methodrrors caused by not exactly knowing the value of the
for controlling systems which are sensitive to parametatecessary system parameters. Compared to [20] we have
uncertainty. With adaptive control it is possible to estimateveaker assumptions, deal with time-varying systems and the
parameter errors and to compensate for those errors. Thigstems are not required to have the desired equilibrium
can improve the performance of the controlled system. Ipoint. Stabilization techniques can still be used to realize
[11] some adaptive control methods were discussed whidesired equilibrium points. It is also possible to extend the
explicitly incorporate parameter estimation in the control lanadaptive scheme to deal with a class of input disturbances.
Furthermore, basic adaptive control is described in [19] foWe will then use the general results to apply adaptive
linear, nonlinear, single-input and multi-input systems. The&acking control for fully actuated standard mechanical PH
recursive methodology of backstepping is described in [8ystems. The results are different than the well known
for nonlinear and adaptive control design. Adaptive contrdblotine-Li method [18], [19]
for stabilization and tracking control of Euler-Lagrange (EL) In the next section we briefly summarize canonical trans-
systems was described in [12]. More recent results in the fiefdrmation and stabilization of PH systems. Since it is a
of nonlinear applied adaptive control are presented in [1eneral methodology which includes the PBC techniques it is
which rely upon the the notions @hmersion and invariance.  an interesting method to determine the control input for PH

In this paper we want to describe an adaptive contra@ystems. For this reason we choose stabilization by canonical
scheme in the port-Hamiltonian (PH) framework. PH systransformation as control methodology and later on extend
tems were introduced as a generalization of conventiontilese results to realize adaptive control. In section Il we
systems [10]. They describe a large class of (nonlineaimtroduce the problem of control with parameter uncertainty
systems including passive mechanical systems, electrichd present the PH adaptive control scheme. The adaptive
systems, electromechanical systems and mechanical systarostrol scheme is then applied on a special case in section
with nonholonomic constraints [17]. In [4] canonical trans4V, tracking control of fully actuated mechanical systems.
formation was presented for PH systems. With canonic&oncluding remarks are given in section V.
transformation a PH system can be transformed into another

one while preserving the structure of the original system. Tht S)r:zt:rg: l;: OS'T.? Ig?(/aaerxfpr:)eristlr?gsc,o?tz ?r?:ur::ﬁg;[; ofefunc-
canonical transformation theory is interesting since it make utl XL U dfel|
notes the Euclidean vector norm dhd||, the £,-norm.

it possible to stabilize systems that cannot be stabilized
conventional state-feedback without canonical transformaf  caNONICAL TRANSFORMATION AND STABILIZATION
tion. Some examples can be found in [3] and [5]. It has
also been shown that the control methodologies Passivity-
Based Control (PBC) and Interconnection and Damping & = (J(;L'7t)—R(x’t))%—f(x7t)+g(x7t)u
Assignment Passivity-Based Control (IDA-PBC) are special y = gla, )T (z 1) (1)
cases of stabilization by canonical transformation. IO

For adaptive control of PH systems with uncertain pawhere z = (z1,...,z,) is the vector of system states,
rameters little is known. For PH systems [2] presented thé(z,t) is the skew symmetric interconnection matrix
use of an adaptive internal model to overcome sinusoiddl(z,t) € R™*", R(x,t) a symmetric damping matrix

R(z,t) € R™", g(z,t) the input matrixg(z,t) € R,

The authors are with the Faculty of Mathematics and Natj < p, 4 is the control input vector ang the output vector.

ural Sciences, University of Groningen, Nijenborgh 4, 9747 AGThe HamiltonianH (z, ¢) is defined as the sum of kinetic
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I. INTRODUCTION

Describe a nonautonomous PH system by
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Canonical transformation is widely used for analysis of th&he result is that system (1) is transformed into the system
structure of dynamical systems in classical mechanics. In [4] . -
canonical transformations for PH systems were introduced. © = (J(%:t) = R(Z, 1) 5 (1) + g(@, ) (11)
There it was shown how PH systems are stabilized by using v = (7, t)TaH (z,1)
the canonical transformation. We now present the relevapt

results of [4] and [5]. Before describing the stabilization theorem the definition of

decrescent is given, a concept used for stability analysis of
Lemmal: Consider the PH system described by (1)honautonomous systems.

Suppose thati (. t) is positive definite, thaft < 0 and  pefinition 2 ([7], [19]): A scalar function W (z,t) is
thatthe system is zero-state detectahl@hen the feedback ¢4iq to pe decrescent W (0,¢) = 0 and if there exists a
u = —Clz,t)y with C(z,t) > el > 0 rendersz = 0 {ime_invariant positive definite functiol’; (z-) such that
globally asymptotically stable. <

Lemma?2: The generalized Hamiltonian system (1) is

transformed into another one by any time-invariant, non- <
singular, coordinate transformation. < Theorem?2: Consider the PH system described by (1) and
Definition 1: A set of transformations transform it by the generalized canonical transformation with
U(z,t) andB(z,t) such thati +U > 0. Then the new input-

T D(x,t) (2) output mapping: — ¥ is passive with storage functioH if

H = H(z,t)+U(z,t) (3) and only if

y = T U 9 H+U)

y y +afz,t) @) 9H+U) ((J—R)a — gouEU) +g,6>20 (12)

a u+ Gz, t) (5) 0(z,t) -1

Suppose that (12) holds, that + U is positive-definite and
into 1, the outputy into § and the input: into @ is said to that the system is zero-state detectable. Then the feedback

be a generalized canonical transformation for the PH syste?rr]] —f - Clz, t)(yl Jl; Olél) with C'(z, ) i el >bI0 renders
if it transforms a PH system (1) into another. 4 the pointz = 0 globally asymptotically stable. Suppose
moreover thatd + U is decrescent and that the transformed

The class of generalized canonical transformations are chaystem is periodic. Then the feedback renders the system
acterized by the following theorem: uniformly asymptotically stable. <

that changes the coordinatesinto z, the HamiltonianH

Theorem1: Consider the PH system described by (1). Foff his section has summarized the theory of stabilization of PH
any scalar functiori/(x,t) and any vector functiom(z,¢), ~ System by canonical transformation. The theory was chosen
there exists a pair of functionB(z, t) anda(z, t) that yields because of the interesting properties of PH systems and
a generalized canonical transformation. The functigm, ) because of dealing with general time-varying PH systems.
yields a generalized canonical transformation with, ¢) This makes it applicable to tracking control problems. Fur-

and 3(z, t) if and only if there existK (x,t) = —K(z,t) " thermore, the method works even when a system cannot be
andS(z,t) = S(x,t)T such thatR + S > 0 and the partial stabilized by conventional state feedback without canonical
differential equation (PDE) transformation.

oP J—- R 4 (K — §)2H+Y) | I1l. PARAMETER UNCERTAINTY AND ADAPTIVE
a(x,t) ( | )%+ -1 TET R ) —0 @ CONTROL

Adaptive stabilization

In the previous section it was shown how canonical
transformation is used to stabilize a PH system. However,
the canonical transformation theory requires full information

holds. The change of outpuf(z, t) and the matriced (z, t),
g(z,t) and R(x,t) are given by

a = g'(zt) 5 or (@) ) about the system. Not exactly knowing system parameters
_ o b " can result in a control input which does not lead to the
J = Oz o (J+ K)o~ Oz (8)  desired behavior of the system. We can describe the control
~ 0P input signalu in terms of a nominal part (based on nominal
9 = %g(x,t) (©) system parameters) and an unknown part (based on the un-
B oP o0p T known errors in the parameters). We will make the following
R = S (R+S5)o- (10)  assumption.

4 A. 1: The control input: for system (1) can be expressed

in terms of the unknown vector = (zq, ..., z,) |
1A dynamical system with input, outputy and stater is said to be
zero-state detectable (i, y) = (0,0) = = — 0. u=up(z,t) + Az, 1)z (13)
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whereA(z, t) is a matrix of known functions. < A. 4. For the kinetic energy'(z,t) we have

In (13) the input signal is expressed as the sum of a nominal lim T'(z,t) =0 (21)
input ug(x,t), the input based on the nominal parameters, A5 The limit =0

and a term depending on the unknown vectoiThe vector T
z is the vector of parameter errors; the vector containing lim ||A(z,t)|] (22)
the unknown differences between the real parameters of the fmoo

system and the nominal parameters. The unknown term ¢fpes not exist. That ig\(«, t) stays non-constant as— co.
(13) can then also be seen as the error in the required inpUtA_ 6: The System is zero-state detectable a:ndan be
signal. Theorem 2 showed that, when there is no uncertaintgeasured.

a system can be asymptotically stabilized by the control input

Then, the control input
U= _ﬁ(m>t) —C((I},t) (y+a('r7t>) (14)

u=ug(z,t) + Az, 1)z (23)
In the case of parameter uncertainty we assume that (14) can . . .
be written in the form (13). Only applying the nominal input}’vIth Cle,t) 2 el > 0, 2 the estimate of and adaptation
uo(z,t) to system (1), with aw
2= —K,A"(z,t)7 (24)

Az t) = A@ N(z.1).1) (15)
= A(x,t) (16) with K, a diagonal positive definite matrix renders the
system (1) globally asymptotically stable in= 0.

results in the transformed system . o
Proof. Define the parameter estimation error by 2 —z.

T = (J(aﬁ, t) — R(z, t)) %1; (z,t) — g(z,t)A(Z,t)2 The closed-loop system realized by input (23) and adaptation
_ T~ (17) jaw (24) can be described in PH form By
Yy = g(x7t) %(‘%t) _ ST o oM
with il [J(Rzgch ) gAK,Lng]
. ] z ~K,ATg 0 on
R@.1) = Rz, t) + 9@.0C@. 05" (2.1)  (18) e
— _ -TOH
instead of the desired system (11) with= —C(z, t)7. It vy = 9 &

has already been mentioned that errors in the control inpwherethe arguments have been left out for notational sim-
can cause the system to show undesired behavior. Adaptpicity, with the Hamiltonian
control is here proposed to compensate for the errors in the

_ 1
control input, which are caused by errors in the parameter H=H(z,t)+ §5TK;15 (26)
values. i i
Before giving our adaptive control theorem we recaIITake (26) as Lyapunov candidate function. Then
Barbalat's lemma [7], [9], often used for analysis of nonau- H < —-3'Cy
tonomous systems. < 76”]](15)”2 (27)

Lemma3 (Barbalat): Let p(t) : R — R be a uniformly
continuous function orf0,c0). Suppose that the limit of
3 p(r)dr ast tends to infinity exists and is finite. Then,

with e a positive constant. The Lyapunov candidate function
(26) is lower bounded and application of Barbalat's lemma,
lemma 3, withy = H indicates thatj — 0 as time
lim ¢(t) =0 (19) ¢t — oo. Since’{ — 0 the function (26) becomes constant.
=00 Assumption A.4 then implies that the kinetic enefB{z, t)

<4 goes to zero as — oo. Since (26) can be written in the

Theorem3: Consider system (1) for which the parametef®'™ - S B
values are uncertain. Assume that assumption A.1 holds. H=T(z,t)+V(@)+ 52 Kz (28)

Assume furthermore that z andz become constant. The closed-loop dynamics of (25)

A. 2. There exist a scalar functiobli(z,t) and a vector can then be reduced to

function §(z, t) such that (6) and (12) hold anH + U is . - OH -

positive definite. i=[]—(R+gCq")] 55 TIAzZ (29)
A. 3. The Hamiltonian of the transformed systdifi{z, )

. ) s . . Sincez m nstant we have th .
can be described in terms of kinetic and potential energy, pincex becomes constant we have that= 0 ast — oo

"®rhe matrix A is non-constant s@ — 0 else we have that
H(z,t) =T(z,t) +V(2) (20) z # 0. Sincez — 0 the zero-state detectability assumption
o _ o . with (29) andy — 0 implies thatz — 0 ast — oo. O
with T'(z,t) and V' (z) the kinetic and potential energy of

the transformed system, respectively. 2Since is constant — 4
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Remark1: If the function (26) is decrescent, by theorembe modeled as a MSD system. The objective in designing
2 uniform asymptotic stability can then be claimed for systeran active isolation system is to add a force actuator working
(2). < in parallel with the spring and dashpot, similar to figure 1.

Theorem 3 shows how adaptive control can be realized i‘l;aking the suspension frame of a wafer stepper/scanner as
xample, the forceg will be supplied by a piezo actuator. It

the PH framework, for general nonautonomous PH system%.

It should be noted that assumptions A.3 and A.4 hold foP well known that piezo material exhibits hysteresis effects.

a large class of physical PH systems. The update lavé forIn [19] it is explained how hysteresis can cause self-sustained

follows from requiring that the interconnection matrix of theoscnlatlons, which can be approximated as a sinusoidal

closed-loop system (transformed system with estimator) to tg;t#rrgiggﬁnw'g]ng légr?;’:; ggzie ;ri?:inzé;h\';tﬁa;;;mpllg
skew-symmetric. Assumption A.5 can limit the application 9 9 y P

for stabilization problems. However, as will be shown in thenogggﬁﬂgdg(ﬁ igyksrfg\r/sr?lsbum andé are not. It is possible

next section, it can be applied for tracking problems. Wey re-write the disturbancé in the form
also want to remark that theorem 3 can be extended to deal

with input disturbances. Any input disturbance described by a A4St +¢) = A (Sin(‘”t)‘cos(d’) + CO_S(“t) sin(¢))
linear combination of an unknown constant term and a known = Acos(¢)sin(wt) + Asin(¢) cos(wt)
function, which stays non-constant, can can be canceled by 1 2

applying adaptive control to estimate the unknown term.  The adaptive control scheme can be applied to estimate
Example: vibration isolation andz,, since the me_lth(x, t_) will not be constant (becausg
_of the sine and cosine functions). For this example canonical

Figure 1 shows a mass-spring-damper (MSD) system W'ﬁ’ansformation is not necessary. For the simulation we take

d m =1,k =20,c=10,A = 1,w = 1 and¢ = 0. For the
l adaptive control we tak&’, = 100, with a nominal value of

T zero for A. Figure 2 shows simulation results for how PH
m 1 adaptive control stabilizes the system and the estimation of

the disturbance amplitude converges4o

x10~°

15

1
s 10
E 0.8
Fig. 1. Mass-spring-dampesystem. g s <06
§ 0.4
0
massm > 0, k > 0 the positive spring constant,> 0 the 02
damping constant, input forcg and (input) disturbance -5 TS T— O e 1o 15 20
. Time (s) Time (s)
d(t) = Asin(wt + ¢) (30)
. . . Fig. 2. Trajectories for the MSD system under sinusoidal distur-
ywth A w, ¢ posmve constants. Describe a standard mechaBance and adaptive control. Initial conditior(0) p(0) A(0)] —
ical system in PH form by [000]
il _ [ o I G |, [o
D o —I —D(gq,p) ?TH G| (31) Although simple, the example is also interesting because
on b an equivalent RLC electrical network can be described. This
y = G %5 can be thought of a RLC network where the source has a

with ¢ = (q1,...,qi) " the vector of generalized configuration gls;i;bance of known frequency, but unknown amplitude and

. . h

coordinates,p = (pi,...,px)' the vector of generalized , ,

momenta/ the identity matrix,D(q, p) € RF** the (positive In the next secyon we apply the presented adaptive control
scheme to tracking control of standard fully-actuated me-

definite) damping matrix;7 the input matrix ang, the output hanical :
vector. The Hamiltonian of the system is equal to the suffiiranical systems.

of kinetic and potential energy: IV. TRACKING CONTROL OF FULLY ACTUATED

o Ly - - MECHANICAL SYSTEMS
(a:p) = 5p () +Vi(g) (32) Adaptive tracking control

where M (q) = M T (q) > 0 is the system mass matrix and The example in the previous section did not require
V(q) the potential energy. For fully actuated systems theoordinate transformation, i.ez = xz. Here, we apply
input matrix can be taken, without loss of generality, equaheorem 3 to realize adaptive tracking control of fully-
to the identity matrix, G = I. In [16] it is shown how actuated standard mechanical systems, described by (31). In
sensitive equipment supported by a vibrating structure cahe introduction it was already mentioned that tracking is
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realized by transforming the system into and error systerfil2],[19], also give a passive error system, however, the
which is then asymptotically stabilized. Transformation ofesulting error system is not of EL form anymore, and is
a fully actuated standard mechanical system into an errthfus not so easy to analyze.

system by canonical transformation was shown in [5], wit

J. D rExam le: 2R planar manipulator
(@.p)" = ®(q,p, t): p p p

B The adaptive tracking control is applied on a fully actuated
7 = q—qa?t) (33) 2 DOF planar manipulator (2R planar manipulator). The
P = p—M(q)i(t) (34) system is shown in figure 3. The manipulator has links with

and g4(t) the desired trajectory which is assumed to be
known and twice differentiable. Theorem 3 extends the
results of [5] to realize adaptive tracking control, under the
assumptions

A. 7: The desired trajectory,(t) € C? is assumed to be
known, non-constant in infinity and

laa(®)I]; llga(®)]], [lGa(®)[| < B (39)
with B a positive constant. <

A. 8 The mass matrid/(q), the damping matrixD(q, p)
and the potential energy terpiq) can be expressed in terms Fig. 3. 2R planar manipulator.
of unknown real parameters, ..., z;,:

m length /;, angles#;, massm;, the center of the mass is
M(q) = ZMi(Q)Zi + Mo(q) denoted byr; and the moment of inerti with i = 1, 2.

i=1 The system works in the horizontal plane so gravity
influence can be neglected. The Hamiltonian can then be

m

Dia,p) = Z; Di(a,p)zi + Do(g:p) (36)  gefined by only kinetic energy:
m 1
H =_-p M 37
pl@) = > pila)zi + pola) (@.p)=gp M~ (0p 37)
=1 with ¢ = (61,602) " andp = M(q)q. Define the constants
_ 2 2
Remark2: We want to remark that assumptions A.7 and a = mlré Fmali 4
A.8 are not extra assumptions for application of theorem 3. az = maory + I
They are assumptions made for the specific class of standard b = malire

mechanical systems such that assumptions A.1 and A.5 ‘irhe mass/inertia matrix becomes

theorem 3 are satisfied.
) ) M) = | @ +ag +2bcosly  ag + beos by
For tracking control a non-constaid(x, ¢), assumption A.5, (¢) = as 4 bcos By as

can be assured since for a desired trajectory the changes ) o )
in the desired positions will cause a change in the desir%@"?3 system is fully actuated with input signak= (uy,u),
velocities and accelerations. However, the method canngf?ich are the control torques on the two joints. The damping
be assured to work for stabilization since convergence Sfalrix is assumed to be constad?, = diag{d,,ds}. For
velocities to zero may still result in a steady-state erropiMPlicity the system parameters are chosen to be all equal

Remember that the adaptation law is driven by the velocidf One- Furthermore we have, = diag{20,20} and Kq =
errors. diag{10,10}, whereK, is the matrix of controller gains and

In the literature about adaptive tracking control of fully/d the matrix of the additional (injected) damping constants.
actuated mechanical systems [6], [11], [12], [15], [18] and € desired joint angles are
[19], to name a few, thg error signal is usually red'efined. qra(t) = 014(t) = c1 sinwyt (39)
The method proposed in this paper does not require such (£) = Boa(t) = co sinwyt (40)
a definition of the error signal. The adaptive input, which @2d 2d 2 2
compensates for errors, together with the skew-symmetwherec; = ¢; = w1 = we = 1. It is assumed that the values
of the interconnection matrix of the error system directlyof the massesu;, my and the values of the damping matrix
results in the adaptation law for the uncertain parameters adg, d, are uncertain/unknown. Table | shows the nominal
passivity of the error system. It is also interesting to note thand real values used in this example. Figure 4 shows the
the error system resulting from the canonical transformationajectories for the manipulator and figure 5 the estimation
[5] and the error system with adaptation given in this papesf the uncertain parameter values. It can be seen that the
are both PH. The (adaptive) tracking results for EL systentsacking errors converge to zero and that the estimation of

(38)
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TABLE |

UNCERTAIN PARAMETER VALUES

canonical transformation theory for PH systems. This allows
the adaptive control scheme to be applied on a large class of
systems and for being included in the PH framework. The
advantages are the insightful PH structure.

Two examples were used to show the application of the
PH adaptive control scheme. The results showed how the
adaptive control estimates and compensates for the errors of
the uncertain parameters such that trajectories converge to the

desired trajectories. It is obvious that with more unknown

Parameter Nominal Real
mi 1.2 1
mo 1.2 1
dy 0 1
do 0 1
0.4 0.1
= 02 = 0
el o
8 g
35 0 < -01
o o
IH IN
S -0.2 S -0.2
[1]
-0.4 -0.3
10 20 30 40 10 20 30 40 5
Time (s) Time (s) [ ]
20 10
[3]
10 5
B B
£ o Z o0
= > (4]
-10 -5
-20 -10 [5]
10 20 30 40 0 10 20 30 40
Time (s) Time (s)

(6]
Fig. 4. Error trajectories for the 2R planar manipulator with
uncertainty and adaptive control. Initial conditiorig(0) p(0)] =

[0000]. [7]
(8]
9]
1.6 4
(10]
14
2
¢ pr——
0
' [12]
0.8 -2
10 20 30 40 0 10 20 30 40
Time (s) Time (s) [13]
6 3
4 2 [14]
2 1 —_—
(15]
0 0
0 10 20 30 40 0 10 20 30 40
Time (s) Time (s) [16]

Fig. 5. Estimationof uncertain parameters. (7]

(18]

[19
the parameter values converge to the real values. It should
be pointed out that figure 5 does not show the trajectori¢4°]
of 2, but of 2 plus the nominal parameter values (given in
table I).

V. CONCLUDING REMARKS

In this paper adaptive control of general PH systems was
presented. The adaptive control scheme was combined with

1508

parameters there are more parameters which have to be
estimated. This can be expected to take more time and so
the speed of convergence of the tracking error decreases.
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