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Convergence of Discrete-time Approximations of Constrained
Linear-Quadratic Optimal Control Problems

L. Han M.K. Camlibel J.-S. Pang W.P.M.H. Heemels

Abstract— Continuous-time linear constrained optimal con-
trol problems are in practice often solved using discretization
techniques, e.g. in model predictive control (MPC). This re-
quires the discretization of the (linear time-invariant) dynamics
and the cost functional leading to discrete-time optimization
problems. Although the question of convergence of the sequence
of optimal controls, obtained by solving the discretized prob-
lems, to the true optimal continuous-time control signal when
the discretization parameter (the sampling interval) approaches
zero has been addressed in the literature, we provide some
new results under less restrictive assumptions for a class of
constrained continuous-time linear quadratic (LQ) problems
with mixed state-control constraints by exploiting results from
mathematical programming extensively. As a byproduct of our
analysis, a regularity result regarding the costate trajectory is
also presented.

I. INTRODUCTION

Optimal control is a classical branch of applied mathemat-
ics with more than one hundred years of history and occupies
a central place in many engineering applications. Among the
optimal control problems, the unconstrained linear-quadratic
(LQ) problem with a pure quadratic objective function and
linear continuous-time dynamics is certainly the simplest and
its literature is vast. Yet, this is not the case when there
are hard algebraic constraints coupling states and controls,
in fact, even the case with only input constraints is not
extensively treated, although some recent studies of the latter
problem exist, see [2], [10], [11], [18].

When it comes to practical computations by numerical
methods, the constrained optimal control problem is much
more challenging than the unconstrained case. Continuous-
time LQ problems in practice are often solved using some
sort of discretization. In particular, this requires discretiza-
tion of the (linear time-invariant) dynamics and the cost
functional leading to discrete-time optimization problems,
which are closely connected to the optimization problems
as used in MPC [19]. The question of whether refining the
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discretization can lead to a better and better approximation
and eventually converge in a certain sense to a solution of the
original problem, or the consistency of the approximation,
has also been considered in the literature. Among the existing
research, some have studied direct approximations of the
primal problem, see [3]–[7], [18], [22], while others focus
on the approximations of the dual problem, see [13], [15],
[21]. In [27], a primal-dual representation for approximation
in optimal control is discussed. The convergence rate is
studied in [8], [9]. The method presented in this paper can be
regarded as a primal method. However, different to existing
work on primal methods, we also investigate the convergence
to the costate trajectory by considering the discretization of
the costate trajectory as the multiplier of the constraint corre-
sponding to the discretization of the differential equation. By
doing this and exploiting extensive the results from mathe-
matical programming, especially convex quadratic program-
ming, we are able to avoid assumptions such as boundedness
of the constraint set, convergence of the objective value, and
so on. In addition, our approach is implementable (in terms
of relaxing the constraints to ensure the feasibility of the
discretizations) under less restrictive conditions. Moreover,
this approach leads to a new regularity result regarding the
Lipschitz Continuity of the costate trajectory for the class
of LQ optimal control problems with mixed control and
state constraint, see [14], [25] . A different convergence
problem in MPC that did receive considerable attention is
the relation between finite horizon control problems and the
corresponding infinite horizon problems, see e.g. [12], [23].

II. THE LQ CONTROL PROBLEM

The main topic of this paper is the following continuous-
time, finite-horizon, linear-quadratic (LQ) optimal control
problem with mixed state and control constraints:

Problem 2.1: Find an absolutely continuous function x :
[0, T ] → Rn and an integrable function u : [0, T ] → Rm,
where T > 0 is a given time horizon, to

minimize
x,u

V (x, u) ≡ 1
2 x(T )TSx(T )

+

∫ T

0

[
1
2 x(t)TPx(t) + x(t)TQu(t) + 1

2 u(t)TRu(t)
]
dt

subject to x(0) = ξ and for almost all t ∈ [ 0, T ] :

ẋ(t) = Ax(t) +Bu(t) and Cx(t) +Du(t) + f ≥ 0,
(1)

where S, P , Q, R, A, B, C, D are constant matrices and f
is a constant vector of appropriate dimensions.
Let U(x) , {u | Cx+Du+f ≥ 0 } denote the (possibly
unbounded) polyhedron of admissible controls given the state
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x. We say that a pair of trajectories (x, u) is feasible to (1)
if x is absolutely continuous and u is integrable and (x, u)
satisfies the constraints as stated in (1). Part of the goal of
the paper is to provide a constructive proof for the existence
of such an optimal solution, under a set of assumptions to
be stated next.

A. Model assumptions

We first introduce some notation used throughout the
paper. We let ‖ • ‖ be the 2-norm of vectors and matrices
and write AJ• for the submatrix consisting of the rows of A
indexed by the set J and AJJ for the principal submatrix of
A indexed by J . Given a set Z and a vector z, the distance
from z to Z is denoted by dist(z, Z) , min{‖z − z̄‖ | z̄ ∈
Z}. Finally, we let z− , max(0,−z) denote the non-positive
part of the vector z.

We will use the following technical assumptions to analyze
the numerical method for solving (1):

(A) the matrices S and Ξ ,

[
P Q
QT R

]
are symmetric

positive semidefinite and R is positive definite;

(B) a continuously differentiable function x̂fs with x̂fs(0) = ξ
and a continuous function ûfs exist such that for all t ∈ [0, T ]:
dx̂fs(t)/dt = Ax̂fs(t) +Bûfs(t) and ûfs(t) ∈ U(x̂fs(t));

(C) [DTµ = 0, µ ≥ 0] implies (CAiB)Tµ = 0 for all
nonnegative integers i (a dual condition).

Condition (B) is clearly needed as it states feasibility of (1).
In the case of pure control constraints (C = 0) when an ad-
missible control exists it is obviously satisfied. In the existing
literature of numerical methods, it is often assumed that the
optimal control problem possesses an optimal solution with
certain nice smoothness properties, see e.g. [8], [9], while
we only assume in (B), the existence of a feasible solution
with some desirable smoothness property rather than a “nice
optimal solution”. Condition (C) is trivially satisfied for
pure control constraints. A condition that implies (C) is the
existence of a constant δ > 0 such that ‖C Tµ‖ ≤ δ‖DTµ‖
for all µ ∈ Rm+ . It should be noted that condition (C) rules
out the case where D = 0, i.e., in the pure state constrained
problem. This case of pure constraints is even more involved
than the control and mixed control/state constraints and is a
topic for future research.

Under the set of assumptions (A–C), the main contribution
of the paper is threefold: (a) to provide a numerical scheme
for linear quadratic optimal control problem with convex
(not necessarily strictly convex) cost integrand and mixed
polyhedral (possibly unbounded) state and control constraint
with provable convergence; (b) to show the existence of a
Lipschitz continuous costate trajectory; and (c) to provide a
relaxation method which can guarantee the feasibility of the
discretizations under less restrictive assumptions.

Before introducing the discretized MPC problems related
to (1), we first derive some properties of the optimal control
problem in (1).

III. OPTIMALITY IN TERMS OF VARIATIONAL
INEQUALITIES

We briefly review some fundamental results for finite-
dimensional convex quadratic programs after which we
present variational conditions that the optimal control func-
tions for (1) satisfy. These conditions are directly related to
Pontryagin’s maximum principle.

A. Convex quadratic programs: A review
Given a polyhedral set Z ⊆ Rm, the affine variational

inequality (AVI) defined by a vector e ∈ Rm and a matrix
M ∈ Rm×m, denoted by AVI(Z, e,M), is to find a vector
z ∈ Z so that

( z ′ − z )T ( e+Mz ) ≥ 0, ∀ z ′ ∈ Z.

The set of solutions of the AVI(Z, e,M) is denoted by
SOL(Z, e,M). If Z has the linear inequality representation:
Z , {z ∈ Rm | Ez ≥ b} for some matrix E ∈ R`×m
and vector b ∈ R`, then a vector z ∈ SOL(Z, e,M) if and
only if there exists a multiplier vector µ ∈ R` such that the
following Karush-Kuhn-Tucker (KKT) conditions hold:

0 = e+Mz − ETµ
0 ≤ µ ⊥ Ez − b ≥ 0,

(2)

where v ⊥ w means that the two vectors v and w are
perpendicular, i.e., vTw = 0.

In the definition of the AVI, the matrix M is not required to
be symmetric. When M is symmetric positive semidefinite,
the AVI is equivalent to the convex quadratic program, which
we denote QP(Z, e,M):

minimize
z∈Z

eT z + 1
2 z

TMz.

Just like the AVI formulation of a convex QP, the LQ
optimal control problem (1) admits an equivalent differential
affine variational inequality (DAVI) formulation derived from
the Pontryagin Principle that starts with the Hamiltonian
function

H(x, u, λ) , 1
2 x

TPx+ 1
2 u

TRu+ λT (Ax+Bu ) ,

where λ is the costate (also called adjoint) variable of the
ODE ẋ(t) = Ax(t) +Bu(t), and the Lagrangian function:

L(x, u, λ, µ) , H(x, u, λ)− µT (Cx+Du+ f ) ,

where µ is the Lagrange multiplier of the algebraic constraint
Cx + Du + f ≥ 0. By the Pontryagin Principle [26,
Section 6.2] and [17], [24], it follows that a necessary
condition for the pair (x, u) to be an optimal solution of (1)
is the existence of λ and µ such that the boundary conditions
and the following differential-algebraic conditions hold for
almost all t ∈ (0, T ):(

λ̇(t)
ẋ(t)

)
=

[
−AT −P
0 A

](
λ(t)
x(t)

)
+

[
−Q
B

]
u(t) +

+

[
C T

0

]
µ(t) (3a)

0 = q(t) +QT x(t) +Ru(t) +BTλ(t)−DTµ(t) (3b)
0 ≤ µ(t) ⊥ Cx(t) +Du(t) + f ≥ 0 (3c)

x(0) = ξ and λ(T ) = Sx(T ). (3d)
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Note that u(t) ∈ argmin
u∈U(x(t))

H(x(t), u, λ(t)) is equivalent to

(3b)-(3c). The conditions (3) are clearly a dynamical variant
of the AVI introduced earlier, thereby explaining the term
DAVI. It is known that the set of necessary conditions (3)
is also sufficient for optimality. The sufficiency is due to the
convexity of the objective function in (x, u) and the linearity
of the dynamics and the algebraic constraint. Among the
sources for a proof of sufficiency, we mention two. One
is [1, Theorem 7.2.1] that pertains to an abstract control
constrained Mayer problem under a convexity assumption,
and the other is [24, Theorem 3.1] specifically for the mixed
inequality constrained case that is directly applicable to the
LQ problem (1). In the special case of nonnegative control
constraints, a proof is also given in [18] using the Hamilton-
Jacobi-Bellman equation and establishing a connection be-
tween the costate and the gradient of the value function.

To make the statement of the necessary conditions more
formal, we introduce the following.

Definition 3.1: The tuple (x, u, λ, µ) is a weak solution
of (3) if (i) (x, λ) is absolutely continuous and (u, µ) is
integrable on [0, T ], (ii) the differential equation and the two
algebraic conditions hold for almost all t ∈ (0, T ), and (iii)
the initial and boundary conditions are satisfied.

While we have used the Pontryagin Principle to motivate
this DAVI (3), the proof of Theorem 3.1 below does not
make use of this principle. The proof is omitted for space
reasons, but can be found in [16].

Theorem 3.1: Under conditions (A–C), the following
statements hold.

(I) [Solvability of the DAVI] The DAVI (3) has a weak
solution (x∗, λ∗, u∗, µ∗) with both x∗ and λ∗ being
Lipschitz continuous on [0, T ].

(II) [Sufficiency of Pontryagin] If (x∗, λ∗, u∗, µ∗) is any
weak solution of (3), then the pair (x∗, u∗) is an
optimal solution of the problem (1).

(III) [Necessity of Pontryagin] Let (x∗, λ∗, u∗, µ∗) be the
tuple obtained from part (I). A feasible tuple (x̃, ũ) of
(1) is optimal if and only if (x̃, λ∗, ũ, µ∗) is a weak
solution of (3).

(IV) [Uniqueness] Any two optimal solutions (x̂, û) and
(x̃, ũ) of (1) satisfy x̂ = x̃ everywhere on [0, T ]
and û = ũ almost everywhere on [0, T ]. In this case
(1) has a unique optimal solution ( x̂, û ) such that
x̂ is continuously differentiable and û is Lipschitz
continuous on [0, T ], and for any optimal λ̂, û(t) ∈
argmin
u∈U(x̂(t))

H(x̂(t), u, λ̂(t)) for all t ∈ [0, T ].

IV. DISCRETE-TIME APPROXIMATIONS

In this section we present a numerical discretization of (1).
A general time-stepping method for solving the LQ problem
(1) is proposed next. Let h > 0 be an arbitrary step size such

that Nh ,
T

h
− 1 is a positive integer (the latter integrality

condition on h will not be mentioned from here on). We

partition the interval [0, T ] into Nh + 1 subintervals each of
equal length h:

0 , th,0 < th,1 < th,2 < · · · < th,Nh < th,Nh+1 , T.

Thus th,i+1 = th,i + h for all i = 0, 1, · · · , Nh.
Selecting piecewise constant controls given by

u(t) = uh,i+1, t ∈ [ih, (i+ 1)h),

results in the state trajectory

x(s+ ih) = eAsxh,i + Γ(s)uh,i when s ∈ [0, h) (4)

and i = 0, 1, . . . , Nh, where Γ(s) ,
∫ s
0
eAτBdτ for all

s ∈ R. Although various ways exist to discretize V (x, u)
for which similar convergence results as below can be
derived, here we use a simple integration routine based on
forward Euler to integrate the costs V (x, u). This leads to
the following quadratic program:

(QPh) : minimize
{xh,i,uh,i}Nhi=1

(xh,Nh+1)T
(
1

2
Sxh,Nh+1

)
+

+
h

2

Nh∑
i=0

{
(xh,i)T

[
Pxh,i +Quh,i+1

]
+

+ (uh,i+1)T
[
QT xh,i +Ruh,i+1

]}
subject to xh,0 = ξ and for i = 0, · · · , Nh

xh,i+1 = eAh︸︷︷︸
=:A(h)

xh,i +

∫ h

0
eAsBds︸ ︷︷ ︸

=:B(h)

uh,i+1,

and uh,i+1 ∈ U(xh,i+1)

Note that we defined A(h) := eAh and B(h) :=
∫ h
0
eAsBds

for all h ∈ R. Due to the mixed state-control constraint, it
is not easy to guarantee the feasibility of these subproblems.
This drawback necessitates a relaxation of the algebraic
inequality constraint in U(xh,i+1) that leads to a relaxed
unified scheme to be presented in Section V. Based on
these relaxed schemes, which are guaranteed to be feasible
and yield optimal sequences of controls and states, we can
calculate xh ,

{
xh,i

}Nh+1

i=0
and uh ,

{
uh,i

}Nh+1

i=1
by solv-

ing Nh finite-dimensional convex quadratic subprograms.
From these discrete-time iterates, continuous-time numerical
trajectories are constructed by piecewise linear and piecewise
constant interpolation, respectively. Specifically, define the
functions x̂h and ûh on the interval [0, T ] as follows. For
all i = 0, · · · , Nh and all t ∈ ( th,i, th,i+1] define

x̂h(t) , xh,i +
t− th,i
h

(xh,i+1 − xh,i ),

ûh(t) , uh,i+1.

(5)

The convergence of these trajectories as the step size h ↓
0 to an optimal solution of the LQ control problem (1) is
a main concern in the subsequent analysis. However, first
we introduce the mentioned relaxation schemes, which are
guaranteed to be always feasible, while (QPh) is in general
not.
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V. THE RELAXED QUADRATIC PROGRAM

There is in general no guarantee that the (QPh) is even fea-
sible. The culprit is the state-dependent constraint Cxh,i+1+
Duh,i+1 + f ≥ 0. Although the original continuous-time
problem (1) is assumed to be feasible, the discretized prob-
lems (QPh) might not inherit this property as the class of
control signals for the discretization scheme is essentially
restricted to piecewise constant controls with step size h.
Clearly, due to the positive definiteness of R feasibility
implies solvability. We provide two different methods to
relax (QPh) (in particular the constraints) in order to ensure
feasibility without loosing the convergence properties that
we aim to provide.

A. Minimal residual method

In order to obtain a feasible QP, we consider the minimum
residual of the constraints in (QPh) and relax them accord-
ingly. Specifically, for an initial vector ξ and a scalar h > 0,
define the optimum objective value of the linear program
(LP):

ρh(ξ) , minimum
ρ; {xh,i,uh,i}Nhi=1

ρ

subject to xh,0 = ξ, ρ ≥ 0

and for i = 0, 1, · · · , Nh : xh,i+1 = A(h)xh,i +B(h)uh,i+1

Cxh,i+1 +Duh,i+1 + f + ρ1 ≥ 0
.

(6)
where 1 is the vector of all ones. It is not difficult to see that
the above linear program must have a finite optimal solution;
thus ρh(ξ) is well defined.

For the convergence analysis of the relaxed, unified time-
stepping method, we need to establish a limiting property of
the minimum residual ρh(ξ) as h ↓ 0; this is accomplished
by invoking the assumption (B) introduced in Section II.

Proposition 5.1: If assumption (B) holds, then
lim
h↓0

ρh(ξ) = 0.

See [16] for the proof.

Employing the minimum residual ρh(ξ), the relaxed, uni-
fied time-stepping method solves the following (feasible)
convex quadratic program at time th,i+1:

Problem 5.1: (Q̂P
h
):

minimize
{xh,i,uh,i}Nh+1

i=1

Vh(xh,uh) ,
1

2
(xh,Nh+1)TSxh,Nh+1+

h

2

Nh∑
i=0

(
xh,i

uh,i+1

)T [
P Q

QT R

](
xh,i

uh,i+1

)}

subject to xh,0 = ξ,

and for i = 0, 1, · · · , Nh{
xh,i+1 = A(h)xh,i +B(h)uh,i+1

f + Cxh,i+1 +Duh,i+1 + ρh(ξ)1 ≥ 0

An alternative relaxation utilizing a Lipschitz constant: In
forming (Q̂P

h
), one needs to calculate the minimum residual

ρh(ξ) by first solving the LP (6). If one knows in advance
a feasible trajectory (x, u) of the original optimal control
problem (1) with the u-trajectory being Lipschitz continuous
with a known Lipschitz constant, say L > 0, then one can
bypass the LP step and consider directly the following QP:

minimize
{xh,i,uh,i}Nh+1

i=1

1

2
(xh,Nh+1)TSxh,Nh+1+

h

2

Nh∑
i=0

(
xh,i

uh,i+1

)T [
P Q

QT R

](
xh,i

uh,i+1

)}

s.t. xh,0 = ξ,

and for i = 0, 1, · · · , Nh :{
xh,i+1 = A(h)xh,i +B(h)uh,i+1

f + Cxh,i+1 +Duh,i+1 + hT L1 ≥ 0
,

where the minimum residual ρh(ξ) is replaced by the product
hTL. One can show, under the definition of the constant L,
that the above QP is feasible. In the rest of the paper, we
will not consider this variant of the basic scheme because the
explicit knowledge of the Lipschitz constant L could restrict
the application of this scheme in practice.

VI. CONVERGENCE ANALYSIS

The technical challenge of the convergence analysis lies in
the derivation of the bounds which is the main topic of the
following subsection. The technical details are rather long
and can be found in [16]. Here we summarize the main
bounds that are needed in the main proof.

A. Key bounds for solutions of (Q̂P
h

)

Proposition 6.1: Let assumptions (A)–(C) hold. Positive
scalars h̄, η, Ψu and L exist such that for all h ∈ (0, h̄],
KKT multipliers

(
λh,µh

)
exist such that for all optimal

solutions
(
xh,uh

)
of the (Q̂P

h
),

max
(
‖xh,i+1 ‖, ‖uh,i+1 ‖, ‖λh,i ‖, h−1‖µh,i+1 ‖

)
≤ η ( 1 + Ψu ), ∀ i = 0, · · · , Nh, (7)

and for all i = 0, · · · , Nh − 1,

max
{∥∥uh,i+2 − uh,i+1

∥∥ , h−1‖DT (µh,i+2 − µh,i+1) ‖
}

≤ L
[
‖xh,i+2 − xh,i+1 ‖+

+ ‖xh,i+1 − xh,i ‖+ ‖λh,i+1 − λh,i ‖
]
.

(8)

B. The main convergence theorems

We consider the convergence of the numerical trajectories
considering two cases: piecewise constant and piecewise
linear interpolation of the control sequences.
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1) Piecewise constant control signals: For this purpose,
we recall the trajectories (x̂h, ûh) introduced in the opening
paragraph of Section IV; see (5). In addition, we define the
λ-trajectory similarly to the x-trajectory; namely, for i =
0, · · · , Nh,

λ̂h(t) , λh,i+
t− th,i
h

(λh,i+1−λh,i ), ∀ t ∈ [ th,i, th,i+1 ],

with λh,Nh+1 , c+Sxh,Nh+1, and the µ-trajectory similarly
to the u-trajectory; namely, for i = 0, · · · , Nh,

µ̂h(t) , h−1µh,i+1, ∀ t ∈ ( th,i, th,i+1 ],

Besides the convergence, an immediate consequence of the
theorem below is the existence of an optimal solution to the
DAVI (3), and thus to the QP (1), under assumptions (A)–(C),
where the optimal state and costate variables are Lipschitz
continuous.

Theorem 6.1: Let assumptions (A)–(C) hold. Let x̂h(t)
and ûh(t) be as defined by (5) and λ̂h(t) and µ̂h(t) as above.
The following statements hold.

(a) There exists a sequence of step sizes {hν} ↓ 0

such that the two limits exist:
(
x̂hν , λ̂hν

)
→(

x̂, λ̂
)

uniformly on [0, T ] and
(
ûhν , µ̂hν

)
→

(û, µ̂) weakly in L2(0, T ); moreover, x̂ and λ̂ are
Lipschitz continuous.

(b) Any limit tuple (x̂, û, λ̂, µ̂) from (a) is a weak
solution of (3); thus (x̂, û) is an optimal solution
of (1) due to Theorem 3.1.

Proof. For the convergence of the sequences, we first show
that{
‖xh,i+1 − xh,i ‖

h

}Nh
i=0

and
{
‖λh,i+1 − λh,i ‖

h

}Nh
i=0

(9)

are both bounded uniformly for all h > 0 sufficiently small.
By (7), we have for all h > 0 sufficiently small and all
i = 1, · · · , Nh,

‖λh,i−1 −λh,i ‖ =
∥∥ [ (A(h))T − I

]
λh,i+

h +Pxh,i +Quh,i+1
]

+C Tµh,i
∥∥

≤ h [ 2‖A‖η(1 + Ψu) + ψp + ‖P‖η(1 + Ψu)+
+ ‖P‖η(1 + Ψu) + ‖C‖η(1 + Ψu) ]

, hLλ, for some constant Lλ > 0,

which implies

‖λh,i−1 − λh,i ‖
h

≤ Lλ

for all i = 1, · · · , Nh and all h > 0 sufficiently small. The
same holds for i = Nh + 1 also. Similarly, we can establish
the same bound for the x-variable: for some constant Lx > 0,

‖xh,i+1 − xh,i ‖
h

≤ Lx,

for i = 0, · · · , Nh and all h > 0 sufficiently small. By (8),
this implies the existence of a scalar L ′ > 0 such that
max

{∥∥uh,i+2 − uh,i+1
∥∥ , h−1 ∥∥DT (µh,i+2 − µh,i+2)

∥∥} ≤
hL′, for all i = 0, · · · , Nh − 1 and all h > 0 sufficiently

small. From the above uniform bounds, we may conclude
that the families of functions { x̂h }, { λ̂h },

{
ûh
}

, and
{DT µ̂h } for all h > 0 sufficiently small are equicontinuous
families of functions. By the Arzela-Ascoli theorem, there
is a sequence {hν} ↓ 0 such that { x̂hν } and { λ̂hν }
converge in the supremum norm to Lipschitz functions x̂
and λ̂, respectively, on [0, T ]. Similar to [20, Theorem 7.1],
by the uniform boundedness of (uh,i+1, h−1µh,i+1) and by
looking at a proper subsequence of {hν} if necessary, we
may conclude that {(ûhν , µ̂hν )} converges weakly to a pair
of functions (û, µ̂) in L2(0, T ) with

{
ûhν

}
and {DT µ̂hν }

converging to û and DT µ̂ uniformly. This proves (a). To
show that (x̂, λ̂, û, µ̂) is a weak solution to (3), we first notice
that

x̂(0) = ξ, and λ̂(T ) = lim
ν→∞

[
Sx̂hν (T )

]
= Sx̂(T ).

Therefore the boundary conditions are satisfied. The rest of
the proof to show that any such limit tuple (x̂, û, λ̂, µ̂) is a
weak solution of (3) is similar to that of [20, Theorem 7.1]
and is omitted. �

2) Piecewise linear control signals: We can establish the
uniform convergence of the u-variable by redefining the
discrete-time trajectory ûh using piecewise linear interpo-
lation instead of the piecewise constant interpolation in the
semidefinite case. First notice that uh,0 is not included in
the (Q̂P

h
). By letting uh,0 be the unique solution of the

QP
(
U(ξ), qh,0 + h−1B(h)Tλh,0 +QT ξ, R

)
, we redefine

ûh(t) , uh,i +
t− th,i
h

(uh,i+1 − uh,i ) (10)

for all t ∈ [ th,i, th,i+1 ]. Theorem 6.2 sharpens the con-
vergence conclusions of Theorem 6.1 in this case and
also establishes the sequential convergence of the state and
control trajectories {x̂h} and {ûh} to the unique optimal
solution (x̂, û) of the problem (1) with x̂ being continuously
differentiable and û Lipschitz continuous on [0, T ].

Theorem 6.2: Assume that the hypotheses of Theorem 6.1
hold. Let x̂h(t), λ̂h(t), and µ̂h(t) be as before, and ûh(t)
be defined by (10). The sequence {( x̂h, ûh )} converges
uniformly to the unique optimal solution pair (x∗, u∗) of (1)
where x∗ is continuously differentiable and u∗ is Lipschitz
continuous on [0, T ].
Proof. Since uh,i+1 is the unique optimal solution of the
quadratic program

minimize
u

uT
{
QT

[
xh,i

]
+ h−1B(h)Tλh,i

}
+ 1

2 u
TRu

subject to Cxh,i+1 +Du+ f + ρh(ξ)1 ≥ 0,

by the positive definiteness of R and the uniform bounded-
ness of the vectors in (9), it follows that a constant ηu > 0
exists such that for i = 0, · · · , Nh and all h > 0 sufficiently
small,

‖uh,i+1 − uh,i ‖ ≤ h ηu.

This bound is sufficient to establish the subsequential uni-
form convergence of the sequence {ûh} to a Lipschitz
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function û on [0, T ]. Since

x̂(t) = ξ + eAt
∫ t

0

e−Aτ Bû(τ) dτ

and û(t) is Lipschitz continuous, it follows that x̂(t) is con-
tinuously differentiable. Thus by part (IV) of Theorem 3.1,
the limiting pair ( x̂, û ) is the unique optimal solution of
(1) with x̂ being continuous differentiable and û Lipschitz
continuous. Hence, the entire sequence {( x̂h, ûh )} con-
verges uniformly to this optimal pair as any equicontinuous
family of Lipschitz functions in a Hilbert space with a unique
accumulation function must converge to that function. �

VII. CONCLUDING REMARKS

In this paper, we have established the convergence of a
discretization method for approximating an optimal solution
of the continuous-time constrained linear-quadratic (LQ)
optimal problem with mixed linear state-control constraints
under suitable assumptions. Although the convergence of
such discretizations have been addressed extensively under
general settings in the literature, we provide sharper results
for the LQ case by exploiting the specially linear or affine
structure of the problem as well as many results from
mathematical programming. In the process of proving this
results, we also showed that Pontryagin’s maximum principle
was both necessary and sufficient and that the resulting
optimal continuous-time solution has both the state x and
costate λ variables Lipschitz continuous. The latter property
is largely due to the last condition (C). Whether weaker
conditions could yield the same regularity property and
ensure similar convergence of the time-stepping methods
remains to be investigated. The case of pure state constraints
failing condition (C) is another topic that requires further
study. For such problems, the costate variable is very likely
not even continuous [17]. These and other related open issues
will be considered as we continue our research in this area.

Acknowledgement. The authors thank Dr. Rafal Goebel for
discussion on the state constrained optimal control problem
and for calling our attention to the penalty approach of
Rockafellar and related references.

REFERENCES

[1] A. BRESSAN AND B. PICCOLI. Introduction to the Mathematical
Theory of Control. American Institute of Mathematical Sciences
Series on Applied Mathematics, Volume 2 (Springfield 2007).

[2] B. BROGLIATO. Some results on the optimal control with unilateral
state constraints. Nonlinear Analysis 70 (2009) 3626–3657.

[3] J. CULLUM. Discrete approximations to continuous optimal control
problems, SIAM Journal on Control 7 (1969) 32–49.

[4] J. CULLUM. An explicit procedure for discretizing continuous, opti-
mal control problems. Journal of Optimization Theory and Applica-
tions 8 (1971) 15–34.

[5] J. W. DANIEL. The Approximate Minimization of Functionals Wiley-
Interscience, New York 1983.

[6] J. W. DANIEL. On the approximate minimization of functionals.
Mathematics of Computation 23 (1969) 573–581.

[7] J. W. DANIEL. On the convergence of a numerical method in optimal
control. Journal of Optimization Theory and Applications 4 (1969)
330–342.

[8] A.L. DONTCHEV AND W.W. HAGER. The Euler approximation in
state constrainted optimal control. Mathematics of Computation 70
(2000) 173–203.

[9] A.L. DONTCHEV, W.W. HAGER, AND V.M. VELIOV. Second-order
Runge-Kutta approximations in constrainted optimal control. SIAM
Journal on Numerical Analysis 38 (2000) 202–226.

[10] R. GOEBEL. Convex optimal control problems with smooth Hamil-
tonians. SIAM Journal on Control and Optimization 43 (2005) 1787–
1811.

[11] R. GOEBEL AND M. SUBBOTIN. Continuous time linear quadratic
regulator with control constraints via convex duality. IEEE Transac-
tions on Automatic Control 52 (2007) 886–892.
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