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The evolution and suppression of male
suicide under paternal genome elimination

Laura Ross, David M. Shuker, Ido Pen

Evolution, in press

Different genetic systems can be both the cause and the consequence of
genetic conflict over the transmission of genes, obscuring their evolutionary
origin. For instance, with paternal genome elimination (PGE), found in some
insects and mites, both sexes develop from fertilized eggs, but in males the
paternally derived chromosomes are either lost (embryonic PGE) or deacti-
vated (germ line PGE) during embryogenesis and not transmitted to the next
generation. Evolution of germ line PGE requires two transitions: (1) elimina-
tion of the paternal genome during spermatogenesis; (2) deactivation of the
paternal genome early in development. Hypotheses for the evolution of PGE
have mainly focused on the first transition. However, maternal genes seem to
be responsible for the deactivation and here we investigate if maternal sup-
pression could have evolved in response to paternally expressed male suicide
genes. We show that sibling competition can cause such genes to spread
quickly and that inbreeding is necessary to prevent fixation of male suicide,
and subsequent population extinction. Once male-suicide has evolved, mater-
nally expressed suppressor genes can invade in the population. Our results
highlight the rich opportunity for genetic conflict in asymmetric genetic
systems and the counter-intuitive phenotypes that can evolve as a result. 
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INTRODUCTION

It is now known that there is a great diversity of genetic and sex determining systems
across taxa, resulting in differences in reproductive mode, ploidy levels between the
sexes and the mechanisms of sex determination (Normark, 2003; Norton et al., 1993;
Uller et al., 2007). Furthermore, these differences can occur between closely related
taxa (such as scale insects: Ross et al. 2010). However, the evolutionary significance
of this variation is poorly understood. Recently the role of conflict between different
genetic entities on the evolution of novel genetic and sex determination systems has
gained widespread attention (Hurst, 1995; Normark, 2004a, 2006; Ross et al.,
2010b; Uller et al., 2007). These genetic conflicts can arise both within genomes (for
instance between driving sex chromosomes and autosomes: (Burt & Trivers, 2006))
or between genomes (for instance between hosts and symbionts: (Wernegreen, 2004;
Werren et al., 2008)). In this paper, we consider the role of intra-genomic conflict on
the evolution of one particular system: paternal genome elimination (PGE).

PGE is found in several taxa among insects and mites (Normark, 2003; Norton
et al., 1993; Nur, 1980). PGE can be roughly divided into two classes. The first is
embryonic PGE, in which the paternal genome is eliminated early during male embry-
onic development, rendering males haploid (Brown, 1965; Normark, 2003; Nur,
1980). This system is found in some armored scale insects (Hemiptera: Diaspididae)
(Nur, 1980) and in some Pytoseeid mites (Acari: Phytoseiidae) (Cruickshank &
Thomas, 1999). The second is germ line PGE, in which the paternal genome remains
present in males, but is eliminated from the germ line during or just before spermato-
genesis and is therefore not transmitted, making males effectively haploid in terms of
their transmission genetics (Brown & Nelson-Rees, 1961; Normark, 2003; Nur, 1980;
Schrader, 1921). This system in found in most scale insects (Hemiptera: Coccoidea)
(Nur, 1980), in sciarid flies (Diptera: Sciaridae) (Goday & Esteban, 2001) and in the
coffee berry borer beetle, Hypothenemus hampei (Coleoptera: Scolytidae) (Borsa &
Kjellberg, 1996). 

Although the evolutionary relationship between the two systems is unresolved in
some taxa, it is clear at least in scale insects that embryonic PGE has evolved from
germ line PGE (Morse & Normark, 2006; Nur, 1980; Ross et al., 2010b).  Interestingly,
in species with germ line PGE, even though the paternal genome is present in all
tissues, it is deactivated in most. In one scale insect (the mealybug Planococcus citri)
this deactivation has been shown to be induced by the maternal genome (Brown &
Nur, 1964; Chandra, 1962; Nur, 1962b). Therefore, the evolution of germ line PGE
consists of two important evolutionary transitions: (1) the elimination of the paternal
genome from the germ line; (2) the deactivation of the paternal genome early in
development. Explanations for the evolution of PGE have in general focused only on
the first of the two transitions. The hypotheses of Brown (1964) and Bull (1979)
assume that maternal chromosome drive has led to the evolution of PGE and there-
fore focus only on the first transition. Similarly, the hypothesis of Haig (1993a) con-
siders the role of X-chromosomal drive in the evolution of PGE and again focuses
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exclusively on the first evolutionary transition. These three models all consider intra-
genomic conflicts. In contrast, the fourth hypothesis, formulated by Normark
(2004a), assumes the involvement of male-killing endosymbionts. He argued that in
order to kill males (which do not transmit the endosymbionts) the endosymbionts
destroy male-determining sperm when they fertilize the oocytes. However once the
host evolves haploid male viability, this leads to a similar type of maternal chromo-
some drive as in the models of Brown, Bull and Haig.

Herrick and Seger (1999) were the first to note that once the elimination of the
paternal genome from the male germ line has evolved, this leads to other evolution-
ary conflicts of interest between paternal and maternal genes in males. Specifically,
they argued that there would be selection on the paternal genome to evolve mecha-
nisms to prevent this elimination. The paternal genome might have several options
for doing so. For instance, it could completely block PGE, by restoring a fair meiosis
and resisting the elimination during spermatogenesis. Alternatively individual
chromosomes might occasionally be able to swap place with a maternal homologue
and thereby gain access to the sperm. Herrick and Seger (1999) also argued that
these attempts by paternally inherited genes to regain transmission will select for a
counter response by the maternal genes. They argue that one way for the maternal
genome to prevent counter adaptation by the paternal genome is to deactivate the
paternal genome. In a verbal model they propose that continuing co-evolution
between the maternal and paternal genes in males might have lead to the gradual
deactivation of the paternal genome, starting with genes or chromosomes in germline
cells, as these might be more “powerful” in affecting their own transmission, but
gradually spreading to the soma as well. They also argued that this maternal-paternal
co-evolution might have caused the evolution of the different types of PGE in which
the paternal genome is eliminated from the germ line progressively earlier (reviewed
by Ross et al., 2010b).

However, although there will be strong selection on the paternal genes to regain
access to the germline and thereby gain direct fitness, this might be hard to achieve.
In species with PGE, meiosis and spermatogenesis are modified so that even if pater-
nal chromosomes avoid elimination this might not necessary lead to successful trans-
mission, as it will often lead to diploid or non-functional sperm. Furthermore,
“normal” meiosis and spermatogenesis might not have taken place in PGE species for
millions of generations and the resulting loss of necessary genes might hinder the
restoration of normal diplodiploidy (Herrick & Seger, 1999; Nur, 1970). 

There might however be another way in which paternal genes can increase their
fitness. Although males do not transmit their paternal genes to the next generation
and therefore the paternal genome in males does not have any direct fitness, paternal
genes can obtain indirect fitness by enhancing survival or reproduction of sisters or
other relatives. This leads to a situation within a sib-group where paternal genes in
males can favor their sister’s reproduction at the expense of their own (Normark,
2001). Specifically, we argue that paternal genes may be selected to commit suicide,
if the surviving sisters can use the newly-available resources and increase their
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fitness. This is then an intra-genomic version of the well-known argument for male-
killing by maternally-transmitted endosymbionts (Hurst, 1991). 

The first aim of this paper is to investigate theoretically under what conditions a
paternally expressed suicide gene could invade a population. We will test how popu-
lation sub-structure and resulting levels of sib-mating will affect (1) if a suicide gene
can invade and (2) what level of male-killing is expected under different levels of
inbreeding. Once a male suicide gene has invaded in the population, this will have
strong effects on the population sex ratio. We therefore also explore if the presence of
a paternally expressed male suicide gene selects for biased primary sex ratios. Finally
the invasion of a paternally expressed male suicide gene is expected to impose a
strong selection pressure on the maternal genes in males to suppress the suicide phe-
notype. We therefore also model the spread of a maternally expressed suppressor
gene, once a male-suicide gene is present, and discuss if this could have led to the
deactivation of the paternal genome in males. 

Inclusive fitness model for suicide evolution
In order to understand if paternal suicide genes could evolve in taxa with PGE, we
need to consider the life history of those taxa. Normark (2004a) pointed out that
most taxa with PGE not only have strong levels of sib-competition (which would
increase the selection pressure for male suicide) but also high levels of sib-mating and
inbreeding. At first glance, one might expect inbreeding to counteract the spread of
paternal male suicide as it can lead to increased relatedness between the maternal
and paternal genome of individual. However, inbreeding also increases relatedness
between sibs, which might promote male suicide. To make matters even more compli-
cated, a life history with inbreeding and sib-competition may select for female-biased
sex ratios, thus increasing the reproductive value of individual males, which might be
an additional obstacle to the evolution of male suicide. Clearly, a formal model is
required to investigate the balance of these opposing effects. 

We consider the fate of a partially suicidal gene that is expressed in males by the
paternally inherited half of their genome. We allow for some degree of inbreeding by
assuming that the population is subdivided in standard-sized patches of n mated
females whose offspring mate randomly on their natal patch followed by dispersal of
newly mated females to random patches according to a standard “island model” of
dispersal. 

Offspring mortality occurs in two subsequent “rounds”. In round one - the male
suicide round - some males may die during early development as a result of the
action of a paternally inherited gene. The resources accumulated by (or not exploited
by) dead males can be partially recycled and enhance the survival of their sibs during
the second round of offspring mortality. Specifically, we assume that a focal male
commits suicide with probability x, while xb is the average suicide probability among
all males in the focal brood and xp is the patch-level suicide probability of males
during round one. In the second round, individual male and female survivors of
round one will survive an additional round with (non-sex specific) probability
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yb = y0 + (1 – y0)bsxb . (1)

Here 0 < y0 ≤ 1 is a baseline level of survival in case no male sibs were killed during
round one, and the second term on the right represents the (linear) increase in sur-
vival with the amount of resources made available by deceased male sibs. Parameter
0 ≤ b ≤ 1 is a measure of recycling efficiency and 0 ≤ s ≤ 1 is the brood sex ratio (pro-
portion males). Thus, minimal survival in phase two equals y0, while survival
approaches unity in case the brood consists almost entirely of suicidal males that are
recycled with maximal efficiency (xb U 1, b U 1 and s U 1. In what follows, for the
easy interpretation of the derived formulas, we assume  y0 = 1/2 , but this has no
qualitative effect on the conclusions.

We want to calculate the inclusive fitness effect of a small change in the suicidal
tendencies of the focal gene, and for this we need to consider how the fitness of
females and males depend on x, xb and xp. We assume the fitness of a female depends
only on her brood-level xb (i.e. the mean suicide rate of her brothers) mediated by its
effect on round two survival of females:

Wf = yb . (2)

The fitness of a focal male is his probability of survival (1 – xb) yb across both rounds
times his expected number of mates (1 – s) / [(1 – xp)s]:

Wm = (1 – x)yb     
1 – s

. (3)
(1 – xp)s

The inclusive fitness effect of a small change in x can then be calculated according to
a standard method (Pen, 2006; Taylor & Frank, 1996) as

∆WIF = s
∂Wm r + 2(1 – s) 

∂Wf  rf + s 
∂Wm rmb + s 

∂Wm rmp . (4)
∂x                       ∂xb                  ∂xb                      ∂xp

The right-hand side is evaluated at x = xb = xp. The marginal fitness effects (the
partial derivatives) for each sex are multiplied by the frequency of each sex, as dictated
by the sex ratio s. Female fitness is additionally multiplied by 2 since in haplodiploids
the reproductive value of a daughter is twice that of a son in terms of passing on
genes to future generations (Bulmer, 1994; Hamilton, 1979). The various r-parame-
ters are different coefficients of relatedness from the viewpoint of the controlling
gene, in this case the paternally inherited x-gene in a focal male. Specifically, the
coefficient r is the relatedness of the maternal genome to the paternal genome in the
focal male, and it equals the inbreeding coefficient f, since f is by definition the prob-
ability that an individual's maternally and paternally inherited genes are identical by
descent. The coefficient rf is the relatedness of a sister to the controlling gene in the
focal male, and this equals rf = 1_

2 + 1_
2 f , the mean of the relatedness of the sister's

paternal genes to the controlling gene (a relatedness of 1, since fathers are effectively
haploid) and the relatedness of her maternal genes to the controlling gene (by
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definition, f ). Similarly, rmp = f is the relatedness of a brother's maternal genome to
the paternal genome of the focal male, and rmp = (1/n)f is the relatedness of a
random male competitor from the focal patch to the paternal genome of the focal
male. 

Replacing the coefficients of relatedness in (4) with the derived expressions in
terms of inbreeding coefficients gives

∆WIF = s
∂Wm f + (1 – s) 

∂Wf  (1 + f )+ s 
∂Wm  f + s 

∂Wm f / n . (5)
∂x                     ∂xb                ∂xb                 ∂xp

From inspecting the definitions of Wm and Wf, it is clear that all partial derivatives on
the right-hand side of (5) are positive except for the first one ∂Wm / ∂x. Therefore, if
there is no inbreeding f = 0, only a single positive term remains, and suicide (x) of
males will evolve to its maximal value (i.e. all males commit suicide). Therefore some
minimum level of inbreeding (i.e. f > 0)is required for selection against 100% male
suicide.

The equilibrium suicide rate is found by calculating the derivatives in (5), evaluat-
ing them at x = xb = xp = x*, setting the right-hand side equal to zero and solving
for x*:

x* = 
n(1 + 2 f ) – (n – 1) f / (bs)

. (6)
n + (3n – 1) f

or x* = 0 if the right-hand side is negative (i.e. there is no male suicide). Note that
x* = 1 when f = 0, i.e. in the absence of inbreeding selection favors 100% male
suicide, which would cause population extinction.

The inbreeding coefficient f depends on patch size n, and can be considered a "fast
variable" relative to the speed of evolution, whose quasi-equilibrium value can be cal-
culated from a standard recursion equation (see Taylor, 1988):

f = 1/(4n – 3) . (7)

Plugging the resulting f into (6) gives the main result

x* = 
n(4n – 1) – (n – 1)/ (bs)

. (8)
4n2 – 1

or x* = 0, whichever is larger. From inspection, it is clear that - all else being equal -
for sufficiently small b-values there will be no selection for suicide. A female-biased
sex ratio (small s) also leads to lower suicide rates, and finally, x* increases with n.

Some examples of x* for varying values of b and n are shown in figure 4.1. For the
brood sex ratio s we took the equilibrium value under maternal control, and we show
in appendix 1 how this is calculated. In addition to the analytical solutions, we also
show results of individual-based simulations in order to verify the stability of the
equilibria (see appendix 2; C++ code is available on request). It is clear from Figure
4.1 that male suicide is straightforward to evolve. It is also interesting that primary
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sex ratios can be male-biased, in contrast to the sex ratios in standard LMC models
(West, 2009).

In order to confirm our prediction that under no inbreeding the evolution of male
suicide can lead to population extinction in figure 4.2 we show simulation results
where we assume a single large random-mating population (n = 10000) and show
that male suicide quickly evolves to 100% and that this drives the population extinct.
Further details on this simulation can be found in Appendix 2. 

Counter-evolution of maternally inherited suicide-suppressors
In the previous section we have shown that under PGE, a paternally expressed gene is
able to evolve male suicide, as long as sibs can benefit sufficiently from recycled
resources. Here we explore if suppression expressed by maternally inherited genes
can evolve, once male suicide is present. We use an individual based simulation
approach, where we allow a maternally expressed suppressor gene z to evolve simul-
taneously with x. This locus determines the probability of expression of x. We would
first like to see if a maternal suppressor (z) is able to invade, under what conditions it
will invade, and if it will lead to partial or complete suppression. We would also like
to see how fast such a maternally-expressed suppression gene will spread and if it
will go to fixation. Finally we explore how the efficiency (b) with which the resources
that become available after male-killing can be used by the male's siblings affects the
evolution of maternal suicide suppression. Simulation results are shown for a local
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Figure 4.1 Male suicide can evolve and generate male biased equilibrium sex ratios.
Equilibrium levels of male suicide rates x and brood sex ratios s (proportion male), as a function
of number of females (foundresses, n) per local patch. Solid curves represent male suicide as
predicted by the analytical model for two values of b, the efficiency of recycling killed males into
resources for sibs. Dashed curves represent co-evolved sex ratios as predicted by the analytical
model. Note that male-biased sex ratios arise for some parameter combinations. The individual-
based simulation results are presented by symbols representing averages  1 standard deviation)
of 10 replicates (circles: male survival; squares: sex ratios). The simulations fit the analytical
predictions quite closely. 



mate competition scenario with 4 foundresses per patch (figure 4.3; see Appendix 2
for details) and four different recycling efficiencies (b). These results first of all show
that a maternally-expressed suppression gene can invade under all the conditions
that were considered and that it leads to complete suppression of the paternally
expressed suicide gene. Secondly, they show that although the suppression gene
spreads to fixation under all conditions, the recycling efficiency rate b affects how fast
z spreads and becomes fixed, with a faster spread at higher recycling efficiencies. 

DISCUSSION

Asymmetric genetic systems, in which transmission is unequal for different genetic
entities or elements, are a rich evolutionary playground for strange and seemingly
counter-intuitive phenotypes (Burt & Trivers, 2006; Normark, 2006). We have shown
that in species with one such asymmetric system, paternal genome elimination, if
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paternal genes are expressed in males then the evolution of genes causing male
suicide is possible, as long as sibs can profit from the recycled resources of killed
males.  In the absence of inbreeding, our model predicts the evolution of a rate of
100% male suicide, which will lead to population extinction (figure 4.2), while
increasing levels of inbreeding limits the extent of male suicide or may even prevent
it altogether. As male suicide evolves, co-evolution of the sex ratio may occur, and
this can lead to male-biased primary sex ratios, as males may benefit their sibs when
they commit suicide. This is surprising as predictions of male-biased population sex
ratios are rare under the standard sex ratio models, and the population structure
modeled here, would normally predict strongly female biased sex ratio (according to
local mate competition theory (Hamilton, 1967). We have also shown that once these
male suicide genes have evolved, a maternally expressed suppressor can evolve and
that this results in a complete suppression of the paternally-derived suicide genes. 

As discussed earlier, the evolution of PGE will lead to conflict between maternally
and paternally inherited genes in males. It has previously been noted that PGE results
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in selection on the paternal genes to resist their elimination from the germline in
males. However, only two cases of reversal from PGE back to normal diplodiploidy
have been observed (in the scale insect genera Lachnodius and Stictococcus) (Nur,
1980) and both evolved from germline PGE. So although this shows that reversal is
possible, it is rare. Our results show that in cases where paternal genes cannot – for
whatever reason - defeat PGE, they may still obtain indirect fitness benefits by evolv-
ing a male-killing phenotype. 

Our results also suggest that the evolution of paternally-expressed suicide genes
could trigger the evolution of maternal suppression of the paternal genome set in
order to silence suicide genes. Although (partial) paternal genome deactivation in
males has been shown in all taxa with germ line PGE, the mechanism of suppression
has been mainly studied in mealybugs. In these species it has been shown that DNA
methylation plays an important role in the deactivation. The paternal genome is
found to be hypo-methylated in both sexes and several histone proteins have been
shown to be involved in the deactivation (Bongiorni et al., 1999; Bongiorni et al.,
2007). When the expression of these histone proteins is blocked, this results in the
reactivation of the paternal genome (Bongiorni et al., 2007). These results agree with
earlier observations of individuals with artificially constructed haploid embryos that
lacked the maternal genome in which the paternal genome became active (Brown &
Nur, 1964), suggesting maternally expressed suppression. 

It has been argued earlier that conflict over transmission through sperm could
have led to the evolution of maternal deactivation of the paternal genes to stop pater-
nal attempts to regain transmission  (i.e. “policing” PGE itself; Herrick and Seger
1999). However although the deactivation of the paternal genome in males would
indeed prevent those attempts it will presumably come with a considerable fitness cost
for the male. Furthermore it is hard to reconcile with the observation that in mealy-
bugs although the paternal genome is deactivated in most tissues it is active in the
testis, the very place where it is eliminated. If the paternal genes are deactivated to
prevent them from fighting their elimination, we would expect them to be repressed
most strongly in tissue where they might have most power to affect their transmission.

The alternative explanations for the deactivation of the paternal genome will be
difficult to distinguish, and currently little has been done to experimentally manipu-
late maternal deactivation of paternal chromosomes in these species, and so the phe-
notypes that would result are unknown. If maternal deactivation is preventing
paternally-driven male suicide, then male death (including failed embryos) may be
the result of such manipulations. However, such phenotypes are inherently hard to
study, especially in terms of confirming the cause of the embryonic (or later stage)
mortality. In order to test if paternally-expressed suicide genes have indeed evolved
and that the suppression of the paternal genome has evolved in response it may be
helpful to focus on systems where the suppression is incomplete, or where the extent
of male suicide is incomplete in the absence of maternal suppression.

In addition to wrestling over control of paternal gene expression in males, there
are other possible outcomes or ways to avoid male suicide. In sciarid flies only certain
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paternal chromosomes are lost during embryogenesis, while the others remain active
in the soma (Haig, 1993b). This might make Sciara particularly susceptible to the
evolution of paternally-expressed male suicide genes. However, many species of
sciarid flies are completely monogenic (i.e. females produce broods of one offspring
sex only, thus exhibiting “split sex ratios” (Haig, 1993b)) or have monogenic strains.
This will presumably eliminate selection in favor of male suicide as males do not
have sisters to channel indirect benefits. Simulations confirm (results not shown) that
a monogenic population cannot be invaded by paternally inherited alleles that cause
male suicide. Whether the converse also holds true – that monogeny is an adaptation
to male suicide – remains an interesting speculation. Monogeny appears to be quite
rare, having been found mostly in dipteran species with PGE: Sciarids and
Cecidomyids (Dorchin & Freidberg, 2004; Haig, 1993b).

Currently no direct evidence for paternally expressed male suicide is available for
species with PGE. However many species are poorly studied and male-suicide will be
hard to observe as it might it might only reveal itself as female-biased sex ratios,
which could be easily overlooked or interpreted as facultative sex ratio adjustment.
Furthermore, observing male-suicide might be difficult as once such a phenotype
evolves there will be strong selection on maternal genes, for example by the suppres-
sion of the paternal genome, or by producing split sex ratios. Additionally, if such
suppression does not evolve quickly enough it might lead to population extinction.
Comparative approaches to testing the correlates of PGE might help us make progress
though. Interestingly, one such study has recently shown that each of the two origins
of embryonic PGE in scale insects is associated with an increase in net diversification
rate, possibly indicating a reduced extinction rate as a result of suppressing paternal
gene expression (Andersen, 2009).

The evolution of suicidal phenotypes might seem counter-intuitive, but there are
ample examples in other contexts. Perhaps best known are those induced by
endosymbiotic bacteria that either kill their male host (and thereby themselves) to
benefit related endosymbionts in females: “male-killing” (Hurst, 1991, 1995) or that
kill early embryos resulting from crosses between an infected male and uninfected
female: “cytoplasmic-incompatibility” (Wade & Stevens, 1985; Werren et al., 2008).
Similar transmission genetics impose similar selection on mitochondria. Although
mitochondria have not been found to induce male suicide, they have been linked to
reduced male fitness, especially reducing sperm function in a number of taxa (Wade
& Brandvain, 2009). Additionally mitochondria have been found to induce the sterili-
ty of male function in hermaphroditic plants (Saumitou-Laprade et al., 1994). Finally
mitochondria have recently been found to play a crucial role in apoptosis (pro-
grammed cell death: (Blackstone & Green, 1999)), although the evolutionary signifi-
cance of this finding is not well understood. Wade and Brandvain (2009) recently
showed that although mitochondria cannot obtain any direct fitness through males,
either under inbreeding or in situations where males help their sisters, they can
obtain indirect fitness. This might explain why there is selection against mitochondri-
al mutations that have a deleterious effect on male fitness under these conditions.
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However, as our model shows, under conditions of sib competition, such a mutation
might spread. 

Other genetic entities that under certain conditions could be selected to induce
suicide are the polar bodies. These cells form during meiosis and contain the three
haploid genome sets that do not form the final germ cell. In most species these cells
quickly degenerate although in some taxa they persist, for instance forming the
endosperm in plants (Haig, 1986). Similarly, in some scale insects the maternally-
derived polar bodies fuse with an embryonic cell to form the organ in which the
endosymbiotic bacteria reside (Brown, 1965; Normark, 2001, 2004b; Tremblay &
Caltagirone, 1973). This inclusion of the maternally-derived polar bodies in an
embryo might increase genomic conflicts within the individual as it creates tissue
which contains both maternal and embryonic genes (Burt & Trivers, 2006; Normark,
2001, 2004b). With sibling-competition, the interests of the embryo- and polar body-
derived genes might not coincide as some polar body genes might be absent from the
embryo but present in its siblings and so in line with the previous argument for the
evolution of paternally-expressed male-killing, the genes derived from the maternal
polar bodies might also be selected to evolve suicide (Normark, 2001). Therefore
some of the variation in bacteriome formation found in mealybugs and armored scale
insects might have evolved through selection on chromosomes outside the bacteri-
ome to limit the expression of suicidal genes. For example, Brown (1965) showed
that in some armored scale insect species the bacteriome contains three condensed
haploid genomes. He suggested that these are the chromosomes from the polar-
bodies that, although present, have been deactivated (Normark, 2001). If this is
indeed the case it shows an interesting similarity with the fate of the paternal
genome in the soma of males with PGE.

An important assumption underpinning our models is that there is competition
among siblings and that the resources that become available through the death of a
male can be used by its sisters. There is evidence of sibling competition in a species of
mite with PGE (Nagelkerke & Sabelis, 1998), while scale insects (where PGE is the
most common genetic system) have evolved several reproductive adaptations that
lead to intensive and prolonged contact between siblings. For example vivipary and
ovoviviparity are common among scale insects and many taxa have evolved an ovisac
or a marsipium in which their offspring develop (Gullan & Kosztarab, 1997).
Moreover, scale insects are also often sedentary and settle close to the place they
were born, typically forming large colonies on host plants. Due to these factors strong
sibling-competition might be expected (Normark, 2001, 2004a) .

However, the flip-side of an ecology that promotes sibling competition is that it
might also promote sib-mating. Recently it has in fact been noted that paternal
genome elimination often evolves in species with mating systems that lead to high
levels of sib-mating (Hamilton, 1993; Normark, 2004a). Our results show that whilst
under PGE paternal suicide genes can invade, inbreeding leads to a lower level of
suicide. It is therefore tempting to suggest that inbreeding might be required to
prevent population extinction (due to fixation of paternally expressed suicide genes)
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and perhaps this is why PGE is observed primarily in species with high levels of sib-
mating. However, it will be difficult to disentangle the opposing effects of sib-compe-
tition and sib-mating in promoting or preventing male suicide.

In this paper we have presented the possibility that in species with paternal
genome elimination intra-genomic male killing can evolve. The conditions that are
required for the evolution of intra-genomic male killing to evolve are similar to those
required for inter-genomic, endosymbiont induced male killing (Hurst, 1991).
Furthermore, most taxa with PGE harbor endosymbiotic bacteria (Normark, 2004a),
with which they often have an intimate and obligate association. This suggests that in
many of these taxa both the endosymbiont and the paternal genome in males could
be selected to induce male killing and this therefore raises the tantalizing possibility
that inter- and intra-genomic suicidal interests may interact to facilitate male-killing.

APPENDIX 1: sex ratio co-evolution

Here we derive an inclusive fitness model for the co-evolution of brood ratios under
maternal control in a subdivided population of patches with n females each.

A focal mother produces a brood sex ratio sb (proportion sons), while the patch-
level mean sex ratio is sp.  Her fitness through daughters is then given by

Wf = (1 – sb)yb . (A1)

Note that yb = y0 + (1 – y0)bsbxb depends on the brood sex ratio, and this is where
our model differs from the standard models of sex ratio evolution in subdivided pop-
ulations (West 2009). Also note that for xb = 0 our model reduces to the standard
models.

A focal mother's fitness (number of mated females) through sons is given by

Wf = sb(1 – xb)yb 
1 – sp . (A2)

sp

The inclusive fitness effect of a small change in the mother's sex ratio is then
obtained according a standard direct fitness method (Taylor and Frank 1996):

∆WIF = 2 
∂Wf rfb + 

∂Wm rmp +
∂Wm rmp . (A3)

∂sb ∂sb                  ∂sb
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Note that female fitness is multiplied by two to account for their double reproductive
value compared to males in haplodiploids. The relatedness coefficients are as follows.
The relatedness of daughters to their mother is given by

rfb =
1 + 3f

(A4)
2 + 2f

Relatedness of sons to their mother: rmp = 1; relatedness of random male to mother:

rmp = 1/n (A5)

Analytical solutions of (A3) are easily available but rather uninformative. In the case
of xb = 0 they reduce to well-known results (Hamilton 1979, Taylor and Bulmer
1980, West 2009).

In the scenario of co-evolving suicide rates and sex ratios, equations (5) and (A3)
must be solved simultaneously. Note that (8) is no longer an explicit solution of (5),
since the s in (5) now depends on x. We did not analytically check for stability of
solutions but relied on the individual-based simulations to verify stability properties.

APPENDIX 2: Details of individual-based simulation models

(1) Paternally expressed male suicide
The simulations work with a population of diploid individuals, sub-divided into nP

standard-sized patches, each founded by n mated females. Each female lays a clutch
of k = 50 offspring with a binomial sex ratio determined by a single additive gene
locus. The early survival of male offspring is determined by an additional unlinked
single gene locus x which is paternally expressed. The survival of the remaining off-
spring is influenced by (1) the number of male sibs that have died; and (2) the effi-
ciency b of re-allocation of dead sibs.  Specifically, survival yb follows:

yb = 0.5 + 0.5b 
k – ḱ
k – 1

where ḱ is the number of surviving siblings after male suicide. Note that 0.5 ≤ yb ≤ 1.
The surviving offspring mate with a random individual from the same patch.

When there are no males in a patch all females are unable to mate and the patch will
go extinct. After mating females disperse with probability d. The dispersing females
are randomly assigned to a patch until the n breeding positions on a patch are occu-
pied. 

Alleles were mutated with a rate of 0.01 per generation, and given that a muta-
tion occurred, the mutation step size was drawn from a normal distribution with
mean zero and standard deviation 0.01 (see table A.1). More realistic lower mutation
rates (e.g. 10–6) did not affect the evolutionary trajectories, but did slow down the
simulations considerably.
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(2) Extinction under random mating
In this simulation we test if male suicide can lead to population extinction when
there is no inbreeding (under random mating). The simulation is similar to the one
described above but with two important differences. First of all in this simulation we
assume one large random-mating population (instead of a sub-divided population as
previously assumed). Secondly here we make an additional assumption on the
number of females a male can successfully inseminate, with a maximum of 20 females
per male. Each female in the population is randomly assigned a mate, however when
her mate has already had 100 previous mating, the female remain uninseminated and
will fail to produce offspring.  See table A1 for the parameter values used in this
simulation.

(3) Maternal suppression
This simulation explores the evolution of a gene that suppresses the paternally
inherited suicide genes. The simulation is identical to described above, except an
additional independently segregating gene coding for maternally inherited suppres-
sion, that determines the probability of expression of x.
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Table A.1 Overview, description and values of the parameters used in the simulations. The
numbers in brackets in the third column show which parameter values have been used in each
simulation and correspond with those in Appendix 2 (simulation 1: Paternally-expressed male
suicide, results shown in figure 4.1, simulation 2: Maternal suppression, results shown in figure
4.2 and simulation 3: Polar body induced male suicide, results shown in figure 4.3) 

Parameter Description Value used in simulation

nP Number of patches 2500 (1,3), 1 (2)

n Number of mated females per patch 4 (1,3), 10000 (2)

k Clutch size 10 (1,2,3)

s Sex ratio evolving (1,2,3)

b Efficiency re-allocation of dead sons 1.0 (1)

0, 0.1, 0.5, 1.0 (2)

0.5 (3)

x Male suicide rates evolving (1,2,3)

z Suppressor gene (maternally expressed) evolving (2)

µ Mutation probability 0.01 (1,2,3)

σ Standard deviation mutation size 0.01 (1,2,3)




