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Linear Dynamics and Control

of a Kinematic Wobble–Yoke Stirling Engine

Alejandro Alvarez–Aguirre, Eloı́sa Garcı́a–Canseco and Jacquelien M.A. Scherpen

Abstract— This paper presents a control systems approach
for the modeling and control of a kinematic wobble–yoke
Stirling engine. The linear dynamics of the Stirling engine are
analyzed based on the dynamical model of the system, developed
by the authors in [1]. We show that the Stirling engine can be
viewed as a closed–loop system, where the feedback control
law is given by the pressure variations in the pistons. Since
the closed–loop system exhibits unstable dynamics, we design a
pre–compensator to stabilize the displacements of the engine’s
pistons, and an observer to estimate their piston velocities.

I. INTRODUCTION

Energy savings and concern for the environment and
climate are major issues nowadays within our society. Due
to this fact, in recent decades there has been an enormous
interest in the application of heat engines for converting
different types of heat source into electrical energy [2], [3].

One of the most promising applications is micro–
combined heat and power (CHP) generation, or in other
words, the simultaneous production of heat and power at a
small–scale [4]. A micro–CHP consists of a gas engine which
drives an electrical generator. The main purpose of a micro–
CHP system is to replace the conventional boiler in a central
heating system. Coal and natural gas power plants lose as
waste heat two–thirds of the energy they produce [5]. With
the use of micro–CHP units, this waste heat can be captured
and used locally. The waste heat from the engine can be used
in the heating system and the electricity generated can be
either used in the house or exported to the grid in order to be
consumed by the neighbors [4]. Supplying electricity back to
the grid raises important economical and research/scientific
challenges [3] which are not within the scope of this paper.

Micro–CHP systems can attain a similar conversion ef-
ficiency from gas to useful heat as a conventional boiler,
typically around 80%. However, in addition, around 10−15%
can be converted to electricity. Among the technologies that
have been proposed for micro–CHP applications we can
mention fuel cells, internal combustion engines and Stirling
engines [4], [6].

Theoretically, Stirling engines seem to be the most effi-
cient device for converting heat into mechanical work, with
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high efficiencies, requiring high–temperatures [7]. Stirling
engines are generally externally heated engines. Therefore,
most sources of heat can be used to drive them. A curious
paradox of Stirling engines is that they are at the same
time well known and unknown [8]. They are well known
because since their invention by Robert Stirling in 1816,
they have been heavily studied, with an increasing inter-
est during the last decades. There is no lack of literature
references concerning the general and detailed aspects of
Stirling technology, nevertheless, most of the studies rely
on thermodynamics methods and intuitive design techniques.
There exist, however, few literature on the application of
dynamics and control methods to investigate their stability
and dynamic properties, see for instance [9]–[13] and the
recent work [14]. Moreover, most of the works analyze free–
piston Stirling engines.

In this work, we focus on a Whispergen micro–CHP unit
with Stirling engine technology, available at the Laboratory
of Discrete Technology and Production Automation at the
University of Groningen. This micro–CHP unit, developed
by WhisperTech Limited [15], was originally designed as
a battery charger for marine applications [16]. In contrast
with most Stirling engines based on free–piston mechanisms,
the Whispergen micro–CHP unit comprises a “wobble–yoke
Stirling engine mechanism”, that is, a four–cylinder double–
acting Stirling engine configuration whose design is based
on the classical spherical four–bar linkage [17].

Based on the nonlinear dynamical model of the wobble–
yoke Stirling engine, developed by the authors in [1], we
analyze the linear dynamics of the engine. Our contributions
are twofold. First, we show that the Stirling engine is an
unstable closed–loop system where the state feedback is
given by the pressure variations in the pistons. Although a
similar approach has been followed by [14], [18] for the
study of free–piston Stirling engines, to the best of the
authors knowledge, none of the previous works concerns
the kinematic wobble–yoke Stirling engine. Second, using
the fact that working gases in piston engines, behave as
linear mass–spring systems, we use linear control tools
to design a pre–compensator that ensures stability of the
pistons’ displacements and an observer to estimate the piston
velocities.

II. DESCRIPTION OF THE SYSTEM

Figure 1 shows the schematic representation of the four–
cylinder double–acting Stirling engine. The four cylinders are
phased at 90o from each other with respect to φ. The links
connecting the cylinders form the wobble–yoke mechanism
whose function is to translate the vertical motion of the
cylinders into the rotational motion through the shaft angle
φ. The design of the wobble yoke mechanism is based on
the classical spherical four–bar linkage [17]. These kind

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 2747



φ

Cylinder 1
Cylinder 3

e1

e2

e3

O

Cylinder 4

Cylinder 2

Cylinder 1

Cylinder 2

Cylinder 3

Cylinder 4

e2

e1

φ

Fig. 1. Schematic representation and cylinders configuration of the wobble
yoke Stirling engine.

of linkages, which are well known in robotics, have the
property that every link in the system rotates about the same
fixed point [19], [20]. Hence, as indicated by its name, the
trajectories of the points at the end of each link lie on
concentric spheres. In robotics, only the revolute joint is
compatible with this rotational movement and its axis must
pass through the fixed point. The wobble yoke is indeed a
particular class of the spherical linkage known as spherical
crank rocker [17]. In this case, the revolute joints are replaced
by the spherical bearings located at points b1, b3, c1 and d
(cf. Figure 2). The axis of the aforementioned bearings must
intersect the sphere center O.

The working principle of this mechanism can be explained
by referring to Figure 2. The mechanism is based on a
beam which pivots about its center O in one plane (e2e3
for beam 1, and e1e3 for beam 2). Each beam is attached to
the cylinders with connecting rods at each end via bearings
a1 and a3. An eccentric bearing c1 is attached to the drive
shaft and it is connected to the beam via two bearings b1
and b3. The eccentric bearing c1 is the rotating part of the
mechanism. When the engine is working, the vertical motion
of the pistons inside the cylinders (not shown in Figure 2),
induces a rotational movement on bearing c1. Due to the
geometrical and physical configuration of the mechanism,
bearing c1 describes a circle of radius lc1d. The axis of
bearings b1, b3, c1 and d must intersect the center O, so
that the kinematic constraints of the spherical crank rocker
[19], [20] are satisfied. We also notice that the axis lOc1 of
bearing c1 is perpendicular to the beam, i.e., lOc1 ⊥ lb1b3 . An
analogous discussion applies to the second beam. We refer
the reader to [16], [17] for more details about the wobble–
yoke Stirling engine.

III. DYNAMICAL MODEL

In this section we present a summary of the equations
that characterize the dynamic behavior of the wobble–yoke
Stirling engine, as developed by [1]. The definition of the
parameters as well as their nominal values are summarized
in Table I.

A. Kinematics

It can be shown that the kinematic equation relating the
beam angular displacement θj , in terms of the crank angle
φ are respectively given by [1], [17]

φ
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Fig. 2. Schematic picture of beam 1. θ1 is the angle between the beam
and the axis e2. The crank angle φ is measured in the counterclockwise
direction from the positive axis e1.

θ =

[

θ1
θ2

]

=

[

tan−1(κ sinφ)
tan−1(κ cosφ)

]

(1)

where κ = tan θ1max
. Eq. (1) describes the working principle

of the wobble–yoke mechanism as explained in Section
II. For the vertical displacements zi, we only have two
independent equations, namely, z1 and z2 (z3 = −z1 and
z4 = −z2). Therefore, we define the vector z = [z1, z2]

⊤,
with z = lOa1θ.

B. Dynamics of the pistons’ motion

Consider the free–body diagram shown in Fig. 3. The
dynamic equation for the vertical motion of the i–th piston
is given by [1]

mz̈i=(Ap−Ar)(pci−pci0)−Ap(pei−pei0)−kpi
(zi−zi0)−bpi

żi,
(2)

where pci0 and pei0 are the initial pressures in the compres-
sion and expansion spaces, respectively. The initial piston
positions zi0 correspond to the point of vertical static equi-
librium, i.e., when the engine is not yet running.

According to the Schmidt analysis [21], the Stirling engine
consist of five serially–connected components, namely, a
compression space, cooler, regenerator, heater and expansion
space. These five components constitute a thermodynamic
cycle. In the case of the wobble–yoke Stirling engine, the
engine is composed of four cycles [16], [17]. Each cycle
consist of the compression space of cylinder i, the expansion
space of cylinder (i + 1) and the connecting cooler, regen-
erator and heater between cylinders i and (i+ 1). Since the
isothermal analysis does not account for pressure gradients,
we assume no pressure drop across the cooler, regenerator
and heater, and thus, the pressure in the compression space
of the i cylinder equals the pressure in the expansion space
of the adjacent cylinder (i + 1) [16], [17] i.e.,

pe1 = pc4 , pe2 = pc1 , pe3 = pc2 , pe4 = pc3 . (3)

Recalling from Subsection III-A that z3 = −z1 and z4 =
−z2, the dynamic equations of the piston motion (2), after
substituting (3) become

mz̈1=(Ap−Ar)(pc1−pc10)−Ap(pc4−pc40)−kp1(z1−z10)−bp1 ż1,
(4)

mz̈2=(Ap−Ar)(pc2−pc20)−Ap(pc1−pc10)−kp2(z2−z20)−bp2 ż2,
(5)
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TABLE I

SYSTEM PARAMETERS (NOMINAL VALUES SHOWN)

Symb. Value Description

ai connecting rod bearing center,

Ap 0.0014 piston area [m2]

Ar 2.4053 × 10−4 piston rod area [m2]
bi wobble yoke–beam bearing center,
bpi 10 damping coefficient,
cj nutating bearing center,
d crankshaft bearing center,
en axes of the fixed reference frame,
F(·) force [N],

g 9.81 acceleration due to gravity [m/s2],
hs 0.025 stroke of the piston [m]

I 0.0135 mass moment of inertia about the pivot O [kgm2],
kpi 450 piston spring constant [N/m],
lOa1

0.0705 distance [m],

m 0.4384 piston assembly mass incl. the connecting rod [kg],
mT 0.0015 total mass of the working gas [kg],
Mi angular momentum with respect to the axis ei

[Nm],
O center of the fixed reference frame, main pivot

center,

pci pressure in compression space [N/m2],

pcc crankcase pressure [N/m2],

pei pressure in expansion space [N/m2],

pm mean pressure in the working space [N/m2],
R 8.3144 gas constant [J/(K ·mol)],
Th 975 hot end temperature [K],
Tk 360 cold end temperature [K],
Tr 617.2632 regenerator effective temperature [K],

Vdc 6.7512 × 10−7 dead volume in compression space [m3],

Vde 3.5918 × 10−6 dead volume in expansion space [m3],

Vh 9.1800 × 10−6 heater volume [m3],

Vk 8.2687 × 10−6 cooler volume [m3],

Vswc 2.8130 × 10−5 swept volume in compression space [m3],

Vswe 3.4143 × 10−5 swept volume in expansion space [m3],
zi vertical displacement [m],
zieq equilibrium length of the i–th piston spring [m],

zmax 0.0125 maximum piston displacement=hs/2 [m],
żi velocity [m/s],

z̈i acceleration [m/s2],
θj beam angle [rad],

θ̇j beam angular velocity [rad/s],

θ̈j beam angular acceleration [rad/s2],
θjmax 0.1782 maximum beam angle [rad],
φ crankshaft angle [rad],
τ shaft torque [Nm].

where the instantaneous pressure pci in the compression
spaces in terms of the piston displacements zi is given by

pci = pm

(

1 +
Ap −Ar

2β1Tk

zi −
Ap

2β1Th

zi+1

)−1

(6)

where pm = mTR/β1 is the mean pressure in the working
space and β1 is a constant defined in Appendix (eq. (A.1)).

C. Shaft torque

As mentioned in Section II, the wobble–yoke mechanism
translates the vertical motion of the piston into rotational
motion through the shaft angle φ. The shaft torque equation
is given by [1]

τ =
M1 +M2

lOa1

z2, (7)

where M1 = lOa1(F1 − F3)−
I

l2
Oa1

z̈1 and M2 = lOa1(F2 −

F4) −
I

l2
Oa1

z̈2 are the angular momenta with respect to the

zi

bpi

kpi

zieq

pci

pei

pcc

m

Ap

Ar

e2

e3

Fig. 3. Free–body diagram for the pistons of the Wobble Yoke Stirling
engine.

pivot center O. The net forces Fi, acting at the connecting
rod bearings ai, i = 1, . . . , 4 are defined as Fi = mz̈i.

IV. LINEAR DYNAMICS

Because of the pressure dynamics (6), the piston motion
equations (4) and (5) are nonlinear. However, since the
working gas behaves like a linear spring [22], the system
can be studied via linear analysis methods. For convenience,
we linearize equation (6) around the initial piston positions
zi = zi0 and zi+1 = z(i+1)0 as follows1

pci = pci0 +
∂pci
∂zi

∣

∣

∣

∣

∣zi=zi0
zi+1=z(i+1)0

(zi−zi0)+
∂pci
∂zi+1

∣

∣

∣

∣

∣zi=zi0
zi+1=z(i+1)0

(zi+1−z(i+1)0).

(8)
After some simplifications, equation (8) becomes

pci =
pm
γi

(

1−
Ap −Ar

2β1γiTk

(zi−zi0)+
Ap

2β1γiTh

(zi+1−z(i+1)0)

)

(9)

with the constant term γi given by

γi = 1 +
Ap − Ar

2β1Tk

zi0 −
Ap

2β1Th

z(i+1)0.

Define z̃i = zi − zi0 and p̃ci = pci − pci0 . Then equations
(4), (5) and (9) can be represented in state–space as:

ẋ = Ax+Bu, (10)

y = Cx, (11)

where x = [z̃1, z̃2, ˙̃z1, ˙̃z2]
T

∈ R
4 is the state–space vector.

The output vector y ∈ R
p contains the variable we are

interested in controlling, which are determined from the
structure of the output matrix C ∈ R

p×4. The state matrix
A ∈ R

4×4 and the input matrix B ∈ R
4×3 are respectively

given by

A =









0 0 1 0
0 0 0 1

−
kp1

m
0 −

bp1
m

0

0 −
kp2

m
0 −

bp2
m









,

1Although the binomial expansion, or equivalently, the linearization
around zero initial piston positions, has been widely used in free–piston
Stirling engines to linearize the pressure equation (6), in the kinematic
wobble–yoke Stirling engine, the choice zi = zi+1 = 0 is not possible
due to the physical constraints of the engine.

2749



B =









0 0 0
0 0 0

(Ap−Ar)
m

0 −
Ap

m

−
Ap

m

(Ap−Ar)
m

0









.

Using the linearized pressure equation (9), the input term
u = p̃ = [p̃c1 , p̃c2 , p̃c4 ]

T
∈ R

3 can be written as the state
feedback equation

u = −Kx, (12)

with constant gain matrix K ∈ R
3×4

K =

[

β2 β3 0 0
β4 β5 0 0
β8 β9 0 0

]

,

and constant terms βi, i = 2, . . . 9 defined in equations
(A.2)–(A.7).

Remark 1: Figure 4 depicts the block diagram of the
linearized system (10)–(12). It is worth noticing that the
system (10) is self–excited via the input term u (12), which
depends on the initial pressure and temperature conditions,
so as to induce the engine operation. Therefore, as already
pointed out by [14], [18], the Stirling engine can be viewed
as a dynamical system subject to a state–feedback law
(the pressure), which can be altered by manipulating the
parameters of the system or by designing a suitable pre–
compensator, as we will show in the next Section.

Remark 2: Figure 5 shows the root locus of the closed–
loop system (10)–(12) as the viscous friction parameter bpi

varies. At the nominal value bpi
= 10 Ns/m, the closed–loop

poles are located at 12.3±87.11j and −35.11±87.11j. Due
to the positive real part of two poles, the system is unstable
and the piston displacement zi will oscillate with increasing
amplitude.

Remark 3: Theoretically, the Stirling engine works in a
stable cyclic steady–state, when the characteristic polynomial
has two imaginary roots and two roots with a negative real
part [23]. However, as depicted in Fig. 5, at the nominal
values of the parameters, the root locus of the wobble–yoke
Stirling engine, do not cross the imaginary axis.

V. PRE–COMPENSATOR AND OBSERVER DESIGN

A. Pre–compensator

From Figure 4 we observe that adding a pre–compensator
v(x) modifies the system’s input u so that besides the auto–
excitation term, additional pressure is injected to the engine.
Assuming that all components of the state vector x are
measured, our control objective is to design a state feedback
v(x) so that the new input

u(x) = −Kx+ v(x) (13)

A

∫
B

K

xẋu = p̃

+
−

+

∑
C y

v = 0 ∑

+

Fig. 4. Block diagram of the closed–loop system.
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Fig. 5. Root–locus trajectories for varying values of bpi . The closed–loop
poles for the nominal value bpi = 10 N·s/m are located at 12.3± 87.11j
and −35.11± 87.11j.

ensures a stable piston oscillation at 30 Hz with a maximal
amplitude of zmax = hs/2. To this end, we set the control
input as

u = ur − K̄(x− xr), (14)

where xr is the desired trajectory, ur is a feedforward
control input, and K̄ is an appropriate gain matrix, which
can be chosen by pole placement. Solving (13) and (14) for
v yields

v = ur − K̄(x− xr) +Kx. (15)

The new closed–loop system, after substituting (15) and (13)
into (10) results in

ẋ = (A−BK̄)x+BK̄xr +Bur. (16)

Define the tracking error x̃ = x−xr, then the error dynamics
are obtained as

˙̃x = (A−BK̄)x̃, (17)

where we have used

ẋr = Axr +Bur (18)

for the dynamics of the reference trajectory and feedforward
generator. Equation (17) clearly shows that the tracking error
will converge to zero provided a proper choice of the gain
matrix K̄, done by pole placement. The block diagram rep-
resentation in Figure 6 depicts the pre–compensator system
as proposed so far.

Remark 4: To address the modeling and control of the
engine from a control perspective, the pressure differences
in the pistons’ chambers have been chosen as the system’s
control inputs. Nevertheless, it is worth noting that the
temperature variations along the rods connecting the pistons
produce such pressure differences.

B. Trajectory and feedforward generator

Since the pressure variation p̃c3 does not appear explicitly
in the system equation (10), the feedforward term ur cannot
be directly computed from (18) by using the pseudo–inverse
of B. To take into account the effect of p̃c3 , equation (2)
is evaluated for the four pistons at the reference trajectories
xr, resulting in

∆urf
urf = ∆ẋr

ẋr +∆xr
xr, (19)
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where urf = [p̃c1r , p̃c2r , p̃c3r , p̃c4r ]
T , and

∆urf
=







Ap −Ar 0 0 −Ap

−Ap Ap −Ar 0 0
0 −Ap Ap −Ar 0
0 0 −Ap Ap −Ar






,

∆ẋr
=







bp1 0 m 0
0 bp2 0 m

−bp1 0 −m 0
0 −bp2 0 −m






,

∆xr
=







kp1 0 0 0
0 kp2 0 0

−kp1 0 0 0
0 −kp2 0 0






.

Solving (19) for urf yields urf = ∆
−1
urf

(∆ẋr
ẋr+∆xr

xr),

from which the feedforward term ur = [p̃c1r , p̃c2r , p̃c4r ]
T

can be obtained.

C. Observer design

The synthesis of the state–feedback pre–compensator pre-
sented in Subsection V-A considered that the state x was
fully measured. However, from a practical viewpoint, the
piston velocities cannot be directly measured, and thus, a
reduced–order estimator is required.

Assume the state can be partitioned as x = [xa,xb]
T ,

where xa = [z1, z2]
T can be directly measured and xb =

[ż1, ż2]
T has to be estimated. According to this partition,

equations (10)–(11) can be written as

[

ẋa

ẋb

]

=

[

Aaa Aab

Aba Abb

] [

xa

xb

]

+

[

Ba

Bb

]

u, (20)

y =xa, (21)

where Aaa = 02×2, Aab = I2×2, Ba = 02×3 and

Aba =

[

β8Ap−β2(Ap−Ar)−kp1

m

β9Ap−β3(Ap−Ar)
m

β2Ap−β4(Ap−Ar)
m

β3Ap−β5(Ap−Ar)−kp2

m

]

,

Abb =

[

−
bp1
m

0

0 −
bp2
m

]

,Bb =

[Ap−Ar

m
0 −

Ap

m

−
Ap

m

Ap−Ar

m
0

]

.

Consider the following estimator [24]

˙̂xb = (Abb − LAab)x̂b +Abaxa +Bbu+ Lẏ, (22)

A

∫
B

K

xẋ

+
− −

+

∑ ∑uv

K̄

xr

x̃

∑

∑

+

−

−

+

ur

Fig. 6. Pre–compensator block diagram representation for the wobble–yoke
Stirling engine.

∫
+ +

∑ ∑
u

+

+

+

Abb − LAab

LAba

Bb

x̂c

˙̂
xc

y = xa

x̂b

Fig. 7. Pre–compensator–estimator block diagram representation for the
wobble–yoke Stirling engine.

where L ∈ R
2×2 is the estimator gain matrix. Define the

new estimator state x̂c = x̂b − Ly. Then, the dynamics of
the reduced–order estimator (22) can be written as

˙̂xc =(Abb − LAab)x̂b +Abaxa +Bbu.

By defining the estimator error x̃b = xb−x̂b, it can be shown
that ˙̃xb = (Abb − LAab)x̃b. Therefore, given an adequate
choice of the gains in matrix L, done by pole placement,
the estimator error will converge to zero. A block–diagram
representation of the reduced–order estimator is shown in
Figure 7.

VI. SIMULATION RESULTS

In order to illustrate the pre-compensator and observer
designed for the Stirling engine, numerical simulations have
been carried out by using the linear controller/observer in the
original nonlinear model. The desired pistons displacements
are sinusoids with phase difference of π/2, frequency of
30Hz and amplitude of hs/2 = 0.0125. The initial crankshaft
angle is φ(0) = π/3, resulting in the initial piston positions
and velocities x(0) = [0.0109, 0.0063, 0, 0]T . On the
other hand, the observer is initialized at x̂b = [0, 0]T . The
desired closed-loop poles for the controller are located at
[−300,−300,−200,−200], whereas those of the estimator
are located at [−600,−400]. The controller and observer
gain matrices were chosen considering the following two
requirements. First, a fast response without overshoot from
the controller, in order to constrain the piston motion to their
encasement while converging to their reference trajectories.
Second, an even faster response from the observer so that the
estimated estates emulate the system states in a very short
period.

The plots in Figure 8 show the desired and real piston
displacements (black and dashed gray, respectively) during
time t ∈ [4, 4.1]s. while the resulting shaft torque is shown
in Figure 9 for the same period.
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Fig. 8. Piston displacements
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VII. CONCLUSIONS AND FUTURE WORK

We have presented a control systems approach for the
analysis and control of a kinematic wobble–yoke Stirling
engine mechanism. Due to the mass–spring behavior of
the working gas, we have shown that the engine is an
unstable linear closed–loop systems where the state feedback
is given by the pressure variations in the pistons. By using
linear control techniques we designed a pre–compensator
that ensure stability of the pistons displacements, and an
observer to estimate the piston velocities. Current research
is underway to experimentally validate the controllers.

Among the issues that are currently explored are:

– the robustness analysis of the controllers in the presence
of parametric uncertainties in the model,

– the energy performance and efficiency of the engine in
terms of the mean recoverable mechanical power, and

– the modeling of the regenerator so that pressure drops
between the compression and expansion spaces are
taken into account.
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APPENDIX

PARAMETERS OF THE MODEL

β1=
1

Tk

(

Vdc +
Vswc

2

)

+
1

Th

(

Vde +
Vswe

2

)

+
Vk

Tk

+
Vr

Tr

+
Vh

Th

.

(A.1)

β2 =
8pmT 2

hβ1(Ap −Ar)

Tk(Aphs − 4Thβ1)2
, β3 = −

8pmThApβ1

(Aphs − 4Thβ1)2
,

(A.2)

β4 =
8pmT 2

kApβ1

(4Tkβ1 + (Ap −Ar)hs)2Th

, (A.3)

β5 =
8pmTkβ1(Ap −Ar)

(4Tkβ1 + (Ap −Ar)hs)2
, (A.4)

β6 = −
8pmT 2

hβ1(Ap −Ar)

(Aphs + 4Thβ1)2Tk

, β7 =
8pmThApβ1

(Aphs + 4Thβ1)2
,

(A.5)

β8 = −
8pmT 2

kApβ1

(−4Tkβ1 + (Ap −Ar)hs)2Th

, (A.6)

β9 = −
8pmTkβ1(Ap −Ar)

(−4Tkβ1 + (Ap −Ar)hs)2
(A.7)
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