

 University of Groningen

Implementing Reliability
Harrison, Neil B.; Avgeriou, Paris

Published in:
ARCHITECTING DEPENDABLE SYSTEMS VII

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Harrison, N. B., & Avgeriou, P. (2010). Implementing Reliability: The Interaction of Requirements, Tactics
and Architecture Patterns. In A. Casimiro, R. DeLemos, & C. Gacek (Eds.), ARCHITECTING
DEPENDABLE SYSTEMS VII (pp. 97-122). (Lecture Notes in Computer Science; Vol. 6420). Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/8de51d2d-331f-4a82-832f-44b4ded5bce0

A. Casimiro et al. (Eds.): Architecting Dependable Systems VII, LNCS 6420, pp. 97–122, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Implementing Reliability: The Interaction of
Requirements, Tactics and Architecture Patterns

Neil B. Harrison1,2 and Paris Avgeriou1

1 Department of Mathematics and Computing Science, University of Groningen,
Groningen, The Netherlands

2 Department of Computer Science, Utah Valley University, Orem, Utah, USA
harrisne@uvsc.edu, paris@cs.rug.nl

Abstract. An important way that the reliability of a software system is
enhanced is through the implementation of specific run-time measures called
runtime tactics. Because reliability is a system-wide property, tactic implemen-
tations affect the software structure and behavior at the system, or architectural
level. For a given architecture, different tactics may be a better or worse fit for
the architecture, depending on the requirements and how the architecture pat-
terns used must change to accommodate the tactic: different tactics may be a
better or worse fit for the architecture. We found three important factors that in-
fluence the implementation of reliability tactics. One is the nature of the tactic,
which indicates whether the tactic influences all components of the architecture
or just a subset of them. The second is the interaction between architecture pat-
terns and tactics: specific tactics and patterns are inherently compatible or
incompatible. The third is the reliability requirements which influence which
tactics to use and where they should be implemented. Together, these factors af-
fect how, where, and the difficulty of implementing reliability tactics. This in-
formation can be used by architects and developers to help make decisions
about which patterns and tactics to use, and can also assist these users in learn-
ing what modifications and additions to the patterns are needed.

1 Introduction

Software reliability has been defined in ISO 9126 as “The capability of the software
product to maintain a specified level of performance when used under specified con-
ditions.” [1]. This standard states three key components of reliability: fault tolerance,
recoverability, and maturity, including availability. Fault tolerance is, “The capability
of the software product to maintain a specified level of performance in cases of soft-
ware faults or of infringement of its specified interface.” Recoverability is, “The ca-
pability of the software product to re-establish a specified level of performance and
recover the data directly affected in the case of a failure.” Maturity is “The capability
of the software product to avoid failure as a result of faults in the software.” Avail-
ability is “The capability of the software product to be in a state to perform a required
function at a given point in time, under stated conditions of use” [1]. Software that is
highly reliable must exhibit all these characteristics.

98 N.B. Harrison and P. Avgeriou

Designing and implementing highly reliable software is very challenging. Besides
the fact that the software to make a system reliable is very exacting, it can affect
much of the system, and require a significant amount of software: over half of the
millions of lines of code written for the 5ESS® Switching System were devoted to
error handling. Fortunately, software designers have come up with numerous meas-
ures to improve software reliability, based on extensive experience. These measures
are implemented in the software, and are designed to help make the software tolerant
to faults. These faults include, but are not limited to hardware failures, errors in data,
or bugs in the code itself. Many of these measures are well understood and have been
documented. Utas [3] describes many such measures, as does Hanmer [4]; both are
based on extensive experience in designing and developing carrier-grade telecommu-
nication systems. Hanmer and Utas refer to these as reliability patterns. Some similar
measures have been described by Bass et al [2] and called “tactics.” For the sake of
clarity and simplicity, we call all these measures tactics. The tactics identified by Bass
et al [2] address the aforementioned components of reliability as follows: how to
detect faults (addressing fault tolerance and maturity), how to prepare for recovering
from faults (addressing availability and recoverability), how to recover after a fault
(addressing recoverability), and how to prevent faults from causing failures (address-
ing fault tolerance and maturity).

However, even with the knowledge of the reliability tactics, one must still design
and implement them in the system being developed. The difficulty of doing so de-
pends in part on the nature of the tactic to be implemented. The implementation of
some tactics requires some code to be written in nearly every component of the sys-
tem architecture, while other tactics may be implemented with only limited impact. It
depends on the tactic.

A given tactic also has different interactions with different architectural structures.
Several architectural structures are commonly used, and are called architecture pat-
terns [5] or architectural styles [6, 7]. The compatibility between several common
architecture patterns and several common reliability tactics has been investigated [8].
The information about their compatibility is highly useful, because it may help us
avoid tactics (or patterns) that are incompatible with the patterns (or tactics) being
used. Of course, the harder it is to implement a tactic, the more error-prone the im-
plementation is likely to be. The compatibility information is so far limited to one-to-
one relationships: the compatibility of a single tactic with a single architecture pattern.
But nearly all commercial systems are complex: they contain multiple architecture
patterns (see [9]), and use multiple reliability tactics (see [10]).

But this is not all: every system is different, and has different constraints. Con-
straints, such as functional, non-functional, and business requirements, earlier design
decisions and physical limitations, also affect the structure and behavior of the sys-
tem. In this paper, we are particularly interested in requirements related to reliability:
they are closely tied to the reliability tactics and the architecture patterns. This leads
to the key question for this work:

How do the nature of tactics, software architecture patterns, and requirements in-
teract with each other to influence the achievement of reliability in a software
architecture?

We have tried to answer this question through a typical research cycle of grounded
theory consisting of the following: we first looked at the tactics themselves, we then

 Implementing Reliability 99

investigated the interaction between tactics and the pattern structures and finally we
looked into an actual system design which included reliability requirements.
We found three general ways that the nature of tactics influences the architecture. We
found regular ways that multiple architecture patterns interact with tactics. And we
found that requirements affect the tactics in two general ways. To fully understand the
tactic impact, selection and implementation, one must consider all these factors.

The main contribution of this work is that it provides information into how these
factors influence the implementation of tactics, which is indicative of the effort
needed as well as difficulty in implementation and future system maintenance. This
information can be used to make architectural tradeoff decisions, as well as in devel-
opment planning. This knowledge is important when one designs even moderately
complex software architectures (two or more patterns) that must be reliable.

In the following sections, we describe how tactics are implemented in complex
systems. In section 2, we give background and describe the challenge of implement-
ing tactics in complex systems. Section 3 describes the three factors that influence
how and where tactics are implemented. Throughout sections 2 and 3, we use a
running example of an airline booking system. In section 4, we describe how the
information can be used in a practical setting, and how it fits with typical software
architecture processes. We provide a case study and other validation in section 5.
Section 6 describes related work, and section 7 describes future work.

2 Background: Architecture Tactics and Patterns

Designing the architecture of a software system consists of designing the structure
and behavior of the system. This comprises making decisions about the software ele-
ments, the externally visible properties of those elements, and the relationships among
them (from [2]). One of the key challenges of software architecture is to make deci-
sions that satisfy not only the functional requirements of the system, but also the non-
functional requirements, or quality attributes. One of the most important quality
attributes is often reliability. Architectural decisions may support each other, but often
conflict each other; thus tradeoffs are a common aspect of architecting. Two of the
most important types of decisions are those concerning how to meet quality attributes
(architecture tactics), and decisions about the overall structure and behavior (architec-
ture patterns). These are discussed in turn below.

Let us consider a system to book airline tickets, which will be used as a running
example. The system has multiple simultaneous users, distributed geographically.
Two of the most important requirements related to reliability are as follows:

1. Availability: the system must always be available for use; the consequences
are potentially significant loss of revenue. After all, if a customer can’t ac-
cess the reservation system, he or she will turn to a competitor.

2. Data integrity: data must be correctly recorded, and must be accurately re-
covered as necessary. Transactions must be completed accurately.

(Note that these are not the only reliability requirements on such a system, but are the
two we will consider in this example.) A tactic is a design decision that is intended to
improve one specific design concern of a quality attribute. The tactics concerning

100 N.B. Harrison and P. Avgeriou

reliability are especially important. For example, a reliability design concern is how to
detect whether a component is unable to perform its function, so that it can be re-
started. One tactic to implement this design concern is “Heartbeat”: each component
must send periodic heartbeat messages to a central controller (or, alternatively, to other
components.) If a heartbeat message is not received from a component after a specified
period, the component is assumed to be no longer sane and must be restarted.

Many tactics have been identified [2], including several important reliability tac-
tics. Other tactics have also been identified, although they might not specifically be
referred to as tactics. (See [3] and [4], for example).

Some tactics are related to each other in that they improve the same reliability con-
cern; Bass et al refer to these as “design concerns.” In some cases, such tactics are
alternatives to each other. For example, detecting faulty processing is a design con-
cern. The tactics to address this design concern are Ping-Echo, Heartbeat, and Excep-
tions. Ping-Echo and Heartbeat are alternatives to each other.

In the airline reservation system, we analyze different types of faults that the sys-
tem may experience. These include:

• Bugs in software, including infinite loops, deadlock, and livelock, can cause
software components to hang. Such problems can make the system unavail-
able.

• Hardware failures or software bugs can cause data integrity errors – it may
be impossible to write data, or reads may produce corrupt data. This affects
the correctness of the processing.

• There are numerous ways and places that communication between the client
component and the main processor may fail. If these fail at the wrong time
during the completion of a transaction, the transaction may be incorrect; e.g.,
the main server completes the transaction, but the user client does not receive
confirmation. The user thinks the transaction was not completed and tries
again, ending up purchasing two tickets.

(Again, this is a sample only). In response to these modes of failure, we design meas-
ures to deal with them. These include measures to detect and report faults, recover
from them, or prevent the faults from disrupting the system. Some of these measures
are:

• Ping-Echo: In order to detect failed or unresponsive components so they can
be restarted, a component sends out a periodic ping request to other compo-
nents which must be answered within a certain timeframe.

• Raising Exceptions: Each component must detect certain types of error con-
ditions and raise exceptions. (Handling the exceptions is of course also
necessary, and other tactics are used to handle exceptions.)

• Active or passive redundancy: In order to minimize single points of failure,
components are duplicated, with various different methods to ensure syn-
chronization between a failing component and its duplicate coming online to
replace it.

• Transactions and checkpoint/rollback: Create atomic transactions that are
recorded atomically, and ways to undo them if necessary.

 Implementing Reliability 101

Software patterns offer solutions to recurring problems in software design and imple-
mentation. A pattern describes a problem and the context of the problem, and an asso-
ciated generic solution to the problem. Patterns have been used to document solutions
to software problems. The best known software patterns describe solutions to object-
oriented (OO) design problems [11], but patterns have been used in many aspects of
software design, coding, and development [12].

Architecture patterns are patterns that describe proven architectural solutions to
common system designs. They lay out the high-level structure and behavior of the
system. They seek to satisfy multiple functional and non-functional requirements of the
system. Several common architecture patterns have been developed, and are docu-
mented so that they can be widely used [5, 13, 14]. In this paper, we concern ourselves
with architecture patterns and their relationship to reliability; for the remainder of this
paper, all references to “patterns” refer to software architecture patterns.

One of the most common architecture patterns in the Layers pattern. The layered
architecture consists of multiple hierarchical layers of functionality, each layer pro-
viding services to the layer above it, and serving as a client to the layer below [6]. In
many systems, the lower layers are hidden from all except the adjacent higher layer.

The airline booking system’s architecture is shown in the following diagram.

Fig. 1. Airline Booking System Architecture

We can see the following patterns in the architecture:

1. Client-Server: The application server and database server are the server side, with
multiple clients.

2. Layers: The application server exhibits a layered architecture.

102 N.B. Harrison and P. Avgeriou

3. Presentation Abstraction Control (PAC): The clients use the PAC pattern. Each
client has a presentation component, which interacts with an abstraction of the sys-
tem, and controlled by the business logic in the server.

4. Shared Repository: This pattern is quite speculative, as it is not clear whether ac-
cesses to the database are shared or not. For the purposes of this study, we err on
the side of more complexity, and consider that the pattern is present.

3 Factors That Influence Tactic Implementation

There are three factors involved with the impact of tactics on a multi-pattern architec-
ture. We summarize them as follows:

1. Tactics have a natural tendency to fall into one of three categories of impact on the
components of the system. These categories are based on how broadly the tactic
impacts the system, i.e. whether the tactics impact all or some of the system com-
ponents. Most of the tactics affect only some of the components of the system. In
this case, the key question becomes, “Which components are affected?” This is
important, because implementation may be easy in some components (a good fit),
and hard in others (high impact; a bad fit). Naturally, we want to implement a tac-
tic in the easiest (low impact) way possible, but are there no guidelines for where it
is easy or hard. Even if you know which components easily accommodate a tactic,
that doesn’t mean that you can automatically pick the easy spot. As noted above,
this is influenced chiefly by the reliability requirements.

2. Previous decisions about the system become constraints to which the system must
conform. Although all previous decisions may affect the selection and implementa-
tion of tactics, we are chiefly concerned in this work with decisions about software
architecture patterns – mainly which architecture patterns to use. The documenta-
tion of many architecture patterns note whether there are particular problems with
implementing certain reliability tactics. This helps answer the question about
guidelines for where a tactic’s implementation is easy or hard. In architectures with
multiple patterns, you can then see where tactics fit well in the architecture.

3. Reliability requirements: There are two aspects of reliability requirements that are
important. First, a requirement specifies a certain property of reliability to be
achieved, such as high availability. This helps direct the selection of particular tac-
tics to be used. The second aspect is that a reliability requirement must indicate
what part(s) of the application it applies to. For example, a requirement of high
availability specifies that it concerns call processing (not system administration).
This directs where a component is to be implemented, namely in the part of the ar-
chitecture that does call processing.

The next three subsections describe the factors in detail.

3.1 The Nature of Tactics

Section 2 has described how given tactic impacts a given pattern; additional detail is
found in [8]. If a pattern is part of a multi-pattern architecture, the magnitude of the
impact may change, but the nature of the impact of the tactic on the pattern does not

 Implementing Reliability 103

change. For example, a common tactic for assessing the health of processes is “Ping-
Echo.” The nature of the impact is that processes must receive ping messages and
respond to them. A multi-pattern architecture generally has more processes than a
single-pattern architecture; thus more processes are impacted by the Ping-Echo tactic
(all processes must receive and respond). Therefore, the magnitude of the impact of
the Ping-Echo tactic is larger (than in a single pattern architecture), but the nature of
the impact – the way that processes are modified – does not change.

The impact of a tactic on the individual patterns sets up the possible range of im-
pact of the tactic on the entire system. In other words, we look at the impact of the
tactic on the individual patterns in the system; the aggregate impact of the tactic on
the system is generally no worse (greater) than the greatest impact on an individual
pattern, and the impact is generally no better (less) than the smallest impact on any
individual pattern.

Let us consider why. First, let us consider the best case: the tactic must be imple-
mented somewhere in the system; the place with the least impact would be the pattern
with the least impact; it can’t be less than that. Even if one were to implement part of
the tactic in one pattern and part in a different pattern, the amount of implementation
can’t go down; it’s essential complexity (see [16]).

The worst case would be that the tactic must be implemented in all the patterns in
the system. If the tactic is implemented in all patterns, it impacts each one, and the
overall impact would approach the impact of the greatest impact on an individual
pattern. This gives us a typical upper bound. For example, raising exceptions is typi-
cally required of all components of a system; therefore, it affects all the components
of every pattern in the system. Therefore, each pattern feels the full impact of this
tactic.

Let us now take a higher level view than detailed impact on individual patterns.
We examine the impact of a tactic on the components of an architecture as a whole. In
particular, we are interested in whether or not a tactic impacts a component. We find
that there are three general categories of interaction of a tactic with the architectural
components of a system. With one exception (the second category), we do not con-
sider the details of that interaction, or how that interaction is accomplished. The cate-
gories are as follows:

1. A tactic impacts all of the components in the architecture. For example, a tactic
for fault detection is Exception Raising. All components must implement Excep-
tion Raising.

2. A tactic impacts all of the components in the architecture, and one of the func-
tions required by the tactic is that there is a central coordinating component that
controls the other components in some way. (This is the exception about details of
interaction that is mentioned above). For example, in the Ping-Echo tactic, a cen-
tral process periodically sends requests to processes requesting that they verify
their health.

3. A tactic is implemented using just some of the components in the architecture,
leaving the remainder of the components unaffected. Which specific components
are used depends on where the tactic is to be implemented, which is determined by
the specific reliability requirements. For example, systems where the correctness of
certain calculations are critical may employ the Voting tactic. In voting, the
calculation is performed by three or more different components, each developed

104 N.B. Harrison and P. Avgeriou

independently of the others. In this case, only the component that performs the cal-
culation and its calling component are affected; all other components have no other
changes.

We analyzed all the reliability tactics given in [2] and found that each tactic can be
classified in one of the three above categories. We also analyzed several tactics from
[3] and [4], and also found this to be true. Our evidence suggests that these categories
are sufficient to classify all reliability tactics. Due to space limitations, we focus only
on the tactics from [2].

A few words of explanation are in order. First, architectures are composed of con-
nectors and components, as well as behavior. However we consider only components
for simplicity. Also, based on previous experience [8], we expect that connectors
work the same way as components. A thorough exploration of connectors and behav-
ior is a subject of future work.

Second, one might wonder why the second category (impact all components, with
a central controller) is a separate category from the first, after all, it is a special case of
the first. The controlling component has strong architectural implications – a control-
ler must communicate with all other components. If an architecture already has such a
controller, it is often easy to incorporate the tactic, and may even be trivial. For ex-
ample, the Broker pattern has such a component. On the other hand, if the architecture
has no such component, adding it is usually very disruptive to the architecture. There-
fore, it is useful to consider this category separately from the first.

In the airline reservation system, let us consider the tactic we identified. The tactics
we identified fall into the following categories:

1. Ping-Echo: This requires that each component must respond to the ping messages.
In addition, one component must initiate the ping messages, and manage the re-
sponses. (Category 2: impacts all components, plus a central component). (Another
possible option is to dispense with a central controller, and have a scheme where
components are responsible for monitoring each other’s health.) It appears that the
most natural central component is the application server, (see figure 2). Or because
the application server may itself be composed of multiple software components
(not shown), it may a component within the application server.

2. Exception Raising: Generally, Exception Raising should be done consistently
across the application, which means that each component must raise exceptions as
well as respond to other exceptions. (Category 1: There is no explicit central com-
ponent, but all exceptions must be appropriately handled. This may hint at a central
“handler of last resort”, but it really depends on the tactics chosen to handle the ex-
ceptions). There are two special considerations: first, who should the database
component report exceptions to? Clearly, exceptions should be reported to the
component that can correctly handle the fault; in this case, it is likely the applica-
tion server component. Second, should the client presentation components also re-
port exceptions to the application server? It is more likely that the exceptions be
raised and handled locally.

3. Active Redundancy: A single component can manage the redundant components.
Some systems are entirely redundant, while others may have a few critical compo-
nents that are redundant; perhaps the data store or communication infrastructure
components. Which components must be duplicated depends on the system

 Implementing Reliability 105

requirements (Category 3). The obvious candidates for redundancy are the applica-
tion server and the database. In order to maintain availability, the application server
should be replicated, and active redundancy appears to be a viable choice. Because
information from the database is necessary to make a reservation, the database
should also be available at all times, and should be replicated.

4. Passive Redundancy: This impacts more than one component, because the passive
component must receive state updates from the active. It is likely that the modifica-
tions can be confined to a few components though. (Category 3, impacts some
components; who is duplicated depends on the requirements; same rationale as for
Active Redundancy). Passive redundancy may be an alternative to active redun-
dancy for the application server. Due to the fact that database actions are transac-
tional in nature, passive redundancy may be a more natural choice for replicating
the database than active redundancy. Note that regardless of the choice of redun-
dancy type, one should try to design it so that it is invisible to other components;
i.e., it should be entirely transparent to the clients.

5. Transactions: Processing is bundled into transactions which can be undone all at
once, if necessary. Transactions make checkpointing and rollback easier. It affects
those components that deal with the details of the transactions. (Category 3: im-
pacts some components. The requirements help shape which components deal with
transactions). Any database actions are naturally transaction-oriented; this is a
good fit, and can be done entirely within the database component. However, a pur-
chase is also a natural transaction, and the notion of transactions therefore must
permeate the design of the application server, as well as the clients themselves.
Here we see how the notion of a transaction is driven by the requirements, which in
turn affects how and which components are affected.

6. Checkpoint/Rollback: Likely to affect all components that deal with the
data/transactions/state that must be checkpointed and rolled back. This impacts
some or all of the components that are directly involved with the state of the data
being processed. (Category 3, because not all components are directly involved in
the state of the system). This is a natural fit with transactions, and the impact fol-
lows the same pattern: database transactions can be checkpointed and rolled back
entirely within the database components; rolling back of user purchases affects all
components.

For each tactic, this information helps us understand the components needed for im-
plementing it. Of course, this must be placed in the context of the architecture of the
system, including the patterns used.

3.2 The Impact on Multiple Patterns

Because tactics are realized within the architecture, tactics have some effect on the
architecture and the architecture patterns used. While the purpose of a tactic is to
focus on a single design concern of reliability, the impact may be broad, affecting
many or even all of the components of the architecture.

We have studied the impact of implementing tactics on patterns and in the case
where the pattern provides the structures needed by the tactics , we found that the
impact can be minimal. On the other hand, the impact can be great if the pattern’s
structures must be substantially modified, or if many different structures must be
added. We described five levels of impact as follows:

106 N.B. Harrison and P. Avgeriou

1. Good Fit (+ +): The structure of the pattern is highly compatible with the structural
needs of the tactic.

2. Minor Changes (+): The tactic can be implemented with few changes to the struc-
ture of the pattern, which are minor and more importantly, are consistent with the
pattern. Behavior changes are minor.

3. Neutral (~): The pattern and the tactic are basically orthogonal. The tactic is im-
plemented independently of the pattern, and receives neither help nor hindrance
from it.

4. Significant Changes (-): The changes needed are more significant. They generally
involve adding a few components that are not similar to the pattern, and/or moder-
ately modifying the existing components.

5. Poor Fit (- -): Significant changes are required to the pattern in order to implement
the tactic. They consist of the addition of several components, major changes to ex-
isting structure and behavior, and/or more minor changes, but to many components.

These levels describe the amount of impact on the architecture; full descriptions are
given in [8]. One may also consider this to be a rough indicator of the difficulty of
adding a given tactic, although we do not make any specifications of difficulty or
expected effort.

In [8] we analyzed how a given reliability tactic is implemented in a given archi-
tecture pattern. We see that the tactic can require the architect to modify components
and connectors, and possibly even create additional components and connectors.
However, industrial systems are quite complex, involving multiple architecture pat-
terns. Therefore, we must consider implementing tactics in this larger context.

In a study of the architectures of 47 industrial software projects, we found that 37
used more than one architecture pattern [15]. Most had two, three, or four patterns.
The most we saw in a single architecture was eight. Therefore, it is not sufficient to
consider the impact of a tactic on a single pattern, but we must consider the potential
impact on all the patterns in the architecture.

There are several possibilities of how a tactic might interact with an architecture
that contains multiple architecture patterns. A possibility on the one side is that the
tactic interacts with all the patterns in the architecture. On the other extreme, the tactic
might need to interact with only one of the architecture patterns. Clearly, the second
possibility has a smaller impact on the architecture than the first. Therefore, for a
given tactic and a given system, the challenge is to determine how many of the pat-
terns are impacted, and in what way the tactic implementation affects them.

The impact of tactics on multiple patterns is shaped by the category of tactic, as de-
scribed previously. As the pattern category differentiates the tactics on their impact on
components, and patterns embody components, we see how tactic categories relate to
multiple pattern impacts. They are as follows:

1. If the tactic impacts all components, then it must be implemented in all the pat-
terns. The magnitude of impact will tend to be at or near the magnitude of the
“worst” pattern in the system. For example, the tactic “raising exceptions” requires
that every component either raise exceptions or have a good reason not to. Thus
this tactic affects every component of every architecture pattern.

2. If the tactic impacts all components and requires a central controller, then the im-
pact on the system will often be better than the impact of the “worst” pattern. The

 Implementing Reliability 107

reason is that high impact on the “worst” pattern may well be because one needs to
add a central component (and all the associated connectors). However, if there is
another pattern in the architecture that has a central component, then the tactic will
probably be able to take advantage of it and can be implemented in that pattern. In
fact, the necessary connectors will also probably be in place. Thus the impact on
the system may be near the impact on the pattern with the central component. This
impact can be quite low. So, in this case it depends on which patterns are present in
the system. For example, during an architecture review of a distributed time-
tracking system, we found that the designers had neglected to sufficiently handle
cases where a client loses connectivity with the server. A heartbeat was added
which (in this case) required that each component periodically generate a heartbeat
message, as well as a central component to handle the heartbeat messages and de-
tect unresponsive components. The system included the Broker and Layers pat-
terns, and the central component was a natural fit with the broker component of the
Broker pattern.

3. If the tactic impacts some of the components, one would certainly want to imple-
ment the tactic in the pattern with the smallest impact. However, depending on the
requirements of the application, this may not always be possible. We discuss this in
the next section. However, this gives a starting point for considering impact; a best
case scenario. For example, in a space exploration simulation game, we explored
the need to recover from erroneous input by using transactions and rollback. The
system included both the Layers and Active Repository patterns. The designers
could consider which of the patterns would be a best fit for these tactics, but the
key consideration was the application itself – what exactly needed to be rolled back
in the event of an error. In this application, the fact that games were dynamic indi-
cated that transactions and rolling back were more appropriately implemented in
the Layers pattern.

The following table summarizes the nature of the impacts:

Table 1. Impact Categories’ Impact on Multiple Patterns

Tactic Impact
Category

Impact on Patterns’
Components

Impact Tendency

All components All components in all the
patterns are affected

Impact is that of the pattern
with the greatest (“worst”)
impact

All components,
plus central controller

All components in all the
patterns affected; placement
of central controller is
significant

If a pattern supports a cen-
tral controller, impact is less
than the “worst” pattern

Some components May be possible to im-
plement in a single
pattern

Ideally, impact is that of
the “best” pattern. But
requirements play a major role
here.

108 N.B. Harrison and P. Avgeriou

This gives us a basic understanding how a given tactic will be implemented in the
patterns of an architecture. It also gives us a basic idea of the magnitude of impact on
the architecture caused by the tactic. However, this information is as yet insufficient
to fully understand how a tactic will be implemented in the architecture. We need
more information, specifically about the purpose of a given tactic in the system. We
need to consult the requirements of the system; the other major factor.

In the airline reservation system, let us consider the impact of the tactics we identi-
fied on the patterns in the system. Remember the four patterns identified were
Client-Server (CS), Layers (L), Presentation Abstraction Control (PAC), and Shared
Repository (SR).

1. Ping-Echo: Impact: CS: +, L: +, PAC: ~, SR: ~. Since this tactic impacts all com-
ponents, plus a central component, the overall impact should be neutral or better.
Analysis: All components must be notified and respond. CS components have the
necessary communication paths built in, and the Server component is a natural cen-
tral component. Therefore this tactic is compatible with the patterns, but is not an
ideal match (overall impact: +).

2. Exceptions: Impact: CS: ~, L: ++, PAC: ~, SR: ++. Since this tactic impacts all
components, the overall impact tends to be the most severe of the patterns; in this
case neutral.

3. Active Redundancy: Impact: CS: +, L: +, PAC: +, SR: ++. We see that this tactic is
compatible with all the patterns. Since it impacts some components, the overall
compatibility is good, and if the tactic can be confined to the SR pattern, the over-
all compatibility could be very good.

4. Passive Redundancy: Impact: CS: +, L: +, PAC: ~, SR: ++. The impact is similar
to Active Redundancy, except for PAC, which is not as compatible. Does the fact
that this tactic is not as good a fit with PAC as Active Redundancy push us toward
Active Redundancy? Not necessarily. If the redundancy is implemented in compo-
nents that do not interface with the PAC components, it doesn’t matter.

5. Transactions: Impact: CS: ++, L: ++, PAC: +, SR: ++. This tactic is a good fit with
all the patterns except PAC, where there are issues of keeping multiple presenta-
tions in synch. Since this tactic impacts some components depending on the re-
quirements of the system, we may be able to implement it away from the PAC
components.

6. Checkpoint/Rollback: CS: ++, L: ++, PAC: -, SR: ++. This is very similar to
Transactions except that keeping multiple transactions in synch is likely more in-
volved because of rollbacks. The analysis is the same, though.

3.3 The Role of System Reliability Requirements

The above general descriptions of impact are a starting point for understanding how a
tactic impacts a system architecture. In addition, the system’s reliability requirements
that trigger the selection of the tactics play a major role in the impact of the tactics.
Certain system requirements may cause a tactic to be implemented in certain compo-
nents; that is, in certain architecture patterns. This can override any attempt to imple-
ment the tactic where it would be easiest to implement. Therefore, decisions about
how (and where in the architecture) to implement tactics are driven not just by the

 Implementing Reliability 109

architectural structure, but also by the system reliability requirements. This then de-
mands that the detailed requirements be analyzed as part of the reliability architecting
process.

System reliability requirements shape the implementation and impact of reliability
tactics in two important ways. The first way is that reliability requirements influence
which design concerns are to be satisfied by tactics. In particular, different ways in
which faults affect the system are identified and the actions taken in response are
decided in order to meet the requirements. For example, consider a telecommunica-
tions system that must be highly available to process calls – 99.999% of the time. In
order to meet this requirement, architects identify that components may fail due to
hardware or software failures. In order to meet the availability requirement, all com-
ponents must run nonstop; therefore, failed components must be detected and re-
started quickly. The design concern is timely detection of failed components. A
tactic that implements this design concern might be Heartbeat.

The second way that requirements affect the impact of reliability tactics is that they
often specify which part of the system a tactic applies to. For instance, in the example
above, high availability applies to call processing only. Therefore, any components
that are involved in call processing must implement their portion of the Heartbeat
tactic. However, other components, such as those dealing with provisioning, system
administration, or billing, will likely not be subject to the Heartbeat tactic.

The process of architecting is highly iterative and quite intuitive. Therefore, one
doesn’t necessarily determine all the reliability requirements first, etc. In fact, the
requirements, architecture decisions, and tactical decisions are done in different or-
ders, piecemeal, and basically together. So a decision to use a tactic, combined with a
reliability requirement, might dictate the selection of a particular pattern that fits the
tactic well. Or a tactic might be selected over a different alternative because it fits
with a pattern that has already been selected. So the process is very fluid; we have
found that consideration of architecture and the selection and design of reliability
tactics often happen simultaneously [17].

Consideration of each of these factors helps complete the picture of how and where
a tactic will be implemented in the architecture, as well as which tactics to use (if not
already determined). The result is that the architecture is more complete: the architec-
ture patterns are now modified to accommodate the implementation of the tactics.

Let us consider the tactics in the airline reservation system that are category 3 –
they impact some components based on the requirements of the system.

1. Availability: in considering Active or Passive Redundancy to help achieve high
availability, one must decide which critical components must be replicated. The
critical functionality to be replicated is the business logic, which is found in the
Layers pattern, so the overall impact is that of Redundancy on Layers. Since the
impact of both redundancy tactics on the Layers patterns is positive, it helps us un-
derstand that from an architecture viewpoint, it doesn’t matter which redundancy
tactic we select in this application.

2. In order to achieve data integrity, we consider using Transactions and Check-
point/Rollback: Both tactics are a very good fit for all the patterns except PAC. So
the question becomes whether transactions and rolling back can be defined below
the level of the user interface. This is very likely – user interaction can be designed
so that actions are encapsulated in transactions, and rolling back to previous states

110 N.B. Harrison and P. Avgeriou

or data should be transparent to the user. This information guides us to design the
user interaction along lines of transactions and gives us motivation for doing so.

4 Use in the Architecture Design Process

One of the major challenges in developing reliable systems is that decisions about
implementing reliability must be made early; it is exceedingly difficult to retrofit
reliability into an established architecture if it was not planned for. Yet the implica-
tions of architectural reliability decisions may not be understood, resulting in design
and implementation difficulties later on. The information about how requirements,
tactics and architecture patterns interact can help ameliorate these difficulties, or at
least anticipate some of them. The information can be used during the architecture
design process to consider tradeoffs in tactic selection, to refine and re-negotiate re-
quirements, and to a lesser extent, in pattern selection or modification. The impact
information is not intended to be used to generate specific effort estimates; it does not
have sufficient detail or specificity.

In this chapter, we do not propose a specific architecture design process for incor-
porating reliability tactics into an architecture. Instead, we describe how the informa-
tion about how requirements, tactics and architecture patterns interact can fit in a
general model of architectural design [18]. The main activities in the model are archi-
tectural analysis, architectural synthesis, and architectural evaluation. The output of
architectural analysis is architecturally significant requirements, the output of archi-
tectural synthesis is candidate architectural solutions, while architectural evaluation
assess the candidate solutions with respect to the requirements.

The first activity, architectural analysis, is focused on understanding the architec-
turally significant requirements. This includes refining reliability requirements and
identifying the associated design concerns. For example, if high availability of the
system is a requirement, an associated design concern may be replication. A key ques-
tion is which part of the system must run nonstop, as that will determine where the
candidate tactics must be implemented. We might also ask whether the system may
have momentary interruptions, which would allow a passively redundant solution
rather than an active redundancy. The answers to these questions help clarify the
requirements, and will be used (later) as tactics are selected and decisions made about
where the tactics should be implemented.

The architectural synthesis activity is typically where tactics and patterns are con-
sidered. The design concerns point us to certain tactics; for example the replication
design concern leads us to consider Active Redundancy, Passive Redundancy, and
Spare. The candidate tactics and requirements are major drivers for pattern selection.
This implies a certain amount of iteration among architectural analysis and synthesis,
as the architecturally significant requirements and candidate patterns are iteratively
refined. The information about the impact of tactics on multiple patterns can be used
here to optimize the required effort from the combination of patterns and tactics. Can-
didate patterns and tactics are major pieces of candidate architecture solutions.

The architectural evaluation activity is to determine whether the proposed architec-
tural solutions fulfill the architecturally significant requirements. The additional in-
formation about tactics’ categories of interaction as well as the detailed reliability

 Implementing Reliability 111

requirements can enhance the ability of architects to effectively evaluate candidate
architectural solutions.

The following figure shows the architecture design activities as described by Hof-
meister et al. It is annotated with the activities related to requirements, tactics and
patterns, and their interactions. These are shown by the numerals attached to activities
and data flows, and are described at the bottom of the figure.

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architecturally
Significant

requirements

Candidate
Architectural

solutions

Architecturally
Significant

requirements

Validated
architecture

Architectural
Concerns

Context

Key

activity

dataflow

1
2

3

4
1

1. Reliability requirements refined; design concerns identified .
2. Tactics and patterns identified, impacts identified, tradeoffs among tactics and
patterns made. Requirements drive decisions of where to implement tactics.
3. Candidate solutions include tactic and pattern information, with impact information
4. Requirements and nature of tactics can help evaluate solutions

Fig. 2. Architecture design activities from [18], with pattern and tactic activities

The following are two examples of how the tactic and pattern information is used
in the architectural synthesis and evaluation activities to improve the quality of the
architecture.

The activity was architectural synthesis, and the system performed automated se-
quential manipulation of paper. The key reliability requirements included that the
papers had to be processed correctly, and that any machine malfunctions did not cause
further problems (fault tolerance). Key tactics used included transactions, ping-echo,
and exception raising. The main pattern was Pipes and Filters (P&F), which supported
the sequential (and configurable) nature of the paper processing. Another prominent
pattern was Model View Controller (MVC), which provided the user interaction with
the system. The main challenge was that the reliability tactics all were poor fits for the
P&F pattern. However, they all were able to take advantage of the controller compo-
nent of the MVC pattern, which communicated with each of the components of the
P&F pattern.

Discussion: reliability tactics and architectural patterns are generally considered
simultaneously, so one might ask which came first. Did the architects tentatively
select the patterns first, and then used their components in designing the reliability
tactics, or did they see the need for a controlling component for the tactics, and then
added the MVC pattern on top of that component? It is almost certainly some of both:
the highly iterative nature of architectural design means that many ideas are consid-
ered and tried as the architects work to create an architecture. Regardless, the infor-
mation about how tactics and patterns fit together help shape the architecture.

In the second example, the activity was an architectural evaluation, performed just
as development was getting underway. The system was a distributed time tracking

112 N.B. Harrison and P. Avgeriou

system. The key reliability requirements were data accuracy and availability, although
availability was not critical – the consequences of downtime were not catastrophic.
Key patterns were Client-Server and Layers (on the server); Broker was identified
during the evaluation as a desirable extension to Client-Server. The review uncovered
that the architects had not fully considered all the ramifications of faults, and as a
result, the Heartbeat tactic was added. Impact on the three patterns showed that it was
the best fit in the Broker pattern, which added to the motivation to adopt the Broker
pattern. It should be noted that the reliability requirements indicated the need to know
the health of the remote clients, which fit exactly with the Broker pattern.

Discussion: In this case, the designers were somewhat inexperienced in reliability;
more experienced designers may well have designed the system more comprehen-
sively for fault tolerance. In such cases, the reviews serve to highlight potential issues
with design or maintenance of the software. For example, a review of the paper proc-
essing system in the first example revealed the incompatibility between the P&F pat-
tern and the reliability tactics as a potential trouble spot during future maintenance
and enhancement.

5 Validation and Case Study

Validation of this work has three parts that correspond to the three factors discussed
in section 3: the nature of tactics, the impact on multiple patterns and the role of re-
quirements. We began by analyzing the reliability tactics to determine how many
components in a given architecture they affect (some or all). This confirmed the three
categories of tactics interaction with components, described above. The second part
was to verify and refine the impact categories of tactics on multiple patterns, by con-
sidering the tactics applied to common pairs of architecture patterns. The third part
was a case study that considered a real architecture where we identified its architec-
ture patterns, and analyzed how the reliability requirements influence the selection
and implementation of tactics.

5.1 Tactic Impact on Architectures

We analyzed all the reliability tactics from Bass [2]. For each tactic, we analyzed how
it should be implemented: what functionality is needed, and what components and
connectors are needed to implement that functionality. We determined whether the
tactic’s implementation must be in all components, or just some of the components.

We began by identifying how (in general terms) the tactic should work, and what
components and connectors are needed. This was done by studying the tactic descrip-
tions [mainly in 2, 3, and 4]. We then considered how the tactic would be imple-
mented in a system. Would the tactic require that all major components of a system
take part in implementing the tactic, or could the tactic be implemented in a subset of
a system’s components? In each case, we found that a tactic was clearly in one or the
other category.

For the tactics that required implementation in all components, we also examined
the tactic to see whether a central controlling component was a part of the tactic. We
found that these tactics could be categorized into either needing a central component

 Implementing Reliability 113

or not. Ping-Echo requires a central controlling component. Raising Exceptions does
not (note that handling the exceptions is separate from raising them, and would be
done using whatever tactics are most appropriate for the type of exception). The tactic
“Heartbeat” requires implementation in all components, and may or may not employ a
central controlling component. Aguilera et al describe the use of a heartbeat with no
central controller in [19].

For the tactics that impact some components, we considered which components
would be affected. The ideal model is that the tactic should be implemented in the
pattern where it is the best fit – where the impact is the lowest. However, we found
that the components where a tactic should be implemented depended on what part of
the system needed the associated reliability. For example, there are several replication
tactics (Active Redundancy, Passive Redundancy, and Spare). In order to decide in
which pattern to implement the redundancy, one must decide which part of the system
needs to be replicated. This would be dictated by the requirements of the system,
namely what critical functions must run nonstop. We found that in every case where a
tactic is implemented in some components, we could not say definitively where the
tactic should be implemented, because it would provide that reliability feature to a
particular part of the system. Instead, the answer was always, “It depends on the re-
quirements to state which part of the system must have this reliability feature.”

We found that each tactic fits into one of the three categories, as shown in the table
below. (The categories, as described earlier are 1 – all components, 2 – all compo-
nents with a central component, and 3 – some components).

Table 3. Categories of Impact of Common Reliability Tactics

Design Concern Tactic Impact

Category
Tactics for Fault Detection
 Ping-Echo 2
 Heartbeat 1 or 2
 Exceptions 1
Fault Recovery --

Preparation

 Voting 3
 Active Redundancy 3
 Passive Redundancy 3
 Spare 3
Recovery -- Reintroduction
 Shadow 3
 State

Resynchronization
3

 Checkpoint/Rollback 3
Fault Prevention
 Removal From Service 3
 Transactions 3
 Process Monitor 3

114 N.B. Harrison and P. Avgeriou

We see that most of these tactics impact some of the components. We also see that
the tactics’ categories appear to be generally consistent within design concerns. We
have not studied other reliability tactics (from Utas [3], Hanmer [4], or other sources)
enough to know whether these trends are consistent; this is noted as future work.

5.2 Impact of Tactics on Pairs of Patterns

To begin to validate the information about how tactics impact multiple-pattern archi-
tectures, we considered the impact of each tactic on common pairs of patterns. Future
work is warranted to extend this to pattern triplets and beyond; however, in our analy-
sis of the airline booking system (the running example), we found that the relationship
among pairs applied sequentially appears to be the same as analyzing multiple pat-
terns together. In our earlier work we showed that virtually all significant systems
contain multiple architecture patterns [15], and that the most common pairs of archi-
tecture patterns identified were the following:

1. Broker – Layers
2. Layers – Shared Repository
3. Pipes and Filters – Blackboard
4. Client-Server – Presentation Abstraction Control
5. Layers – Presentation Abstraction Control
6. Layers – Model View Controller

We analyzed how each tactic would be implemented in a system consisting of each
one of the aforementioned pairs of patterns. We determined whether the impact cate-
gory (see Section 3.2) was valid and whether the nature and magnitude of the impact
supported the descriptions given above. This analysis helped form and validate the
categories and the nature of the impact of the tactics in each category. A summary of
the impact is shown in table 3. In the following table, the type of impact of the tactic
is given with the tactic name. In the boxes, the two impact ratings in parentheses are
the ratings of the two patterns, respectively. The other rating is the composite rating.
In many cases, the rating shows a range, or is given as “likely” or “close to.” These
are cases where the requirements play a major role in where the tactic should be im-
plemented, and this affects the impact on the architecture.

We note that tactics that are category 3 (some components) normally have impact
that ranges between the impacts of the two patterns; the impact depends on the reli-
ability requirements. However, in cases where the impact of the two patterns is the
same, there would be no difference so we do not see a range of impact. We see this in
several of the tactics in the table.

In the table we see that the Broker-Layers pattern pair is most compatible with the
tactics. In fact, only one tactic has worse than a positive impact. The Broker-Layers
pair is also the most common pair we found. This is more that good fortune: architec-
ture patterns are usually at least partly selected based on the tactics that are selected
(see [2]). We can surmise that one reason for selecting the Broker and Layers patterns
is to accommodate one or more of these tactics.

 Implementing Reliability 115

Table 4. Impact of Tactics on Pairs of Patterns

 Patterns

Tactics

Layers –
Broker

Layers –
Shared
Rep

P&F –
Blackboard

C-S –
PAC

Layers –
PAC

Layers –
MVC

Ping-Echo
(all, central)

(+, ++)
++

(+, ~)
~

(--, ~)
Likely -

(+, ~)
Close to
+

(+, ~)
~ or
better

(+, ~)
~

Heartbeat
(all, central
or not)

(+, ++)
++

(+, ~)
~

(--, ~)
Likely -

(+, ~)
Close to
+

(+, ~)
~ or
better

(+, ~)
~

Exceptions
(all)

(++, +)
+

(++, ++)
++

(--, --)
--

(~, ~)
~

(++, ~)
~

(++, ~)
~

Voting
(some)

(+, ++)
+ or
better

(+, ~)
Likely +

(++, +)
Likely ++

(+, +)
+

(+, +)
+

(+, +)
+

Act. Red.
(some)

(+, ++)
up to ++

(+, ++)
likely ++

(++, +)
+ to ++

(+, +)
+

(+, +)
+

(+, +)
+

Pass. Red.
(some)

(+, ++)
up to ++

(+, ++)
likely ++

(-, ~)
 Likely ~

(+, -)
Likely ~

(+, -)
Close to
+

(+, -)
Close to
+

Spare
(some)

(~, ++)
up to ++

(~, -)
up to ~

(+, ~)
Likely +

(+, ~)
~ to +

(~, ~)
~

(~. -)
Likely ~

Shadow
(some)

(+, ++)
+ or
better

(+, ~)
likely +

(+, -)
- to +

(+, +)
+

(+, +)
+

(+, -)
Close to
+

State
Resync (s)

(+, ++)
+

(+, ++)
+ to ++

(--, +)
Close to --

(+, -)
Close to
+

(+, -)
Close to
+

(+, ~)
Close to
+

Checkpoint
Rollback
(some)

(++, ++)
++

(++, ++)
++

(--, --)
--

(++, -)
Close to
++

(++, -)
Closer to
++

(++, +)
Close to
++

Rmve from
Service (s)

(~, ~)
~

(~, ~)
~

(-, -)
-

(~, ~)
~

(~, ~)
~

(~, ~)
~

Transactions
(some)

(++, ++)
++

(~, ~)
~

(-, --)
Close to -

(++, +)
Close to
+

(++, +)
Close to
++

(++, ~)
Close to
++

Process
Monitor (s)

(++, ++)
++

(~, ~)
~

(-, -)
-

(~, ~)
~

(~, ~)
~

(~, ~)
~

116 N.B. Harrison and P. Avgeriou

5.3 Case Study: Review of an Architecture

We performed an architectural review of a system. As part of this review, we identi-
fied the patterns in the architecture, the tactics used to achieve high reliability, and
how the tactics and patterns interacted. The data from this review should support or
refute the following questions:

1. Do the reliability tactics used impact multiple patterns?
2. Do the tactics impact the patterns in the tree ways described?
3. How do the failure modes impact where tactics are implemented?

The system we reviewed is proprietary, so details that identify the company, exactly
what the system processes, and the exact architecture cannot be given. A general
description of the system is as follows: It provides customized sequential processing
of certain types of physical materials. It is in effect, an automated assembly line, with
sequential stages, performing actions on the materials. The system includes custom
hardware modules, controlled by software within each module, as well as central
control of the entire assembly line.

Fig. 2. Generalized architecture of assembly processing system

The system has important reliability requirements. The most important are that the
assembly must be done correctly – they must guarantee that no finished product has
been assembled incorrectly. A closely related requirement is that no finished product
may have any damaged parts. Another important requirement is that the system must
have high throughput; however, this does not imply that high availability is required.

Important failure modes, as well as the measures (tactics) adopted by the system to
deal with them included the following:

1. A hardware module ceases to function because of a hardware or software malfunc-
tion. In order to detect this, the designers used a Ping-Echo, with a central controller.
Corrective action included notification of upstream modules to suspend work, but al-
lowed downstream modules to complete processing. This is roughly analogous to the

 Implementing Reliability 117

tactic, “Fail to a Stable State”, described by Utas [3]. Repairing the unit was a manual
operation, so an alert was issued to the user.

2. Materials may be damaged by processing, or may arrive already damaged. In any
case, a module may receive damaged materials. The modules have no way of
automatically discarding damaged materials, so the corrective actions are the same
as number 1. The difference is in detection: a module can detect damaged materials
and use the “Raise Exceptions” tactic to inform the central controller.

3. If the communication link between the central controller and a processing module
fails, the module may not be able to respond to commands such as suspending
processing, nor can it report faults such as damaged materials. In this case, it ap-
pears to the central control that the module is not responsive, so it treats it as num-
ber 1, above.

4. The result of suspending processing can result in materials being not completed, or
perhaps being completed incorrectly. The system must be designed so this does not
happen. In order to prevent this problem, the processing of materials was divided
into discrete units that could be completed independently; these units can be con-
sidered to be transactions of work.

The architects used the following tactics to achieve their reliability goals: Ping-Echo,
Raising Exceptions, Fail to a Stable State, and Transactions. The key feature of the
architecture was a set of independent hardware modules, arranged in sequence to
process the materials. Their operation was coordinated by a central coordinator, which
included a user interface. The architecture used numerous patterns, notably Model-
View-Controller (the View was the user interface, the central controller was the Con-
troller, and the processing modules together were the Model), Pipes and Filters (the
Filters were the processing modules), Layers (within each processing module), and
State-Driven (the system taken together).

Let us see how each tactic supports or refutes the earlier questions.

1. Ping-Echo must be implemented in the processing modules, but requires a coordi-
nator. It does impact multiple patterns: each filter in Pipes and Filters must imple-
ment it; within each, at the highest layer in the Layers pattern; the State-Driven
system must be aware of it, and the Controller in Model-View-Controller coordi-
nates the pings.

2. Exceptions are raised by the Pipes and Filters, and the Layers within them. Any
components involved with the system state would raise exceptions if there are any
issues with state. Since the Filters are also the Model, they raise exceptions, but
more to the point, the Controller must have some mechanism for catching the ex-
ceptions. So all patterns are affected.

3. Fail to a Stable State was not listed in the main analysis of the tactics, but it clearly
impacts the Model-View-Controller, the Filters, and the State-Driven patterns.

4. Transactions impact the Filters and perhaps the Layers within them. Since the
concern is the unfinished work within the Filters, it may be possible for the Filters
to handle this tactic without involving other patterns – for example, the controller
may simply have to issue a “resume” command, and the Filters complete the trans-
actions in progress.

118 N.B. Harrison and P. Avgeriou

The impact of the tactics used on the architecture is shown in the following table. This
table shows the impact of the tactics on the individual patterns, and the overall
impact, along with an explanation.

Table 5. Impact of tactics on individual patterns and overall architecture

 Pipes & Fiters Layers MVC State-Driven Overall
Ping-Echo - - (each Filter

must respond,
needs central
cntl)

+ (good fit) ~ ~ (States and
pings or-
thogonal

- - (each
Filter must
respond;
MVC
provides cntl)

Raise
Exceptions

- (each Filter
must raise ex-
ceptions

++ (also is
natural fit
for han-
dling)

~ + (also good
fit for
handling)

- (all
components
must
implement,
including
Filters

Fail to
Stable State

+ (Filters can
simply stop
processing)

++
(Layers can
catch lower
level er-
rors)

+
(States
mainly
in
Model)

++ (a natural
fit)

+ (all
components
affected,
including
Model and
Filters)

Transactions ~ (Can help to
divide work)

++ (good
fit)

~ ++ (a natural
fit)

++
(implemented
in State: in
Model and
Filters with
few changes
to them)

This shows us two characteristics of implementing tactics in the architecture. First,

we see that some tactics might be implemented where there is a good fit with the
patterns in the architecture. We see this with the following tactics: Transactions, and
Fail to a Stable State. Of course, this depends on the types of failures and how they
must be handled according to the requirements.

The second characteristic is that some tactics require that all the components of the
software implement the behavior of the tactic; this is the case with these tactics: Ex-
ceptions and Ping-Echo. The impact of this characteristic is particularly striking in the
case of Ping-Echo: in order for the filters to implement it, they had to establish direct
communication with a central component, as well as implement mechanisms to re-
spond to the ping messages in a timely manner. This caused a significant deviation
from the standard Ping-Echo pattern.

This case study shows an example of each of the three types of impact of tactics
described earlier. It shows how these tactics impact an architecture consisting of
multiple tactics.

 Implementing Reliability 119

6 Related Work

The reliability tactics originally described by Bass et al [2] have been explored in
more depth. Several of the tactics have been further specified, resulting in new sets of
more specific tactics [22]. For example, the tactic called “Raising Exceptions” has
been subdivided into tactics of “Error Codes” and “Exception Classes.” While we
have not examined these newer tactics in depth, we expect that these tactics have the
same characteristics as their “parent” tactics, and have the same architectural impact.
For example, the two exception tactics cited above are alternate ways of implement-
ing raising exceptions below the level of the architecture; the architectural constructs
for both are the same.

Tekinerdogan et al discuss using failure scenarios in software architecture reliabil-
ity analysis as a way of identifying candidate tactics for improving the systems’ reli-
ability [23]. This identifies what must be implemented; this work adds information
about how such tactics can be incorporated into the architecture, and the impact on the
architecture of doing so.

Reliability is an important topic in software architecture evaluations; important is-
sues identified during architecture reviews and evaluations are often associated with
reliability (see 24, 25, 26, 27]). A part of assessing the risk of reliability issues, one
should consider the impact of impacting their fixes – the tactics. This work helps
architects understand the impact, and can thus help architects make more informed
decisions during reviews.

Significant work has been done to analyze and predict reliability of systems based
on the software architecture [28]. Approaches include using reasoning frameworks to
do so [29, 30]. On the other hand, this work focuses on the impact on the architecture
of measures taken to improve reliability. These are compatible; both should be con-
sidered when analyzing an architecture for reliability. A general reasoning framework
for designing architectures to achieve quality attribute requirements has been pro-
posed by Bachmann et al [31]. In this model, the impact of tactics on the architecture
can be one of the inputs to the reasoning framework.

7 Future Work

We have studied a few of the tactics found in [3] and [4]; initial analysis supports the
tactic categories and impacts shown here. All these tactics, as well as others found,
should be studied. Producing a catalog of known reliability tactics along with their
impacts would be useful. Such a catalog will need widespread input, as well as con-
tinuous updating.

We have observed that the categories of impact for the tactics tend to be similar for
patterns that address the same design concern. (The design concern of fault detection
has two in category 1 and one in category 2, but all affect all the components). It may
be that the design concern influences or even dictates the tactic’s impact category.
However, only the Bass tactics are classified by design concerns. In order to deter-
mine whether this is a general rule, one must first classify other reliability tactics by
design concern. Nonetheless, this appears to be potentially interesting, and we intend
to study it further.

120 N.B. Harrison and P. Avgeriou

Some patterns and reliability tactics fit particularly well together, and may indeed
be commonly used. We would like to investigate architectures to see whether some
combinations of patterns and reliability tactics are common. These may form a set of
“reliable architecture patterns;” variants of architecture patterns especially for highly
reliable systems.

One very interesting consequence of implementing the tactics is that since it in-
volves changing the architecture, some changes may actually change the pattern com-
position of the architecture. An architecture pattern may be added. In certain cases, an
existing pattern may even change to a different pattern. Obviously, the transformation
of one pattern to another can happen only where patterns are similar. We have seen
two examples of this type of transformation in architectures we have evaluated. We
intend to study this further in order to understand its architectural implications.

Further study should be done to examine the impact of reliability tactics on each
other, and on other quality attributes, such as performance. Work has been done on
tradeoff analysis as part of architectural analysis [10, 31]. Studies of reliability tactic
interaction can provide specific information as input to such tradeoff analyses.

8 Conclusions

Measures taken to improve reliability (reliability tactics) are implemented in the con-
text of three factors that influence its impact on the architecture of the system:

• The reliability requirements, which strongly influence which tactics are to be used,
and what part of the system they apply to.

• Characteristics of the tactics themselves, namely whether the tactic has a natural
tendency to be applied to all components of the system, or just a selected part.

• Constraints from other requirements and from design decisions. In particular, the
architecture patterns used are important factors, because architecture patterns are
commonly used, and the tactics impact them in regular and known ways.

Taken together, these factors create a picture of the impact of tactics on non-trivial
architectures; those that involve multiple architecture patterns. This is of practical
application, as most industrial systems use multiple patterns in their architectures.
Architects can leverage this information to understand the potential impact of tactics
on an existing or proposed architecture. They can use this to help make tradeoffs
concerning the architecture and reliability tactics being used.

We have examined how reliability tactics would affect a real architecture, and
found that the factors described above affect the impact of the tactics on the architec-
ture as expected. We have also proposed how the investigation of the impact of tactics
can be incorporated into typical software architecting processes. We recommend that
this information be used during architecture of highly reliable software systems.

References

1. International Standards Organization, Information Technology – Software Product Quality
– Part 1: Quality Model, ISO/IEC FDIS 9126-1

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (2003)

 Implementing Reliability 121

3. Utas, G.: Robust Communications Software: Extreme Availability, Reliability and Scal-
ability for Carrier-Grade Systems. Wiley, Chichester (2005)

4. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley Software Patterns Series. Wiley,
Chichester (2007)

5. Buschmann, F., et al.: Pattern-Oriented Software Architecture: A System of Patterns.
Wiley, Chichester (1996)

6. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Addison-Wesley, Reading (1996)

7. Shaw, M.: Toward Higher-Level Abstractions for Software Systems. In: Tercer Simposio
Internacional del Conocimiento y su Ingerieria, pp. 55–61 (October 1988); Reprinted in
Data and Knowledge Engineering 5, 19–28 (1990)

8. Harrison, N., Avgeriou, P.: Incorporating Fault Tolerance Techniques in Software Archi-
tecture Patterns. In: International Workshop on Software Engineering for Resilient Sys-
tems (SERENE 2008), Newcastle upon Tyne, UK, November 17-19, ACM Press, New
York (2008)

9. Harrison, N.B., Avgeriou, P.: Leveraging Architecture Patterns to Satisfy Quality Attrib-
utes. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 263–270. Springer, Heidel-
berg (2007)

10. Wood, W.G.: A Practical Example of Applying Attribute-Driven Design (ADD), Version
2.0, Technical Report CMU/SEI-2007-TR-005, Software Engineering Institute (2007)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

12. Harrison, N., Avgeriou, P., Zdun, U.: Architecture Patterns as Mechanisms for Capturing
Architectural Decisions. IEEE Software 24(4) (2007)

13. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Distributed Objects. Wiley, Chichester (2000)

14. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited – a Pattern Language. In: 10th
European Conference on Pattern Languages of Programs, EuroPLoP (2005)

15. Harrison, N., Avgeriou, P.: Analysis of Architecture Pattern Usage in Legacy System Ar-
chitecture Documentation. In: 7th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), Vancouver, February 18-22, pp. 147–156 (2008)

16. Brooks, F.P.: No Silver Bullet—Essence and Accident in Software Engineering. IEEE
Computer 20(4), 10–19 (1987)

17. Harrison, N., Avgeriou, P., Zdun, U.: Focus Group Report: Capturing Architectural
Knowledge with Architectural Patterns. In: 11th European Conference on Pattern Lan-
guages of Programs (EuroPLoP 2006), Irsee, Germany (2006)

18. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing a
Model of Software Architecture Design from Five Industrial Approaches. In: 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA), November 06 - 10, pp. 77–88.
IEEE Computer Society, Los Alamitos (2005)

19. Aguilera, M.K., Chen, W., Toueg, S.: Using the Heartbeat Failure Detector for Quiescent
Reliable Communication and Consensus in Partitionable Networks. Theoretical Computer
Science, special issue on distributed algorithms 220(1), 3–30 (1999)

20. Rozanski, N., Woods, E.: Software Systems Architecture. Addison-Wesley, Reading
(2005)

21. Booch, G.: Handbook of Software Architecture: Gallery,
http://www.handbookofsoftwarearchitecture.com/index.jsp?
page=Blog (accessed February 4, 2010)

122 N.B. Harrison and P. Avgeriou

22. Scott, J., Kazman, R.: Realizing and Refining Architectural Tactics: availability, Technical
Report CMU/SEI-2009-TR-006, Software Engineering Institute (2009)

23. Tekinerdogan, B., Sozer, H., Aksit, M.: Software architecture reliability analysis using
failure scenarios. J. Syst. Softw. 81(4), 558–575 (2008),
http://dx.doi.org/10.1016/j.jss.2007.10.029

24. Bass, L., et al.: Risk Themes Discovered Through Architecture Evaluations, Technical Re-
port CMU/SEI-2006-TR-012, 2006, Software Engineering Institute (2006)

25. Abowd, G., et al.: Recommended Best industrial Practice for Software Architecture
Evaluation, Technical Report CMU/SEI-96-TR-025, Software Engineering Institute (1997)

26. Maranzano, J., et al.: Architecture Reviews: Practice and Experience. IEEE Soft-
ware 22(2), 34–43 (2005)

27. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley, Reading (2002)

28. Gokhale, S.S.: Architecture-Based Software Reliability Analysis: Overview and Limita-
tions. IEEE Trans. Dependable Secur. Comput. 4(1), 32–40 (2007),
http://dx.doi.org/10.1109/TDSC.2007.4

29. Im, T., McGregor, J.D.: Toward a reasoning framework for dependability. In: DSN 2008
Workshop on Architecting Dependable Systems (2008)

30. Bass, L., et al.: Reasoning Frameworks, Technical Report CMU/SEI-2005-TR-007, Soft-
ware Engineering Institute (2005)

31. Bachmann, F., et al.: Designing software architectures to achieve quality attribute require-
ments. IEE Proceedings 152(4), 153–165 (2005)

	Implementing Reliability: The Interaction of Requirements, Tactics and Architecture Patterns
	Introduction
	Background: Architecture Tactics and Patterns
	Factors That Influence Tactic Implementation
	The Nature of Tactics
	The Impact on Multiple Patterns
	The Role of System Reliability Requirements

	Use in the Architecture Design Process
	Validation and Case Study
	Tactic Impact on Architectures
	Impact of Tactics on Pairs of Patterns
	Case Study: Review of an Architecture

	Related Work
	Future Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

