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The decentralized implementability problem

Shaik Fiaz*, H.L. Trentelman*

Abstract— This paper deals with the problems of decentral-
ized implementability and decentralized regular implementabil-
ity in the context of finite-dimensional linear differential system
behaviors. Given a plant behavior with a pre-specified partition
of the system variable and a desired behavior, the problem of
decentralized implementability is to find a controller which is
decentralized with respect to the given partition and implements
(regularly) the desired behavior with respect to the plant.
In this paper we formulate these problems in the behavioral
framework, with control as interconnection and we also provide
necessary and sufficient conditions for the solvability of these
problems.
Keywords: behaviors, implementability, regular interconnection,
decentralized controllers.

I. INTRODUCTION

For large scale systems like power networks, digital commu-
nication networks, economic systems and flexible manufacturing
systems, decentralized control is one of the prominent strategies
for control. Such systems are often characterized by geographical
separation, large dimension, or consists of many interconnected
subsystems. For such systems it is computationally efficient to
formulate control laws that use only locally available control
variables. As it is easy to implement, and less cost is involved
in communication overhead, this approach is also economical. In
fact, the decentralized structure is an essential design constraint
on controllers in situations where it is prohibited to exchange
information between the subsystems. The analysis and the design of
decentralized control has been intensively considered for over three
decades. For the vast body of literature on decentralized control in
an input-output framework, we refer the reader to the survey papers
[10], [11], books [5], [12] and journal articles [2], [3], [13], [16],
and references therein.

In this paper we will discuss the problem of decentralized
control in the behavioral framework. In contrast to [2], [3] and
[16], we work in the generality where we view systems in a
behavioral sense, that is, as families of trajectories, and control
is viewed as restricting the plant behavior by intersecting it with
a controller behavior. In particular we will discuss the problem
of implementability by decentralized control. The implementability
problem may be considered as a basic question in control: given
a plant behavior, together with some ’desired’ behavior, the latter
is called implementable (sometimes called: achievable) if it can be
achieved as controlled behavior by interconnecting the plant with
a suitable controller. The implementability problem was studied
extensively in [18] and [1], and necessary and sufficient conditions
were established for the full as well as partial interconnection case,
both for general as well as regular interconnections. In this paper
we will formulate the problem of decentralized implementability.
Here the problem is, for a given plant, to characterize all desired
behaviors that can be achieved (implemented) by means of decen-
tralized controllers. A decentralized controller is a controller that
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only gives ’local’ constraints on the control variable. In particular,
for a given partition of the control variable into ‘local’ variables,
a controller is called decentralized if it only involves laws on
these local variables. In this paper, we will restrict ourselves to
the full interconnection version of this problem. We will derive
conditions for implementability and regular implementability using
such decentralized controllers.

A. Notation and nomenclature
A few words about the notation and nomenclature used. We use

standard symbols for the fields of real and complex numbers R
and C. C∞(R,Rw) denotes the set of infinitely often differentiable
functions from R to Rw. R[ξ] denotes the ring of polynomials in the
indeterminate ξ with real coefficients. We use Rn×m[ξ] to denote the
space of matrices with components in R[ξ]. Elements of Rn×m[ξ]
are called real polynomial matrices.

For n ≥ 1 we use the notation n to represent the set
{1, 2, . . . , n}. Given matrices Ai, i ∈ n, we use the notation
blockdiag(A1, A2, . . . , An) to represent the block diagonal matrix
with diagonal blocks Ai. Finally, we use the notation col(w1, w2)
to represent the column vector formed by stacking w1 over w2.

II. LINEAR DIFFERENTIAL SYSTEMS AND POLYNOMIAL
KERNEL REPRESENTATIONS

In the behavioral approach a dynamical system is given by a
triple Σ = (T,W,B), where T is the time axis, W is the signal
space, and the behavior B is a subset of WT , the set of all
functions from T to W . A linear differential system is a dynamical
system with time axis T = R, and whose signal space W is
a finite dimensional Euclidean space, say, Rw. Correspondingly,
the manifest variable is then given as w = col(w1, w2, . . . , ww).
The behavior B is a linear subspace of C∞(R,Rw) consisting of
all solutions of a set of higher order, linear, constant coefficient
differential equations. More precisely, there exists a positive integer
g and a polynomial matrix R ∈ Rg×w[ξ] such that

B = {w ∈ C∞(R,Rw) | R( d
dt

)w = 0}.

The set of linear differential systems with manifest variable w
taking its value in Rw is denoted by Lw.

Let R ∈ Rg×w[ξ] be a polynomial matrix. If the behavior
B is represented by R( d

dt
)w = 0 then we call this a kernel

representation of B. Further, a kernel representation is said to be
minimal if every other kernel representation of B has at least g
rows. A given kernel representation, R( d

dt
)w = 0, is minimal if

and only if the polynomial matrix R has full row rank (see [8],
Theorem 3.6.4). The number of rows in any minimal polynomial
kernel representation of B is equal to the output cardinality of
B, denoted by p(B). This number corresponds to the number of
outputs in any input/output representation of B.

We speak of a system as the behavior B, one of whose
representations is given by R( d

dt
)w = 0 or just B = ker(R).

The ‘ d
dt

’ is often suppressed to enhance readability.
The controllable part of a behavior B is defined as the largest

controllable sub-behavior of B. This is denoted by Bcont (see [8]).
Definition 2.1: Let B ∈ Lw1+w2 with system variable w parti-

tioned as w = (w1, w2). We will call w2 free in B if, for any
w2 ∈ C∞(R,Rw2), there exists w1 such that (w1, w2) ∈ B. We
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call w2 maximally free if it is free, and we can not enlarge this set
with components from w1 and still continue to have freeness for
this enlarged set of variables.

The following result was shown in [8]:
Proposition 2.2: Let B ∈ Lw1+w2 with system variable

(w1, w2). Let a minimal kernel representation of B be given by
R1( d

dt
)w1 + R2( d

dt
)w2 = 0. Then w2 is free in B if and only if

the polynomial matrix R1 has full row rank.
We now review some facts on elimination of variables. Let B ∈

Lw1+w2 with system variable w = (w1, w2). Let Pw1 denote the
projection onto the w1-component. Then the set Pw1B consisting
of all w1 for which there exists w2 such that (w1, w2) ∈ B is again
a linear differential system. We denote Pw1B by (B)w1 , and call
it the behavior obtained by eliminating w2 from B.

If B = ker
`
R1 R2

´
, then a representation for (B)w1

is obtained as follows: choose a unimodular matrix U such that
UR2 =

„
R12

0

«
, with R12 full row rank, and conformably

partition UR1 =

„
R11

R21

«
. Then (B)w1 = ker(R21) (see [8],

section 6.2.2).
Given B ∈ Lw1+w2 , the behavior consisting of the trajectories

w1 with the variable w2 put equal to zero is denoted by Nw1(B),
and is called the hidden behavior. It is defined as

Nw1(B) = {w1 | (w1, 0) ∈ B}.

III. IMPLEMENTABILITY

The problem of implementability deals with the question which
controlled behaviors can be achieved by interconnecting a given
plant with a controller. This problem may actually be considered
as a basic question in engineering design: a behavior is prescribed,
and the question is whether this “desired” behavior can be achieved
by inserting a suitably designed subsystem into the over-all system.
Details on the implementability problem can be found in [18].

In this section we will review the full interconnection case. In
that case we have a plant behavior P ∈ Lw, and a controller for
P is also a behavior C ∈ Lw. The full interconnection of P and
C is the system whose behavior is the intersection P ∩ C. This
controlled behavior is again a linear differential system. Indeed, if

P = ker(R) and C = ker(C), then P ∩ C = ker

„
R
C

«
∈ Lw.

Definition 3.1: Let K ∈ Lw be a given behavior, to be interpreted
as a desired behavior. If K can be achieved as controlled behavior,
i.e., if there exists C ∈ Lw such that K = P ∩ C, then we call K
implementable by full interconnection(with respect to P).

Obviously, a given K ∈ Lw is implementable with respect to P
by full interconnection if and only if K ⊂ P. Indeed, if K ⊂ P,
then with ’controller’ C = K we have K = P∩C. It is well known
[8] that if B1,B2 ∈ Lw and B1 = ker(R1), B2 = ker(R2) are
kernel representations, then B1 ⊂ B2 if and only if there exists a
polynomial matrix F such that R2 = FR1. For easy reference we
therefore state:

Proposition 3.2: Let P ∈ Lw and K ∈ Lw. Let P = ker(R)
and K = ker(K) be kernel representations. Then the following are
equivalent:

1) K is implementable with respect to P by full interconnection,
2) there exists a polynomial matrix F such that R = FK.
In the behavioral framework one often needs to require that the

interconnection of plant and controller is a regular interconnection.
Detailed material can be found in [1]. Let P ∈ Lw be a plant
behavior, and let C ∈ Lw be a controller.

Definition 3.3: The interconnection of P and C is called regular
if

p(P) + p(C) = p(P ∩ C),

in other words, if the output cardinalities of the plant and the
controller add up to the output cardinality of the controlled behavior.

In that case, we also call the controller C regular (with respect to
P).

In terms of kernel representations this condition can be expressed
as follows. Let P = ker(R) and C = ker(C) be minimal
kernel representations of plant and controller, respectively. Then

P ∩ C = ker

„
R
C

«
is a kernel representation of the controlled

behavior. Since the output cardinality of a behavior is equal to the
rank of the polynomial matrix in any of its kernel representations,

the interconnection of P and C is regular if and only if
„

R
C

«
has

full row rank, equivalently yields a minimal kernel representation
of P ∩ C.

Definition 3.4: Given P ∈ Lw, a given behavior K ∈ Lw is called
regularly implementable by full interconnection (with respect to P)
if there exists a regular controller C ∈ Lw that implements K by
full interconnection.
The following result from [1] gives a characterization of all regu-
larly implementable behaviors.

Proposition 3.5: Let P ∈ Lw. Let Pcont be its controllable part.
Let K ∈ Lw. Then the following statements are equivalent:

1) K is regularly implementable by full interconnection with
respect to P,

2) K + Pcont = P.
The previous result does not use representations of the behaviors in-
volved. The following result characterizes regular implementability
in terms of kernel representations (see [9]):

Proposition 3.6: Let P ∈ Lw and K ∈ Lw. Let P = ker(R)
and K = ker(K) be minimal kernel representations of plant and
desired behavior. Then the following are equivalent:

1) K is regularly implementable by full interconnection with
respect to P,

2) there exists a polynomial matrix F with F (λ) full row rank
for all λ ∈ C such that R = FK.

Having obtained necessary and sufficient conditions for im-
plementability and regular implementability of a given desired
behavior K, we now aim at establishing characterizations of all con-
trollers C that (regularly) implement it. Parameterizations of these
controllers have been established before in [9]. In the following two
lemmas we formulate alternative characterizations:

Lemma 3.7: Let P ∈ Lw and let K ∈ Lw. Assume that K is
implementable with respect to P. Let P = ker(R) and K = ker(K)
be minimal kernel representations and let F be a polynomial matrix
such that R = FK. Then the following statements are equivalent:

1) C = ker(C) implements K by full interconnection,
2) there exists a polynomial matrix L such that C = LK, where„

F (λ)
L(λ)

«
has full column rank for all λ ∈ C.

Proof:
( (1) ⇒ (2) )
If ker(C) implements ker(K) by full interconnection, then

ker

„
R
C

«
= ker(K). Since K has full row rank, we must have„

R
C

«
= U

„
K
0

«
for some unimodular matrix U =

„
U11 U12

U21 U22

«
and some zero-

matrix 0 with an appropriate number of rows. This implies R =
U11K and C = U21K. It follows that U11 = F . Define L := U21.

Then
„
F (λ)
L(λ)

«
has full column rank for all λ ∈ C.

( (2) ⇒ (1) )
Assume C = LK. We have„

R
C

«
=

„
F
L

«
K.
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Clearly, since
„
F (λ)
L(λ)

«
has full column rank for all λ ∈ C, we

have ker

„
R
C

«
= ker(K). �

Lemma 3.8: Let P ∈ Lw and let K ∈ Lw. Assume that K is
regularly implementable with respect to P. Let P = ker(R) and
K = ker(K) be minimal kernel representations and let F be a
polynomial matrix with F (λ) full row rank for all λ ∈ C such that
R = FK. Then the following statements are equivalent:

1) C = ker(C) regularly implements K by full interconnection
and ker(C) is a minimal representation of C,

2) there exists a polynomial matrix L such that C = LK, where„
F
L

«
is unimodular.

Proof:
( (1) ⇒ (2) )
If ker(C) regularly implements ker(K) by full interconnection,

then ker

„
R
C

«
= ker(K). Since the interconnection is regular,

both kernel representations are minimal. Hence there exists a

unimodular matrix U =

„
U1

U2

«
such that„

R
C

«
= UK,

which implies that R = U1K and C = U2K. It follows that

U1 = F . Define L := U2. Then
„
F
L

«
is unimodular.

( (2) ⇒ (1) )
Assume C = LK. We have„

R
C

«
=

„
F
L

«
K.

Clearly, since
„
F
L

«
is unimodular, we have ker

„
R
C

«
=

ker(K), so ker(C) implements K. Also, the interconnection is

regular since
„
R
C

«
has full row rank. �

IV. DECENTRALIZED IMPLEMENTABILITY

Let P ∈ Lw be a given plant behavior, with system variable w.
Let K ∈ Lw be a desired behavior. In this section we will deal with
the problem to find decentralized controllers that implement K by
full interconnection. A decentralized controller is a controller that
only gives ’local’ constraints on the control variable w. In particular,
for a given partition of the variable w into

w = (w1, w2, w3, . . . , wn) (1)

with wi taking values in Rwi (i ∈ n), a controller is called
decentralized if it only involves laws on the local variables wi.
More precisely:

Definition 4.1: Let C ∈ Lw, with system variable w, to
be interpreted as a controller. Let w be partitioned as w =
(w1, w2, . . . , wn) with wi of dimension wi, w = Σn

i=1wi. Then
C is called decentralized with respect to the partition of the system
variable if for all i ∈ n there exists Ci ∈ Lwi with system variable
wi such that C = C1 × C2 × . . .× Cn.

The following proposition characterizes for a given behavior the
property of being decentralized:

Proposition 4.2: Let C ∈ Lw with system variable w partitioned
as w = (w1, w2, . . . , wn) with wi of dimension wi. Then the
following statements are equivalent.

1) C is decentralized with respect to the given partition.

2) There exists polynomial matrices Ci ∈ R•×wi [ξ] such that
C admits a kernel representation C = ker(C), where C =
blockdiag(C1, C2, . . . , Cn).

3) (C)wi = Nwi(C) for all i ∈ n.
Proof: From Definition 4.1 the equivalence between statements

1) and 2) is straightforward by defining Ci := ker(Ci). We now
prove the equivalence of statements 2) and 3) of the Proposition.

( (2) ⇒ (3) )
If C = ker(blockdiag(C1, C2, . . . , Cn)) then we have (C)wi =

ker(Ci) and Nwi(C) = ker(Ci). Therefore we have (C)wi =
Nwi(C).

( (3) ⇒ (2))
We prove this implication for n = 2. For the case n > 2 the

proof can be given by induction. Let C ∈ Lw1+w2 with system
variable (w1, w2). Let C = ker

`
C1 C2

´
be a minimal kernel

representation. Then there exists a unimodular matrix U1 such that

U1 ( C1 C2 ) =

„
C11 0
C21 C22

«
such that C22 has full row

rank. Then we have (C)w1 = ker(C11), Nw1(C) = ker

„
C11

C21

«
and Nw2(C) = ker(C22). As (C)w1 = Nw1(C) and C11 has full

row rank, there exists a unimodular matrix
„

V11 V12

V21 V22

«
such

that
„

V11 V12

V21 V22

«„
C11

C21

«
=

„
C11

0

«
. Therefore we have„

V11 V12

V21 V22

«„
C11 0
C21 C22

«
=

„
C11 V12C22

0 V22C22

«
. We have

C = ker

„
C11 V12C22

0 V22C22

«
. (2)

As C11 has full row rank we have (C)w2 = ker(V22C22). As
Nw2(C) = (C)w2 , we have ker(C22) = ker(V22C22), which
implies that V22 is a unimodular matrix. It is easy to verify that„

I −V12V −1
22

0 V −1
22

«
is a unimodular matrix and„

I −V12V −1
22

0 V −1
22

«„
C11 V12C22

0 V22C22

«
=

„
C11 0
0 C22

«
.

(3)
Therefore from Equations (2) and (3) we have

C = ker

„
C11 0
0 C22

«
. (4)

�

Given a plant P together with a partition (1) of its variable, and
a given desired behavior K we now deal with the question whether
K can be implemented by means of a decentralized controller. We
give the following definitions:

Definition 4.3: Let K ∈ Lw. Assume the system variable w is
partitioned as in (1). We call K decentralized implementable with
respect to P if there exists a decentralized controller C ∈ Lw such
that K = P ∩ C.

Definition 4.4: Let K ∈ Lw. Assume the system variable w
is partitioned as in (1). We call K decentralized regularly imple-
mentable with respect to P if there exists a decentralized regular
controller C ∈ Lw such that K = P ∩ C.
In the following we want to establish conditions for a given desired
behavior K to be decentralized (regularly) implementable with
respect to P. For simplicity, we assume that the system variable w
is partitioned into two parts, w = (w1, w2). The following theorem
gives necessary and sufficient conditions for a behavior K to be
decentralized implementable with respect to P:

Theorem 4.5: Let P ∈ Lw with variable w partitioned as w =
(w1, w2), and with minimal kernel representation P = ker(R).
Let K ∈ Lw with minimal kernel representation K = ker(K),
K =

`
K1 K2

´
. Assume that K is implementable by full
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interconnection with respect to P and let F be a polynomial matrix
such that R = FK. Then K is decentralized implementable with
respect to P if and only if there exist polynomial matrices L1, L2

such that 0@ F (λ)
L1(λ)
L2(λ)

1A
has full column rank for all λ ∈ C and L1K2 = 0, L2K1 =
0. In this case a decentralized controller is given by C =

ker

„
L1K1 0

0 L2K2

«
.

Proof: A proof follows immediately from Lemma 3.7 and Propo-
sition 4.2. �

Along the same lines, decentralized regular implementability is
dealt with in the next theorem:

Theorem 4.6: Let P ∈ Lw with variable w partitioned as w =
(w1, w2), and with minimal kernel representation P = ker(R).
Let K ∈ Lw with minimal kernel representation K = ker(K),
K =

`
K1 K2

´
. Assume that K is regularly implementable

with respect to P and let F be a polynomial matrix with F (λ) full
row rank for all λ ∈ C such that R = FK. Then K is decentralized
regularly implementable with respect to P if and only if there exist
polynomial matrices L1, L2 such that0@ F

L1

L2

1A
is unimodular and L1K2 = 0, L2K1 = 0. In this case a decentral-

ized regular controller is given by C = ker

„
L1K1 0

0 L2K2

«
.

Proof: Again, a proof follows immediately from Lemma 3.8 and
Proposition 4.2. �

The following corollaries are immediate consequences of the
foregoing:

Corollary 4.7: Let P ∈ Lw with variable w partitioned as
w = (w1, w2). Let K ∈ Lw with minimal kernel representation
K = ker(K), K =

`
K1 K2

´
. Denote k := p(K). Then K is

decentralized implementable with respect to P if and only if
1) K ⊂ P,
2) there exist behaviors H1 ∈ Lk, H2 ∈ Lk such that

im(K1) ⊂ H2, im(K2) ⊂ H1 and KP ∩H1 ∩H2 = {0}.
Proof: Assume K is decentralized implementable with respect

to P. Then clearly 1) holds. Let ker(R) be a minimal kernel
representation of P and let F be a polynomial matrix such that
R = FK. It is easily seen that ker(F ) = KP. There exist L1 and
L2 such that 0@ F (λ)

L1(λ)
L2(λ)

1A (5)

has full column rank for all λ ∈ C and L1K2 = 0, L2K1 = 0.
Define H1 := ker(L1) and H2 := ker(L2). Then KP∩H1∩H2 =
{0} and im(K2) ⊂ H1, im(K1) ⊂ H2.

Conversely, let P = ker(R) be a minimal kernel representation
of P. By 1) there exists F such that R = FK. Let L1 and L2 be
such that ker(L1) = H1 and ker(L2) = H2. Then L1K2 = 0,
L2K1 = 0 and (5) has full column rank for all λ ∈ C. By Theorem
4.5 this yields that K is decentralized implementable with respect
to P. �

In a similar way we can characterize decentralized regular
implementability.

Corollary 4.8: Let P ∈ Lw with variable w partitioned as
w = (w1, w2). Let K ∈ Lw with minimal kernel representation

K = ker(K), K =
`
K1 K2

´
. Denote k := p(K). Then K

is decentralized regularly implementable with respect to P if and
only if

1) K + Pcont = P
2) there exist behaviors H1 ∈ Lk, H2 ∈ Lk such that

im(K1) ⊂ H2, im(K2) ⊂ H1 and KP ∩H1 ∩H2 = {0}
and p(H1) + p(H2) = k− p(P).

For the case that the system variable w is partitioned as w =
(w1, w2, . . . , wn) with n > 2, analogous results can be formulated.
The latter two corollaries express decentralized (regular) imple-
mentability of a given K = ker(K) with K = (K1 K2) in terms of
geometric properties of the behaviors KP, im(K1) and im(K2).
Currently, we investigate how to actually verify these properties
computationally.

V. DECENTRALIZED CONTROL AND PARTIAL
INTERCONNECTION

In addition to full interconnection, in [18] and [1] results have
been established on implementability by partial interconnection
(see also [6], [7], [4]). In this section, we will establish necessary
conditions for decentralized implementability by full interconnec-
tion (as introduced in the previous section) in terms of concepts
around partial interconnection.

We will first briefly review implementability by partial intercon-
nection. In control by partial interconnection, only a pre-specified
subset of the plant variables is available for interconnection. Let
Pfull ∈ Lw+c be a linear differential system, with system variable
(w, c), where w takes its values in Rw and c in Rc. Before the
controller acts, there are two behaviors of the plant that are relevant:
the behavior Pfull ∈ Lw+c (the full plant behavior) of the variables
w and c combined, and the behavior (Pfull)w of the to-be-controlled
variables w (with the interconnection variable c eliminated). Hence

(Pfull)w = {w ∈ C∞(R,Rw) | ∃ c ∈ C∞(R,Rc)

such that (w, c) ∈ Pfull}.

By the elimination theorem, (Pfull)w ∈ Lw. Let C ∈ Lc. The
controller C restricts the interconnection variables c. The full
controlled behavior Pfull ∧c C is obtained by the interconnection
of Pfull and C through the variable c and is defined as:

Pfull ∧c C = {(w, c) | (w, c) ∈ Pfull and c ∈ C}.

Eliminating c from the full controlled behavior, we obtain its
restriction (Pfull ∧c C)w to the behavior of the to-be-controlled
variable w, defined by

(Pfull ∧c C)w = {w ∈ C∞(R,Rw) | ∃ c ∈ C such that
(w, c) ∈ Pfull}.

Note that, again by the elimination theorem, (Pfull ∧c C)w ∈ Lw.
Definition 5.1: Given Pfull ∈ Lw+c and K ∈ Lw, we say that

C ∈ Lc implements K through c if K = (Pfull ∧c C)w.
The (partial interconnection) implementability problem is to

characterize, for given Pfull ∈ Lw+c, all K ∈ Lw for which there
exists a C ∈ Lc that implements K through c. This problem has a
very simple and elegant solution: it depends only on the projected
full plant behavior (Pfull)w and on the hidden behavior Nw(Pfull)
given by

Nw(Pfull) = {w | (w, 0) ∈ Pfull}.

Theorem 5.2: [18] Let Pfull ∈ Lw+c be the full plant behavior.
Then K ∈ Lw is implementable with respect to Pfull by a controller
C ∈ Lc acting on the interconnection variable c if and only if
Nw(Pfull) ⊂ K ⊂ (Pfull)w.

Theorem 5.2 shows that K can be any behavior of Lw that is
wedged in between the given behaviors Nw(Pfull) and (Pfull)w.
The implementability problem was also studied in [6], [15] and [9].
In particular, the question when a particular controlled behavior can
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be implemented by a feedback processor remains a very important
one, and was discussed e.g. in [17] and [14].

Next, we turn to regular implementability by partial interconnec-
tion.

Definition 5.3: Let Pfull ∈ Lw+c and C ∈ Lw. The interconnec-
tion of Pfull and C through c is called regular if

p(Pfull ∧c C) = p(Pfull) + p(C),

i.e., the output cardinalities of Pfull and C add up to that of the
full controlled behavior Pfull ∧c C. In that case we also call the
controller C regular.

Definition 5.4: A given K ∈ Lw is called regularly imple-
mentable through c with respect to Pfull if there exists a C ∈ Lc

such that K is implemented by C, and the interconnection of Pfull

and C is regular.
Similar to implementability by full interconnection, an important

question is under what conditions a given behavior K is regularly
implementable through c with respect to Pfull. The following
theorem from [1] provides a solution to this problem:

Theorem 5.5: Let Pfull ∈ Lw+c. Let (Pfull)w and Nw(Pfull) be
the corresponding projected plant behavior and hidden behavior,
respectively. Let (Pfull)w,cont be the controllable part of (Pfull)w.
Let K ∈ Lw. Then K is regularly implementable with respect to
Pfull by interconnection through c if and only if the following two
conditions are satisfied:
• Nw(Pfull) ⊂ K ⊂ (Pfull)w

• K + (Pfull)w,cont = (Pfull)w

The above theorem has two conditions. The first one is exactly
the condition for implementability through c. The second condition
formalizes the notion that the autonomous part of (Pfull)w is taken
care of by K. While the autonomous part of (Pfull)w is not unique,
(Pfull)w,cont is. This makes verifying the regular implementability
of a given K computable. As a consequence of this theorem,
note that if (Pfull)w is controllable, then K ∈ Lw is regularly
implementable with respect to Pfull by interconnection through
c if and only if it is implementable with respect to Pfull by
interconnection through c.

We now return to the decentralized regular implementability
problem (by full interconnection). The following theorem gives
necessary conditions:

Theorem 5.6: Let P,K ∈ Lw, with system variable w partitioned
as w = (w1, w2, . . . , wn) with wi of dimension wi,

Pn

i=1 wi = w.
Then K is decentralized regularly implementable with respect to P
by full interconnection only if the following conditions hold:

1) K + Pcont = P,
2) wi is not free in K for all i ∈ n, and
3) for every i ∈ n there exists Si ∈ Lwi such that

a) Si is regularly implementable with respect to P by
interconnection through
(w1, w2, . . . , wi−1, wi+1, . . . , wn),

b) (K)wi regularly implementable by full interconnection
with respect to Si.

Proof: Clearly K regularly implementable by full interconnection
with respect to P is a necessary condition. From Proposition 3.5
we have K + Pcont = P.

Let P = ker
`
R1 R2 . . . Rn

´
. Let C be a decentralized

controller with respect to the partition of the system variable
w = (w1, w2, . . . , wn) regularly implementing K by full in-
terconnection with respect to P. Then from Proposition 4.2, C
admits a minimal kernel representation C = ker(C), where C =
blockdiag(C1, C2, . . . , Cn). Therefore we have

K = P ∩ C = ker

0BBBB@
R1 R2 . . . Rn

C1 0 . . . 0
0 C2 . . . 0
...

...
...

...
0 0 . . . Cn

1CCCCA . (6)

From (6) and using Proposition 2.2, for all i ∈ n, wi is not free in
K. For i ∈ n there exists unimodular matrices Ui such that

Ui

0BBBB@
R1 R2 . . . Rn

C1 0 . . . 0
0 C2 . . . 0
...

...
...

...
0 0 . . . Cn

1CCCCA
=

0@ 0 . . . 0 Ci 0 . . . 0
0 . . . 0 Si 0 . . . 0
L1 . . . Li−1 Li Li+1 . . . Ln

1A (7)

and
`
L1 . . . Li−1 Li+1 . . . Ln

´
has full row rank.

Therefore we have

(K)wi = ker

„
Ci

Si

«
. (8)

Define Si := ker(Si). From (7) it is evident that for all i ∈ n, Si

is regularly implementable with respect to P by interconnection
through (w1, w2, . . . , wi−1, wi+1, . . . , wn). From (8) it is clear
(K)wi is regularly implementable with respect to Si. �

VI. CONCLUSIONS

In this paper we have introduced the problems of decentralized
implementability and decentralized regular implementability. Given
a plant behavior and a desired behavior, the problem is to give
conditions for the existence of a decentralized controller that
(regularly) implements the desired behavior. In the first part of
this paper we have established necessary and sufficient conditions
in terms of geometric properties of the desired behavior. In the
second part of the paper we have obtained a set of necessary
conditions, expressed in terms of regular implementability by partial
interconnection.
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