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Chapter 1

Introduction

This book presents the results of four years of research on Bulgarian dialects and meth-
ods for dialectological analysis. It will present advances in techniques in several areas,
namely application of clustering techniques in the detection of dialect groups, automatic
extraction of phone distances using pointwise mutual information, improved pairwise
alignment of word transcriptions obtained by employing automatically induced phone
distances within the Levenshtein algorithm, multiple alignments of strings in linguistics,
and application of methods taken from computational phylogenetics on dialect pronun-
ciation data. It will also reexamine the geographic and historical organization of Bul-
garian linguistic variation and suggest modifications in the traditional view. The rest of
this chapter sketches the history of scholarship, first on diachronic linguistics, then on
dialectology, with a particular focus on quantitative techniques.

1.1 Background
The question of how language has evolved has attracted the attention of scientists for
the past few centuries, and the first speculations on the origin of language can be traced
back 3.000 years (Crystal, 1987, 290). In linguistics, the first scientific attempts to dis-
cover the history of language started at the end of the 18th century, when Sir William
Jones lectured on the resemblance between Sanskrit and ancient Greek and Latin. He
suggested that all three languages have a common root, and that the common root can be
the only explanation of the similarities among these languages. His lecture inspired the
idea that language similarities such as those holding among Latin, Greek, and Sanskrit
(etc.) could be due to common descent from a language no longer spoken and led to
further inquiry by many prominent scholars who tried to compare different languages in
a systematic way. This resulted in the development of the comparative method, a method
for determining language relationships and the nature of the common source for related
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2 CHAPTER 1. INTRODUCTION

languages that involves detailed feature-by-feature comparison of languages looking for
recurring corresponding elements. One of the best-known scholars to use this method in
order to prove the relatedness among the Indo-European languages was German linguist
August Schleicher. He was the first one to illustrate the relatedness between languages
using the figure of a tree. This representation of language relatedness suggests that the
innovations occur in the process of transmission from a mother language to the daughter
languages. In the late 19th century a group of German linguists, known as the Neogram-
marians, proposed the hypothesis of the regularity of sound change. According to the
Neogrammarian hypothesis sound change occurs regularly and uniformly whenever the
appropriate phonetic environment is encountered (Campbell, 2004). Ever since then the
understanding of sound change has played a major role in the comparative method. The
method proceeds from the simultaneous comparison of different languages, i.e. lists of
cognate terms from the related languages. The method has also been used, with great
success, in regard to morphology, syntax, semantics, poetics, even cultural constructs
like legal systems (Joseph, 2004). A few years after the Neogrammarian hypothesis
was proposed, a student of Schleicher, Johannes Schmidt, proposed the so-called wave
theory of language development, according to which new features of a language are
spread from the center to the neighboring languages similar to the waves in continu-
ously weakening concentric circles. Unlike in the competing tree theory the innovations
in languages spread through borrowing. The wave theory was also directed against the
Neogrammarian hypothesis of a sound change.

Quantitative methods were first introduced into comparative linguistics with the
work of Alfred Kroeber and Charles Chrétien (Kroeber and Chrétien, 1939), although
work of American linguist Morris Swadesh in 1950s received much more attention in
linguistic circles. He suggested an approach in comparative linguistics called lexicostat-
istics that is based on the quantitative comparison of the cognates. In this approach the
similarity between two languages is the proportion of the cognates from a fixed list of
cognates, the so-called Swadesh list, that two languages share. Swadesh also suggested
an approach in historical linguistics called glottochronology that can be used to calculate
the divergence times of languages. It is based on the assumption that the basic vocabu-
lary in every language is replaced at a steady rate. By counting the number of words that
have been replaced from the basic vocabulary, we can estimate the time when two lan-
guages diverged from a common proto-language. This approach to historical linguistics
has been heavily criticized mostly because of its assumption that the vocabulary changes
at a constant rate. For a detailed discussion see for example Campbell (2004, 201-210).

Observations about dialect variation were recorded already by the ancient Greeks
who had verbs that meant ‘to speak in a particular dialect way’, for instance, as well
as by the ancient Indians, who had remarks in early Sanskrit texts about what happens
when one uses forms other than those that the Brahmins use. However, a more scientific
approach came only in the 19th century as a response to the advances in the research
on the history of languages and particularly the Neogrammarian hypothesis that claimed
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that sound change is regular (Chambers and Trudgill, 2007). Interest in a systematic ap-
proach to dialectology was the hope that apparent anomalies in language history might
be explained once geographic conditioning was investigated and understood. The first
systematic study of dialects started with the work of German linguist Georg Wenker. In
1876 he began collecting dialect data from the northern Germany. He collected around
45.000 questionnaires and made maps that were published as the first dialect atlas Sprac-
hatlas des Deutschen Reichs. The results of Wenker’s project, contrary to the primary
expectations, has shown that sound changes are much more irregular than suggested by
the Neogrammarians. Following this project, similar projects for many languages in
Europe and Northern America were established: in 1898 for Danish, in 1896 for French,
in 1930 The Linguistic Atlas of the United States and Canada for English (Chambers
and Trudgill, 2007, 16-17). Traditional dialectology made great use of the isogloss: a
line drawn between two regions that have different realizations of a certain feature. If
there are many isoglosses that coincide, they form an isogloss bundle, which is an in-
dication of a major dialect division. Many maps found in traditional dialect atlases are
based only on one feature that is indicative of a certain dialect variation, but groups of
similar division were always sought.

Introduction of the quantitative methods in dialectology came in 1971 with the work
of French linguist Jean Séguy, who developed the first technique for measuring the dis-
tances between the dialects (Séguy, 1971). This branch of dialectology became known
as dialectometry. Séguy aggregated over the individual differences between sites by
counting the overlapping features between any two sites. In this way he introduced an
aggregate view of language variation, as opposed to the traditional division of sites based
on the individual linguistic features. Further improvement in the development of dialec-
tometry came with the work of Hans Goebl (Goebl, 1982; Goebl, 1984), who also intro-
duced a weighting of the features. He was also the first one to use clustering techniques
in dialectometry. Brett Kessler (Kessler, 1995) was the first to use Levenshtein distance
in order to calculate the pronunciation distance between the Irish Gaelic dialects. Leven-
sthein distance was later successfully applied to many other languages: Dutch (Nerbonne
et al., 1996; Heeringa, 2004), Sardinian (Bolognesi and Heeringa, 2002), Norwegian
(Gooskens and Heeringa, 2004), German (Nerbonne and Siedle, 2005), American Eng-
lish (Nerbonne, 2005), and Bulgarian (Osenova, Heeringa, and Nerbonne, 2009). This
thesis attempts to contribute to this line of work in Chapters 3-5.

In the past ten years there has been an increasing interest in the application of the
methods taken from computational phylogenetics to the study of language history and
change. Phylogenetics is a branch of biology that studies the evolutionary relatedness
among various groups of organisms, especially among entire species. In the past few
decades it has been a very active field of research, which has led to the development of
many new methods that enable us to have better insight into the evolution and relatedness
of species. In linguistics, these methods have been used to address the problems of the
origins of Indo-European (Gray and Jordan, 2000) and Bantu languages (Holden, 2002;
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Holden and Gray, 2006). They were also applied to the problems of the subgrouping of
Indo-European (Ringe, Warnow, and Taylor, 2002; Nakhleh, Ringe, and Warnow, 2005),
as well as to test various hypotheses about human prehistory (Dunn et al., 2005; Green-
hill and Gray, 2005; Gray, Drummond, and Greenhill, 2009).

In dialectology, there are a few studies that apply methods taken from computational
phylogenetics. In Hamed (2005) and Hamed and Wang (2006) phylogenetic techniques
were exploited in research on Chinese dialects, while McMahon et al. (2007) used them
to explore the phonetic similarity between English varieties. All these works address
the old problem of branching vs. wave-like diffusion by testing their data with the help
of the programs developed for inferring phylogenetic networks. This thesis attempts to
contribute to the phylogenetic research on language history in Chapter 7.

In this thesis we apply and develop various quantitative methods to the Bulgarian
phonetic dialect data. Bulgarian dialectology scholarship has a very old tradition that
dates back to 1848 (Grigorovich, 1848). The most significant period of the development
of the dialectology in Bulgaria came in 1950s and is related to work of Prof. Stoyko
Stoykov. His study of Bulgarian dialects is the most widely known and the most au-
thoritative until today (Stoykov, 2002). We use his classification of Bulgarian dialects
in order to evaluate our computational methods and to compare the traditional and the
quantitative approach to dialect diversity. All our experiments are done on the data set
which contains most of the features that Stoykov uses as basis for his phonetically-based
division of Bulgarian dialect area, which allows us to directly compare our computa-
tional methods to the traditional scholarship (see Chapter 4).

We analyze Bulgarian data taking two alternative approaches. One approach is based
on the similarity among the varieties with the focus on geographic organization of Bul-
garian dialects. We use the Levenshtein algorithm to aggregate over the numerous fea-
tures found in the data and infer the similarities/distances among the groups of dialects.
We also test an alternative approach to dialect variation that is more historically mo-
tivated. We employ methods taken from phylogenetics that focus on systematic shared
innovations as a signal of common ancestry and reexamine the relatedness among the
Bulgarian dialect varieties. The results of applying different quantitative techniques on
the Bulgarian dialect data have shown that some of the traditional divisions of this area
have to be questioned if only pronunciation data is taken into account. We do not exam-
ine other linguistic levels, nor do we attend to non-linguistic influences. The comparison
of the divisions resulting from the geographic and historical approaches has shown that
these two different perspectives gave very similar picture of the Bulgarian dialect vari-
ation.

Apart from reexamining Bulgarian dialect variation using new techniques, we also
try to improve methods for dialectological research. We present advances in several
techniques, related both to the Levenshtein approach to dialect variation and to the ap-
plication of phylogenetic methods in linguistics as well. Although all experiments are
performed on the Bulgarian data, none of the methods are language specific, nor are they
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applicable only to the dialect data. The fact that we have tested our methods against a
very well studied dialect area, helped us evaluate better our computational methods and
improve them. However, these methods can be used to examine relationships between
any language families by exploiting resemblances that they share. In this sense, lan-
guage family is seen as a group of varieties that are related by the features that they have
in common. While some methods in this thesis treat shared features as a sign of a com-
mon origin of the varieties, some others are based on the counting of the overlapping
features regardless of the genetic relationship. Methods presented can help us split vari-
eties into smaller groups, but also look into the mechanisms of language change. They
investigate different aspects of language families and their resemblances.

In the next section we present the outline of the thesis and develop the main research
questions addressed.

1.2 The main research questions
This thesis was written as a part of the project Buldialect—Measuring Linguistic Unity
and Diversity in Europe. It was a joint project between the University of Tübingen,
the University of Groningen and the Institute of Parallel Processing at the Bulgarian
Academy of Sciences. The project was sponsored by the Volkswagen Stiftung, as part
of the funding initiative Unity and Diversity in Europe . The aim of the Buldialect project
was to develop machine-readable data on Bulgarian dialects and to analyze it using the
methods from computational dialectometry in order to get better insight into the cultural
unity and diversity of this region. The data was collected and digitalized in Sofia as a
cooperation between Petya Osenova and Kiril Simov from the Bulgarian Academy of
Sciences and Prof. Vladimir Zhobov from the University of Sofia. It consists of both
phonetic and lexical data, although in this thesis we base all our experiments solely on
the phonetic data. The data set used in this thesis is presented in Chapter 2.

In Chapters 3, 4 and 5 we rely on the Levenshtein distance to quantify the differences
between the dialect varieties. In Chapter 3 we look into the problem of using clustering
methods in order to detect dialect groups. In too many previous studies in dialectometry
the common practice was to try as many clustering algorithms as possible and later pick
the one whose results coincide the most with the traditional dialect division of the area
or were attractive for other reasons. The comparison of the clustering results and the
traditional maps was usually done by simply visually inspecting the similarities and the
differences between the two. However, the aim of the research done in dialectometry is
not to replicate the traditional dialect maps, but to quantify large amounts of data and to
characterize general tendencies in linguistic variation that are missing in the traditional
feature-by-feature approaches.

In this chapter we try to answer the following questions:

• Which exact methods can we use to compare the divisions done by traditional
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dialectologists and computational methods?

• Is clustering, i.e. automatic determination of groups, an appropriate technique for
the investigation of the dialect data that is, in most of the cases, continuous data?
If so, which clustering techniques are most reliable?

• Can development of dialects better be described using the tree model or wave
model of change? Which methods taken from computational phylogenetics can
help us address this problem?

In Chapter 4 we compare the traditional and computational classifications on a level
of very fine detail that proceeds from the aggregate varietal distances down to the specific
segments in the words. We examine how different phonetic features are projected in the
traditional and the computational divisions of the dialects. By examining the differences
between the two classification in this manner we are hoping to answer the following
questions:

• Does our data set contain the same features that traditional dialectologists have
used to classify Bulgarian dialects?

• Are the distances obtained using the Levenshtein method, with our specific set-
tings, capturing dialect diversity insightfully?

• Do clustering techniques identify the significant groups in the data?

• Are all the dialect groupings proposed by traditional linguists based on purely
linguistic data? Or are they perhaps based on other criteria?

In Chapter 5 we apply a technique called pointwise mutual information (PMI) to
automatically infer the distances between the phones in the data set. In many studies,
including Chapter 3 of this thesis, the Levenshtein algorithm is used only with the con-
straint that vowels and consonants cannot be aligned. In that setting, all vowels are
equally distant from each other. The same holds for the consonants. We employ the dis-
tances between the segments obtained using the PMI technique within the Levenshtein
algorithm hoping to improve on the alignments produced by the Levenshtein algorithm
and to get a better measure of the distances between the language varieties. We address
the following questions in this chapter:

• Can we improve the quality of the alignments by using the PMI inferred segment
distances with the Levenshtein algorithm?

• Are any phonetic (articulatory) features reflected in the PMI induced phone dis-
tances?
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• Are there any improvements on the aggregate level of the dialect divisions if we
incorporate PMI induced distances in our analysis?

In the Levenshtein approach all word transcriptions are pairwise aligned, compared
to each other and the distances between each two strings are turned into a single number.
In Chapters 6 and 7 we take a different approach to string alignment and to the data
analysis. It is an alternative, historically motivated, approach that proceeds from the
assumption that all our examined varieties are genetically related and share common an-
cestry. We adopt the methods from computational phylogenetics that can simultaneously
perform the analysis on all transcriptions for a given word. First we multi-align all the
transcriptions to get the desired format for our data. We do so by adopting an algorithm
specifically designed to multi-align strings in linguistics. We present it in Chapter 6 and
evaluate the quality of the produced alignments using two novel techniques. In Chapter
7 we analyze automatically multi-aligned phonetic transcriptions using a Bayesian infer-
ence method. Unlike in the earlier approaches, this technique enables us to test various
hypotheses about the evolution of sounds and the evolution of dialects. In this chapter
we address the following questions:

• Can we directly use phonetic segments as a basis for Bayesian phylogenetic infer-
ence? What are the problems?

• Which models developed for the evolution of species can be applied to the phon-
etic data?

• Are phones equally likely to change into any other phone?

• Do phones in some word positions change more frequently than in some other?

In the last chapter we summarize the results and provide a discussion on the solutions
to the questions addressed in this thesis.
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Chapter 2

Data

The data used in this thesis is part of the project Buldialect—Measuring linguistic unity
and diversity in Europe.1 The data set developed during this project consists of the pro-
nunciations of 157 words collected at 197 places equally distributed all over Bulgaria
(Figure 2.1).2 The data was collected and digitalized as a joint work between the Uni-
versity of Sofia and the Institute for Parallel Processing, Bulgarian Academy of Sciences.
The main source of the data was the large dialect archive at the University of Sofia. The
word pronunciations that are part of this archive started to be gathered in 1950s, and this
work continues till now. During the Buldialect project part of this data was selected and
converted into X-SAMPA encoding for further computer processing and into IPA en-
coding for human usage. For some missing concepts and/or sites, additional expeditions
were organized as a part of the project.

In this chapter we give the description of the data set, with special emphasis on the
data collection and the selection of words. We also provide the extensive list of phonetic
features present in the data set, since feature distribution can significantly influence the
results obtained in the analyses performed. More detailed description of the data set
can be found in Prokić et al. (2009). Parts of this chapter were published as Prokić et
al. (2009) and Houtzagers, Nerbonne, and Prokić (2010).

2.1 Data collection
The dialect archive at the University of Sofia contains pronunciation data from various
sources. They include supervised students’ theses, published monographs, dictionaries,

1The project is sponsored by Volkswagen Stiftung. More information about the project can be found at
http://www.sfs.uni-tuebingen.de/dialectometry.

2For the word �iveli /Zi"veli/ ‘live - past 3rd pl’ pronunciations from many villages were not recorded.
For that reason, we do not use it in our experiments and work with 156 words at most.

9
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and the archive of the Ideographic Dictionary of Bulgarian Dialects. The largest source
for the pronunciation data are theses written by graduate students of Bulgarian language
at the University of Sofia. The collection of these descriptions began at the end of 1950s
and intensified significantly in the following decades. The majority of the theses used for
the pronunciation data were written in the period 1960–1985, very few of them earlier
or later.

Published dialect descriptions and dictionaries are another important source. There
are two series of such publications. B�lgarska dialektologi�. Prouqvani� i ma-
teriali [Bulgarian Dialectology. Investigations and Data] is non-periodical collection
of papers published by the Publishing House of Bulgarian Academy of Science in the
period 1962-1981 (10 volumes). Trudove po b�lgarska dialektologi� [Studies
in Bulgarian Dialectology] is a collection of monographs published by the Publishing
House of Bulgarian Academy of Science in the period 1965-1979 (10 volumes). Some
standalone books were also used as a source for the dialect pronunciation data.

Part of the material comes from the archive of the Ideographic Dictionary of Bul-
garian Dialects. This project was launched by Prof. Stoyko Stoykov in the middle of
the 1950s. The material for the dictionary was collected from all possible sources: theses
and term papers written on the bases of a questionnaire composed by Stoyko Stoykov
(Stoykov, 1954); abundant material from field work expeditions, which were regularly
organized in the summers; all published dialect descriptions and dictionaries; and the
personal archives of other scholars.

Tape recordings of dialect speech are another important source. A collection of
phono-archives started in 1981. Till now there are over 250 hours of recorded dialect
speech from around 100 villages from all parts of the Bulgarian language territory.

The basic methods for the collection of dialect material were the observation of nat-
ural dialect speech and some work with questionnaires. Direct questioning was greatly
disfavored, and in some cases even prohibited. The informants were selected among the
oldest inhabitants of the village who were born locally. Preference was given to women
because they were socially and otherwise less mobile at the time. The conversations
were centered on traditional rural life — customs, religious practices, agricultural work,
surrounding nature.

2.2 Selection of words and features
For the Buldialect project pronunciations of 157 words from 197 sites were selected
from the Archive and further processed. The first criterion for word selection was the
words’ availability. The words included are frequent words that were collected from all,
or almost all of the 197 sites. In Figure 2.1 we present the distribution of all the sites
present in the Buldialect project. The sites are more or less evenly distributed throughout
the country, with the exception of the northeastern part where the concentration of the
sites is much smaller. For villages in this area no data was available in the Archive.
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Figure 2.1: Distribution of 197 sites from the data set. Concentration of the sites is much
smaller in the northeast than in the rest of the country.

During the data collection for the Archive, Prof. Stoykov included only villages that were
dialectologically homogeneous. For example, villages with mixed Turkish-Bulgarian, or
predominantly Turkish population were excluded.

Regarding the choice of words in Buldialect project, only words which are expected
to show some degree of phonetic variation were included. Another important criterion
for word selection was the balance between various phonetic features present in the data
set. For example, the reflexes of Old Bulgarian vowels are represented with the same or
nearly the same number of words. The complete list of words can be found in Appendix
A. In total, there are 39 different dialectal features which have been represented in the
chosen 157 words. Below is a list of the underlying linguistic features described in
Prokić et al. (2009) and Houtzagers, Nerbonne, and Prokić (2010). With each feature
we also provide a list of words in which the feature is present.

1. Reflexes of yat: In traditional dialectology, this is the most important dialect
border in Bulgaria that divides the country into west and east. It represents different
reflexes of the Old Bulgarian vowel *ě (yat). In the west it is always pronounced as [e],
while in the east it is pronounced either as [a], [æ], or [E]. For more detailed explanation
on the reflexes of yat see Section 2.3.3

3Throughout this thesis we use Cyrillic script to represent words in their standard orthography and phon-
emic transcriptions to refer to their pronunciation in Standard Bulgarian. Pronunciations of the words in
various dialects are represented with phonetic transcriptions. The examples in the list (1)-(39) are presented in
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Example: [xljap] vs. [xlep] vs. [xlEp] ‘bread’
Words in the data set: beli /"beli/ ‘white - pl.’, bexe /"beSe/ ‘be - past 2nd sg,

3rd sg’, b�hme /"bjaxme/ ‘be - past 1st pl’, ve�da /"veZda/ ‘eyebrow’, vid�h /vi"djax/
‘see - aorist 1st sg.’, vreme /"vreme/ ‘time’, v�tre /"v7tre/ ‘inside’, v�t�r /"vjat7r/
‘wind’, dve /dve/ ‘two’, dete /de"te/ ‘child’, dobre /do"bre/ ‘well’, gore /"gore/ ‘up’,
�el�zo /Ze"ljazo/ ‘iron’, �iveli /Zi"veli/ ‘live - past pl’, zvezda /zvez"da/ ‘star’, k�de
/k7"de/ ‘where’, mesec /"mese>ts/ ‘month’, ml�koto /"mljakoto/ ‘the milk’, nedel�
/ne"delja/ ‘Sunday’, newo /"neSto/ ‘something’, n�ma /"njama/ ‘there is no’, onezi
/o"nezi/ ‘those’, oreh /"orex/ ‘walnut’, petel /pe"tel/ ‘rooster’, p�s�k /"pjas7k/ ‘sand’,
ponedelnik /pone"delnik/ ‘Monday’, reka /re"ka/ ‘river’, r�ce /r7"tse/ ‘hand - pl’,
sredata /sre"data/ ‘the middle’, sr�da /"srjada/ ‘Wednesday’, treva /tre"va/ ‘grass’,
utre /"utre/ ‘tomorrow’ hl�b /xljab/ ‘bread’, c�l />tsjal/ ‘whole’, qerexa /

>
tSe"reSa/

‘cherry’, qovek /
>
tSo"vek/ ‘human’

2. Etymological ja: The term etymological ja refers to the vowel [a] preceded by
the palatal approximant [j] or a post-alveolar consonant.

Example: [ja"deS] vs. [e"deS] ‘eat-you’
Words in the data set: az /az/ ‘I’, agne /"agne/ ‘lamb’, ne� /"neja/ ‘she - accusative’,

ovqar /ov"
>
tSar/ ‘shepherd’, ovqari /ov"

>
tSari/ ‘shepherd - pl’, qakat /"

>
tSakat/ ‘wait - 3rd

pl’, �b�lka /"jab7lka/ ‘apple’, �b�lki /"jab7lki/ ‘apple - pl’, �ǐca /jaj">tsa/ ‘egg - pl’,
�ǐce /jaj">tse/ ‘egg’, �m /jam/ ‘eat - 1st sg’, �dex /ja"deS/ ‘eat - 2nd sg’

3. Presence or absence of initial prothetic [j]
Example: ["agne] vs. ["jagne] ‘lamb’
Words in the data set: az /az/ ‘I’, agne /"agne/ ‘lamb’, edin /e"din/ ‘one - masc’

edno /e"dno/ ‘one - neut’, ezik /e"zik/ ‘tongue’, eqemik /e
>
tSe"mik/ ‘barley’, utre /"utre/

‘tomorrow’, �b�lka /"jab7lka/ ‘apple’, �b�lki /"jab7lki/ ‘apple - pl’, �ǐca /jaj">tsa/
‘egg - pl’, �ǐce /jaj">tse/ ‘egg’

4. Presence or absence of [j] before front vowels
Example: [ko"e] vs. [ko"je] ‘which’
Words in the data set: koe /ko"e/ ‘which’
5. Elision or no elision of [j]
Example: ["neja] vs. ["nea] ‘she - accusative’
Words in the data set: maǐka /"majka/ ‘mother’, ne� /"neja/ ‘she - accusative’,

�b�lka /"jab7lka/ ‘apple’, �b�lki /"jab7lki/ ‘apple - pl’, �ǐca /jaj">tsa/ ‘egg - pl’, �ǐce
/jaj">tse/ ‘egg’, �m /jam/ ‘eat - 1st sg’, �dex /ja"deS/ ‘eat - 2nd sg’

6. Reflexes of the back nasalized vowel
Example: [ka"de] vs. [ku"de] ‘where’
Words in the data set: berat /be"r7t/ ‘pick up - 3rd pl’, v�tre /"v7tre/ ‘inside’,

dera /de"r7/ ‘flay - 1st sg’, k�de /k7"de/ ‘where’, m�� /m7Z/ ‘man’, m��e /m7"Ze/
‘men’, m���t /m7"Z7t/ ‘the man’, nos�t /"nosj7t/ ‘carry - 3rd pl’, peka /pe"k7/ ‘bake -
1st sg’, p�t /p7t/ ‘road’, r�ce /r7">tse/ ‘hand - pl’, sed� /se"dj7/ ‘sit - 1st sg’, s�bota

phonetic transcription so that e.g. final devoicing, which is quite common, is ignored.
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/"s7bota/ ‘Saturday’, qakat /"
>
tSakat/ ‘wait - 3rd pl’, qeta /

>
tSe"t7/ ‘read - 1st sg’, voda

/vo"da/ ‘water’,4 glava /gla"va/ ‘head’, �ena /Ze"na/ ‘woman’, zvezda /zvez"da/ ‘star’,
zem� /ze"mja/ ‘Earth’, reka /re"ka/ ‘river’, r�ka /r7"ka/ ‘hand’, sestra /ses"tra/ ‘sister’,
treva /tre"va/ ‘grass’, qexma /

>
tSeS"ma/ ‘fountain’

7. Reflexes of the front nasalized vowel
Example: [zet] vs. [zjOt] vs. [zj7t] vs. [zit] vs. [zent] ‘son-in-low, brother-in-low’
Words in the data set: agne /"agne/ ‘lamb’, vreme /"vreme/ ‘time’, govedo /go"vedo/

‘beef’, dete /de"te/ ‘child’, deset /"deset/ ‘ten’, ezik /e"zik/ ’tongue’, eqemik /e
>
tSe"mik/

‘barley’, ��tva /"Z7tva/ ‘harvest’, zet /zet/ ‘son-in-low, brother-in-low’, ime /"ime/
‘name’, lewa /"leSta/ ‘lentil - pl’, mesec /"mese>ts/ ‘month’, meso /me"so/ ‘meat’, pet�k
/"pet7k/ ‘Friday’, se /se/ ‘one’s self’

8. Reflexes of the back yer
Example: [ta"kof] vs. [ta"k7f] vs. [ta"kaf] vs. [ta"kOf] vs. [ta"kEf] ‘such’
Words in the data set: v�v /v7v/ ‘in’, v�nka /"v7nka/ ‘outside’, grad�t /gra"d7t/

‘the town’, d��d /d7Zd/ ‘rain’, d�no /"d7no/ ‘bottom’, m���t /m7"Z7t/ ‘the man’,
pet�k /"pet7k/ ‘Friday’, p�rvi�t /"p7rvij7t/ ‘the first’, p�s�k /"pjas7k/ ‘sand’, s�s
/s7s/ ‘with’, tak�v /ta"k7v/ ‘such’

9. Reflexes of the front yer
Example: ["t76ko] vs. ["te6ko] vs. ["tjO6ko] vs. ["tE6ko] ‘thin - neut’
Words in the data set: gladen /"gladen/ ‘hungry’, den /den/ ‘day’, dnes /dnes/

‘today’, dox�l /do"S7l/ ‘come - aor part’, edin /e"din/ ‘one - masc’, lesno /"lesno/
‘easily’, petel /pe"tel/ ‘rooster’, sega /se"ga/ ‘now’, starec /"stare>ts/ ‘old man’, t�mno
/"t7mno/ ‘dark -neut’, t�nko /"t7nko/ ‘thin - neut’

10. Choice of the vowel inserted between the two last consonants in words vy-
at�r ‘wind’ and og�n ‘fire’: The elision of the word-final, and therefore weak, yer
likely resulted in an inadmissible syllabic structure, more specifically, in a syllable-final
combination of obstruent and sonorant, and a vowel was inserted between the two con-
sonants. The vowel inserted is often specific for this word alone.

Example: ["vjat7r] vs. ["veter] ‘wind’
Words in the data set: v�t�r /"vjat7r/ ‘wind’, og�n /"og7n/ ‘fire’
11. Vowel reduction
Example: ["pepel] vs. ["pepil] vs. ["pepj7l] ‘ash’
Words in the data set: veqer /"ve

>
tSer/ ‘evening’, pepel /"pepel/ ‘ash’, ponedelnik

/pone"delnik/ ‘Monday’
12. Reflexes of yery
Example: [e"zik] vs. [e"z1k] ‘tongue’
Words in the data set: ezik /e"zik/ ‘tongue’, sirene /"sirene/ ‘cheese’
13. Rounding of front vowels
Example: [Zif] vs. [Zyf] vs. [Zuf] ‘alive’

4In those East Bulgarian dialects where the general singular form of feminine nouns derives from the
accusative. Also for all the examples till the end of point 6.
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Words in the data set: eqemik /e
>
tSem"ik/ ‘barley’, �el�zo /Ze"ljazo/ ‘iron’, �iv

/Ziv/ ‘alive’, �iveli /Zi"veli/ ‘live - past 3rd pl’ ime /"ime/ ‘name’, qerexa /
>
tSe"reSa/

‘cherry’, qexma /
>
tSeS"ma/ ‘fountain’

14. Unrounding of front vowels
Example: [klju

>
tS] vs. [kli

>
tS] ‘key’

Words in the data set: kl�q /klju
>
tS/ ‘key’

15. Alternation /o/-/e/
Example: [

>
dZop] vs. [

>
dZep] ‘pocket’

Words in the data set: d�ob /
>
dZob/ ‘pocket’, naxe /"naSe/ ‘ours’, pepel /"pepel/

‘ash’
16. Presence or absence of vowel elision
Example: [ne"delja] vs. ["ndelja] ‘Sunday’
Words in the data set: eqemik /e

>
tSe"mik/ ‘barley’, ml�koto /"mljakoto/ ‘the milk’,

nedel� /ne"delja/ ‘Sunday’, ovca /ov">tsa/ ‘sheep’, ovce /ov">tse/ ‘sheep - pl’, ponedel-
nik /pone"delnik/ ‘Monday’, s�bota /"s7bota/ ‘Saturday’, tova /to"va/ ‘this - neut’

17. Change by analogy, like ["dolu] vs. ["dole] ‘down’, presumeably due to
analogy with ["gore] ‘up’

Example: ["dolu] vs. ["dole] ‘down’ analogy with ["gore] ‘up’
Words in the data set: dolu /"dolu/ ‘down’, peka /pe"k7/ ‘bake - 1st sg’ (due to

analogy with seka /se"k7/ ‘chop - 1st sg’)
18. Reflexes of syllabic liquids
Example: [v7lk] vs. [vl7k] vs. [vl

"
k] vs. [v7k] vs. [vuk] vs. [vOlk] vs. [vElk] ‘wolf’

Words in the data set: b�rzo /"b7rzo/ ‘quickly’, vr�h /vr7x/ ‘peak’, vr�wam
/"vr7Stam/ ‘give back - 1st sg’, v�lk /v7lk/ ‘woolf’, v�lna /"v7lna/ ‘wool’, d�lbok
/d7l"bok/ ‘deep’, d�rvo /d7r"vo/ ‘tree’, ��lt /Z7lt/ ‘yellow’, kr�v /kr7v/ ‘blood’,
pr�q /pr7

>
tS/ ‘he-goat’, pr�vi�t /"pr7vij7t/ ‘the first’, s�rp /s7rp/ ‘sickle’, qerven

/
>
tSer"ven/ ‘red’, qeren /"

>
tSeren/ ‘black’, �b�lka /"jab7lka/ ‘apple’, �b�lki /"jab7lki/

‘apple - pl’
19. Reflexes of *tj, *dj
Example: ["leSta] vs. ["leS

>
tSa] vs. ["le

>
tSa] ‘lentils’

Words in the data set: ve�da /"veZda/ ‘eyebrow’, vr�wam /"vr7Stam/ ‘give back -
1st sg’, lewa /"leSta/ ‘lentil - pl’, newe /ne"Ste/ ‘not want - 3rd sg’, now /noSt/ ‘night’,
plawam /"plaStam/ ‘pay - 1st sg’, we /Ste/ ‘will’

20. Variation of the original initial cluster qr + following vowel ~ or ă
Example: [

>
tSer"ven] vs. [>ts7r"ven] ‘red’

Words in the data set: qerven /
>
tSer"ven/ ‘red’, qeren /"

>
tSeren/ ‘black’, qerexa

/
>
tSe"reSa/ ‘cherry’

21. Epenthetic [l]
Example: [ze"mja] vs. [zem"lja] vs. [zem"nja] ‘land’
Words in the data set: zem� /ze"mja/ ‘land’
22. Presence or absence of voiced affricates
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Example: [
>
dZop] vs. [Zop] ‘pocket’

Words in the data set: d�ob /
>
dZob/ ‘pocket’, �el�zo /Ze"ljazo/ ‘iron’, zvezda

/zvez"da/ ‘star’
23. Presence or absence of palatalized consonants
Example: [vl

"
k] vs. [v7ljk] ‘wolf’

Words in the data set: agne /"agne/ ‘lamb’, brane /bra"ne/ ‘pick - verb. noun’, v�lk
/v7lk/ ‘wolf’, kon /kon/ ‘horse’, maǐka /"majka/ ‘mother’, nos�t /"nosj7t/ ‘carry - 3rd

pl’, og�n /"og7n/ ‘fire’, ponedelnik /pone"delnik/ ‘Sunday’, p�t /p7t/ ‘road’, sed�
/se"dj7/ ‘sit - 1st sg’, sirene /"sirene/ ‘cheese’, sol /sol/ ‘salt’, furna /"furna/ ‘oven’,
�b�lka /"jab7lka/ ‘apple’, �b�lki /"jab7lki/ ‘apple - pl’

24. Results of palatalization of /st/, /zd/ in words corresponding to Standard
Bulgarian ["gosti] guests, ["grozde] grapes

Example: ["gosti] vs. ["gosje] vs. ["gojse] ‘guest - pl’
Words in the data set: gosti /"gosti/ ‘guest - pl’, grozde /"grozde/ ‘grapes’
25. Presence or absence of simplification of the clusters str /str/, zdr /zdr/
Example: [se"stra] vs. [se"sra] ‘sister’
Words in the data set: zdrav /zdrav/ ‘healthy’, sestra /ses"tra/ ‘sister’, strah

/strax/ ‘fear’
26. Presence or absence of epenthesis of [t] and [d] in the clusters [sr] and [zr]
Example: ["srjada] vs. ["strjada] ‘Wednesday’
Words in the data set: sr�da /"srjada/ ‘Wednesday’
27. Presence or absence of the voiceless velar fricative
Example: [strax] vs. [stra] ‘fear’
Words in the data set: b�hme /"bjaxme/ ‘were - 1st pl’, vid�h /vi"djax/ ‘see - aor

1st sg’, vr�h /vr7x/ ‘peak’, dadoha /"dadoxa/ ‘give - aor 3rd pl’, oreh /"orex/ ‘walnut’,
strah /strax/ ‘fear’, suh /sux/ ‘dry’, uho /u"xo/ ‘ear’, hl�b /xljab/ ‘bread’, horo /xo"ro/
‘chain dance’, hubav /"xubav/ ‘beautiful - masc’, hubavo /"xubavo/ ‘beautiful - neut’

28. Presence or absence of the voiceless labiodental fricative
Example: ["furna] vs. ["vurna] vs. ["xurna] vs. ["hurna] vs. ["Furna] ‘oven’
Words in the data set: furna /"furna/ ‘oven’
29. Preservation or loss of */v/ before rounded vowels
Example: [vol] vs. [ol] ‘ox’
Words in the data set: vol /vol/ ‘ox’, dvor /dvor/ ‘yard’, d�rvo /d7r"vo/ ‘tree’,

tvoǐ /tvoj/ ‘yours’, hubavo /"xubavo/ ‘pretty - neut’
30. Presence or absence of prothetic [v] before rounded vowels
Example: ["og7n] vs. ["vog7n] ‘fire’
Words in the data set: og�n /"og7n/ ‘fire’, oreh /"orex/ ‘walnut’
31. Devoicing of obstruents in certain positions
Example: [Zif] vs. [Ziv] ‘alive’
Words in the data set: d�ob /

>
dZob/ ‘pocket’, d��d /d7Zd/ ‘rain’, �iv /Ziv/ ‘alive’,

zdrav /zdrav/ ‘healthy’, kr�v /kr7v/ ‘blood’, m�� /m7Z/ ‘man’, ovca /ov">tsa/ ‘sheep’,
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ovce /ov">tse/ ‘sheep - pl’, ovqar /ov"
>
tSar/ ‘shepherd’, ovqari /ov"

>
tSari/ ‘shepherd - pl’,

tak�v /ta"k7v/ ‘such’, hl�b /xljab/ ‘bread’, hubav /"xubav/ ‘pretty - masc’
32. The form of the preposition *v� and the prefix *v~
Example: ["vlizam] vs. [u"lizam] ‘enter - 1st sg’
Words in the data set: vlizam /"vlizam/ ‘to enter - 1st sg’, v�v /v7v/ ‘in’
33. Various assimilations and dissimilations
Example: [of">tsa] vs. [os">tsa] ‘sheep’
Words in the data set: edno /e"dno/ ‘one - neut’, mnogo /"mnogo/ ‘much, many’,

ovca /ov">tsa/ ‘sheep’, ovce /ov">tse/ ‘sheep - pl’, ovqar /ov"
>
tSar/ ‘shepherd’, ovqari

/ov"
>
tSari/ ‘shepherd - pl’, t�mno /"t7mno/ ‘dark -neut’
34. Nonsystematic changes in individual words
Example: ["b7rzo] vs. ["b7rZe] ‘quickly’
Words in the data set: b�rzo /"b7rzo/ ‘quickly’, veqe /"ve

>
tSe/ ‘already’, vqera

/"v
>
tSera/ ‘yesterday’, qovek /

>
tSo"vek/ ‘person’

35. Morphophonemic alternations or suffixes connected with the formation of
secondary imperfective verbs

Example: ["vlizam] vs. ["vlazam] vs. ["vljavam] ‘enter - 1st sg’
Words in the data set: vlizam /"vlizam/ ‘enter - 1st sg’, vr�wam /"vr7Stam/ ’give

back - 1st sg’, plawam /"plaStam/ ’pay - 1st sg’
36. Form of certain grammatical endings, such as that of the first person plural

in all tenses
Example: ["bjaxme] vs. ["bexmo] ‘were - 1st pl’
Words in the data set: b�hme /"bjaxme/ ‘were - 1st pl’
37. Choice of the suffix in certain nouns that originally belonged to the n-stem

nouns:
Example: ["kam7k] vs. ["kamik] vs. ["kamen] ‘stone’
Words in the data set: eqemik /e

>
tSe"mik/ ‘barley’, kam�k /"kam7k/ ‘stone’

38. Various forms of words that are derived from a common Old Bulgarian
form

Example: ["vie] vs. [vi] vs. [ve] ‘you’
Words in the data set: vie /"vie/ ‘you’, i /i/ ‘she - dative’, im /im/ ‘they - dative’, nie

/"nie/ ‘we’, onezi /o"nezi/ ‘those’, tova /to"va/ ‘this - neut’, togava /to"gava/ ‘then’, �
/ja/ ‘she - accusative’

39. Different position of stress
Example: ["vino] vs. [vi"no] ‘wine’

2.3 Traditional scholarship
In this section we give a short overview of the main dialect areas distinguished by tradi-
tional Bulgarian dialectology.
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As found in Boyadzhiev (2004), the development of modern Bulgarian dialecto-
logy started in 1848 when Russian Slavist Viktor Grigorovich published a book Oqerk
putexestvi� po Evropeǐskoǐ Turcii [A Sketch of a Journey in European Turkey]
(Grigorovich, 1848) in which, for the first time, he proposed division of the Bulgarian
dialect area into west and east, describing at the same time linguistic features respons-
ible for this division. After the liberation of Bulgaria from the Ottoman Empire in 1878,
the interest in Bulgarian dialects increased, which resulted in numerous studies of the
various individual dialects. The most significant period in the development of Bulgarian
dialectology came after World War II and is related to the work of Prof. Stoyko Stoykov.
Prof. Stoykov, who was the head of the Bulgarian dialectology section within the Insti-
tute for Bulgarian Language and the leading expert in Bulgarian dialectology, organized
field expeditions, and set the foundations for Bulgarian dialect atlas (Stoykov and Bern-
stein, 1964; Stoykov, 1966; Stoykov et al., 1974; Stoykov, Kochev, and Mladenov, 1981).
Led by Prof. Stoykov, Bulgarian dialectologists compiled reference books, atlases, dic-
tionaries, monograph descriptions of individual dialects, as well as analytic surveys on
a different topics from dialectology (Alexander, 2004). Stoykov’s basic assumptions
were that a dialect is a self-contained linguistic system and that a satisfactory dialect
description should provide a thorough account of all levels of this system, contrary to
the practice of collecting and describing only exotic and rare words and features (Prokić
et al., 2009). On the basis of Prof. Stoykov’s work, Bulgarian dialectology continues to
develop till present times.

In B�lgarska dialektologi� [Bulgarian dialectology] (Stoykov, 2002), Stoykov
described the main dialect areas in Bulgaria (Figure 2.2). This division was based on the
variation of different phonetic features and no lexical or syntactic variation was taken
into account. According to Stoykov, the main division of Bulgarian dialects is into
western and eastern. The border between these two areas is the so-called yat border that
reflects different pronunciations of the Old Bulgarian vowel yat. It goes from Nikopol
in the north, near Pleven and Teteven down to Petrich in the south, represented by the
bold dashed line in Figure 2.2. This is the oldest dialect border that is still very well
preserved. In a nonpalatal environment, i.e. before a syllable that does not contain
post-alveolar consonant, palatalized consonant or a front vowel, in the west the Old
Bulgarian vowel *ě (yat) is always pronounced as [e], while in the east it is pronounced
either as [a] or a low variant of [e]. If the reflex of yat is [a] or a very low variant of
[e], a preceding consonant is usually palatalized. For example [bel] vs. [bjal], [bjæl] or
[bEl]. This isogloss divides Bulgarian language area into west and east. According to
Stoykov (2002), east of the yat line there is a division into northeastern and southeastern
areas based on the pronunciation of the old vowel yat in a palatal environment, i.e. if
there is a post-alveolar consonant, palatalized consonant or a front vowel in the following
syllable. In the northeast yat is pronounced as [e], while in the southeast it is pronounced
as [a], [æ] or [E]. For example [beli] vs. [bjali], [bjæli] or [bEli].

Taking into account various phonetic features, including reflexes of *ě (yat) as well,
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Stoykov divides the Bulgarian dialect area first into two zones—eastern and western
along the yat line. These two areas are further divided into six dialect zones, which
can also be seen on the map in Figure 2.2. In the east, there are Moesian, Balkan and
Rupian dialects. In the west, he distinguishes southwestern, northwestern dialects and
the transitional zone at the border with Serbia.

Moesian dialects are situated in the northeastern part of Bulgaria. According to Stoykov (2002,
101-103) the most important phonetic and morphophonetic characteristics of this dialect
are the following:

• In stressed syllables, the reflexes of Old Bulgarian vowel *ě (yat) before non-
palatal syllables is [ja] and before palatal syllables is [E] ([bjal] vs. [bEli]). Under
the influence of the Balkan dialects [E] is almost completely replaced by [e].

• velarized realization of the Old Bulgarian back yer in a stressed position

• non-existence of consonants /f/ and /x/

• change of consonant /d/ into [n] before /n/ (*dn > [nn])

• the masculine definite article is /o/ (stressed) and /u/ (unstressed) instead of formal
Bulgarian /7t/ and /7/

• ending /e/ instead of formal Bulgarian /i/ for multi-syllable masculine nouns

• ending /e/ in stressed syllables instead of formal Bulgarian /i/ for plural past active
aorist participles

Balkan dialects cover the central area of present Bulgaria and represent the most extens-
ive group of dialects of the Bulgarian language. The main characteristics of the Balkan
dialects are the following (Stoykov, 2002, 107):

• the reflexes of Old Bulgarian vowel *ě (yat) before non-palatal syllable is [ja] and
before palatal syllable is [e] ([bjal] vs. [beli])

• reductions of vowels /a/, /e/ and /o/, which are usually reduced to [@], [i] and [u]
respectively

• realization of /a/ is [e] after a soft consonant or /Z/, /S/, /
>
Ù/, /

>
Ã/, and before a soft

syllable

Rupian dialects are found in the southeastern part of Bulgaria, and include the southern
part of Trakia, the region of Haskovo, the Rodopes and the most southeastern region
of Bulgaria around Malko Tarnovo. Rupian dialects comprise varieties that are het-
erogeneous and have vastly different phonetic characteristics. However, according to
Stoykov (2002, 120-122) the following characteristics are present in all Rupian dialects:
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• large number of palatal consonants in various positions

• soft pronunciation of consonants /Z/, /S/ and /
>
Ù/

• preserved consonant /x/ in all positions

• widespread labialization of /i/ into /u/

• change of consonant /d/ into [n] before /n/ (*dn > [nn])

Northwestern dialects are situated in the area between the border with Serbia in the
west and the yat border on the east, and between Stara planina mountain in the south
and the river Danube in the north. The phonological characteristics of this group of
dialects are the following (Stoykov, 2002, 146):

• the reflex of Old Bulgarian vowel *ě (yat) is always [e]

• the reflex of old back nasal vowel yus and back vowel yer is [7]

• the reflexes of old groups *tj and *dj are /St/ and /Zd/

• ending /e/ instead of formal Bulgarian /i/ for plural past active aorist participles

• the masculine definite article is /@/ in a stressed syllable and /a/ in an unstressed
syllable

Southwestern dialects are situated west of the yat line, occupying the territory that lies
between Rupian and Balkan dialects in the east, northwestern dialects in the north and
transitional dialects at the border with Serbia on the west. The main characteristics of
these dialects are the following (Stoykov, 2002, 149):

• the reflex of Old Bulgarian vowel *ě (yat) is always [e]

• the reflex of Old Bulgarian back nasal vowel yus is in most cases [a]
The exception is Sofia area where the reflex [@] is found.

• the reflex of Old Bulgarian back yer � and front yer ~ is mostly [a], but in the
western parts reflex [o] is found instead of [a]

• the reflexes of old groups *tj and *dj are /St/ and /Zd/

• change of /o/ into [e] after /Z/, /S/, /
>
Ù/ and /j/

• single masculine definite article is /o/ or /a/
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Transitional dialects lie at both sides of today’s Bulgarian-Serbian border. In this thesis
we are interested only in the varieties that are within the Bulgarian administrative border.
At the Bulgarian side, these dialects occupy very small area near the border and represent
a transition between Serbian and Bulgarian language varieties. They are characterized
by the following features (Stoykov, 2002, 164-165):

• the reflex of Old Bulgarian vowel *ě (yat) is always [e]

• the reflexes of old groups *tj and *dj are /
>
Ù/ and /

>
dZ/

• the reflex of Old Bulgarian back nasal vowel yus is [u]

• the reflex of Old Bulgarian back and front yer is always [@]

• articulation of voiced consonants at the end of the word (as in Serbian)

• softer [l] than in other Bulgarian dialects, but not palatalized

• complete loss of consonant /f/ in all positions—in new words it is replaced with
/v/

• complete loss of consonant /x/ in all positions

• frequent usage of palatalized /n/ and /l/ in word final position and before front
vowels /e/ and /i/

In the following chapters of this thesis we apply various quantitative methods on the
dialect pronunciation data from the Buldialect project in order to automatically detect
main dialect groups and calculate the distances between them. In Chapter 4 we compare
in detail the results of the computational analysis to the traditional divisions of Bulgarian
dialects. The aim of the comparison is to evaluate our computational methods but also
to check the distribution of the phonetic features responsible for traditional divisions
within the Buldialect data set. The results will show that the features responsible for the
traditional dialect divisions, according to Stoykov (2002), are well represented in our
data set.
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Chapter 3

Distance-based methods

In this chapter we present a group of methods that all proceed from a distance matrix that
stores information on the distances between each two sites in the data set and try to group
those sites based on different criteria depending on a method. The distances between
the sites are calculated using the Levenshtein algorithm that at the same time pairwise
aligns all corresponding word pronunciations in the data set. This algorithm is described
in more detail in Section 3.1. The so-called distance-based methods used to analyze
the distance matrix include multidimensional scaling, seven hierarchical clustering al-
gorithms, k-means clustering algorithm, neighbor-joining and neighbor-net, described
in Sections 3.2, 3.3 and 3.4. We also present the results of applying these techniques
in Section 3.5. In Section 3.6 we propose various evaluation techniques and use them
to evaluate the performance of the mentioned classification algorithms. We conclude
this chapter with the discussion and conclusions in Section 3.7. Work presented in this
chapter was published as Prokić and Nerbonne (2008).

3.1 Levenshtein distance

The Levenshtein, or string edit distance, algorithm (Levenshtein, 1966) is a dynamic pro-
gramming algorithm used to measure the differences between two strings. The distance
between two strings is the smallest number of insertions, deletions, and substitutions
needed to transform one string to the other. For example, in order to transform one
word transcription in Figure 3.1 into the other we would need 3 operations: [bj] has to
be replaced by [b], [@] by [e] and [i] by [e]. In this chapter all three operations were
assigned the same value, namely 1. This means that the distance between two strings in
Figure 3.1 is 3. Every sequence, i.e. word transcription is represented as a sequence of
phones which are not further defined. As a consequence, pair [bj]-[b] counts as different

23
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to the same degree as pair [i]-[e].1

bj @ r "A n i
b e r "A n e
1 1 1

Figure 3.1: Levenshtein distance between these two strings is 3.

In his thesis Heeringa (2004) has shown that in the aggregate analysis of dialect dif-
ferences, more detailed feature representation of segments does not improve the results
obtained by using simple phone representation. Another motivation for using the simple
phone representation is to keep the analysis as robust as possible, without going into the
language specific details of feature representation. In Chapter 5 we present a method,
called pointwise mutual information, that can be used to automatically acquire the dis-
tances between the segments in the transcriptions. We incorporate this method into the
Levenshtein procedure and obtain alignments that are of a better quality than those ob-
tained by the simple Levenshtein algorithm. This results in a slight improvement of the
results in the aggregate analysis of dialect differences.

The Levenshtein algorithm is also directly used to align two sequences, as can be
seen in Figure 3.1. The transcriptions used for experiments in this thesis were aligned
based on the following principles: a) a vowel can be aligned only with a vowel b) a con-
sonant can be aligned with a consonant, a sonorant or a semivowel such as [j] and [w].
After aligning all word transcriptions, which also results in a calculation of the distances
between each two strings, we calculate the distances between the sites. The distance
between two sites is the mean of all word distances calculated for those two sites. The
final result is a distance matrix that contains the distances between each two sites in
the data set. We note that using the mean Levenshtein distance over a large sample of
pronunciations effectively aggregates over a large number of individual segment differ-
ences, the basis of most isoglosses. Brett Kessler (Kessler, 1995) was the first to use
Levenshtein distance in order to calculate the linguistic distance between the dialects.
Later it was successfully applied to many other languages. An overview of the applica-
tion of the Levenshtein algorithm in dialectology can be found in Nerbonne (2009).

3.2 Multidimensional scaling
Multidimensional scaling is a dimension-reducing method used in exploratory data ana-
lysis and a data visualization method, often used to look for separation of data clusters
(Legendre and Legendre, 1998). The goal of the analysis is to detect meaningful un-
derlying dimensions that allow the researcher to explain observed similarities or dissim-

1For technical reasons, the sign for primary stress is moved to the first vowel in stressed syllable.
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ilarities between the investigated objects. It displays the structure of distance-like data
as a geometrical picture by attempting to arrange ‘objects’ in a space within a certain
small number of dimensions, which, however, accord with the observed distances. As a
result, dissimilar objects are plotted far apart from each other, while similar objects are
close to one another. This enables us to ‘explain’ the distances in terms of underlying
dimensions. It has been used in linguistics and dialectology since Black (1973). In this
thesis Kruskal’s non-metric MDS is being used.

3.3 Clustering

Cluster analysis is the process of partitioning a set of objects into groups or clusters
(Manning and Schütze, 1999). The goal of clustering is to find the structures in the data
by finding objects that are similar enough to be put in the same group and by identifying
distinctions between the groups. The data in each subset share some common trait—
often proximity according to some defined distance measure. Clustering methods can be
classified into several types, based on different criteria. One classification is into soft or
hard, where in soft clustering objects can belong to a cluster to a certain degree. In hard
clustering objects can be assigned only to one cluster. Another division of clustering al-
gorithms is into hierarchical and partitional clustering. Partitional clustering algorithms
produce mutually exclusive partitions of the data where each instance can belong only
to one cluster. Unlike in hierarchical clustering, all clusters are determined in one step.
Hierarchical clustering is usually hard, while partitioning clustering can be both hard and
soft. Hierarchical clustering algorithms produce a set of nested partitions of the data by
finding successive clusters using previously established clusters. This kind of hierarchy
is represented with a dendrogram—a tree in which more similar elements are grouped
together. Hierarchical clustering algorithms can be further divided into agglomerative
(bottom-up) and divisive (top-down) clustering. In agglomerative clustering, the proced-
ure begins by putting each object in a separate cluster, and later successively grouping
them into larger and larger clusters until a single cluster is obtained. In divisive cluster-
ing, the procedure goes in the opposite direction: at the beginning of the procedure all
objects are put into one cluster and later successively divided into smaller and smaller
subclusters.

In this thesis one partitional and seven hierarchical agglomerative clustering al-
gorithms will be examined in more detail. Since traditional scholarship agrees that,
in general, dialect areas are organized hierarchically, and since, in particular, Bulgarian
dialect areas are claimed to be hierarchically organized (see Chapter 2), we are partic-
ularly interested in the hierarchical techniques. We examine the partitioning techniques
to see whether they might aid in detecting groups at any level of hierarchy.
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3.3.1 Hierarchical agglomerative clustering
In this section we present seven hierarchical clustering algorithms whose performance
on the dialect pronunciation data is examined in this thesis. Hierarchical clustering al-
gorithms can be described by the following scheme formalized by Johnson (1967):

• estimate pairwise distances

• put information on distances into matrix

• find the shortest distance in the matrix

• fuse two closest points

• calculate the distance between the newly formed node and the rest of the nodes
(matrix updating algorithms)

• repeat until there are no more nodes to be fused

Based on the way in which the distances between a newly formed node and the rest of
the nodes are calculated, there are seven different algorithms (Jain and Dubes, 1988) and
they will be described in more details.

Single link method, also known as nearest neighbor, is one of the oldest methods in
cluster analysis. The similarity between two clusters is computed as the distance between
the two most similar objects in the two clusters.

dk[i j] = minimum(dki,dk j) (3.1)

In this formula, as well as in other formulae in this subsection, i and j are two closest
points that are fused into one cluster[i, j], and k represents all the remaining points
(clusters). In single link clustering the similarity function is locally defined, resulting in
clusters of good local coherence, but bad global quality (Manning and Schütze, 1999).
As noted in Jain and Dubes (1988), single link clusters easily chain together, yielding
a so-called chaining effect, and produce elongated clusters. The presence of only one
intermediate object between two compact clusters is enough to turn them into a single
cluster. For that reason, this method is sensitive to noise, and as we shall see later, not
suitable for dialectometric analysis.

Complete link method, also called furthest neighbor, uses the most distant pair of ob-
jects while fusing two clusters. The algorithm first compares all existing clusters search-
ing for the most distant pairs of objects belonging to two different clusters. In the second
step it merges two clusters that have the smallest value for the most distant objects found
in the first step. In that way, an object joins a cluster only when it is linked to all the
objects already members of the cluster (Legendre and Legendre, 1998).
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dk[i j] = maximum(dki,dk j) (3.2)

Unlike the single link method, this method produces sphere-like clusters that have good
global quality. In ecology, complete link clustering is often used in order to delineate
clusters with clear discontinuities (Legendre and Legendre, 1998).

Unweighted Pair Group Method using Arithmetic averages (UPGMA) belongs to a
group of average clustering methods, together with three methods that will be described
below. In UPGMA, the distance between any two clusters is the average of distances
between all members of the two clusters being compared. All objects, i.e. single ele-
ments, receive the same weight in the computation regardless of the number of objects
in the cluster.

dk[i j] = (ni/(ni + n j))×dki +(n j/(ni + n j))×dk j (3.3)

As a consequence, the clusters themselves are weighted according to the number of
elements that belong to them, i.e. clusters with the smaller number of elements will be
weighted less and the other way around.

Weighted Pair Group Method using Arithmetic averages (WPGMA), the same as
UPGMA, calculates the distance between the two clusters as the average of distances
between all members of two clusters. But in WPGMA, the clusters that fuse receive
equal weight regardless of the number of members in each cluster.

dk[i j] = (
1
2
×dki)+(

1
2
×dk j) (3.4)

Because all clusters receive equal weight, objects in smaller clusters are more heavily
weighted than those in the big clusters. This modification of the UPGMA algorithm
was proposed by Sokal and Michener (1958) since sometimes UPGMA results can be
distorted during the fusion of a large group of objects with the small group of objects.

Unweighted Pair Group Method using Centroids (UPGMC) In this method, the
members of a cluster are represented by their mean point, called centroid. This centroid
represents the cluster while calculating the distance between the clusters to be fused.

dk[i j] = (ni/(ni + n j))×dki +(n j/(ni + n j))×dk j− ((ni×n j)/(ni + n j)
2)×di j (3.5)

In the unweighted version of centroid clustering the clusters are weighted based on the
number of elements that belong to that cluster. This means that bigger clusters re-
ceive higher weight, and sometimes centroids can be biased towards bigger clusters.

Centroid clustering methods can occasionally produce reversals–partitions where the



28 CHAPTER 3. DISTANCE-BASED METHODS

distance between two clusters is smaller than the distance between the subclusters in one
of the two clusters (Legendre and Legendre, 1998). These dendrograms are hard to draw
and interpret and for that reason often not used by researchers.

Weighted Pair Group Method using Centroids (WPGMC) Somewhat as in WPGMA,
in WPGMC all clusters are assigned the same weight regardless of the number of objects
in each cluster. In that way the centroids are not biased towards well-sampled clusters.

dk[i j] = (
1
2
×dki)+(

1
2
×dk j)− (

1
4
×di j) (3.6)

Ward’s method This method is also known as the minimal variance method. At each
stage in the analysis clusters that merge are those that result in the smallest increase in
the sum of the squared distances of each individual from the mean of its cluster.

dk[i j] = ((nk + ni)/(nk + ni + n j))×dki

+((nk + n j)/(nk + ni + n j))×dk j

−(nk/(nk + ni + n j))×di j

(3.7)

This method uses an analysis of variance approach to calculate the distances between
clusters. One of the main drawbacks of this method is that it tends to create clusters of
the same size (Legendre and Legendre, 1998).

3.3.2 K-means
The k-means algorithm belongs to the non-hierarchical algorithms which are often re-
ferred to as partitional clustering methods (Jain and Dubes, 1988). Unlike hierarchical
clustering algorithms, partitional clustering methods generate a single partition of the
data. A partition implies a division of the data in such a way that each instance can be-
long only to one cluster. The number of groups in which the data should be partitioned
is usually determined by the user.

The k-means is the most commonly used partitional algorithm, which despite its
simplicity, works sufficiently well in many applications (Manning and Schütze, 1999).
The main idea of k-clustering is to find the partition of n objects into k clusters such that
each object is assigned to the cluster with the nearest mean. In other words, given a set
of objects X = {x1,x2, ...,xn}, k-means tries to put n objects into k groups such that the
total error sum of squares is minimized:

argmin
S

k

∑
i=1

∑
x j∈Si

||x j−µi||2 (3.8)
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where µi is the mean of Si. In this chapter we use squared Euclidean distance to compute
centroid clusters: each centroid is the mean of the points in that cluster.

In the simplest version, the algorithm consists of the following steps:

1. pick at random initial cluster centers

2. assign objects to the cluster whose mean is closest

3. recompute the means of clusters

4. reassign every object to the cluster whose mean is closest

5. repeat steps 3 and 4 until there are no changes in the cluster membership of any
object

Eventually, the algorithm converges finding the best solution given the starting centroids.
This means that the final solution depends on the initial position of the centroids and
that the algorithm is guaranteed to find only the ‘local minimum’, but not necessarily the
‘overall minimum’ as well. This is considered one of the main drawbacks of the k-means
algorithm. In order to overcome this problem, different solutions have been suggested
throughout vast literature on partitional clustering. Here we list some of the possibilities:

• In the rare cases where it is possible, start with the centroids placed in positions
already close to the final solution.

• Repeat the whole procedure several times starting every time from a different
random configuration. Take the solution that minimizes the most sum of square
errors.

• Use the output of some of the hierarchical clustering algorithms as the starting
point.

Another drawback of k-means algorithm is that number of groups k has to be defined in
advance. More information on the k-means algorithm can be found in some of the clas-
sical references to k-means: Hartigan (1975), Everitt (1980) and Jain and Dubes (1988).

3.4 Neighbor-joining and neighbor-net
Apart from the k-means and seven hierarchical clustering algorithms, we also invest-
igate the performance of the neighbor-joining and neighbor-net algorithms. These two
algorithms were developed for making phylogenetic trees and networks in biology. In
the past decade, there has been an increasing interest in the application of computational
phylogenetic methods from biology to the study of language variation and language
change, including these two techniques (Nakhleh et al., 2005; Hamed, 2005; Bryant,
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Filimon, and Gray, 2005; Wichmann and Saunders, 2007). In this research we are par-
ticularly interested in seeing the performance of these algorithms on the dialect pronun-
ciation data, since most of the previous studies were conducted on data from different
languages where the boundaries between the various varieties are much sharper than in
the case of our data.

3.4.1 Neighbor-joining
Neighbor-joining is a method for reconstructing phylogenetic trees that was first intro-
duced by Saitou and Nei (1987). The main principle of this method is to find pairs of
taxonomic units that minimize the total branch length at each stage of clustering. The
distances between each pair of instances (in our case data collection sites) are calculated
and put into the n×n matrix, where n represents the number of instances. The matrices
are symmetrical since distances are symmetrical, i.e. distance (a,b) is always the same
as distance (b,a). Based on the input distances, the algorithm finds a tree that fits the
observed distances as closely as possible. While choosing the two nodes to fuse, the
algorithm always takes into account the distance from every node to all other nodes in
order to find the smallest tree that would explain the data. Once found, two optimal
nodes are fused and replaced by a new node. The distance between the new node and
all other nodes is recalculated, and the whole process is repeated until there are no more
nodes left to be paired. The algorithm was modified by Studier and Kepler (Studier and
Kepler, 1988) and the complexity was reduced to O(n3). The steps of the algorithm are
as follows (taken from Felsenstein (2004)):

• For each node compute ui which is the sum of the distances from that node to all
other nodes

ui =
n

∑
j: j 6=i

Di j

(n−2)
(3.9)

• Choose i and j for which Di j−ui−u j is smallest

• Join i and j. Compute the length from i and j to the newly formed node v using the
equations below. Note that the distances from the new node to its children (leaves)
need not be identical. This possibility does not exist in hierarchical clustering.

vi =
1
2

Di j +
1
2

(ui−u j) (3.10)

v j =
1
2

Di j +
1
2

(u j−ui) (3.11)

• Compute the distance between the new node and all of the remaining nodes

D(i j),k =
(Dik + D jk−Di j)

2
(3.12)
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• Delete nodes i and j and replace them by the new node

This algorithm produces a unique unrooted tree under the principal of minimal evolution
(Saitou and Nei, 1987). Trees can generally either be rooted or unrooted. A rooted tree
has a root node from which all other nodes descend. The closer a node is to the root of the
tree, the older is in time. Unrooted trees do not have a root node, and they do not allow
us to define ancestor-descendant relationship between nodes (Page and Holmes, 2006).

root

DobroseletsBorisovoGalataAldomirovtsi

Galata

Aldomirovtsi Dobroselets

Borisovo

Figure 3.2: Rooted tree on the left hand side and unrooted tree on the right hand side.

In biology, the neighbor-joining algorithm has become a very popular and widely
used method for reconstructing trees from distance data. It is fast and can be easily
applied to a large amount of data. Unlike most hierarchical clustering algorithms, it
will recover the true tree even if there is not a constant rate of change among the taxa
(Felsenstein, 2004).

3.4.2 Neighbor-net
Neighbor-net is a network construction and data-representation tool and is, just as the
neighbor-joining algorithm, agglomerative: taxa are combined into progressively larger
and larger units (Bryant and Moulton, 2004). Unlike the neighbor-joining method, it
reconstructs networks rather than trees. In each iteration it selects a pair of taxa to be
grouped together, but it does not agglomerate those pairs immediately. That is done at
a later stage when the second neighbor of one of the previously paired nodes is found.
At that point, three nodes are replaced by two and the distance between newly formed
nodes and the rest of the nodes is calculated.

In the first step a pair of clusters Ci and C j is found to minimize the standard NJ
formula:

Q(Ci,C j) = (m−2)d(Ci,C j)−
m

∑
k=1,k 6=i

d(Ci,Ck)−
m

∑
k=1,k 6= j

d(C j,Ck) (3.13)
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where distance d(Ci,C j) between two clusters is the average of the distances between
elements in each cluster.

d(Ci,C j) =
∑x∈Ci ∑y∈C j d(x,y)

|Ci||C j|
(3.14)

Ci and C j can contain one or two neighboring nodes. At the very beginning every node
forms a separate cluster. Later on, some pairs of nodes will have been identified as
neighbors. These pairs of neighbors are taken into account when selecting nodes to
agglomerate (Bryant and Moulton, 2004).

In the second step, we find x ∈Ci and y ∈C j that minimize

Q̂(xi,x j) = (m̂−2)d(xi,x j)−
m̂

∑
k=1,k 6=i

d(xi,Ck)−
m̂

∑
k=1,k 6= j

d(x j,Ck) (3.15)

In the agglomeration step three closest nodes (x, y, z) are replaced by two new nodes
(u, v). The distance from the two newly formed nodes to the rest of the nodes is calcu-
lated using the following formulae:

d(u,a) = (α + β )d(x,a)+ γd(y,a) (3.16)

d(v,a) = αd(y,a)+(β + γ)d(z,a) (3.17)

d(u,v) = αd(x,y)+ βd(x,z)+ γd(y,z) (3.18)

where α , β , and γ are positive real numbers with α + β + γ = 1.
In the graph generated by neighbor-net, splits of the taxa are represented by classes

of parallel edges. Conflicting signals appear as boxes. Unlike in the neighbor-joining
algorithm, the edge length estimation is done at the end and not during the agglomeration
stage.

In Figure 3.3 we can see pronunciations of word agne /"agne/ ‘lamb’ collected at
four different sites. These four pronunciations differ in positions 1 and 5. Since we do
not have any model of phonetic evolution, we will use a very simple model and calculate
the divisions of the four sites based on the number of positions in which they differ.
Position 1, where we have initial prothetic /j/, gave the following division (Aldomirovtsi,
Dobroselets) — (Borisovo, Galata). In position number 5, representing reflexes of the
front nasalized vowel in word final position, the division of the sites is (Aldomirovtsi,
Galata) — (Borisovo, Dobroselets). Splits at positions 1 and 5 are incompatible, since
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1 2 3 4 5
Aldomirovtsi: j "A g n e

Borisovo: - "A g n i
Dobroselets: j "A g n i

Galata: - "A g n e

Figure 3.3: Four pronunciations of word ‘lamb’.

neither of the splits is the refinement of the other. Two different splits S = X |Y and
S′ = X ′|Y ′ are compatible if one of the four conditions holds:

X ⊂ X ′,X ⊂ Y ′,Y ⊂ X ′,or Y ⊂ Y ′

With the tree representation it would not be possible to represent this ambiguity with
a single tree, but rather with two trees (Figure 3.4).

Galata

-

Borisovo

-

Aldomirovtsi

j

Dobroselets

j-|j

Dobroselets

i

Borisovo

i

Aldomirovtsi

e

Galata

ei|e

Figure 3.4: Two trees representing two incompatible splits in the data.

Unlike trees, network representation enables us to represent these conflicting signals
within one graph (Figure 3.5). The incompatible splits are represented with reticulation
that reflects the fact that in position 1 we have (Aldomirovtsi, Dobroselets) — (Borisovo,
Galata) split and in position 5 (Aldomirovtsi, Galata) — (Borisovo, Dobroselets) split.
We present these two splits in Figure 3.6.

In the final stage each branch in the network is assigned a length that represents the
number of changes between each two nodes. In our network in Fugure 3.5 each branch
has length 1, since there is only one change between the each two connected nodes.

d(Aldomirovtsi,Galata) = d(Galata,Borisovo) =

d(Borisovo,Dobroselets) = d(Dobroselets,Aldomirovtsi) = 1 (3.19)

For example, pronunciations for the villages Aldomirovtsi and Galata differ only at
position 1, where we have insertion of the sound [j] at the beginning of the word col-
lected at the site Galata. The distance between Aldomirovtsi and Borisovo is two since
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Borisovo

Dobroselets

Aldomirovtsi

Galata

i|e -|j

-|j i|e

Figure 3.5: Neighbor-net representing two incompatible splits in one graph.

Borisovo

Dobroselets

Aldomirovtsi

Galata

i|e -|j

-|j i|e

Borisovo

Dobroselets

Aldomirovtsi

Galata

i|e -|j

-|j i|e

Figure 3.6: There are two different ways in which we can split this reticulation.

the pronunciations from these two sites differ in two positions, 1 and 5. The same holds
for the distance between Dobroselets and Galata. The more changes between two nodes,
the longer the branch in the network. This allows us to visualize the distances between
the nodes and determine which nodes group together. The division of the nodes into a
groups is done manually by visually inspecting the length of the branches.

One important property of the neighbor-net algorithm is that if the input distance
is circular it will return the collection of circular splits. If the input distance is addit-
ive, it will return the corresponding tree (Bryant and Moulton, 2004). This property
of neighbor-net enables us to see if the data is tree-like or non-tree-like. This can be
very useful in the investigations of language change, since throughout the history of
linguistics two models of language change have been competing—family tree model
(Schleicher, 1853) and wave model (Schmidt, 1872). The main advantages of the net-
work representation is that it allows us a) to check if the data in question is tree-like or
network-like and b) to represent both models of language change at the same time.
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Figure 3.7: First two dimensions extracted by MDS are plotted against x- and y-axes.
We additionally mark the first three dimensions using red, green and blue color of the
dots.

3.5 Visual inspection

In this section we visually inspect the results of the classifications produced by various
distance-based methods.

3.5.1 MDS

The results of performing MDS analysis can be seen in Figure 3.7 where the first two
extracted dimensions are plotted against x- and y-axes. We additionally represent the
first three dimensions using different proportions of red, green and blue color, the so-
called RGB color model. This is done by translating every position in three-dimensional
MDS space into a distinct color. The amount of red, green and blue represents the first
three MDS dimensions respectively. A very good explanation on how to display the
results of MDS using the full RGB color spectrum can be found in Leinonen (2010,
208-211).
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Figure 3.8: MDS map. First three extracted dimensions are represented with different
amount of red, green and blue.

MDS plot in Figure 3.7 shows two relatively clearly separated groups of dialects
along the x-axis. Along the y-axis the third group of varieties is visible, although it
is not clearly separated from any of the two previously identified groups. We can also
identify these three groups of dots based on their different colors in the MDS plot.

In Figure 3.8 we color the area around each site on the map of Bulgaria using the
color assigned by MDS, which allows us to see if there is a geographical cohesion of the
extracted groups. The MDS map in Figure 3.8 shows that the two groups identified on
the MDS plot in Figure 3.7 correspond to the western, colored green on the map, and
eastern group, colored red, of varieties. The separation of western and eastern varieties
approximately follows the so-called yat border described in Chapter 2. The third group
of varieties are the sites located in the south of the country in the area of Rodopi moun-
tains, colored with various shades of green. These findings correspond well with the tra-
ditional scholarship described in Chapter 2. According to traditional scholarship, these
three dialect areas are three out of six main dialect groups identified by Stoykov (2002).
Three extracted dimensions explain 95.45 per cent of the variation found in the distance
matrix.

In Figure 3.9 we display the values of each of the MDS dimensions separately. The
first dimension itself explains 64.84 per cent of the variation. The map on the top in
Figure 3.9 reveals that the variation captured by the first MDS dimension follows ap-
proximately the yat line and divides the country into the west and east. The second
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Figure 3.9: MDS values for each of the dimensions separately projected on the map of
Bulgaria. Top: first dimension explains 64.84 per cent of the total variation. Middle:
second dimension explains 27.56 of the variation. Bottom: third dimension explains
3.05 per cent of the variation.
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dimension explains 27.56 per cent of the total variation found in the data. We display
the values for this dimension on the middle map in Figure 3.9. This map shows clear
separation of the southern varieties from the rest of the country. The first two dimen-
sions, responsible for the division of the varieties into eastern, western and southern
group, already account for the 92.40 per cent of the variation. The third MDS dimension
explains only 3.05 per cent of the variation. On the bottom map in Figure 3.9, where we
represent the values of the third dimension, we do not see any pattern in the geographic
distribution of the colors.

3.5.2 Clustering

In cluster analysis, the number of groups that will be retrieved by a certain algorithm has
to be specified in advance. For all clustering algorithms we performed analyses for the
number of groups ranging from 2 to 10. In this thesis we present only one part of the
maps important for the further analyses.

Visual inspection has revealed that three hierarchical clustering algorithms fail to
identify any structure in the data, namely single link (Figure 3.10) and two centroid al-
gorithms, UPGMC and WPGMC (Figure 3.14 and Figure 3.15). Closer inspection of
the single link dendrogram shows the presence of the chain effect (left Figure D.1 in Ap-
pendix D), while dendrograms drawn using two centroid methods reveal a large number
of reversals (left hand side dendrograms in Figure D.5 and Figure D.6 in Appendix D).
In Appendix D we present dendrograms for all seven hierarchical clustering algorithms,
plain on the left hand side and with the noise (see Section 3.6.2) on the right hand side.

Three hierarchical clustering algorithms, UPGMA, WPGMA and Ward’s method
show exactly the same two-way split into eastern and western group that approximately
corresponds to the yat border. This split is also visible on the map drawn using k-means
algorithm. A similar split, which also includes several sites from the southern area, is
found using complete link algorithm.

On the level of three dialect groups, except for the three algorithms that do not find
any structure in the data, the remaining four hierarchical clustering algorithms, as well
as k-means algorithm, distinguish eastern, western and southern group of dialects. This
finding correspond well both with the MDS analysis and with the traditional scholar-
ship as well. The three-way split is also found using the neighbor-joining algorithm,
although the southern group is larger when compared to the results obtained using other
algorithms (Figure 3.18).

Since traditional scholarship distinguishes six main dialect areas, we wanted to see if
any of the algorithms would give the same analysis of the sites. At this level of hierarchy
different algorithms found different groups and none of them corresponds completely
with the traditional division. UPGMA distinguishes only three dialect areas, eastern,
western and southern which is further divided into smaller groups. Apart from these
three areas, WPGMA also distinguishes the group of dialects at the border with Ser-
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Figure 3.10: Single link: 2-way, 3-way and 6-way splits.

Figure 3.11: Complete link: 2-way, 3-way and 6-way splits.

Figure 3.12: UPGMA: 2-way, 3-way and 6-way splits.

Figure 3.13: WPGMA: 2-way, 3-way and 6-way splits.
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Figure 3.14: UPGMC: 2-way, 3-way and 6-way splits.

Figure 3.15: WPGMC: 2-way, 3-way and 6-way splits.

Figure 3.16: Ward’s method: 2-way, 3-way and 6-way splits.

Figure 3.17: K-means: 2-way, 3-way and 6-way splits.

Figure 3.18: Neighbor-joining: 3-way split.



3.5. VISUAL INSPECTION 41

bia that corresponds well with the transitional zone in Stoykov’s classification. These
four traditional groups are also found by Ward’s method, complete link and k-means al-
gorithm. The k-means algorithm also distinguishes two groups that resemble northwest-
southwest split described by Stoykov. On the other hand, Ward’s method further divides
the western area into eastern and western groups, which is not found in any traditional
atlases.

Visual inspection of the maps shows that different clustering algorithms give differ-
ent analysis of the distances obtained using Levenshtein algorithm. They differ among
each other, and also from the traditional scholarship.

3.5.3 Neighbor-joining and neighbor-net
In Figure 3.19 we can see the unrooted tree produced by neighbor-joining algorithm.2

In the tree, there is a three-way split of the varieties that corresponds to the east, west,
and south division (Figure 3.18). The split produced by neighbor-joining is geograph-
ically coherent and corresponds to some extent to the three-way divisions produced by
previously described clustering techniques. However, while four clustering algorithms,
namely UPGMA, WPGMA, Ward’s method and k-means algorithm, almost perfectly
agree on the three-way split of the varieties, neighbor-joining produces a much larger
southern group of varieties which includes the transitional zone between Balkan and
Rupian dialects in the southeast. This transitional zone can be seen on the map in Fig-
ure 2.2.

The network produced by the neighbor-net algorithm can be seen in Figure 3.20.
Since neighbor-net is using the same selection criteria and formulae for computing the
distances between the nodes that are to be fused, the grouping of the sites matches quite
well the one done by neighbor-joining. In the network in Figure 3.20 we can distinguish
eastern, western and southern groups. The detection of the groups is done by visually
inspecting the network and looking for the longest branches since they signal us which
groups of varieties are the most distant ones. In Figure 3.20 the branches connecting
western varieties from the rest of the sites are the longest in the network. This means
that this group of varieties is the most distant from the rest of the sites. We mark this
split with the yellow dashed line that cuts the network in two. Accordingly, the data
can be first split into two groups, which put on the map, roughly corresponds with the
east-west split along the yat border. Eastern varieties can be further divided into two
groups, southern and northern. Branches connecting southern varieties to each other
are longer when compared to the branches within other groups, which suggests that the
language varieties found in this region are more heterogeneous than in other areas. All
these findings correspond well with the traditional scholarship described in Chapter 2.

2Neighbor-joining tree and neighbor-net were produced using SplitsTree software that can be freely down-
loaded at http://www.splitstree.org.
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Figure 3.19: The neighbor-joining tree shows a three-way division of Bulgarian dialects
into western, eastern and southern groups.
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However, the detection of groups in the network is done visually which makes the
divisions to some extent arbitrary. Network representation allows us to see that there are
many conflicting signals represented as reticulations, which makes the data look more
network-like than the tree-like. These conflicting signals show that there are more ways
in which the sites could be grouped. For example, on one side there are features shared
between southern and western varieties and we can group these varieties together, while
on the other hand there are features shared between southern and western varieties, and
we can see splits that would classify these two groups together. At this moment, it is still
not possible to automatically detect which specific features are responsible for which
divisions.

3.6 Evaluation of the results of distance-based methods

Although instable, clustering techniques are still the most commonly used tool in dia-
lectometry for group detection within a certain dialect area. In this section we propose
several evaluation techniques that should be used in order to deal with the instability of
the clustering algorithms. Since there is no direct way to evaluate the performance of
clustering algorithms, we propose a combination of different techniques that can help us
determine if the results of the applied clustering technique are artifacts of the algorithm
or the detection of real groups in the data. The proposed evaluation methods can be
divided into external and internal. External validation of the clustering results include
the modified Rand index, purity and entropy. External validation involves comparison of
the structure obtained by different algorithms to a gold standard. In our study we used
the manual classification of all the sites produced by an expert on Bulgarian dialects as
a gold standard. Internal validation included examining the cophenetic correlation coef-
ficient, noisy clustering and a consensus tree, which do not require comparison to any
a priori structure, but rather try to determine if the structure obtained by algorithms is
intrinsically appropriate for the data.

3.6.1 External validation

The modified Rand index (Hubert and Arabie, 1985) is used for comparing two dif-
ferent partitions of a finite set of objects. It is a modified form of the Rand index
(Rand, 1971), one of the most popular measures for comparing partitions. Given a set of
n elements S = o1, ...on and two partitions of S, U = u1, ...uR and V = v1, ...vC we define
a the number of pairs of elements in S that are in the same set in U and in the same set in V
b the number of pairs of elements in S that are in different sets in U and in different sets in V
c the number of pairs of elements in S that are in the same set in U and in different sets in V
d the number of pairs of elements in S that are in different sets in U and in the same set in V
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The Rand index R is

R =
a + b

a + b + c + d
≈ |agreeing pairs|

|all pairs|

In this formula a and b are the number of pairs of elements in which two classifications
agree, while c and d are the number of pairs of elements in which they disagree. The
value of the Rand index is between 0 and 1, with 0 indicating that the two data clusters
do not agree on any pair of points and 1 indicating that the data clusters are exactly
the same. In dialectometry, this index was used by Heeringa et al. (2002) to validate
dialect comparison methods. A problem with the Rand index is that it does not return a
constant value (zero) if two partitions are picked at random. Hubert and Arabie (1985)
suggested a modification of Rand index that corrects this property. It can be expressed
in the general form as:

RandIndex−ExpectedIndex
MaximumIndex−ExpectedIndex

The expected index is the expected number of pairs which would be placed in the same
set in U and in the same set in V by chance. The maximum index represents the max-
imum number of objects that can be put in the same set in U and in the same set in V .
The Modified Rand Index (MRI) value ranges between −1 and 1, where 1 represents an
upper bound (perfect overlap) and 0 indicates that the index equals its expected value.
For a more detailed explanation of the modified Rand index, please refer to Hubert and
Arabie (1985).

Entropy and purity are two measures used to evaluate the quality of clustering by
looking at the reference class labels of the elements assigned to each cluster (Zhao and
Karypis, 2001). Entropy measures how different classes of elements are distributed
within each cluster. The entropy of a single cluster is calculated using the following
formula:

E(Sr) =− 1
logq

q

∑
i=1

ni
r

nr
log

ni
r

nr

where Sr is a particular cluster of size nr, q is the number of classes in the reference data
set, and ni

r is the number of the elements of the ith class that were assigned to the rth
cluster. The overall entropy is the sum of all cluster entropies weighted by the size of
the cluster:

E =
k

∑
r=1

nr

n
E(Sr)

The purity measure is used to determine to which extent a cluster contains objects from
primarily one class. The purity of a cluster is calculated as:

P(Sr) =
1
nr

max(ni
r)
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while the overall purity is the weighted sum of the individual cluster purities:

P =
k

∑
r=1

nr

n
P(Sr)

3.6.2 Internal validation
The cophenetic correlation coefficient (Sokal and Rohlf, 1962) is Pearson’s correlation
coefficient computed between the cophenetic distances produced by clustering and those
in the original distance matrix. The cophenetic distance between two objects is the
similarity level at which those two objects become members of the same cluster during
the course of clustering (Jain and Dubes, 1988) and is represented as branch length in
dendrogram. It measures the extent to which the clustering results correspond to the
original distances by comparing the distances between each two objects calculated from
the dendrogram to the original distances. When the clustering functions perfectly, the
value of the cophenetic correlation coefficient is 1.

Noisy clustering, also called composite clustering, is a procedure in which small
amounts of random noise are added to matrices during repeated clustering. The main
purpose of this procedure is to reduce the influence of outliers on the regular clusters and
to identify stable clusters. As shown in Nerbonne et al. (2008) it gives results that nearly
perfectly correlate with the results obtained by bootstrapping—a statistical method for
measuring the support of a given edge in a tree (Felsenstein, 2004). The advantage
of noisy clustering, compared to bootstrapping, is that it can be applied on a single
distance matrix—the same one used as input for the classification algorithms. In this
thesis noisy clustering analysis was done using L04 software. The amount of noise c
was set to one-half standard deviation of distances in the matrix. To each cell in the
distance matrix we add different random amounts of noise which ranges between 0 and
c. This process is repeated 100 times, resulting in the same number of distance matrices.
We apply clustering to each of the matrices and finally calculate composite dendrogram
which contains groups of sites that are clustered together in more than 50 per cent of the
iterations.

A consensus dendrogram, or consensus tree, is a tree that summarizes the agree-
ment between a set of trees (Felsenstein, 2004). A consensus tree that contains a large
number of internal nodes shows high agreement between the input trees. On the other
hand, if a consensus tree contains few internal nodes, it is a sign that input trees classify
the data in conflicting ways. The majority rule consensus tree, used in this study, is a tree
that consists of the groups, i.e. clusters, which are present in the majority of the trees
under study. Clusters that appear in the consensus tree are those supported by the ma-
jority of algorithms and can be taken with greater confidence to be true clusters. In this
research a consensus dendrogram was created with the L04 software from four dendro-
grams produced by four different hierarchical clustering methods, namely complete link,
UPGMA, WPGMA and Ward’s method.
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3.6.3 Results

In this section we present the results obtained by the above described methods.

External validation

In order to compare divisions done by clustering algorithms with the division of sites
done by experts we calculated the modified Rand index, entropy and purity for the 2-
fold, 3-fold, and 6-fold divisions done by algorithms on the one hand, and those divisions
according to the experts on the other. The results can be seen in Table 3.1. The neighbor-
joining algorithm produced an unrooted tree (Figure 3.19), where only 3-fold division
of the sites can be identified. This classification of the sites is represented on the map
in Figure 3.18. Hence, all the indices were calculated only for the 3-fold division made
by neighbor-joining. Since even the detection of the main groups in the neighbor-net is
pretty arbitrary, we do not evaluate the divisions done by neighbor-net using any of the
proposed evaluation techniques.

Table 3.1: Results of external validation: the modified Rand index (MRI), entropy (E)
and purity (P). Results for the 2, 3 and 6-fold divisions are reported.

Algorithm MRI(2) MRI(3) MRI(6) E(2) E(3) E(6) P(2) P(3) P(6)
single link -0.004 0.007 -0.001 0.958 0.967 0.881 0.614 0.396 0.360

complete link 0.495 0.520 0.350 0.510 0.542 0.467 0.848 0.766 0.645
UPGMA 0.700 0.627 0.273 0.368 0.445 0.583 0.914 0.853 0.568
WPGMA 0.700 0.626 0.381 0.368 0.445 0.448 0.914 0.853 0.665
UPGMC -0.004 0.007 -0.006 0.959 0.967 0.926 0.614 0.396 0.310
WPGMC -0.004 0.007 -0.005 0.958 0.967 0.925 0.614 0.396 0.305

Ward’s method 0.700 0.627 0.398 0.368 0.445 0.441 0.914 0.853 0.675
k-means 0.700 0.625 0.471 0.354 0.451 0.355 0.919 0.756 0.772

neighbor-joining - 0.461 - - 0.550 - - 0.777 -

In Table 3.1 we can see that the values of the modified Rand index for single link and
two centroid methods are very close to 0, which is the value we would get if the partitions
were picked at random. UPGMA, WPGMA, Ward’s method and k-means, which gave
nearly the same 2-fold division of the sites, show the highest correspondences with the
divisions done by experts. For 3-fold and 6-fold divisions the values for the modified
Rand index went down for all algorithms, which was expected since the number of
groups increased. The two algorithms with the highest values of the index are Ward’s
method and UPGMA for 3-fold, and k-means for the 6-fold division. Just as in the
case of the 2-fold division, the single link, UPGMC, and WPGMC algorithms have
values of the modified Rand index close to 0. Neighbor-joining produced a relatively
low correspondence with expert opinion for the 3-fold division—0.461. Similar results
for all algorithms and all divisions were obtained using entropy and purity measures. We
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conclude from this that the modified Rand index is a good measure of the agreement of
one partition with another, and that entropy and purity impose on it only in providing
measures per cluster.

Internal validation

In the next step internal validation methods were used to check the performance of
the algorithms: the cophenetic correlation coefficient, noisy clustering and consensus
tree. Since k-means does not produce a dendrogram, it was not possible to calculate the
cophenetic correlation coefficient. The values of the cophenetic correlation coefficient
for the remaining eight algorithms can be seen in Table 3.2. We can see that cluster-
ing results of the UPGMA have the highest correspondence to the original distances
of all algorithms—90.26 per cent. They are followed by the results obtained by using
complete link and neighbor-joining algorithm.

Table 3.2: Cophenetic correlation coefficient.
Algorithm CCC p
single link 0.7804 0.0001

complete link 0.8661 0.0001
UPGMA 0.9026 0.0001
WPGMA 0.8563 0.0001
UPGMC 0.8034 0.0001
WPGMC 0.6306 0.0001

Ward’s method 0.7811 0.0001
neighbor-joining 0.8587 0.0001

All correlations are highly significant with p < 0.0001 calculated using a Mantel test.
Given the poor performance of the centroid and single link methods in detecting the dia-
lect divisions scholars agree on, we note that cophenetic correlation coefficients are not
successful in distinguishing the better techniques from the weaker ones. We conjecture
that the reason for this lies in the fact that the cophenetic correlation coefficient so de-
pendent is on the lengths of the branches in the dendrogram, while our primary purpose
is the classification. Although we had expected neighbor-joining to benefit from the fact
that it assigns different branch lengths in its fusion step, Table 3.2 shows that it was not
able to convert this additional freedom to an improved cophenetic correlation.

Results of noisy clustering can be seen in Appendix D, where dendrograms on the
right hand side are created by applying noisy clustering to the original distance matrix.
Noisy clustering, that was applied with the seven hierarchical algorithms, has confirmed
that there are only two relatively stable groups in the data: eastern and western. Dendro-
grams obtained by applying noisy clustering to the whole data set show low confidence
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for the two-way split of the data, between 52 and 60 per cent. After removing the south-
ern villages from the data set, we obtained dendrograms that confirm two-way split of
the data along the yat border with much higher confidence, ranging around 70 per cent.
These values are also not very high. In order to check the reason of the influence of the
southern varieties on the noisy clustering we examine an MDS plot (Figure 3.21) in two
dimensions with cluster groups marked by symbols.

Figure 3.21: MDS plot: different symbols present grouping done by WPGMA al-
gorithm, while the distances between the objects present the MDS analysis. Circles
are western, triangles eastern and squares Rupian dialects.

In Figure 3.21 we can see first two dimensions extracted by MDS plotted against x-
and y-axes. These two dimensions represent together 92.40 per cent of the variation in
the data. The distance between the points in the plot accords with the linguistic differ-
ence between them: similar varieties are located close to each other while more different
varieties are placed further apart from each other. In that way we can see if there are
groups of varieties put together. The orientation of the x- and y-axes is not relevant for
the analysis. We are interested in detecting clouds of symbols and their distance from the
other symbols of groups of symbols. Additionally, grouping produced by the WPGMA
algorithm is represented by different symbols: western varieties (approximately west of
the yat line) are marked with the circles, Rupian dialects are marked with square sym-
bols, while the rest of the varieties (central and northeastern) are marked with triangles.
The MDS plot reveals two homogeneous groups and a third, more diffuse, group that
lies at a remove from them. The third group of the sites represents the southern group of
varieties, marked with square symbols, and is much more heterogeneous than the rest of
the data. Closer inspection of the MDS plot in Figure 3.21 also shows that this group of
dialects has a particularly unclear border separating it from the eastern dialects, which
could explain the results of the noisy clustering applied to the whole data set.
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Since different algorithms gave different divisions of sites, we used a consensus
dendrogram in order to detect the clusters on which most algorithms agree. Since single
link, UPGMC and WPGMC have turned to be inappropriate for the analysis of our data,
they were not included in the consensus dendrogram. The consensus dendrogram drawn
using complete link, UPGMA, WPGMA and Ward’s method can be seen in Figure 3.22.
The names of the sites are colored based on the experts’ opinion, i.e. the same as on the
map placed next to the consensus dendrogram in Figure 3.22. The dendrogram shows
strong support for the east-west division of sites, but no agreement on the division of
sites within the eastern and western areas.

At this level of hierarchy, i.e. 2-way division, there are several sites classified differ-
ently by algorithms and by experts. They are colored black on the map in Figure 3.23.
This map clearly shows that these sites follow the yat border and represent the bor-
der cases. The only two exceptions are villages in the southeast, namely Voden and
Zhelyazkovo. However, according to many traditional dialectologists these villages
should be classified as western dialects due to many features that they share with the
dialects in the west (personal communication with Prof. Vladimir Zhobov). The four
algorithms show agreement only at the very low level where several sites are grouped
together and again on the highest level. It is not possible to extract any hierarchical
structure that would be present in the majority of four analyses.

3.7 Discussion and conclusions
We were unusually fortunate in obtaining very low-dimensional MDS solutions which
represent over 90 per cent of the variation in the data. For this reason, we relied on MDS
not only for a map of Bulgarian dialect variation (Figure 3.7), but also as a diagnostic to
understand the less reliable clustering techniques (Figure 3.21). We tentatively infer that
the clustering results are less stable due to the fact that the dialect groups, which are com-
pletely obvious in the MDS plots, are not so distinct that borderline cases are impossible.
There is no wide swath of clear space between the different groups in Figure 3.21.

Different clustering validation methods have shown that three algorithms are not suit-
able at all for the data we are working with, namely single link, UPGMC and WPGMC.
The remaining four hierarchical clustering algorithms gave different results depending
on the level of hierarchy, but all four algorithms had fairly high agreement on the detec-
tion of two main dialect areas within the dialect space. At the lower level of hierarchy,
i.e where there are more clusters, the performance of the algorithms is poorer, both with
respect to the expert opinion and with respect to the mutual agreement as well. As shown
by noisy clustering, the 2-fold division of the Bulgarian language area is the only parti-
tion of sites that can be asserted with high confidence.

The division of sites done by the k-means algorithm corresponded well with the ex-
pert divisions. Two and three-way divisions also correspond well with the divisions of
four hierarchical clustering algorithms. What we find more important is the fact that in
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Figure 3.22: Consensus dendrogram on the left-hand side drawn using complete link,
UPGMA, WPGMA and Ward’s method. Division of the sites in the data set done by an
expert is on the right-hand side.
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Figure 3.23: Sites differently classified by four hierarchical clustering algorithms and
experts are colored black. Except for 2 villages, they all follow the yat line.

the divisions obtained by the k-means algorithm into 2, 3, 4, 5 and 6 groups the two-way
division into the eastern and western groups is the only stable division that appears in all
partitions.

The results of the neighbor-joining algorithm were a bit less satisfactory. The reason
for this could be in the fact that our data is not tree-like, but rather contains a lot of
borrowings due to contact between different dialects. Unlike biological species and lan-
guages, where neighbor-joining was earlier successfully applied, dialect varieties form a
continuum, rather than well defined groups. A recent study of Chinese dialects (Hamed
and Wang, 2006) has shown that their development is not tree-like and that in such cases
usage of tree-reconstruction methods can be misleading.

Neighbor-net has confirmed that there are many conflicting signals in the data, rep-
resented as reticulations. In the neighbor-net there are three distinguishable groups,
although for many sites it is not clear to which group they belong to. Detection of the
groups in networks is pretty arbitrary, but we find neighbor-net to be a very useful rep-
resentation tool since it is possible to see to which extent the data is tree-like.

This research shows that clustering algorithms should be applied with caution as
classifiers of language dialect varieties. Where possible, several internal and external
validation methods should be used together with the clustering algorithms in order to
validate their results and make sure that the classifications obtained are not mere artifacts
of algorithms but natural groups present in the data set. Since performance of clustering
algorithms depends on the sort of data used, evaluation of algorithms is a necessary step
in order to obtain results that can be asserted with high confidence.
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The fact that there are two distinct groups in our data set that can be asserted with
high confidence, and that the third one that was found with less confidence, even though
six are found in the traditional atlases, could possibly be due to the simplified representa-
tion of the data. It is also possible that some of the features responsible for the traditional
6-way division are not present in our data set. The quality of the data set and detail com-
parison of the automatically produced and traditional maps is described in Chapter 4.
Regardless of the quality of the input data set, clustering algorithms will partition data
into any given number of groups even if there is no natural separation of the data. For
this reason it is essential to use different evaluation techniques along with the clustering
algorithms.

We are fully aware of the fact that in this kind of research the so-called gold stand-
ard is not something that should be taken for granted. Classification of language vari-
eties done by experts suffers itself from certain flaws. These classifications can often
be subjective and based on the non-linguistic factors. Even when they are linguistic-
ally motivated, very often the classification is done using a single feature or a small
number of features. However, traditional scholarship is valuable source of information
in dialectometry. It helps us evaluate different quantitative methods that are being de-
veloped or adapted from other disciplines, and better understand how different varieties
are perceived and classified by humans. At the same time quantitative methods enable
us to reevaluate traditional divisions by using more objective techniques based on large
amount of features which is usually hard or impossible to do using traditional approach.
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Chapter 4

Comparison to the traditional
maps

In Chapter 3 we have presented the results of analyzing the dialect pronunciation data
using various classification methods which proceed from a matrix that stores information
on the distances between each two sites in the data set. These distances represent lin-
guistic distances and are calculated using the Levenshtein method. The resulting dialect
divisions agree to different extents among each other and with the traditional scholar-
ship. The differences between computational and traditional methods could be due to:
a) the Levenshtein method used to calculate the linguistic distances between the sites; b)
problems with the quantitative classification methods; c) the possible absence of some of
the features responsible for traditional divisions from our data set; d) the fact that some-
times traditional divisions are based on criteria other than linguistic ones, or e) linguistic
criteria that are not sound enough. In this chapter we investigate the differences between
computational and traditional classifications in more depth in order to get better insight
into these issues. This task is very difficult since on one hand we are trying to develop
new methods that are tested against the traditional divisions and on the other we apply
quantitative methods hoping to improve traditional classifications and get new insights
into dialect divisions and dialect change. By comparing the two classification on a level
of a very fine detail, we hope to find out more about both the effectiveness of our method
and the representativeness of our data set. This chapter is based on the work presented
in Houtzagers, Nerbonne, and Prokić (2010).

55
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4.1 East-west division
According to various clustering techniques, the east-west division of Bulgarian dialect
area is the most important division found by most of the algorithms (see Chapter 3).
This division was also found using multidimensional scaling. It corresponds well with
the yat boundary described in traditional literature (Stoykov, 2002, 83-87) as the main
dialect border in Bulgaria.1 In Figure 4.1 we can see two classifications projected on
the same map. The division resulting from weighted pair group method using arithmetic
averages (WPGMA) clustering algorithm is marked by different shades, while the tradi-
tional boundary as found in Stoykov (2002) is marked with black line. It is evident that
there is high correspondences between two divisions, except that the computational one
is further east.

Figure 4.1: Two-way classification done by WPGMA algorithm and traditional two-way
division of sites.

As found in Houtzagers et al. (2010) Stoykov’s yat border is based on the bundle
of 48 isoglosses which is the number of corresponding maps in OT.2 These isoglosses
reflect various phonetic phenomena which are present in 101 words in the Buldialect
data set:

• reflexes of yat in specific positions

1Detail description of different reflexes of yat in Bulgarian is given is Chapter 2.
2OT: B�lgarski dialekten atlas, obobwavaw tom I-III. Fonetika, akcentologi�, leksika

[Atlas of Bulgarian Dialects: Phonetics. Intonation. Lexicology, Vol. I - III], (Kochev et al., 2001)
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• presence vs. absence of mixture of the reflexes of the two yers and the two nasal
vowels

• vowel reduction phenomena

• presence vs. absence of epenthetic /l/

• change of *dj, *tj into [gj], [kj]

• reflexes of *l~, *l� and syllabic *l

• presence vs. absence of the changes *a > [e] in certain positions

• presence vs. absence of the change *dn > [nn]

Close inspection of these words has revealed that 68 of them show the east-west di-
vision of the sites. Very few of them perfectly match the traditional division, and most
of the isoglosses run east of the yat line. The large number of words where the east-
west division is present explains the stability of the yat line in most of the computational
analyses. This division is absent only from the analyses done by three clustering al-
gorithms that have proven to be unsuitable for the analysis of our data (see Chapter 3,
38). Since most of the isoglosses run east of the yat line, this is also reflected in the ag-
gregate analysis: the east-west division on the quantitative maps represents the average
of all isoglosses in this bundle. We note that generally speaking the two classifications
correspond to a high degree and that features responsible for the east-west division are
well represented in our data set.

In the rest of this chapter we look more closely into divisions of the areas west and
east of the yat line. While the east-west division corresponds well on the quantitative
and traditional maps, further classifications into smaller dialect zones show much bigger
differences.

4.2 Western dialects
On the map shown in Stoykov (2002) (Figure 2.2), there are three dialect areas west of
the yat line: transitional zone with Serbia (TZS), northwestern (NW) and southwestern
(SW) dialects. While Stoykov names a number of features that distinguish these three
dialect areas, none of them is recognized constantly on the computational maps. The
transitional zone at the border with Serbia is present in most of the cluster analyses, but it
is not recognized by UPGMA which is one of the most widely used hierarchical cluster-
ing algorithms. The northwest-southwest split shows even less stability and something
that resembles this division is present only on the map drawn using k-means algorithm.
We first look into the divergence between the computational and traditional maps with
respect to the NW-SW division. After that we examine the issue of the instability of the
transitional zone in some of the computational analyses.
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4.2.1 Northwest-southwest split

As found in Houtzagers et al. (2010), in OT we find the following phonetic characterist-
ics responsible for the NW-SW split:

• the reflexes of back yer in specific phonetic environments or in specific words

• the reflexes of front yer

• the reflexes of the back nasal

• presence or absence of mixture of reflexes of back and front nasal

• reflex of yat in c�l />tsjal/ ‘whole - masc sg’ and celi /">tseli/ ‘whole - pl’

• final [o] or [e] in such words as naxe /"naSe/ ‘ours’

• presence or absence of the second [j] in �ǐce /jaj">tse/ ‘egg’

These features are present on 21 maps in OT and in 21 words in our data set. On the map
in Figure 4.2 we present isoglosses based on the relevant segments from the 21 words
from our data set.

Figure 4.2: Isoglosses of the segments from 21 words that show NW-SW split.
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The bundle of isoglosses separates northwest and the southwest areas, and additionally
TZS. The same features also delineate western and eastern parts of the country along the
yat line. In the north, the yat line is strengthened only by two of the features. This can
be seen on the the map in Figure 4.2. The majority of the 21 features clearly delineates
the southwest from the rest of the country, while the northwestern part shares many
characteristics with the eastern part across the yat line. We find this type of distribution,
for example, in the reflexes of the back nasal in words m�� /m7Z/ ‘man’, p�t /p7t/
‘road’ and s�bota /"s7bota/ ‘Saturday’ where in the TZS the reflex is [u], in the SW it
is [A], and in the NW and in most of the parts east of the yat line [7]. However, there are
numerous features presented in the Section 4.1 that strengthen the yat line and make the
west-east split undisputed on all our computational maps.

Figure 4.3: Stoykov’s 6-way classification represented with different symbols.

Since there is a number of words that support the NW-SW split, we analyzed various
MDS plots in order to try to explain the instability of this division on the quantitative
maps. In MDS plots, we use different symbols to distinguish six traditional groups ac-
cording to Stoykov (2002), while the linguistic distances obtained using the Levenshtein
method are represented by the distance of symbols in a Cartesian coordinate system. In
Figure 4.3, as well as in all MDS plots, we present Stoykov’s six dialect areas using
the following symbols:‘◦’ for TZS, ‘M’ for northwestern dialects, ‘�’ for southwestern
dialects, ‘♦’ for Balkan dialects, ‘×’ for Moesian, and ‘+’ for Rupian dialects.

On the left in Figure 4.4 we present the MDS plot of the whole data set, 156 words
and 197 sites, with all the sites placed into six groups according to Stoykov (2002). In the
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Figure 4.4: Left: MDS plot of 197 sites based on 156 words. Right: MDS plot of the 70
sites west of the yat line based on 156 words.

Figure 4.5: Left: MDS plot of the 70 western sites based on the 21 words selected.
Right: MDS plot of the 70 western sites based on the specific segments from 21 words.

Figure 4.6: MDS plot of the 70 western sites based on the 135 words.
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plot it is not possible to distinguish the two groups of symbols that represent the NW and
SW varieties, since they form one compact group. We also note a number of Stoykov’s
Rupian and Balkan varieties that are put into the same group with NW and SW dialects
in the computational analysis. The reason for this is that the computational division of
the sites into eastern and western runs more to the east and includes parts of dialects
that Stoykov classifies as Rupian and Balkan (Section 4.1). In order to investigate the
division of the western varieties in more detail, we have removed all villages east of the
yat line and repeated the analysis (MDS plot on the right in Figure 4.4). The MDS plot
shows minor changes when compared to the previous one: it still remains very hard to
distinguish the NW and SW varieties. These two groups are, indeed, more separate than
on the previous plot, but the region between them is not empty. This means that while it
is possible to distinguish north and south, the decision where to separate them would be
arbitrary if we based our estimations of difference on aggregate Levenshtein distance.

In the two MDS plots in Figure 4.5 we examine the aggregate distances based on
just 21 words in which the features relevant for NW vs. SW division appear, and also
the aggregate distances based on just the single segments themselves. The left MDS plot
in Figure 4.5 shows the Levenshtein distance based on 21 words without focusing on
the relevant segments. Even if we base our analysis only on the words chosen, the two
dialect varieties (NW and SW) are not clearly separated. NW and SW varieties are more
distinct than in previous MDS plots, but there is still no clear separation between two
clouds of symbols. However we note that varieties from the TZS do form a distinct group
on this MDS plot, although our analysis is based on the features that are in traditional
atlases specified as responsible primarily for the NW-SW split. We have also checked
the distances between the western varieties based on the whole data set excluding the
chosen 21 words. This analysis was performed in order to check whether the rest of the
words would contain any conflicting signals with respect to the NW vs. SW division.
As can be seen in Figure 4.6, the distances on the MDS plot are fully in accordance with
the analysis based just on the 21 words chosen: TZS is a separate cluster, while there
is no clear separation between NW and SW. When we base our analysis only on the
specific sounds that Stoykov uses for distinguishing NW and SW dialects (right MDS
plot in Figure 4.5) all three western varieties are clearly distinct. However, even in this
focused view there are borderline cases shown by the single triangle within the group of
squares (Kreta, Vrach), and the two circles which are closer to the squares than to the
other circles (Buchin prohod, Sofia province, and Velkovtsi, Pernik province). If we use
whole words instead of relevant segments, NW and SW varieties are not distinct since
other segments in the words cloud the information provided by relevant segments. This
also makes classification much more difficult since the separation between the varieties
is less clear.

MDS plots have shown that in the aggregate analysis NW and SW varieties are not
distinct even if the linguistic distances are based just on 21 selected words that contain
features that do distinguish these two dialects. They become clearly separated only when
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the analysis is based on the specific segments. We conclude that the features responsible
for the traditional NW vs. SW division are present in the Buldialect data set, but in the
aggregate analysis we do not find evidence that there is a categorical division between
these two varieties.

4.2.2 Transitional zone
The transitional zone at the border with Serbia is recognized on most of the computa-
tional maps, but some clustering techniques, like UPGMA, fail to identify it as a separate
zone. In Houtzagers et al. (2010) we find that the following characteristics present in OT
maps distinguish TZS:

• the reflexes of back and front yer in specific phonetic environments or in specific
words

• reduction or not of front yer in the suffix of such words as �aden /"Zaden/ ‘thirsty’

• the reflexes of the back nasal in specific words

• reflexes of Old Bulgarian *tj, *ktj and *dj in general and in specific words

• palatalized or nonpalatalized /l/ in such words as bolna /"bolna/ ‘ill - fem sg’

• labialization or not of /e/ in certain phonetic environments

These characteristics are found on 16 maps in OT. In our data set, we find 22 words in
which these features are present. On the map in Figure 4.7 we draw isoglosses using
relevant segments from each of those words. Most of the isoglosses drawn match almost
perfectly Stoykov’s TZS forming a bundle that delineates clearly this area from the sur-
rounding varieties. We also note that the isoglosses drawn using 21 words that delineate
NW and SW also clearly distinguish TZS as a separate area. To check the instability
of this area on some of the computational maps we reexamine the two MDS plots in
Figure 4.4. The left plot shows the distances among all the sites in the data based on 156
words, while on the right hand side we show a plot of the distances among the 70 sites
west of the yat line. On both MDS plots group of circles that represents Stoykov’s TZS
forms a separate group with some intermediate varieties between the TZS and SW. The
villages Buchin Prohod, Elov Dol and Velkovtsi, all classified as TZS by Stoykov, are
closer to the SW varieties than to the rest of the TZS in our quantitative analysis.

With respect to our question concerning the reason for differences between the quant-
itative and the traditional maps we conclude that the Levenshtein method separates the
TZS varieties from the other western varieties, but some clustering techniques fail to
recognize this. Some pairs of sites, one from each area, remain very close in aggregate
Levenshtein distance. In the data set there are 22 words that show features described by
Stoykov (2002) as characteristic for this dialect. Additionally, 21 words which contain
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Figure 4.7: Isoglosses based on relevant segments from 22 words that delineate TZS.

features responsible for the NW vs. SW division also distinguish TZS from the rest of
the western varieties. Despite the substantial number of relevant words in the data set,
in the aggregate analysis the distance between TZS and the rest of the western variet-
ies is not large and also contains intermediate varieties. This poses problems for some
clustering techniques, like UPGMA, that fail to recognize this area as a separate dialect
zone. Another reason for the poor performance of UPGMA in this case could be the
fact that the results of this clustering technique could be distorted during the fusion of
the large group of objects with the small group of objects (see Chapter 3), since there
is a significant difference in the number of objects belonging to TZS and the rest of the
western varieties.

4.3 Eastern dialects

In the east, i.e. east of the yat line, all computational maps distinguish the area in the
south that corresponds well with Rupian dialects and the large area in the north that
comprises the Balkan and Moesian dialects as defined on the traditional maps. In this
subsection we address both of these issues.
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4.3.1 Rupian dialects
Rupian dialects are detected on all the quantitative maps presented in Chapter 3, except
for the three algorithms that did not identify any groups in the data. MDS analysis has
shown that this is one of the three main dialect areas that can be asserted with some
confidence. Moreover, it has been shown that this is the most heterogeneous area, not
only in the east, but with respect to all other dialect zones in Bulgaria identified by com-
putational methods. As found in Houtzgers et al. (2010) the same picture can be found
on maps in OT: there are many maps on which this area is distinct from the surrounding
varieties, but there is also a substantial number of maps where this applies only to part
of Rupian dialects. Many characteristics are shared between parts of the Rupian area
and areas outside this territory, especially in the northeast. For example, on maps OT
F 40-46, which show reflexes of ě yat in word dve /dve/ ‘two’, and in certain verbal
endings there is a geographically variable central area within Rupian that differs from
its immediate surroundings but shows similarities with varying subareas mostly in the
east and northeast.3 There are also maps on which a larger part of the southeastern area
is distinguished from the northeast. Following Houtzagers et al. (2010) we give two
examples:

1. OT F 9: presence of epenthetic [@] in such l-participles as Standard Bulgarian
pekla /"pekla/ ‘bake - fem 1st sg’ (["pekla] vs ["pek@la). This characteristic is
shared by most (but not all) of the southeast and two noncontingent areas in the
northeast.

2. OT F 19: absence of a vowel in the verbal root *t�k- (Old Bulgarian) ‘weave’.
The whole southeast is opposed to the northeast here, but it shares its characteristic
with the entire west.

In the Buldialect data set, we also find numerous words which contain the features
that are shared between Rupian and eastern (Figure 4.1), or Rupian and western varieties
(Figure 4.2). As a result, in the aggregate analysis this area is more diffuse than eastern
or western varieties and lies at a remove from them. This can be clearly seen on the right
MDS plot in Figure 4.4 (see the higher part of the plot). In our data set we find 31 words
which contain features characteristic for the language varieties in the area of the Rodopi
mountains. Isoglosses based on the specific segments, drawn using white lines, can be
seen in Figure 4.8.

Regarding Rupian dialects we find fairly high correspondences between computa-
tional and traditional maps. This area is identified both on MDS plots and in various
maps obtained using clustering techniques. The substantial number of words which de-
lineate this area from the surrounding territories is reflected in relatively clear separation
of this area in MDS analyses.

3OT F is used to refer to the maps in OT that regard phonetics.
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Figure 4.8: Isoglosses based on the relevant segments from 31 words that distinguish
Rupian varieties.

4.3.2 Moesian dialects
Unlike Rupian dialects, the Moesian area as defined in Stoykov (2002) does not appear
on any of the computational maps. Stoykov mentions four phonetic characteristics of
this area:4

• velarized realization of the Old Bulgarian back yer in a stressed position

• In stressed syllables, the reflexes of Old Bulgarian vowel *ě (yat) before hard
syllable is [ja] and before soft syllable is [E] ([bjal] vs. [bEli]). Under the influence
of the Balkan dialects [E] is almost completely replaced by [e].

• change of consonant /d/ into [n] before /n/ (*dn > [nn])

• non-existence of consonants /f/ and /x/

Three of these distinguishing characteristics are not supported by (his own) OT and
BDA maps.5 Velarized pronunciation of the back yer is found neither in OT nor in BDA.

4Repeated from the Section 2.3 for the convenience of the reader.
5BDA: B�lgarski dialekten atlas. [Atlas of Bulgarian dialects] (Stoykov and Bernstein, 1964;

Stoykov, 1966; Stoykov et al., 1974; Stoykov, Kochev, and Mladenov, 1981)
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It is also not present in our data set. Regarding the reflexes of the yat and the *dn > [nn]
change, the maps in OT (OT F 35 and OT 166 respectively) show that these character-
istics are not typical only for the Moesian area, since they spread far outside the area
labeled as Moesian by Stoykov. Characteristics mentioned are common to almost the
whole area east of the yat boundary. With respect to the fourth characteristic, nonexist-
ence of /f/ and /x/, on some maps in OT (135-141) it is possible to distinguish an area
that corresponds to Stoykov’s Moesian dialects. However, the relevant characteristic
is often shared with the areas to the east, west, or south. In the data set there are 23
words that contain this feature, but only 15 of them show an isogloss that runs more or
less along the boundary of Stoykov’s Moesian area. In Figure 4.9 we present isoglosses
drawn using only relevant segments from those 15 words.

Figure 4.9: Isoglosses drawn using segments from 15 words in the data set where fea-
tures that distinguish Moesian zone are present.

Even if we focus on the relevant segments, the isoglosses do not delineate only
Stoykov’s Moesian area, but also other parts of Bulgaria as well. The MDS plot in Fig-
ure 4.10 confirms that in the aggregate analysis based on the chosen 15 words, Stoykov’s
Moesian area is not distinguishable. In this MDS plot sites that belong to the Stoykov’s
Moesian area (’×’ sign) are concentrated in the right low corner of the plot, together
with the Balkan varieties (’♦’ sign). It is not possible to detect a separate cloud repres-
enting Moeasian varieties since two groups of signs are mixed. On the right MDS plot
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in Figure 4.10 we show aggregate analysis based on relevant segments from 15 chosen
words. Moesian and Balkan varieties, concentrated in the left upper corner are to some
extent more separated from the rest of the varieties than on the previous plot. However,
the two groups of symbols are mixed and cannot be separated from each other. It is clear
that 15 chosen segments are not distinctive for Stoykov’s Moesian area, but are shared
with a considerable number of sites from the Balkan dialects.

We conclude that as far as phonetics is concerned there is not enough evidence that
Moesian area should be treated as a separate dialect. Most of the phonetic characteristics
that traditional literature considers typical for this region is actually shared with the
neighboring Balkan dialects. Using only relevant segments from 15 words that show
nonexistence of /f/ and /x/ we manage to detect a very weak signal that distinguishes
northeastern area but broader than suggested by Stoykov. The strength of this signal is
lost when the data as a whole is taken into account.

Figure 4.10: Left: MDS plot made using the chosen 15 words. Right: MDS plot made
using only relevant segments from the chosen 15 words. The Moesian dialects, symbol-
ized by ’×’, do not emerge coherently.

4.4 Discussion
Our goal in this chapter was to compare traditional and quantitative classifications of
Bulgarian dialects. We drew on Stoykov’s authoritative work for our views on traditional
classification, and we used a simple version of Levenshtein distance to provide a base
for a quantitative view. The general lines of the two views of the Bulgarian dialect
landscape are similar. Both see the language area dominated by an east-west division,
i.e. Stoykov’s yat line, and both identify the Rupian south as a third most significant
area. The quantitative work located the yat line slightly to the east of where Stoykov had
drawn it, and it failed to identify anything like his Moesian area. In both of these cases
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we find for the quantitative work, and conclude that it improves on Stoykov’s. Assuming
that Levenshtein distance is yielding a probative measure of aggregate pronunciation
differences, we relied on multidimensional scaling (MDS) to visualize the more than
19,000 distances between the pairs in our 197-site sample, encouraged by the fact that
over 92 per cent of the variation is captured in the first two dimensions. This allowed us
to see that the Rupian area is much more diverse than either the east or the west in the
north.

Regarding the situation in the west, the MDS plot demonstrates that the transitional
zone at the border with Serbia, the northern and southern parts of the west, all of which
Stoykov postulated, may indeed be distinguished when using aggregate pronunciation
distance, but the borders are not linguistically prominent. It is not surprising that clus-
tering fails to distinguish these areas reliably.

We noted above that most of the work presented here proceeds from the assumption
that Levenshtein distance is a valid measure of the pronunciation differences found in
dialects. Naturally this assumption may be questioned: for example, the built-in sensit-
ivity to segment frequency in Levenshtein distance may be inappropriate. For example,
for the most prominent division into the east and west, we find 68 relevant words, for the
TZS we find 41 words, while for the Moesian area we find only 15 words that contain
relevant features. It is evident that the clearer the separation of an area is, the bigger
the number of relevant words in the data set. While traditional dialectologists often use
their own intuition in giving certain features more weight, our aggregate method treats
all features as equal and tries to infer dialect divisions based on all features in the data
set. In our data set we are not able to determine if the distribution of chosen features
corresponds well with their distribution in Bulgarian language. However, as described
in Chapter 2, the data was collected in a such way that there is a balance between various
phonetic features, which ensures that the data set is not biased towards certain phonetic
phenomena and as a consequence certain dialect divisions.

Computational measures of pronunciation differences may be modified in many
ways. While in the research addressed in the current chapter we have applied the simple
version of the Levenshtein algorithm and represented every segment as a distinct unit
that is not further defined, in Chapter 5 we automatically infer the distances between the
segments in the data set and use that information to get more accurate alignments and
consequently more accurate distances between the sites.

Detailed comparison between computational and traditional maps has shown that
the features responsible for traditional divisions of Bulgarian dialect varieties are well
represented in our data set. The simple version of Levenshtein algorithm was successful
in identifying three main dialect groups and in showing that Moesian area cannot be
identified as a separate dialect purely based on phonetic evidence. We see a three-way
division in the west of Bulgaria reflected in MDS plots, but not distinctly enough to be
detected reliably by clustering. In the next chapter we show how Levenshtein approach
can further be improved by introducing segment distances in the alignment procedure.
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The instability of clustering techniques poses a problem in dialect data classification and
we argue that MDS is more reliable in the analysis of dialect varieties.
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Chapter 5

Segment distances

In this chapter we apply pointwise mutual information (PMI) in order to automatically
acquire segment distances from the phonetic transcriptions. Information on the dis-
tances between the phones can help us estimate more precisely the distances between
two strings and consequently the distances between two language varieties. Instead of
using only same vs. different as a comparison between the phones, we can use inform-
ation on the phone distances together with Levenshtein algorithm in order to get better
distances and better alignments (Chapter 3). There are alternatives to our empirically de-
riving segment distances from dialect atlas samples. The distances between the phones
can also be calculated using a linguistically more informed approach by representing
each phone as a bundle of features where every feature is a certain phonetic property
(Heeringa, 2004). The distances can also be measured acoustically, which is less arbit-
rary than using feature representation of phones since it is based on physical measures
(Heeringa, 2004). However, both of these approaches have their disadvantages. The
former relies on a language-dependent feature system, while the letter requires acous-
tic data to be available. Since very often neither of the two is available, we propose
a technique to acquire the distances automatically. Similar research was presented in
Wieling et al. (2007) where the distances between the phones were automatically ac-
quired using pair hidden Markov models (PHMM). As reported in Wieling, Prokić, and
Nerbonne (2009), where both PMI and PHMM techniques were applied on the same
data set used in this thesis, they produce pairwise alignments of a very similar quality.
However, PMI is much faster, and the alignment errors made by this algorithm are a
priori predictable and much easier to comprehend than errors induced by PHMM al-
gorithm. Part of the work presented in this chapter was published in Wieling, Prokić,
and Nerbonne (2009).

71
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5.1 Pointwise mutual information
Pointwise mutual information (PMI) is a measure of association between two events x
and y. It measures the amount of information one event tells us about the other. It was
first introduced by Fano (1961). Given a pair of outcomes x and y, the pointwise mutual
information I is measured as:

I(x,y) = log2
P(x,y)

P(x)P(y)
(5.1)

The numerator P(x,y) tells us how often we have observed the two events together, while
the denominator tells us how often we would expect these two events to occur together
assuming that they each occurred independently. The ratio between these two shows
us if two events co-occur together more often than just by chance. Positive values of I
show that there is a genuine association between x and y. This measure was first used
in computational linguistics by Church and Hanks (1989) for calculating associations
between words.

In this research, PMI is used to automatically learn the distances between the phones
in aligned word transcriptions and also to improve the automatically generated align-
ments. Equation 5.1 is used to calculate PMI values for each pair of segments in align-
ments, and later these values are transformed into segment distances (see below). Ap-
plied to aligned transcriptions, P(x,y) represents the relative frequency of two segments
being aligned together and is calculated by dividing the number of times two phones
were aligned together by the total number of aligned segments in the data set. P(x) and
P(y) are relative frequencies of segments x and y—the number of times segments x and
y occur in the data set divided by the total number of segments.

The procedure of calculating the segment distances and improving the alignments is
iterative and consists of the following steps:

1. Align all word transcriptions using Levenshtein algorithm where only the vowel-
vowel consonant-consonant constraint is given. No detailed information on the
distances between the segments is provided in this step.

2. From the obtained alignments, for all pairs of segments calculate PMI values
I(x,y) using formula 5.1.

3. Transform PMI values into distances by substracting each value from 0 and nor-
malize the distances to insure that the smallest distance is 0.

dist(x,y) =
(0− I(x,y))−min

max−min
(5.2)

where min and max are the minimal and maximal values obtained after substract-
ing PMI values for all pairs of segments from 0, and I(x,y) is given in 5.1.
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4. For all pairs of segments that never align in the data, set the distance to an arbitrary
large value.1

5. Align all word transcriptions once more using Levenshtein algorithm, but based
on the segment distances generated in the previous step.

6. Repeat steps 2 and 3 until there are no changes in segment distances and align-
ments.

The final result are distances between each two segments as well as the alignments that
show improvement when compared to the alignments obtained by using the Levenshtein
algorithm with only the vowel-vowel consonant-consonant constraint (Levenshtein VV-
CC). To illustrate how the algorithm works, we will examine two pronunciations of
the word dnes /dnes/ ‘today’: [de"neskA] and ["njesk@]. In the first step we align these
two pronunciation using the simple Levenshtein algorithm. Using only the vowel-vowel
consonant-consonant constraint, there are two different alignments of these two strings
that have the same minimal cost:2

d e n "e s k A
- - nj "e s k @

d e n "e s k A
nj - - "e s k @

Figure 5.1: Two alignments produced by the Levenshtein VV-CC that have the same
cost of 4.

In the next step we use these alignments to calculate the PMI values for all pairs of
aligned segments.

Table 5.1: Values for the [n], [nj] and [d] segments calculated from the alignments pro-
duced by the Levenshtein VV-CC.

x y f (x) f (y) f (x,y) P(x) P(y) P(x,y) I(x,y) dist(x,y)

n nj 1250463 268725 135477 0.038178 0.008205 0.008273 4.723003 0.199076
d nj 1228146 268725 223 0.037497 0.008205 0.000013 -4.497805 0.601548

The total number of segment pairs in the data set was 16376419 and the total number of
segments 32752838. In Table 5.1 we present the frequencies ( f ) and relative frequencies
(P) for two pairs of sound correspondences: [n]-[nj] and [d]-[nj]. By multiplying relative
frequencies of two segments P(x) and P(y) we can see the probability of seeing two
segments aligned by chance.

1In our experiment it was set to 1000.
2The sign for primary stress is moved to the first vowel in stressed syllable in all examples presented in this

chapter.



74 CHAPTER 5. SEGMENT DISTANCES

P(n)×P(nj) = 0.038178×0.008205 = 3.13×10−4

P(d)×P(nj) = 0.037497×0.008205 = 3.07×10−4

For the first pair, [n]-[nj] this value is 0.000313, and for the second 0.000307. If we com-
pare these values to the relative frequencies of each of the two segments being aligned
together in our data set P(x,y), we see that the segments [n]-[nj] were aligned 28 times
more than we would expect by chance, since P(n,nj) is 0.008273. For the pair [d]-
[nj] the situation is opposite: they align 22 times less than we would expect by chance
(P(d,nj) = 0.000013).

For all pairs of segments, we use information on the relative frequencies to obtain
pointwise mutual information (formula 5.1), which shows negative association for the
[d]-[nj] pair. PMI values are transformed into the distances using formula 5.2. We find
that the distance between [n]-[nj] is 0.199076 and between [d]-[nj] 0.601548.

In the next step we align two strings using Levenshtein algorithm based on the calcu-
lated distances between the segments and recalculate the distances between the segments
based on the new alignments. These steps are repeated until there are no more changes
in the distances between the segments. The final values for the segments [n]-[nj] and
[d]-[nj] can be seen in Table 5.2.

Table 5.2: Values for the [n], [nj] and [d] segments calculated from the alignments pro-
duced by the Levenshtein PMI.

x y f (x) f (y) f (x,y) P(x) P(y) P(x,y) I(x,y) dist(x,y)

n nj 1193681 261135 134527 0.037449 0.008192 0.008441 4.782038 0.196556
d nj 12281456 261135 0 0.038530 0.008192 0 0 1000

Based on the calculated distances, where the distance between [n]-[nj] is much smaller
than between [d]-[nj], the outcome of the Levenshtein algorithm is only one alignment
of the strings [den"eskA] and [nj"esk@] (Figure 5.2). The final distance between [n]-[nj]
was reduced to 0.196556, while the distance between [d]-[nj] was set to 1000, i.e. an
arbitrary large value, since in the improved alignments these two segments are never
aligned.

d 7 n "7 s k A
- - nj "e s k @

Figure 5.2: Alignment of the strings produced by Levenshtein PMI.



5.2. EVALUATION OF THE PAIRWISE ALIGNMENTS 75

The distances among vowels and consonants are all set to an arbitrary large value
since they never align in our alignment procedure. In the first step of the procedure we
use the Levenshtein algorithm with the constraint that the vowels and consonants cannot
align. Without this constraint, the Levenshtein algorithm produces several alignments
for many pairs of transcriptions. Since only one of them is correct, this means that in the
first step of our PMI procedure we would get a large number of erroneous alignments.
Segment distances induced from such a large number of erroneous alignments are them-
selves erroneous and they cannot improve the quality of the alignments if used within
the Levenshtein algorithm.

Using the PMI procedure we have managed to automatically infer the distances
between the segments, but also to improve the quality of the alignments as we shall
show in the next section. In Section 5.2 we present the results of evaluating pairwise
aligned strings obtained using the Levenshtein algorithm with and without the PMI pro-
cedure on the segment level. In the Section 5.3 we analyze the automatically acquired
distances between the tokens using multidimensional scaling in order to check if they
correspond well with our linguistic knowledge on the distances between the phones. We
also investigate the influence of the automatically acquired segment distances on the ag-
gregate analysis of dialect divisions and report on our findings in Section 5.4. A short
discussion on the merits of PMI in dialectometrical research is presented in Section 5.5.

5.2 Evaluation of the pairwise alignments
In this section we describe a method for quantitatively evaluating pairwise aligned strings
and report on the quality of the alignments obtained using the Levenshtein algorithm
with and without segment distances induced using PMI. The comparison of the two tech-
niques was done by comparing each of them, on the segment level, to the gold standard
pairwise alignment. We also report on the qualitative analyses of the alignments pro-
duced.

The gold standard alignment was generated from the gold standard multiple align-
ments described in Section 6. The gold standard multiple alignments were automatic-
ally generated using some heuristics and later manually corrected (for the details see
Chapter 6). They consist of all pronunciations for a single word aligned simultaneously,
instead of aligning it pair-by-pair which is done using pairwise-aligning algorithms like
Levenshtein. Using multiple aligned strings it was possible to manually go through the
whole data set, since this technique gives us 156 files with approximately 200 aligned
strings. In pairwise approach each of 156 files contains around 12090 pairwise align-
ments which would be very time consuming to correct manually. Since for 4 out of 156
words experts could not agree on what a correct alignment is, those 4 entries were re-
moved from the data set. An example is word v�v /v7v/ ‘in’. Some of the dialect variants
of this word contain only one segment [v] which could be aligned with two segments in
other transcriptions, but the experts could not agree which of the two is more likely to
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be the correct one (Figure 5.3). Since it was very difficult for humans to make a decision
which alignment is the correct one, this word, as well as three others that posed similar
problems to the human experts, was left out of the evaluation procedure.

v "7 v
v - -

v "7 v
- - v

Figure 5.3: Two possible alignments of the word ‘in’ on which experts could not agree.

All further analyses were done on 152 words for which the gold standard alignments
were available. Out of the manually corrected multiple string alignments we have ex-
tracted all pairwise alignments and used them as a gold standard to evaluate the results
of Levenshtein PMI.

d 7 n "7 s k A
- - nj "e s k @

d 7 n "7 s k A
nj - - "e s k @

Figure 5.4: The gold standard alignment on the left and the alignment produced by
Levenshtein VV-CC on the right.

The evaluation procedure consists of the following steps:

1. For each pair of aligned strings, take every pair of aligned segments and convert
the pair into a single token. For example, the first two aligned strings in Figure 5.4
would give the following tokens: d/-, 7/-, n/nj, "7/"e, s/s, k/k, A/@.

2. Concatenate all tokens obtained into a single string. Segments generated in Step 1
would give the following string for the first alignment: d/- 7/- n/nj "7/"e s/s k/k A/@.

3. Use the Levenshtein algorithm without any restrictions on segment distances and
align corresponding strings, i.e. transformed strings generated by Levenshtein
VV-CC and Levenshtein PMI against the gold standard alignments. Since there
are no restrictions on segment distances, two segments match only if their both
parts match. For example, the distance between two generated strings from Fig-
ure 5.5 would be 2:

d/- 7/- n/nj "7/"e s/s k/k A/@
d/nj 7/- n/- "7/"e s/s k/k A/@

1 1

Figure 5.5: Levenshtein distance between these two strings is 2.
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4. The distances for all alignments are automatically calculated using Levenshtein
algorithm and summed up giving the total distance between alignments produced
by two versions of Levenshtein algorithm and the gold standard.

5.2.1 Results
The quantitative results of the evaluation can be seen in Table 5.3. We report the error
rate at the segment level and the percentage of missaligned strings. The error rate in
second column represents the number of incorrectly-aligned segments divided by the
total number of aligned segments in the gold standard. In the third column we report
the percentage of the strings that are not aligned in the same way as found in the gold
standard alignments. In both cases Levenshtein PMI outperforms Levenshtein VV-CC
algorithm. On the segment level, error rate drops from 0.040 to 0.032, while at the word
alignment level error of 7.614 per cent in the basic algorithm improved to 6.263 per cent
when including the PMI-derived distance. The difference is statistically significant with
p <0.001 by the exact binomial test.

Table 5.3: Comparison of the alignments generated by Levenshtein VV-CC and Leven-
shtein PMI algorithms to the gold standard alignments.

Algorithm Error rate for segments Incorrect alignments(%)
Levenshtein VV-CC 0.040 7.614
Levenshtein PMI 0.032 6.263

The qualitative error analysis has shown that most of the errors arising using the
simple Levenshtein algorithm come from the constraint that vowels and consonants can-
not be aligned. Although this holds in most of the cases, there are, however, exceptions
where vowels should be aligned with consonants. An example of these types or error
can be seen in the alignments where metathesis is present. Metathesis is a change where
sounds switch their places within a word (for example [v7rx] vs. [vr7x]). Metathesis
of liquid consonants is an important historical change in Slavic languages and is present
in 18 words from our data set (11.84 per cent of the data). More on the metathesis in
Slavic languages can be found for example in Sussex and Cubberley (2006). Due to a
VV-CC constraint, this poses a problem for the Levenshtein algorithm. Instead of align-
ing a vowel with a consonant, additional gaps are introduced by Levenshtein algorithm
(Figure 5.6).

Since the PMI alignment procedure proceeds from the Levenshtein VV-CC algorithm,
a vowel can also not be aligned with a consonant. For that reason, this type of error is
also present in the alignments produced with Levenshtein PMI algorithm.

Another type of error detected in the alignments produced by Levenshtein VV-CC
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v "7 r x
v r "7 x

v "7 r - x
v - r "7 x

Figure 5.6: The gold standard alignment on the left and the erroneous alignment pro-
duced by Levenshtein on the right.

arises in cases when one vowel (consonant) has to be aligned with one of the two ad-
jacent vowels (consonants). Since the distance between all vowels on one hand, and
all consonant on the other is the same, the algorithm often yields erroneous alignments.
For Levenshtein VV-CC algorithm both alignments in Figure 5.7 are correct since the
distance between two strings is 3.

v "7 n - -
v "7 ï k @

1 1 1

v "7 - n -
v "7 ï k @

1 1 1

Figure 5.7: The alignments produced by Levenshtein VV-CC algorithm: the correct one
on the left and the erroneous one on the right.

Unlike Levenshtein VV-CC, Levenshtein PMI algorithm generates only the correct align-
ment since it ‘learns’ that the distance between [n] and [ï] is smaller than the distance
between [n] and [k]. Correction of these types of errors is where the PMI procedure
improves the performance of simple Levenshtein VV-CC algorithm and generates more
correct alignments.

5.3 Analysis of segment distances

Comparison of the alignments produced using the Levenshtein VV-CC and the Leven-
shtein PMI to the gold standard alignments has shown that the PMI procedure can im-
prove the quality of the obtained alignments. We were also interested in the nature of the
automatically obtained segment distances. In order to check whether they reflect any of
the ‘traditional’ phonetic features of language sounds, we have performed MDS analysis
(Chapter 3) of the phone distances calculated using PMI.

In Figure 5.8 we can see two-dimensional plot of all the sounds in the data set. The
first extracted dimension, plotted against the x-axis explains 11.69 per cent of the vari-
ation, and the second dimension, plotted against the y-axis, explains 4.06 per cent of
the variation. Along the x-axis there is a clear separation between vowels and conson-
ants. This was expected since in our PMI procedure vowels and consonants cannot be
aligned and the distances between them were set to an arbitrary large value. More inter-
esting is the variation along the y-axis. Along the y-axis we can see that the distances



5.3. ANALYSIS OF SEGMENT DISTANCES 79

between vowels are much smaller, (in fact there is almost no variation), than the dis-
tances between the consonants. It means that in our data set vowel changes are much
more frequent than consonant changes, since the more often two tokens correspond the
smaller the PMI distance between them.

In order to analyze the distances more accurately, we performed MDS analyses sep-
arately for vowels and consonants. In Figure 5.9 we present the plot of all vowels in the
data set, with all the diacritics preserved. With all the consonants removed, it is possible
to analyze the relationship between the vowels in more depth. The first two extracted
dimensions explain 16.06 per cent of the variation, with the first one explaining 10.39
per cent. With a very few exceptions, along the x-axis there is a separation between
stressed and unstressed vowels. The distance between stressed vowels is larger than that
between the unstressed, meaning that unstressed vowels are more similar than stressed
vowels. In the upper right corner of the MDS plot we have a group of front vowels,
while in the opposite, low left, corner there is a cluster of back vowels. We note that the
separation between front and back vowels does not go along x- or y-axis, since first two
dimensions extracted by MDS do not correspond to any of the two most prominent op-
positions based on articulatory features of vowels—back/front or open/close opposition.
However, it is still possible to distinguish front/back vowels contrast. To check this we
have extracted all vowel correspondences from the aligned transcriptions. In Table 5.4
we present the 10 most frequent. We can see that among the most frequent correspond-
ences we indeed do have neutralization of the contrast of vowel height, [e]-[i], [A]-[@],
[o]-[u]. Since these correspondences occur more frequently than others, the distances
between these phones calculated using PMI are small and in MDS analysis they are not
separated by any of the first two dimensions. These findings conform with the traditional
Bulgarian phonology scholarship according to which the elimination of the contrast of
vowel height in unstressed vowels is the most common vowel reduction phenomenon in
Bulgarian (Wood and Pettersson, 1988; Barnes, 2006).

In Figure 5.10 a MDS plot of consonant distances is presented. The first two extrac-
ted dimensions explain only 6.68 per cent of the variation, the first dimension explains
3.53 per cent and the second 3.15 per cent of the variation. The main division goes along
the y-axis where in the upper part we have mostly plosives and sonorants and their palat-
alized counterparts. The distances between them are smaller than between the segments
in the lower part, mostly fricatives, indicating that palatalization of consonants is the
most frequent consonant variation in our data set. It can be seen in Table 5.5 where we
present the 30 most frequent consonant correspondences in the data set. Unlike vowels,
consonants show much less variation and in the 10 most frequent correspondences there
are no consonant changes. In the 30 most frequent correspondences extracted, the most
frequent consonant change is the insertion/deletion of [j], followed by the palatalization
of [n], [r] and [l].

The analyses of vowel and consonant distances obtained using Levenshtein PMI have
shown that these distances correspond to a certain extent to the vowel and consonant
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Table 5.4: Ten most frequent vowel correspondences in the data set. Note that there are
only three pairs of non-identical vowels: [e]-[i], [A]-[@] and [o]-[u].

Number of occurrences Vowel pair
592274 ["e]-["e]
497495 ["A]-["A]
371146 ["o]-["o]
287243 [e]-[i]
273473 [e]-[e]
257192 [A]-[@]
225142 [@]-[@]
214763 [o]-[u]
211673 [u]-[u]
204639 [i]-[i]

characteristics we know from phonetic and phonological theory. Unfortunately it was
not possible to obtain data that would contain acoustic distances between the segments
for Bulgarian and compare it directly to the automatically induced distances.

5.4 PMI and the aggregate analysis of dialects
In Section 5.2.1 we have shown that PMI can improve the quality of the alignments pro-
duced using Levenshtein VV-CC algorithm. In this section we examine if this improve-
ment will show in the analysis of dialect divisions at the aggregate level. We analyze
distances between the sites obtained using Levenshtein PMI with MDS and compare the
results to the divisions obtained using Levenshtein VV-CC.

All analysis for Levenshtein PMI and Levenshtein VV-CC were done on 152 words,
used also to evaluate the alignments on the segment level. We calculated Pearson’s
correlation coefficient between distance matrices obtained using these two versions of
Levenshtein algorithm and found that they correlate to a high extent, namely the coeffi-
cient is r = 0.98.

In Figure 5.11 we present MDS maps based on the Levenshtein VV-CC and the
Levenshtein PMI distance matrices next to each other. Although the two distance matrices
correspond highly, there are differences in two MDS maps in Figure 5.11, most notably
in the western part of the country. On the left map derived from Levenshtein VV-CC,
this part of the country forms a homogeneous area, with no distinct groups. The map
produced using Levenshtein PMI distances distinguishes the transitional zone at the bor-
der with Serbia as a separate group. At the same time, there is some distinction between
northwestern and southwestern areas, that cannot be detected on the other map.
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Table 5.5: Thirty most frequent consonant correspondences in the data set. Note that
there are 10 pairs of non-identical consonants.

Number of occurrences Vowel pair
626676 [r]-[r]
595761 [t]-[t]
524857 [d]-[d]
517440 [s]-[s]
503480 [n]-[n]
471794 [k]-[k]
423509 [v]-[v]
374155 [m]-[m]
326280 [l]-[l]
261019 [b]-[b]
237165 [g]-[g]
233534 [S]-[S]
222479 [p]-[p]
212851 [j]-[-]
202390 [Ù]-[Ù]
188601 [j]-[j]
150620 [z]-[z]
136781 [f]-[f]
134527 [n]-[nj]
133659 [r]-[rj]
127755 [Z]-[Z]
126525 [ţ]-[ţ]
114261 [d]-[dj]
102062 [l]-[lj]
93188 [v]-[vj]
79601 [v]-[-]
68514 [lj]-[lj]
65616 ["r

"
]-[r]

64385 [
>
tC]-[Ù]

61771 [S]-[C]
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Figure 5.8: MDS plot of all phones in the data set. The distances between the vowels and
the consonants are set to an arbitrary large value, which resulted in the clear separation
between them along the x-axis. Note much larger distances between the consonants than
between the vowels along the y-axis.
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Figure 5.9: MDS plot of all vowels in the data set. Along the x-axis there is a separation
between the stressed and unstressed vowels.
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Figure 5.10: MDS plot of all consonants in the data set. In the upper part of the y-
axis we note small distances between the plosives and sonorants and their palatalized
counterparts.
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Figure 5.11: Left: MDS map of the distances produced using Levenshtein VV-CC.
Right: MDS map of the distances produced using Levenshtein PMI.

Figure 5.12: Left: Traditional borders projected on the MDS map of the distances pro-
duced using Levenshtein VV-CC. Right: Traditional borders projected on the MDS map
of the distances produced using Levenshtein PMI.

In the maps in Figure 5.12 we project Stoykov’s traditional dialect borders on two
MDS maps in order to compare both Levenshtein algorithms to the traditional scholar-
ship. We note that the divisions of the western part of the country visible on the Leven-
shtein PMI map correspond better with the traditional scholarship. On both maps there
is no sign of a Moesian area, which was expected considering the findings in Chapter 4
that there is no phonetic evidence that this area is a separate dialect zone.

We also examine PMI induced distances using MDS plots presented in Figure 5.13.
On both plots sites that belong to the transitional zone at the border with Serbia are
located in the low left corner. We note that, on the right plot made using Levenshtein
PMI produced distances, this area is more clearly separated from the rest of the western
varieties than on the left plot. The distance between northwestern and southwestern
varieties on the right-hand plot is also much bigger when compared to the corresponding
area on the plot to the left. However northwester and southwestern varieties do not form
two separate groups but rather a continuum.

Dots in the right upper corner on two plots represent sites from the southern part of
the country. We also note differences in the distances between the dots in this part of the
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two plots. In the left-hand plot produced using Levenshtein VV-CC, there is much bigger
separation of the dots representing Rupian and western varieties than on the right-hand
plot. In the right-hand plot there is no clear separation between Rupian and southwestern
varieties. We also note smaller separation between Balkan and northwestern varieties on
this plot, which conforms well with the findings reported in Chapter 4, where we have
found number of features in the data set that are shared between northwestern area and
the eastern varieties, including parts of the Rupian area.

Figure 5.13: Left: MDS plot of the distances produced using Levenshtein VV-CC. Right:
MDS plot of the distances produced using Levenshtein PMI.

We note that despite high correlation between two distance matrices there are differ-
ences in the MDS analyses performed on those two matrices. While distances obtained
using Levenshtein VV-CC show three main groups in the data, Levenshtein PMI dis-
tances additionally separate TZS from the neighboring western varieties more clearly.
At the same time, distances between northwestern and southwestern dialects are bigger,
although there is no clear distinction between the two. The distances produced using
Levenshtein PMI correspond to a higher extent to the traditional dialect divisions as de-
scribed in Chapter 2 and Chapter 4. Levenshtein PMI distances also correctly reflect the
fact that there are a number of features shared between northwestern and Balkan dia-
lects in the east. In future we would also like to check the effect of using PMI induced
distances on the clustering results.
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5.5 Discussion
Measured at the segment level, pointwise mutual information has shown to be success-
ful in improving the quality of the pairwise alignments obtained using Levenshtein al-
gorithm. The PMI algorithm automatically learns the distances between each two phones
in the data set. These automatically extracted distances are useful information for mak-
ing the transcription alignments more accurate. To some extent these distances reflect
the phonetic and phonological features of Bulgarian described in the traditional literat-
ure. Techniques that exploit the aligned segments extracted from the transcriptions, like
those described in Prokić (2007) and Prokić and Van de Cruys (2010) can benefit from
more accurate alignments.

At the aggregate level, distances between the sites calculated using Levenshtein VV-
CC and Levenshtein PMI show very high correspondences (r = 0.98). Despite the high
correlation, MDS maps produced using these two matrices show some slight differences
in the analysis of the western varieties, with the Levenshtein PMI-produced map corres-
ponding a bit better with the traditional divisions of this dialect zone.

The main limitation of the Levenshtein PMI is the constraint that vowels can align
only with vowels and consonant only with consonants. Due to that restriction we can-
not get information on the distances between vowels and consonants. The real merit of
PMI used in string aligning would be to use this procedure without VV-CC constraint,
in which case some previously described errors would be avoided and the distances
between vowels and consonants would also be retrieved. However, if at the beginning
of the PMI procedure no VV-CC constraint is given to the Levenshtein algorithm, the
starting alignments are erroneous and as a consequence the segment distances and align-
ments produced by the PMI algorithm are also erroneous. This problem still remains to
be solved.
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Chapter 6

Multiple string alignments in
linguistics

In this chapter we present and evaluate an algorithm used to produce multiple sequence
alignments in linguistics ALPHAMALIG (Alonso et al., 2004). Originally used for text
alignment, we adapted it slightly and applied it to our dialect pronunciation data. The
alignments produced are evaluated by comparing them to the manually corrected align-
ments, the so-called gold standard. The results of evaluating the two alignments show
that automatically induced alignments are of a good quality, highly corresponding with
the manually produced alignments. This chapter is structured as follows. In Section 6.1
we introduce multiple sequence alignments and give our motivation for using this type
of alignment. Section 6.2 gives a description of the ALPHAMALIG algorithm. We
then present our gold-standard, but also simple and advanced baseline alignments in
Section 6.3. Both advanced and baseline alignments are used to evaluate the quality of
the automatically induced alignments. The evaluation of the alignments was done using
two novel methods that we present in more detail in Section 6.4. A short discussion and
some pointers for future work are given in Section 6.5. Work presented in this chapter
was published as Prokić, Wieling, and Nerbonne (2009).

6.1 Multiple sequence aligning

In bioinformatics, sequence alignment is a way of arranging DNA, RNA or protein se-
quences in order to identify regions of similarity and determine evolutionary, functional
or structural similarity between the sequences. There are two main types of string align-
ment: pairwise and multiple string alignment. Pairwise string alignment methods com-
pare two strings at a time and cannot directly be used to obtain multiple string alignment

89
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methods (Gusfield, 1997, 343-344). In multiple string alignment all strings are aligned
and compared at the same time, making it a good technique for discovering patterns,
especially those that are weakly preserved and cannot be detected easily from sets of
pairwise alignments. Multiple string comparison is considered to be the holy grail of
molecular biology (Gusfield, 1997, 332):

It is the most critical cutting-edge tool for extracting and representing biologically
important, yet faint or widely dispersed, commonalities from a set of strings.

Multiple string comparison is not new in linguistic research. In the late 19th century
the Neogrammarians proposed the hypothesis of the regularity of sound change. Ac-
cording to the Neogrammarian hypothesis sound change occurs regularly and uniformly
whenever the appropriate phonetic environment is encountered (Campbell, 2004). Ever
since then the understanding of sound change has played a major role in the comparative
method that is itself based on the simultaneous comparison of different languages, i.e.
lists of cognate terms from the related languages. The correct analysis of sound changes
requires the simultaneous examination of corresponding sounds in order to compare
hypotheses about their evolution. Alignment identifies which sounds correspond. His-
torical linguists align the sequences manually, while we seek to automate this process.

In recent years there has been a strong focus in historical linguistics on the introduc-
tion of quantitative methods in order to develop tools for the comparison and classifica-
tion of languages. For example, in his PhD thesis, Kondrak (2002) presents algorithms
for the reconstruction of proto-languages from cognates. Warnow et al. (2006) applied
methods taken from phylogenetics to Indo-European phonetic data in order to model
language evolution. Heeringa and Joseph (2007) applied the Levenshtein algorithm to
the Dutch pronunciation data taken from Reeks Nederlandse Dialectatlassen and tried
to reconstruct a ‘proto-language’ of Dutch dialects using the pairwise alignments.

Studies in historical linguistics and dialectometry where string comparison is used
as a basis for calculating the distances between language varieties will profit from tools
to multi-align strings automatically and to calculate the distances between them. Good
multiple alignment is of benefit to all those methods in diachronic linguistics such as
the comparative reconstruction method or the so-called character-based methods taken
from phylogenetics, which have also been successfully applied in linguistics (Gray and
Jordan, 2000; Gray and Atkinson, 2003; Atkinson et al., 2005; Warnow et al., 2006).
The multi-alignment systems can help historical linguistics by reducing the human labor
needed to detect the regular sound correspondences and cognate pairs of words. They
also systematize the linguistic knowledge in intuitive alignments and provide a basis
for the application of the quantitative methods that lead to a better understanding of
language variation and language change.

In this study we apply an iterative pairwise alignment program for linguistics, AL-
PHAMALIG, to the phonetic transcriptions of words used in dialectological research.
We automatically multi-align all transcriptions and compare these generated alignments



6.1. MULTIPLE SEQUENCE ALIGNING 91

with manually aligned gold standard alignments. At the same time we propose two
methods for the evaluation of the multiple sequence alignments (MSA).

6.1.1 Example of multiple sequence alignment
In this section we will give an example of the automatically multi-aligned strings from
our data set and point out some important features of the simultaneous comparison of
more than two strings.

Aldomirovtsi: j "A - - - -
Beglezh: - "A s - - -
Belene: - "A s - - -
Chukovets: j "A z e k a
Dinevo: j "A - - - -
Dobroselets: - "A s - - -

Figure 6.1: Example of multiple string alignment for six villages. Sign for primary stress
is moved to the first vowel in the stressed syllable.

In Figure 6.1 we have multi-aligned pronunciations of the word az /az/ ‘I’ auto-
matically generated by ALPHAMALIG. The advantages of this kind of alignment over
pairwise alignment are twofold:

• First, it is easier to detect and process corresponding phones in words and their
alternations (like [s] and [z] in the third column in Figure 6.1).

• Second, the distances/similarities between strings can be different in pairwise
comparison as opposed to multiple comparison. This is so because multi-aligned
strings, unlike pairwise aligned strings, contain information on the positions where
phones were inserted or deleted in both strings. For example, in Figure 6.1 the
pairwise alignment of the pronunciations from the villages Aldomirovtsi and Beg-
lezh would be:

Aldomirovtsi: j "A -
Beglezh: - "A s

These two alignments have one matching element out of three in total, which
means that the similarity between them is 1/3 = 0.33. At the same time the sim-
ilarity between these two strings calculated based on the multi-aligned strings in
Figure 6.1 would be 4/6 = 0.66:

Aldomirovtsi: j "A - - - -
Beglezh: - "A s - - -
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The measurement based on multi-alignment takes the common missing material
into account as well. For example, the last three positions are not present in the
pairwise alignments, which is, in some cases, an important information loss.

6.2 Iterative pairwise alignment
Multiple alignment algorithms iteratively merge two multiple alignments of two sub-
sets of aligned strings into a single multiple alignment that is union of those subsets
(Gusfield, 1997). The simplest approach is to align the two strings that have the min-
imum distance over all pairs of strings and iteratively align strings having the smallest
distance to the already aligned strings in order to generate a new multiple alignment.
Other algorithms use different initializations and different criteria in selecting the new
alignments to merge. Some begin with the longest (low cost) alignment instead of the
pair with the least cost absolutely. A string with the smallest edit distance to any of the
already merged strings is chosen to be added to the strings in the multiple alignment. In
choosing the pair with the minimal distance, all algorithms are greedy, and risk missing
optimal alignments.

ALPHAMALIG is an iterative pairwise alignment program for bilingual text align-
ment. It uses the strategy of merging multiple alignments of subsets of strings, instead
of adding just one string at the time to the already aligned strings.1 It was originally
developed to align corresponding words in bilingual texts, i.e. to work with textual data,
but it functions with any data that can be represented as a sequence of symbols of a finite
alphabet. In addition to the input sequences, the program needs to know the alphabet
and the distances between each token pair and each pair consisting of a token and a gap.

In order to perform multiple sequence alignments of X-SAMPA word transcriptions
we modified ALPHAMALIG slightly so it could work with the tokens that consist of
more than one symbol, such as [”e], [”e:] and [t S], i.e. IPA ["e], ["e:] and [

>
tS] respect-

ively. The distances between the tokens were specified in such a way that vowels can
be aligned only with vowels and consonants only with consonants. The same tokens
are treated as identical and the distance between them is set to 0. The distance between
any token in the data set to a gap symbol has the same cost as replacing a vowel with
a vowel or a consonant with a consonant. Except for this very general linguistic know-
ledge, no other data-specific information was given to the program. In this chapter we
do not use any phonetic features in order to define the segments more precisely or to
calculate the distances between them in a more sensitive way other than making a binary
‘match/does-not-match-distinction’, since we want to keep the system language inde-
pendent and robust to the highest possible degree.

To illustrate the algorithm we will look at the six pronunciations of the word az /az/
‘I’ presented in Figure 6.1.

1http://alggen.lsi.upc.es/recerca/align/alphamalig/intro-alphamalig.html
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Aldomirovtsi: j "A
Beglezh: "A s
Belene: "A s
Chukovets: j "A z e k a
Dinevo: j "A
Dobroselets: "A s

Figure 6.2: Pronunciations of word ‘I’ collected at six places.

In the first step the algorithm forms 2 groups: pronunciations for villages Aldomirovtsi
and Dinevo [j"A] are put in one and pronunciations for villages Beglezh, Belene and
Dobroselets ["As] in the other. The distance between the strings within these two groups
is 0, i.e. they have the same pronunciation of the word in question. Pronunciation for
village Chukovets would still be non-aligned.

Aldomirovtsi: j "A
Dinevo: j "A

Beglezh: "A s
Belene: "A s
Dobroselets: "A s

Chukovets: j "A z e k a

Figure 6.3: In the first step strings that have distance 0 are grouped together.

In the next step, pronunciations for villages Aldomirovtsi and Dinevo are aligned with
the pronunciations for villages Beglezh, Belene and Dobroselets since the distance between
these pronunciations is smaller than the distance between any of the two groups of strings
to the pronunciation from village Chukovec. The distance between [j"A] and ["As] is 2,
between [j"A] and [j"Azeka] is 4, while the distance between ["As] and [j"Azeka] is 5.

Aldomirovtsi: j "A -
Dinevo: j "A -
Beglezh: - "A s
Belene: - "A s
Dobroselets: - "A s

Chukovets: j "A z e k a

Figure 6.4: In the second step strings that have distance 2 are grouped together.

In the last step already aligned strings for 5 villages are aligned against the pronunciation
for village Chukovets. The distance between them is 5 since they only match in the
second position ["A].
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Aldomirovtsi: j "A - - - -
Dinevo: j "A - - - -
Beglezh: - "A s - - -
Belene: - "A s - - -
Dobroselets: - "A s - - -
Chukovets: j "A z e k a

Figure 6.5: In the last step all six strings are aligned.

6.3 Gold standard and baseline

In order to evaluate the performance of ALPHAMALIG, we compared the alignments
obtained using this program to manually aligned strings, our gold standard, and to the
alignments obtained using two very simple techniques that are described next: simple
baseline and advanced baseline.

6.3.1 Simple baseline

The simplest way of aligning two strings would be to align the first element from one
string with the first element from the other string, the second element with the second
and so on. If two strings are not of equal length, the remaining unaligned tokens are
aligned with the gap symbol which represents an insertion or a deletion. This is the
alignment implicit in Hamming distance, which ignores insertions and deletions.

By applying this simple method, we obtained multiple sequence alignments for all
words in our data set. An example of such a multiple sequence alignment is shown in
Figure 6.6. These alignments were used to check how difficult the multiple sequence
alignment task is for our data and how much improvement is obtained using more ad-
vanced techniques to multi-align strings.

Aldomirovtsi: j "A - - - -
Chukovets: j "A z e k a
Dobroselets: "A s - - - -

Figure 6.6: Simple baseline produced by aligning the first element from one string with
the first element from the other string, the second element with the second and so on.
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6.3.2 Advanced baseline
Our second baseline is more advanced than the first and was created using the following
procedure:

1. for each word the longest string among all pronunciations is located

2. All strings are pairwise aligned against the longest string using the Levenshtein
algorithm. We refer to the two sequences in a pairwise alignment as ‘aligned
sequences’. Note that aligned sequences include hyphens indicating the places of
insertions and deletions.

3. the aligned sequences—all of equal length—are extracted

4. all extracted aligned sequences are placed below each other to form the multiple
alignment

An example of combining pairwise alignments against the longest string (in this case
[j"Azeka]) is shown in Figure 6.7.

Chukovets: j "A z e k a
Aldomirovtsi: j "A - - - -

Chukovets: j "A z e k a
Dobroselets: - "A s - - -

Aldomirovtsi: j "A - - - -
Chukovets: j "A z e k a
Dobroselets: - "A s - - -

Figure 6.7: Advanced baseline. The top two alignments each contain two aligned se-
quences, and the bottom one contains three.

6.3.3 Gold standard
Our gold standard was created by manually correcting the advanced baseline alignments
described in the previous section. The gold standard results and both baseline results
consist of 152 files with multi-aligned strings, one for each word. The pronunciations
are ordered alphabetically according to the village they come from. If there are more
pronunciations per site, they are all present, one under the other.

6.4 Evaluation
Although multiple sequence alignments are broadly used in molecular biology, there is
still no widely accepted objective function for evaluating the goodness of the multiply
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aligned strings (Gusfield, 1997). The quality of the existing methods used to produce
multiple sequence alignments is judged by the ‘biological meaning of the alignments
they produce’. Since strings in linguistics cannot be judged by the biological criteria
used in string evaluation in biology, we are forced to propose evaluation methods that
are suitable for the strings in question. One of the advantages we have is the existence of
the gold standard alignments, which makes our task easier and more straightforward—in
order to determine the quality of the multi-aligned strings, we compare outputs of the
different algorithms to the gold standard. Since there is no off-the-shelf method that
can be used for comparison of multi-aligned strings to a gold standard, we propose two
novel methods—one sensitive to the order of positions in two alignments and another
that takes into account only the content of each position.

6.4.1 Order dependent method
The first method we develop compares the contents of the position in two alignments and
also takes the position sequence into account. A position is a certain vertical position
in the multiple alignments and can be best illustrated on the multiply aligned strings in
Figure 6.8 (repeated from Figure 6.1) where we mark the first position:

Aldomirovtsi: j "A - - - -
Beglezh: - "A s - - -
Belene: - "A s - - -
Chukovets: j "A z e k a
Dinevo: j "A - - - -
Dobroselets: - "A s - - -

Figure 6.8: This multiple alignment contains 6 positions. We mark the first position.

The order dependent evaluation (ODE) procedure is as follows:2

• Each gold standard column is compared to the most similar column out of two
neighboring columns of a candidate multiple alignment. The two neighboring
columns depend on the previous matched column j and have indices j + 1 and
j + 2 (at the start j = 0). It is possible that there are columns in the candidate
multiple alignment which remain unmatched, as well as columns at the end of the
gold standard which remain unmatched.

• The similarity of a candidate column to a gold standard column is calculated by
dividing the number of correctly placed elements in every candidate column by the

2In Prokić, Wieling, and Nerbonne (2009) we use the name ‘column dependent method’ for the same
method.
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total number of elements in the column. A score of 1 indicates perfect overlap,
while a score of 0 indicates the columns have no elements in common. This
calculation is performed for each column.

• The similarity score of the whole multiple alignment (for a single word) is calcu-
lated by summing the similarity score of each candidate column and dividing the
resulting sum by the total number of matched columns plus the total number of
unmatched columns in both multiple alignments.

• The final similarity score between the set of gold standard alignments with the set
of candidate multiple alignments is calculated by averaging the multiple alignment
similarity scores for all strings.

As an example consider the multiple alignments in Figure 6.9, with the gold standard
alignment (GS) on the left and the generated alignment (GA) on the right.

w rj "E m e
v r "e m i
u rj "e m i
v rj "e m i

w - rj "E m e
v - r "e m i
- u rj "e m i
v - rj "e m i

Figure 6.9: GS and ALPHAMALIG multiple string alignments, the gold standard align-
ment left, the ALPHAMALIG output right.

The evaluation starts by comparing the first column of the GS with the first and second
column of the GA. The first column of the GA is the best match, since the similarity
score between the first columns is 0.75 (3 out of 4 elements match). In similar fashion,
the second column of the GS is compared with the second and the third column of the
GA and matched with the third column of GA with a similarity score of 1 (all elements
match). The third GS column is matched with the fourth GA column, the fourth GS
column with the fifth GA column and the fifth GS column with the sixth GA column
(all three having a similarity score of 1). As a consequence, the second column of the
GA remains unmatched. In total, five columns are matched and one column remains
unmatched. The total score of the GA equals:

(0.75 + 1 + 1 + 1 + 1)

(5 + 1)
= 0.792

It is clear that this method punishes unmatched columns by increasing the value of
the denominator in the similarity score calculation. As a consequence, swapped columns
are punished severely, which is illustrated in Figure 6.10. In the alignments in Fig-
ure 6.10, the first three columns of GS would be matched with the first three columns
of GA with a score of 1, the fourth would be matched with the fifth, and two columns
would be left unmatched: the fifth GS column and the fourth GA column yielding a
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total similarity score of 4/6 = 0.66. Especially in this case this is undesirable, as both
sequences of these columns represent equally reasonable multiple alignment and should
have a total similarity score of 1. We therefore need a less strict evaluation method which
does not insist on the exact ordering. An alternative method is introduced and discussed
in the following section.

"o rj @ j -
"o rj @ - u
"o rj @ f -

"o rj @ - j
"o rj @ u -
"o rj @ - f

Figure 6.10: Two alignments with swapped columns.

6.4.2 Modified Rand index
In developing an alternative evaluation we proceeded from the insight that the columns
of a multiple alignment are a sort of partition of the elements of the alignment strings,
i.e., they constitute a set of disjoint multi-sets whose union is the entire multi-set of
segments in the multiple alignment. Each column effectively assigns its segments to a
partition, which clearly cannot overlap with the elements of another column (partition).
Since every segment must fall within some column, the assignment is also exhaustive.

Our second evaluation method is therefore based on the modified Rand index (Hubert
and Arabie, 1985) described in Chapter 3. The modified Rand index is used in classi-
fication for comparing two different partitions of a finite set of objects. In Chapter 3 we
have used it to compare the classification of sites done by various clustering algorithms
to the traditional division of the sites. In this chapter we use it to assess the quality of
each column from the automatically induced multiple sequence alignments.

We would like to emphasize that it is clear that the set of columns of a multi-
alignment have more structure than a partition sec, in particular because the columns
(subpartitions) are ordered, unlike the subpartitions in a partition. But we shall com-
pensate for this difference by explicitly marking order.

"o [1] rj [2] @ [3] j [4] -
"o [5] rj [6] @ [7] - u [8]

"o [9] rj [10] @ [11] f [12] -

Figure 6.11: Annotated multiple sequence alignment.

In our study, each segment token in each transcription is treated as a different object
(see Figure 6.11), and every column is taken to be a sub-partition to which segment
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tokens are assigned. Both alignments in Figure 6.10 have 12 phones that are put into 5
groups. We ‘tag’ each token sequentially in order to distinguish the different tokens of
a single segment from each other, but note that the way we do this also introduces an
order sensitivity in the measure. Since columns 4 and 5 in two of the multiple sequence
alignments in Figure 6.10 are swapped, we obtain the following two partitions:

GS1 = {1,5,9}
GS2 = {2,6,10}
GS3 = {3,7,11}
GS4 = {4,12}
GS5 = {8}

GA1 = {1,5,9}
GA2 = {2,6,10}
GA3 = {3,7,11}
GA4 = {8}
GA5 = {4,12}

Using the modified Rand index the quality of each column is checked, regardless of
whether the columns are in order. The MRI for the alignments in Figure 6.10 will be 1,
because both alignments group segment tokens in the same way. Even though columns
four and five are swapped, in both classifications phones [j] and [f] are grouped together,
while sound [u] forms a separate group.

The MRI itself only takes into account the quality of each column separately since it
simply checks whether the same elements are together in the candidate alignment as in
the gold-standard alignment. It is therefore insensitive to the ordering of columns. While
it may have seemed counterintuitive linguistically to proceed from an order-insensitive
measure, the comparison of ‘tagged tokens’ described above effectively reintroduces
order sensitivity.

In the next section we describe the results of applying both evaluation methods on
the automatically generated multiple alignments.

6.4.3 Results
After comparing all files of the baseline algorithms and ALPHAMALIG against the gold
standard files according to the order dependent evaluation method and the modified Rand
index, the average score is calculated by summing up all scores and dividing them by
the number of word files (152).

The results are given in Table 6.1 and also include the number of words with per-
fect multi-alignments (i.e. identical to the gold standard). Using ODE, ALPHAMA-
LIG scored 0.932 out of 1.0 with 103 perfectly aligned files. The result for the simple
baseline was 0.710 with 44 perfectly aligned files. As expected, the result for the ad-
vanced baseline was in between these two results—0.869 with 72 files that were com-
pletely identical to the GS files. Using MRI to evaluate the alignments generated we
obtained generally higher scores for all three algorithms, but with the same ordering.
ALPHAMALIG scored 0.982, with 104 perfectly aligned files. The advanced baseline
had a lower score of 0.937 and 74 perfect alignments. The simple baseline performed
worse, scoring 0.848 and having 44 perfectly aligned files.
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Table 6.1: Results of evaluating outputs of the different algorithms against the GS.

ODE ODE perfect columns MRI MRI perfect columns
Simple baseline 0.710 44 0.848 44
Advanced baseline 0.869 72 0.937 74
ALPHAMALIG 0.932 103 0.982 104

The scores of the ODE evaluation method are lower than the MRI scores, which is
due to the first method’s problematic sensitivity to column ordering in the alignments.
It is clear that in both evaluation methods ALPHAMALIG outperforms both baseline
alignments by a wide margin.

It is important to notice that the scores for the simple baseline are reasonably high,
which can be explained by the structure of our data set. The variation of word pronun-
ciations is relatively small, making string alignment easier. However, ALPHAMALIG
obtained much higher scores using both evaluation methods.

Additional qualitative error analysis reveals that the errors of ALPHAMALIG are
mostly caused by the vowel-vowel consonant-consonant alignment restriction. In the
data set there are 21 words that contain metathesis, i.e. switched sounds within the
words. More on metathesis can be found in Section 5.2.1. Since vowel-consonant align-
ments were not allowed in ALPHAMALIG, alignments produced by this algorithm were
different from the gold standard, as illustrated in Figure 6.12. The vowel-consonant re-

v "7 r x
v r "7 x

v "7 r - x
v - r "7 x

Figure 6.12: Two alignments with metathesis. The gold standard on the left hand side,
and the erroneous produced by ALPHAMALIG on the right hand side.

striction is also responsible for wrong alignments in some words where metathesis is not
present, but where the vowel-consonant alignment is still preferred over aligning vowels
and/or consonants with a gap (see for example Figure 6.9).

The other type of error present in the ALPHAMALIG alignments is caused by the
fact that all vowel-vowel and consonant-consonant distances receive the same weight.
In Figure 6.13 the alignment of word b�hme /"bjaxme/ ‘were - 1st pl’ produced by
ALPHAMALIG is wrong because instead of aligning [mj] with [m] and [m] it is wrongly
aligned with two tokens of [x], while a third token of [x] is aligned with [S] instead of
aligning it with [x] and [x]. This is the sort of error which segment-weighted alignments
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such as the one presented in Chapter 5 might be expected to prevent, at least to some
extent.

b "E S u x - m e -
bj "A - - x - m i -
b "e x - mj - - 7 -

Figure 6.13: Alignment error produced by ALPHAMALIG.

6.5 Discussion
In this chapter we have presented a technique to automatically multi-align phonetic tran-
scriptions. We have also introduced two novel techniques that can be used to evaluate
the quality of the multi-aligned strings. Both evaluation methods are based on compar-
ing the automatically induced alignments to gold-standard alignments. The results have
shown that the automatically produced multi-alignments are of a good quality with less
than 2 per cent error on the segment level. However, in order to apply either of these
two methods it is necessary to have a gold standard alignment against which the auto-
matically induced alignments are compared to. We are aware that for many data sets
this is neither available nor easily obtainable. But in cases where it exists, we find these
techniques a useful evaluation tool.

The comparison between our simple baseline to the gold standard alignments has
shown that our data set contains strings with relatively simple structure. Pronunciation
variation in our dialects is relatively small, especially if compared to cross-linguistic
data. The structure of syllables is also relatively simple, very often showing only CV
structure. It would be very important to apply the ALPHAMALIG algorithm to the
data from some other languages in order to obtain further insight into the quality of the
alignments produced.

In the alignment procedure, we have used vowel-vowel consonant-consonant re-
striction as the only ‘linguistic’ knowledge given as an input to the ALPHAMALIG
algorithm. This, on one side, makes the alignment robust and language independent,
but, on the other, introduces some errors in the alignments like those presented in Fig-
ure 6.13. We believe that the quality of the generated alignments could be further im-
proved if some kind of segment weighting were introduced into the alignment proced-
ure, such as the one presented in Chapter 5. Weighting of the segments could also enable
the vowel-vowel consonant-consonant constraint to be completely eliminated from the
aligning. This could lead to better alignments in the cases where vowels and consonants
need to be aligned (see for example Figure 6.12).

The automatic multi-aligning could be improved in many other ways. There are
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also various algorithms used to multi-align sequences in biology. Some of them could
potentially be adopted to work with the strings in linguistics. We hope that our first
experiments with the multiple aligned phonetic transcriptions have shown the usefulness
of this type of approach to string comparison in linguistics and that in future further
experiments in this direction will be conducted.



Chapter 7

Bayesian phylogenetic inference

In this chapter we use automatically multi-aligned phonetic transcriptions to infer the
historic relationships between the language varieties, but also to explore the relationship
between the various phones in the data set. Multi-aligned transcriptions are analyzed us-
ing Bayesian Monte Carlo Markov Chain inference (MCMC), in recent years one of the
most popular and the most powerful methods in molecular phylogeny for inferring the
relationships between species. Bayesian MCMC inference belongs to the so-called char-
acter based methods, together with some other popular methods like maximum parsi-
mony and maximum likelihood methods for phylogenetic inference. In the next section
we briefly introduce molecular phylogenetics based on Page and Holmes (2006), fol-
lowed by an introduction to character-based methods in Section 7.2. Section 7.3 gives
an overview of the application of the methods taken from phylogenetics in linguistics.
We then give introduction to Bayesian phylogenetic inference in Section 7.4. In Sec-
tion 7.5 we present our experiment, followed by the results that we report in Section 7.6.
We conclude the chapter with the discussion presented in Section 7.7.

7.1 Phylogenetic inference
Phylogenetics is a branch of biology that studies the evolutionary relatedness among
various species. The relatedness can be inferred at the molecular level by examining
the differences between DNA or protein sequences of the organisms. DNA sequences
are composed of four nucleotides (A, C, T, and G), while protein sequences comprise 20
different amino acids. Closely related organisms have similar structure of DNA (protein)
sequences, i.e. similar order of the nucleotides (amino acids) in their DNA (protein) se-
quences. More distantly related organisms show more dissimilarity if we compare their
DNA (protein) sequences. Another approach to phylogenetic inference is to compare
various morphological characteristics of the organisms. In this chapter we focus on mo-
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lecular phylogenetics and try to use some of the models developed for the evolution of
DNA and protein sequences on language data.

One of the most important events in the development of molecular evolution was
the discovery of the molecular structure of DNA in 1953 by James Watson and Francis
Crick (Page and Holmes, 2006, 4). The first comparison of amino acid sequences came
in 1955, when Fred Sanger and his colleagues used it to compare protein insuline from
cattle, pigs and sheep.

In order to recover evolutionary information from DNA and protein sequences, it
is necessary to formalize the process of sequence change over time. In 1960s different
models of molecular evolution started being developed. The comparison of sequences
proceeds from their alignment— either pair-wise or multiple sequence alignment de-
pending on the approach. The distances between the aligned sequences can be, in the
simplest case, expressed as the number of the segments in which two sequences differ.
Since there are usually multiple changes at each position within a sequence, distances
inferred in this way are actually underestimating the amount of evolutionary change.
To correct for this, different evolutionary models based on the frequency of the nucle-
otides and the probability of a nucleotide substitution have been developed. The most
simple model, the so-called Jukes-Cantor model, assumes that the four nucleotides have
equal frequencies and that all substitutions are equally likely. The most general model,
general reversible model, allows each possible nucleotide substitution to have its own
probability.

Information from the aligned and compared sequences is turned into an evolutionary
tree that is used to represent genetic relatedness among the species. A tree consists
of nodes connected by branches. There are three types of nodes: terminal nodes that
represent organisms (sequences), internal nodes that represent hypothetical ancestors
and a root node that is the ancestor of all organisms (Figure 7.1).

root
node

terminal
node

internal
node

terminal
node

terminal
node

Figure 7.1: An example of a phylogenetic tree.

There are numerous methods that are used to convert aligned sequences into trees. Based
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on how the data is treated they can be divided into distance-based methods and character-
based methods. In distance-based methods, the distance between each two strings is
represented as a single number and stored into a matrix. This matrix is used by various
tree building methods to construct an evolutionary tree. This kind of approach is used in
Chapter 3 of this thesis to infer the relatedness among the dialect varieties in Bulgaria.
Character-based methods analyze each position in the aligned sequences separately. In
the next section we describe character-based methods in more detail.

7.2 Character-based methods
Character-based methods (CBM) comprise various methods used in phylogenetics to
study the evolutionary relatedness among species. In CBM each species is described in
the terms of the states of certain characters. The term ‘character’ is used to refer to a
different position in a DNA or a protein sequence. For every species, a character is in one
of the states inherent for that character. Some states only vary between present/absent
states, while the so-called multi-state characters can have multiple states. CBM proceed
from the simultaneously aligned sequences of various species and perform the analysis
based on each of the characters separately. A scheme of the aligned sequences for 3
species and 5 characters would look like this:

character1 character2 character3 character4 character5
species1 state1 state1 state1 state1 state1
species2 state2 state1 state1 state2 state1
species3 state2 state2 state1 state3 state2

Figure 7.2: A scheme of the aligned sequences for 3 species and 5 characters.

Unlike the distance methods described in Chapter 3 that aggregate all the differences
between each two strings into a single distance, character-based methods infer related-
ness between the species separately on each character and later combine those analyses
into a single tree. In that way the information provided by each character is retained and
information loss that results from converting the sequence data into distance scores is
avoided (Penny, 1982). Two well known CBM are maximum parsimony and maximum
likelihood.

Parsimony methods were among the first methods to be used to infer phylogenies.
They are based on the idea of the ‘minimum evolution’. While reconstructing the phylo-
genetic tree, the algorithm seeks the tree with the smallest number of events, i.e. for the
smallest tree that would explain the data. This method has often been criticized because
it does not rely on any model of evolution, but seeks for the most simple explanation of
the data. The other problem related to this approach is the so-called long branch attrac-
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tion phenomenon where species that evolve rapidly are grouped together in the phylo-
genetic analysis regardless of their true genetic relationship (Page and Holmes, 2006).

Unlike parsimony, probabilistic methods for phylogenetic inference, like maximum
likelihood and Bayesian inference, are based on a specific model of evolution. The max-
imum likelihood method, as the name suggests, is based on the concept of likelihood,
the probability of observing the data given a particular model or hypothesis. Given some
data D and a hypothesis H the likelihood L can be expressed as:

L = P(D|H) (7.1)

In phylogenetics, D is a set of aligned sequences, and H is a phylogenetic tree. The
tree that makes our data the most probable is the maximum likelihood tree. Detailed
explanation on the parsimony and likelihood methods in phylogenetics can be found
in Felsenstein (2004). In our experiments we have used Bayesian inference, in recent
years one of the most popular character-based methods for inferring phylogenies. In
Section 7.4 we present it in more detail. Before that, we will look into the usage of
phylogenetic methods in linguistics.

7.3 Phylogenetic inference in linguistics
In the last decade there has been an increasing interest in the application of the meth-
ods taken from phylogenetics to the language data. This line of research starts from the
premise that there is a genuine similarity between the evolution of species and the evolu-
tion of languages. Although there are some important differences in their evolution, the
mechanisms of the change of species and languages are the same: they split into new
species/languages, mutate, borrow material from neighboring species/languages, and in-
novations in both languages and species appear independently in unrelated elements.
They both document evolutionary history, species in molecules and various morpholo-
gical characteristics, languages in phonetics/phonology, morphology, syntax. Evolution
and relatedness of both the species and languages can be described using family trees.

Methods taken from computational phylogenetics have been applied to lexical (Gray
and Jordan, 2000; Gray and Atkinson, 2003) and phonetic data (Warnow, 1997; Nakhleh,
Ringe, and Warnow, 2005) to study evolutionary relationships between languages or dia-
lects (Hamed, 2005; Hamed and Wang, 2006; McMahon et al., 2007). They have been
used to address the problems of the origins of Indo-European (Gray and Jordan, 2000)
and Bantu languages (Holden, 2002; Holden and Gray, 2006). They were also applied to
the problems of the subgrouping of Indo-European (Ringe, Warnow, and Taylor, 2002;
Nakhleh, Ringe, and Warnow, 2005), as well as to test various hypotheses about hu-
man prehistory (Dunn et al., 2005; Greenhill and Gray, 2005; Gray, Drummond, and
Greenhill, 2009). As pointed out in Greenhill and Gray (2009), computational phylo-
genetic methods are seen as ‘a powerful supplement to the comparative method used
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in historical linguistics’. They are not a replacement of the traditional well-established
methods in linguistics, but help in resolving some rather old questions on the history of
languages. Although developed to work with different types of data, the use of the new
techniques developed for phylogenetic inference opens new perspectives in the field of
historical linguistics and potentially in dialectology. However, it does not come without
its problems and concerns. Although they share the same mechanisms of change, spe-
cies and languages differ in many ways. Languages change much faster than species.
Borrowing between neighboring languages, regardless of their genetic relatedness, is
much more common than between species. The two most important preconditions for
analyzing languages using methods from phylogenetics are the adequate linguistic data
coding and the choice of an appropriate model of language change. If the data employed
in the analyses is not well analyzed and coded, it will lead to wrong results. The same
holds for the wrong choice of the evolutionary models. All models implemented in the
computational phylogenetic software are naturally designed to cover various aspects of
the evolution of species. Most of them cannot be applied to the linguistic data since the
assumptions behind those models violate the known facts of the linguistic change. But
those that fit linguistic data well are a good start for the exploration of the possibilities
of using the phylogenetic methods on the language data, as they enable researchers to
analyze larger bodies of data while systematically controlling many aspects of analysis.

In this chapter we apply Bayesian methods used to infer phylogenies to the Bulgarian
phonetic data. It is, to our knowledge, the first time that methods borrowed from phylo-
genetics are directly applied to phonetic transcriptions of words. We first present our
coding of the dialect pronunciation data. On one hand, the data had to be simplified so
that we would be able to use software developed for biological data. This simplification
led to an information loss, since we were not able to use all the phones in our data to
infer relatedness between the dialect varieties. On the other hand, the coding was lin-
guistically informed so that we could preserve enough relevant information to allow us
to address certain issues related to language change. We try to find a good compromise
between the two. We then present several models of evolution that we find appropriate
for our dialect data and apply them to the previously coded data. As a result we obtain
dialect divisions based on an approach that is historically motivated and compare them to
the divisions obtained using methods that focus on geographic organization of Bulgarian
dialects. We also test various hypotheses of vowel changes.

In the next section we give an introduction to Bayesian inference of phylogeny, and
after that focus on the experiment.

7.4 Bayesian inference of phylogeny
In probability theory, Bayes theorem dates back to the 18th century. It gives a mathem-
atical representation of how a conditional probability of event A given event B is related
to the conditional probability of B given A:
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P(A|B) =
P(B|A)P(A)

P(B)
(7.2)

where

P(A) is the prior probability of A
P(B) is the prior probability of B
P(A|B) is the conditional probability of A given B, also called posterior probability
P(B|A) is the conditional probability of B given A, also called likelihood

Bayesian inference of phylogeny, based on Bayes theorem, was independently proposed
by several authors in 1996 (Rannala and Yang, 1996; Mau, 1996; Li, 1996). Just as the
maximum likelihood method, it is based on the likelihood function, i.e. the probability
of observing the data given a tree. In addition to the maximum likelihood method, it
includes the prior probability of a phylogeny, i.e. tree, in the testing of a hypothesis
(Huelsenbeck et al., 2002). In phylogenetic inference, Bayes theorem (Equation 7.2)
can be expressed as:

P(τ|D) =
P(D|τ)P(τ)

P(D)
(7.3)

where

P(τ) is the prior probability of a tree
P(τ|D) is the posterior probability of a tree
P(D|τ) is the likelihood of a tree
P(D) is the probability of data, which is an aligned sequence of characters

Unlike maximum likelihood that searches for the most likely tree, Bayesian inference of
phylogeny is based upon finding a large number of trees with a high posterior probability.
The number of all possible trees B(s) for s species depends on the number of species (s).
For rooted bifurcating trees

B(s) =
(2s−3)!

2s−2(s−2)!
(7.4)

B(2) = 1
B(3) = 3
B(4) = 15
B(5) = 105
B(6) = 945
B(7) = 10395
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B(8) = 135135
B(9) = 2027025
B(10) = 34459420
B(20) = 8.200795 × 1021

B(50) = 2.752921 × 1076

while for unrooted bifurcating trees

B(s) =
(2s−5)!

2s−3(s−3)!
(7.5)

B(2) = 1
B(3) = 1
B(4) = 3
B(5) = 15
B(6) = 105
B(7) = 945
B(8) = 10395
B(9) = 135135
B(10) = 2027025
B(20) = 2.22 × 1020

B(50) = 2.84 × 1074

It is clear that for both rooted and unrooted trees the number of trees grows very fast as
the number of species increases. It should be noted that term ‘tree’ refers to the way in
which terminal nodes are grouped, regardless of the assignments to the internal nodes.
For example, for three species (or in our case villages) we can have three different rooted
trees (tree topologies). In Figure 7.3 we present three possible trees for villages Lobosh,
Mihaltsi and Slaveino.

As in other character-based methods, all calculations in Bayesian inference are based
on each of the sites, i.e. positions in the aligned sequences separately.1 To calculate the
posterior probability of a tree (tree topology), we need a prior probability of a tree (tree
topology) and a likelihood of a tree which is based on the observed data in each of the
positions in the alignments separately. The posterior probability of a phylogenetic tree
τi for the ith position can be calculated using the following formula:

P(τi|D) =
P(τi)P(D|τi)

∑
B(s)
j=1 P(D|τ j)P(τ j)

(7.6)

1In molecular biology term ‘site’ is used to refer to a position in a DNA or protein sequence. In dialecto-
metry, and through out this thesis, we use term ‘site’ to refer to a location where the data comes from. In order
to avoid misunderstanding, in this chapter we will refer to a specific position in a sequence as a ‘position’ or
simply try to give a descriptive explanation.
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root
node

Slaveino

internal
node

MihaltsiLobosh

root
node

Mihaltsi

internal
node

SlaveinoLobosh

root
node

Lobosh

internal
node

SlaveinoMihaltsi

Figure 7.3: The 3 possible trees for 3 villages.

P(τi) is a prior probability of the ith tree. The use of prior probability sets Bayesian
inference apart from the maximum likelihood method. This is considered the strongest
and at the same time the weakest point of the Bayesian inference. If we have reliable
information on the priors, it can help us get better posterior estimates, and it can be very
powerful tool. But, in reality it is very hard to find realistic estimates for the priors. In the
case of phylogenetic inference, usually all trees are considered equally probable and they
are assigned the so-called flat priors where P(τi) = 1

|B(s)| . In this case, Bayes inference
and maximum likelihood do not differ in the trees they prefer. However, final result in
a maximum likelihood approach is a single tree, while Bayesian approach provides the
whole distribution of trees. This enables us to sample a large number of high probability
trees from the posterior.

P(D|τi) is the likelihood of the ith tree, i.e. the probability of observing the data
at the ith site. To be able to calculate the likelihoods we need the phylogenetic model
that consists of a tree τi, branch lengths on the tree vi and the substitution model θ . To
illustrate how the likelihoods are calculated we use aligned transcriptions of the word
beli /"beli/ ‘white - pl.’ for three villages as our observed data (Figure 7.4). In this
example the states of the characters are the phones themselves. In our example we will
focus on the second position in our aligned data (character2). In Figure 7.5 we present
one of the trees for the second position in the alignment given in Figure 7.4.
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character1 character2 character3 character4
Lobosh: b "e l i
Mihaltsi: bj "e l i
Slaveino: b "E l i

Figure 7.4: A scheme of the aligned transcriptions for word ‘white’ for 3 villages.

x

"E

v4y

"e
v2

"e
v1

v3

Figure 7.5: An example of a phylogenetic tree for 3 species for the second character.

There are three terminal nodes "e, "e, "E, one internal (y) and a root node (x). The
branches are labeled from v1 to v4. An internal node and a root node can have any state
inherent for the second character. In our case, it could be any of the 43 tokens that we
use for various vowels in our data set, since vowels can align only with other vowels
and consonants only with the consonants. For the two nodes we get 43× 43 = 1849
possible combinations for state assignments. In Figure 7.6 we present one of the possible
assignments of the states for the nodes x and y. We note that there is only one change
of states on the tree in Figure 7.6: "e→ "E. We mark it with a dashed horizontal line on
branch v4. Branch lengths in a tree represent the number of changes that have occurred in
a certain branch. For example, in Figure 7.6 there is one change on branch v4, meaning
that this branch has length 1.

To be able to calculate the likelihood of the ith tree P(D|τi), apart from a tree τi
with branch lengths vi, we need a substitution model θ . The substitution model θ is a
model of how one state changes into the other, i.e. a model that specifies the probability
of one state changing into the other. θ operates both on the leaf nodes such as ["e] and
["E], but also on internal nodes such as x and y. In our example, we would need to
know the probability of one phone changing into any other phone present in the aligned
sequences. In the simplest model, a character can go from any state into any other state.
The probability of going from one into the other state is equal for all pairs of states. This
is neither very realistic for most of the data in biology, nor for the language data. We
know that phones are not equally likely to change into all other phones, but prefer some
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"e
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v4"e

"e
v2

"e
v1

v3

Figure 7.6: An example of a possible state assignments for the internal and a root node.

changes. More complex phylogenetic models allow different rates of change between
the states, which suits our data better. In more complex substitution models it is also
possible to specify the directionality of a change. The substitutions may have different
values for "e→ "E and for "E→ "e. Another parameter that we can add to the phylogenetic
model is the ‘site heterogeneity rate’. It allows us to specify if different characters, i.e.
positions, evolve at the same or different rate. In our linguistic example, it is more likely
that some characters evolve faster since changes are more frequent at the beginning and
at the end of words, than in the middle. In phylogenetic models this is set by having a
distribution of character rates instead of a uniform rate. It is usually done by estimating
a so-called gamma distribution of rate changes from the data (Yang, 1994).

The likelihood of a tree P(D|τi) is calculated by integrating over all possible com-
binations of branch lengths (vi) and substitution model parameters (Huelsenbeck et
al., 2002):

P(D|τi) =
∫

vi,θ
P(D|τi,vi,θ)P(vi,θ)dvidθ (7.7)

where P(vi,θ) is the prior probability density of the branch lengths and substitution
model parameters, and dθ is an infinitesimal interval. The likelihood P(D|τi,vi,θ) is
normally calculated under a Markov model of character evolution—the probability of
every node is dependent only on the preceding node and the branch length between these
two nodes. This assumes that all positions and all lineages (villages in our case) evolve
independently. The likelihood of the tree in Figure 7.6 is the product of the probabilities
of every node in the tree:

L = P("e)P("e→ "e|v3)P("e→ "e|v1)P("e→ "e|v2)P("e→ "E|v4)

Probability of one state changing into the other, "e→ "e or "e→ "E in our example, given
a certain branch length (v1-v4), is defined by the substitution model θ . The likelihood
of a tree τi for the position i is the product of all possible ancestral states combinations
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for that position (combinations of all possible assignments for the internal node y a root
node x given a certain branch length vi).

We now go back to Formula 7.6 (we repeat it for convenience) used to calculate the
posterior probability of a phylogenetic tree τi :

P(τi|D) =
P(τi)P(D|τi)

∑
B(s)
j=1 P(D|τ j)P(τ j)

where P(τi) is a prior probability of the ith tree, and P(D|τi) the likelihood of the ith
tree. The remaining element is a denominator ∑

B(s)
j=1 P(D|τ j)P(τ j) used as a normalizing

constant. It denotes marginal probability of the data, obtained by summing the probab-
ility of the data under the assumption of all the different trees. B(s) is a number of all
possible trees for s species. For both rooted and unrooted trees the number of trees grows
very fast as the number of species increases. It is computationally extremely expensive
to calculate the denominator in Equation 7.4 (repeated in 7.8) and in the general case not
feasible at all.

B(s)

∑
j=1

P(D|τ j)P(τ j) (7.8)

We need to do calculations for all possible trees and for each tree to integrate over all
possible combinations of branch lengths and parameter values of the substitution model.
In order to sample from a posterior probability distribution on trees, Bayesian inference
in phylogeny uses Markov Chain Monte Carlo (MCMC) modeling. MCMC involves
three steps: a) pick a tree randomly or one that is a good description of the data; b)
propose a new tree by stochastically perturbing the current tree; and c) accept or reject
new tree with a probability described by Metropolis-Hastings algorithm (Metropolis et
al., 1953; Hastings, 1970). The number of generations that the MCMC algorithm will
execute is set by the user. It depends on the size of the data set and the complexity of
the model. The chain length should be run enough to obtain a good approximation of
the posterior probabilities of trees and the parameters. As a result of Bayesian infer-
ence we do not get a single tree, as in other character-based methods, but a sample of
trees chosen according to their posterior probability. Information from sample trees can
be summarized in a single tree using different methods, such as the ‘maximum clade
credibility tree’, ‘majority rule consensus tree’ or simply a single tree that seems most
probable. A tree where the information is summarized, contains the information on the
posterior probabilities of the nodes and particular clades, i.e. branches in a phylogenetic
tree.

In the past decade Bayesian MCMC inference has become a very popular method
in molecular phylogenetics. The possibility of including priors in the analysis makes it
a potentially very powerful technique that sets it apart from similar statistical methods.
Thanks to Monte Carlo sampling, it is also faster than the maximum likelihood method,
which requires heavy computation, an issue with both of these methods (Archibald,



114 CHAPTER 7. BAYESIAN PHYLOGENETIC INFERENCE

Mort, and Crawford, 2003). Recently there have been several attempts to apply this
method to language data (Gray and Atkinson, 2003; Pagel, Atkinson, and Meade, 2007;
Greenhill and Gray, 2009). However, they were used either on cognate sets or on lexical
data from various languages. The present chapter is, to our knowledge, the first attempt
to apply it directly on dialect phonetic data.

In this section we have tried to give a general overview of how Bayesian phylogenetic
method works. For more technical and detailed explanation on Bayesian inference we
refer an interested reader to Huelsenbeck et al. (2001) and Huelsenbeck et al. (2002). A
very good, less technical, description of Bayesian inference can be found in Greenhill
and Gray (2009).

7.5 Experiment
In the research described in this section, we apply Bayesian inference to the dialect phon-
etic data in order to discover the relationships between various sites, but also between
the phones found in our data set.2 All calculations related to the Bayesian MCMC in-
ference were done using the BEAST software (Drummond and Rambaut, 2007). The
experiment was set as follows.

• We proceed by automatically multi-aligning 152 word transcriptions in the data
set. We use the ALPHAMALIG algorithm described in Section 6.2. The al-
gorithm is given a constraint that vowels can be aligned only with vowels and
consonants only with consonants. The evaluation of the multiple sequence align-
ments produced by the ALPHAMALIG algorithm, when this constraint is used,
has shown that they correspond well with the gold standard alignments and can
be used in our experiment for further analyses. For example, in Figure 7.7 we
present multi-aligned pronunciations for words veqer /"ve

>
tSer/ ‘evening’, d�no

/"d7no/ ‘bottom’ and lesno /"lesno/ ‘easily’ for five villages.

• If there are multiple pronunciation of a certain word in some villages, we randomly
chose only one pronunciation per site in order to conform to the format that can
be handled by the software used for Bayesian inference.

• After multi-aligning transcriptions for every word separately, we merge all aligned
transcriptions into a single set of multi-aligned strings, where each string contains
transcriptions of all 152 pronunciations collected at a certain village. Bayesian
MCMC inference infers the relationships between language varieties by processing
multiple alignments position by position. This allows us to merge the transcrip-
tions of all words into a single set of multi-aligned strings, since our calculations

2This experiment was conducted during the research visit to the University of Auckland. We would like to
thank Prof. Russell Gray and Prof. Alexei Drummond for their help with setting this experiment and using the
BEAST software.
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Aldomirovtsi: v "e
>
tS e r

Asparuhovo-Lom: v "e
>
tS e r

Asparuhovo-Prov : vj "e
>
tS @ r

Babyak: v "e
>
tS e r

Bachkovo: v "e
>
ts e r

Aldomirovtsi: d - n "o
Asparuhovo-Lom: d - n "o
Asparuhovo-Prov: d "7 n u

Babyak: d - n "o
Bachkovo: d "A n u

Aldomirovtsi: l "7 s n o
Asparuhovo-Lom: l "e s n o
Asparuhovo-Prov: lj "e s n u

Babyak: ? ? ? ? ?
Bachkovo: lj "e s n u

Figure 7.7: Multiple alignments for three words and five villages.

do not take into account any information related to the word level (e.g. lexical
identity, lexical semantics, specific context in which certain phone occurs). In
Figure 7.8 all pronunciations of the three words presented in step 1 are merged
into a single set of multi-aligned strings.

Aldomirovtsi: v "e
>
tS e r d - n "o l "7 s n o

Asparuhovo-Lom: v "e
>
tS e r d - n "o l "e s n o

Asparuhovo-Prov: vj "e
>
tS @ r d "7 n u lj "e s n u

Babyak: v "e
>
tS e r d - n "o ? ? ? ? ?

Bachkovo: v "e
>
ts e r d "A n u lj "e s n u

Figure 7.8: Pronunciation of different words merged into a single string.

We do not use any information on where one words begins or ends. Merging all
multi-aligned transcriptions in our data set resulted in 620 columns that contain
either consonants or vowels. For the missing words in our data set we use symbol
‘?’ to mark each of the positions where the corresponding phones would have been
placed if the pronunciation for that village had been available. For the phones that
were deleted in a certain pronunciation, we use symbol ‘-’ in order to keep these
two types of missing tokens separate.

• It is evident that these multi-aligned sequences are very different from the se-
quences used in biology. Our linguistic alignment contains a large number of
sites, 197, and relatively short strings comprising 620 positions in total. At the
same time alignments in biology would normally contain longer sequences for a
much smaller number of species. The other difference is in the number of unique
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tokens: for protein sequences there are 20 different proteins, while in our lin-
guistic alignments the number of unique phonetic segments was 97: 55 for con-
sonants and 43 for vowels. Having a large number of different symbols in some
columns on one hand, and such a small number of columns on the other, makes it
impossible for the algorithm to reach convergence and obtain the desired analyses
correctly. For that reason the data set was reduced to only the columns that contain
vowels. As we have seen in Chapter 5 vowel changes are more frequent and more
diverse. Consonant changes occur much less frequently and in most of the cases
involve palatalization. We argue that on dialect level, most of the information on
the language change and variation can be inferred from the processes related to
vowel changes. Since, for technical reasons, we are forced to reduce the number
of analyzed phones, we chose to base our analyses on the vowel changes only.
From the merged alignments we removed all columns that contain consonants,
making the total number of columns 303. After removing all the consonants, our
example presented in Figure 7.8 would look like this:

Aldomirovtsi: "e e - "o "7 o
Asparuhovo-Lom: "e e - "o "e o
Asparuhovo-Prov: "e @ "7 u "e u

Babyak: "e e - "o ? ?
Bachkovo: "e e "A u "e u

Figure 7.9: Only columns with vowels are kept in the merged multiple string alignment.

• After reducing our data set only to vowels, there were still 43 different phonetic
segment symbols, including various diacritics and suprasegmentals. It is still a
much larger number of segments that any software made to process biological data
is able to handle. In order to get smaller number of symbols, we have removed all
diacritics and suprasegmentals and reduced our set of symbols to 16. In Table 7.1
we list the reduced set of symbols on the left hand side, and the full, unreduced,
set on the right hand side.

• Taking into consideration the short length of strings (303 positions), 16 different
symbols was still too large a number to be processed successfully. In the final
reduction step, all 16 symbols were put into one of the 8 groups based on their
position in the vowel chart (Figure 7.10). Finally, the data set is transformed into
the format shown in the example in Figure 7.11.
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Table 7.1: Vowel inventory after removing all diacritics and suprasegmentals.

reduced set full set
A A "A A: "A:
e e "e e: "e:
E E "E "E:
7 7 "7 7: "7:
6 "6
I I "I "I:
o o "o o: "o:
u u "u u: "u:
U U "U
@ @ "@
a a "a "a:
i i "i "i:
O "O
2 "2
1 1 "1
y y "y

Representation of the pronunciation dialect data with only 8 symbols leads to informa-
tion loss. We have completely discarded consonant changes, and, additionally, we have
merged all 43 vowels into only 8 groups. However, we believe that this type of data
representation still contains enough information for the exploration of dialect variation
and change. As mentioned earlier, consonant changes in our data set are less frequent
and less various if compared to vowel changes. For that reason, we choose to focus on
vowels. We group all vowels in our data set based on their articulatory features, so that
each of them can be defined based on the front/back and close/open opposition. For ex-
ample, we can describe group 6 as a group comprising close front vowels. By grouping
vowels in such a way, we hope to be able to discover some of the general principles of
substantial vowel changes within the vowel chart.

After putting our data into the format described, our next step was to choose suitable
models of sound changes. We tested three models of evolution on our data set and they
will be explained in more detail in the next subsection.

7.5.1 Different models of sound change
All models implemented in the BEAST software that we have used in our experiment for
Bayesian inference were originally developed to analyze molecular sequences. Among
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Figure 7.10: All vowels in the data set were placed into one of the 8 groups.

Aldomirovtsi:: 3 3 - 5 5 5
Asparuhovo-Lom: 3 3 - 5 3 5
Asparuhovo-Prov: 3 4 5 8 3 8

Babyak: 3 3 - 5 ? ?
Bachkovo: 3 3 2 8 3 8

Figure 7.11: Final format of our data set used for Bayesian inference analysis.

various possibilities, we have chosen to test three settings that can be applied to our
phonetic data. In each of the settings we specify the following categories: a) a substitu-
tion model (s); b) a position heterogeneity model (h) and c) a molecular clock (m).

Substitution models for biological data describe the process of one nucleotide or
amino acid being replaced by another. In our case, they describe the process of one
vowel, or more precisely one of our 8 groups, being substituted for another. In Fig-
ure 7.12, we repeat the alignment presented in Figure 7.11 but mark it with ‘s’, ‘h’ and
‘m’ to show which model applies to which part of the alignments. In our example sub-
stitution model, marked with ‘s’, calculates the probability of group 5 being substituted
for group 8, or the other way around. In this model we were not able to specify the
directionality of the change. As a result we get only one probability of change for each
pair of phones.

The site (position) heterogeneity model allows us to specify whether the rate of vari-
ation in different position, marked with ‘h1’, ‘h2’, ..., ‘h6’ in our example in Figure 7.12,
is the same or whether it varies from column to column. For our data it would mean that
we can specify whether vowel changes occur more frequently in some positions in words
than in others. We do not specify in which positions the substitutions are more or less
frequent, but some settings allow different columns to vary at different rates.
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h(1) h(2) h(3) h(4) h(5) h(6)
m(1) Aldomirovtsi: 3 ["e] 3 [e] - 5 ["o] 5 ["7] 5 [o]
m(2) Asparuhovo-Lom: 3 ["e] 3 [e] - 5 ["o] 3 ["e] 5 [o]
m(3) Asparuhovo-Prov: 3 ["e] 4 [e] 5 ["7] 8 [u] 3 ["e] 8 [u]
m(4) Babyak: 3 ["e] 3 [e] - 5 ["o] ? ?

ls
m(5) Bachkovo: 3 ["e] 3 [e] 2 ["A] 8 [u] 3 ["e] 8 [u]

Figure 7.12: Three models of evolution apply to the parts of the alignments marked
with ‘s’ (substitution model), ‘h’ (rate heterogeneity model), and ‘m’ (molecular clock
model).

For all three settings we set the molecular clock option to the strict molecular clock.
This setting specifies that different branches in a tree have the same rate of variation, i.e.
that different species, in our case language varieties marked with ‘m1’, ‘m2’, ..., ‘m5’,
change constantly over time. This is the basic, and the simplest molecular clock model
implemented in BEAST. Since in this experiment our data is rather limited, we tried
to build simple models and get reliable estimates of our parameters. In the future, we
would certainly like to test the relaxed molecular clock options that assume independent
rates on different branches.

Our Setting 1 is the simplest one, with the following values for the two models:

• Substitution model: any state, i.e. phone, is equally likely to change into any other
state. For example, vowel [a] (group 1) can change into a vowel from any other
group and the probability of, for example, [a] changing into [@] is the same as [a]
changing into [u].

• Site (position) heterogeneity model was set to ‘None’, meaning that all sounds in
all positions in words evolve at the same rate.

In Setting 2 we have the following options:

• Substitution model: General Time Reversible (GTR) model. Under a GTR model
any state, i.e. phone, can change into any other, but the probability of change
differs depending on the phones involved. The rate of change is not set in advance,
but calculated from the data. In this setting the probability of, for example, [a]
changing into [@] is not the same as the probability of [a] changing into [u]. This
allows us to calculate which phone changes are more likely than some others.

• Site (position) heterogeneity model was set to ‘None’. The same as in the Setting
1, i.e. all sounds in all positions in words are assumed to evolve at the same rate.
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Setting 3 comprises the following options:

• Substitution model: General Time Reversible (GTR) model. The same as in the
Setting 2, any phone can change into any other. The probability of one phone
changing into the other may vary depending on the phones involved. The direc-
tionality of the change is not specified.

• Site heterogeneity model was set to Gamma. This setting allows various substi-
tution rates between different positions, i.e. it allows for the phones in different
positions within the words to evolve differently. Unlike in the previous two set-
tings, we assume that, for example, position h(1) might evolve slower or faster
than position h(6).

The length of the chain, i.e. the number of generations that the MCMC algorithm ran for,
was 4×107 for all three settings. The trees were sampled after every 8000 generations,
which gave us a final sample of 5000 trees. This number of generations was sufficient in
all three runs to get a representative sample of trees.

Some assumptions made by the various models might seem more or less plausible
depending on one’s linguistic intuition. By using rigorous quantitative methods, we
want to test the validity of different hypotheses and try to answer some questions about
language evolution and change in a more exact manner. In the next section we present
the results for each of the settings tested.

7.6 Results
We use the TreeAnnotator program from the BEAST package to summarize the inform-
ation from the sample trees produced by BEAST into a single tree. We select the option
‘maximum clade probability tree’ in order to get a tree where the node height3 and rate
statistics are summarized on the tree in the posterior sample that has the maximum sum
of posterior probabilities on its n−2 internal nodes.

In Figure 7.13 we present the dendrogram where the trees produced using Setting
1 are summarized. On all dendrograms in this section we present the posterior prob-
abilities of nodes. Due to the large number of sites in our data set, node labels were
not readable. We have removed them from all dendrograms. In the dendrogram in Fig-
ure 7.13 we can see that on the highest level the split at the root node has maximum
posterior probability 1. We mark two-way split with red and blue, where red represents
eastern varieties and blue western and southern. In order to see the geographical dis-
tribution of the two groups of sites, we present this two-way split of Bulgarian dialect
varieties on a map (see Figure 7.15). Two groups of sites are marked with red dots (east-
ern varieties) and blue dots (western and southern varieties). The two-way division of

3The height of a node is the length of the longest downward path from that node to a leaf.
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sites is geographically coherent and divides the Bulgarian language area in a such way
that eastern varieties, in traditional literature referred to as Balkan and Moesian dialects,
and on our map marked with red symbol are put in one group, while western and Rupian
dialects, marked with blue, are put in an other group. Unlike in the aggregate analyses
presented in Chapter 3, Rupian dialects are grouped together with the western, rather
than with the eastern varieties. One step lower in the dendrogram, there is a split with
posterior probability of 0.898. According to the analysis performed, we can assume this
split with a high confidence. It divides southern varieties from the western. On dendro-
gram in Figure 7.14 we mark the southern varieties with green and western with blue.
Classification of the western varieties into a single group is supported with maximum
posterior probability, while the grouping of southern varieties is much less certain since
the node that is on the top of this group has posterior probability of 0.531. Although ac-
cording to the posterior probability it is not highly certain that these sites form a group,
they largely occupy a geographically coherent area in the south of the country. Some of
the varieties placed in this group are found along the yat border. We present the three-
way classification produced using Setting 1 in Figure 7.16. Based on the branch lengths
in the dendrogram, groups presented on this map form three distinct varieties. Since in
Setting 1 the probability of any state, i.e. any phone changing into any other state was
set to be equal we could not get any interesting information on vowel changes from this
setting.

In Figure 7.17 we present the tree that summarizes the trees resulting from the
Bayesian inference performed once we adopted the General Time Reversible (GTR)
model. The two-way split at the root node that has maximum posterior probability,
shows a split of the sites into western and eastern. The southern group of varieties is
classified with the eastern dialects (Figure 7.17). Just as with the previous dendrogram,
we show this split on the map of Bulgaria (Figure 7.19). This division corresponds well
with the division of the sites based on the aggregate analysis (Chapter 3) since the split
follows approximately the yat line and groups all the sites into eastern and western. Un-
like in the Setting 1, varieties in the south are grouped with the eastern dialects (see map
in Figure 7.20). However, the support for this grouping is relatively low (0.505) and can-
not be taken with any great confidence. Groupings of both southern and eastern varieties
have low posterior probabilities, namely 0.134 and 0.526. The former has little basis in
the model. Unlike the eastern division of the sites, the western varieties are grouped un-
der the node with the high posterior probability and can be taken with great confidence
to form a coherent group. Apart from reconstructing phylogenies, i.e. grouping of the
varieties, Setting 2 also allows us to investigate how probable certain sound changes are.
In Setting 2, we used a General Time Reversible Model to model sound changes. As a
reminder, we recall that any group of sounds was allowed to change into any other group
but the changes did not receive equal probability as in the Setting 1. One of the outputs
of the Bayesian inference analysis were the probabilities of change between each two
groups of sounds calculated from the data.
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Figure 7.15: Distribution of the two group of sites using a free substitution model and
no positional heterogeneity model (Setting 1).

Figure 7.16: Distribution of the three group of sites (Setting 1).
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Figure 7.19: Distribution of the two group of sites using a GTR substitution model and
no positional heterogeneity (Setting 2).

Figure 7.20: Distribution of the three group of sites (Setting 2).
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Figure 7.21: The most probable vowel transitions, marked with blue, under the GTR
model no positional heterogeneity. Groups (1) and (7) are put in dashed boxes to indicate
that our estimations concerning these groups are unreliable.
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Figure 7.22: The least probable vowel transitions, marked with red, under the GTR
model with no positional heterogeneity.
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Figure 7.25: Distribution of the two group of sites using a GTR model with gamma
positional heterogeneity (Setting 3).

The results can be seen in Figure 7.21, where we present sound changes with the
highest probabilities (connected with blue lines) and in Figure 7.22 where we show
changes that have the lowest probability (connected with red lines). For clarity, we put
both numbers and sounds in the charts. Since all our sounds in the data are put into one
of the eight groups, we can naturally talk only about how probable the change of a vowel
in one group into a vowel in another is. In Figures 7.21, 7.22, 7.27 and 7.28 groups 1
and 7, which stand for [a] and [1] sounds are put in dashed squares since we could not
get any reliable estimations for them. The reason for this is their very low frequency in
the data set. The sound [a] appears only 147 times in our multiple alignment, while the
sound [1] is present only 40 times. Vowels from the third group [E, e], which is the most
frequent group in the data set, appear 14663 times. As marked with the blue lines in the
vowel chart in Figure 7.21, changes that received the highest probability are between the
following groups: 5 [2, O, 7, o] and 8 [U, u], 3 [E, e] and 6 [I, y, i], 4 [@] and 6 [I, y, i],
and 2 [A, 6] and 4 [@]. We can see in the chart that those changes involve moving only
one step within the vowel chart. Unfortunately it was not possible to infer the directions
of the changes and see whether, for example, it is more probable that vowels from group
3 would change into vowels from group 6 (3 → 6) or the other way around (6 → 3).
However, our findings correspond well with the findings reported in the literature on the
traditional analyses of the vowel reduction in Bulgarian (Wood and Pettersson, 1988;
Barnes, 2006). According to them the most common vowel change in Bulgarian dialects
is rise of unstressed midvowels [e] and [o] to neutralize with the high vowels [i] and [u].
The low unstressed vowel [a] rises to neutralize with [@].
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Figure 7.26: Distribution of the three group of sites (Setting 3).

In the chart in Figure 7.22 we mark the changes between the groups with the lowest
probabilities using red lines: 2 [A, 6] and 8 [U, u], 3 [E, e] and 8 [U, u], and 5 [2, O, 7, o]
and 6 [I, y, i]. In contrast to the alternations with the highest probabilities, they do not
involve changes between the adjacent groups but rather between the groups separated by
at least one group within the vowel chart.

In the Setting 3 under the General Time Reversible model, just as in the Setting 2,
every state was allowed to change into any other state with the transition probabilities
being inferred from the data. It was again not possible to calculate the directionality
of the changes. The difference between the two settings is that in the Setting 3 the
positions in the alignments were allowed to vary at different rates. From the dendrogram
in Figure 7.23 we also extracted the two-way division of the sites and represented it on
the map in Figure 7.25. In Figure 7.24 we mark three groups extracted and show that
division in Figure 7.26. Both the two-way and the three-way divisions of the sites are
almost identical to the divisions for Setting 2: the first one goes along the yat line, while
the second additionally distinguishes the southern area as separate. Division into western
and eastern dialects gets the highest posterior probability, while other major splits were
supported with much smaller posterior probabilities.

In Figure 7.27 and Figure 7.28 we present vowel charts with the changes that are
the most and the least probable. The sound changes with the highest probabilities are
those between the groups 5 [2, O, 7, o] and 8 [U, u], 3 [E, e] and 6 [I, y, i], and 4 [@]
and 6 [I, y, i]. Just as in the previous analysis, sound correspondences that involve two
adjacent groups within the vowel chart are the most probable. The least probable sound
correspondences include alternations between the sounds that are more than one step
apart within the vowel chart.

In Table 7.6 we give the values of the modified Rand index (MRI) presented in Sec-
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Figure 7.27: The most probable vowel transitions, marked with blue, using GTR and
gamma site heterogeneity model.

tion 3.6.1 for the pairwise comparison of the classifications produced in all three settings,
classification done by weighted pair group method using arithmetic averages (WPGMA)
clustering algorithm and the traditional division of the sites according to Stoykov (2002).
We note very high agreement between the 2-way divisions produced using Setting 2 and
Setting 3: 0.939. There is also very high agreement between the 3-way divisions pro-
duced by Setting 1 and Setting 2: 0.945. Agreement on the 2-way and 3-way divisions
produced by Setting 2 and Setting 3 in Bayesian inference experiment and WPGMA
clustering algorithm is lower, but still high, ranging from 0.686 to 0.763. The 2-way
division produced by the Setting 1 has lower values for MRI since, unlike WPGMA, it
groups southern varieties with the western and not with the eastern dialects. Compar-
ison of the divisions resulting from Setting 2 and Setting 3 to the traditional divisions as
suggested by Stoykov (2002), shows that they give similar values of MRI that we get by
comparing the divisions produced by WPGMA and traditional classification.

Settings 2 and 3 gave very similar results, both with the respect to the classification
of villages and to the vowel transition probabilities. Although the results were similar,
the two settings contain two different hypotheses about sound changes. In Setting 2 we
assume that in all positions in words sounds change at the same rate. In Setting 3 we al-
lowed that at some positions in words some sound changes are more likely than in some
others. In order to check which of the two hypotheses is more probable, we calculated
Bayes factor (K) for the two settings, which is a Bayesian alternative to a classical hypo-
thesis testing in statistics. The Bayes factor was calculated using the following formula
which examines the ratio of the marginal likelihoods of the two models:

K =
P(D|H1)

P(D|H2)
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Figure 7.28: The least probable vowel transitions, marked with red, using GTR and
gamma site heterogeneity model.

where P(D|H) expresses the marginal likelihood of a hypothesis H. For a more detail
explanation see Kass and Raftery (1995) or MacKay (2003). For our two settings we
calculated the Bayes factor using the Tracer software.4 In Table 7.3 we present the
values of the Bayes Factor in log 10 scale obtained after pairwise comparing all three
settings.

All values of K > 2 for the log 10 scale indicate strong support for a favored model.
All values for comparing our three settings are much bigger. It shows that there is a
very strong evidence in favor of Setting 3. Setting 2 is much more strongly supported
than the Setting 1, while the Setting 3 is much more strongly supported than the Set-
ting 1 and 2. Explanation of the scale for K can be found in Jeffreys (1961) and Kass
and Raftery (1995). These results show that there is a strong evidence in our data that
different vowel changes are not equally probable. Some changes are much more likely
to occur than others. The data also strongly supports the hypothesis that vowel changes
occur at different rates in various positions in words.

7.7 Discussion
In recent years there has been an increasing number of studies that apply methods taken
from phylogenetics to the research of language change and evolution. However, only
very few of them apply those techniques on the phonetic or phonological data (Nakhleh,
Ringe, and Warnow, 2005; Warnow et al., 2006; McMahon et al., 2007). In previous
work phonological and phonetic data was very carefully manually selected and coded,
based on the substantial linguistic knowledge. We do not argue against the linguistic

4http://tree.bio.ed.ac.uk/software/tracer
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Table 7.2: The modified Rand index (MRI) for the 2-fold and 3-fold divisions of sites
produced by three various Bayesian inference settings (‘s1’, ‘s2’, ‘s3’), WPGMA (‘WA’)
and traditional scholarship (‘trad.’).

s1 (2) s2 (2) s3 (2) WA (2) trad. (2) s1 (3) s2 (3) s3 (3) WA (3) trad. (3)
s1 (2) - 0.301 0.312 0.467 0.290 - - - - -
s2 (2) - - 0.939 0.717 0.716 - - - - -
s3 (2) - - - 0.734 0.665 - - - - -
wa (2) - - - - 0.700 - - - - -

trad. (2) - - - - - - - - - -
s1 (3) - - - - - - 0.945 0.854 0.727 0.601
s2 (3) - - - - - - - 0.829 0.763 0.597
s3 (3) - - - - - - - - 0.686 0.543
wa (3) - - - - - - - - - 0.626

trad. (3) - - - - - - - - - -

Table 7.3: Values of the Bayes factor in log 10 scale. There is a strong support for
Setting3 when compared to both Setting1 and Setting2.

Setting 1 Setting 2 Setting 3
Setting 1 - -573.369 -938.271
Setting 2 573.369 - -364.902
Setting 3 938.271 364.90 -

data coding, but we do try to apply a more robust and language-independent approach.
In this research we have tried to automate the process of character selection by auto-
matically multi-aligning phonetic transcriptions and using them as input to software for
phylogenetic inference. However, we were not able to explore sound correspondences
in all their varieties, since the number of phones in our data set was too large to be suc-
cessfully processed by any software developed for the computational phylogenetics. We
have restricted ourselves to the investigation of the vowel changes, since the analysis of
the sounds presented in Chapter 5 has shown that most of the variation in our dialect
data is between the vowels. In comparison to the consonants, they are more likely to
contain sufficient information on dialect change. By putting all the vowels into eight
groups we have tried to keep in our analyses at least the main articulatory character-
istics (open/close and front/back opposition) of the vowels. This multi-state character
encoding enabled us to test the probability of sound changes within the vowel chart. The
coding of the characters can naturally be done differently, but we leave this to future
research. We hope that in future it will become computationally feasible to process the
data using a larger set of states.

The application of Bayesian inference allows us to test various models of evolution
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and to investigate how related certain species are. By applying this method to the phon-
etic data, we were able to test various hypothesis about the mechanisms of sound change.
Each model of evolution contains its own explicit assumptions. Relying on the models
of evolution created for biological data, we were forced to draw parallels between the
evolution of species and the evolution of languages. But very often models developed
for the evolution of species contain assumptions that are not very realistic for the lan-
guage data. For example, all character-based methods, including the Bayesian inference
of phylogeny, assume that each position in the alignments evolves independently. For
our phonetic data, it would mean that the changes of the phones are not influenced by
the changes of the proceeding or the following sounds. Although this is not true for the
mechanism of a sound change, it is one of the simplifications that we had to introduce in
our analyses. In future we hope to implement a model that would relax the assumption
of independence, at the cost of substantial complexity.

One of the models that is being heavily debated in linguistics is the lexical clock.
While some of the authors used this assumption in their attempts to date Proto Indo-
European (Forster and Toth, 2003), others heavily criticize the usage of a uniform lexical
clock (Eska and Ringe, 2004). A strict molecular clock model assumes that all lineages
(language varieties) evolve at a constant rate. We have used this assumption in our ex-
periments since it is the basic molecular clock model in the software for phylogenetic
inference, and it makes the estimation of the other parameters easier, especially with
such a small data set as ours. All the trees produced in our experiments have shown
an expected topology (structure), which suggests that the assumption of a constant mo-
lecular clock is not extreme a simplification in the models examined here. These were,
however, initial experiments and in the future, we would like to apply other molecular
clock models, and statistically test wether other molecular clock hypotheses fit our data
better.

By initially choosing simple models of evolution to be tested on our language data,
we have tried to justify more complicated assumptions step by step. None of the mod-
els developed for the biological data can cover all aspects of language evolution and
change. The possibility to test various hypotheses separately makes Bayesian inference
a potentially very useful technique in exploration of languages. But its true potential in
linguistics can be achieved only if models are developed specifically for language data.

The results of applying Bayesian phylogenetic inference to Bulgarian dialect data
have shown that three dialect areas appear as the most prominent under various models
of evolution: western, eastern, and southern. This three-way division also conforms to
the traditional scholarship on Bulgarian dialectology (Stoykov, 2002). We have obtained
the same division of Bulgarian dialect area using the Levenshtein method that is based on
the similarity between the pronunciation strings without any assumptions on the genetic
relatedness of the compared varieties. Two alternative approaches gave very similar
picture of the Bulgarian dialect variation. However, these two approaches are very hard
to separate in the case of dialect data where we a priori test varieties that are genetically
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very closely related.
We have also shown that for the Bulgarian language the most probable vowel changes

are those that involve neighboring vowels within the vowel chart. Most of the highly
probable changes involve vowel height. The probability of vowels changing into vowels
that are far apart in the vowel chart is very low. We were not able to include the direc-
tionality of vowel changes into our analysis, and see if, for example, [e] is more likely
to change into [i] or the other way around. We hope to achieve this in future. Testing of
different models of evolution has also shown that vowels change faster in some positions
within the words. In future we would like to investigate changes of various positions in
multi-aligned sequences in more detail and try to discover patterns of variation and how
regular certain sound changes are.



138 CHAPTER 7. BAYESIAN PHYLOGENETIC INFERENCE



Chapter 8

Conclusions and discussion

The aim of this thesis was to develop and apply a quantitative analysis of the Bulgarian
dialect pronunciation data. The data set used in this thesis was gathered and put into a
machine-readable format as part of the Buldialect project. It consists of 157 transcribed
words collected at 197 sites distributed over most of Bulgaria. The main source of the
data was the large dialect archive at the University of Sofia. The words in the data set
contain in total 39 various phonetic features that are commented on in the traditional
scholarship on Bulgarian dialects and which have been used as a basis for determining
dialect divisions. The most widely known and the most authoritative study of Bulgarian
dialects is one published by Stoyko Stoykov (Stoykov, 2002). Throughout this thesis we
use his classification of Bulgarian dialects against which we compare our computational
methods. Main dialect divisions suggested by Stoykov are presented in Chapter 2. The
data for Buldialect project was collected in a such way that there is a balance between
various phonetic features that Stoykov (2002) uses as a basis for classification of Bul-
garian dialects. In Chapter 2 we give a list of the phonetic features present in our data
set, and in Appendix A we list the words from the data set and additionally mark which
phonetic features are present in which word.

In the first experiments on the Bulgarian pronunciation data, we have used the Leven-
shtein algorithm to measure the differences between Bulgarian dialect varieties. We used
the simple version of the Levenshtein algorithm, where weights were set to make it im-
possible for vowels and consonants to align. The distances between each two sites in
the data set were analyzed using multidimensional scaling (MDS) and numerous clus-
tering techniques, neighbor-joining and neighbor-net. MDS is a dimension-reduction
technique, used to look if there are any distinct clusters in the data. The analysis has
shown that there are two clearly separated groups of dialects and the third one that is at
a remove from them. Multidimensional scaling proved to be quite reliable in the explor-
ation of continuous data, like ours, since it can detect if there are any distinct groups in
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the data. The results of applying different classifying techniques were compared to each
other and to the traditional scholarship. We proposed several methods that were used to
compare the outputs of the classification algorithms. Some of them, like the modified
Rand index, entropy and purity, require the existence of a gold-standard classification
provided by the experts in the field. The other evaluation methods, such as the cophen-
etic correlation coefficient, noisy clustering and consensus dendrograms, can be used in
a more realistic scenario when the classification provided by the experts is not available.
They do not rely on a comparison to any a priori structure, but try to determine if the
structure obtained by the classification algorithm is appropriate for the data. From the
methodological side, the results have shown that clustering algorithms should be used
with great caution in dialectometry since there are often no sharp borders between the
dialect varieties. There is no one single algorithm that we can use to obtain reliable
classifications. We can only look for the most probable dialect divisions by applying
some of the techniques presented in Chapter 3. Our results have shown that three hier-
archical clustering techniques, namely single link, unweighted pair group method using
centroids (UPGMC) and weighted pair group method using centroids (WPGMC), failed
to identify any structure in the data. The rest of the clustering techniques tested gave
different results depending on the level of hierarchy. All algorithms had high agreement
on the detection of the two main dialect areas within the dialect space, the western and
the eastern varieties along the yat line. Though less consistently, we could also identify
the Rodopi area in the south of the country. No other dialect groups were identified
in a consistent manner. These results correspond well with the division suggested by
Stoykov, but are of course less elaborate. The results of the neighbor-joining algorithm
were less satisfactory, most probably due to the continuous structure of our dialect data.
Neighbor-net has proven to be a nice representation tool, since it can tell us if the data is
a tree- or a net-like. Using neighbor-net we have detected many conflicting signals and
showed that Bulgarian dialect data is to a high extent network-like.

In Chapter 4 we compare traditional dialect divisions suggested by Stoykov to the
divisions that we obtain using various clustering techniques. We focus mainly on the
differences between traditional and computational methods and try to explain them by
comparing two classifications on the level of a very fine detail. We look into the fea-
tures responsible for each of the six main traditional divisions of the Bulgarian dialect
area, check their distribution in our data set and how they are reflected in the aggregate
analysis done using the Levenshtein algorithm. We applied the Levenshtein algorithm
to the word segments that reflect specific traditional divisions and also to the words
that contain those segments in order to check how and whether the traditional division in
question would be reflected in our computational analyses. The distances obtained using
the Levenshtein algorithm were analyzed using MDS plots. The results have shown that,
with some differences in frequencies, all the examined features are present in our data
and that our data set is a reliable basis on which to compare quantitative and traditional
classifications. The results also suggest that the differences between computational and
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traditional approaches cannot be attributed to a single factor. Regarding the most prom-
inent division into the western and eastern dialects, along the yat line, the border between
the two areas on the computational maps is further east. On the quantitative maps this
border represents the average of all isoglosses in the bundle of 68 which we have detec-
ted in our data. The traditional yat border matches few of the isoglosses found perfectly.
The difference between the computational and traditional border can be attributed to the
different criteria used to define the line of separation between two dialect areas. Unlike
the west-east division, which showed up in all computational analyses, the Moesian area
could not be detected since none of the features mentioned in the traditional literature
were characteristic only for this area. As far as the phonetics is concerned, we did not
find enough evidence that Moesia is a separate area. There were probably some non-
phonetic factors that the traditional linguists took into account while defining this area
as one of the six most important dialect areas in Bulgaria (although Stoykov emphasized
that his divisions were based on pronunciation). The area around the border with Serbia,
the so-called transitional zone, appears as a separate zone on all MDS plots, both based
on the relevant segments and the whole words as well. We attribute the fact that some
of the clustering techniques, like UPGMA, fail to recognize it to a shortcoming of the
clustering technique itself. The northwest-southwest split is detected on MDS plot only
if we base our Levenshtein analysis on specific segments (features), while there is no
clear distinction between these two areas if we repeat the same analysis using whole
words that contain the relevant segments. The comparison of the analyses done on the
segment and on the word level has shown that if we perform analysis only on the relevant
segments we can see the divisions clearly, while the signal gets weaker, or even lost, if
we take whole words into account. The additional segments add noise to the signal of
separation.

We conclude that while some of the differences between the traditional and com-
putational divisions can be attributed to the way we calculated the distances using the
Levenshtein method, the others are the result of how the dialect borders are defined in the
traditional and the computational approach. While computational techniques rely only
on the data that is analyzed using exact methods, the divisions done in traditional schol-
arship are very often more subjective and maybe led by some extra-linguistic factors.
Some differences can be attributed to the biases of certain clustering techniques, which
is why we argue that MDS is more suitable technique for the continuous data such as
dialect data.

In Chapter 5 we have applied pointwise mutual information (PMI) technique to a
table summing the frequency with which one segment aligns with another in order to
automatically induce the distances between the phones in the data set. PMI was com-
bined with the Levenshtein algorithm, which enabled us to obtain the distances between
each two vowels and each two consonants. Since the Levenshtein algorithm was used
with the vowel-vowel consonant-consonant constraint we never obtained non-zero fre-
quencies with which vowels and consonants aligned. The idea behind the PMI pro-
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cedure is that segments that tend to correspond more frequently in the alignments are
closer to each other than the segments that rarely or never align. We analyzed the PMI
distances using MDS plots in order to discover which phones tend to correspond more
frequently. We were especially interested in whether there are any patterns in frequently
co-occurring sounds. The MDS analyses have shown that vowels tend to vary more
frequently than the consonants which resulted in much smaller PMI distances between
the vowels than between the consonants. The analysis of the vowel PMI distances has
shown that the changes between the unstressed vowels are much more frequent than the
changes between the stressed vowels or between the stressed and unstressed vowels. The
MDS plot of the vowel distances also revealed that the separation between the front and
back vowels is bigger than the separation between the high and low vowels. The reason
for this are smaller PMI distances between high and low vowels caused by their frequent
co-occurrence in the alignments. The analysis of the distances between the consonants
has shown that the consonants change less frequently than the vowels. The only pattern
of change that we could discover using the MDS plot is that consonants most frequently
correspond with their palatalized counterparts. No other pattern of the corresponding
consonants was discovered.

We have also shown that by using these PMI induced distances in the Levenshtein
alignment procedure we can get more accurate alignments compared to the alignments
produced with only the vowel-vowel consonant-consonant constraint. The percentage
of the incorrect alignments was reduced from 7.614 per cent to 6.236 per cent. This
improvement was also reflected in the better estimation of the distances between the
language varieties at the aggregate level. The main drawback of the procedure in which
we have combined PMI and the Levenshtein algorithm is that we could not calculate the
distances between the vowels and the consonants. We had to introduce the restriction
that the consonant and the vowels cannot be aligned, since without this constraint Leven-
shtein algorithm produces alignments of a low quality that cannot be used to accurately
estimate the distances between the phones.

In Section 6 we have presented an adapted version of the ALPHAMALIG algorithm,
that can be used to multi-align strings in linguistics. Multiple alignments of strings is
used, for example, in comparative method to detect sound correspondences. Here we
tried to automate the process, which is a necessary step for working with larger data
sets. This format of data, when compared to the pairwise-aligned strings produced by the
Levenshtein algorithm, allows us to detect the patterns of phone correspondences much
easier and much more accurately. It also gives us a better estimation of the distances
between the strings. We have applied the ALPHAMALIG algorithm to our phonetic
data and evaluated the alignments produced using two novel techniques. Both evaluation
techniques are based on comparing the automatically aligned strings to the so-called
gold standard alignments produced by the experts in Bulgarian phonetics/phonology.
They compare the contents of the columns, i.e. positions in word transcriptions, in the
two multiple alignments compared. While one of the evaluation techniques takes into
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account the order in which columns appear, the other is focused solely on the content
of the positions examined. Application of the two evaluation techniques has proven
that the automatically multi-aligned strings are of a good quality when compared to the
manually multi-aligned data. Using the first method, ALPHAMALIG scored 0.932 out
of 1.0, while according to the second method ALPHAMALIG scored 0.982 out of 1.0.
Although the alignments produced were of a good quality, the error analysis has shown
that some of the errors are caused by the constraint that vowels cannot be aligned with
the consonants. As an input the algorithm needs to know the alphabet, i.e. the segments
that need to be aligned and the distances between each two segments. In our experiment
we have set the weights between the segments so that vowels and consonants cannot
be aligned. In the future we would like to introduce some kind of feature weighting
into the alignment procedure in order to correct some of the errors present in the current
alignments.

In order to get better insight into the quality of the alignments produced by AL-
PHAMALIG, we have also created simple and advanced baseline alignments and com-
pared them to the gold standard alignments. The results have shown that ALHPAM-
ALIG produces alignments of a better quality than any of the baseline techniques pro-
posed. However, the comparison between the simple baseline and the gold standard
alignments has revealed that our data set contains strings with a relatively simple CV
syllable structure. The variation in the pronunciation is also relatively small if compared
to cross-linguistic data. For that reason it would be necessary to validate the performance
of the ALPHAMALIG against some other language data.

By multi-aligning phone transcriptions from our data set, we were able to analyze
them using a Bayesian inference method designed to analyze DNA or protein sequences
in molecular biology. We use Bayesian phylogenetic inference method in order to reex-
amine the relatedness of Bulgarian dialect varieties from a historically motivated per-
spective. It is an alternative to the Levenshtein approach (used in Chapters 3 and 4)
which is focused on the similarity of Bulgarian dialects.

First we had to code our data in a way that would on one hand be acceptable to
the software and on the other linguistically motivated. The biggest problem was large
number of different phones in the data, 98 in total including all diacritics and supra-
segmentals. Software designed for DNA or protein sequences can normally process up
21 different symbols used for protein data. Another issue with our linguistic data were
short strings, 620 phones per each string, compared to much longer sequences in bio-
logy. Even if we reduce our set of symbols to 21, we would not be able to get reliable
estimates of our parameters using such a small segment inventory. Considering the large
number of tokens and relatively short strings, we reduced our data only to vowels and
placed all vowels in the eight groups based on their position in the vowel chart. This en-
abled us to test some general principles of vowel changes within the vowel space. One
of the main issues with applying computational phylogenetic methods on the linguistic
data in general, is the amount of the data in linguistics that we can gather. This problem
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looms particularly large in historical linguistics where we do not have large data bases
and where the collection of new data cannot be done automatically since it needs to be
carefully prepared.

In our experiment we have tested two hypotheses about vowel changes. We were
interested to see a) if vowels change more frequently in some positions in words and b)
which vowel changes are the most likely. The results have shown that there is strong
support for the hypothesis that in some positions vowels change must faster. There was
also very strong support for the hypothesis that vowels are not likely to change into just
any other vowel, but change into vowels that are very close in the vowel chart. For
our data set the most probable changes were those that involve change of vowel height.
Unfortunately, it was not possible to calculate which direction of the changes are more
probable. We hope to achieve this goal in the future.

Regarding dialect divisions in Bulgaria, the results of applying Bayesian MCMC
inference to the Bulgarian pronunciation dialect data correspond well to the findings
obtained using the Levenshtein method. The most prominent dialect division follows
the yat line and divides the Bulgarian dialect area into western and eastern. The third
area that appears as the most important under the various models of evolution is the
Rodopi area in the south.

In our experiment with the Bayesian inference, we included a strict molecular clock
hypothesis in our calculations. For all our settings, the resulting trees have shown the
expected topology, i.e. structure of the dendrogram, with no major differences when
compared both to the traditional dialectology and the computational methods applied
earlier. Although we could not test the constant molecular clock assumption, we note
that our finding good classifications suggests that it is a reasonable simplification. Given
the fact that we were not using Bayesian MCMC to infer any dates related to the his-
tory of Bulgarian language, we find that molecular clock assumption can be used as a
starting point for the experiments. However, in future we would like to repeat our ex-
periments without the molecular clock assumption and compare the results of these two
experiments.

Despite some significant differences in the evolution of species and languages, the
general mechanism of evolution that they share allows us to try to take the advantage
of the very powerful computational techniques developed in biology to address some
problems in linguistics. The models that we have tested in this thesis are relatively
simple models of the evolution of species that can be applied to linguistic data. Only
if models specifically designed for linguistics are developed will we be able to have
complex models that cover more aspects of the evolution of language. In the meantime
we have to try to find the appropriate models, although probably not perfect.

In the future we hope to be able to use a larger set of segments in the analyses which
would enable us to code the data differently and reduce the information loss introduced
by putting all vowels in our data set into 8 groups. We would also like to try to intro-
duce directionality of the phone changes in our analyses and examine in more detail the
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patterns of sound changes. In this research we have restricted ourselves to the vowel
changes, but it would also be interesting to reexamine our findings by exploring vari-
ation of the consonants. One of the results of our experiment has proven that sounds
vary at a different rate in different positions in words. Further research might investig-
ate which positions in words shows similar patterns of variation and how regular sound
changes are. A number of possible future studies using the same experimental set up are
apparent.
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List of abbreviations

aor aorist
BDA B�lgarski dialekten atlas – Stoykov (1966) and Stoykov et al. (1964; 1974; 1981)
CBM character-based methods
CV consonant vowel
D data
DNA deoxyribonucleic acid
E entropy
fem feminine
GA generated alignment
GS gold standard alignment
GTR general time reversible
H hypothesis
IPA international phonetic alphabet
K Bayes factor
masc masculine
MCMC Monte Carlo Markov chain
MDS multidimensional scaling
MRI modified Rand index
MSA multiple sequence alignments
neut neuter
NJ neighbor-joining
NW northwest
ODE order dependent evaluation
OT B�lgarski dialekten atlas, obobwavaw tom I-III. Fonetika, akcentologi�,

leksika – Kochev at al. (2001)
P purity
par participle
PHMM pair hidden Markov models
pl plural
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PMI pointwise mutual information
RGB red, green, and blu (color model)
RNA ribonucleic acid
sg singular
SW southwest
TZS transitional zone at the border with Serbia
UPGMA unweighted pair group method using arithmetic averages
UPGMC unweighted pair group method using centroids
WA weighted pair group method using arithmetic averages
WPGMA weighted pair group method using arithmetic averages
WPGMC weighted pair group method using centroids
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Short summary

Dialectometry is a multidisciplinary field that uses quantitative methods in the analysis
of dialect data. From the very beginning, most of the research in dialectometry has been
focused on including large amounts of data in analyses and offering alternative views to
researchers. Later it was used for the identification of dialect groups and development of
methods that would tell us how similar (or different) one variety is when compared to the
neighboring varieties. In this book we present advances in several techniques that allow
the researcher to automatically measure the differences between language varieties. We
test all methods on Bulgarian dialect pronunciation data.

Part of the research presented relies on the Levenshtein algorithm to aggregate over
the numerous features found in the data and infer the similarities/distances among the
groups of dialects. We investigate the application of clustering techniques in the de-
tection of dialect groups, and propose several evaluation techniques that can be used to
estimate the quality of the automatically obtained groups. In order to automatically infer
the distances between the phones in the data set we combine the Levenshtein algorithm
with the technique called pointwise mutual information. Information on the distances
between the phones helps us get better estimates on the distances between the strings,
and consequently on the distances between language varieties.

In this thesis we also test an alternative approach to dialect variation that is more
historically motivated. We employ a method taken from phylogenetics, namely Bayesian
inference of phylogeny, which focuses on systematic shared innovations as a signal of
common ancestry, and reexamine the relatedness among the Bulgarian dialect varieties.
This method is applied to the automatically multiply aligned strings, which we produce
and evaluate using two novel methods.

The results of applying different quantitative techniques to the Bulgarian dialect data
show that some of the traditional divisions of this area have to be questioned if only pro-
nunciation data is taken into account. The comparison of the divisions resulting from
the geographic and historical approaches has shown that these two different perspect-
ives gave very similar picture of the Bulgarian dialect variation. None of the methods
developed are language specific, nor are they applicable only to the dialect data.
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Samenvatting

Dialectometrie is een multidisciplinair onderzoeksgebied dat kwantitatieve methoden
inzet voor de analyse van dialectgegevens. Aanvankelijk was onderzoek binnen dialec-
tometrie vooral gericht op het gebruik van grote hoeveelheden gegevens voor analyses en
het bieden van nieuwe inzichten voor onderzoekers. Later werd dialectometrie ingezet
voor de identificatie van dialectgroepen en de ontwikkeling van methoden die blootleg-
gen hoe gelijk (of ongelijk) één variëteit is ten opzichte van naburige taalvariëteiten.
In dit boek wordt de vooruitgang van verschillende technieken beschreven die de on-
derzoeker in staat stelt om geautomatiseerd verschillen te meten tussen taalvariëteiten.
Alle methoden worden getest op Bulgaarse dialect uitspraakgegevens.

Een deel van het onderzoek hier beschreven is gebaseerd op het Levenshtein al-
goritme, dat wordt gebruikt voor het aggregeren van de vele kenmerken van de dia-
lectgegevens om daarmee de overeenkomsten/afstanden tussen de dialectgroepen af te
leiden. We onderzoeken de toepassing van clustertechnieken voor het determineren
van dialectgroepen en dragen verschillende evaluatietechnieken aan die gebruikt kunnen
worden voor het schatten van de kwaliteit van de geautomatiseerd verkregen groepen.
Voor het geautomatiseerd afleiden van de afstanden tussen de fonemen in de gegevens-
verzameling, combineren we het Levenshtein algoritme met een techniek uit de inform-
atietheorie, pointwise mutual information. We gebruiken de (empirische) frequentie van
foneemcorrespondenties in aligneringen om de afstanden tussen fonemen beter in te
schatten. Informatie over de afstanden tussen de fonemen helpt ons om betere schattin-
gen te maken van de afstanden tussen de karakterreeksen en daaropvolgend de afstanden
tussen taalvariëteiten.

In dit proefschrift wordt ook een alternatieve benadering van dialect variatie getest,
een benadering die vooral historische affiniteiten tracht op te zoeken. We passen een
methode toe die gebruikt wordt binnen de phylogenetica, namelijk Bayesiaanse inferen-
tie van phylogenetica, die systematisch op gemeenschappelijke innovaties als teken van
een gedeelde afkomst focust, en beoordelen opnieuw de gerelateerdheid tussen de Bul-
gaarse dialectvariëteiten. Deze methode wordt toegepast op de meervoudig opgelijnde
(‘aligned’) karakterreeksen, die geautomatiseerd werden verkregen.

De resultaten van het toepassen van verschillende kwantitatieve methoden op de Bul-
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gaarse dialectgegevens, laten zien dat er bij sommige traditionele indelingen van dit ge-
bied vraagtekens gezet kunnen worden in het bijzonder als we slechts uitspraakgegevens
in beschouwing nemen. De vergelijking van de indelingen voortkomend uit de geografis-
che - en historische benadering, laat zien dat deze twee verschillende perspectieven
eenzelfde beeld laten zien van de Bulgaarse dialectvariatie. Geen van de ontwikkelde
methoden is taalspecifiek, noch slechts toepasbaar op dialectgegevens.



Appendix A

List of words

Table A.1: List of all words from Buldialect phonetic data set. The numbers in the right
column refer to the features described in Section 2.2 which are present in a given word.

word features
az /az/ ‘I’ 2; 3

agne /"agne/ ‘lamb’ 2; 3; 7; 23
beli /"beli/ ‘white - pl.’ 1; 39

berat /be"r7t/ ‘pick up - 3rd pl’ 6; 39
bexe /"beSe/ ‘be - past 2nd sg, 3rd sg’ 1
brane /bra"ne/ ‘pick - verb. noun’ 23; 39

braxno /braS"no/ ‘flour’ 39
b�rzo /"b7rzo/ ‘quickly’ 18; 34

b�hme /"bjaxme/ ‘be - past 1st pl’ 1; 27; 36
ve�da /"veZda/ ‘eyebrow’ 1; 19; 39
veqe /"ve

>
tSe/ ‘already’ 34

veqer /"ve
>
tSer/ ‘evening’ 11

vid�h /vi"djax/ ‘see - aorist 1st sg.’ 1; 27; 39
vie /"vie/ ‘you’ 38

vino /"vino/ ‘wine’ 39
vlizam /"vlizam/ ‘enter - 1st sg’ 32; 35

voda /vo"da/ ‘water’ 6; 39
vol /vol/ ‘ox’ 29

vreme /"vreme/ ‘time’ 1; 7
vr�h /vr7x/ ‘peak’ 18; 27

vr�wam /"vr7Stam/ ‘give back - 1st sg’ 18; 19; 35
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word features

vqera /"v
>
tSera/ ‘yesterday’ 34

v�v /v7v/ ‘in’ 8; 32
v�lk /v7lk/ ‘woolf’ 18; 23
v�lna /"v7lna/ ‘wool’ 18
v�nka /"v7nka/ ‘outside’ 8
v�tre /"v7tre/ ‘inside’ 1; 6
v�t�r /"vjat7r/ ‘wind’ 1; 10
glava /gla"va/ ‘head’ 6; 39

gladen /"gladen/ ‘hungry’ 9
govedo /go"vedo/ ‘beef’ 7

gore /"gore/ ‘up’ 1
gosti /"gosti/ ‘guest - pl’ 24

grad�t /gra"d7t/ ‘the town’ 8; 39
grozde /"grozde/ ‘grapes’ 24

dadoha /"dadoxa/ ‘to give - aor 3rd pl’ 27
dve /dve/ ‘two’ 1

dvor /dvor/ ‘yard’ 29
den /den/ ‘day’ 9; 23

dera /de"r7/ ‘flay - 1st sg’ 6; 39
deset /"deset/ ‘ten’ 7; 23
dete /de"te/ ‘child’ 1; 7; 39

d�ob /
>
dZob/ ‘pocket’ 15; 22; 31

dnes /dnes/ ‘today’ 9
dobre /do"bre/ ‘well’ 1
dolu /"dolu/ ‘down’ 17

dox�l /do"S7l/ ‘come - aor part’ 9
d��d /d7Zd/ ‘rain’ 8; 31

d�lbok /d7l"bok/ ‘deep’ 18
d�no /"d7no/ ‘bottom’ 8
d�rvo /d7r"vo/ ‘tree’ 18; 29; 39

edin /e"din/ ‘one - masc’ 3; 9
edno /ed"no/ ‘one - neut’ 3; 33
ezik /e"zik/ ‘tongue’ 3; 7; 12; 23

eqemik /e
>
tSe"mik/ ‘barley’ 3; 7; 13; 16; 23; 37

�el�zo /Ze"ljazo/ ‘iron’ 1; 13; 22; 39
�ena /Ze"na/ ‘woman’ 6; 39

�iv /Ziv/ ‘alive’ 13; 31
�iveli /Zi"veli/ ‘live - past pl’ 1; 13

��lt /Z7lt/ ‘yellow’ 18
��tva /"Z7tva/ ‘harvest’ 7
zvezda /zvez"da/ ‘star’ 1; 6; 22; 39
zdrav /zdrav/ ‘healthy’ 25; 31
zem� /ze"mja/ ‘land’ 6; 21; 39
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word features
zet /zet/ ‘brother-in-low’ 7; 23

i /i/ ‘she - dative’ 38
im /im/ ‘they - dative’ 38
ime /"ime/ ‘name’ 7; 13

kam�k /"kam7k/ ‘stone’ 37
kl�q /klju

>
tS/ ‘key’ 14

koe /ko"e/ ‘which’ 4
kon /kon/ ‘horse’ 23

kr�v /kr7v/ ‘blood’ 18; 31
k�de /k7"de/ ‘where’ 1; 6
lesno /"lesno/ ‘easily’ 9
lewa /"leSta/ ‘lentil - pl 7; 19
maǐka /"majka/ ‘mother’ 5; 23
mesec /"mese>ts/ ’month’ 1; 7
meso /me"so/ ’meat’ 7; 39

ml�koto /"mljakoto/ ‘the milk’ 1; 16; 39
mnogo /"mnogo/ ‘much, many’ 33

m�� /m7Z/ ‘man’ 6; 31
m��e /m7"Ze/ ‘men’ 6; 39

m���t /m7"Z7t/ ‘the man’ 6; 8; 39
naxe /"naSe/ ‘our - neut’ 15

nedel� /ne"delja/ ‘Sunday’ 1; 16; 39
newe /ne"Ste/ ‘not want - 3rd sg’ 19; 39

newo /"neSto/ ‘something’ 1
ne� /"neja/ ‘she - accusative’ 2; 5

nie /"nie/ ‘we’ 38
nos�t /"nosj7t/ ‘carry - 3rd pl’ 6; 23

now /noSt/ ‘night’ 19
n�ma /"njama/ ‘there is no’ 1

ovca /ov">tsa/ ‘sheep’ 16; 31; 39
ovce /ov">tse/ ‘sheep - pl’ 16; 31; 39
ovqar /ov"

>
tSar/ ‘shepherd’ 2; 31

ovqari /ov"
>
tSari/ ‘shepherd - pl’ 2; 31

og�n /"og7n/ ‘fire’ 10; 23; 30; 39
onezi /o"nezi/ ‘those’ 1; 38
oreh /"orex/ ‘walnut’ 1; 27; 30

peka /pe"k7/ ‘bake - 1st sg’ 6; 17; 39
pepel /"pepel/ ‘ash’ 1; 15; 23

petel /pe"tel/ ‘rooster’ 1; 9
pet�k /"pet7k/ ‘Friday’ 1; 7; 8

plawam /"plaStam/ ‘pay - 1st sg’ 19; 35
ponedelnik /pone"delnik/ ‘Monday’ 1; 11; 16; 23
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word features

pr�q /pr7
>
tS/ ‘he-goat’ 18

pr�vi�t /"pr7vij7t/ ‘the first’ 8; 18
p�t /p7t/ ‘road’ 6; 23

p�s�k /"pjas7k/ ‘sand’ 1; 8
reka /re"ka/ ‘river’ 1; 6; 39
r�ka /r7"ka/ ‘hand’ 6; 39
r�ce /r7">tse/ ‘hands’ 1; 6; 39
se /se/ ’one’s self’ 7
sega /se"ga/ ‘now’ 9

sed� /se"dj7/ ‘sit - 1st sg’ 6; 23; 39
sestra /ses"tra/ ‘sister’ 6; 25; 39
sirene /"sirene/ ‘cheese’ 12; 23

sol /sol/ ‘salt’ 23
sredata /sre"data/ ‘the middle’ 1
sr�da /"srjada/ ‘Wednesday’ 1; 26
starec /"stare>ts/ ‘old man’ 9

strah /strax/ ‘fear’ 25; 27
suh /sux/ ‘dry’ 27

s�bota /"s7bota/ ‘Saturday’ 6; 16
s�rp /s7rp/ ‘sickle’ 18
s�s /s7s/ ‘with’ 8

tak�v /ta"k7v/ ‘such’ 8; 31
tvoǐ /tvoj/ ‘yours’ 29

tova /to"va/ ‘this - neut’ 16; 38
togava /to"gava/ ‘then’ 38

t�mno /"t7mno/ ‘dark -neut’ 9; 33
t�nko /"t7nko/ ‘thin - neut’ 9

treva /tre"va/ ‘grass’ 1; 6; 39
utre /"utre/ ‘tomorrow’ 1; 3

uho /u"xo/ ‘ear’ 29; 39
furna /"furna/ ‘oven’ 23; 28
hl�b /xljab/ ‘bread’ 1; 27; 31

horo /xo"ro/ ‘chain dance’ 29; 39
hubav /"xubav/ ‘beautiful - masc’ 27; 31
hubavo /"xubavo/ ‘beautiful - neut’ 27; 29

c�l />tsjal/ ‘whole’ 1
qakat /"

>
tSakat/ ‘wait - 3rd pl’ 2; 6

qerven /
>
tSer"ven/ ‘red’ 18; 20

qeren /"
>
tSeren/ ‘black’ 18; 20

qerexa /
>
tSe"reSa/ ‘cherry’ 1; 13; 20

qeta /
>
tSe"t7/ ‘read - 1st sg’ 6; 39

qexma /
>
tSeS"ma/ ‘fountain’ 6; 13; 39
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qovek /
>
tSo"vek/ ‘human’ 1; 34

we /Ste/ ‘will’ 19
� /ja/ ‘she - accusative’ 38

�b�lka /"jab7lka/ ‘apple’ 2; 5; 18; 23
�b�lki /"jab7lki/ ‘apple - pl’ 2; 5; 18; 23

�ǐca /jaj">tsa/ ‘egg - pl’ 2; 5; 39
�ǐce /jaj">tse/ ‘egg’ 2; 5; 39
�m /jam/ ‘eat - 1st sg’ 2; 5

�dex /ja"deS/ ‘eat - 2nd sg’ 2; 5
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Appendix B

List of phones
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Appendix C

List of sites

Aldomirovci (Aldomirovtsi) Asparuhovo, Lom (Asparuhovo, Lom)
Asparuhovo, Prov (Asparuhovo, Prov) Bab�k (Babyak)

Bagrenci (Bagrentsi) Baniwe (Banishte)
Bansko (Bansko) Baqkovo (Bachkovo)
Begle� (Beglezh) Belene (Belene)
Belica (Belitsa) Bistrica (Bistritsa)

Bov (Bov) Bogdanov dol (Bogdanov dol)
Borisovo (Borisovo) Br�xl�n (Brashlyan)

Buqin prohod (Buchin prohod) B�lgari (Balgari)
Varvara (Varvara) Vardun (Vardun)

Vasil~ovo (Vasilyovo) Velkovci (Velkovtsi)
Vinarovo (Vinarovo) Viniwe (Vinishte)
Vladin� (Vladinya) Voden (Voden)

Vo$in�govo (Voynyagovo) Vranilovci (Vranilovtsi)
Vraqex (Vrachesh) Vresovo (Vresovo)
V�bel (Vabel) V�klinovo (Vaklinovo)

V�lqe pole (Valche pole) V�rbica (Varbitsa)
V�rbovo (Varbovo) Gabare (Gabare)

Gabra (Gabra) Galata (Galata)
Ganqovec (Ganchovets) Garvan (Garvan)

Gega (Gega) Glo�ene (Glozhene)
Golema Rakovica (Golema Rakovitsa) Golemo Malovo (Golemo Malovo)

Golica (Golitsa) Gol�ma �el�zna (Golyama Zhelyazna)
Gol�mo Xivaqevo (Golyamo Shivachevo) Gorna Rosica (Gorna Rositsa)

Gorni V�rpiwa (Gorni Varpishta) Govedarci (Govedartsi)
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Gradec (Gradets) G�rmen (Garmen)
Devenci (Deventsi) Devesilica (Devesilitsa)

Dermanci (Dermantsi) Diva Slatina (Diva Slatina)
Divd�dovo (Divdyadovo) Dinevo (Dinevo)

Diqin (Dichin) Dobroselec (Dobroselets)
Dobroslavci (Dobroslavtsi) Dobrotino (Dobrotino)

Dob�rsko (Dobarsko) Dolna Bexovica (Dolna Beshovitsa)
Dolna Dikan� (Dolna Dikanya) Dolna Melna (Dolna Melna)
Dolna Riksa (Dolna Riksa) Dolna Studena (Dolna Studena)

Dolni Bogrov (Dolni Bogrov) Dolno Levski (Dolno Levski)
Dorkovo (Dorkovo) Drabixna (Drabishna)

Dragi�evo (Dragizhevo) Dragodanovo (Dragodanovo)
Dragoevo (Dragoevo) Drago$iqinci (Dragoychintsi)
Ezerovo (Ezerovo) Elov dol (Elov dol)
Enina (Enina) �altuxa (Zhaltusha)

�eglica (Zheglitsa) �elen (Zhelen)
�el�zkovo (Zhelyazkovo) �eravna (Zheravna)
Zabernovo (Zabernovo) Zab�rdo (Zabardo)
Zamfirovo (Zamfirovo) Zano�ene (Zanozhene)
Zdravkovec (Zdravkovets) Zelenigrad (Zelenigrad)

Ivanski (Ivanski) Izvorovo (Izvorovo)
Ind�e vo$ivoda (Indzhe voyvoda) Kalipetrovo (Kalipetrovo)

Kalo�novo (Kaloyanovo) Karaisen (Karaisen)
Karanovo (Karanovo) Kaspiqan (Kaspichan)

Kovaqevci (Kovachevtsi) Koziqino (Kozichino)
Kol� Marinovo (Kolyu Marinovo) Konska (Konska)

Kopilovci (Kopilovtsi) Koprivwica (Koprivshtitsa)
Korten (Korten) Kostenec (Kostenets)

Kravenik (Kravenik) Kramolin (Kramolin)
Kreta (Kreta) Krivn� (Krivnya)

Levunovo (Levunovo) Lil�qe (Lilyache)
Lipnica (Lipnitsa) Lobox (Lobosh)
Lozen (Lozen) L�benova mahala (Lyubenova mahala)

Malomirovo (Malomirovo) Marikostinovo (Marikostinovo)
Markovo (Markovo) Marqaevo (Marchaevo)
Merdan� (Merdanya) Meriqleri (Merichleri)

Milqina L�ka (Milchina Laka) Mihalci (Mihaltsi)
Momina ban� (Momina banya) Momina klisura (Momina klisura)

Momkovo (Momkovo) Momqilovci (Momchilovtsi)
Mugla (Mugla) Nikolovo (Lipnik) (Nikolovo (Lipnik))
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Nikolovo (Nikolovo) Nova Lovqa (Nova Lovcha)
Nova Nade�da (Nova Nadezhda) Novo selo (Novo selo)

Noevci (Noevtsi) Ognen (Ognen)
Omarqevo (Omarchevo) Opan (Opan)

Osenec (Osenets) Pavelsko (Pavelsko)
Panag�riwe (Panagyurishte) Paskalevec (Paskalevets)

Pevec (Pevets) Pelatikovo (Pelatikovo)
Pet�rnica (Petarnitsa) Plakovo (Plakovo)

Podvis (Podvis) Po�arevo (Pozharevo)
Rabixa (Rabisha) Radovene (Radovene)

Razboiwe (Razboishte) Rakevo (Rakevo)
Rakovica (Rakovitsa) Rani lug (Rani lug)
Ru�inci (Ruzhintsi) Sadina (Sadina)
Saparevo (Saparevo) Svetlina (Svetlina)
Svirkovo (Svirkovo) Sekirovo (Sekirovo)
Senokos (Senokos) Sestrino (Sestrino)

Skobelevo (Skobelevo) Slave$ino (Slaveyno)
Slav�novo (Slavyanovo) Smolsko (Smolsko)
Smoqevo (Smochevo) Soliwa (Solishta)
Sredec (Sredets) Stakevci (Stakevtsi)

Stambolovo (Stambolovo) Stoilovo (Stoilovo)
Strald�a (Straldzha) Stroevo (Stroevo)
St�rmen (Starmen) Suhindol (Suhindol)
Suxica (Sushitsa) Tihomir (Tihomir)

Tihomirovo (Tihomirovo) Topolqane (Topolchane)
Tr�nqovica (Tranchovitsa) Tr�stenik (Trastenik)

Ustovo (Ustovo) Furen (Furen)
Hvo$ina (Hvoyna) Huhla (Huhla)

Caparevo (Tsaparevo) Cerovica (Tserovitsa)
Qepelare (Chepelare) Qernogorovo (Chernogorovo)

Qernomorec (Chernomorets) Qukovec (Chukovets)
Xipka (Shipka) Xiroka l�ka (Shiroka laka)

Xiroki dol (Shiroki dol) Wipsko (Shtipsko)
�vorovo (Yavorovo)
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Appendix D

Clustering results

Figure D.1: Single link dendrograms, plain and with the noise.
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Figure D.2: Complete link dendrograms, plain and with the noise.
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Figure D.3: UPGMA dendrograms, plain and with the noise.
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Figure D.4: WPGMA dendrograms, plain and with the noise.
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Figure D.5: UPGMC dendrograms, plain and with the noise.
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Figure D.6: WPGMC dendrograms, plain and with the noise.
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Figure D.7: Ward’s method dendrograms, plain and with the noise.
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