

 University of Groningen

Business Process Customization using Process Merging Techniques
Bulanov, Pavel; Lazovik, Alexander; Aiello, Marco

Published in:
International Conference on Service-Oriented Computing and Applications

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bulanov, P., Lazovik, A., & Aiello, M. (2012). Business Process Customization using Process Merging
Techniques. In International Conference on Service-Oriented Computing and Applications (pp. 1-4). IEEE
(The Institute of Electrical and Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/a4b65d73-ee63-4647-8af4-c1e41ac68191

Business Process Customization using Process Merging Techniques

Pavel Bulanov, Alexander Lazovik, Marco Aiello
Distributed Systems Group

University of Groningen
The Netherlands

Email: {p.bulanov, a.lazovik, m.aiello}@rug.nl

Abstract—One of the important application of service com-
position techniques lies in the field of business process man-
agement. Essentially a business process can be considered as a
composition of services, which is usually prepared by domain
experts, and many tasks still have to be performed manually.
These include the design and creation of the process itself or
the modification of an existing one when business requirements
change. Any form of automation and support we can bring to
the tasks of maintenance and evolution are highly beneficial.

One way of creating a new business process is by the
combination of two existing ones which naturally should retain
the behavioral features of both original processes. In this
paper, we introduce a formal language to express behavioral
properties of processes together with its semantics, and we
show how it supports process merging.

Keywords-Business process; Process evolution; Process main-
tenance; Process merging; Temporal logic

I. INTRODUCTION

Business processes as well as service compositions cap-
ture with their definition the way in which an organization,
possibly virtual, behaves and produces added value. The
preciser the description of the process, the better can the
organization be managed and operated. The process becomes
part of the organization’s knowledge in a number of ways.
For instance, they can emerge naturally from practice, they
can be designed by experts and refined after use or they
can be mined based on some execution data. Furthermore,
processes are not static abstractions, but rather they evolve
together with the organization and with the environment in
which they operate.

Consider the case of a special business process used and
customized by more than one (sub)-organization and usually
referred to as a template. Templates are usually made in
order to accumulate the basic rules and recommendations
of experts involved, which are applicable to most cases and
therefore need to be preserved. Then, one of such templates
can be used as is or it can be customized in order to address
the specificities of a particular case (which may be driven by
particular rules of a department of an affiliate, for example).

This is illustrated in Figure 1, with a template process
in the upper left corner, and customized one in the upper
right corner. The arrow “1” represents the customization of
the template process. In such situation there is a potential
danger of simultaneous modifications, when a template is

modified after it has been customized (for example, in order
to fix an error in the specification). Such modification is
represented by arrow “2” in the figure. The problematic case
in this situation is that the customized processes (there may
be many of them) must be changed in order to take into
account the template modification. The converging arrows
“3” illustrate the fact that the new customized process is
actually a derivative of both template and old customized
processes.

Such combination of customized processes or service
compositions can be automatized, but to do so, customiza-
tion must be represented as a transformation function. One
of the ways to do this, is by applying the technique which we
propose here, namely, merging of business process models.
Such merging can be made automatically and therefore can
be repeated again once the template process is modified.

An example of such process evolution can be taken from
the field of e–Government. There are 418 municipalities
in the Netherlands, and they possess a certain amount of
freedom in the application of laws, therefore, the software
should be adopted to the local specifics as well [1], [2]. In
the worst case there are 418 different customizations of the
same business process, and all of them must be changes in
case of the modifications in the central regulations.

Our study falls in the general area of having effective
control of process modifications which is considered crucial
for business process management (BPM), e.g. [3]. But most
of the studies focus mainly on the problem of process
flexibility and ease of changes in general, regardless of
the nature of the process modifications [4], [5]. Though,
the importance of merging of business processes was also
pointed out in different studies [6], [7].

The main contribution of this paper is twofold. First,
we introduce an idea to support business process evolution
by application of process merging techniques. Second, in
order to perform effective process merging, we go beyond
well-known temporal logic formalisms for business process
modeling, considering explicitly the existence of different
kinds of branching points in the process structures. Also,
the representation of a process in the terms of temporal
formalisms gives the ability to make a combination of two
processes on the basis on their temporal behaviors, which
is more simple from the algorithmic point of view than to

Figure 1. Process customization by merging

merge two processes represented, for instance, as graphs.
The rest of the paper is organized as follows. Section II

provides the overview of the proposed approach. Formal
definitions are represented in Section III. The formal descrip-
tion of process merging based on the proposed approach is
discussed in Section IV. Related work is briefly addressed in
Section V, and Section VI concludes the paper and outlines
the future work.

Figure 2. Merging process overview

II. AUTOMATIZING PROCESS MERGING

Starting from two existing business processes by merging
them one can obtain a rich description including the mixed
behaviors of both original ones. More precisely, the result
process will retain the execution sequences of both parent
processes.

To automatize the process of merging, we propose to
encode the behaviors of the processes in a temporal logic
like formalism and then perform the merging at the language
level and to go then back by generating a new process from

the formal description which is a consistent merge of the
initial processes.

The overview of the automated merging is shown in
Figure 2. The first step is to encode both processes in the
terms of temporal process logic (TPL) formulas. Then, there
is an optional pre–processing step, its purpose is to cure
possible contradictions between the two processes basing
on some predefined strategy, e.g., the processes may have
different importance and the structural features of the less
important one can be discarded. The next two steps are the
core of the whole idea.

The third step is to merge the two sets of formulas,
and the main benefit there is that the merging is merely
the combination of two sets of formulas and can be made
automatically. There are some restrictions though, which will
be discussed later.

The fourth step is to re–construct the final process basing
on the unified set of formulas, and later in this article we
provide the algorithm of process reconstruction basing on a
set of TPL formulas.

III. A FORMAL LANGUAGE FOR BUSINESS PROCESS
MERGING

Formal languages have often been the foundations for
BPM automation. Much researched examples include Petri-
Nets, Process calculi and Temporal Logic. Our approach
uses the latter as the basis for defining a language prone
to process merging automation. We begin by defining the
formal language for processes, then we provide a semantics
for the language and move onto giving algorithms for the
merging procedure.

A. Temporal Process Logic

The Temporal Process Logic (TPL) is a modal proposi-
tional language that talks about the truth of propositions in
future states, but also about possible execution runs. The
underlying processes are considered to have AND and OR
gates in addition to simple branching from one state to
another one. Its syntax is quite straightforward: we have a set
of proposition symbols AP , propositional unary and binary
operators ¬,∧,∨, plus three unary modal operators →, .
The intuitive meaning of the last operators is the following.
→ a means there is a state satisfying a in the process

and that this state can always be reached from the
current state following the process model. In case
of parallel splitting, at least one of the parallel
branches must lead to the state satisfying a.

 a means there is a state satisfying a in the process,
and this state can (but not always) be reached from
the current state following the process model. The
non–determinism appears there due to the nature of
OR–gates, when it is not possible to tell in advance
the actual execution path in the run time.

The syntax of TPL is therefore defined as follows:

1) Each propositional logic formula is a formula of TPL;
2) If φ is a formula of TPL, so is ¬φ;
3) If φ and ψ are formulas of TPL, so are φ ∧ ψ and

φ ∨ ψ;
4) If φ is a formula of TPL, so are → φ and φ.

B. Process Runs as TPL Semantics

The idea is to evaluate TPL formulas over processes and to
use them to describe the behavior of the processes. We begin
by providing a formal definition of a process with AND and
OR gates. This definition actually reflects a formalization
of a business process specified in terms of BPMN–like
notation.

Definition 1 (Process): A process P is a tuple 〈A,G, T 〉
where:

• A is a finite set of activities, with selected start activity
� and final activity ⊗. Each activity, apart from the
start and final ones, represents a single call of a service.

• G is a finite set of gateways, each of type AND or OR;
• S = A ∪G is a set of steps;
• T = Ta ∪ Tg , where:
• Ta : (A\{⊗})→ S is a finite set of transitions, which

assign a next step for each activity;
• Tg : G→ 2S is a finite set of transitions, which assign

a nonempty set of next steps for each gateway.
Later when talking about a process P we will refer to its

set of activities as PA, its set of gateways as PG, and its set
of transitions as PT . The next entity we need is a process
run in the process P .

Definition 2: A process run σ of a process P is a sub–
graph of the graph P , built in the following way:

1) All activities and gateways of P remain in σ;
2) For any activity, its transition to the next step remains

in σ;
3) For any AND–gateway, all its transition to the next

steps remain in σ;
4) For any OR–gateway, one or more of its transi-

tion to the next steps (transitions are picked non–
deterministically) remain in σ;

In other words, a process run represents a single execution
of an abstract business process engine such that for each
OR–gate a different path is taken while for each AND–gate
all subsequent sub–paths are included.The set of all possible
process runs of a process P is denoted as ΩP or just Ω.

We say that an activity a is followed by an activity b w.r.t.
the process run σ and denote that as a <σ b when there is
a path in the graph σ leading from a to b. We say that an
activity a is included into a process run σ and denote is as
a ∈ σ if � <σ a.

C. TPL Truth definition

We can now establish the link between TPL formulas
and the process models. Let AP be a set of propositional
variables, and a labeling function ν : PA → 2AP which

assigns each variable in AP with a set of activities where
that variable holds true. A model M is a pair 〈P, ν〉, where
P is a process and ν is a valuation function. Now we can
define the truth of a TPL formula in a model, note that the
truth is local to activities of the process.

M, x |= a ⇔ x ∈ ν(a)
M, x |= ¬a ⇔ M, x not |= a
M, x |= a ∨ b ⇔ M, x |= a or M, x |= b
M, x |=→ b ⇔ ∀σ ∈ ΩP : x ∈ σ ⇒

∃y ∈ σ : x <σ y ∧M, y |= b
M, x |= b ⇔ ∃σ ∈ ΩP : x ∈ σ ⇒

∃y ∈ σ : x <σ y ∧M, y |= b

It this paper we also use some syntactical enhancements,
namely, we use the shorthand form a b instead of a⇒
b, and a→ b instead of a⇒→ b.

D. Process Construction

Given a set of TPL formulas one could consider all the
propositional variables appearing in them and build a model
where each one of these is true in exactly one state. Such
a model in general would not be minimal, but would be a
clear representation of a business process that can be then
executed. Let us call å a proposition letter that is true exactly
at activity a and P̂ = 〈P,L〉 a model built only of these
activities.

The task of simplified model checking can be defined as
follows: build a model P̂ , such as all formulas are valid in
all states of that model, or, ∀φ ∈ S, ∀a ∈ P : P̂ , a |= φ.
Such kind of model checking is simplified because the class
of models is limited to the one described in the previous
paragraph.

Consider a set of TPL formulas, all of which are of kind
a ◦ b, where a and b are propositional letters, and ◦ is
either or →. For a set of such formulas it is possible
to build a process due to resemblance with a typical graph
representation. Only two issues must be taken into account:

(1) There may be redundant information in the set of
formulas, which need to be eliminated with the help of
transitive reduction of the original set.

(2) There are two types of formulas,→ and , but either
of them is represented as a link between nodes. Therefore,
gateways (AND– or OR– ones) must be introduced.

IV. PROCESS MERGING

Previously in Section II we have already given the in-
formal introduction into the process merging technique.
Now we are in the position to formalize it and provide an
algorithm for process merging.

Briefly the merging technique consists of the following
steps:

1) Represent both processes in the form of TPL formulas;
2) (Optional) pre–process both sets of TPL formulas in

order to reveal and cure possible contradictions;

3) Merge the sets and get their union;
4) Construct the final process basing on that union.
The first step was not discussed yet, but since the model

construction can only operate the formulas of type a◦b, then
it is natural to represent a process in such kind of formulas
only. More precisely, for each two activities A and B we
check if either of A→ B or A B is valid, and if yes, then
include such formula in the set. If both of those formulas
are valid, then include the stronger one (that is, A→ B).

The second step involves the identification of the formulas
which are contradicting each other. Once identified, such
formulas should be modified or removed in a way which
preserves the process structure. This can be done by hand,
or semi-automated. The third step is merely a union of two
sets, and the fourth step is a process reconstruction according
to the algorithm outlined in the previous section.

V. RELATED WORK

La Rosa et al. [6] propose the idea of merging of business
process models basing on the similarities between regions
in business process. In other words, they outline the similar
parts in the BPs being merged and work out a new process
model which conforms to both original process models.

Also, Sun et al. [8] offer another approach to BP merging
which is based on WF–Nets [9] . The approach is based on
the similarity between WF–Nets, which is in turn based on
the number of the atomic changes needed in order to convert
a process A into a process B.

Gottschalk et al. [10] offer a merging technique where
for each business process a corresponding graph is built,
and the merging is reduced to the merging of the graphs.
The approach is general, though the technique offered in
our paper has simpler representation structure (linked sets
instead of graphs).

In contrast with the studies mentioned above, our idea
relies on the temporal relations thus allowing to reveal the
similarities which are not based on geometrical similarity but
rather on the similarity in the behavior. Also, representation
of a process as a set of temporal relations allows to make a
combination between a traditional BPMN–like process with
a declarative one [4].

This gives the following advantages: i) compatibility with
variability techniques (e.g., [1]), such as declarative–based
specification of a template process; ii) it allows to mix
declarative and imperative process specifications in one
system; iii) it is open for refinements through the pre–
processing step.

The idea to utilize the temporal relations in order to deal
with BP management was studied in [11] and [12], but these
studies are focused mainly on the flexibility and change
management in business processes.

VI. CONCLUDING REMARKS

Formal methods to represent processes, provide strong
advantages when managing the evolution of the process

themselves. This includes also the addition of behaviors
and possibly the merging with other processes. We have
presented a formal language to describe process behaviors
and its underlying process models. Among the advantages of
the proposal is the algorithmically simple merging procedure
as well as the ability to extend the patterns for merging via
several pre–processing steps.

ACKNOWLEDGEMENTS

The research is supported by the NWO SaS-LeG project,
http://www.sas-leg.net, contract No. 638.001.207.

REFERENCES

[1] M. Aiello, P. Bulanov, and H. Groefsema, “Requirements
and tools for variability management,” in IEEE workshop on
Requirement Engineering for Services (REFS 2010) at IEEE
COMPSAC, 2010.

[2] N. R. T. P. van Beest, P. Bulanov, H. Wortmann, and A. La-
zovik, “Resolving business process interference via dynamic
reconfiguration,” in ICSOC, 2010, pp. 47–60.

[3] W. M. P. van der Aalst and S. Jablonski, “Dealing with
workflow change: identification of issues and solutions,”
International Journal of Computer Systems Science and En-
gineering, vol. 15, no. 5, pp. 267–276, September 2000.

[4] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and
W. M. P. van der Aalst, “Process flexibility: A survey of
contemporary approaches,” in CIAO! / EOMAS, ser. LNBIP,
vol. 10. Springer, 2008, pp. 16–30.

[5] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns
and change support features - enhancing flexibility in process-
aware information systems,” Data Knowl. Eng., vol. 66, no. 3,
pp. 438–466, 2008.

[6] M. L. Rosa, M. Dumas, R. Uba, and R. M. Dijkman,
“Merging business process models,” in OTM Conferences (1),
2010, pp. 96–113.

[7] J. M. Küster, C. Gerth, A. Förster, and G. Engels, “A tool for
process merging in business-driven development,” in CAiSE
Forum, 2008, pp. 89–92.

[8] S. Sun, A. Kumar, and J. Yen, “Merging workflows: A
new perspective on connecting business processes,” Decision
Support Systems, vol. 42, no. 2, pp. 844–858, 2006.

[9] W. M. P. van der Aalst, “The application of petri nets to
workflow management,” Journal of Circuits, Systems, and
Computers, vol. 8, no. 1, pp. 21–66, 1998.

[10] F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-
Vullers, “Merging event-driven process chains,” in OTM Con-
ferences (1), 2008, pp. 418–426.

[11] R. Lu, S. Sadiq, and G. Governatori, “On managing business
processes variants,” Data Knowl. Eng., vol. 68, no. 7, pp.
642–664, 2009.

[12] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P.
van der Aalst, “Constraint-based workflow models: Change
made easy,” in OTM Conferences (1), 2007, pp. 77–94.

