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Distributed MPC for controlling µ-CHPs in a network.

Gunn Larsen, Sebastian Trip, Nicky van Foreest and Jacquelien Scherpen

Abstract— This paper describes a dynamic price mechanism
to coordinate electricity generation from micro Combined Heat
and Power (µ-CHP) systems in a network of households. The
control is done on household level in a completely distributed
manner. Distributed Model Predictive control is applied to the
network of households with µ-CHP installed. Each house has
a unique demand pattern based on realistic data. Information
from a few neighbors are taken into account in the local optimal
control problems. Desired behavior for the network model in
the distributed MPC approach is showed by simulation.

I. INTRODUCTION
The electricity grid is a highly complex system consisting

of several interconnected mechanisms and interest groups.
The government wants a fair, environmental friendly and
reliable grid, suppliers want to earn from generation, con-
sumers want cheap electricity to cover their comfort levels,
and the network owners want efficient transport within safety
limits. Environmental awareness over the last decades has
realized the integration of distributed generation units. Both
green energy production and local use of local generated
power give an environmental benefit. If we achieve local
balancing, the overall energy efficiency is improved, because
network losses are avoided. In countries that have a dense
gas grid, such as the Netherlands, an interesting candidate
for domestic generation is a micro Combined Heat Power
(µ-CHP) system. A µ-CHP unit produces heat and electricity.

Control strategies for the µ-CHP available in the literature
are both heat demand and electricity demand driven. Both
of which can be shown to be economically beneficial. In
[1] it was shown that for a Stirling engine, gas engine
and a solid oxide fuel cell that a combination of the two
are more economical beneficial. The model of one µ-CHP
(proton exchange membrane fuel cell) is described in [2]
where Model Predictive Control (MPC) is used to control
the system. A Mixed Integer Linear Program [3] is solved
at each time step, to include the logics of a strictly on or off
state. In [2] demand response with help of µ-CHP is studied.

Controlling such µ-CHP system to use the electricity in
one household only is not significantly affecting the electric-
ity grid. However, large scale embedding in the electricity
grid and thus a change in the generation topology introduce
new control challenges to an already highly complex system.
The grid requires a real time balance of supply and demand,
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since electricity can not be stored efficiently on large scale.
In the old electricity grid situation, a few central power
plants were controlled to meet the fluctuating demand. In the
new situation there are many smaller units to be controlled.
To achieve this control by one centralized controller may
be impractical, or even impossible. The optimal control
problem gets to be a very complex one when underlying
uncertainties and technical specifications of all units are
taken into account. Turning for distributed solutions seems
to be a necessity.

Hence, we are interested in the problem of matching
supply and demand locally at household level. Each house-
hold in the network performs an optimal control problem,
based on local information. Prices may be communicated
amongst a few neighbors in the network to improve the
overall performance. With this motivation, we are looking
for a dynamic price mechanism to coordinate production
between houses in the network. It is essential to note that the
households in this network are both producers and consumers
of electricity.

Distributed optimal control via dual decomposition meth-
ods, e.g., [4], appears to be an attractive method to achieve
matching of supply and demand in the electricity grid. Via
the dual decomposition in fact distributed dynamic price
patterns can be achieved. Due to the operational constraints
of µ-CHP’s, Model Predictive Control (MPC) seems to be a
useful approach to solve optimal control problems subject
to dynamic models, input and state constraints [5]. The
extension of the distributed optimal control settings via dual
decomposition methods to an MPC setting is treated in [6].
Here we study the use of the latter method for application
to the (large scale) embedding of µ-CHP’s in the electricity
grid.

In [7] we have introduced dynamic price mechanisms,
and used a more centralized version of the optimal control
problem to balance a network of prosumers with µ-CHP
systems. The model of the current electricity grid was
compared to a fully distributed grid topology, but the results
still lack the inclusion of constraints that are inherently
present when using µ-CHP’s, and the computations where
only partly performed in a distributed sense. Here we extend
those results to the application of the fully distributed MPC
setting via dual decomposition and gradient iterations as
presented in [6], and we include more realistic modeling
considerations corresponding to the µ-CHP. Furthermore, we
extend our analysis by using demand data of different types
of households, and we check the scalability of the problem.

The structure of the paper is as follows; In Section II a
review of the distributed MPC framework is given, in Section
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III a detailed description of the network model we propose is
given. Section IV presents the simulation results and Section
V ends with concluding remarks.

II. REVIEW
We aim to model a network of households with µ-CHP

in a distributed Model Predictive Control (MPC) setting. We
use MPC to handle constraints and predictions models, and
we use the distributed control setting so that local controllers
only have to take into account local information.

Here we give a quick review of a distributed MPC scheme
for convex problems, as described in [6]. The technique is
based on dual decomposition and sub-gradient iterations.

Since the 1960s dual decomposition methods for find-
ing the optimal control trajectories have been developed.
Later these decomposition methods were also developed for
dynamical large-scale optimization problems. The original
problem is replaced by several smaller subproblems. Each
subproblem is isolated, except through a small interface
depending on the structure of the original problem. In [8] it
has been shown that dynamic price mechanisms result from
the dual decomposition method for distributed optimization
of feedback systems. In [6] the method is combined with
Model Predictive Control (MPC).

Consider a distributed system given by state equations

xk+1 = Axk +Buk + wk, (1)

where k is the discrete time variable, xk is the to-be-
controlled vector of n users, uk contains the m control
inputs, and wk contains the n disturbances. Information
matrix A is an n × n matrix that specifies the topology of
the network, and B is an n×m input matrix.

Let i be a user in the network. The state, input and
disturbance take its values in

xki ∈ Xi, i = 1, ..., n, ∀k ∈ Z
uki ∈ Ui, i = 1, ...,m, ∀k ∈ Z
wki ∈Wi, i = 1, ..., n, ∀k ∈ Z

(2)

where the sets Xi, Ui,Wi are constraining sets. The dis-
turbances wki are assumed bounded |wki | ≤ wmax. Models
with this boundness assumption and dual decomposition is
presented in [9].

There is a local cost li(xki , u
k
i ) associated with each user

i at every time step k, where li ≥ 0 and with li(0, 0) = 0.
This cost is assumed to be independent in time. The objective
is to find the sequence {uk}∞k=0 given initial values x0 that
minimize value function

V∞(x0, u0, ..., u∞) =

∞∑
k=0

n∑
i=1

li(x
k
i , u

k
i ), (3)

for the system (1) with (2).
When the above problem is not possible to solve, because

of constraints and because we want to incorporate new
measurements of wk on each time step k, we formulate the
problem in a MPC setting.

To use over the MPC horizeon N , we introduce a new
discrete time variable τ = 0, ..., N starting at time k, and

replace the minimization of V∞(x0, u0, ..., u∞) with the
minimization of

V N (xk, û0, ..., ûN ) =

N∑
τ=0

n∑
i=1

li(x̂
τ
i , û

τ
i ), (4)

for the system (5c) given the real state xk at time k. The hat
notation is to distinguish variables used in the finite horizon
problem and variables used for the real system (1). Equation
(1) is used to predict x̂τ . According to the receding horizon
principle of MPC, after obtaining the finite optimal control
sequence, only the first control input is implemented in (1),
uk = ûτ=0.

The Centralized MPC problem recalculated at every k is
given by

V Nopt = min
ûτ

V N (xk, û0, ..., ûN ), (5a)

s.t.

x̂τ=0 = xk, (5b)

x̂τ+1 = Ax̂τ +Buτ + ŵτ , τ = 0, ..., N, (5c)
x̂τ ∈ X = X1 × ...×Xn, τ = 0, ..., N, (5d)
ûτ ∈ U = U1 × ...× Un, τ = 0, ..., N, (5e)

where x̂τ , ŵτ represents the predicted states and distur-
bances of xk+τ and wk+τ .

Next we need to obtain a distributed formulation of (5)
using dual decomposition and sub-gradient iterations. The
first step is to decouple state equations (1) using dual
decomposition. We see that the right hand side in (1) depends
on neighboring states through the information matrix A. Each
user introduces a local variable vk representing the guess of
expected influence from connected users. Additional equality
constraints are introduced, since a guess about neighbors’
action should agree with the neighbor’s reality. The system
is now given by the decoupled state equations

xk+1 = ADx
k +Buk + vk + wk (6)

s.t. vk = Aox
k (7)

where AD = diag(A) and Ao = A−AD.
The constraints (7) are relaxed by introducing Lagrangian

multipliers λk to cost function (5a), which are interpreted as
prices [4]. We obtain an Almost distributed MPC formulation
of (5). The solution is the same as for the centralized MPC
under convexity assumptions, i.e. l1, ..., ln are convex [6].

V Nopt =max
λ

min
ûτ ,x̂τ ,v̂τ

N∑
τ=0

l(x̂τ , ûτ ) + (λτ )T (v̂τ −Aox̂τ ) =

max
λ

∑
i

min
ûτi ,x̂

τ
i ,v̂

τ
i

N∑
τ=0

li(x̂
τ
i , û

τ
i ) + λτi v̂

τ
i − (

∑
j 6=i

λτjAji)x̂
τ
i

s.t. (8)

x̂τ=0
i =xki , i = 1, ..., n,

x̂τ+1
i =Aiix̂

τ +Biû
τ + v̂τi + ŵτi , i = 1, .., n, τ = 0, .., N,

x̂τi ∈Xi, i = 1, ..., n, τ = 0, ..., N,

ûτi ∈Ui. i = 1, ..., n, τ = 0, ..., N,
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where l(·) =
∑n
i=1 li(·) . The inner minimization problem is

now fully distributed. Only price information from connected
users are needed. However, as the problem is stated above,
global coordination to obtain the right prices in the outer
maximization problem is still required. Therefore, we added
the word ”Almost” in the method.

In order to make the problem fully distributed, in [6]
gradient iterations are included. We call the new value
function in (8) V N (xk, û0, ..., ûN , λ0, ..., λN ). We observe
that V N (xk, û0, ..., ûN , λ0, ..., λN ) is concave in λ, even if
the original problem is not convex [10]. The optimal price
sequence can be found with the means of gradient iterations.
When ∇λV N (xk, û0, ..., ûN , λ0, ..., λN ) = 0 the constraints
from (7) are met.

Prices are updated according to

λτi,r+1 = λτi,r + γi,r[v
τ
i,r −

∑
j 6=i

Aijx
τ
j,r], τ = 0, ..., N (9)

In this way the price updates are also completely distributed,
only depending on neighboring users. Gradient iterations (9)
are performed over subscripts r, and γi,r chosen such that
we converge to the optimum. A Completely distributed MPC
is obtained.

In order for the completely distributed formulation to
converge to problem (8), the inner minimization problem of
(8) and gradient iterations (9) need to be solved iteratively.
The convergence might need many iterations. A stopping
criterion that guarantees a sub optimal bound is therefore
given in [6].

Even though (9) converges for non convex problems, the
combined problem of gradient iterations and minimization
of the inner problem might not converge if the problem is
not convex. If input set U is discrete we might end up in an
alternating solution, as we will see later.

If Xi, Ui are convex sets, and the cost functions∑n
i=1 li(x

k
i , u

k
i ) are convex, we are guaranteed that the

centralized MPC problem (5) and the decentralized MPC
problem (8) provide the same solution. Thus, the completely
distributed MPC gives the optimal solution, if we iterate to
convergence.

III. SYSTEM DESCRIPTION

In this section we describe our model of a network of
households where each house is both producer and consumer
of electricity. Such households are often refereed to as
”prosumers” in the literature. For the network of prosumers
it is a common goal to balance production and consumption
of electricity. We seek to describe a mechanism balancing the
amount of electricity withdrawn and added to the electricity
grid on household level.

One strategy to achieve balance in the network is to
match production and consumption only inside each house.
However, it is clear that if neighbors cooperate and share
some information with each other, the balancing could be
done more efficiently. Imagine house A has a high demand,
but no generation opportunity. House B is using their µ-
CHP system to cover heat demand, but has excess electricity

production. House B could earn money by selling electricity
to neighbor A, while the electricity is still locally produced
and consumed in the network. Motivated by this, we wish
to have a communication structure in the network.

We achieve this communication through dynamic coupling
between the houses’ notion of imbalance, xk, at each node

xk+1 = Axk +Buk + wk. (10)

Here the imbalance xk is the difference between production
and demand, uk is change in production, i.e. uk = pk+1−pk
where pk is the production at time k, and wk is change in
demand, i.e. wk = dk+1−dk where dk is the demand at time
k. At time k = 0, the imbalance is initiated x0 = d0i − p0i .
As time evolves, xki becomes a combination of imbalances
on several nodes. For this reason we call xk the notion of
imbalance at each node. The change in demand is bounded
|wk| ≤ wmax, since the network connections are secured by
the network. Underlying uncertainties, demand patterns and
technical specifications on the µ-CHP are allowed to vary
from household to household.

Each household only controls its own µ-CHP. Thus, every
column and row of B contain maximally one non-zero
element. If there is no generator present in household i then
Bii = 0. The topology of the network is given by the A
matrix.

A. Information matrix A

The information matrix A specifies the direction and
weight of communication in the network. Imbalance in-
formation (or prices) are only communicated to neighbors
connected with an edge. As an example; we have a directed
graph D = (Hn, En), with n households. The household
set is given by Hn = {1, ..., n}, and En ⊆ Hn × Hn

denotes the edge set. There is an edge in the graph ((i, j) ∈
En) whenever information is communicated directly from
household i to household j. Figure 1 displays a graph where
n = 5, and the arrows represent the edges. The graph
structure is given by the information matrix A, where Aij 6=
0 if and only if (i, j) ∈ En. The columns of A should sum
up to one

∑
j Aij = 1, to ensure that the total amount of

imbalance
∑
i x

k
i does not increase or decrease with time due

to other effects than control inputs uk and changes in demand
wk. We have chosen the weights in A nonnegative. An entry
Aij equal to zero means that the there is no information
shared between the corresponding households. The higher
the value of Aij is, the larger the part of the imbalance
from this household j is regulated in the local optimization
problem of household i.
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Fig. 1. A graph with five users. The arrow from household i to household
j indicates the direction of information flow. Self-loops come from diagonal
elements of A.
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B. The local cost

We want to obtain a perfect balance between electricity
production and electricity consumption in the network. In
other words we aim to regulate the states xk to the origin.
In addition we want to achieve this as cheap as possible in
uk. We choose a quadratic cost function, to ease computation
and assure feasibility. An explicit expression for li in eq (4)
is

li(x
k
i , u

k
i ) = Ri(x

k
i )

2 +Qi(u
k
i )

2 (11)

with weigths Ri > 0, Qi ≥ 0.

C. The Prices

Lagrange multipliers have the intuition of being prices that
optimizers would pay to loosen constraints. This intuition
serves well here, where we use prices to decentralize a
centralized optimum.

It is interesting to note that each household i has a unique
price λi, which in general differs from prices elsewhere in the
network. The price changes locally depending on the local
imbalance xki . When the price rises at one node, the prices at
connected nodes also rise slowly with time as long as there
is still imbalance that is not compensated for. When local
production is possible, fluctuations in price will not travel
far in the network.

D. The µ-CHP

In this paper we are interested in the essential character-
istics of an operating µ-CHP unit. We want to implement
constraints of such system in the distributed MPC setting
described in section II. Therefore we abstract out from the
details of a specific µ-CHP unit that is present in our lab.

We set a minimum on time Ton that the device has to be
on after it is turned on. This represents the start up phase,
when the µ-CHP should not be turned off. We also consider
a minimum off time Toff, as some of the µ-CHPs need to cool
off before starting up again. The production pk, is between
zero when it is off and at maximum pmax when it is on.

Ultimately we want the power output to either zero or
within a range pmin ≤ pk ≤ pmax, which makes the input
set U non convex. Since we run into difficulties due to the
non convexity and logics connected to the constraints, we
describe two minimization problems.

The problems are solved at each household i given prices
λ from neighbor houses. The first problem is convex, which
makes it easy to solve. The second one is more close to
reality, but requires more computation effort, and sometimes
the solution do not converge. We want to see if devices
with the above characteristics can be controlled in a network
of households, to schedule a balance between electricity
production and consumption. Our interest is also to see
whether the first problem is useful compared to the second,
and to look at how the prices at the different nodes behaves
in the two settings.

First we formulate Problem (12) which is a convex
problem. This has an advantage that we can guarantee
convergence [10], but this will not capture a strictly on-off

behavior of the µ-CHP since production pk can take on any
value in an interval.

The constraints that will be considered are a minimum off
time Toff after shut down, a minimum on time Toff after start
up, and a maximum and minimum production 0 ≤ pk ≤
pmax.

We initiate predictions x̂τ=0
i , ŵτ=0

i , p̂τ=0
i with the mea-

sured values at time step k. Prices λi are found by gradient
iterations (9).

V Nopt,i = min
ûτi ,x̂

τ
i ,v̂

τ
i

N∑
τ=0

li(x̂
τ
i , û

τ
i ) + λτi v

τ
i − (

∑
j 6=i

λτjAji)x̂
τ
i ,

s.t. (12)

x̂τ=0
i = xki , ŵ

τ=0
i = wki , p̂

τ=0
i = pki ,

ŵτi = 0, τ = 1, ..., N,

x̂τ+1
i = Aiix̂

τ
i +Biû

τ
i + v̂τi + ŵτi , τ = 0, ..., N,

p̂τ+1
i = p̂τi + ûτi , τ = 0, ..., N,

p̂τi = 0, τ = 0, ..., Ti,off − tki,off,

p̂τi 6= 0, τ = 0, ..., Ti,on − tki,on,

0 ≤ p̂τi ≤ pi,max,

tτ+1
i,off = tτi,off + 1, tτ+1

i,on = tτi,on + 1.

where li is given in (11). The variables toff, ton behaves a
counter to ensure that the µ-CHP is off/on for the required
number of time steps Toff, Ton after shut down/ramp up. The
counter toff is set to zero when the µ-CHP is turned off,
which means that both pk+1 = 0 and pk 6= 0. Similarly, ton
is set to zero when pk+1 6= 0 and pk = 0.

Since a real µ-CHP can not produce infinitely small
amounts of electricity, we have chosen a threshold pmin > 0
in the implementation. If a solution uk is found such that the
production is brought below this value, it is interpreted as
the µ-CHP is shut down. In this case uk is not implemented
to the system. Note that inside a minimization step the
controller does not know that the µ-CHP will shut down
at some point in the horizon. This is here imposed outside
the minimization problem. We can use a QP-solver to solve
the minimization problem.

Second we formulate Problem (16). In contrast to problem
(12) we here introduce a mechanism that resets toff, ton inside
the minimization. In addition the production is now only
allowed to be zero or within a range pmin ≤ pk ≤ pmax.
Hence, we add the notion of shut down/start up to the
optimization problem. Since p does not take values in a
convex set, this means that U is also not convex.

The constraints that will be considered are a minimum
off time Toff, a minimum on time Ton , and strictly on-off
behavior.

We use a Mixed Integer Quadratic Program (MIQP) to
solve the problem. This type of program that deals with
binary variables, is described in [3]. Similar to [2], we
introduce a binary variable, rk, which indicates whether the
µ-CHP is running or not.

rk =

{
1 if the µ-CHP is on,
0 if the µ-CHP is off.

(13)
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For correct operation we also need to know if the µ-CHP is
turned on or off at a given time step. To keep track of this
action we introduce action variables ak.

ak =


−1 turn off µ-CHP,
0 stay as it is,
1 turn on µ-CHP.

(14)

The equation describing the relation between the run state
of the µ-CHP and the action taken at the given time-step is
given by

rk+1 − rk = ak. (15)

This should ensure proper operation.
Again prices are given by (9). The minimization to be

solved at each household node is

V Nopt,i = min
ûτi ,x̂

τ
i ,v̂

τ
i

N∑
τ=0

li(x̂
τ
i , û

τ
i ) + λτi v̂

τ
i − (

∑
j 6=i

λτjAji)x̂
τ
i ,

s.t. (16)

x̂τ=0
i = xki , ŵ

τ=0
i = wki , p̂

τ=0
i = pki ,

ŵτi = 0, τ = 1, ..., N,

x̂τ+1
i = Aiix̂

τ +Biu
τ + v̂τi + ŵτi , τ = 0, ..., N,

âτi ∈ {−1, 0, 1}, τ = 0, ..., N,

r̂τi = 0, τ = 0...Ti,off − tτi,off,

r̂τi = 1, τ = 0...Ti,on − tτi,on,

r̂τ+1
i − r̂τi = âτi , τ = 0, ..., N,

p̂τ+1
i = p̂τi + ûτi , τ = 1, ..., N,

r̂τi · pi,min ≤ p̂τi ≤ r̂τi · pi,max, τ = 0, ..., N,

tτ+1
i,off =

{
tτi,off + 1 when r̂τi = 0,

tτi,off when r̂τi = 1,

tτ+1
i,on =

{
tτi,on when r̂τi = 0,

tτi,on + 1 when r̂τi = 1,
where li is given in (11). The counter ti,off is set to

zero when action âτi = −1 is taken, i.e. when the µ-CHP
is turned off. When âτi = 1 and the µ-CHP is turned
on, ti,on is set to zero. Now the on/off constraints are not
set outside the problem, but is updated inside the MPC
optimization. Another difference with Problem 12 is that
when we do find a solution, we are guaranteed that it is
a feasible solution. However, when Ui is not convex we will
sometimes not converge in the iterations between gradient
step for prices and minimization to find control input. We
may fluctuate between two solutions. In the implementation
we stop the iteration when the input fluctuate, the last input
before fluctuation is implemented.

IV. SIMULATION RESULT
We perform simulations with realistic demand patterns

[11] generated by Energy research Center of the Netherlands
(ECN). Five different type of households are taken into
consideration; a single person in an apartment, two persons
in a semi-detached house, two persons in a sixties terraced
house, three persons in a modernized sixties terraced house,
and finally a five persons house in a detached house. The
simulations use patterns that represent half a day in Novem-
ber month, when we can assume that the heat demand is

high in the houses, so that the heat production is not wasted.
The resolution is one minute.

The prediction we use for the change in demand pattern
ŵτ=0 is based on the real measurement wk. We assume that
the demand stays the same over the MPC horizon such that
ŵτ = 0 for τ > 0. In the simulation displayed in figures 2 -
4 we use a circular topology, given by information matrix

A =

[
0.6 0.2 0 0 0.2
0.2 0.6 0.2 0 0
0 0.2 0.6 0.2 0
0 0 0.2 0.6 0.2
0.2 0 0 0.2 0.6

]
(17)

Each user weights their own imbalance with 0.6 and two
neighbor imbalances with 0.2.

For the simulations we use a prediction horizon of N = 8,
minimum production pmin = 0.3 kW, maximum production
pmax = 1 kW, minimum time off Toff = 15 min, and
minimum on time Toff = 15 min.

Fig. 2 shows the net imbalance, demand and production
for the network of five distinct household types solving
problem with both a QP and MIQP solver. Both solvers
are from GuRoBi version 4.5. The figure suggests that the
performance of the overall network is comparable in the two
formulations. The production curve p plotted in red (QP) and
magenta (MIQP) follows the blue demand curve d well, and
so the total imbalance x in the network is kept close to zero
like we stated in the objective.

The distribution of which house produces at what time,
differs from the two methods. This can be seen in Fig. 3. In
the QP setting the µ-CHP is turned off in three time slots k
= 200,...,400 , k = 600,...,630 and k = 690,...,710. However,
in the MIQP setting it is only turned off once k = 600,...,650.
When the µ-CHP is on, the production is modulated in the
range 0.3 kW till 1 kW.

Fig. 4 shows the price, integrated λ, for each household.
The prices increase rapidly in the beginning of the simula-
tion. After k = 300 minutes it flattens and fluctuates between
values 30000 and 50000 in this figure. The purple line is the
price pattern corresponding to MIQP in Fig. 3. We notice
that the price rises when the µ-CHP is turned off. When the
µ-CHP is switched on the price immediately decreases. Since
the price rises when electricity shortage rises this stimulates
the device to be turned on when needed.

To check the scalability of the problem we compared the
QP-simulation time for n = {5, 50, 250} households,
both for centralized and distributed computations. For the
distributed case we look at the average number of gradient
iterations per node, while for the centralized case we look
at computation time. If we normalize the values to the five
houses case, the distributed values are {1, 1.01, 1.67} and
the centralized values are {1, 5.83, 27.27}.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

By modeling an electrical micro grid in the framework of
section II, we have seen that the µ-CHP can be controlled
in a distributed manner using MPC and only communicating
to a few neighbors. We proposed one network model with
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Fig. 2. Net imbalance x, demand d, and production p in a circular network
of five households. One household of each type.

Fig. 3. Node number 5 where the demand pattern comes from a household
of a married couple with three children.

Fig. 4. The integrated change in prices λi for each household type in the
network.

two different µ-CHP models, each requiring two different
solving techniques. The first one having the advantage that
convex problems are fast to solve, and the second one
having the advantage that the problem is more realistic. On
a network scale the two approaches behave similar, however
considering each node there are differences.

A unique price pattern is generated for each node. The
prices stimulate local production for local demand when a
local generator is available. This is exactly what we wanted.

When the sub-gradient iterations with the inner minimiza-
tion problem is stopped before it has converged, the solution
is suboptimal compared to the centralized problem. Sub-
optimality bounds are given in [6].

B. Future Works

The µ-CHP is constrained by heat demand in the house-
hold. This coupling was not taken into consideration in this
work, where we were mainly interested in how devices with
some typical behavior could be modeled in the distributed
MPC framework explained in section II. However, the MPC
framework enables to incorporate a new set of constraints.
We have the patterns for energy use for tap water and room
heating, and will model heat storage of the µ-CHP. This will
give an even more realistic behavior.

Demand was taken as an external signal in the model
presented in section III. However, it is clear that when the
household is aware of its price pattern also demand will be
affected. We aim at including a dynamic model for the part
of the demand that is flexible inside a household.
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