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Stability analysis and controller design for a linear system with Duhem

hysteresis nonlinearity

Ruiyue Ouyang, Bayu Jayawardhana.

Abstract— In this paper, we investigate the stability of
feedback interconnections between a linear system and a
Duhem hysteresis operator, where the linear system satisfies
either counter-clockwise (CCW) or clockwise (CW) input-
output dynamics [1], [13]. More precisely, depending on the
input-output dynamics of each system, we present sufficient
conditions on the linear system that guarantee the stability of
the closed-loop systems. Based on these results we introduce a
control design methodology for stabilizing a linear plant with
a counterclockwise Duhem hysteresis operator.

I. INTRODUCTION

Hysteresis is a common phenomenon that presents in

diverse systems, such as piezo-actuator, ferromagnetic ma-

terial and mechanical systems. Normally, hysteresis is de-

fined as a nonlinear function with memory, which can not

be represented by a single-valued function. For describing

hysteretic phenomena in many different physical systems,

several hysteresis models have been proposed in the litera-

ture, see, for example, [4], [11], [9]. These includes backlash

model which is used to describe gear trains; Preisach model

for modeling the ferromagnetic systems and elastic-plastic

model which is used to study mechanical friction [4], [11].

From the perspective of input-output behavior, the hysteresis

phenomena can have counterclockwise (CCW) input-output

(I/O) dynamics [1], clockwise (CW) I/O dynamics [13],

or even more complex I/O map (such as, butterfly map

[3]). For example, backlash model generates CCW hysteresis

loops; elastic-plastic model generates CW hysteresis loops

and Preisach model can generate CCW, CW or butterfly

hysteresis loops depending on the weight of the hysterons

which are used in the Preisach model.

In recent work by Angeli [1] counterclockwise (CCW)

input-output (I/O) dynamics is characterized by

lim inf
T→∞

∫ T

0

ẏ(t)Tu(t)dt > −∞,

where u is the input signal and y is the corresponding output

signal. The integral represents the signed area enclosed by

the curve (u, y). Compare with the classical definition of

passivity in system theory [17], it can be interpreted as the

system is passive from the input u to the time derivative of

the corresponding output y.

In our previous results [7], we show that for a certain

class of Duhem hysteresis operator Φ : AC(R+) × R →
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AC(R+), there exists a storage function H	 : R2 → R+

which satisfies

dH	(yΦ(t), uΦ(t))

dt
≤ ẏΦ(t)uΦ(t), (1)

where AC is the class of absolutely continuous functions,

uΦ ∈ AC(R+), yΦ = Φ(uΦ, yΦ0
) and yΦ0

∈ R is the

initial condition. This inequality also implies that the Duhem

hysteresis operator has CCW input-output dynamics, where

we will discuss it in detail in Section II. Here, we use the

symbol 	 in H	 to indicate the counterclockwise behavior

of Φ.

In this paper, we exploit our knowledge on H	 to study

the stability of an interconnected system as shown in Figure

1, where P is a linear system which can be either CW or

CCW and Φ is the hysteresis operator. In Theorem 3.1 of

this paper, a negative feedback interconnection between P

and Φ is considered and we give sufficient conditions on

P that ensure the stability of the closed-loop system. The

conditions are related to the fact that P should be CW.

On the other hand, in Theorem 3.2, we consider a positive

feedback interconnection, and sufficient conditions on P

and Φ are given such that the closed-loop system is stable.

In this case, the conditions on P are related to the CCW

property of P and the condition on Φ is related to the sector

bound condition on the anhysteresis function of Φ. Based

on these results, we present in Section IV a control design

methodology that deals with a linear plant and a hysteretic

actuator/sensor Φ.

P

Φ

Fig. 1. Feedback interconnection between a linear plant P and a Duhem
operator Φ.

II. PRELIMINARIES

In this section we give the definitions of the CCW and CW

dynamics which are based on the work by Padthe [13] and

Angeli [1] and give a brief review on the Duhem hysteresis

operator and its dissipativity property following our results

in [7]. We denote AC(R+,R
n) the space of absolutely

continuous function f : R+ → R
n.
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A. Counterclockwise dynamics

Definition 2.1: [1], [13] A (nonlinear) map G :
AC(R+,R

m) → AC(R+,R
m) is counterclockwise (CCW)

if for every u ∈ AC(R+,R
m) with the corresponding output

map y := Gu, the following inequality holds

lim inf
T→∞

∫ T

0

〈ẏ(t), u(t)〉dt > −∞. (2)

For a nonlinear operator G, inequality (2) holds if there exists

a function H : R2 → R+ such that for every input signal u,

the inequality

dH(y(t), u(t))

dt
≤ 〈ẏ(t), u(t)〉, (3)

holds for almost every t where the output signal y :=
Gu. Note that the range of G is AC(R+,R

m), thus ẏ is

measurable.

Definition 2.2: A (nonlinear) map G : AC(R+,R
m) →

AC(R+,R
m) is strictly-input counterclockwise (SI-CCW),

if for every input u ∈ AC(R+,R
m), there exists a constant

ǫ > 0 such that the inequality

lim inf
T→∞

∫ T

0

〈ẏ(t), u(t)〉 − ǫ‖u(t)‖2dt > −∞, (4)

holds where y := Gu.

Definition 2.3: A (nonlinear) map G : AC(R+,R
m) →

AC(R+,R
m) is strictly counterclockwise (S-CCW) (see also

[1]), if for every input u ∈ AC(R+,R
m), there exists a

constant δ > 0 such that the inequality

lim inf
T→∞

∫ T

0

〈ẏ(t), u(t)〉 − δ‖ẏ(t)‖2dt > −∞, (5)

holds where y := Gu.

Note that for a system described by the state space represen-

tation as follows:

Σ :
ẋ = f(x, u), x(0) = x0

y = h(x),

}

(6)

where x ∈ R
n is the state, u ∈ R

m is the input and y ∈ R
m

is the output and f , h are sufficiently smooth functions we

could have the following lemma.

Lemma 2.4: Consider the state space system Σ as in (6).

If there exists H : Rn → R+, ǫ ≥ 0 and δ ≥ 0, such that

∂H(x)

∂x
f(x, u) ≤

〈
∂h(x)

∂x
f(x, u), u

〉

− ǫ‖u‖2

− δ

∥
∥
∥
∥

∂h(x)

∂x
f(x, u)

∥
∥
∥
∥

2

,

holds for all x ∈ R
n and u ∈ R

m, then Σ is CCW. Moreover

if ǫ > 0, it is SI-CCW and if δ > 0, it is S-CCW.

B. Clockwise dynamics

Dual to the concept of counterclockwise I/O dynamics, the

notion of clockwise I/O dynamics can be defined as follows.

Definition 2.5: [13] A (nonlinear) map G :
AC(R+,R

m) → AC(R+,R
m) is clockwise (CW) if

for every input u ∈ AC(R+,R
m) with the corresponding

output map y := Gu, the following inequality holds:

lim inf
T→∞

∫ T

0

y(t)T u̇(t)dt > −∞. (7)

For a nonlinear operator G, inequality (7) holds if there

exists a function H : R2 → R+ such that for every input

signal u ∈ AC(R+,R
m), the inequality

dH(y(t), u(t))

dt
≤ 〈y(t), u̇(t)〉, (8)

holds for a.e. t where the output signal y := Gu.

Lemma 2.6: Consider the state space system Σ as in (6).

If there exist α, V : Rm+n → R+ such that α is positive

semi-definite, V is positive definite and proper, and

[
∂V (z,x)

∂z

∂V (z,x)
∂x

] [ v
f(x, z)

]

≤ 〈h(x), v〉 − α(x, z),

(9)

holds for all x ∈ R
n, z ∈ R

m and v ∈ R
m, then Σ is CW.

PROOF. Define the extended state space system (6) as

follows
ż = v,
ẋ = f(x, z),
y = h(x).

(10)

Note that z defines the extended input in (6). It follows from

(9) and (10) that

V̇ ≤ 〈h(x), v〉 − ǫ‖h(x)‖2,

= 〈y, ż〉 − ǫ‖y‖2,

which completes our proof by taking z = u and α(x, z) =
ǫ‖h(x)‖2 = ǫ‖y‖2. 2

C. Duhem Hysteresis operator

The Duhem operator Φ : AC(R+) × R →
AC(R+), (uΦ, yΦ0

) 7→ Φ(uΦ, yΦ0
) =: yΦ is described by

([11], [12], [16])

ẏΦ(t) = f1(yΦ(t), uΦ(t))u̇Φ+(t)+f2(yΦ(t), uΦ(t))u̇Φ−(t) ,

yΦ(0) = yΦ0
, (11)

where u̇Φ+(t) := max{0, u̇Φ(t)}, u̇Φ−(t) := min{0, u̇Φ(t)}
and f1 : R2 → R, f2 : R2 → R are sufficiently smooth

functions.

An equivalent representation of f1 and f2 is

f1(yΦ(t), uΦ(t)) = F (yΦ(t), uΦ(t)) +G(yΦ(t), uΦ(t)),
f2(yΦ(t), uΦ(t)) = −F (yΦ(t), uΦ(t)) +G(yΦ(t), uΦ(t)),

}

(12)

where F = f1−f2
2 and G = f1+f2

2 . We assume that

the implicit function F (σ, ξ) = 0 can be represented by

an explicit function σ = fan(ξ) or ξ = gan(σ). Such

function fan (or gan) is called an anhysteresis function and

the corresponding graph {(ξ, fan(ξ))|ξ ∈ R} is called an

anhysteresis curve. Using fan and the definition of F , it can

be checked that f1(fan(ξ), ξ) = f2(fan(ξ), ξ) holds.

To show the CCW properties of the Duhem operator, we

review our previous results in [7]. In [7], we define a storage

1677



function H	 : R2 → R for the Duhem operator Φ such that

(1) holds (under certain conditions on f1 and f2). We also

show that H	 is positive definite if f1 > 0 and f2 > 0.

Before we can define the storage function H	 for Φ, we

need to define a few more functions which depend on f1 and

f2.

Firstly, we define a function ωΦ that describes the possible

trajectory of Φ when a monotone increasing uΦ and a

monotone decreasing uΦ is applied to Φ from an initial

condition.

For every pair (yΦ0
, uΦ0

) ∈ R
2, let ωΦ,1(·, yΦ0

, uΦ0
) :

[uΦ0
,∞) → R be the solution of

x(τ) − x(uΦ0
) =

∫ τ

uΦ0

f1(x(σ), σ) dσ,

x(uΦ0
) = yΦ0

∀τ ∈ [uΦ0
,∞),

and let ωΦ,2(·, yΦ0
, uΦ0

) : (−∞, uΦ0
] → R be the solution

of

x(τ) − x(uΦ0
) =

∫ τ

uΦ0

f2(x(σ), σ) dσ,

x(uΦ0
) = yΦ0

∀τ ∈ (−∞, uΦ0
].

Using the above definitions, for every pair (yΦ0
, uΦ0

) ∈ R
2,

the function ωΦ(·, yΦ0
, uΦ0

) : R → R is defined by the

concatenation of ωΦ,2(·, yΦ0
, uΦ0

) and ωΦ,1(·, yΦ0
, uΦ0

):

ωΦ(τ, yΦ0
, uΦ0

) =

{
ωΦ,2(τ, yΦ0

, uΦ0
) ∀τ ∈ (−∞, uΦ0

)
ωΦ,1(τ, yΦ0

, uΦ0
) ∀τ ∈ [uΦ0

,∞).
(13)

Again, we remark that the curve ωΦ(·, yΦ0
, uΦ0

) is the

(unique) hysteresis curve where the curve defined in

(−∞, uΦ0
] is obtained by applying a monotone decreasing

uΦ ∈ AC(R+,R
m) to Φ(uΦ, yΦ0

) with uΦ(0) = uΦ0
and

limt→∞ uΦ(t) = −∞ and, similarly, the curve defined in

[uΦ0
,∞) is produced by introducing a monotone increasing

uΦ ∈ AC(R+,R
m) to Φ(uΦ, yΦ0

) with uΦ(0) = uΦ0
and

limt→∞ uΦ(t) = ∞.

Another function that is needed for defining H	 is the

intersecting function between the anhysteresis function fan
and the function ωΦ as defined above. The function Ω :
R

2 → R is the intersecting function if ωΦ(Ω(σ, ξ), σ, ξ) =
fan(Ω(σ, ξ)) for all (σ, ξ) ∈ R

2 and Ω(σ, ξ) ≥ ξ whenever

σ ≥ fan(ξ) and Ω(σ, ξ) < ξ otherwise. For simplicity, we

assume that Ω is differentiable. In [7, Lemma 3.1] sufficient

conditions on f1 and f2 such that such Ω exists are fan be

monotone increasing and

f1(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ > fan(ξ) (14)

f2(σ, ξ) <
dfan(ξ)

dξ
− ǫ whenever σ < fan(ξ) (15)

hold where ǫ > 0.

Theorem 2.7: Consider the Duhem hysteresis operator Φ
defined in (11)-(12) with locally Lipschitz functions F,G :
R

2 → R, anhysteretic function fan (or gan) and intersecting

function Ω. Assume that f1 and f2 are positive definite.

Suppose that for all (σ, ξ) in R
2

(A) F (σ, ξ) ≥ 0 whenever σ ≤ fan(ξ),
F (σ, ξ) < 0 otherwise,

holds. Then Φ is CCW with the storage function H	 : R2 →
R+ be given by

H	(σ, ξ) = σξ −

∫ ξ

0

ωΦ(τ, σ, ξ) dτ

+

∫ Ω(σ,ξ)

0

ωΦ(τ, σ, ξ)− fan(τ) dτ . (16)

PROOF. The proof follows from Theorem 3.3 in [7]. In

particular, it is shown in [7] that

dH	(yΦ(t), uΦ(t))

dt
≤ 〈ẏΦ(t), uΦ(t)〉, (17)

where yΦ := Φ(uΦ, yΦ0
) and H	 is non-negative. By

integrating (17) from 0 to T we have

H	

(
yΦ(T ), uΦ(T )

)
−H	

(
yΦ(0), uΦ(0)

)
=

∫ T

0

ẏΦ(τ)uΦ(τ)dτ .

Since H	 is nonnegative then

∫ T

0

ẏΦ(τ)uΦ(τ)dτ ≥ −H	(yΦ(0), uΦ(0)) > −∞.

2

III. FEEDBACK INTERCONNECTION

In this section we consider either negative or positive

feedback interconnection between a linear system and a

Duhem hysteresis operator. The stability of the closed-loop

system is analyzed by using the CCW or CW properties of

the subsystems. The hysteresis operator is represented by the

Duhem operator introduced in Section II-C.

Throughout this section, we assume that the functions f1
and f2 satisfy the hypotheses in Theorem 2.7, i.e., the Duhem

operator Φ has CCW input-output dynamics.

Theorem 3.1: Consider a negative feedback interconnec-

tion between a single-input single-output linear system and

a Duhem operator Φ satisfying the hypotheses in Theorem

2.7 as follows

ẋ = Ax +Bu,
y = Cx +Du,

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),
u = −yΦ, uΦ = y,







(18)

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n and D ∈ R.

Assume that there exist P = PT > 0, L and ǫ > 0 such that

the following linear matrix inequalities (LMI)

P
[

1
0n×1

]
=

[
D
CT

]
, (19)

1

2

(

P
[
0 0n×n

B A

]
+
[

0 BT

0n×n AT

]

P
)

+ ǫLTL ≤ 0, (20)

hold. Then for every initial conditions, the state trajec-

tories of the closed-loop system (18) is bounded and all

state trajectories converges to the largest invariant set in

{(x, yΦ)|L [−yΦ

x ] = 0}.
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PROOF. By the assumptions of the theorem, the Duhem

operator Φ is CCW with the storage function H	 : R2 → R+

given in (16).

Define the extended state space of the linear system in

(18) by

ẇ = v,
ẋ = Ax+Bw,
y = Cx+Dw,

(21)

where w = u.

Using V = 1
2 [w xT ]TP

[
w
x

]

, a routine computation

shows that

V̇ =
1

2
[ w xT ]

([
0 BT

0n×n AT

]

P

+ P

[
0 0n×n

B A

])[
w
x

]

+ [ w xT ]P

[
1

0n×1

]

v.

Using (19) and (20),

V̇ ≤ 〈y, v〉 − ǫ

∥
∥
∥
∥
L

[
−yΦ
x

]∥
∥
∥
∥

2

. (22)

This inequality (22) with v = u̇ (by the relation in (21))

implies that the linear system defined in (18) is CW.

Now take Hcl(x, yΦ) = H	(yΦ, Cx −DyΦ) + V (x, yΦ)
as the Lyapunov function of the interconnected system (18),

where Hcl is radially unbounded by the non-negativity of

H	 and properness of V . It is straightforward to see that

Ḣcl = Ḣ	 + V̇ ,

≤ 〈y, u̇〉+ 〈ẏΦ, uΦ〉 − ǫ

∥
∥
∥
∥
L

[
−yΦ
x

]∥
∥
∥
∥

2

,

= −ǫ

∥
∥
∥
∥
L

[
−yΦ
x

]∥
∥
∥
∥

2

, (23)

where the last equation is due to the interconnection condi-

tions u = −yΦ and y = uΦ. It follows from (23) and from

the radial unboundedness (or properness) of Hcl, the signals

x and yΦ are bounded.

Based on the Lasalle’s invariance principle [10], the semi-

flow (x, yΦ) converges to the largest invariant set contained

in M := {(x, yΦ) ∈ R
n × R|L [−yΦ

x ] = 0}. 2

To illustrate Theorem 3.1, consider the following simple

example

ẋ = −3x+ yΦ,
y = −2x+ yΦ,

yΦ = −Φ(y),

where x ∈ R. By using P =
[

1 −2
−2 6

]
, we have V (x, yΦ) =

1
2 (−2x + yΦ)

2 + x2 which is positive definite and radially

unbounded, and

∂V (x, yΦ)

∂x
(−3x+ yΦ) +

∂V (x, yΦ)

∂yΦ
v

= −2(−3x+ yΦ)
2 + (−2x+ yΦ)v

= −2(−3x+ yΦ)
2 + yv.

Using Hcl(x, yΦ) = V (x, yΦ) + H	(−yΦ,−2x + yΦ) as

before, routine computation shows that

Ḣcl ≤ −2(−3x+ yΦ)
2 + yẏΦ −

˙︷︸︸︷

Φ(y)y

= −2(−3x+ yΦ)
2,

and thus, we can conclude that (x, yΦ) converges to the

invariant set where x = 1
3yΦ.

The result in Theorem 3.1 deals with negative feedback

interconnection of a linear system and a Duhem hysteresis

operator. In the following result, we consider the other case

where a positive feedback is used instead. This is motivated

by the study of an interconnection between counterclockwise

systems as studied in [1] for the general case and in [15] for

the linear case.

Theorem 3.2: Consider a positive feedback interconnec-

tion between a single-input single-output linear system and

a Duhem operator Φ satisfying the hypotheses in Theorem

2.7 as follows

ẋ = Ax +Bu,
y = Cx,

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),
u = yΦ, uΦ = y,







(24)

where A ∈ R
n×n, B ∈ R

n×1 and C ∈ R
1×n. Let ǫ :=

(CB)−1 where we assume CB > 0 and there exist δ > 0
and Q = QT > 0 such that

1

2
(ATQ +QA) + ǫATCTCA ≤ 0, (25)

QB +ATCT = 0, (26)

Q− δCTC > 0, (27)

hold and the anhysteresis function fan satisfies (fan(ξ) −
δξ)ξ ≤ 0, for all ξ ∈ R (i.e. fan belongs to the sector [0, δ]).
Then for every initial conditions, the state trajectory of the

closed-loop system (24) is bounded and converges to the

largest invariant set in {(x, yΦ)|CAx + CByΦ = 0}.

PROOF. Using V (x) = 1
2x

TQx and (25) and (26), it can

be checked that

V̇ =
1

2
xT (ATQ+QA)x+ xTQBu

≤ −ǫxTATCTCAx − xTATCTu

= −ǫxTATCTCAx − 2xTATCTu− uTBTCTu

+ xTATCTu+ uTBTCTu

= −ǫxTATCTCAx − 2ǫxTATCTCBu

− ǫuTBTCTCBu + xTATCTu+ uTBTCTu

= (uTBTCT + xTATCT )u

− ǫ(CAx+ CBu)T (CAx + CBu)

= 〈ẏ, u〉 − ǫẏ2.

It follows from Lemma 2.4 that the linear system is S-CCW.

By the assumptions of the theorem, the Duhem operator

Φ is also CCW with the storage function H	 : R2 → R+ as

given in (16).
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Now take Hcl(x, yΦ) = V (x) +H	(yΦ, Cx) − CxyΦ be

the Lyapunov function of the interconnected system (24).

We show first that Hcl is lower bounded. Substituting the

representation of V and H	, we have

Hcl =
1

2
xTQx+ zCx−

∫ Cx

0

ωΦ(τ, yΦ, Cx) dτ

+

∫ Ω(yΦ,Cx)

0

ωΦ(τ, yΦ, Cx)dτ

−

∫ Ω(yΦ,Cx)

0

fan(τ)dτ − CxyΦ

=
1

2
xTQx−

∫ Cx

0

fan(τ)dτ

+

∫ Ω(yΦ,Cx)

Cx

ωΦ(τ, yΦ, Cx) − fan(τ)dτ . (28)

Due to the property of the intersecting function Ω (c.f.

[7, Lemma 3.1]), the last term on the right hand side of

(28) is non-negative. Indeed, by the definition of intersecting

function Ω, Ω(yΦ, Cx) ≥ Cx whenever yΦ ≥ fan(Cx)
implies that ωΦ(τ, yΦ, Cx) ≥ fan(τ) for all Cx < τ <
Ω(yΦ, Cx). On the other hand Ω(yΦ, Cx) < Cx whenever

yΦ < fan(Cx) implies that ωΦ(τ, yΦ, Cx) < fan(τ) for all

Ω(yΦ, Cx) < τ < Cx. Thus

Hcl ≥
1

2
xTQx−

∫ Cx

0

fan(τ)dτ

=
1

2
xTQx−

∫ Cx

0

(fan(τ) − δτ)dτ −

∫ Cx

0

δτdτ

≥
1

2
xTQx−

δ

2
xTCTCx

=
1

2
xT (Q− δCTC)x > 0 ∀x 6= 0,

where the second inequality is due to the sector condition

on fan and the last inequality is due to (27). Hence, we can

conclude that Hcl is positive definite and radially unbounded.

Now computing the time derivative of Hcl, we obtain

Ḣcl = V̇ + Ḣ	 − CẋyΦ − CxẏΦ ≤ −ǫẏ2.

Based on the Lasalle’s invariance principle, the signals

(x, yΦ) converges to the largest invariant set contained in

M := {(x, yΦ) ∈ R
n × R|CAx + CByΦ = 0}.

2

We illustrate Theorem 3.2 in the following simple exam-

ple. Consider

ẋ = −x+ yΦ, y = x,
yΦ = Φ(y),

where x ∈ R. Using V (x) = 1
2x

2, where V is positive

definite and radially unbounded, and

∂V (x)

∂x
(−x+ yΦ) = −x2 + xyΦ,

= yΦẏ − (yΦ − x)2,

= yΦẏ − ẏ2.

Φ

G C

Fig. 2. Feedback interconnection with a linear system G, a controller C

and a hysteresis system Φ.

Using Hcl(x, yΦ) = V (x) + H	(yΦ, y) − yyΦ, routine

computation shows that

V̇cl ≤ ẏyΦ +
˙︷︸︸︷

Φ(y)y − ẏyΦ − yẏΦ − ẏ2

= −(−x+ yΦ)
2.

Note that Q = 1, C = 1, so that (27) holds for δ < 1. This

means that the result in Theorem 3.2 holds if the anhysteresis

function fan satisfies (fan(ξ)− δξ)ξ ≤ 0, for all ξ ∈ R and

δ < 1. In other words, fan belongs to the sector [0, δ].

IV. CONTROLLER DESIGN

The results in the previous section can be used to design

a controller for a linear plant with hysteretic input/actuator.

Consider the closed-loop system as shown in Figure 2,

where G and C are the linear systems of the plant and the

controller, respectively, given by

G :

{
ẋ = Ax+Bu,
y = Cx+Du,

C :

{
ẋc = Acxc +Bcy,
yc = Ccxc +Dcy.

(29)

Thus the linear system CG is given by

[
ẋ
ẋc

]

=

[
A 0

BcC Ac

] [
x
xc

]

+

[
B

BcD

]

u,

yc =
[
DcC Cc

]
[

x
xc

]

+DcDu.

(30)

The controller design process can then be carried out by

finding C such that the linear system CG satisfies either

(19)-(20) or (25)-(26) for a known Duhem operator Φ.

Putting (30) into the setting of our main results in The-

orem 3.1 and 3.2, the invariant set is characterized by

{M(x, xc, yΦ)|N
[

x
xc

yΦ

]

= 0} for particular N . Thus N can

also become a design parameter for determining C.

The following procedure summarizes this control design

method:

1) Determine the anhysteresis function fan of the Duhem

operator Φ and possibly, the desired N .

2) Find C such that either (19)-(20) or (25)-(26) holds.

3) If (19)-(20) is solvable, then C stabilizes the closed-

loop system with negative feedback interconnection.

4) If (25)-(26) is solvable, then C stabilizes the closed-

loop system with positive feedback interconnection.

As an example, we consider a mass-damper-spring system

with a hysteretic actuator. The mass-damper-spring system
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is given by

ẋ =

(
0 1
−1 −2

)

x+

(
0
1

)

u,

y =
(
1 0

)
x+ u. (31)

Assume that the actuator is represented by the Duhem

operator (11) where

f1(σ, ξ) = −σ + 0.475ξ + 0.3,
f2(σ, ξ) = σ − 0.475ξ + 0.3,

}

∀(σ, ξ) ∈ R. (32)

It can be verified that fan(ξ) = 0.475ξ.

With Ac =
[

0 1
−2 −2

]
, Bc = [ 01 ], Cc = [−2 −1 ] and

Dc = 1, conditions (19)-(20) are solvable with P =
[ 1 1 0 −2 −1

1 18 3 −19 −4
0 3 5 −3 −5
−2 −19 −3 21 5
−1 −4 −5 5 7

]

and L = [0 0 1/4 0 0]. Hence the con-

troller C can stabilize the closed-loop system with negative

feedback interconnection. In this case, N = [0 1/4 0 0 0].
According to Theorem 3.1, the velocity of the mass-damper-

spring system converges to zero as t → ∞ and the position

of the mass-damper-spring system converges to a constant.

The closed-loop system is simulated in Simulink with the

initial condition x(0) = [10, 10]T and the results are shown

in Figure 3.
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Fig. 3. Simulation results for the negative feedback connection, with initial
condition x(0) = [10 10]T .

On the other hand, since we have fan(ξ) = 0.475ξ, then

by taking Ac =
[

0 1
−2 −4

]
, Bc = [ 01 ], Cc = [ 1 1 ] and Dc = 0,

it can be checked that (25)-(26) holds with δ = 0.5 and Q =
[ 6 1 −6 −2

1 4 −1 −4
−6 −1 7 3
−2 −4 3 7

]

. Moreover, fan belongs to the sector [0, 0.5].

It follows from Theorem 3.2 that the closed-loop system with

positive feedback interconnection is asymptotically stable to

the invariant set M = {(x, yΦ)|[0 0 0 1 0]
[

x
xc

yΦ

]

= 0}. In

this invariant set x∗

c1 = x∗

1 = y∗Φ and x∗

2 = 0. The simulation

results is shown in Figure 4.

V. CONCLUSION

In this paper, we studied the feedback interconnection

between a linear system and a hysteresis system using the

property of counterclockwise (CCW) or clockwise (CW)

input-output dynamics of each subsystem. Furthermore, a

simple design procedure is also discussed.
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Fig. 4. Simulation results for the positive feedback connection, with initial
condition x(0) = [−10 10]T .
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