
 

 

 University of Groningen

A Machine Learning Approach for Identifying and Classifying Faults in Wireless Sensor
Networks
Warriach, Ehsan Ullah; Aiello, Marco; Tei, Kenji

Published in:
International Conference on Computational Science and Engineering

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Warriach, E. U., Aiello, M., & Tei, K. (2012). A Machine Learning Approach for Identifying and Classifying
Faults in Wireless Sensor Networks. In International Conference on Computational Science and
Engineering (pp. 618-625). IEEE (The Institute of Electrical and Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/b7756e9c-d49e-487e-8756-e327d92da368


A Machine Learning Approach for Identifying and
Classifying Faults in Wireless Sensor Networks

Ehsan Ullah Warriach, Marco Aiello
Department of Mathematics and Computer Science

University of Groningen

Groningen, The Netherlands

Email: e.u.warriach,m.aiello@rug.nl

Kenji Tei
National Institute of Informatics

Tokyo, Japan

Email: tei@nii.ac.jp

Abstract—Wireless Sensor Network (WSN) deployment expe-
riences show that collected data is prone to be faulty. Faults are
due to internal and external influences, such as calibration, low
battery, environmental interference and sensor aging. However,
only few solutions exist to deal with faulty sensory data in WSN.
We develop a statistical approach to detect and identify faults
in a WSN. In particular, we focus on the identification and
classification of data and system fault types as it is essential
to perform accurate recovery actions. Our method uses Hidden
Markov Models (HMMs) to capture the fault-free dynamics of
an environment and dynamics of faulty data. It then performs a
structural analysis of these HMMs to determine the type of data
and system faults affecting sensor measurements. The approach
is validated using real data obtained from over one month of
samples from motes deployed in an actual living lab.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) has been extensively

employed for enabling various monitoring and control appli-

cations such as environment surveillance, industrial sensing,

or traffic monitoring [6]. Numerous mobile and pervasive

applications are constantly collecting and processing infor-

mation from the physical world and providing information

about sensed environment or events at a high level of detail.

Long-term deployments of WSNs in real world settings are

becoming more frequent, also because wireless sensor network

software and hardware are progressing dramatically [16].

The cornerstone for the success lies in the ability to draw

meaningful and precise inferences from the collected data,

which in turn requires to have high sensor data quality.

WSNs are installed for the purpose of sensing and moni-

toring an area of interest for specific physical quantities, often

implying that these wireless sensors are left unattended for

long periods of time in the field, and in turn rendering them

prone to failures. Cheap sensors are also incline to develop

faults as they age posing a major problem for the application,

as the data from the network becomes progressively unreli-

able. An early detection of such fault is necessary for the

effective operation of the sensor network. Many deployment

experiences show that data collected from WSNs are prone

to be faulty due to internal and external influences, such

as calibration, battery drain, environmental interference and

sensor aging.

As wireless sensor network technology progresses, ensuring

data quality needs also to become an active area of inves-

tigation. For instance, with the aim of creating a simple to

use wireless sensor network application, in [22], the authors

perceived the complexity of collecting correct sensor data. A

key source of faults in WSNs is calibration. Sensor nodes

during installed periods possibly will offset or gain, and it

is a significant effort to make them correct. The authors

of [22] conclude that calibration is a hard challenge for the

upcoming progress in WSN. They examine that faults can

happen in surprising ways. For example, Tolle et al. [13]

installed a WSN application by using the system explained

in [22], to investigate the microclimate over the volume of a

redwood tree. The authors found that only 49% of the data

samples will possibly be considered as significant because

there are numerous faulty data sample readings that need to be

disregarded. Two recent papers [23], [2] proposed approaches

to execute calibration on-line, though there are some concerns

as the deployed wireless sensor network lacks any ground

truth samples for comparison. Generally, wireless sensor nodes

experience two broad categories of faults; those affecting the

performance of WSN such as, system and data faults. On the

one hand, there is the data centric view comprising faults such

as stuck-at, offset and gain. On the other hand, there is the

system centric view with faults such as calibration, low battery
and environment out of range.

Surprisingly, the requirement for consistent and protected

data collection in sensor applications appears to have received

less attention than the problem of protecting a WSN applica-

tion from network-level system faults, e.g., malicious message

routing. A limited number of studies have examined to manage

WSN from the effects of faulty sensor data, an exception being

[7]. This paper presents an on-the-fly statistical approach to

distinguish faulty sensor readings and to identify and classify

data and system fault types in a WSN. Identifying data and

system faults is necessary to confirm the precise accuracy of

a WSN, while differentiating data faults from system faults

is essential to identify the causes of failure and to pledge

a precise recovery action. The proposed method considers

Hidden Markov Models (HMMs) to detect and identify data

and system faults types. At every time step of the algorithm

we propose, multiple correlated observations are gathered from

several sources. Assuming that the faults have not conceded
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yet into the sources, we use a statistical clustering-based

method to statistically distinguish accurate observations from

faulty ones. Therefore, we can efficiently identify the HMM

capturing the correspondence between the hidden and accurate

changes of the detected phenomenon (based on data from

fault-free sensors) and the observable changes of the sensed

phenomenon (based on fault and fault-free sensory data).

Previous work has used HMMs to simply detect variances,

here we make a broader use of it by considering the iden-

tification and classification of the type of the detected data

fault such as stuck-at, offset and gain, and also to identify and

classify the system faults that affect the sensor network. To

achieve this goal, we need another HMM that represents the

coherence among the hidden changes of detected phenomenon

and the changes of data and system faults, and through a

structural reasoning between the two HMMs. We validate

the approach using real world data samples collected over

15 days of readings from motes deployed in lab created in

connection to an European Framework seven project called

GreenerBuildings [4].

The rest of the paper is organized as follows. The basics

of HMMs are recalled in Section II. The proposed approach

for detecting and classifying data and system faults in WSNs

is presented in Section III. In Section IV, we define common

data and system fault models and their causes at the network

and node levels. The data and system faults classification

method is presented in Section V. The experimental results

of the proposed method with real-world dataset is presented

in Sections VI. Section VII discusses related work. Finally, in

Section VIII we provide our concluding remarks.

II. HIDDEN MARKOV MODELS

A HMM captures a stochastic process that is concluded

through a sequence of observations, which are stochastically

related to the state of the hidden process [3]. A HMM is

a statistical model in which the system being modeled is

assumed to be a Markov process with unknown parameters,

and the challenge is to determine the hidden parameters

from the observable parameters. In an HMM, the state is

not directly observable, but variables influenced by the state

are observable. Each state has a probability distribution over

the possible output observations. Therefore the sequence of

observations generated by an HMM gives some information

about the sequence of states. Mathematically, an HMM is

characterized by:

N: The number of states in the model. We represent the

single states as S = {s1,s2, .....sN}.
M: The set of possible measurements. We represent the

single measurement as V = {v1,v2, .....,vN}.
C: A sample symbol probability distribution C = {cgi},

where cgi = P{vt = Vi|st = Sg} and vt denote the

sample reading at time t, 1≤ g, i≤ N.

D: The state transition probability D = {dgh}, where dgh
characterizes the probability of a transition to state

h from state g. dgh = P{st+1 = Sh|st = Sg} and st is

the hidden state at time t, 1≤ g,h≤ N.

π: The initial state distribution π = {πg}, where πa is

the probability that the HMM starts in state a: πg =
P{sv = Sg}, 1≤ g≤ N.

In order to estimate the parameters N,M,C,D and π of the

HMM, we use a supervised learning technique (Figure 1).

Where a dataset is partitioned into training and test sets. We

inject data faults into (fault-free) training dataset, label each

sample as fault-free or faulty with a particular fault type,

and use this labeled data for estimating the parameters of

the HMM. In an early fault-free training period, a HMM

Fig. 1: Environment Modeling through HMMs

σ is recognized to represent the accurate behavior of the

application.

III. IDENTIFYING AND CLASSIFYING FAULTS

Data samples from sensors deployed in an area of interest

are used as the input to the client application on the base

station for analysis, then on a single base station the following

steps are taken (see Figure 2):

• Accumulate sensory data and combine it based on a

predefined time window Tw.

• From the samples collected in each time window and a

set of possible states of the environment create: (i) a set

vg of the visible states of the sensed phenomenon (based

on the data irrespective of their precision), (ii) a set ag
of the hidden states of the sensed phenomenon, and (iii)

a set fg of the faulty states obtained from samples those

degraded as a result of system faults.

• Construct a HMMAV that describes the hidden (denoted

with ag) and visible states of the environment (denoted

with vg), and a HMMAF that describes the hidden (de-

noted by ag) with the fault states (denoted by fg).

• Examine the two HMMs, which are based on known fault

models, identify the type of data and system fault that has

affected the sensor samples.

• Construct a Markov Model MA showing a fault-free states

of the sensed environment to the user.

A. Data Collection

Data streams from sensors are used as the input to the

client application at the base station for analysis, as shown

in Figure 2. In general, sensors are multimodal and measure

several physical quantities. For example, we use the CM5000

mote, which is an IEEE 802.15.4 compliant wireless sensor

node based on the original open-source "TelosB" platform. The

included sensors measure temperature, relative humidity, and
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Fig. 2: Data and System Fault Detection Approach

light. The value of the target environment attributes examined

with sensors is denoted by Q(t) in the deployed space of

interest as a multidimensional, unidentified constraint that

differs by time.

We assume that each sensor periodically sends a message

(t,x) to a base station, where t is the time of reading of

the value x from a sensor g such that xg = Q(t) + εg, with

εg denotes the additive noise. Suppose that a sensor sample

V = {(t,x)} is measured at a base station and split the given

sample into intervals of period Tw to have an array of measured

samples {Vg} such that:

Vg = {x|(t,x) ∈V ∧Tw.(g−1)≤ t ≥ Tw.g} (1)

The constraint Tw have to be large enough so that Vg are non-

empty sets. An environment state grouping component uses an

online statistical clustering algorithm at given samples to rec-

ognize the likely states S = {s1,s2...,sN} of the environment.

Figure 3 shows an example where six states sh are recognized.

A visible state identification component concludes the current

visible state of the given sample vg by using a present samples

set Vg. The visible state defines the entire samples readings

x1,x2...,xN in Vg:

vg = arg min
1≤i≤M

||si− 1

N

N

∑
h=1

xh|| (2)

Figure 3 shows an example where a sample set Vg of five

readings xh is mapped onto the visible state s3, since s3 is the

nearby state with respect to the mean value measured through

given readings. A sample to state finding component finds all

Fig. 3: Possible Environment States of the RUG Lab Dataset

sample readings xh in Vg from the possible states that defines

xh, such that:

lh = arg min
1≤i≤M

||si− xh|| (3)

In Figure 3, samples x1 to x3 are nearby to state s5; therefore,

l1 = l2 = l3 = 5. On the other hand, sample readings x4 and

x5 are nearby to states s3 and s4, correspondingly; therefore,

l4 = 3 and l5 = 4. An accurate state identification component

determines the precise state ag, e.g., the state that defines the

entire set of sample readings in Vg that group mutually:

ag = arg max
1≤i≤N

|{xh ∈Vg|lh = i}| (4)

The process explained so far uses a set of environment states

S= {s1,s2, ....,sN} to define the likely physical status traversed

by the environment and the system faults. The environment
state grouping component provides an updated estimation of

the states set. It means, if any ordinary deviations in the clus-

tered states happen, the environment state grouping component

uses an online statistical clustering algorithm on the given

sample to capture them. The component uses the incoming

sample readings set Vg to update the value of obtained states.

The ultimate goal of this component is to provide a set of states

that is obtained from given dataset and completely represent

the sample.

B. Environment Modeling through Hidden Markov Model
The proposed approach examines the structural properties

of two HMMs generated from the sample data to categorize

the data and system faults affecting the WSN. Though, both

hidden states and samples states imitate the likely environment

states {s1,s2, ...,sN}, these states are generated with the envi-
ronment state grouping component. The proposed approach

considers two HMMs: (1) an HMM which maps a set ag
(based on hidden/accurate changes of the atmosphere) onto a

set vg (based on the visible changes of the atmosphere); and (2)

an HMM that maps a set ag onto a system fault set fg (based

on the changes of a faulty sensor). Hidden/accurate states of

the deployed sensors ag are not directly visible. They are

generated by an accurate state component and are, therefore,

accessible when constructing the two types of HMMs. We use

an on-line method to generate an HMM, which estimate the

current hidden state of the model (ag) and the current sample

reading (vg or fg, based on the used HMM).
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IV. DATA AND SYSTEM FAULTS

Wireless sensor nodes experience two broad categories

of faults, both affecting the performance. The first type is

system faults, which naturally happes because of calibration,

connection or hardware failures, communication failures or

low battery states. The second type is data faults, where a

sensor node performs normally apart from its sensing sample

reading, leads to major biased or random faults, such as stuck-

at, offset or gain. In general, a fault is defined as a variation

from the probable model of the phenomenon, if the ground

truth is available with high confidence. In this paper, we study

faults from a data-centric perspective such as stuck-at, offset

and gain, and from system-centric view such as calibration

and low battery. It means that identification and classification

among data and system fault types is necessary to have the

chance of performing a recovery action. Next, we define most

common data and system fault types for WSNs.

A. Data Fault Models

Wireless sensor nodes interact directly with the environment

to measure physical attributes and, therefore, there is a high

probability to a have a system fault which spoils them rapidly.

Field studies [10], [15] specify that faults originating in a

degraded sensor device are a major cause of unreliability in a

wireless sensor network. We are interested to find a simple

framework within which we can report as many faults as

possible. We assume that the true measurement values come

from a defined or random process, and noise or fault is added

on that values through either an additive noise process or a

linear deterministic function. Our generalized model for faults

is then as follows. First, a fault-free value v is represented as

follows:

x = v+ ε
where v is the true value of a phenomenon and ε is an additive

noise variable. Even, the most expensive system has some

measurement noise in reality. We identify this reading as a

fault-free value. When the sensor reading is faulty, we assume

it represent the subsequent general form:

x
′
= α0 +α1v+ ε

where α0 is the offset and α1 is the gain values. We can define

many data faults with this simple linear relationship among

true phenomenon and fault. We give a simple taxonomy of

three data faults for sensing devices.

1) Offset Fault
An offset fault is defined as a sudden deviation from the

normal data with a constant amount. It usually exhibits itself

as a calibration offset; an additive constant, which is added to

the fault-free sample reading. It implies that the faulty reading

is only based on the current sample reading and the current

offset. The faulty reading is modeled by:

x
′
= α0 + v+ ε

2) Gain Fault
The gain data fault is defined as the rate of change of

the measured sample with respect to the expectations over

an extended period of time. In the presence of a gain fault,

faulty sensor sample readings are changed by a multiplicative

constant, which is multiplied to the fault-free sample reading.

It is hard to distinguish the gain fault from an offset fault

without any ground truth and domain knowledge. The faulty

reading is modeled by:

x
′
= α1v+ ε

3) Stuck-at fault
The stuck-at fault is defined as a series of sample readings

that experience zero or roughly zero difference over a

period of time greater than expected. An example is shown

in Figure 4. The stuck-at fault shows a sensor stuck at a

particular sample value. Frequently, this is a reading at the

higher or lower boundary of the sensing range. We noticed in

the real-world living lab dataset, that temperature sensors get

stuck at value (122 ◦C), when the sensor has a low battery

level. Usually, temperature sensors have a sensitivity range

between −40 ◦C and 123.8◦C. The faulty reading is modeled

as:

x
′
= α0 .

B. System Faults

WSNs data faults are typically due to the following system

faults: calibration, low battery, communication and connec-

tion/hardware failures. We provide a classification of system

faults together with examples coming from real-world deploy-

ments. The goal of our work is to identify and classify a system

fault that changes the expected performance of a system.

1) Calibration
Calibration problems can be a root cause of faulty data

in many cases. Many papers cite the trouble in calibration,

particularly while the sensor network is deployed [22], [23],

[2], [10]. Usually, two different types of calibration faults can

happen, e.g., offset and gain faults. Since these faults may be

combined in numerous ways, these kinds of faults are difficult

to handle without any expert or domain knowledge. Sometimes

expert and domain knowledge is available but ground truth is

not, yet it is hard to distinguish between a calibration fault

and normal phenomenon variations. Usually, calibration data

faults are defined relative to the ground truth. Suppose that

the ground truth is not available then calibration data faults

can only be determined relative to a probable fault model. The

fault model is defined on the environmental context. Normally,

spatial correlation is very important for defining the fault

model when the ground truth is not available. We used HMM

to identify calibration faults because we have ground truth

information and expert knowledge.

2) Low Battery
A common cause for faulty data is a low battery e.g. [10],

[8]. A low battery level determines how long a sensor will

work and when a sensor value will start transmitting faulty

values. From the real-world dataset, we plot in Figure 4

measured temperature readings and the battery voltage levels.

The temperature sensor begins to fail at roughly the voltages

representing that the failure is a probable. Once the battery

voltage falls under such value, the temperature sensor readings

then remain stuck-at one value for the rest of the operation.

In [13], the authors conclude that sensor’s battery failures are
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responsible of most of the faults in the data. When the battery

voltage level was less than 2.4V or greater than 3V, behavior

similar to that of Figure 4 manifested itself. Sensor’s battery

supply affects the system performance by either adding noise

or giving faulty data depending on the type of sensor and

application.

Fig. 4: Stuck-at Fault in real-world Dataset

V. DATA AND SYSTEM FAULT CLASSIFICATION

To identify and classify WSN faults, we build two math-

ematical models that capture the system’s dynamic behavior,

namely a HMMAV linking accurate sensor states to visible

sensor states, and a HMMAF connecting accurate sensor states

to data and system fault states. Existence of data and system

faults change the scenario of the WSN deployment space. The

Markov Models MA is based on the array of the accurate sensor

states ag. The Markov Models MV is based on the array of

the visible sensor states vg. Both HMM models consist of the

same quantity of states and set of transitions even in case of

presence of faults. We examine the columns and the rows of

the CAV and the HMMAV matrices to see whether they are

orthogonal or not.

∀g,h : ∑
i

cav
gi cav

hi = δghand∀g,h : ∑
i

cav
ig cav

ih = δgh (5)

The first equation states the condition that if two hidden

states are distinct, then they generate two different sample

symbols. The second equation states the condition that if

two-sample symbols are distinct, then they are generated

by two different hidden states. In this paper, hidden states

of HMMAV are defined as accurate environment states, and

sample symbols of HMMAV are defined as visible environment

states. Additional classification of system and data fault types

require a detailed structural analysis of the HMMAV for system

and the HMMAF for data faults’ type.

A. Data Fault Type Detection

The proposed method examines the HMMAF model to

identify the detected data fault type. The behavior of the data

fault is examined as a function of the accurate state of the

sensor by using the HMMAF . The hidden states of HMMAF is

defined as accurate sensor states and HMMAF model defines

sample symbols as data/system faults.

Stuck-at: The stuck-at fault is defined as a faulty sensor

continuously measuring the same value, which is usually

beyond the possible state of the sensor. Consequently, all

accurate sensor states are mapped onto the identical fault state.

Formally, this corresponds to saying that the sample symbol

probability distribution CAF of HMMAF is such that it has one

column (y) that has all ones and other columns of all zeros:

∃y : ∀g : ca f
gh =

{
1 if h = y
0 if h 
= y (6)

Gain and Offset: A gain fault is characterized by a faulty

sensor reporting a faulty value that changes accordingly with

the accurate state of the sensor. It concludes that one-to-one

mapping exists among accurate and fault states. This also holds

true for an offset fault. The rows and columns from the matrix

CAF is orthogonal in gain fault. The same strategy is used for

an offset fault.

∀g,h : ∑
i

ca f
gi ca f

hi = ∑
i

ca f
ig ca f

ih = δgh. (7)

To further, categorize between gain and offset faults, we need

to calculate the data features. For example, ratio and the dif-

ference between the attributes of corresponding accurate and

data/system faults in HMMAF . A gain fault usually manifests

as a constant ratio, while an offset fault manifests as a constant

difference. Assuming an accurate state sa = (xa
1,x

a
2, ......,x

a
n)

linked with a system fault state s f = (x f
1 ,x

f
2 , ......,x

f
n) in

HMMAF if there is a constant K = (k1,k2, ....,kn) such that

∀g :
xa

g

x f
g
= kg for a gain fault or ∀g : xa

g− x f
g = kg for an offset

fault.

B. System Fault Detection

To determine the type of a detected system fault, we

look at the HMMAV . Through this model, we can study the

consequence of the system fault on the visible state of the

sensor as a function of the accurate states of the sensor. In the

absence of data and system faults, each accurate state of the

sensor corresponds to a single visible state of the sensor. One

can conclude that prevalence of a system fault in WSN alters

the one-to-one mapping.

Low battery: The low battery system fault is characterized by

an accurate sensor state being associated with multiple sample

sensor states (e.g., states g and h). In this case, columns x
and y of matrix CAV are not orthogonal: ∃g,h : ∑i cav

ig cav
ih 
= 0.

Calibration: A calibration system fault is characterized by

an accurate sensor state being associated with a single visible

sensor state. In principle, the orthogonality of the matrix CAV

is not affected by the system fault. The attributes of the corre-

sponding accurate and visible states of HMMAV are examined

to classify the fault as a calibration one. For example, in the

presence of such a fault, an accurate state sa = (xa
1,x

a
2, ......,x

a
n)

connected with a visible state sv = (xv
1,x

v
2, ......,x

v
n) in HMMAV

is such that ∀g : xa
g 
= xv

g.

VI. EXPERIMENTAL RESULTS

To validate our proposal, we have used data collected from

sensors deployed in an actual living lab realized in the context

of an European Framework Seven project, in particular, pres-

sure, PIR, acoustic, temperature, humidity, and light intensity
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sensors. We examined the measurements collected every 10

seconds in 15 consecutive days at a base station. For the

dataset, the ground truth is also available. The dataset is of

medium size, consisting of slightly more than 48,600 samples.

We call the dataset as RUG Lab (where RUG stands for

Rijksuniversiteit Groningen).

In this section, we present our findings on the occurrence

of data and system faults in temperature and humidity sensors

samples by applying the HMM method to the given dataset.

The dataset exhibited a mixture of offset, gain and stuck-at
data faults because of system faults such as the low battery
and calibration faults.

A. Data Fault Classification

The temperature change continuously during the day as

visible in Figure 5. This observation remains true for the whole

of the measurement period. The environment states grouping

component needs an initial estimate for the set of model states.

This early approximation is built on historic data or entirely

randomly. We show results based on a preliminary set of six

states obtained using an off-line clustering algorithm on the

given dataset from the RUG Lab. The deployed sensors in

the RUG Lab measures data every 10 seconds and transmits

to the base station for analysis. Our window size is based

on 360 samples, which is equivalent to one hour and gives

enough time granularity and statistical meaning, e.g., mean,

differences, ratios (about three hundred and sixty sensor read-

ings in average).

Fig. 5: Temperature Variation for one Full day

Figure 6 shows the accurate Markov Model MA of the

environment (temperature sensor), as expected by the process

defined in the previous section. Five main possible states of the

given scenario can be recognized, such as (13, 17, 19, 22, 24),

from the given dataset and each state represent a temperature

value. One extra state (15) results from variations within the

sample; however, it is not considered as a key state of the

system because it has low transition probability.

Figure 7 shows the two HMMs, that are HMMAV and

HMMAF for sensor 3 learned from the RUG Lab dataset.

The sample symbol probability matrix (CAV and CAF ) and

state transition probability matrix D are shown in Table I

and Table II, respectively. We conclude that the rows and

the columns of CAV are almost orthogonal (∑i cav
gi cav

hi < 0.1 for

g 
= h, and ∑i cav
gi cav

hi > 0.85 for g = h), based on the relation

described in Section III. The matrix CAF is shown in Table II,

Fig. 6: Predicted/possible Markov Model of the temperature

sensor

where we notice that one column is almost null and another

column (state 122) is made almost exclusively of ones. This

leads to properly classifying sensor 3 to be in a stuck-at state.

Fig. 7: HMMs for Faulty Sensor 3

x ↓,y→ 13 17 19 22 24 15
13 1 0 0 0 0 0
17 0 0.92 0.08 0 0 0
19 0 0 0.91 0.09 0 0
22 0 0 0 0.87 0.13 0
24 0 0 0 0 1 0
15 0 0 0 0 0 1

TABLE I: CAV matrix for faulty sensor 3 - Stuck-at Fault

A similar investigation is done for the offset fault with sam-

ple obtained from sensor 4. Table III and Table IV show the

resulting samples symbol probability matrices, CAV and CAF ,

respectively. The matrices are roughly orthogonal. Moreover,

when calculating the ratios
xa

i

x f
i

and the differences xa
i − x f

i

among the characteristics of corresponding accurate states. We

calculate low variance (0.006), ratios with average (1.23), high

variance (0) and differences with average (5). This leads us to

correctly classify sensor 4 as affected by an offset fault.
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x ↓,y→ 15 122
13 0 1
17 0.03 0.97
19 0.01 0.99
22 0 1
24 0 1
15 1 0

TABLE II: CAF matrix for faulty sensor 3 - Stuck-at Fault

x ↓,y→ 13 17 22 27 32
13 1 0 0 0 0
17 0 0.8 0.2 0 0
22 0 0.02 0.98 0 0
27 0 0 0.001 0.999 0
32 0 0 0 0.001 0.999

TABLE III: CAV matrix for faulty sensor 4 - Gain Fault

B. System Fault Classification

Next we evaluate the accuracy and robustness of the

proposed system fault type detection method. We injected

artificially system faults into the system setup under different

system fault scenarios. Ideally, before inserting system faults

into the deployed sensors, we should confirm that the real-

world deployment does not have any faulty sensor. By in-

jecting system faults, the faulty nodes change their behavior

and turn the system into a new state. We injected artificial

faults into one-fourth of the deployed sensors. As discussed

in Section III, system faults are classified by investigating

the samples symbol probability distribution, CAV . Table V

shows matrix CAV for faulty sensor 6. The corresponding

accurate states and visible states are different. This shows that

calibration system faults do not influence the orthogonality of

CAV .

A similar artificial injection experiment can be done for

the low battery system fault. For example, we replaced the

batteries of a few sensors to put them in a low voltage level.

The system fault (low battery) deletes correct sensor states

(22) by reporting faulty temperature values, which is much

x ↓,y→ 13 17 22 27 32
13 0 0 0 0 0
17 0 0 0.85 0 0
22 0 0.86 0 0 0
27 0 0 0.87 0 0
32 0 0 0 0.46 0

TABLE IV: CAF matrix for faulty sensor 4 - Gain Fault

x ↓,y→ 13 17 19 22 24
13 0 0.87 0 0 0
17 0 0 0.92 0 0
19 0 0 0 0.94 0
22 0.87 0 0 0 0
24 0 0 0 0 0.86

TABLE V: CAV matrix for Calibration system fault affected

sensor 6

higher than other sensor reported values. In the following,

faulty nodes inject high temperature values into the system.

As a result, visible states of the environment changed overall,

while the accurate environmental temperature remains almost

constant. Injected values are close to the maximum sensitivity

range of the temperature sensor. Table VI shows sample

probability matrix CAV obtained by the explained approach

for a faulty sensor 5. The column probabilities of the obtained

matrix are not orthogonal (notice column 19 and 122). This

shows that the low battery system fault has created an extra

state (state 122).

x ↓,y→ 17 22 13 19 122
17 1 0 0 0 0
22 0 1 0 0 0
13 0 0 1 0 0
19 0 0 0 0.31 0.69

TABLE VI: CAV matrix for Low battery system fault affected

sensor 5

VII. RELATED WORK

Sensor measurements can deviate from their predictable val-

ues due to an unexpected event or without any known causes,

particularly in the context of environmental monitoring. Two

recent papers [17], [18], propose fault detection methods to

detect data faults. However, neither of them focuses on data

fault’s causes. In [17], we present a hybrid fault detection

approach which uses HMM to identify data faults, e.g., spikes,

noise, outlier and stuck-at ones. The authors in [18] propose an

approach to detect only short and constant data faults by using

rule-based and estimation-based methods. Our fault detection

method not only flags faulty measurements as faults but also

identifies the type of faults and their causes, which helps to

recover to correct operation.

HMMs have been extensively explored in fault detection

systems [11], [12], [1], [5], [14]. In [1], the authors use a

Markov chain to classify standard against inconsistent actions

by considering diverse metrics. In [5], a HMM is learned to

identify faults against web-based and web-servers applications.

In [14], authors examine the accuracy of a Markov chain-based

method and determine that Markov chains perform well in

fault detection. HMMs present a better scientific utensil than

basic Markov models.

In [19], the authors present an approach based on pat-

tern recognition that is also joint with a finite-state HMM.

The approach presents a beneficial technique for modeling

temporal context in monitoring faults in complex dynamic

systems. In [21], the authors use a HMMs strategy for intrusion

detection, using distributed observation across multiple nodes.

The authors of [9] present a novel dynamic, machine learning-

based technique for automatically detecting faults in HVAC

systems. In addition to dynamic Bayesian Networks and

HMMs, data fusion is also used to combine fault detection

results from multiple fault models in an attempt to achieve

a more accurate fault detection outcome. The method in [9]
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develops HMMs to learn probabilistic relationships between

groups of points during both normal and faulty operation.

HMMs are effectively used to anomaly detection as a method

to model usual actions. Despite the above research effort, there

does not yet exist a well-accepted method for detection of data

and system faults and their classification in wireless sensor

networks. A cutting edge challenge is to develop the capability

to carry out fault diagnosis in terms of its identification and

classification for data and system faults. We proposed an

approach based on HMMs. Our approach not only detects

both data and system faults, but also identifies their types.

Nevertheless, the proposed approach mainly focuses on data

faults occurred by calibration and low battery system faults.

VIII. CONCLUDING REMARKS

We presented a statistical approach to detect faults in

wireless sensor networks. The proposed approach learns the

possible system outcome dynamically without any distinct

training period. Furthermore, it can be used to identify and

classify data and system faults considering the structural

relations between two kind of HMMs dynamically created.

The focus of the present work lies on the calibration of

data and system faults. We evaluate our proposed approach

with real world data coming from the RUG Lab dataset. The

approach can be extended to detect and classify more data

fault types such as outlier and spikes ones and particularly

for system fault types, such as communication failures and

environment out of range faults. Our future work will focus

on the extension of the framework to a larges set of fault

types and a borader evaluation with actual datasets coming

from physical installations.
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