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Differentiable Kernels in Generalized Matrix
Learning Vector Quantization

M. Kästner, D. Nebel, M. Riedel, M. Biehl, and T. Villmann

Abstract—In the present paper we investigate the application
of differentiable kernel for generalized matrix learning vector
quantization as an alternative kernel-based classifier, which
additionally provides classification dependent data visualization.
We show that the concept of differentiable kernels allows a
prototype description in the data space but equipped with the
kernel metric. Moreover, using the visualization properties of
the original matrix learning vector quantization we are able
to optimize the class visualization by inherent visualization
mapping learning also in this new kernel-metric data space.

I. INTRODUCTION

Prototype based vector quantization provides a powerful
concept for unsupervised and supervised data analysis and
processing. Prominent examples for unsupervised models
applied in data clustering or visualization are the self-
organizing map (SOM,[16]), neural gas (NG, [17]) as a
robust version of the k-means or fuzzy variants like fuzzy-c-
means (FCM, [4], [5] ) and alternatives thereof. Supervised
prototype based approaches for classification tasks are mainly
influenced by the learning vector quantization models (LVQ,
[16]) and support vector machines (SVM,[27]). Whereas
LVQ models generate class typical prototypes, SVMs deter-
mine prototypes (support vectors) defining the class borders.
Both paradigms belong to the class of margin classifiers
[10]. An important feature considered in the last years is
the application of non-standard metrics for these models
to improve the classifier performance for domain specific
problems like processing of functional data, e.g. spectra,
time series [15], [20], [32] or better interpretability of the
adapted models (relevance and matrix learning, [13], [29]).
In particular, matrix learning in the generalized LVQ model
(GLVQ, [25]) provides a great flexibility, robustness and
classification performance in many applications as well as
excellent class visualization abilities [6], [9], [8].

One of the most powerful concepts in classification re-
mains the idea of kernel mapping realized in SVMs. Ac-
cording to this idea, the data as well as the prototypes are
formally mapped into a high-dimensional (infinite) feature
mapping Hilbert space (FMHS), which offers frequently a
great flexibility and good separation possibility. The mapping
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is uniquely determined by the kernel, delivering an inner
product in the FMHS. Yet, this mapping is done only
implicitly. It turns out that the data handling can be processed
without application of the explicit mapping by use of the
kernel properties. This advantage on the one hand side,
however, makes it more difficult to interpret the model on
the other hand, because the prototypes in these models are
given as infinite-dimensional representations in the FMHS.
Moreover, the SVM prototypes are not typical representatives
of the classes, as mentioned before. During the last years,
several variants of LVQ were developed to integrate the
kernel mapping idea in those models but keeping the idea
of class-typical prototypes (Kernel GLVQ, KGLVQ) [26],
[24], [23]. Yet, these models also have to deal with the
problem of the infinite representation of prototypes. Usually,
the infinite representation is approximated by a finite one
using the Nystrøm-approximation approach, which obviously
leads to an information loss in general.

Recently, an interesting alternative was proposed: If the
kernel function is required to be differentiable in addition to
the usual kernel properties, then the mapping into the FMHS
can be avoided. Instead, the data as well as the prototypes
are treated in the original data space but equipped with the
kernel induced metric [33]. It turns out that KGLVQ with
differentiable kernels (DK-GLVQ) are principle alternatives
to SVMs with comparable performance [34]. In this article
we combine this DK-GLVQ with the idea of matrix learning
in GLVQ. We show that a further improvement for classifica-
tion accuracy can be achieved. Further, we demonstrate the
visualization skills provided by the matrix learning concept
in this framework.

In the following, first we will briefly review the matrix
learning in GLVQ. After this we consider the basic principle
of DK-GLVQ and discuss the combination with the matrix
learning idea. We demonstrate the power of this approach for
three data sets, two of them from the standard UCI database.
The third one is a real world application in food industry. For
the latter application we also show the visualization abilities
of the model.

II. LEARNING VECTOR QUANTIZATION AND MATRIX
LEARNING

For LVQ we suppose that the data are given as vectors
v ∈ V ⊆ Rn, and the prototypes of the LVQ model
are subsumed in the set W = {wk ∈ Rn, k = 1 . . .M}.
Each data vector v of the training data belongs to a class
xv ∈ C = {1, . . . , C}. The prototypes are also equipped with
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labels ywk
∈ C indicating their responsibility to the several

classes. The relation between data and prototypes is judged
by a dissimilarity d (v,w) : Rn×Rn → R+ given in the data
space V and frequently chosen as the (quadratic) Euclidean
metric. Yet, the dissimilarity measure has not necessarily to
be a distance. At least, it has to fulfill the requirements of a
dissimilarity measure [21] with the additional constraint of
differentiability in the second argument.

Standard LVQ distributes the prototypes in such a way that
the classification error is heuristically optimized [16]. The
generalization thereof, the generalized LVQ (GLVQ, [25])
minimizes an approximated classification error based on a
stochastic gradient descent scheme [25]. The cost function
minimized by GLVQ is

E (W ) =
1

2

∑
v∈V

f (µ (v)) , (1)

where the function

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the classifier function with d+ (v) = d (v,w+) denotes
the dissimilarity between the data vector v and the closest
prototype w+ with the same class label yw+ = xv, and
d− (v) = d (v,w−) is the dissimilarity degree for the best
matching prototype w− with a class label yw− different from
xv. The transformation function f is a monotonically in-
creasing function usually chosen as sigmoidal or the identity
function. A typical sigmoidal choice is the Fermi function

f (x) =
1

1 + a · exp
(
− (x−x0)2

2ς2

) (3)

with x0 = 0 and a = 1 as standard parameter values. The
ς-parameter controls the approximation of the classification
error: For ς → 0 the function E (W ) converges to the
negative classification error. Learning of w+ and w− is
performed in GLVQ by the stochastic gradient of the cost
function E (W ) for a given data vector v according to

∂E (W )

∂w+
= ξ+ · ∂d

+ (v)

∂w+
and

∂E (W )

∂w−
= ξ− · ∂d

− (v)

∂w−
(4)

with

ξ+ = f ′ · 2 · d− (v)

(d+ (v) + d− (v))
2 (5)

and

ξ− = −f ′ · 2 · d+ (v)

(d+ (v) + d− (v))
2 . (6)

For the quadratic Euclidean metric we simply get the deriva-
tives

∂d± (v)

∂w±
= −2

(
v −w±

)
realizing a vector shift of the prototypes.

In matrix learning GLVQ (GMLVQ, [29]) the (quadratic)
Euclidean distance is replaced by a quadratic form

dΛ (v,w) = (v −w)
>

Λ (v −w) (7)

with Λ = Ω>Ω to ensure the positive definiteness. Using its
factorization, eq. (7) can be written in the form

dΩ (v,w) = (Ω (v −w))
2 (8)

with an arbitrary matrix Ω ∈ Rm×n, i.e. the data and the pro-
totypes are mapped into the Rm and afterward the quadratic
Euclidean norm is calculated. The resulting derivative ∂d±Ω (v)

∂w±

for the prototype update in (4) is obtained as

∂d±Ω (v)

∂w±
= −2Λ

(
v −w±

)
.

Metric learning takes place in this GMLVQ by the Ω-update,
again realized as a stochastic gradient descent:

∂E (W )

∂Ωr1,r2
= ξ+ ·

∂d+
Ω (v)

∂Ωr1,r2
+ ξ− ·

∂d−Ω (v)

∂Ωr1,r2
(9)

where ∂d±Ω (v)

∂Ωr1,r2
follows the relation

∂dΩ (v,w)

∂Ωr1,r2
= 2 [Ω (v −w)]r1 [v −w]r2 (10)

and a subsequent renormalization has to take place to ensure∑
i,j Ω2

i,j =
∑
i Λi,i = 1 after completing the adjustment.

We explicitly remark here that m does not need to be
equal to n. In particular, m < n is an option for inherent
regularization and class visualization (m = 2, 3) [9], [28].
Further, in GMLVQ the matrix Λ can be interpreted as a
correlation matrix determining the correlations between the
data dimensions, which are useful for classification [29].
Even for m = n the algorithm shows inherent regularization
because the Ω-adjustment in GMLVQ via (9) can be related
to class dependent principal component analysis, such that
the learned matrices tend to be generated by the class
eigenvectors [6], [7].

III. LEARNING VECTOR QUANTIZATION USING
DIFFERENTIABLE KERNEL

The idea of kernel mapping has a long tradition. Beginning
with the theoretic work of ARONZAIJN and MERCER about
positive kernels and dedicated reproducing kernel Hilbert
spaces (RKHS) a broad mathematical framework was es-
tablished, which can be used to generate powerful machine
learning algorithms [1], [18]. One of the most popular
schemes in the context of classification tasks are support
vector machines (SVM, [27]).

The basic idea in this model is the data are implicitly
mapped into a high-dimensional (maybe infinite) feature
space by a so-called kernel mapping, to become easily
separable there. To be precisely, the data space V is assumed
to be compact equipped with metric dV : V ×V → R+. We
denote this metric space by (V, dV ). A function κ on V is a
positive kernel

κΦ : V × V → C (11)

if there exists a Hilbert space H and a feature map

Φ : (V, dV ) −→ IκΦ
⊆ H (12)
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where IκΦ
is the image of V under the mapping Φ. In IκΦ

an inner product is determined by the kernel

κΦ(v,w) = 〈Φ(v),Φ(w)〉H (13)

for all v,w ∈ V and 〈·, ·〉H is the inner product of the Hilbert
space defining the metric

dH (Φ(v),Φ(w)) =
√
κΦ(v,v)− 2κΦ(v,w) + κΦ(w,w)

(14)
in IκΦ . The positive definiteness of the kernel ensures the
metric properties, whereas for general kernels (14) is only
a semi-metric [1]. The map Φ is injective iff the kernel is
universal [31].

So far these kernels can be used in GLVQ only using
approximation techniques like the Nystrøm-approximation to
deal with the problem of the infinite-dimensional represen-
tation of prototypes in IκΦ

[26], [24], [23], which obviously
leads to an information loss in general. To overcome this
unsatisfying situation we consider another bijective map

Ψ : (V, dV ) −→ (V, dκΦ
) (15)

for universal kernels, such that the vector space objects are
preserved where the dissimilarity measure dκΦ is determined
by dκΦ(v,w) = dH (Φ(v),Φ(w)). It turns out that the map
Ψ is continuous iff Φ does [31], and, therefore, it is injective
because of the bijectivity. It can be easily shown that the
metric space VκΦ

= (V, dκΦ
) is isometric-isomorph to IκΦ

[33]. Now, we further assume that the kernel κΦ(v,w) is
differentiable at least with respect to the second argument
w. In this case we obtain

∂d2
κΦ

(v,w)

∂w
=
∂κΦ(w,w)

∂w
− 2

∂κΦ(v,w)

∂w
, (16)

which can immediately plugged into gradient based proto-
type adaptation (4) of GLVQ replacing any other metric.
Hence, the prototypes belong itself to VκΦ and remain finite-
dimensional as the original data vectors without any loss of
information and structure compared to IκΦ

. We refer to this
variant as differentiable kernel GLVQ (DK-GLVQ).

IV. DIFFERENTIABLE KERNEL AND MATRIX LEARNING
IN GMLVQ

One of the most famous and well-known examples of
universal positive kernels is the Gaussian kernel

ΓΦ (v,w) = exp

(
−
(

v −w√
2σ

)2
)

(17)

with the width σ > 0. Obviously, it is differentiable, and,
therefore could be used in the space VκΦ

= (V, dκΦ
) for

gradient based vector quantization like DK-GLVQ. Thereby,
the optimization of the kernel width σ can be subject of
adaptation by respective gradient learning in DK-GLVQ.
However, determination of an optimum kernel width is
frequently sensitive and unstable as it is known from radial
basis function learning [14].

We remark that the term ϑ =
(

v−w√
2σ

)2

in ΓΦ (v,w)

is a scaled quadratic Euclidean distance. It turns out that

Data sets GLVQ DK-GLVQ GMLVQ DK-GMLVQ

m = 2 m = n m=2 m=n

PIMA 75.1 76.2 77.87 77.74 77.21 78.26

±0.028 ±0.031 ±0.016 ±0.031 ±0.008 ±0.025

WDBC 93.49 94.2 94.48 94.73 95.60 95.43

±0.016 ±0.010 ±0.016 ±0.016 ±0.019 ±0.025

Table I
TEST ACCURACIES [%] WITH STANDARD DEVIATION FOR THE TWO
BENCHMARK UCI-DATA SETS OF THE DIFFERENT METHODS, EACH

TRAINED WITH ONE PROTOTYPE PER CLASS.

ΓΦ (v,w) remains universal if ϑ is replaced by another
(quadratic) metric [19]. Hence, we can combine the idea of
matrix learning with DK-GLVQ. In particular, we consider
the kernel

ΓΦ (v,w,Ω) = exp (−dΩ (v,w)) (18)

using the quadratic form (8) with derivatives

∂ΓΦ (v,w,Ω)

∂w
= ΓΦ (v,w,Ω) · 2Ω (v −w) (19)

and
∂ΓΦ (v,w,Ω)

∂Ωr1,r2

= −2ΓΦ (v,w,Ω) · [Ω (v −w)]r1 [v −w]r2

(20)
to be needed for prototype and matrix updates via (16) and
(4) as well as (9). The optimization of the Ω-matrix again is
self-regularizing as it is known from GMLVQ [6], [7] and
therefore more stable than simple kernel-width learning.

We refer to this model as differentiable kernel GMLVQ
(DK-GMLVQ).

V. APPLICATION OF THE DK-GMLVQ

We tested the DK-GMLVQ algorithm for several real
world data sets. The first two data sets are from the well-
known UCI database to be comparable with other investiga-
tions and approaches. The more challenging data set consists
of hyperspectral vectors of different coffee types, referred as
coffee data set. For this data set we specifically investigate
the properties of the DK-GMLVQ compared to its non-
kernelized counterpart GMLVQ.

A. Results for UCI data

In this first consideration we compare the DK-GMLVQ
with other classification algorithms for two benchmark UCI-
data sets: the Wisconsin-Breast-Cancer-data (WDBC) and
the Indian diabetes data set (PIMA). The data sets contain
562 and 768 data vectors with 32 and 8 data dimensions,
respectively, and each divided into two classes (healthy/ill).
The presented results are obtained from a three-fold cross
validation. For each simulation we used only one prototype
per class. The results are depicted in Tab. V-A.

It turns out that the DK-GLVQ and the DK-GMLVQ
outperform their counterparts GLVQ and GMLVQ, respec-
tively. Hence, the non-linear mapping Ψ (15) provides the
better class separation possibility as known from the un-
derlying feature map Φ (12) of SVMs. Therefore, a SVM
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was additionally trained for comparison for both problems:
We applied the recently proposed Extreme Learning Kernel
(ELM, [11]). The ELM kernel is actually a d-facto parameter
free kernel with the same classification performance as the
RBF-kernel with optimal Gaussian width. SVM models are
obtained by use of a Sequential Minimization Optimization
(SMO) optimizer as proposed and the ELM kernel [22]. The
achieved SVM accuracies are 97.7%±1.45 and 76.4%±4.2
for WDBC and PIMA, respectively, which is comparable to
DK-GLVQ and DK-GMLVQ. As it was already explained in
[26], the numbers of support vectors is very high for both
problems, i.e. 512 and 691.

For GMLVQ as well as DK-GMLVQ we also investigated
the case that the matrix Ω in the distance measure (8) is of
limited size 2× n, which would be necessary for visualiza-
tion. We observe that the accuracy loss is not dramatic for this
scenario, i.e. a linear transformation of the data into the space
R2 is possible while keeping the classification performance.

B. Results for Coffee Data

In this application we classified hyperspectral short-wave
infrared range (SWIR) spectra of different coffee types
(Bonga Forest - black, Ethiopia Sidamo Grande - green,
Espresso Columbia - blue, Australia Skybury- magenta,
Ganos Espresso Cuba - red). Hyperspectral processing along
with an appropriate analysis of the acquired high-dimensional
spectra has proven to be a suitable and very powerful
method to quantitatively assess the biochemical composition
of a wide range of biological samples [12], [30], [3]. By
utilizing a hyperspectral camera (HySpex SWIR-320m-e,
Norsk Elektro Optikk A/S) we obtained a rather extensive
data base of spectra of five different coffee types (5000
spectra for each class). The acquired spectra are in the SWIR
between 970 nm and 2, 500 nm at 6 nm resolution yielding
256 bands per spectrum. Proper image calibration was done
by using a standard reflection pad (polytetrafluoroethylene,
PTFE)[2]. After appropriate image segmentation the obtained
spectra were normalized according to the l2-norm. The mean
spectra of the five types are visualized in Fig.1.

Figure 1. Mean spectra of the five investigated coffee types.

Again, we have taken only one prototype per class. For
each class, 1000 spectra were randomly selected for training.
The remaining spectra were applied for testing. The achieved
test accuracies are displayed in Tab.V-B.

Datasets GLVQ DK-GLVQ GMLVQ DK-GMLVQ

m = 2 m = n m=2 m=n

Coffee 83.29 80.0 88.51 88.97 90.84 91.38

Table II
TEST ACCURACIES [%] FOR THE COFFEE DATA SET OF THE DIFFERENT

METHODS, EACH TRAINED WITH ONE PROTOTYPE PER CLASS.

Additionally, we investigated the obtained correlation ma-
trices Λ = Ω>Ω for the GMLVQ and the DK-GMLVQ,
which are visualized in Fig.’s 2 and 3.

Figure 2. Correlation matrices Λ = Ω>Ω, Ω ∈ Rm×n for the coffee
data set for GMLVQ with m = 2 (limited rank, top) and m = n = 256
(full-rank, bottom).

The learned matrices provide information about the corre-
lations between the spectral bands useful for classification.
We observe that the full-ranked GMLVQ leads to a smother
correlation matrix. Yet, the essential structure information is
preserved approximately in case of the limited rank matrix Ω.
Further, the matrices can be used for classification dependent
data visualization. In Fig. 4 the data are plotted by Ωv
according to (8) for the limited rank Ω ∈ R2×n and according
to a principle component projection using the eigenvectors
of Ω in case of the full rank Ω ∈ Rn×n.

We compare these visualizations with a (unsupervised)
principle component projection displayed in Fig. 5. The dif-
ference is obvious: In the unsupervised PCA-projection the
classes are heavily overlapping whereas after classification
optimized projection the classes are better separated in the
visualization space. However, the classes are not completely
separated. The black class (Ganos Espresso Cuba) in Fig. 4
is strongly overlapping with the green class (Bonga Forest).
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Figure 3. Correlation matrices Λ = Ω>Ω, Ω ∈ Rm×n for the coffee data
set for DK-GMLVQ with m = 2 (limited rank, top) and m = n = 256
(full-rank, bottom).

Figure 4. Data projection of coffee data by means of GMLVQ: top -
projection of the data by Ωv using the learned limited rank matrix Ω ∈
R2×n; bottom - projection of the data according to the eigenanalysis of
Λ = Ω>Ω with full rank matrix Ω ∈ Rn×n and n = 256.

Figure 5. Data projection of coffee data according to an unsupervised
principle component analysis.

A slight improvement is obtained if the DK-GMLVQ is used
and the above visualization techniques are applied there. The
respective data visualizations are depicted in Fig.6.

Figure 6. Data projection of coffee data based on DK-GMLVQ: top -
projection of the data by Ωv using the learned limited rank matrix Ω ∈
R2×n; bottom - projection of the data according to the eigenanalysis of
Λ = Ω>Ω with full rank matrix Ω ∈ Rn×n and n = 256.

We observe a slightly improved separation between the
black and the green class, however, far away from an
optimal separation. However, this is in agreement with a
consideration of the respective confusion matrices for both
classifiers, see Tab. V-B. The classifiers are not able to
separate the Bonga Forest (black) type from Ethiopia Sidamo
Grande (green) with sufficient precision. Otherwise, we can
conclude from the visualizations that the other coffee types
can be clearly separated using the spectral information.
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coffee types black green blue magenta red
GMLVQ black 81.5 14.1 4.4 0.1 0

green 26.0 73.0 1.0 0 0

blue 5.7 0.2 92.9 1.2 0

magenta 0.8 0.1 1.6 97.5 0

red 0 0 0 0 100

DK-GMLVQ black 82.8 15.5 1.5 0.1 0

green 17.5 82.2 0.3 0 0

blue 4.7 0.1 94.1 1.1 0

magenta 0.7 0.1 1.5 97.7 0

red 0 0 0 0 100

Table III
RELATIVE CONFUSION MATRIX [%] OF GMLVQ AND DK-GMLVQ

The application of differentiable kernel leads to a small
improvement in confusion matrix as well as in the respective
class visualizations. In particular, the green coffee type is
significantly less frequent misclassified as a Bonga Forest
type (black).

VI. CONCLUSION

In this contribution we consider the application of differen-
tiable kernels in GMLVQ for classification and class visual-
ization. Using this method we are able to obtain classification
performances comparable to other widely applied classifiers
including SVM. Moreover, using the visualization properties
of the underlying GMLVQ we are able to optimize the class
visualization also for this kind of kernel-based classification.
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