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Chapter 1

The problem of cell formation:

introduction and approaches

This thesis focuses on a development of optimal, flexible and efficient models for

cell formation in group technology. By optimality we mean guaranteed quality of

the solutions provided by the model1, by flexibility – possibility of taking addi-

tional constraints and objectives into account, by efficiency – reasonable running

times (e.g., taking into account that cells are reconfigured infrequently, the times

of 1 sec. and 10 min. are equally acceptable). The main aim is, thus, to provide

a reliable tool that can be used by managers to design manufacturing cells based

on their own preferences and constraints imposed by a particular manufacturing

system.

The general structure of the thesis is as follows. The first chapter contains the

prerequisites, necessary for understanding the cell formation problem and the gaps

in the corresponding research. Those already familiar with the problem may safely

skip some sections (e.g. the one describing existing approaches). The following

three chapters are focused on development of the mathematical models for cell

formation, Chapter 2 being very technical and focusing on theoretical properties of

a proposed model. Chapter 5 considers alternative objectives for cell formation. Fi-

nally, Chapter 6 summarises the thesis and provides directions for further research.

1 We allow for suboptimal solutions in case they are guaranteed close to the optimum. Thus, our notion
of optimality differs from the one used in mathematical programming, where optimality means that no
better solution exists.
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1.1 Introduction

One of the possibilities for obtaining higher profit in a manufacturing system is

lowering production costs (while preserving the production volumes). This, in

turn, can be achieved by minimizing flow costs that include transportation costs,

idle times of machines and costs of manpower needed to deliver parts that are

being processed from one machine to another. The paradigm in industrial engin-

eering called group technology (GT) was first developed in the former USSR (see,

e.g., Mitrofanov, 1946, 1966) and is aimed at making the manufacturing system

more efficient by improving the mentioned above factors. The main idea behind

group technology is that similar things should be done similarly. One of the key

issues in this concept is cell formation (CF) that suggests grouping machines into

manufacturing units (cells) and parts into product families such that a particular

product family is processed mainly within one cell. Such grouping becomes pos-

sible by exploiting similarities in the manufacturing processes for different parts,

and increases the throughput of the manufacturing system without sacrificing the

products quality. This can be viewed as decomposing the manufacturing system

into a number of almost independent subsystems that can be managed separately.

Clearly, such a decomposition is beneficial from the perspective of workload control

and scheduling (especially, taking into account that most scheduling problems are

computationally intractable). The degree of subsystems independence corresponds

to the amount of intercell movement – the number of parts that must be processed in

more than one subsystem (by more than one manufacturing cell).

The problem of cell formation can be traced back to the works of Flanders (1925)

and Sokolovski (1937) but is oftenly attributed to Mitrofanov’s group technology

(Mitrofanov, 1959, 1966) and Burbidge’s product flow analysis (PFA, see Burbidge,

1961). Burbidge showed that it can be reduced to a functional grouping of machines

based on binary machine-part incidence data. Thus, in its simplest and earliest form

cell formation is aimed at the functional grouping of machines based on similarity

of the sets of parts that they process. Input data for such a problem is usually given

by an m× r binary machine-part incidence matrix (MPIM) A = [aij], where aij = 1

if and only if j-th part needs i-th machine at some step of its production process. In

mathematical terms, the problem of cell formation was first defined as one of find-

ing independent permutations of rows and columns that lead to a block-diagonal

structure of matrix A. For real data the perfect block-diagonal structure rarely oc-

curs and the goal is to obtain the structure that is as close to a block-diagonal one

as possible.
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The problem of optimal (usually, with respect to the amount of intercell move-

ment) cell formation has been studied by many researchers. An overview can be

found in (Selim et al., 1998; Yin & Yasuda, 2006; Balakrishnan & Cheng, 2007) and

in (Bhatnagar & Saddikuti, 2010). However, no tractable algorithms that guaran-

tee optimality of the obtained solutions were reported because of computational

complexity of the problem. Moreover, even worst-case performance estimates are

not available for most approaches. In fact, it was only shown that they produce

high quality solutions for artificially generated instances. At the same time, today’s

highly competitive environment makes it extremely important to increase the ef-

ficiency of manufacturing systems as much as possible. In these conditions any

noticeable improvement (e.g., achieved by properly designed manufacturing cells)

can provide a secure position for a company in a highly competitive market.

This chapter is organised as follows. The next section provides an overview of

the cellular and alternative layouts. Section 1.3 introduces a notion of dis/similarity

measure and provides an analysis of similarity and performance measures used in

CF. Section 1.4 provides an overview of the existing approaches and their classifica-

tion while Section 1.5 summarizes the current state-of-the-art in cell formation and

presents the outline of the thesis.

1.2 Cellular layout and its counterparts

Today’s highly competitive market puts a constantly increasing pressure on the

manufacturing industries. Current challenges, such as increasing fraction of high

variety low volume orders, short delivery times, increased complexity and preci-

sion requirements, etc., force the companies to extensively optimize their manufac-

turing processes by all possible means. It is not hard to understand that layout of

the processing units (machines, departments, facilities) can drastically influence the

productivity of the whole manufacturing system both explicitly and implicitly. The

explicit impact of the layout is expressed, for example, via the material handling

costs and time (spent on delivering parts from one unit to another), tooling re-

quirements, etc. The implicit impact of the layout can be explained by the fact that

smaller and well-structured systems are usually easier to manage. This provides

a possibility of finding more optimal management solutions (e.g., most scheduling

problems are computationally hard, and the problem structure and size substan-

tially influence the possibility of obtaining optimal solutions), as well as additional

space for improvement (e.g., possibilities for set-up time savings).
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The two classical types of layout that were prevailing not so long ago (and

are still used) are job shop (functional) and flow shop production line layouts. In

a job shop layout, machines are grouped into functional departments based on

a similarity of their functions: drilling, milling, thermal processing, cutting, sto-

rage, etc. This process-oriented layout has certain advantages, first of all, from the

perspective of flexibility (with regard to a changing product mix), expertise and

cross-training. Indeed, it imposes no dedication of machines to parts, so that a

wide variety of parts can be manufactured in small lot sizes. In addition, as all ma-

chines in a department perform similar functions, any person able to operate one

of them is able to operate other ones (sometimes after a limited additional train-

ing). Moreover, as each functional department brings together specialists in the

same field, it becomes easier for them to communicate and learn from each other.

However, it was shown that in job shop systems parts spend up to 95% of their

manufacturing time on waiting in the machine queues (Askin & Standridge, 1993)

and travelling from one machine to another. The remaining 5% of the total time

is shared between setup and value adding processing time. These figures imply

that functional layout is very inefficient, but it also has another drawback. When a

new part is released into the shop floor, a need for rescheduling all the system may

occur2, especially if the part has a very tight deadline and cannot be processed on a

FIFO basis. This substantially complicates the management. The flow shop layout,

as compared to the job shop, is product-oriented and is optimized for manufactu-

ring a small variety of parts in large volumes. This is done by grouping machines

into several manufacturing lines such that there is a straight “linear” flow across

each line. However, the mix flexibility in this case is assumed to be very low and

adding new products may destroy the “linear” structure of the flow shop layout.

Thus, in case of high-variety-low-volume orders the flow shop is very inefficient.

The cellular layout is intended to combine advantages of both the considered

above layouts and to make the management easier by decomposing the whole

manufacturing system into several almost independent subsystems. This layout

can be viewed as an application of group technology and suggests that parts that

need similar operations and resources should be grouped into product families

such that each family is processed within an almost independent smaller size manu-

facturing subsystem – a cell. In case of cellular layout, machines are grouped in

such a way that the physical distance between machines in a cell is small and each

cell contains (almost) all the machines needed to process the corresponding part

2 This applies only if parts are processed according to a general optimised schedule. In a common prac-
tice, however, heuristic rules are applied to choose which part will be processed next at each machine.
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family. This separates the flows, similarly to the flow shop, but also preserves a

certain degree of flexibility as part families are usually robust to the changes in the

product mix (i.e. new parts usually fit well into present families). In other words,

cells are supposed to inherit the advantages of a job shop producing a large variety

of parts and a flow shop dedicated to mass production of one product (in case of

cells – one family of products). It was shown in Kusiak (2000) that a reduction of 20

to 80% in material handling costs can be achieved by introducing machine cells.

The fractal layout (see, e.g., Tharumarajah et al., 1996) was proposed as an altern-

ative to the other layouts in order to minimize the total part flows. It is based on

an observation that the pattern of logical relations between parts usually possesses

a hierarchical structure similar to the structure of a fractal. These relations between

parts are of two basic types: (i) part a is a sub-part of part b (a needs only some

operations that b needs) and (ii) parts a and b should be assembled together. In case

(i) the set of machines needed for part a is a proper subset of machines needed for

part b – machines needed for both parts a and b should be placed closer to each

other, machines needed only for b should be placed around them. In case (ii) the

sets of machines needed for a and b can be completely different – in this case the

two corresponding groups of machines should be placed next to each other. There

is also a somewhat different interpretation of the fractal layout (see, e.g., Montreuil

et al., 1999). It suggests that a manufacturing system is decomposed into a number

of cells such that each cell has machines of several types in ratios similar to those

of the whole manufacturing system. This implies that each cell can produce almost

any part, but some are more suited for a particular part than others. Due to its cel-

lular structure, the fractal layout offers certain advantages similar to those of the

cellular layout. Naturally, the fractal layout can be viewed as a cellular layout with

some additional properties: similarity of cells and/or their hierarchical structure.

On the other hand, there is a fundamental difference between the two: while the

fractal layout is process-oriented, the cellular one is usually more product-oriented

as each cell focuses on a production of few parts. The fractal layout is hardly pos-

sible in many manufacturing systems, especially those where most of the machines

are unique. In addition, the problem of balancing the load of equivalent machines

assigned to different cells may emerge.

The random and the maximally distributed (also known as holonic) layouts (see,

e.g., Benjaafar & Sheikhzadeh, 2000) are aimed at minimizing the product flow at a

condition of high mix flexibility. They suggest that machines are randomly placed

on the factory floor, or machines of the same type are placed as evenly as possible
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within the plant, correspondingly. This ensures that for an arbitrary part the expec-

ted travelling distance between two consecutive machines is limited. Thus, these

two layouts guarantee a worst case (w.r.t. product mix) moderately good perform-

ance. At the same time, these two layouts are almost unstructured that makes it

quite challenging to manage such a system (or even to find a way in it for the per-

sonnel).

To sum up, in most situations, except the limiting cases (see Figure 1.1), the

cellular layout is beneficial over the other ones from the perspective of part flows.

As can be seen from the literature, in case of large lot sizes and low variety the

flow layout is beneficial as manufacturing lines substantially reduce the handling

costs and make management very easy. Only in case of very high variety and low

volumes the cellular layout may not be possible and the best choice will be the

functional layout. The cellular layout can be also thought of as a way of moving

from the functional layout to flow lines: a decomposition into cells decreases the

variety of parts processed in each cell. It should be mentioned that the condition of

high variety does not itself prohibit efficiency of the cellular layout as parts within

a family are assumed only to use similar sets of machines, regardless of their oper-

ational sequences. Thus, in practice the cellular layout and, therefore, the cellular

manufacturing seem to be very promising as they make a rather general assump-

tion about the structure of a manufacturing system, while the other approaches

either ignore this structure (e.g., the random layout) or assume too much structure

(e.g., the fractal layout) which is more likely to be absent.

The main advantages of the cellular manufacturing (CM) can be summarized as

follows (see, e.g., Kusiak & Chow, 1988; Wemmerlov & Hyer, 1986; Vin, 2010):

• Reduction of material handling costs and time. In CM almost each part is

processed in a single (small) cell. Thus, all flows are concentrated in the cells

and the travelling distances are small.

• Reduction of throughput times. Reduced travelling times and transfer of each

part to the next machine once it is processed reduce the total time spent in the

manufacturing system.

• Reduction of setup time. A manufacturing cell produces similar parts. Thus,

the settings for the parts can also be similar and the time needed to change

setups is saved.

• Reduction of tooling requirements. See the previous point.
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Figure 1.1. Relevance of layouts with regard to the product mix. (By the number of
part types we mean the number of different processing sequences.)

• Reduction of work-in-process (WIP) and finished goods inventories. It was

shown by Askin & Standridge (1993) that WIP could be reduced by 50% if

the setup time is cut in half. This reduction also decreases the order delivery

time.

• Reduction of space requirements. Reduced WIP and tooling requirements

allow to save some space. This, in turn, can be used to shift machines closer

to each other and further decrease material handling costs.

• Reduction in management efforts (scheduling, planning, etc.). Small and al-

most independent subsystems (cells) are substantially easier to manage than

the whole large manufacturing system.

• Reduction of wasted parts percentage and improved product quality. Local-

ized and specialized cells force the expertise to be concentrated. Small cells

imply faster feedback if something goes wrong with a part.

However, CM has a number of negative side effects:

• Substantial implementation costs: identification of optimal manufacturing

cells and part families, physical reorganisation (moving machines), additional

cross-training of the personnel, etc.

• Difficulties in workload balancing and lack of robustness. Each machine can

be important for the functioning of the whole cell, if it breaks the cell can
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become inoperable. This can be partially tolerated by cross-training but the

number of workers may become a constraint.

• Broad expertise. Each cell contains machines of different types and workers

need a broader “specialization”.

• Synchronisation of parts for further assembly. Additional measures and re-

sources (e.g., storage space) are needed to handle parts that are processed in

different cells but must be assembled together.

• Lower utilization of the machines. Independence of the cells can be improved

by introducing additional machines, but the load of them decreases. Moreover,

if two or more cells contain equivalent machines, the load balancing problem

may occur when one of such machines is underutilised while the other one is

overloaded.

• Lack of flexibility. Changes of the product mix can completely destroy inde-

pendence of the cells.

Despite these disadvantages, CM is assumed to improve the performance of the

manufacturing system in case of high-variety-low-volume environment and, thus,

is an important issue in industrial engineering. At the same time, it is clear that

transition to the CM should be designed very carefully in order to reduce possible

drawbacks. Finally, it is extremely important to understand that the benefits of cel-

lular layout on its own are very restricted and it rather provides a possibility of

improvement. That is why a positive effect can be achieved only if CM is comple-

mented by proper management and planning.

1.3 A notion of (dis)similarity and performance meas-

ures

As mentioned in the introduction, CF is aimed at obtaining independent cells and

this cellular decomposition becomes possible by exploiting similarities in the manu-

facturing processes of different parts. Thus, to construct an algorithm for solv-

ing the CF problem one usually needs to define a similarity measure for parts and

or machines. The notion of similarity measure is very important for the problem

under consideration. In particular, after introducing a (dis)similarity measure for

machines, one can restrict himself to considering only machine-machine relations.
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This substantially reduces the problem size, taking into account that the number

of machines is usually quite limited, while the number of parts can be magnitudes

larger. For example, Park & Suresh (2003) consider and instance with 64 machine

types and 4415 parts, we experienced instances with 30. . .60 machine types and

5733. . .7563 parts in practice. Alongside with a possibility for problem size reduc-

tion, (dis)similarity measures provide flexibility to the model – they may incorpor-

ate a variety of manufacturing factors, as will be shown in the latter chapters of this

thesis.

After the CF problem is solved it is necessary to estimate the effectiveness of the

obtained cellular decomposition, i.e. a solution performance measure is needed.

The following subsections provide an overview and analysis of the existing simil-

arity and performance measures; a good analysis of similarities and related aspects

can be found in Owsinski (2009).

1.3.1 Similarities and dissimilarities

It is not hard to understand that in case of independent cells manufacturing pro-

cesses of any two parts not assigned to the same cell differ a lot, i.e. these parts do

not use the same machine types. Note, that this does not automatically imply that

any two parts within one cell are very similar (use mainly the same machines). To

illustrate this, consider the following example.

Let the manufacturing system be represented by the following machine-part

incidence matrix:

A =



1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1


Suppose, one is interested in two cells. It is easy to see that the cells can be as

follows:

cell 1: machines 1,2,3,4; parts 1,2,3,4;

cell 2: machines 5,6; parts 5,6,7.

It is easy to see that these cells are completely independent. However, parts 2 and

3 from cell 1 as well as parts 5 and 7 from cell 2 do not have similar manufacturing
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processes (they use completely different machines) even though they are in the

same cell.

Thus, the goal of the CF problem is to maximize the dissimilarities between cells

and its objective is of the general form

max F(dp(i, j) · xp
ij | i, j = 1 . . . r) (1.1)

where F(.) : Rr×r → R is some functional, dp(i, j) is the dissimilarity between

manufacturing processes of parts i and j, xp
ij are Boolean decision variables that are

equal to 1 if and only if parts i and j are in different cells. In fact, F(.) can be linear

in x-variables, i.e. of the form F(dp(i, j) · xp
ij | i, j = 1 . . . r) = ∑i,j dp(i, j)xp

ij, due to

the following lemma.

Lemma 1.1. If one aims at the most independent cells, then the objective function of the

CF problem is essentially linear.

Proof. Let us consider a specific set of cells. Observe that the impact of each part

is independent of the impacts of the other parts. This is because of the fact that if

some part has to move from one cell to another this adds exactly one intercell move-

ment, irrespective of the amount of intercell movement induced by other parts. This

means that the total impact of all parts is just a sum of impacts of each part.

This lemma will be illustrated in the following chapters of the thesis: all the

proposed models have linear objective functions, irrespective of the particular ob-

jective for the cell formation, and despite the fact that some approaches in literature

use nonlinear objective functions.

Thus, the problem of cell formation can be posed as one of maximizing the sum

of dissimilarities between parts. Once parts are grouped into the product families,

machines can be efficiently grouped into the cells just by assigning each machine in-

dependently to the cell where it is most needed. However, this way of dealing with

the problem replaces an m× r machine-part incidence matrix by an r× r part-part

dissimilarity matrix, thus increasing the problem size. Yet, there exists a completely

symmetric way of dealing with the cell formation problem: instead of differences

between parts one can consider differences between machines. If one denotes by

dm(i, j) difference between machines i and j based on the difference between sets of

parts that need these machines then the objective becomes

max ∑
i,j

dm(i, j)xm
ij (1.2)
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where xm
ij – Boolean variables equal to 1 if and only if machines i and j are in differ-

ent cells.

From the CF perspective dissimilarities dm(i, j) must depend on the machine-

part incidence matrix and, as will be shown later, on the sequence in which a part

visits machines. In the simplest case when operational sequences are ignored each

machine is completely characterized by a Boolean vector (a row in the machine-

part incidence matrix). Thus, the dissimilarities dm(i, j) can be defined as some

distance between the corresponding Boolean vectors (rows i and j): from Euclidean

or Hamming distance to any sophisticated measure.

It should be mentioned that the problem of the form max ∑i,j d(i, j)xij can be

equivalently transformed:

max ∑i,j d(i, j)xij =

∑i,j d(i, j)−min ∑i,j d(i, j)(1− xij) =

∑i,j d(i, j) + max ∑i,j(−d(i, j))(1− xi,j) =

c + max ∑i,j s(i, j)(1− xi,j) '
min ∑i,j s(i, j)xi,j

where the coefficients s(i, j) = −d(i, j) are called similarities and c – some constant.

Thus the problem of cell formation can be formulated as a maximization of the sum

of similarities within each cell (most of the similarity-based approaches in literature

use this form) or as a minimisation of similarities between cells.

Clearly, a definition of the similarity measure is ambiguous, like that of the dis-

similarity measure. Even though several similarity measures were proposed in lit-

erature (an overview can be found in Shafer & Rogers (1993); Yin & Yasuda (2006);

Owsinski (2009)), to the best of our knowledge for none of them there exists a strict

proof of adequateness. Rather, it was shown empirically that they work well in

some cases. Thus, the issue of formulating a strictly reasoned (dis)similarity meas-

ure remains open. In the following chapters several similarity measures reflecting

different objectives will be proposed and explained.

1.3.2 Performance measures

As cell formation is aimed at making independent manufacturing cells, an amount

of intercell movement, i.e. an amount of parts that must be processed in more
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than one cell is a natural performance measure of the cellular decomposition3. We

used the term “amount of parts” to underline that one can be interested not just

in minimizing the number of parts travelling between cells but also their mass or

volume, etc. In case of functional grouping with a binary input matrix this amount

is exactly the number of ones outside the diagonal blocks and is denoted by ne –

the number of exceptional elements. Thus, in the simplest case ne can be used as a

performance measure of the cellular decomposition.

Another characteristic often used to estimate the performance is the number of

voids nv. In terms of block diagonal matrices it is just the number of zeroes within

diagonal blocks. Let us use the term operation to denote a single processing step of

one part, i.e. processing of some part by some machine. Now, in terms of opera-

tions nv means the number of operations that can be performed without increasing

intercell movement but are not realized (are not needed).

Clearly, minimum values of ne and nv depend on the number of cells p and the

following lemma shows an important property of these values.

Lemma 1.2. The following two properties take place:

(i) function min ne(p) is nondecreasing in p;

(ii) function min nv(p) is nonincreasing in p;

where minima are taken over all decompositions into p nonempty cells (i.e. each cell per-

forms at least one operation).

Proof. We will start from part (i). Fix the input data, denote n∗e (p) = min ne(p)

and consider two optimal (with respect to ne) decompositions into p and p + 1

cells, respectively. The numbers of exceptional elements of these decompositions

are n∗e (p) and n∗e (p+ 1). Now, consider a decomposition with p+ 1 cells and merge

any two cells. This leads to p cells and the number of exceptions n′e(p) such that

n′e(p) ≤ n∗(p + 1). On the other hand, n∗e (p) ≤ n′e(p) holds, just by minimality of

the latter. Thus, we have n∗e (p) ≤ n′e(p) ≤ n∗e (p + 1) for arbitrary number of cells

p = 1, . . . , m.

A similar reasoning can be used to prove part (ii).

Along with ne and nv the proposed in literature performance measures also use

the total number of operations n1 (the total number of ones in the machine-part in-

cidence matrix), purely for normalisation purpose. In fact, if the desired number of

3 More precisely, the amount of parts travelling between cells. A single part may be processed in only
two cells but if it has to travel several times between the cells, then the intercell movement is larger. This
issue is often ignored, especially if the input data is represented by a MPIM.



The problem of cell formation: introduction and approaches 15

cells is fixed ne is the best performance measure as this values completely reflects

the goal of cell formation – decomposition into independent cells. However, if the

number of cells is also a variable then any algorithm minimizing only ne in prac-

tical cases will produce a single cell, as usually perfect cells are not possible and the

smallest amount of intercell movement equal to 0 is achieved by a single sell that

contains the whole manufacturing system. In the capacitated versions of the cell

formation problem constraints on the cell size, workload, etc. ensure reasonable

cells. However, in the uncapacitated approaches to avoid this effect nv was arti-

ficially introduced into the objective. Taking into account that nv has an opposite

behavoiur to ne (see Lemma 1.2), this will force the number of cells to attain some

reasonable value. As nv is not connected to the original goal of cell formation, a

number of ways of introducing it into the performance measure were proposed (an

overview can be found in Sarker, 2001; Keeling et al., 2007). Yet, similarly to the

situation with the (dis)similarity measures there is no strict theoretical explanation

why one is better than the other.

We would like to finish this section with some examples of the performance

measures most widely used in literature:

• ne (Albadawi et al., 2005),

• ne + nv (Bhatnagar & Saddikuti, 2010),

• GCI = 1− ne
n1

– group capability index (Hsu, 1990),

• τ = n1−ne
n1+nv

– grouping efficacy (Kumar & Chandrasekharan, 1990; Albadawi

et al., 2005; Ahi et al., 2009),

• η = α n1−ne
n1−ne+nv

+ (1− α) mr−n1−nv
mr−n1−nv−ne

– grouping efficiency (Chandrasekharan

& Rajagopalan, 1986a; Ashayeri et al., 2005; Ahi et al., 2009),

where α ∈ [0, 1] – weighting factor, usually set to 0.5. Another example of a per-

formance measure is the amount of intercell movement. It will be shown in the

following chapters that, generally speaking, it is not the same as the number of

exceptions ne. Some of these measures will be used in order to compare the per-

formance of several approaches.

An overview of performance measures and their empirical evaluation can be

found in Sarker (2001); Keeling et al. (2007).
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1.4 An overview of the existing approaches

As was already mentioned in the previous section there exist a great number of ap-

proaches to solving the cell formation problem. From the most general perspective

these approaches can be classified as follows:

• clustering based on energy functions,

• similarity based hierarchical clustering,

• fuzzy logic methods,

• genetic algorithms and simulated annealing,

• neural networks,

• graph-theoretic approaches,

• mixed-integer linear programming (MILP).

It should be mentioned that all the groups of approaches except the last two are

intrinsically heuristic, see (Miltenburg & Zhang, 1991) for a comparative study. On

the contrary, the CF problem can be modelled exactly in terms of graph partitioning

or MILP, but these lead to computationally intractable (NP-hard) problems, thus

forcing the use of heuristic solution methods.

Below we give a brief overview of all the mentioned classes of approaches to

cell formation in order to provide a reader an impression about all kinds of al-

gorithmic tools applied to CF. The earliest iterative approaches representing ad hoc

algorithms are described in detail, while for those based on standard techniques

(e.g., neural networks or genetic algorithms) only the main peculiarities are men-

tioned. Such a level of detalisation, as we hope, will be useful especially for those

not familiar with cell formation and the approached involved.

1.4.1 Bond energy analysis

The idea of using the bond energy of the cells as a criterion of clustering perform-

ance was first used by McCormick et al. (1972) in their bond energy algorithm

(BEA). BEA is aimed at identifying clusters that are present in complex data ar-

rays by permuting rows and columns of the input data matrix in such a way as

to push the numerically larger elements together. The measure of clustering ef-

fectiveness (ME) used in bond energy algorithm was devised so that an array that
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possesses dense blocks of numerically large elements will have a large ME when

compared to the same array whose rows and columns have been permuted so that

its numerically large elements are more uniformly distributed. This measure is the

sum of the bond strengths, where bond strength is defined as a product of a pair of

nearest-neighbour elements:

ME(A) =
1
2

M

∑
i=1

N

∑
j=1

aij(ai,j+1 + ai,j−1 + ai+1,j + ai−1,j) (1.3)

where A - any M× N array with nonnegative elements. The defined in such a way

ME has the following theoretical and computational advantages (McCormick et al.,

1972):

• The ME is applicable to arrays of any size and shape; the only requirement is

nonnegativity of elements.

• Since the vertical (horizontal) bonds are unaffected by the interchanging of

columns (rows), the ME decomposes into two parts: one dependent only on

row permutations and the other dependent only on column permutations.

Thus, ME can be optimized in two phases by finding the optimal colums per-

mutation and then the optimal row permutation (or vice versa).

• Since the contribution to the ME from any column (or row) is only affected by

the two adjacent columns (rows), i.e. only local information is used, the ME

optimization leads to a sequential suboptimal procedure.

The proposed by McCormick et al. (1972) algorithm is as follows:

1. Place one of the columns arbitrarily. Set i = 1.

2. Try placing individually each of the remaining N − i columns in each of the

i + 1 possible positions and compute their contributions to ME. Place the

column into the position that gives the highest contribution. Increment i by 1

and repeat until i = N.

3. After arranging all the columns do the same procedure for rows. (This part is

unnecessary in case of symmetric input matrix.)

The main characteristics of the algorithm are as follows:

• Computational time depends only on the size of input matrix and has order

of O(M2N + N2M).
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• The algorithm always leads to a block diagonal form of the matrix if it can be

obtained by row and column permutations.

• The final ordering is independent of the order in which rows (columns) are

given and depends only on the initial row (column).

King (1980) proposed a more sophisticated algorithm that solves the particular

case of binary input matrix and exploits the binary nature of input. The algorithm

is as follows:

1. Consider each row of the machine-parts matrix as a binary number. Rank the

rows in order of decreasing binary value. Rows with the same value should

arbitrarily be ranked in the same order in which they appear in their current

matrix (from top to bottom).

2. Check if the current matrix row order (numbering from top to bottom) and

the rank order just calculated coincide. If yes, go to 6. If no, go to 3.

3. Rearrange the machine-part matrix starting with the first row by placing the

rows in decreasing rank order. Rank columns in decreasing binary value.

Columns with the same value should be arbitrarily ranked in the order in

which they appear in the current matrix (reading from left to right).

4. Check if the current matrix column order and the rank order just calculated

are the same. If yes, go to 6. If no, go to 5.

5. Rearrange the machine-part matrix starting with the first column by placing

columns in decreasing rank order. Go to 1.

6. Stop.

King claimed that his ROC algorithm always finds a block diagonal structure if it

exists and requires much less computer time than McCormick’s et al. technique.

However, it was shown in (Chandrasekharan & Rajagopalan, 1986b) that ROC can

fail if the matrix has almost block diagonal form (2 exceptional elements in a 20× 35

matrix). Another peculiarity of ROC is that it clusters machines and parts simul-

taneously while most other approaches first cluster machines and then derive part

families.

The modification of ROC proposed by Chandrasekharan & Rajagopalan (1986b)

MODROC has better performance in case of ill-structured data and consists of three

stages:
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Stage 1. ROC is applied on the rows and columns of the initial matrix repeatedly in

two iterations. This results in an ordered matrix that has the following prop-

erties. If the first k elements are ones in the ith row then at least the first k

elements are ones in the (i− 1)th row. This is also true for columns.

Stage 2. Identification of perfect blocks (an all ones submatrix).

Stage 3. Hierarchical clustering of blocks.

The last approach based on bond energy that we consider here is used in the dir-

ect clustering algorithm (DCA) by H. M. Chan & Milner (1982). Like the previous

ones, DCA iteratively permutes rows and columns such that the nonzero entries of

the input matrix are grouped into dense clusters and can be outlined as follows:

1. Count the number K of nonzero cells in each column and in each row. Re-

arrange the machine-part matrix with columns in decreasing and rows in in-

creasing order of K.

2. Starting with the first column in the matrix, transfer the rows which have

nonzero entries in this column to the top of the matrix. Repeat the procedure

with the other columns, until all the rows are rearranged.

3. Check if the matrix has changed from the previous step. If yes, go to 4. If no,

go to 6.

4. Starting with the first row of the matrix, transfer columns that have nonzero

entries in this row to the left-most position in the matrix. Repeat the proced-

ure for all the other rows, until all the columns are rearranged.

5. Check if the matrix has changed from the previous step. If yes, go to 2. If no,

go to 6.

6. Stop.

This algorithm can work with any starting form of the machine-part matrix. The it-

erative procedure of DCA converges after a limited number of iterations (H. M. Chan

& Milner, 1982) and unlike all the mentioned above approaches the result is always

the same, irrespectively of the initial permutation of rows and columns.

The above mentioned algorithms are reasonably fast but involve intuitive pro-

cedures that cannot guarantee optimality.
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1.4.2 Iterative approaches based on similarity measures

As follows from the title, all these approaches need some similarity measure S(., .)

to be defined for any pair of machines (and parts). Several similarity measures

have been considered and a particular choice was usually made either based on

experimental evaluation of possible candidates or on the desired properties of the

manufacturing cells to be obtained.

One of the first papers considering an iterative hierarchical clustering approach

based on similarity measures is by McAuley (1972). He used a single linkage clus-

tering algorithm (SLC) in which the similarity measure between two clusters is

defined as the maximum of the machine similarities between machine pairs where

machines of the pair are in different clusters. In a formalized form, the measure of

similarity S(K1, K2) between two clusters K1 and K2 is defined as:

S(K1, K2) = max
i1∈K1,i2∈K2

S(i1, i2) (1.4)

The idea of the hierarchical clustering algorithm is very simple. At the beginning

each machine is considered as one separate cluster, then iteratively two clusters

with the highest similarity are merged into one bigger cluster. Usually, a threshold

value is introduced and merges occur only if similarity between a particular pair

of clusters exceeds this threshold. The result of such clustering algorithms can be

represented in a form of dendogram (tree), nodes of which represent machine cells

at different levels of detail. One of the main disadvantages of such procedure is the

so-called chaining effect: clusters that have low similarity for most of the machine

pairs can be merged if there exist a single pair of machines that are similar enough.

By its essence hierarchical clustering is equivalent to the approach based on the

minimum spanning tree problem (to be discussed in Section 1.4.6).

Numerous modifications were proposed to avoid chaining effect. These in-

clude complete linkage clustering (CLC), average linkage clustering (ALC) and

linear clustering algorithm (LCC). The main difference between all of them is the

definition of similarity measure for clusters. In case of CLC the similarity S(K1, K2)

between two clusters K1 and K2 is defined as

S(K1, K2) = min
i1∈K1,i2∈K2

S(i1, i2) (1.5)
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while for ALC it is given as

S(K1, K2) =
1

|K1||K2| ∑
i1∈K1,i2∈K2

S(i1, i2) (1.6)

where |K1| and |K2| are cardinalities of the corresponding clusters. The LCC al-

gorithm is slightly more sophisticated and can be described as follows (Wei & Kern,

1989):

Step 1. Select the highest similarity value that has not yet been considered in the clus-

tering process. Assume, it is the similarity for machine pair (i1, i2). One of

four cases occurs:

(a) Neither machine i1 nor i2 has yet been assigned to a machine cell. In this

case a new cell is created containing these two machines.

(b) One of the machines is already assigned to some cell. In this case the

second machine is added to the same cell.

(c) Machines i1 and i2 are already assigned to the same cell. Nothing needs

to be done.

(d) Machines i1 and i2 are already assigned to different cells. The similar-

ity between them implies that the two cells can be merged in later pro-

cessing. This pair is marked.

Step 2. Repeat Step 1. Go to Step 3 when all machines have been assigned to cells.

Step 3. Steps 1 and 2 create the maximum number of clusters that would fit the situ-

ation defined by the input matrix. If there are no bottleneck parts created

by this clustering then the solution is optimal. However, this solution may

contain more cells than it is desired. If so, go to Step 4.

Step 4. Starting with the largest commonality score that was marked at Step 1d start

joining the cells. If at some step the resulting cell is too large or does not con-

form with some other requirements then do not perform the join operation.

Step 5. Repeat Step 4 until all predefined constraints on number of cells, their size,

etc. are satisfied.

The authors claim (Wei & Kern, 1989) that the algorithm has linear complexity.

Likewise the previous group of algorithms, iterative approaches are reasonably

fast but involve intuitive procedures that cannot guarantee optimality.
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1.4.3 Fuzzy logic approaches

The main assumption behind all the above mentioned approaches and those based

on graph partitioning and mathematical programming is that the part families are

mutually exclusive and collectively exhaustive, i.e. each part can only belong to

one part family. The absence of ideal block diagonal structure of the machine-part

incidence matrix for most real manufacturing systems, as well as uncertainties (e.g.,

about future part demands) and ambiguities (e.g. some part has half of operations

within one cell and other half in another) had lead to an idea of using fuzzy logic

(instead of classical one) in cell formation. From a qualitative point of view such

changes mean that classical Boolean decisions (e.g. some machine is either included

into a particular cell or not) are replaced by fuzzy ones (a machine is likely to be

included into a particular cell with some likelihood coefficient µ ∈ [0; 1]). The most

important fact is that fuzzy arithmetic can be plugged into any existing algorithm

for cell formation by replacing Boolean variables by continuous ones defined on

the interval [0; 1] and classical logic operations by fuzzy ones (e.g., conjunction can

be replaced by min, disjunction by max and negation ¬x by 1− x). At the output,

for any machine (part) a vector of inclusion coefficients for any cell (part family)

is obtained and the machine (part) is assigned to the cell (part family) that corres-

ponds to the highest coefficient. We do not give a detailed description of successful

implementations of fuzzy logic approach for the sake of shortness as fuzzy logic op-

erations lead to quite extensive notations. Instead, we would like to refer the reader

to Xu & Wang (1989); Chu & Hayya (1991); Gindy et al. (1995); Narayanaswamy et

al. (1996) where relevant algorithms are explained in detail and examples are given.

Of certain interest is a paper by Suresh et al. (1999) where fuzzy logic approach is

used within a framework of neural networks.

1.4.4 Genetic algorithms and simulated annealing

Genetic algorithms (GA) and simulated annealing (SA) are quite general meta-

heuristics that proved to be useful in a wide variety of optimization problems

(including clustering and classification). Thus, their application to a field of cell

formation is quite natural.

Authors usually start with a non-linear objective function and some initial con-

figuration of machine cells, and then apply an evolutionary procedure to optimize

the value of the objective (Adil & Rajamani, 2000; Xambre & Vilarinho, 2003). For

example, Adil & Rajamani (2000) use an objective function that contains two non-
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linear terms reflecting intra- and intercell movement costs. The SA that they use

has the following main steps. Initially, the number of cells is set equal to the num-

ber of machines and each machine is assigned to a separate cell. This is an initial

configuration. At each subsequent iteration, one machine is moved from the cur-

rent cell to another in order to get a new machine assignment. The machine to be

moved and the cell for it are chosen randomly and after the movement the object-

ive value is updated for the new configuration. The generated solution is accepted

if the objective value is improved. If the objective value is not improved then the

solution is accepted with some probability depending on a temperature that is high

at the beginning and decreases during the execution of the algorithm. Such setting

ensures that a large proportion of generated solutions are accepted at the beginning

and local optima can be avoided at early stages. Decreasing temperature allows the

algorithm to stabilize in a vicinity of some local (and, hopefully, global) optimum.

At each cooling temperature many moves are tried and the algorithm stops when

predefined conditions are met.

Genetic algorithms are applied to cell formation in the same spirit and differ

from SA only in the details of the evolutionary optimization procedure. A typical

genetic algorithm starts with an initial population (pool) containing a predefined

number of feasible solutions to the cell formation problem (decompositions into

cells). Then, at each iteration some fixed number of the worst solutions are deleted

from the population and the same number of new solutions is added. These new

solutions are obtained in one of two ways: by small modifications of some solu-

tion already present in the current population (mutation) or by joining parts of two

solutions (crossover). This procedure is repeated iteratively until some stopping

criterion is met. The size of an initial population, the proportion of deleted solu-

tions, probabilities of mutation and crossover are parameters of the GA. It should

be mentioned that there are no provably good approaches for finding optimal val-

ues of these parameters (the same is true for the parameters of SA) and in practice

they are found on a trial-and-error basis. Applications of GA to the cell formation

can be found in (Mak et al., 2000; Filho & Tiberti, 2006).

1.4.5 Neural network approaches

Flexibility and universality of artificial neural networks (ANN), as well as presence

of a rich choice of architectures and learning rules, inspired their application to

the cell formation problem. All the ANN-based approaches can be classified into

two groups: those using supervised and unsupervised learning. The first group
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typically uses either feed-forward perceptrons and BackPropagation learning rule

(see, e.g., Kao & Moon, 1991) or Hopfield-like feed-back network (see, e.g., Liang &

Zolfaghari, 1999). This group needs some learning set to be defined, i.e. a typical

representative of each machine cell and part family should be chosen. Respectively,

the desired number of cells should be known. Typical representatives are usually

found by some heuristic procedure.

The neural networks from the second group are capable of finding the cluster

structure of the input data without any additional knowledge about typical rep-

resentatives and some architectures do not even need the number of clusters to

be given. This group of ANN-based approaches includes the Carpenter-Grossberg

neural network (Kaparthi & Suresh, 1992), so-called self-organising maps (Guerrero

et al., 2002), competitive neural networks (Malave & Ramachandran, 1991; Venugo-

pal & Narendran, 1994) and adaptive resonance theory (ART) networks (Suresh et

al., 1999; Yang & Yang, 2008).

ANN-based approaches also differ in the type of input data they use: some deal

directly with binary machine-part relations, while others perform clustering based

on similarities.

1.4.6 Graph-theoretic approaches

One of the examples of applying graph theoretic approach to the cell formation can

be found in (Rajagopalan & Batra, 1975). For a given manufacturing system au-

thors construct a graph with each vertex representing a machine. An arc between

two machines i and j represents the “strength” of the relationship between the

machines. These “strengths” can be defined as similarity coefficients used in ap-

proaches from Section 1.4.2. Given this weighted graph, cliques can be found (a

clique is a maximal complete subgraph) and these cliques are merged into pro-

duction cells such that the relationship within a cell is “strong” (a sum of all pair-

wise similarities within a cell is large) and intercell relationships are “weak”. Once

production cells are formed, a set of rules are used to assign parts to cells. This

approach works especially well if the number of machines is small, because the

number of possible cliques increases exponentially as the number of vertices in a

graph (a number of machines) increases.

In (Gower & Ross, 1969) an algorithm based on the minimum spanning tree

(MST) problem is considered. As in the previous case, cell formation instance can

be encoded in a weighted graph where each vertex corresponds to some machine

and weights are dissimilarities between corresponding machines. Suppose, an MST
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is found in such a graph. Deleting K− 1 heaviest edges from the MST produces K

subtrees that can be interpreted as manufacturing cells. Such a procedure ensures

that dissimilarity between machines within a cell is minimal. In (Ng, 1993) a worst

case analysis of the MST approach is performed. Ng (1991) uses the bond energy

formulation of the problem and then shows that it can be transformed into the rec-

tilinear Travelling Salesman Problem (TSP) and also provides a worst case bound.

Finally, one of the most widely used graph-theoretic approaches to cell forma-

tion is based on the p-Median problem (PMP). This approach is closely related to

the two approaches mentioned above. While the first approach suggests decom-

position of the graph into cliques and the second one – into spanning trees, the

approach based on the PMP seeks for the optimal decomposition of the graph into

trees of depth one, i.e. trees consisting of a root and some leaves without internal

nodes. A detailed description of the approach can be found in (Wang & Roze, 1997;

Deutsch et al., 1998; Ashayeri et al., 2005; Won & Lee, 2004; Won & Currie, 2006)

and in the next chapter.

The use of similarity measures is typical for this group of approaches. For a

more detailed overview of graph-theoretic approaches to cell formation we refer

the reader to (Chandra et al., 1993).

1.4.7 MILP based approaches

Mixed-integer linear programming (MILP) is quite a broad and well studied area.

Many optimisation problems, including those of cell formation, have been trans-

lated into the MILP format due to a simple and quite general structure of the latter.

In its most general form a MILP problem can be expressed as:

min
{

cTx | Ax ≤ b; x ∈ Rn
+; xi ∈ Z, i ∈ U

}
,

where x is a vector of variables, A is a real-valued matrix, b and c are real-valued

vectors; the dimensions of A, b and c must be such that all the multiplications make

sense. U is an index set for integer variables.

A number of researchers start from an explicit mixed-integer programming or

mixed-integer linear programming formulation of the cell formation problem (and

linearise the formulation if necessary). For example, Chen & Heragu (1999) define

the problem as follows:

∑
i

∑
j

∑
k

cjaijxjk(1− yik) + ∑
i

∑
j

∑
k

dij(1− aij)xjkyik → min (1.7)
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s.t. ∑
k

xjk = 1 ∀j (1.8)

∑
k

yik = 1 ∀i (1.9)

ysk + ytk ≤ 1 ∀k, (s, t) ∈ S1 (1.10)

ysk − ytk = 0 ∀k, (s, t) ∈ S2 (1.11)

Mmin ≤∑
i

yik ≤ Mmax ∀k (1.12)

xjk ∈ [0; 1] ∀j, k (1.13)

yik ∈ {0, 1} ∀i, k (1.14)

where aij = 0 if machine i is not required for part j and 0 < aij ≤ 1 otherwise, cj –

intercell movement costs for part j, dij – cost of part j not utilizing machine i, Mmin

– minimum number of machines in a cell, Mmax – maximum number of machines

in a cell, S1 - set of machine pairs that cannot be located in the same cell, S2 – set of

machine pairs that must be located in the same cell. Decision variables xjk and yik

have the following meaning:

xjk = 0 part j is not processed in cell k

0 < xjk ≤ 1 part j is processed in cell k
(1.15)

yik =

 1, machine i is in cell k

0, otherwise
(1.16)

The first term in the objective function (1.7) represents the total costs of intercell

movement and the second term represents the total costs of resource underutiliz-

ation. Constraint (1.8) ensures allocation of each part to a cell. Constraints (1.9)

and (1.14) ensure that each machine can only be assigned to one cell. Constraint

(1.10) states that the machine pairs included in S1 cannot be placed in the same

cell. Similarly, constraint (1.11) forces machine pairs from S2 to be placed in the

same cell. Finally, constraint (1.12) specifies the minimum and maximum number

of machines allowed in any cell. As the mentioned model has a nonlinear objective

function (1.7), it was linearized by introducing new variables zijk = xjkyik and Chen

and Heragu’s MILP model is:

∑
i

∑
j

∑
k

cjaijxjk + ∑
i

∑
j

∑
k
(dij(1− aij)− cjaij)zijk (1.17)

s.t. (1.18)
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(1.8)− (1.14) (1.19)

zijk ≤ xjk ∀i, j, k (1.20)

zijk ≤ yik ∀i, j, k (1.21)

zijk ∈ [0; 1] ∀i, j, k (1.22)

It should be mentioned that the number of integer (Boolean) variables in the model

depends on the number of machines, parts and cells to be made. This means that

for realistic instances having hundreds of parts the formulation becomes huge and

hardly solvable.

Another MILP formulation that includes a wider range of practically motivated

constraints can be found in (Slomp et al., 2005), however due to its size it is hardly

tractable for moderate and large-size instances. Note also that all the models based

on graph theory can be (and usually are) reformulated in terms of MILP. This is

done in order to avoid the need of developing special algorithms for handling the

model.

As MILP is computationally intractable (NP-hard) in general, heuristic methods

were used to solve the obtained problems. However, in the next chapter we will

show that there exist a compact MILP formulation based on the p-Median prob-

lem that can be solved exactly by a general-purpose MILP solver just due to its

compactness (small size in terms of the number of variables and constraints).

We would like to conclude this section by saying that most classes of approaches

(except MILP) rely algorithms for which addition of constraints is problematic. For

example, for genetic algorithms it is quite easy to check if the generated solution

satisfies additional constraints but generating a feasible solution may be challen-

ging (the algorithm makes sense only if some feasible solutions are present in the

pool). Thus, alongside with tractability and optimality, the issue of flexibility makes

practical applicability of many approaches questionable.

1.5 Conclusions and outline of the thesis

Cellular decomposition of the manufacturing system has a substantial impact on its

efficiency. This is caused by both explicit and implicit factors. First of all, cellular

layout explicitly improves the products flow, reduces handling and cross training

costs and delivery times. At the same time, the implicit impact of cellular layout

is due to the fact that smaller systems are easier to manage. For example, taking
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into account NP-hardness of most scheduling problems, switching from one big

manufacturing system to few small subsystems can make the difference between

impossibility and possibility of making an optimal schedule.

Due to vast benefits proposed by cellular manufacturing, the cell formation

problem has been extensively studied for more than 50 years. This resulted in a

wide variety of approaches as well as modifications of the problem. However, to

the best of our knowledge there have been very few attempts of solving the prob-

lem to optimality and almost all the proposed models for CF problem are either of

intuitive (heuristic) nature or are solved by heuristic procedures. This means that

the obtained solutions incorporate two types of errors: an intrinsic error of model-

ling and a computational error induced by a heuristic solution procedure. In fact,

for an overwhelming majority of the existing approaches no worst case perform-

ance guarantees are available and it was only shown that they give satisfactory

results for some artificial instances (as optimal solutions to the real life instances

are usually not known). Moreover, not only most solution algorithms are lacking

a strict theoretical analysis but also such basic concepts as dis/similarity and per-

formance measures. One may conclude that despite its long history the theoretical

and applied sides of the CF problem have certain gaps that we are going to fill in

the following chapters.

The main research theme can be formulated as follows: design of an applicable

in practice approach (model) for solving the cell formation problem. By practical

applicability we mean that the approach (model) must satisfy certain criteria:

• guaranteed solution quality;

• reasonable running times for real-life instances;

• flexibility: possibility of adding additional constraints and/or objectives.

Taking these requirements into account, the methodological grounds of this thesis

are as follows. Based on the observation that there is a prominent imbalance between

the number of machines and parts (dozens vs. thousands) we conclude that an effi-

cient model uses a (dis)similarity measure and works with machine-machine rela-

tions first making machine cells and then assigning parts to the cells made. In order

to comply with the flexibility requirement, we will consider the models expressed

in terms of mixed-integer linear programs. Having quite a general and simple form,

MILP models can be extended by any number of linear constraints without affect-

ing the general structure of the problem. This choice of a model format can be fur-
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ther motivated by the fact that MILP is a well studied area and there exist a number

of commercial (e.g., Cplex, Xpress-MP) and non-commercial (e.g., GLPK) solvers.

Contemporary solvers are very efficient and able to handle instances with thou-

sands of variables and constraints. Furthermore, the use of available solvers makes

the implementation of the models much easier by avoiding the need of developing

special algorithms and programming them.

In the following chapters we propose two new models based on the p-Median

and multicut problems. The first model is an efficient heuristic having a restric-

ted modelling error and a zero computational error. The second model solves the

problem exactly; however, due to its computational complexity only instances of a

moderate size (in terms of the number of machines) can be handled. Yet, we demon-

strate the applicability of this model by an industrial case. Besides the two models,

we propose several similarity measures exactly reflecting possible objectives of cell

formation.

The rest of the thesis is organised as follows. Chapter 2 provides an insight into

the p-Median problem (PMP) and its properties. An efficient model based on the

pseudo-Boolean formulation of the PMP is presented; its computational possibilit-

ies are discussed and demonstrated by means of extensive experiments.

Chapter 3 is focused on the PMP-based model for cell formation. It is shown that

PMP-based models, though being an approximation to the cell formation problem,

provide high-quality solutions and outperform other contemporary heuristics. At

the same time, if an efficient PMP formulation (like the one discussed in Chapter 2)

is used, the computing times are negligibly small even for the largest CF instances

occurring in practice.

Chapter 4 deals with an exact model for cell formation. It is shown that the latter

is equivalent to the minimum multicut problem (that we abbreviate as MINpCUT).

Two MILP formulations are also presented and their effectiveness is demonstrated

by means of computational experiments with real industrial data. Further, it is

shown that a reasonable similarity measure corresponds to the amount of parts

travelling directly between a pair of machines, therefore, sequencing information

is of particular importance for optimal cell formation.

Chapter 5 discusses appropriateness of the standard objective (minimisation of

parts flow between cells) and considers other possible objectives for cell formation,

as well as the ways of their introduction into the proposed models (first of all, via

the similarity measure).
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Finally, Chapter 6 summarises the major results of the thesis and provides con-

cluding remarks.



Chapter 2

The p-Median problem

2.1 Introduction

The p-Median problem (PMP) is a well-known NP-hard problem which was ori-

ginally defined by Hakimi (1964; 1965) and involves location of p facilities on a

network in such a manner that the total weighted distance of serving all demands

is minimized. It has been widely studied in literature and applied in cluster ana-

lysis, quantitative psychology, marketing, telecommunications industry (Brusco &

Köhn, 2008), sales force territories design (Mulvey & Beck, 1984), political district-

ing (Belenky, 2008), optimal diversity management (Briant & Naddef, 2004), cell

formation in group technology (Won & Lee, 2004), vehicle routing (Koskosidis

& Powell, 1992), and topological design of computer communication networks

(Pirkul, 1987).

The basic PMP model that has remained almost unchanged during recent 30

years is the so called ReVelle and Swain integer linear programming formulation

(ReVelle & Swain, 1970; Church, 2008). Note that this formulation contains Boolean

decision variables and, hence, this is a Boolean linear programming formulation.

Since then, the PMP has been the subject of considerable research involving the de-

velopment of some different types of adjusted model formats (Rosing et al., 1979;

Cornuejols et al., 1980; Dearing et al., 1992; Church, 2003), and recently by Church

(2008), AlBdaiwi et al. (2009), and Elloumi (2010), as well as the development of ad-

vanced solution approaches (Reese (2006) and references within) and some recent

This chapter is based on the paper (Goldengorin & Krushinsky, 2011a).
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publications by Senne et al. (2005), Beltran et al. (2006), Avella et al. (2007), Brusco

& Köhn (2008). For a comprehensive list of references to the PMP we address the

reader to Reese (2006), Mladenovic et al. (2007) and a bibliographical overview by

ReVelle et al. (2008).

A Boolean linear programming formulation of the PMP can be defined on a weighted

bipartite graph G = (V, A, C) with the set of vertices V = I ∪ J, the set of arcs

A ⊆ I × J, and non-negative weights C = {cij : cij ≥ 0, (i, j) ∈ A} as follows.

For the given sets I = {1, 2, . . . , m} of sites at which plants (cluster centres) can be

located, J = {1, 2, . . . , n} of clients (cluster points) with unit demand at each client

site, a matrix C = [cij] of non-negative costs (distances, or some other dissimilarity

measure) of supplying each j ∈ J from each i ∈ I, the number p of plants to be

opened, the PMP can be written as

min
m

∑
i=1

n

∑
j=1

cijxij (2.1)

s.t.
m

∑
i=1

xij = 1, j = 1, . . . , n (2.2)

xij ≤ yi, i = 1, . . . , m; j = 1, . . . , n (2.3)
m

∑
i=1

yi = p (2.4)

yi ∈ {0, 1}, i = 1, . . . , m (2.5)

xij ∈ {0, 1}, i = 1, . . . , m; j = 1, . . . , n. (2.6)

For any feasible solution (xij, yi), yi = 1 if plant i is open, and yi = 0, otherwise;

xij = 1 if client j is assigned to plant i, and xij = 0, otherwise. Constraints (2.2)

assign each client to exactly one plant, constraints (2.3) forbid the assignment of a

client to a closed plant, constraint (2.4) fixes the number of opened plants to p.

A PMP instance is described by an m× n matrix C = [cij] and the number 1 ≤
p ≤ |I|. We assume that the entries of C are nonnegative and finite, i.e. C ∈ Rmn

+ . If

I = J, we have the classic ReVelle and Swain’s PMP model (ReVelle & Swain, 1970)

with n2 Boolean decision variables.

Further progress with improvements of ReVelle and Swain’s PMP model was

made by Rosing et al. (1979), Cornuejols et al. (1980), Dearing et al. (1992), Church

(2003), Church (2008), and recently by AlBdaiwi et al. (2009) and Elloumi (2010).

All of them have incorporated in different ways the following properties of PMP:

(i) based on an ordering of the distances cij with respect to a given demand point
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they have either reduced the number of clients or have excluded from (2.1)–(2.6) a

repetition of decision variables xij and xkj corresponding to the equal costs cij = ckj

for some j ∈ J;

(ii) the mn + m Boolean decision variables are replaced by m Boolean decision

variables and mn non-negative decision variables, i.e. (2.6) is replaced by

xij ≥ 0, i = 1, . . . , m; j = 1, . . . , n. (2.7)

To the best of our knowledge there is no PMP model that adjusts the numbers

of non-negative decision variables and corresponding linear constraints depending

on the number p of medians.

In this chapter we start our study of the classic p-median model represented as

a Boolean linear programming model by posing the following questions: (i) what

are the optimal numbers of decision variables partitioned into Boolean and non-

Boolean variables; (ii) what is the optimal number of constraints; (iii) are the above

mentioned numbers of decision variables and constraints dependent on the PMP

input data, more specifically on the number p of medians.

This chapter proposes a new model formulation for the PMP that contains all

previously suggested improvements which we have incorporated in a concise and

simplified notation including our adjustment of decision variables and correspond-

ing linear constraints depending on the number p of medians. This new p-median

formulation is called a Mixed Boolean Pseudo-Boolean Model for the PMP. We show

that our model can result in a substantially smaller mixed Boolean linear program-

ming formulation for a given application of the PMP and can be used either to find

a global optimum by means of general-purpose MILP solvers or to develop new

exact and approximate algorithms based on the well known methods in mixed in-

teger programming (see, e.g., Wolsey, 2008).

Some of above mentioned improvements were separately done for the PMP

without taking into account the ongoing progress with model formulations for an-

other common model within minisum location-allocation problems, namely the

Simple Plant Location Problem (SPLP), often referred to as the Uncapacitated Facil-

ity Location Problem (UFLP) (see Cornuejols et al., 1990) or the warehouse location

problem (see, e.g., ReVelle et al., 2008). The SPLP is similar to the PMP, and the

methods used to solve one are often adapted to solve the other. The objective func-

tion of the SPLP is one of determining the cheapest method of meeting the demands

of a set of clients J = {1, . . . , n} from plants that can be located at some candidate

sites I = {1, . . . , m}. The costs involved in meeting the client demands include the
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fixed cost of setting up a plant at a given site, and the per unit transportation cost

of supplying a given client from a plant located at a given site. Both PMP and SPLP

are defined on bipartite graphs and differ in the following details. First, the SPLP

involves a fixed cost for locating a facility at a given vertex while the PMP does not.

Second, unlike the PMP, SPLP does not have a constraint on the number of opened

facilities. Typical SPLP formulations separate the set of potential facilities (sites loc-

ation, cluster centres) from the set of demand points (clients). In the PMP these sets

are identical, i.e. I = J. Such problems are well known in cluster analysis (see, e.g.,

Brusco & Köhn, 2008). Both problems form underlying models in several combin-

atorial problems, like set covering, set partitioning, information retrieval, simpli-

fication of logical Boolean expressions, airline crew scheduling, vehicle dispatch-

ing (see Christofides, 1975), assortment (see, e.g., Goldengorin et al., 2003; Pentico,

2008), and are subproblems of various location analysis problems (see ReVelle et

al., 2008).

An instance of the SPLP has an optimal solution in which each client is satisfied

by exactly one plant. A similar observation is valid for the PMP. In Hammer (1968)

(see also Dearing et al., 1992) this fact is used to derive a pseudo-Boolean represent-

ation of the SPLP. The pseudo-Boolean polynomial (pBp) developed in that work

has terms that contain both a literal and its complement. At the end of (Hammer,

1968) it is shown by means of an example that only linear monomials can have

negative coefficients. Subsequently, in Beresnev (1973) a different pseudo-Boolean

form has been developed in which each term contains only literals or only their

complements. We have found this form easier to manipulate, and hence adjus-

ted Beresnev’s formulation of the SPLP to the PMP in (AlBdaiwi et al., 2009) and

(Goldengorin & Krushinsky, 2011a).

The purpose of this chapter is twofold. First, we design a new model for the

p-Median problem and show that the number of nonnegative decision variables

and corresponding constraints depend on the number of p-medians and will be

adjusted in our model. Moreover, these numbers are minimal within the class of

Mixed Integer Linear Programs for the PMP. Second, we show that our new model

allows solving by means of a general-purpose solver on a PC some PMP benchmark

instances previously intractable by both general-purpose solvers and the state-of-

the-art exact algorithms, as well as handling smaller instances more efficiently.

In order to demonstrate the properties of the PMP and compare performance of

the formulations we used benchmark instances from the four most popular librar-

ies: OR, TSP, ODM, RW. The first one, the OR library, was introduced by Beasley
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(1985) and is available at (OR Library, 1990). Every node is both a potential loc-

ation and a client, and the costs are the lengths of the shortest paths between the

corresponding nodes.

The TSP library was originally proposed for the travelling salesman problem

(TSP) and is available at (TSP Library, 1995). TSP instances are defined as sets

of points in a two dimensional plane. Every point is considered both a potential

location and a client, and the costs are simply Euclidean distances.

Instances from the next library that we studied are based on the optimal di-

versity management (ODM) problem. For the description of this problem and in-

stances see Briant & Naddef (2004).

Finally, we considered instances proposed by Resende & Werneck (2003). These

problems are defined on random distance matrices. In every case the number of

potential facilities m is equal to the number of clients n and distances are integers

taken uniformly at random from the interval [1, n]. The library contains five in-

stances with n = 100, 200, 250, 500, 1000.

The chapter is organized as follows. Section 2.2 focuses on the pseudo-Boolean

formulation of the PMP and its basic properties. In Section 2.3 we analyse the size

reduction techniques applicable to the p-Median problem. Next, in Section 2.4 we

present our new MBpBM formulation, discuss its minimality and provide results

of numerical experiments. Sections 2.5 and 2.6 provide two applications of the

pseudo-Boolean formulation: estimation of instance data complexity and charac-

terization of equivalent instances. Finally, Section 2.7 concludes the chapter with a

summary and future research directions.

2.2 The pseudo-Boolean representation

Recall that given sets I = {1, 2, . . . , m} of sites in which plants can be located, J =

{1, 2, . . . , n} of clients, a matrix C = [cij] of transportation costs (supplying costs,

distances, similarities, etc.) for each j ∈ J from each i ∈ I, the number p of plants

to be opened, and a unit demand at each client site, the p-Median Problem (PMP)

is one of finding a set S ⊆ I with |S| = p, such that the total cost

fC(S) = ∑
j∈J

min{cij | i ∈ S} (2.8)

of satisfying all unit demands is minimized. Note that non-unit demands dj 6=
1 can be scaled by c′ij = cijdj, and the number of served clients by each plant is
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unbounded (the so called uncapacitated location problem, see e.g., Reese (2006) and

ReVelle et al. (2008)). An instance of the problem is described by an m× n matrix

C = [cij] and the number 1 ≤ p ≤ |I|. We assume that entries of C are nonnegative

and finite, i.e. C ∈ Rmn
+ . The Combinatorial Formulation of PMP is to find

S? ∈ arg min{ fC(S) : ∅ ⊂ S ⊆ I, |S| = p}. (2.9)

It is possible to reformulate the objective function fC(S) of PMP (2.8) in terms of

a pseudo-Boolean polynomial (see Hammer (1968), Beresnev (1973)). It is enough

to find a pseudo-Boolean representation for each addend min{cij | i ∈ S}, and sum

up addends for all j ∈ J. In the rest of this section we will use the following

notions. Mappings f : {0, 1}n → R are called pseudo-Boolean functions. All

pseudo-Boolean functions can be uniquely represented as multi-linear polynomials

of the form (see, e.g., Boros & Hammer, 2002)

f (x) = ∑
S⊆I

αS ∏
i∈S

xi. (2.10)

The expressions αS ∏i∈S xi and ∏i∈S xi are called a monomial and a term, respect-

ively. In this paper multi-linear polynomials are called pseudo-Boolean polynomials

and monomials with the same term are called similar monomials. For example, the

following pairs of monomials 2x1x5 and 5x1x5; 3x3x4x7 and 3x3x4x7 are similar

monomials. We say that a pseudo-Boolean polynomial is in the reduced form if it

contains no similar monomials. In other words, the algebraic summation of similar

monomials is called reduction. Representation of the cost function (2.8) in terms of

a pseudo-Boolean polynomial needs two additional notions: an ordering matrix and

a differences matrix.

An m×n ordering matrix Π = [πij] is a matrix with each column Πj = (π1j, . . . , πmj)
T

defining a permutation of 1, . . . , m that if being applied to the corresponding column

of the costs matrix makes its entries sorted in a non-decreasing order. There may

exist several ordering matrices for a given instance of the PMP. Given a matrix C,

the set of all ordering matrices Π such that cπ1j j ≤ cπ2j j ≤ · · · ≤ cπmj j for j = 1, . . . , n

is denoted by perm(C).

Consider the expression min{cij | i ∈ S} for some fixed j ∈ J. Clearly, the mini-

mum is attained if S = I, i.e. the smallest value is chosen among all entries cij

for a fixed column j. It is clear that the unit demand of column j cannot be satis-

fied cheaper than this smallest value. Assume that this smallest value is attained
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at an entry cπ1j j of column j such that π1j indicates the number of the row contain-

ing this smallest entry cπ1j j in column j. In terms of the original PMP, if the site

numbered by π1j is open, then the unit demand of client j will be satisfied by costs

cπ1j j, otherwise (if the site π1j is closed, but all other sites in I \ {π1j} are opened)

the cheapest way to satisfy the unit demand of client j is by the value of a second

smallest entry cπ2j j. The value of a second smallest entry cπ2j j can be represented

as follows: cπ2j j = cπ1j j + [cπ2j j − cπ1j j]. Similarly, if both sites π1j, π2j are closed

and all other sites are opened, then the unit demand of client j will be satisfied

by the value of a third smallest entry cπ3j j = cπ1j j + [cπ2j j − cπ1j j] + [cπ3j j − cπ2j j],

etc. In other words, depending on the set of opened and closed sites from I the

corresponding smallest value of min{ci,j | i ∈ S} can be represented by the sum

of the smallest values of entries in column j and the corresponding differences of

ordered entries in column j. By introducing a Boolean variable yπ1j = 0 if the site

π1j is opened, and yπ1j = 1 if the site π1j is closed, we are able to express, for ex-

ample, the costs of satisfying the unit demand j depending on whether the site π1j

is opened or closed (if π1j is closed then we assume that π2j is open, i.e. yπ2j = 0),

as follows: cπ2j j = cπ1j j + [cπ2j j − cπ1j j]yπ1j .

To illustrate this idea, let us consider the first column C1 of matrix C, namely

C1 = (c11, c21, c31, c41)
T = (7, 10, 16, 11)T. After ordering its entries in a non-decreasing

order 7 < 10 < 11 < 16 we have that the corresponding permutation is Π1 =

(1, 2, 4, 3)T. If the Boolean vector (y1, y2, y3, y4)
T reflects an opened (closed) plants

at cite i = 1, 2, 3, 4, then depending on the set of opened plants S ⊆ {1, 2, 3, 4} we

have min{ci1 | i ∈ S} = [7+ 3y1 + 1y1y2 + 5y1y2y4]. For example, if S = {2, 4}, then

y = (1, 0, 1, 0)T, and min{ci1 | i ∈ {2, 4}} = 7 + 3× 1 + 1× 1× 0 + 5× 1× 0× 0 =

10.

Corresponding to an ordering matrix Π = [πij], a differences matrix ∆ = δij

containing differences between the transportation costs for each j ∈ J is uniquely

defined as follows:

δ1k = cπ1kk

δrk = cπrkk − cπ(r−1)kk for 2 ≤ r ≤ m. (2.11)

Defining

yi =

 0 if i ∈ S

1 otherwise,
for each i = 1, . . . , m (2.12)
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we can indicate any solution S by a vector y = (y1, y2, . . . , ym)T. Its total cost is

given by the following pseudo-Boolean polynomial:

BC,Π(y) =
n

∑
j=1

{
δ1j +

m

∑
k=2

δkj ·
k−1

∏
r=1

yπrj

}
. (2.13)

Note, this pseudo-Boolean polynomial is different from those used by Hammer

(1968) and Dearing et al. (1992) containing both variables and their complements.

We call a pseudo-Boolean polynomial f (y) (2.10) a Hammer-Beresnev polynomial

if there exists a PMP instance C and Π ∈ perm(C) such that f (y) = BC,Π(y) for

each y ∈ {0, 1}m, since this representation of the total cost was first presented in

the context of uncapacitated facility location problems independently in Hammer

(1968) and Beresnev (1973). The following theorem from AlBdaiwi et al. (2011)

gives necessary and sufficient conditions for this.

Theorem 1. A general pseudo-Boolean polynomial is a Hammer-Beresnev polynomial if

and only if all its coefficients are nonnegative.

Proof. The “if” statement is trivial. In order to prove the “only if” statement, con-

sider a PMP instance defined by the cost matrix C, an ordering matrix Π ∈ perm(C),

and a Hammer-Beresnev polynomial BC,Π(y) in which there is a monomial of de-

gree k with a negative coefficient. Since monomials in BC,Π(y) are contributed by

the elements of C only, a monomial with a negative coefficient implies that δk,j is

negative for some j ∈ 1, . . . , n. But this contradicts the fact that Π ∈ perm(C).

In AlBdaiwi et al. (2009) it is shown that the total cost function (2.13) is identical

for all permutations in perm(C). Hence, we can remove the Π in BC,Π(y) without

introducing any confusion. We denote a Hammer-Beresnev function corresponding

to a given PMP instance C by BC(y) and define it as

BC(y) = BC,Π(y), (2.14)

where Π ∈ perm(C).

A solution y is feasible if ∑m
i=1 yi = m − p. Thus, every product of more than

m − p variables is 0 for any feasible solution. This observation allows excluding

monomials of high degree from the objective function and we call this procedure

truncation of the Hammer-Beresnev polynomial. The polynomial subjected to trunca-

tion and summation of similar monomial is denoted by BC,p(y) and has the follow-
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ing form:

BC,p(y) =
n

∑
j=1

{
δ1j +

m−p+1

∑
k=2

δkj ·
k−1

∏
r=1

yπrj

}
. (2.15)

It should be mentioned that the truncated Hammer-Beresnev polynomial BC(y)

usually contains less than (m − p) × n monomials as presence of equal entries in

columns of the cost matrix leads to zero differences δkj and similar monomials can

be subjected to algebraic summation (e.g., constants δ1j can be always summed up

into one value). Further, we will denote the truncated Hammer-Beresnev polyno-

mial with reduced similar monomials by BC,p(y), it can be expressed as:

BC,p(y) =
k

∑
r=0

αr ∏
i∈Tr

yi =
k

∑
r=0

αrTr, (2.16)

where Tr is a set of Boolean variables yi included in term Tr, k is the number of

non-constant monomials in BC,p(y).

We can reformulate (2.9) in terms of Hammer-Beresnev polynomials as the pseudo-

Boolean formulation of PMP:

y? ∈ arg min{BC,p(y) : y ∈ {0, 1}m,
m

∑
i=1

yi = m− p}. (2.17)

Example. Consider a PMP instance borrowed from Elloumi (2010) with m = 4,

n = 5, p = 2 and

C =


1 6 5 3 4

2 1 2 3 5

1 2 3 3 3

4 3 1 8 2

 . (2.18)

A possible ordering matrix for this problem is given by

Π =


1 2 4 1 4

3 3 2 2 3

2 4 3 3 1

4 1 1 4 2

 (2.19)
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and the differences matrix is

∆ =


1 1 1 3 2

0 1 1 0 1

1 1 1 0 1

2 3 2 5 1

 (2.20)

The Hammer-Beresnev polynomial representing the total cost function for this in-

stance in the form (2.13) is

BC(y) = [1 + 0y1 + 1y1y3 + 2y1y2y3]+

[1 + 1y2 + 1y2y3 + 3y2y3y4]+

[1 + 1y4 + 1y2y4 + 2y2y3y4]+

[3 + 0y1 + 0y1y2 + 5y1y2y3]+

[2 + 1y4 + 1y3y4 + 1y1y3y4].

(2.21)

Taking into account that p = 2, after truncation and reduction of similar monomials

in (2.21) we obtain the following pseudo-Boolean representation of the instance:

BC,p=2(y) = 8 + 1y2 + 2y4 + 1y1y3 + 1y2y3 + 1y2y4 + 1y3y4 → min

s.t. (2.22)

y1 + y2 + y3 + y4 = m− p = 2

y ∈ {0, 1}m

/

It is easy to see that the objective function in 2.22 contains only 7 non-zero co-

efficients while the initial costs matrix (2.18) has 20 entries. This implies that the

pseudo-Boolean representation allows reduction of the memory needed to store the

PMP instance data. Of course, not only coefficients but also terms must be stored,

however, these overheads in most cases will be overwhelmed by the substantial

reduction of the polynomial.
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2.3 Reduction techniques

The pseudo-Boolean representation of a PMP instance has very attractive proper-

ties, which we are going to consider in the rest of this chapter. First of all, a pseudo-

Boolean polynomial can be subjected to several quite straightforward types of re-

ductions.

2.3.1 Reduction of the number of monomials in the pBp

Recall that given a variable vector y = (y1, y2, . . . , ym)T , the expressions T =

∏i∈T yi and αT = α ∏i∈T yi (T ⊆ {1, . . . , m}, α ∈ R) are called a term and a mono-

mial, respectively. We also call two monomials similar if their terms are identical.

Finally, by reduction of monomials we mean algebraic summation of similar monomi-

als.

Reduction of the number of monomials in pBp consists of three stages. First,

as some locations may have equal distance to several clients, the corresponding

entries in the differences matrix are zero and the number of terms in the polynomial

is usually less than mn (see column #T in Table 2.1). This reduction is similar to the

one introduced by many authors (Beresnev, 1973; Cornuejols et al., 1980; Elloumi,

2010; Church, 2003; Dearing et al., 1992) and can be illustrated by the following

small example: let m = 4, n = 5 and the costs matrix is

C =


7 15 10 7 10

10 17 4 11 22

16 7 6 18 24

11 7 6 12 8

 . (2.23)

A possible permutation matrix and the corresponding difference matrix are

Π =


1 3 2 1 4

2 4 3 2 1

4 1 4 4 3

3 2 1 3 2

 (2.24)
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and

∆ =


7 7 2 7 8

3 0 2 4 2

1 8 0 1 4

5 2 4 6 8

 . (2.25)

Thus, the pBp is BC = [7 + 3y1 + 1y1y2 + 5y1y2y4] + [7 + 0y3 + 8y3y4 + 2y1y3y4] +

[4+ 2y2 + 0y2y3 + 4y2y3y4]+ [7+ 4y1 + 1y1y2 + 6y1y2y4]+ [8+ 2y4 + 4y1y4 + 8y1y3y4].

As there are two zeroes in the differences matrix, the initial (in contrast to reduced

and truncated) pBp has mn− 2 = 18 nonzero terms (we will denote this character-

istic by #T).

Second, the pBp can be subjected to reducing similar monomials (by its essence,

it corresponds to the second reduction rule from Elloumi (2010), p. 11). In the

considered example this procedure leads to a polynomial 33 + 7y1 + 2y2 + 2y4 +

2y1y2 + 8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4 with 10 monomials. We

denote the number of monomials in such pBp with reduced similar monomials by

#Tr.

Finally, as shown in (AlBdaiwi et al., 2009), for any feasible solution y the value

of truncated polynomial BC,p obtained from BC by deleting all terms of degree

higher that (m − p) is equal to the value of the initial pBp. For example, BC =

33+ 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4 with

p = 2, i.e. BC,2 = 33 + 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4 + 4y1y4 has just seven

monomials. This makes it possible for the particular problem with fixed number of

medians to truncate the polynomial thus reducing its size to at most (m− p) · n.

In order to determine the effect of the mentioned above techniques, a number of

experiments with instances from the four libraries were carried. Results of pseudo-

Boolean formulation and reduction of similar monomials for typical representatives

of each library are given in Table 2.1. We computed reduction (see the rightmost

column of the table) as (mn − #Tr)/mn × 100%. As can be seen from the table,

instances from OR library allow the highest reduction of the number of terms in

the pBp. For example, for the instance pmed40 the size of the polynomial is about

4% of the number of entries in the costs matrix. So, from the point of view of

our notion of complexity, these instances are the easiest ones. Instances from TSP

and RW libraries also allow compact representation of the polynomial, while ODM

instances are the most complex ones and allow only minor reduction of the number

of terms.
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Table 2.1. Reduction of the pBp for benchmark instances

Entries in reduction
library instance m matrix C #T #Tr (%)
OR pmed1 100 10,000 7,506 6,722 32.78
OR pmed15 300 90,000 20,182 17,428 80.64
OR pmed26 600 360,000 29,963 25,694 92.86
OR pmed40 900 810,000 36,326 31,642 96.09
ODM BN48 42 411 411 329 19.95
ODM BN1284 1284 88,542 88,447 85,416 3.53
ODM BN3773 3773 349,524 348,063 341,775 2.22
ODM BN5535 5535 666,639 665,577 654,709 1.79
TSP rd100 100 9,900 9,394 9,243 6.63
TSP D657 657 430,992 368,233 367,355 14.77
TSP fl1400 1400 1,958,600 838,110 836,557 57.29
TSP pcb3038 3038 9,226,406 5,763,280 5,759,404 37.58
RW rw100 100 10,000 6,357 6,232 37.68
RW rw200 200 40,000 25,351 25,099 37.25
RW rw250 250 62,500 39,542 39,228 37.24
RW rw500 500 250,000 158,007 157,362 37.06
RW rw1000 1000 1,000,000 631,805 630,543 36.95

Of certain interest is a relation between instance size and the achieved reduction

(rightmost column in Table 2.1). For OR and TSP libraries this factor tends to in-

crease for larger problems implying that pseudo-Boolean representation is efficient

for large instances from these classes. However, for ODM library the situation is op-

posite, so from this point of view ODM instances are also hard. With randomized

graphs from RW library the reduction ratio is almost constant, so these instances

are somewhere in between the previous two groups.

Despite the differences in performance between the above mentioned libraries,

truncation of the polynomial has similar impact on the required space for all the

considered instances (resulting in at most (m − p) · n entries). We have observed

that nonzero entries are uniformly distributed over the rows of the differences mat-

rix ∆ (in other words, the numbers of nonzero monomials of different degrees are

approximately the same). It means that with increasing p the number of monomi-

als in the truncated polynomial BC,p decreases in a linear fashion from #Tr to 1 (if

p = m the polynomial is just a constant). Moreover, if we denote by p∗ ≤ m the
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(minimum) number of rows that contain all minima in columns, then the polyno-

mial reduces to a constant for p ≥ p∗.

2.3.2 Reduction of the number of clients (columns)

In order to show why the reduction of the number of clients (columns) is possible

we have to give the following definitions.

Definition 1. Two PMP instances defined on costs matrices C and D are called equivalent

if C and D are of the same size (number of rows) and BC,p(y) = BD,p(y).

Definition 2. Having an m× n costs matrix C, by aggregation of clients (columns) we

mean construction of such m× n′ matrix D that BC,p(y) = BD,p(y) and n′ < n.

This means that if there exist some costs matrix D that leads to the same poly-

nomial as C and D has fewer columns, then the p-Median problem defined on C

can be substituted by the problem defined on D. So, the question is: given a costs

matrix C and the number of medians p, find such a matrix D that corresponds

to the same truncated polynomial as C and has the minimum possible number of

columns.

The idea behind this type of processing is as follows. Each chain of embedded

terms in a pBp corresponds to some permutation and a column of differences. At

the same time, over the terms of the polynomial it is possible to define a relation of

partial order, that, in turn, can be represented by the Hasse diagram. It is clear that

all the terms can be covered by n chains that correspond to n columns of the dif-

ferences matrix. It means that all vertices of the Hasse diagram can be covered by

n (internally) vertex disjoint chains. However, observation that for some instances

reduction of similar monomials leads to a substantial decrease in their number sug-

gests a possibility that all terms can be covered by fewer chains. Having a chain of

embedded terms it is possible to reconstruct a permutation and a row of the differ-

ences matrix. Thus, reduced number of chains covering all terms implies reduced

number of clients in the aggregated matrix and the problem of finding the smallest

n′ is reduced to finding the minimum number of chains that cover all terms of the

polynomial (or all vertices of the corresponding Hasse diagram). According to the

well-known Dilworth’s decomposition theorem (see, e.g., Theorem 14.2 in Schrijver

(2003), p.218), this minimal number of chains is equal to the maximum size of an

antichain (in our case it is the maximum number of non-embedded terms).

In order to compute the minimum number of chains we used the MINLEAF al-

gorithm described in (Gutin et al., 2008) that constructs a minimum leaf outbranch-
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ing. (MINLEAF is a polynomial-time algorithm and is essentially based on finding

the maximum cardinality matching.) Having such an outbranching it is possible

to reconstruct the chains such that the number of chains is equal to the number of

leaves in the outbranching. After that, an equivalent matrix, each column of which

is induced by one of the obtained chains, can be restored. As in the formulation

of the p-Median problem each column of the costs matrix corresponds to a client

whose demand is to be satisfied, existence of the equivalent matrix with smaller

number of columns implies that in the initial instance some clients can be aggreg-

ated.

Within the mentioned above small example (2.23) this procedure leads to the

following. The reduced pseudo-Boolean polynomial BC(y) = 33 + 7y1 + 2y2 +

2y4 + 2y1y2 + 8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4 corresponds to the

following Hasse diagram:

y2→ y1y2→ y1y2y4

↗ ↗ ↗ ↘
const→ y1→ y1y4→ y1y3y4→ y1y2y3y4

↘ ↗ ↗ ↗
y4→ y3y4→ y2y3y4

(2.26)

It is easy to check that the size of the maximum antichain is 3, so all the terms of

BC(y) can be covered by three chains and the aggregated matrix has three columns.

Below are the chains (each being presented as a column), permutation and differ-

ences matrices:

y2 y1 y4

y1y2 y1y4 y3y4

y1y2y4 y1y3y4 y2y3y4

y1y2y3y4 y1y2y3y4 y1y2y3y4

(2.27)

Π′ =


2 1 4

1 4 3

4 3 2

3 2 1

 ∆′ =


0 0 33

2 7 2

2 4 8

11 10 4

 (2.28)

Having these two matrices it is possible to restore the costs matrix D of the aggreg-
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ated instance:

D =


2 0 47

0 21 43

15 11 35

4 7 33

 (2.29)

Experiments

As was mentioned above, the minimum number of aggregated clients (columns)

does not exceed n. On the other hand, it cannot be smaller then the maximum

number of terms with same degree in the reduced polynomial. In particular, for

the case of instances from OR library this leads to the following. As the costs mat-

rix for such instances has a zero diagonal, the minimal element of ith column is

located in the ith row and the first row of the permutation matrix contains no equal

entries. This means that the (reduced) pBp contains n linear terms and cannot be

covered by less then n chains. So, the OR instances, if considered “as is”, do not

allow any aggregation of clients. This result brought us to an idea of considering

the corrected instances without zeroes on the diagonal (it is filled by some posit-

ive numbers during application of the Floyd’s algorithm). Further we mark such

instances with an asterisk (e.g., pmed1∗). As all the other considered libraries are

free of the mentioned “hardness”, they can be directly used for experiments with

aggregation of clients.

In our experiments we considered truncated polynomials and determined the

minimum number of aggregated columns (n′) for all values of p from 1 to m − 1

(if p = m, the truncated polynomial is just a constant and it can be covered by one

chain). Let us denote by p′′ the smallest number of medians at which the truncated

polynomial can be covered by less then n chains.

The results for typical representatives from each library are given in Figures

2.1 and 2.2. As can be seen from the figures, for corrected OR and ODM prob-

lems p′′ = 0 and even a non-truncated polynomial can be covered by n− 1 chains,

thus making it possible to aggregate one client. At the same time, for TSP and RW

instances any aggregation becomes possible only as p gets very close to m.

Thus, we can summarize that the reduction of the number of clients is negligible

for all the considered benchmark libraries.
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Figure 2.1. Aggregation of clients for benchmark instances from OR and ODM
libraries.

2.3.3 Preprocessing

The essence of preprocessing that we consider is to find such locations that can be

excluded from consideration as they are not contained in some optimal solution.

At the same time, the technique considered in this section is independent of any

solution algorithm (e.g., it does not use upper and lower bounds) and is based

purely on the structural properties of the input costs matrix.

Let us define the p-truncation operation applied separately to each column of

the costs matrix as setting p largest entries to the value of the smallest of them.

This procedure ensures that the pBp of the p-truncated matrix is equal to the trun-

cated pBp of the initial matrix. The following theorem (see AlBdaiwi et al. (2009),

Theorem 4), provides a direct suggestion for preprocessing based on p-truncation.
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Figure 2.2. Aggregation of clients for benchmark instances from TSP and RW lib-
raries.

Theorem 2. Assume that in a given PMP instance with p < m some row i in the costs

matrix C contains all the columns maxima after p-truncation operations are performed on

all columns of C. Then there exist an optimal solution y∗ to the instance with y∗i = 1.

Proof. The fact that row i in a p-truncated matrix contains all columns maxima im-

plies that location i is among the m− p most expensive locations for every client.

This, in turn, means that in a feasible solution each client j can be served cheaper

from a different location. Thus, location i can be excluded from consideration and

the corresponding y-variable can be fixed to 1.

In other words, the theorem means that if some variable yi is not contained in

the truncated polynomial, then there exists an optimal solution y∗ with y∗i = 1. In

order to illustrate this we would like to consider the following example. Let the
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costs matrix be defined as (the rightmost column of numbers enumerates rows of

the matrix):

C =



1 3 9

2 5 3

9 7 8

5 9 7

4 4 5



1

2

3

4

5

(2.30)

Also, let p be p = dm/2e = 3 (that corresponds to the hardest case from a combin-

atorial point of view). The p-truncated matrix Cp=3 is:

Cp=3 =



1 3 7

2 5 3

4 5 7

4 5 7

4 4 5



1

2

3

4

5

(2.31)

The objective function can be represented by the pseudo-Boolean polynomialBC(y) =

7+ 2y1 + 2y2 + 2y1y2 + 1y1y5 + 2y2y5 + 3y1y2y5 + 1y2y4y5 + 4y1y2y4y5 + 2y1y2y3y5 +

1y2y3y4y5. After truncation one obtainsBC,p=3(y) = 7+ 2y1 + 2y2 + 2y1y2 + 1y1y5 +

2y2y5. As can be seen, the truncated pBp does not contain two variables y3, y4, so

they can be set to 1 as this does not affect the value of BC,p=3(y). This means that

the initial matrix C given by (2.30) can be reduced to matrix D with fewer rows:

D =


1 3 7

2 5 3

4 4 5


1

2

5

(2.32)

It should be noticed, that if one sets all other variables y1, y2, y5 to 0, this immedi-

ately gives the optimal solution. Thus, for this small example the problem can be

solved just by data preprocessing.

However, with large instances this technique does not always allow solving the

problem. Given a PMP costs matrix, we studied how the possibility of prepro-

cessing depends on the value of p. As the value of p grows, the number of entries

in any column whose values are revised increases. So, the higher the value of p,
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the greater the chance that a row of C is eliminated due to Theorem 2. This ex-

plains why PMP instances with p = p0, p0 < m/2, are more difficult to solve than

instances on the same costs matrix with p = m − p0, even though the number of

feasible solutions for both cases are identical. Let p′ be the smallest value of p for

which p-truncation eliminates at least one row in C. Let us also denote by p∗ the

minimum number of rows that contain the minimum entry of each column of C.

Then, the PMP instance defined on C with p > p∗ has open facilities that do not

serve any client and increasing the value of p over p∗ does not improve the objective

value.

Table 2.2 presents a characterization of benchmark instances introduced in Table 2.1

in terms of p′ and p∗. As can be seen from the table, preprocessing becomes pos-

sible only for large number of medians as p′ > m/2 holds for all the considered

benchmark instances. One may notice that the benchmark libraries are arranged

in order of increasing difficulty: value of p′ are getting closer to m. The values of

p∗ are very close to m for all the considered instances implying that all benchmark

libraries contain no degenerate instances and most of the rows can be potentially

included into an optimal solution.

2.3.4 Minimality of the pseudo-Boolean representation

In the previous sections we described a number of reductions that are based on the

pseudo-Boolean formulation of the PMP and substantially reduce the amount of

data that unambiguously describes the instance. However, there emerges a natural

question: can one do better by using a different approach? The following lemma

gives an answer to this question.

Theorem 3. The pseudo-Boolean formulation (2.17) of PMP allows the most compact rep-

resentation of its instance.

Proof. The intuition is as follows. Take the reduced and truncated pseudo-Boolean

polynomial and consider a monomial αT with a nonzero coefficient that corres-

ponds to an entry of the costs matrix cij that does not contribute to any optimal

solution. This means that there exist a client j that cannot be assigned to location i.

There can be several causes for this:

1. For any subset S of p opened locations there always exists a location i′ ∈ S

such that ci′ j < cij. In this case client j is never served from location i.

2. For client j location i can be replaced by location i′, i.e. there exist some loc-

ation i′ such that cij = ci′ j. In this case client j can be served from location i′
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Table 2.2. Values of p′ and p∗ for benchmark instances

library instance m p′ p∗

OR pmed1∗ 100 90 93
OR pmed15∗ 300 180 285
OR pmed26∗ 600 452 581
OR pmed40∗ 900 644 882
ODM BN48 42 27 35
ODM BN1284 1284 653 1211
ODM BN3773 3773 3385 3742
ODM BN5535 5535 2179 5503
TSP rd100 100 97 97
TSP D657 657 477 653
TSP fl1400 1400 1177 1395
TSP pcb3038 3038 3026 3033
RW rw100 100 90 95
RW rw200 200 186 193
RW rw250 250 241 243
RW rw500 500 489 492
RW rw1000 1000 978 992

instead of i.

3. For some subset of locations S client j is equivalent to some client j′. (By equi-

valence of clients with regard to the set of locations S we mean that sorting

locations from S by distance from j and j′ gives two equal sequences). In

this case these two clients can be viewed as one with aggregate serving costs

cij + cij′ for all i ∈ S.

The latter two cases are symmetric: case 2 means that from the point of view of cli-

ent j locations i and i′ are the equally distant, while case 3 means that from the point

of view of the set of locations S clients j and j′ are equal. In case 1 the coefficient α

is set to 0 during the truncation. For the second case we have zero coefficient as the

difference ∆[., j] = cij − ci′ j is zero. Finally, for the third case equivalent clients are

eliminated by reduction of similar monomials.

Next, consider the number of coefficients in the truncated and reduced Hammer-

Beresnev polynomial BC,p(y). Suppose, there exist a model with one less coeffi-

cient. This implies that some monomial αr ∏i∈Tr yi can be deleted from BC,p(y) to
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obtain a new polynomial B′C,p(y). However, it is always possible to select an input

matrix C such that

fC(S) = BC,p(yS)

and

min{B′C,p(y),
m

∑
i=1

yi = m− p} = min{BC,p(y),
m

∑
i=1

yi = m− p} − αr.

Taking into account that αr > 0 (by definition of BC,p(y)), the optimal values of the

two formulations are different and we have a contradiction.

Theorem 3 has important consequence for applicability of the pseudo-Boolean

formulation. Let us consider an arbitrary model of the PMP within the class of

mixed-Boolean linear programming (LP) models. The size of a mixed-Boolean LP

model is determined by the following four factors:

• number of Boolean variables

• number of continuous variables

• number of constraints (and number of terms in each constraint)

• number of monomials in the objective function

We claim that the minimum mixed-Boolean LP (MBLP) model for PMP can be

derived from its pseudo-Boolean representation, as demonstrated in the next sec-

tion.

2.4 A compact mixed-Boolean LP model

In order to obtain a mixed-Boolean LP model we have linearised all nonlinear terms

in 2.16 by introducing additional variables zr = ∏i∈Tr yi. Since αr ≥ 0 and PMP is

a minimization problem (2.17) one can replace each nonlinear equality ∏i∈Tr yi =

zr by an equivalent nonlinear inequality ∏i∈Tr yi ≤ zr which is equivalent to the

following system of linear inequalities: ∑i∈Tr yi − |Tr|+ 1 ≤ zr and zr ≥ 0. In any

optimal PMP solution the variable zr is set to 0 if and only if at least one variable

yi = 0, and zr = 1 if and only if all yi = 1, i.e. zr ∈ {0, 1}. Now the pseudo-Boolean

formulation of PMP with a nonlinear objective function (2.16) can be presented as

the following mixed Boolean linear programming model:



The p-Median problem 53

minimize

{
α0 +

m

∑
r=1

αryr +
k

∑
r=m+1

αrzr

}
(2.33)

s.t.
m

∑
i=1

yi = m− p; (2.34)

∑
i∈Tr

yi − |Tr|+ 1 ≤ zr, r = m + 1, . . . , k; (2.35)

zi ≥ 0, i = m + 1, . . . , k. (2.36)

yi ∈ {0, 1}, i = 1, . . . , m. (2.37)

The objective function (2.33) is split into three parts: the first part α0 is the sum

of all smallest entries δ1j per column (client) j; the second part reflects the penalties

incurred by the next to the smallest entries δ2j, and the third part represents all

other penalties corresponding to δij for 1 < i ≤ m− p.

We call the formulation (2.33)–(2.37) a Mixed Boolean pseudo-Boolean model

(MBpBM) for PMP. In case of the example costs matrix defined by (2.18) the MBpBM

formulation can be easily derived from (2.22):

min 8 + y2 + 2y4 + z5 + z6 + z7 + z8 (2.38)

s.t. z5 + 1 ≥ y1 + y3, (2.39)

z6 + 1 ≥ y2 + y3, (2.40)

z7 + 1 ≥ y2 + y4, (2.41)

z8 + 1 ≥ y3 + y4, (2.42)
4

∑
i=1

yi = m− p = 2, (2.43)

zi ≥ 0, i = 5, . . . , 8; (2.44)

yi ∈ {0, 1}, i = 1, . . . , 4. (2.45)

In the following Lemma 2.1 we explain how to reduce the number of Boolean

variables yi involved in the restrictions (2.35). If for Tr1 6= ∅ we have that Tr1 ⊂
Tr2 , then the number of variables corresponding to the inequality with zr2 in (2.35)

might be reduced as follows

zr1 + ∑
i∈Tr2\Tr1

yi − |Tr2 \ Tr1 |+ 1 ≤ zr2 (2.46)

Lemma 2.1. Let ∅ 6= Tr1 ⊂ Tr2 be a pair of embedded sets of Boolean variables yi. Thus,
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two following systems of inequalities

∑
i∈Tr1

yi − |Tr1 |+ 1 ≤ zr1 (2.47)

∑
i∈Tr2

yi − |Tr2 |+ 1 ≤ zr2 (2.48)

zr1 ≥ 0, zr2 ≥ 0 (2.49)

and

∑
i∈Tr1

yi − |Tr1 |+ 1 ≤ zr1 (2.50)

zr1 + ∑
i∈Tr2\Tr1

yi − |Tr2 \ Tr1 | ≤ zr2 (2.51)

zr1 ≥ 0, zr2 ≥ 0 (2.52)

are equivalent.

Proof. Our proof will be done if we show that the following inequalities ∑i∈Tr2
yi −

|Tr2 | + 1 ≤ zr2 and zr1 + ∑i∈Tr2\Tr1
yi − |Tr2 \ Tr1 | ≤ zr2 are equivalent. Note that

zr2 = 1 if and only if yi = 1 for all i ∈ Tr2 which implies that zr1 = 1 since Tr1 ⊂ T2,

but zr2 = 0 if and only if at least one variable yi = 0 for some i ∈ Tr2 . If i ∈ Tr1 , then

zr1 = 0 implies zr2 = 0, even if yi = 1 for all i ∈ Tr2 \ Tr1 , otherwise yi = 0 for some

i ∈ Tr2 \ Tr1 implies zr2 = 0 even if zr1 = 1.

In the following theorem we indicate that our new problem formulation (2.33)–

(2.37) is equivalent to the pseudo-Boolean formulation (2.17).

Theorem 4. PMP formulations (2.33)–(2.37) and (2.17) are equivalent.

Proof. The “if” statement is trivial and we start with “only if” part, i.e we are going

to show that any feasible solution to (2.33)–(2.37) is feasible to (2.17). Constraints

(2.35) ensure that for any subset of opened sites within Tr the corresponding pen-

alties in both objective functions will be zero. Otherwise (if all sites within Tr are

closed), the same penalty value will be added to the objective functions of (2.33)–

(2.37) and (2.17).

It is clear that the restriction (2.35) for zr can be expressed by means of embed-

ded terms with different degrees such that T =
{
∪k

t=1Trt

}
⊆ Tr.

Based on the compact representation of a PMP instance within pseudo-Boolean

formulation (2.17) one may conclude that this formulation has extracted only es-
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sential information to represent the PMP from optimization point of view. In par-

ticular, for each client j only sites with p-truncated and pairwise different distances

are essential for an optimal PMP solution. These distances form the objective func-

tion of our mixed Boolean linear programming formulation (MBpBM) as well as

the set of linear constraints. Since each linear constraint (2.35) represents a non-

linear monomial in the objective function of pseudo-Boolean formulation (2.17) we

have incorporated in the MBpBM the number p of medians as follows: for larger

values of p our MBpBM has less non-negative variables and corresponding con-

straints induced by non-linear monomials. It means that we are in a position to

check whether our MBpBM is an optimal model within the class of Mixed Boolean

Linear Programming models. If we will be able to show that the matrix of all linear

constraints in our MBpBM induced by non-linear monomials contains the smallest

number of non-zero entries, then taking into account that the objective function of

our MBpBM has the smallest number of non-zero coefficients one may conclude

that our MBpBM is an optimal one. Unfortunately, in general it is not the case.

It is not difficult to show that the problem of finding a constraint matrix with the

smallest number of non-zero entries is at least as hard as the classic set covering prob-

lem (see, e.g., Garey & Johnson, 1979). Let us consider a partially ordered set with

subsets of cardinality at least two corresponding to all non-linear monomials in the

truncated and reduced pBp. Take any set F with the largest cardinality. We say that

the set F is covered by its subsets Fi ⊂ F if |F \ (∪i∈LFi)| ≤ 1 and F is covered by a

single subset if |F \ Fr)| = 1. It is clear that the following linear constraint corres-

ponding to a single covering

zFr + yr − 1 ≤ zF

has the smallest number of non-zero entries. In general case even for a single set

F to find the best covering by subsets embedded in F is an NP-hard problem (see,

e.g., Garey & Johnson, 1979), but our problem is more difficult since we are looking

for an optimal covering not only for the set F but also for all its subsets minimizing

the number of non-zero entries of all corresponding linear constraints. In other

words, we have shown that to find an optimal model within the class of Mixed

Boolean Linear Programming models is an NP-hard problem, even if the number

of corresponding linear constraints is a linear function on the number of all non-

negative decision variables.

Note that the number of non-zero coefficients in the objective function of MBpBM

is minimal because the number of non-zero coefficients corresponding to non-linear
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terms are minimal (just by means of contradiction it can be easily shown that if we

assume that there is an objective function with strictly less number of non-zero co-

efficients then there is either a feasible or an optimal solution to the PMP for which

the objective function value defined on the corresponding solution is strictly less

than the objective function computed on the given PMP instance). Since the num-

ber of linear constraints (2.35) is equal to the number of non-zero coefficients αr for

r = m + 1, . . . , k one may conclude that both numbers, namely the number of non-

zero coefficients in (2.33) and the number of linear constraints (2.35) are minimal.

These considerations are formalized in the following theorem.

Theorem 5. The numbers of coefficients in the objective, variables and constraints in

MBpBM are minimal within the class of mixed-Boolean LP models for PMP.

Proof. First of all note that the number of Boolean variables cannot be smaller than

m as otherwise some potential locations are not taken into account. Next, minimal-

ity of the number of coefficients in the objective immediately follows from the min-

imality of the pseudo-Boolean representation (Theorem 3). This implies minimality

of the number of nonnegative variables (corresponding to nonlinear monomials) as

the number of Boolean variables is fixed to m and is closely related to the number

of linear monomials. This, in turn, implies minimality of the number of constraints

as it is exactly the number of nonnegative variables and each nonnegative variable

needs at least one constraint to be biased with Boolean variables.

Theorem 5 can be illustrated by the following example using the costs matrix

(2.18). The MBpBM can be easily derived from the pseudo-Boolean formulation

(2.22) and looks like:

f (y, z) = 8 + y2 + 2y4 + z5 + z6 + z7 + z8 → min

s.t.

y1 + y2 + y3 + y4 = 2

z5 ≥ y1 + y3 − 1

z6 ≥ y2 + y3 − 1

z7 ≥ y2 + y4 − 1

z8 ≥ y3 + y4 − 1

yi ∈ {0, 1}, i = 1, . . . , 4

zi ≥ 0, i = 5, . . . , 8

(2.53)

The obtained model has 4 Boolean y-variables, 4 nonnegative z-variables, 5 con-
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straints and 6 terms in the objective function. For Elloumi’s Mixed Integer Linear

Programming (MILP) model (Elloumi, 2010) there numbers are 4, 17, 23 and 12,

respectively.

Properties of our model, such as decreasing number of variables and constra-

ints, give some insight into the properties of the polytope of feasible solutions to

the PMP. The fact that the total number of variables in MBpBM is always less then

(m− p) · n implies that the p-Median polytope never has a full dimension of m · n,

i.e. some dimensions are either fixed (by p-truncation) or are duplicate (these are

removed by combining similar monomials in the Hammer-Beresnev polynomial).

At the same time MBpBM allows measuring the actual dimension of the polytope

and implies that this dimension decreases with increasing p as more and more di-

mensions become fixed (more and more assignments of clients to facilities become

prohibited).

2.4.1 Further reductions

Even though MBpBM is a very compact model, we can further reduce it by in-

volving upper and lower bounds on the cost of optimal solutions (see Goldengorin

et al., 2003). Suppose, we know from some heuristic a (global) upper bound f UB on

the cost of optimal solutions. This can be even a virtual upper bound, i.e. without

a feasible solution. Let us now consider some term Tr = ∑i∈Tr yi from the pseudo-

Boolean polynomial and define a vector yr in the following way: for any i ∈ Tr set

yr
i = 1 and set all other elements of yr to zero. It is easy to see that BC,p(yr) is a

valid lower bound for the subspace of solutions with all locations from Tr closed.

If we denote this lower bound by f LB
r then the following holds

f LB
r = BC,p(yr) (2.54)

The essence of the reduction that we consider here can be expressed by the follow-

ing lemma.

Lemma 2.2. If for some term Tr = ∏i∈Tr yi of a truncated and reduced Hammer-Beresnev

polynomial holds f LB
r > f UB then for every optimal solution y∗ holds Tr(y∗) = 0.

Proof. Taking into account that we have a truncated polynomial, any term r has a

degree of at most m− p and |Tr| ≤ m− p. This means that to keep Tr equal to 1 at

least p sites are to be opened, implying that the cost any feasible solution with sites

from Tr closed is at least BC,p(yr) (by closing additional sites we can only increase
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the objective value). By condition of the lemma we have that there exist a cheaper

feasible solution, thus any feasible solution y with yi = 1 for any i ∈ Tr is not

optimal.

The following counter-example shows that the inequality in Lemma 2.2 should

be strict.

Example. Consider an instance defined by the following costs matrix C:

C =


0 6 6

1 0 8

2 9 9

5 4 0

 (2.55)

A possible permutation and differences matrices are

Π =


1 2 4

2 4 1

3 1 2

4 3 3

 ∆ =


0 0 0

1 4 6

1 2 2

3 3 1

 (2.56)

In case p = 2 the Hammer-Beresnev polynomial is

BC,p=2(y) = 1y1 + 4y2 + 6y4 + 1y1y2 + 3y1y4 + 2y2y4 (2.57)

Considering the first term T1 = y1, we have T1 = {1}, y1 = (1, 0, 0, 0) and f LB
1 =

BC,p=2(y1) = 1. Suppose, the upper bound is the same f UB = 1. If the inequality

in Lemma 2.2 was non-strict then this would imply that for any optimal solution

y1 = 0. However, it can be checked that for the unique optimal solution to this

instance y∗ = (1, 0, 1, 0) this does not hold. Note that y∗3 = 1 due to Theorem 2 /

Now we can check the condition of Lemma 2.2 for every term of the pseudo-

Boolean polynomial, starting from terms with the lowest degree. Such order of

checking terms is beneficial because if some term is found to be zero in any optimal

solution (let us call such terms null terms) then all terms of higher degree containing

it are also zero. Here we would like to point out two possibilities of dealing with

null terms within our MBpBM model.

The first and the most straightforward approach is to set the variable that cor-
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responds to a null term to zero throughout the formulation. This eliminates one

term from the objective function, but preserves the number of constraints. At the

same time the number of non-zero entries in the constraints matrix can increase as

elimination of some term (or corresponding z-variable) reduces the possibility of

applying Lemma 2.1. We call the model reduced according to this approach based

on bounds MBpBMb. The following example shows how this reduction works.

Consider the costs matrix C (2.18), p = 2 and an MBpBM model (2.53). One

can compute the global upper bound f UB, for example, by greedy heuristics that

works as follows. It starts with all locations opened (i.e. y = (0, 0, 0, 0)) and at each

step closes such location (sets such yi to 1) that results in the smallest increase in

the value of the objective function. The procedure is repeated until m− p locations

are closed (m− p entries of y are set to 1). For the costs matrix given by (2.18) this

procedure gives f UB = 9. Then, for every term Tr of the objective function we

construct a vector yr and compute the lower bound to the unknown optimal value

BC,p=2(yr):

T1 = y2 y1 = (0, 1, 0, 0) BC,p=2(y1) = 9

T2 = y4 y2 = (0, 0, 0, 1) BC,p=2(y2) = 10 > f UB

T3 = z5 = y1y3 y3 = (1, 0, 1, 0) BC,p=2(y3) = 9

T4 = z6 = y2y3 y4 = (0, 1, 1, 0) BC,p=2(y4) = 10 > f UB

T5 = z7 = y2y4 y5 = (0, 1, 0, 1) BC,p=2(y5) = 12 > f UB

T6 = z8 = y3y4 y6 = (0, 0, 1, 1) BC,p=2(y6) = 11 > f UB

(2.58)

By comparing the obtained values with the computed upper bound we have that

in any optimal solution T2, T4, T5 and T6 are zero, i.e. in our MBLP model we can

fix variables y4, z6, z7 and z8 to zero:

8 + y2 + z5 + 0z6 + 0z7 + 0z8 → min (2.59)

s.t. y1 + y2 + y3 = 2, (2.60)

z5 + 1 ≥ y1 + y3, (2.61)

z6 + 1 ≥ y2 + y3, (2.62)

0 + 1 ≥ y2 + 0, (2.63)

0 + 1 ≥ y3 + 0, (2.64)

y4 = 0 (2.65)

zi ≥ 0, i = 5, . . . , 8; (2.66)
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yi ∈ {0, 1}, i = 1, . . . , 4. (2.67)

By substituting the fixed values into all constraints and the objective function and

observing that some constraints (2.63) and (2.64) became redundant we obtain the

reduced model:

8 + y2 + z5 → min (2.68)

s.t. z5 + 1 ≥ y1 + y3, (2.69)

1 ≥ y2 + y3, (2.70)

y1 + y2 + y3 = 2, (2.71)

y4 = 0, (2.72)

z5 ≥ 0; (2.73)

yi ∈ {0, 1}, i = 1, . . . , 4. (2.74)

Further we will call this variation of MBpBM with reduction based on bounds

– MBpBMb.

Another approach to dealing with null terms allows not only to reduce the size

of the objective function, but also the number of constraints. Its essence is expressed

by the following lemmas.

Lemma 2.3. Increasing a coefficient at a null term does not affect the cost of optimal solu-

tions.

Proof. Straightforward from the definition of null terms. If some term is found to

be equal to 0 in any optimal solution then increasing the coefficient of the corres-

ponding monomial will not result in new optimal solutions.

Lemma 2.4. If for some term r1 in the Hammer-Beresnev polynomial there exist an embed-

ded term r0 with large enough coefficient αr0 , then r1 can be given a zero coefficient without

affecting the cost of optimal solutions.

Proof. The cost of any feasible solutions for which term r0 evaluates to 1 is bounded

from below by αr0 . If there exist a feasible solution of cost less than αr0 , all terms

containing r0 evaluate to 0 in any optimal solution. This, in turn, implies that their

coefficients are irrelevant and can be set to 0.

Thus, if a null term is found, it can be given a large enough coefficient (exceed-

ing a cost of an arbitrary feasible solution) and all terms for which it is embedded
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can be eliminated from the Hammer-Beresnev polynomial without a need in addi-

tional constraints. We call the model with this reduction MBpBMb1. Even though

it allows smaller reduction of the objective function, it can benefit from the reduced

number of constraints. For the considered above instance with costs matrix C (2.18)

and p = 2 the MBpBMb1 model is as follows:

8 + y2 + 1000y4 + z5 + 1000z6 → min (2.75)

s.t. z5 + 1 ≥ y1 + y3, (2.76)

z6 + 1 ≥ y2 + y3, (2.77)

y1 + y2 + y3 + y4 = 2, (2.78)

y4 = 0, (2.79)

zi ≥ 0, i = 5, . . . , 8; (2.80)

yi ∈ {0, 1}, i = 1, . . . , 4. (2.81)

Here we have set large coefficients to 1000 for the sake of clarity, while in prac-

tice the value of f UB + 1 = 10 suffices for this purpose. It is also clear that if we

find a linear null term then we fix the corresponding y-variable to 0 and eliminate

this term from the objective function (instead of raising its coefficient to infinity).

Moreover, if for some null term there are no terms into which it is embedded, then it

is beneficial to eliminate it and add a corresponding constraint. If these exceptions

are introduced into MBpBMb1 then for the considered example both formulati-

ons (MBpBMb and MBpBMb1) become equal, although the mechanisms by which

some constraints were dropped are different. While in MBpBMb third and fourth

constraints became redundant as most of the variables in them were set to 0, in

MBpBMb1 these constraints did not exist at all because corresponding terms were

eliminated from the pseudo-Boolean polynomial.

Finally, it should be mentioned that instead of f LB
r = BC,p(yr) a somewhat

stronger lower bound can be used.

Lemma 2.5. φLB
r defined as

φLB
r = fC(Tr) + min

ki∈Tr

|Tr |−p

∑
i=1

[ fC(Tr \ {ki})− fC(Tr)] (2.82)

is a valid lower bound for the subspace of feasible solutions having locations from Tr closed,

where fC(.) – cost function of the PMP, i.e. fC(Tr) = BC,p(yr), and Tr denotes the

complement of Tr, i.e. Tr = {1, . . . , m} \ Tr.
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Proof. As the cost function of the PMP fC(.) is a supermodular function (Golden-

gorin et al., 2003), the following holds for any S ⊆ T ⊆ {1, . . . , m}

fC(S) ≥ fC(T) + ∑
k∈T\S

[ fC(T \ {k})− fC(T)] (2.83)

In our case S is unknown restricted (S ⊆ T must hold) optimal solution (set of

opened locations) of cardinality |S| = p implying that

fC(S) ≥ fC(T) + min
ki∈T

|T|−p

∑
i=1

[ fC(T \ {ki})− fC(T)] (2.84)

where T = {1, . . . , m} \ T. If we now set T = Tr then the proof is completed.

In the computational experiments reported in the following sections (and in-

volving MBpBM and its modifications) we used lower bounds given by (2.82).

2.4.2 Computational experiments

In order to show the applicability of our compact MBpBM formulation, a number

of computational experiments were held. We used benchmark instances from two

of the most widely used libraries: J. Beasley’s OR-library and randomly generated

RW instances by Resende and Werneck (see, e.g., Elloumi, 2010). The common class

of benchmark instances included in almost all publications devoted to the PMP

itself is just the OR-Library instances. Since the main purpose of our experiments

is to show that our model for PMP is one of the best currently known models (see

Church (2008) and Elloumi (2010)) which could be used to solve PMP instances to

optimality based on general-purpose software, we have used Xpress-MP and 15

largest instances (see Tables 2.3 and 2.5) from OR-Library (OR Library, 1990). This

problem library contains 40 different PMP instances, each representing a graph of n

vertices, each being a client and a potential facility, and a specific value of p. Graphs

are complete and range in size from 100 (with 10000 arcs) to 900 (with 810000 arcs)

nodes. The distance cij between two nodes is the length of a shortest path linking

them.

We have conducted our experiments on a Personal Computer with Intel 2.33

GHz processor 1.95 GB RAM and Xpress-MP1 as an MILP solver.

1 This choice of the solver is governed purely by the availability of software at my working place.
CPLEX might provide better results.
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Tables 2.3 and 2.4 summarize the computational results obtained for the largest

15 OR instances and random RW instances, correspondingly. The first three columns

contain the name of instance, the number of m nodes and the number p of medi-

ans. The next three columns are related to the running times (in seconds) for the

considered above variations of our model: the initial MBpBM formulation and its

modifications incorporating reductions based on bounds. The last column reflects

computing times for Elloumi’s NF model that we implemented and tested within

the same environment as our models so that to ensure consistent comparison of

performance.

Table 2.3. Comparison of computing times for our and Elloumi’s NF formulations
(15 largest OR-library instances)

instance m p MBpBM MBpBMb MBpBMb1 Elloumi

pmed26 600 5 163.84 194.08 111.81 180.31
pmed27 600 10 27.59 41.00 21.31 43.73
pmed28 600 60 2.48 8.63 2.13 3.61
pmed29 600 120 1.78 6.50 1.31 2.91
pmed30 600 200 1.50 5.56 0.78 4.81
pmed31 700 5 153.22 132.91 57.05 90.95
pmed32 700 10 33.13 53.17 43.39 37.64
pmed33 700 70 3.09 10.11 2.69 4.73
pmed34 700 140 3.72 8.03 1.97 7.11
pmed35 800 5 70.30 233.66 154.41 514.72
pmed36 800 10 2256.83 2014.70 4252.13 6737.25
pmed37 800 80 3.91 12.61 3.08 7.00
pmed38 900 5 1328.34 368.73 2041.28 307.00
pmed39 900 10 572.81 713.59 444.08 473.95
pmed40 900 90 5.39 15.53 4.02 8.42

Our computational experiments with OR and RW instances can be summarized

as follows. Our basic MBpBM formulation outperforms Elloumi’s New Formula-

tion in most of the tested cases, especially for larger numbers of medians p. At the

same time the reduction based on bounds (see column MBpBMb) has comparat-

ively poor performance in general. This can be explained by an increased number

of non-zero coefficients in a constraints matrix (for large RW instances this formu-

lation cannot be handled by Xpress-MP due to memory limitations). However,

there exist instances (e.g., pmed36 and pmed38) for which MBpBMb performs bet-

ter then other variations of the formulation based on a pseudo-Boolean polynomial



64 Chapter 2

and for the instance pmed36 has three times smaller computing times comparat-

ively to NF. Better performance of larger models can be explained by the fact that

increased number of variables and coefficients provides more options for branch-

ing and thus may lead to better pivoting of the MILP solution procedure. Finally,

the revised reduction based on bounds MBpBMb1 outperformed other considered

models in almost all cases except pmed32, pmed36, pmed38 (for pmed36 it is better

than NF but is worse than MBpBM). We would also like to mention one instance

from TSP library (TSP Library, 1995), namely fl1400, with p = 400 which is un-

solved in Avella et al. (2007) and has been solved to optimality by our MBpBM in

598.5 sec. Note that Beltran’s et al. (Beltran et al., 2006) advanced semi-Lagrangean

approach based on Proximal-Analytic Center Cutting Plane Method has not solved

the instance fl1400 with p = 400 to optimality as well and returns an approximation

within 0.11% in 678 sec.

2.5 Application of the pseudo-Boolean approach: In-

stance data complexity

2.5.1 Data complexity and problem size reduction

Problem size reduction is a very common technique in integer programming and

combinatorial optimization that can be used to find a compact representation of

PMP instances. It is aimed at constructing an instance of a smaller size that is as-

sumed to be easier to solve and provides an optimal solution to the initial instance.

Moreover, it is straightforward that if the procedure of size reduction is as time-

consuming as the procedure for solving the initial problem, it has no sense. These

considerations lead to the following definition:

Definition 3. We will call instance D a reduced version of instance C (D = red(C)) if

it satisfies the following conditions:

1. ∅ ⊂ opt.solutions(D) ⊆ opt.solutions(C);

2. size(D) ≤ size(C);

3. D can be obtained from C in polynomial time.

The first requirement guarantees that by solving D to optimality one immedi-

ately obtains an optimal solution to C (here we assume the feasibility of C), while

the second one is related to the reduction itself. Finally, the last requirement is
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needed to make the definition useful in practice: if for some NP-hard problem

computing the reduced instance D is as hard as solving C then such a reduction

is senseless. Based on this definition of a reduced instance we define complexity of

the instance data in the following way:

Definition 4. By complexity of the instance data C (relative to a particular problem) we

mean the minimum capacity of the storage needed to be able to obtain an optimal solution

to the initial instance:

comp(C) = min{size(D) : D = red(C)}.

It should be noticed that without a reference to a particular problem (in our

case – the p-Median problem) this definition is meaningless. However, even when

the problem is fixed, it provides neither a direct way to constructing a compact

representation of the data, nor even for determining the minimum required space.

Further we briefly describe existing approaches to reducing the problem size and

thus to obtaining upper bounds of instance data complexity.

As the costs matrix of a PMP instance has m × n elements, it is clear that this

value is the most trivial upper bound for comp(C). This value is achieved by the

classical ILP representation (see ReVelle & Swain, 1970) of the p-Median problem

with its objective function defined as:

∑
j∈J

∑
i∈I

cijxij (2.85)

Here cij denote entries of the costs matrix and xij are decision variables (xij = 1 if

jth client is served from ith location, otherwise xij = 0). Cornuejols et al. Cornuejols

et al. (1980) introduced an alternative formulation of the problem. For any client

j, let Kj be the number of different distances from j to any location. It follows that

Kj ≤ m. Let D1
j < D2

j < . . . < D
Kj
j be these distances, sorted. For each client j it

is possible to define a hierarchy of neighbourhoods Vk
j such that each Vk

j is a set of

locations within the distance Dk
j from client j. Naturally, in an optimal solution a

client j is assigned to its neighbourhood with the smallest Dk
j containing the opened

location. Thus, instead of xij this formulation uses variables zk
j such that zk

j = 1 if

and only if there are no opened locations in Vk
j . The objective function in this case

is defined as:

∑
j∈J

(
D1

j +
Ki−1

∑
k=1

(Dk+1
i − Dk

i )z
k
i

)
(2.86)
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Informally, this representation implies that only different elements in each column

of the costs matrix are meaningful and the problem size can be reduced by storing

only the pairwise different elements from each column. The further reduction is

proposed in Elloumi (2010). It states that if for some j, k, j′, k′ holds Vk
j = Vk′

j′ ,

then for any feasible solution zk
j = zk′

j′ and some terms in (2.86) can be merged.

Several reductions are also presented in Church (2003), but they are similar to those

described above. There are also some papers aimed at reduction of the number

of constraints in the ILP formulation of the problem (see, e.g., Avella & Sforza,

1999; Avella & Sassano, 2001); however, the number of coefficients in the objective

function remains the same.

It should be noticed that most of the reduction techniques described in liter-

ature are based on ILP formulation of the p-Median problem and apply artificial

tricks exploiting some features of the instance. On the contrary, as we showed

in Section 2.3, a pseudo-Boolean representation itself naturally leads to several re-

ductions that allow obtaining better estimates of the instance data complexity and

include all known reductions. (Note that due to the fact that the construction of the

pBp and all its reductions can be done in polynomial time, the third condition of

Definition 3 is satisfied.)

2.5.2 Complex benchmark instances

In this section we consider the aspects of constructing complex benchmark in-

stances that can be used for testing solution algorithms and introduce our library

of such instances.

To have maximum possible complexity, a PMP instance defined on an m × n

costs matrix should not be amenable to any of the reductions described above.

Thus, first of all, the entries of the differences matrix should be non-zero, such that

all monomials in the pBp have non-zero coefficients, or, equivalently:

Claim 1. The most complex instances have pairwise different and nonzero entries in every

column of the costs matrix (assuming that sizes of the costs matrix are fixed).

However, as explained below, these two restrictions on the entries of the differ-

ences matrix are not sufficient to ensure the complexity. Suppose, for some column

j the difference between the minimal and second minimal element ∆c[1, j] is com-

parable to the (unknown) costs of optimal solution. In this case the location (row),

at which the minimum for jth client (column) is attained, will be included into

any optimal solution. Such additional structure can be exploited by the solution
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algorithms and thus reduces the complexity of the instance. This particular case

can be generalized in the following way. Suppose, the (truncated) pseudo-Boolean

polynomial contains a monomial αT = α ∏i∈T yi with a large enough coefficient

α that exceeds the costs of the optimal solution (or its somehow computed upper

bound). Then, clearly, for any optimal solution y holds T (y) = 0, implying that

at least one of the variables in T must be set to zero and at least one of the cor-

responding locations is opened. In fact, this condition can be made even stronger

if one considers not only the coefficient α at T , but the sum of α and coefficients

of all monomials with terms embedded in T . It is also quite straightforward that

this test is more likely to fail as the range of the entries of differences matrix (or,

equivalently, coefficients of the pseudo-Boolean polynomial) becomes smaller, up

to the limit case when they all are equal. These considerations lead to the following

claim.

Claim 2. Instances that lead to the pseudo-Boolean polynomial with all coefficients equal

(except a constant - monomial of degree zero) are the most complex ones (assuming that the

number of monomials is fixed).

Once we know how to construct a “complex” pseudo-Boolean polynomial, we

are interested in maximizing the number of monomials in it. To achieve this, there

should be no similar monomials in the pBp representation of the problem. It should

be mentioned that constants obtained from pseudo-Boolean representation of all

the columns can be reduced into one monomial, so every PMP instance has a com-

plexity of at most

comp(C) ≤ mn− (n− 1) = n(m− 1) + 1. (2.87)

To ensure that only constants can be aggregated, the permutation matrix Π

must conform with the following requirement: the sets of first k entries of columns

Πj in Π should be pairwise different for any k : 1 ≤ k ≤ m. This require-

ment can be expressed in an alternative form. Let us consider a Hasse diagram

defined over the subsets of {1, . . . , m}. It is easy to see that each permutation

Πj = (π1j, π2j, . . . , πmj)
T corresponds to a chain of embedded subsets {π1j} ⊂

{π1j, π2j} ⊂ . . . ⊂ {π1j, . . . , πmj} that, in turn, corresponds to a ∅ − {1, . . . , m}
path in the Hasse diagram. Now the requirement can be formulated as follows:

Claim 3. In order to prohibit reduction of similar monomials, the permutation matrix

should correspond to a collection of internally vertex-disjoint ∅− {1, . . . , m} paths in the

Hasse diagram defined on subsets of {1, . . . , m}.
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Taking into account that there are at most m such paths, for PMP instances with

n > m it is always possible to reduce at least n−m linear monomials in the pBp, so

for instances in our benchmark library holds n ≤ m. Due to these considerations it

is possible to formulate the problem of constructing a permutation matrix that leads

to a complex instance as a problem of finding n vertex disjoint paths in a graph ob-

tained from the Hasse diagram. Though this problem is known to be polynomially

solvable (Robertson & Seymour, 1995), the fact that the complete Hasse diagram

has 2m vertices makes the procedure very time consuming for large m. However,

there exists a trivial solution:

πij = (i + j)mod m + 1. (2.88)

In case n = 4, m = 5 this solution leads to the following permutation matrix Π:

Π =



3 4 5 1

4 5 1 2

5 1 2 3

1 2 3 4

2 3 4 5


Based on a representation of the monomials as a collection of chains it is possible

to estimate the complexity of a PMP instance (the maximum number of monomi-

als in the pBp). Consider a complete Hasse diagram that contains all subsets of

{1, . . . , m}. Clearly, the maximum length of a chain of embedded non-constant

terms is m − 1, as it is the maximum possible degree of the pBp. The number of

chains of this maximum length is exactly m = (m
1 ) as there exit m linear terms (as

well as m terms of degree m − 1). Each of these chains uses exactly one term of

each degree from 1 to m− 1. Once all maximum length chains are used, the next

available maximum length of a chain is m− 3 (terms of degree 2, . . . , m− 2). The

number of such chains is (m
2 )− (m

1 ) which is exactly the number of quadratic terms

that were not included in chains of length m− 1. If we have enough columns to use

all these chains (i.e. n is sufficiently large) then we switch to chains of length m− 5

(terms of degree 3, . . . , m− 3) and there are (m
3 )− [(m

2 )− (m
1 )]− (m

1 ) = (m
3 )− (m

2 ) such

chains, which is exactly the number of cubic terms not used by chains of lengths

m − 2 and m − 1. We continue picking the longest possible chains until we have

n of them. It is not hard to understand that the number of terms of some degree

k (1 ≤ k ≤ m − 1) in such a collection of n longest chains is bounded by n and,
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at the same time, cannot exceed (m
k ). Figure 2.3 gives a graphical representation of

how the number of terms in such a collection of chains of maximum length can be

calculated.

Figure 2.3. Estimating the maximum number of nonzero terms in a pBp.

In the left part of Figure 2.3 an example for m = 5 is shown. Circles denote terms

of a pBp that are arranged in such a way that terms of same degree are within one

column. Lines correspond to possible chains of embedded terms. If one is aimed at

having n chains containing the maximum number of terms then he picks n longest

chains starting from the lower part of the picture. In particular, it can be seen that

it is impossible to get more than 5 full chains for the given example. For instance, if

n = 6 then at least one linear monomial will be reduced. For arbitrary m and n the

maximum number of monomials in the reduced pBp corresponds to the area of the

shaded region in the right part of Figure 2.3. Thus the complexity (equivalently, the

number of monomials in the correspponding pBp) of a PMP instance C defined by

an m× n costs matrix is bounded by

comp(C) ≤
m−1

∑
i=1

min{n,
(

m
i

)
}+ 1. (2.89)

The main peculiarity is that for a number of clients n exceeding the number of

locations m addition of new clients has progressively smaller impact on the com-

plexity of the instance that is always less than n(m− 1) + 1, while for n ≤ m there

exist instances of complexity n(m− 1) + 1.

It is easy to see that in case n < m all the minima are contained in at most n

rows (i.e. all minima are achieved on at most n < m locations) and preprocessing

will eliminate at least m − n variables (rows of the costs matrix). This leads to

a conclusion that instances with n = m are, potentially, the most complex ones

(provided the entries of the costs matrix satisfy the considered above requirements).

Possibility of truncation of the pseudo-Boolean polynomial depends only on
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the number of medians and is not affected by the values of the costs matrix. Thus,

we cannot negate this reduction by adjustment of the costs matrix and if p is fixed

(2.89) can be improved in the following way:

comp(C) ≤
m−p

∑
i=1

min{n,
(

m
i

)
}+ 1. (2.90)

Our benchmark library contains complex (in terms of possibility of problem

size reduction) PMP instances defined on square matrices of different size. As costs

matrices are dense, they are stored explicitly in files named ”XmatrY, Z.txt”, where

X is ’t’ if the permutation matrix Π is defined by (2.88) and X is ’r’ if Π is a ran-

domized permutation matrix obtained as a solution to the disjoint paths problem

mentioned above. Y reflects the values of m and n (in our instances n = m), and

costs are selected in such a way that entries of the differences matrix ∆ are uni-

formly distributed random integers from {1, . . . , Z}. Due to Claim 2 instances with

smaller Z are harder to solve. For example, the file named ”tmatr4,1.txt” defines

the following instance:

C =


3 4 1 2

4 1 2 3

1 2 3 4

2 3 4 1

 (2.91)

It is easy to check that the permutation matrix is the same as costs matrix C and

the difference matrix has all unit entries.

The structure of the files is as follows. The first line contains the numbers of

clients and potential locations (columns and rows of the costs matrix), next all

entries of the costs matrix are explicitly listed row by row. The library is available at

http://www.hse.ru/en/org/persons/22927115 or http://go.to/dkrush (under ’Science’-¿’p-

Median problem’).

We would like to finish description of our complex instances by mentioning that

under certain conditions optimal objective values can be computed by a simple for-

mula (see Lemma 2.6 below). This property is especially useful for the developers

of heuristic methods and makes it possible to estimate the quality of the generated

solutions.

Lemma 2.6. If the m× n costs matrix of a PMP instance satisfies the following conditions:

(i) m = n,
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(ii) a permutation matrix is defined by (2.88),

(iii) all entries of the differences matrix are equal to some constant d,

then the optimal objective value can be computed as:

d(n′ + 1)
[

n′p
2

+ (n mod p)
]

, (2.92)

where n′ = bn/pc.

Proof. Conditions of the lemma ensure that each row (and each column) of the costs

matrix can be obtained from (d, 2d, . . . , md) by a cyclic shift, i.e. each multiple of d is

contained in each row exactly once. This implies that at most p clients can be served

at a cost d. As well, at most p clients can be served at costs 2d, 3d, etc. Thus, the

minimum can be obtained by serving first p clients at cost d, the next min{n− p, p}
clients at cost 2d, the next min{n − 2p, p} clients at a cost 3d, etc., until we serve

all n clients. By a simple combinatorial reasoning, the total costs in this case can be

computed as

d
[

n′(n′ + 1)
2

p + (n′ + 1)(n mod p)
]
= d(n′ + 1)

[
n′p
2

+ (n mod p)
]

(2.93)

This minimum is achieved by the p locations (rows of the costs matrix) that fall

within the following pattern:

(d 2d . . . pd . . . . . . . . . . . . . . . . . . md)

(. . . . . . . . . md d 2d . . . pd . . . . . . . . .)

(. . . . . . . . . . . . . . . . . . . . . md d 2d . . .)

. . .

(2.94)

Lemma 2.6 and its constructive proof has an important corollary. It can be

checked that in the instances satisfying the condition of the lemma each location

is open in p optimal solutions and the number of optimal solutions is n (does not

depend on the number of medians p). This means that these instances are degener-

ate and may be easily solvable, irrespectively of their size.

In order to check the properties of our instances we held a number of computa-

tional experiments. For the sake of comparison we used two formulations of PMP:

our MBpBM and Elloumi’s NF (Elloumi, 2010) (which is the most compact MILP
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Figure 2.4. Ranges of complex instances data size for which our MBpBM and El-
loumi’s NF can be loaded by Xpress.

formulation of PMP, to the best of our knowledge). Figure 2.4 shows the ranges of m

and p for which the model can be loaded into the MILP solver (in our case Xpress).

For different sizes of the m×m input matrix we checked for which range of p the

formulation can be loaded into the MILP solver (i.e., is small enough to fit into the

memory). Clearly, this range is bounded from above by the line p = m. As El-

loumi’s formulation does not account for the number of medians, there exist some

critical size of the cost matrix beyond which the formulation becomes prohibitively

large, irrespectively of p. At the same time, our formulation based on the pseudo-

Boolean representation of the instance data can be loaded by a general-purpose

MILP solver for some values of p even if the input matrix is of huge dimension (see

Figure 2.4).

Finally, we compared running times of two solution approaches (our MBpBM

and Elloumi’s NF) applied to selected OR instances and to our generated instances

of the same size and with the same number of medians p. As was presumed, in-

stances with permutations given by (2.88) are easy for the MILP solver and the

running times are of the same magnitude as running times for OR instances (even

though the number of coefficients in the formulation is much larger). Thus, we

compared running times of OR instances and our complex instances with random-

ized permutation matrices and differences matrices containing all unit entries. The

results of this comparison are presented in Table 2.6 and show that our benchmark
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instances are complex also in terms of running time. In particular, for small val-

ues of p computation times explode even for 100× 100 input matrices. Also, for

the unsolved instances we compared the best found integer solutions with solu-

tions obtained by heuristics and it was observed that heuristics produced better

solutions. This contradicts the common observation that MILP solvers based on

branch-and-bound procedures spend only a very small portion of the total running

time on finding the optimal solution (while most of the time is spent on proving

its optimality). Thus, from this point of view, our instances with randomized per-

mutation matrices are also complex.

2.6 Application of the pseudo-Boolean approach: Equi-

valent PMP instances

Generally speaking, there exist many different PMP instances that have the same

(reduced) Hammer-Beresnev polynomial, mainly because similar monomials can

be aggregated and disaggregated. Correspondingly, if two PMP instances have

the same size (the same number of potential locations) and the same Hammer-

Beresnev polynomial, then any solution y has the same objective value for both of

them. This implies that a solution that is optimal for one of the instances is also

optimal for the other one (provided the number of medians p are the same for both

instances). This allows to define a notion of equivalence based on a pseudo-Boolean

representation. Two instances of the p-Median problem defined by cost matrices C

and D are called equivalent if they have the same size, the same number of medians

p and BC = BD. The most important point here is that equivalence of two instances

can be checked in time that is polynomially bounded in the size of the input costs

matrix, even though the PMP is itself NP-hard. This becomes clear if one observes

that a Hammer-Beresnev representation can be generated in polynomial time and

contains a polynomially bounded number of monomials. However, it should be

noted that such equivalence is only a sufficient condition for two PMP instances to

have the same optimal solution. The following counter-example illustrates this.

Example. Consider two instances defined by costs matrices C and D:

C =

 1 1

2 2

 and D =

 1 1

3 3

 (2.95)
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If p = 1 then the Hammer-Beresnev functions BC(y) = 2 + 2y1 and BD(y) =

2 + 4y1 are different but the instances have a unique optimal solution y∗ = (0, 1)T.

/

Let us consider the set of all PMP instances that are equivalent to a given in-

stance defined by matrix C:

PC,p =
{

D ∈ Rmn
+ : BD,p = BC,p

}
. (2.96)

This set can be defined as

PC,p =
⋃

Π∈PERM(C)

PC,Π,p , (2.97)

where

PC,Π,p =
{

D ∈ Rmn
+ : BC,p = BD,Π,p

}
. (2.98)

and PERM(C) is a set of all m × n permutation matrices that can be induced by

BC,p. Any set of embedded terms of Hammer-Beresnev polynomial defines at least

one permutation of {1, . . . , m} that can be viewed as some column of permutation

matrix. We say that a permutation matrix Π of equivalent instance is induced by

BC,p if it has the same size as C, each its column is defined by some set of embedded

terms of BC,p and each terms is used in generation of some column of Pi.

Let us now consider the set PERM(C). It should be noted that perm(C) ⊆
PERM(C) and having fixed some permutation Π ∈ perm(C) all other elements of

this set can be obtained by application of operations from a finite set to it. First such

operation is a permutation of the columns of Π – it is clear that it does not affect the

polynomial. Second operation is a permutation of such elements i and k from some

column j for which holds cπij j = cπkj j. It is easy to check that all terms containing

either of variables yπij and yπkj (but not both) have zero coefficients. In order to

provide the following two operations, it is useful to introduce matrix representa-

tion of the Hammer-Beresnev polynomial: each such polynomial can be represen-

ted as an m × n matrix, every entry of which corresponds to some monomial of

the Hammer-Beresnev polynomial (possibly with zero coefficient). Moreover, the

following restrictions take place:

(a) every row i contains monomials of i-th degree;
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(b) monomials within each column have embedded terms.

Having a polynomial and a fixed permutation it is possible to restore the matrix

representation (the inverse is also true – having a matrix representation it is possible

to restore the polynomial and some permutation(s)). For example,

BC(y) = 7 + 5y1 + 4y2 + 4y1y2 and Π =


1 2

2 1

3 3

 (2.99)

lead to many optional matrix representations, for example


7 0

5y1 4y2

3y1y2 1y1y2

 ,


3 4

5y1 4y2

0y1y2 4y1y2

 (2.100)

It can be seen from this example that by interchanging the entries in the second row

the restrictions (a) and (b) on the matrix representation of the polynomial are not

violated. At the same time, this leads to a different permutation matrix:

polynomial permutation
3 4

5y1 4y2

3y1y2 1y1y2

4y1y2y3 5y1y2y4




1 2

2 1

3 4

4 3


↓ ↓

3 4

4y2 5y1

3y1y2 1y1y2

4y1y2y3 5y1y2y4




2 1

1 2

3 4

4 3



(2.101)

Thus, the third operation is permutation of the entries within one row such that the

embedded structure of the matrix is preserved. The fourth operation is reduction

of similar monomials; it leads to an increase in the number of zero coefficients in

the matrix representation and thus provides more opportunities for application of
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the second operation:

polynomial permutations
3 4

5y1 4y2

3y1y2 1y1y2

4y1y2y3 5y1y2y4




1 2

2 1

3 4

4 3


↓ ↓

3 4

5y1 4y2

4y1y2 0y1y2

4y1y2y3 5y1y2y4




1 2

2 1

3 4

4 3

 ,


1 1

2 4

3 2

4 3



(2.102)

Similarly to AlBdaiwi et al. (2009), we show that the set PC,Π can be described by a

system of linear inequalities.

Let us assume that Π, Ψ ∈ perm(C). The choice of the particular Π and Ψ is un-

important since the truncated Hammer-Beresnev polynomials for all permutations

within perm(·) are identical (see AlBdaiwi et al., 2011). The truncated Hammer-

Beresnev polynomial for C is

BC,p(y) =
n

∑
j=1

∆c[1, j] +
n

∑
j=1

∆c[2, j]yπ1j +

m−p

∑
k=3

n

∑
j=1

∆c[k, j]
k

∏
r=1

yπrj . (2.103)

while that for D is

BD,p(y) =
n

∑
j=1

∆d[1, j] +
n

∑
j=1

∆d[2, j]yψ1j +

m−p

∑
k=3

n

∑
j=1

∆d[k, j]
k

∏
r=1

yψrj . (2.104)

For the PMP defined on D to be equivalent to the PMP defined on C, BD,p(y)

has to be equal to BC,p(y). By equating similar monomials in BC,p(y) and BD,p(y),

we see that for equivalence entries in D have to satisfy the following equations.

Equating the coefficients of the constant and linear monomials in (2.103) and
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(2.104) yields

n

∑
j=1

∆d[1, j] =
n

∑
j=1

∆c[1, j] (2.105)

∑
j:ψ1j=k

∆d[2, j] = ∑
j:π1j=k

∆c[2, j] k = 1, . . . , m− p. (2.106)

By equating the coefficients of non-linear monomials we get the equations

∑
{ψ1j ,...,ψkj}={π1j ,...,πkj}

∆d[k, j]− ∆c[k, j] = 0 k = 3, . . . , m− p; j = 1, . . . , n. (2.107)

Finally, since Π ∈ perm(C) and Ψ ∈ perm(D), and since all entries in the instances

are assumed to be non-negative, we have that

∆d[k, j] ≥ 0 k = 1, . . . m− p; j = 1, . . . , n (2.108)

dij ≥ 0 i = 1, . . . , m; j = 1, . . . , n (2.109)

Consider the instance in (2.18) with p = 1 and BC(y) = BC,p=1 = 8 + 0y1 +

1y2 + 2y4 + 0y1y2 + 1y1y3 + 1y2y3 + 1y2y4 + 1y3y4 + 7y1y2y3 + 1y1y3y4 + 5y2y3y4.

Then PC,Π1 (where Π1 is given by (2.19)) is defined by the following system. Note

that by adding a specific permutation we just specify the names of entries in an

equivalent matrix.

Equations corresponding to constants (2.105):

d11 + d32 + d23 + d14 + d45 = 33. (2.110)

Equations corresponding to linear monomials (2.106):

y1 : (d31 − d11) + (d24 − d14) = 0,

y2 : (d32 − d22) = 1,

y3 : (d42 − d32) = 0,

y4 : (d23 − d43) + (d35 − d45) = 2.

Equations corresponding to non-linear monomials (2.107):

y1y2 : (d34 − d24) = 0,

y1y3 : (d21 − d31) = 1,

y2y3 : (d42 − d32) = 1,
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y2y4 : (d33 − d23) = 1,

y3y4 : (d15 − d35) = 1,

y1y2y3 : (d41 − d21) + (d44 − d34) = 7,

y1y3y4 : (d25 − d15) = 1,

y2y3y4 : (d12 − d42) + (d13 − d33) = 5.

Inequalities corresponding to nonnegativity of differences(2.108):

d31 − d11, d24 − d14, d32 − d22, d23 − d43, d35 − d45 ≥ 0

d34 − d24, d21 − d31, d42 − d32, d33 − d23, d15 − d35 ≥ 0

d41 − d21, d44 − d34, d25 − d15, d12 − d42, d13 − d33 ≥ 0

Inequalities corresponding to nonnegativity of costs(2.109):

d11, d12, . . . , d44, d45 ≥ 0. (2.111)

For p = 2 we have that BC,p=2 = 8+ 0y1 + 1y2 + 2y4 + 0y1y2 + 1y1y3 + 1y2y3 +

1y2y4 + 1y3y4+, and all equations corresponding to cubic terms will be replaced by

y1y2y3 : (d41 − d21) + (d44 − d34) = 0,

y1y3y4 : (d25 − d15) = 0,

y2y3y4 : (d12 − d42) + (d13 − d33) = 0.

Hence, given a cost matrix C, any solution D to the set of inequalities (2.105)–

(2.109) will be a matrix for an equivalent instance.

Inequalities (2.105)–(2.109) define a family of polyhedra in Rmn
+ (each polyhed-

ron in the family corresponds to some permutation Πi ∈ perm(C)). Further, we

show that any two such polyhedra (2.98) either have an empty intersection or coin-

cide.

From the following example it can be seen that in the simplest case, when each

coefficient in the Hammer-Beresnev polynomial is defined by the costs of serving

only one client (by entries of only one column in the cost matrix), the claimed prop-

erty can be verified by considering only the equations (2.105)–(2.107). The polyno-

mial is presented in a matrix form, such that each column of the matrix contains

monomials with embedded terms.

Let us consider two representations of the same polynomial,
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
7 0

5y1 4y2

4y1y2 0y1y2




7 0

4y2 5y1

4y1y2 0y1y2

 , (2.112)

their corresponding cost matrices


7 4

12 0

16 4




11 0

7 5

15 5

 (2.113)

and permutations


1 2

2 1

3 3




2 1

1 2

3 3

 . (2.114)

Then, equations describing polyhedra for the two cases are

const. : d11 + d22 = 7 const. : d21 + d12 = 7

y1 : d21 − d11 = 5 y2 : d11 − d21 = 4

y2 : d12 − d22 = 4 y1 : d22 − d12 = 5

y1y2 : d31 − d21 = 4 y1y2 : d31 − d11 = 4

(2.115)

It can be seen that equations in the second line (in the third, as well) contradict

each other, so the two polyhedra have empty intersection. On the other hand, the

only way to eliminate this contradiction is to put r.h.s. of these equations to 0.

However, in this case we will have two equivalent systems of equations:
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d11 + d22 = 7 d21 + d12 = 7

d21 − d11 = 0 d11 − d21 = 0

d12 − d22 = 0 d22 − d12 = 0

d31 − d21 = 4 d31 − d11 = 4

(2.116)

In a more general case, however, by considering only the equations it is not

possible to prove the claimed property of the polyhedra induced by the Hammer-

Beresnev polynomial. The following counter-example illustrates this point.

Consider two following matrix representations of the same polynomial


7 0 0

5y1 4y2 0y1

4y1y2 0y1y2 2y1y3




7 0 0

4y2 5y1 0y1

4y1y2 0y1y2 2y1y3

 , (2.117)

their corresponding cost matrices


7 4 0

12 0 2

16 4 0




11 0 0

7 5 2

15 5 0

 (2.118)

and permutations


1 2 1

2 1 3

3 3 2




2 1 1

1 2 3

3 3 2

 . (2.119)

Then, equations describing polyhedra for the two cases are
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const. : d11 + d22 + d13 = 7 const. : d21 + d12 + d13 = 7

y1 : d21 − d11 + d33 − d13 = 5 y1 : d22 − d12 + d33 − d13 = 5

y2 : d12 − d22 = 4 y2 : d11 − d21 = 4

y1y2 : d31 − d21 + d32 − d12 = 4 y1y2 : d31 − d11 + d32 − d22 = 4

y1y3 : d23 − d33 = 2 y1y3 : d23 − d33 = 2

(2.120)

There are no contradicting equations in the two systems and it can be verified

that they have common solutions. Thus, if only equalities are considered, the poly-

hedra can intersect in general case, but, if constraints on non-negativity (2.108)–

(2.109) are added, it is possible to formulate the following lemma.

Lemma 2.7. Polyhedra induced by different permutation matrices either do not intersect

or coincide.

Proof. Suppose, for some column j it is possible to change its permutation from

π1 = (· · · , i, k, · · · )T to π2 = (· · · , k, i, · · · )T, so that only two adjacent entries are

interchanged. The first permutation will lead to the following inequality (among

the others)

di,j − dk,j ≥ 0

Similarly, the second permutation leads to a system that includes

dk,j − di,j ≥ 0

It is straightforward that the polyhedra intersect only if dk,j = di,j, but in this case

the systems of equations that correspond to the two cases (permutations, matrices)

are equivalent.

As mentioned above (2.97), the union PC of polyhedra corresponding to pos-

sible permutations of the cost matrix C describes all equivalent PMP instances.

Once the equivalence relation is established, it is natural to estimate the dimension

of equivalent data (dimension of PC). In order to do that, we introduce additional

notations. Let us denote the system of equations (2.105)–(2.107) by E . In turn, E can

be presented in a matrix form as A · d = b, where A – mn × N matrix, d - vector

of entries of the cost matrix (variables), d = (d11, d21, . . . , dmn)T, N – the number of
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equations in (2.105)–(2.107). Under these notations it is possible to formulate the

following properties of E (we assume that A has at least 2 rows, i.e. m ≥ 2).

Observation 1. For any two equations eq1 and eq2 from E there exist two variables dij

and dkl , such that

dij ∈ eq1, dij /∈ eq2 (2.121)

dkl ∈ eq2, dkl /∈ eq1 (2.122)

Observation 2. All coefficients in the equations from E belong to {−1, 1}.

Observation 3. There exist variables dmi, i = 1, . . . , n that are included in exactly one

equation with coefficient +1. All the other variables are included in exactly two equations

with coefficients +1 and -1, correspondingly.

The latter becomes clear if one considers equations corresponding to coefficients

of a chain of embedded terms of the Hammer-Beresnev polynomial.

Observations 1 and 2 have an important consequence formalised in the follow-

ing Lemma.

Lemma 2.8. Constraints matrix A describing the polyhedron of equivalent instances is

totally unimodular. The transposed minor of A excluding the first row (the one corres-

ponding to constraints (2.105)) is also totally unimodular if all subpermutations in Π are

different, i.e. if the pseudo-Boolean representation of the instance has no similar monomials.

Proof. Th first statement can be easily verified by observing that every column of

A has at most two nonzero entries and they the opposite sign. Together with the

statement of Observation 2 this matches the well-known sufficient conditions for

total unimodularity (see, e.g., Papadimitrou & Steiglitz, 1998, Theorem 13.3).

In order to prove the second statement, observe that absence of similar monomi-

als implies that each coefficient in the Hammer-Beresnev polynomial (except the

constant) is uniquely defined as a difference of two entries of the costs matrix. This

means that each row of A (correspondingly, each column of AT except the first one

has exactly two nonzero entries of the opposite sign. Thus, the sufficient conditions

used in the first part of the proof are satisfied.

Lemma 2.8 implies that the polyhedron of equivalent instances has only integral

vertices and that each costs matrix within an equivalence class can be represented

as a conic combination of some integer-valued costs matrices from the same equi-

valence class.
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The following observations reflect some additional properties of the constraints

defining the equivalence polyhedron.

Observation 4. If some two equations eq1, eq2 from E contain the same variable dij, then

exactly one of the following holds (λ1, λ2– some constants):

◦ dij ∈ λ1eq1 + λ2eq2 and there exist no other equation eq3 ∈ E that contains dij;

◦ dij /∈ λ1eq1 + λ2eq2 and there exist no other equation eq3 ∈ E that contains dij.

Observation 5. (ELIMINATION OF VARIABLES) If in a linear combination λ1eq1 +

λ2eq2 of two equations from E some variable dij (that was present in both of them) is elim-

inated then this combination contains d(i+1)j and d(i−1)j, and no other equation from E
contains both these variables.

Lemma 2.9. The system of equations E is linearly independent.

Proof. By definition, the system is linearly dependent if there exist such constants

λ1, . . . , λN (∑i |λi| > 0) that L ≡ λ1eq1 + λ2eq2 + . . . + λNeqN = 0, or, in other

words, coefficients at all variables in L are zero. Let us show that such set of con-

stants λi, i = 1 . . . N does not exist by induction on the number of equations in L.

For N = 1 – trivially, in each equation there are variables with non-zero coeffi-

cients (see Fact 2).

Suppose, for some N > 1 holds L = λ1eq1 + λ2eq2 + . . . + λNeqN 6= 0, this

means that L contains at least one variable with a non-zero coefficient. Let us show

that by adding one more equation to L one will not obtain 0. If L and eqN+1 do not

have common variables then for any λN+1 holds

L+ λN+1eqN+1 6= 0 (2.123)

If L and eqN+1 have some common variable dij then exactly one of the following

cases takes place:

◦ d(i+1)j ∈ L, d(i+1)j /∈ eqN+1

◦ d(i+1)j ∈ eqN+1, d(i+1)j /∈ L

◦ d(i+1)j /∈ eqN+1, d(i+1)j /∈ L

In the first two cases we have a variable that cannot be eliminated by adding

λN+1eqN+1 to L. The third case implies that d(i+1)j was eliminated in L and ac-

cording to Fact 5 there exist some dkj, k > i that is in L and not in eqN+1. This

finishes the proof.
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As all equations in E are linearly independent, then A has the maximum pos-

sible rank that is equal to the number of rows in it, i.e. rank(A) = N. If one now

denotes by |T| the number of monomials in the initial Hammer-Beresnev polyno-

mial (equal to the number of non-zero entries in the difference matrix ∆) and by |B|
- the number of terms in the reduced polynomial (with combined similar monomi-

als) then the following bounds on rank(A) take place.

Lemma 2.10.

rank(A) ≥ |B| (2.124)

rank(A) ≤ |B|+ mn− |T| (2.125)

Proof. As every term with a non-zero coefficient corresponds to an equation in E ,

then the number of equations cannot be smaller than |B|. However, equations for

some terms of the polynomial with zero coefficients are to be included into the

system as their corresponding zero entries existed in the difference matrix. So, the

upper bound is obtained by adding the quantity of zeros induced by equal entries

in the columns of the costs matrix.

It should be noted that for a PMP instance defined on a cost matrix D to be

equivalent to a PMP instance defined on a cost matrix C, perm(D) has to be identical

to perm(C). Note that a choice among many equivalent matrices might be refined

by adding either additional constraints reflecting some sufficient conditions for the

polynomially solvable special case as well as some additional requirements to the

entries included in, for the sake of simplicity, a linear objective function defined on

PC,p.

The problem of finding an equivalent matrix D with the minimum number

of columns to the given matrix C can be solved using the following well-known

Dilworth’s decomposition theorem (see, e.g., Schrijver, 2003, Theorem 14.2):

“The set of terms Ta with positive coefficients in a pseudo-Boolean polyno-

mial are subsets of partially ordered set T, and hence, the minimum number of

chains covering Ta (nothing else as the minimum number of aggregated columns

of C) is equal to the maximum size of an antichain (the maximum number of non-

embedded terms).”

The maximum size of an antichain found for matrix (2.18) is equal to four, and
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if the permutation matrix ΠE is chosen to be

ΠE =


1 2 4 3

3 3 2 4

2 1 1 1

4 4 3 2

 (2.126)

then the corresponding Hammer-Beresnev polynomial BC,p=2(y) = [1 + 0y1 +

1y1y3 + 2y1y2y3] + [1+ 1y2 + 1y2y3 + 3y2y3y4] + [1+ 1y4 + 1y2y4 + 2y2y3y4] + [3+

0y1 + 0y1y2 + 5y1y2y3]+ [2+ 1y4 + 1y3y4 + 1y1y3y4] yields the following (in)equalities.

Equations corresponding to constants (2.105):

e11 + e22 + e43 + e34 = 8 (2.127)

Equations corresponding to linear monomials (2.106):

y1 : (e31 − e11) = 0

y2 : (e32 − e22) = 1

y3 : (e44 − e34) = 0

y4 : (e23 − e43) = 2

Equations corresponding to non-linear monomials (2.107):

y1y3 : (e21 − e31) = 1

y2y3 : (e12 − e32) = 1

y2y4 : (e13 − e23) = 1

y3y4 : (e14 − e44) = 1

y1y2y3 : (e41 − e21) + (e42 − e12) = 0

y1y2y4 : (e33 − e13) = 0

y1y3y4 : (e24 − e14) = 0

Nonnegativity inequalities corresponding to (2.108):

e31 − e11, e32 − e22, e44 − e34 ≥ 0

e23 − e43, e21 − e31, e12 − e32 ≥ 0

e13 − e23, e14 − e44, e41 − e21 ≥ 0
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e42 − e12, e33 − e13, e24 − e14 ≥ 0

Nonnegativity inequalities corresponding to (2.109):

e11, e12, . . . , e43, e44 ≥ 0 (2.128)

Finally, the reconstructed costs matrix E that is equivalent to matrix C (2.18) is

E =


8 2 3 1

9 0 2 1

8 1 3 0

9 2 0 0

 (2.129)

2.7 Summary and Future Research Directions

This chapter presents a new approach to formulation of models for the p-Median

problem (PMP). We first formulate the PMP using a pseudo-Boolean polynomial

(pBp) as the objective function, and with just one constraint related to the num-

ber of medians in a feasible solution keeping all decision variables Boolean. We

then reduce the size of the objective function by truncation and reducing similar

monomials. After that we linearise all non-linear terms in the objective function

with additional variables and linear constraints. The resulting model that we call

Mixed Boolean pseudo-Boolean Model (MBpBM) is within the well studied class

of Mixed Boolean Linear Programming models. The number of non-zero coeffi-

cients in the objective function of MBpBM is minimal compared to all previously

published models for the PMP. Since the number of Boolean decision variables is

equal to m and cannot be further reduced (except by well known reduction tests

finding some open and/or closed sites, see, e.g., Goldengorin et al. (2003), Avella

et al. (2007), AlBdaiwi et al. (2009) and references within) and the number of lin-

ear constraints is equal to the number of non-negative variables one may conclude,

that the MBpBM has the smallest number of constraints related to the non-negative

variables. As we have shown, the matrix of constraints related to the non-negative

decision variables is as sparse as possible if we would be able to solve a generaliza-

tion of the classical set covering problem defined on the set of all terms involved in

the pseudo-Boolean formulation of PMP. Unfortunately, this set covering problem

is NP-hard (Garey & Johnson, 1979). As shown by our computational experiments

for a PMP instance with m = n = 1000 the corresponding ground set of covering
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problem might be in magnitudes larger. From the other side, even if we might be

able to find the most sparse matrix of constraints, then the created MBpBM is still in

the class of mixed Boolean linear programming models which are computationally

intractable (NP-hard). Anyway, if we evaluate the optimality of a model within

the class of Mixed Boolean Linear Programming models by the smallest number of

non-negative variables and corresponding constraints, our MBpBM is an optimal

one and PMP instance specific!

The main distinction between MBpBM and all the well known Mixed Boolean

PMP formulations is that the number of non-negative variables in MBpBM is auto-

matically adjusted according to the number p of medians, i.e. the number of non-

negative variables as well as the number of constraints decrease linearly with in-

creasing values of p. This feature of MBpBM implies that PMP instances with rel-

atively large numbers of medians are easier to solve using standard MILP software

applied with our MBpBM. Thus, our models (MBpBM, MBpBMb and MBpBMb1)

and pseudo-Boolean approach to their creation do not only extend the capabilities

of general-purpose software in solving larger sized p-median problems, but also

makes it possible to solve smaller problems more efficiently while using general-

purpose MILP software.

The MBpBM allows either to solve much larger problems by general-purpose

MILP software than what is possible using previous model formulations or to speed

up essentially the best known models for the PMP. In sharp contrast, CPLEX is un-

able to solve the 15 largest OR test problems (see Table 1 in this paper) in classical

formulation of PMP (see Avella et al., 2007; Beltran et al., 2006)).

The MBpBM approach may also lead to reduced model sizes for other location

models like the simple plant location problem and the capacitated simple plant loc-

ation problem (a generalization of PMP with fixed charges) as well as to improve

data correcting approach to the SPLP (see Goldengorin et al., 2003). Together with

the MBpBM we have introduced two variations of MBpBM, namely MBpBMb and

MBpBMb1. The MBpBMb includes preprocessing of monomials and correspond-

ing linear constraints based on a lower bound to a subproblem of MBpBM induced

by a subspace determined by the term of the corresponding monomial in pBp. The

MBpBMb1 is based on further reductions of monomials in pBp induced by a mono-

mial with zero coefficient and embedded in all terms with higher degrees.

Computational results reported in Tables 2.3–2.4 show that MBpBMb1 outper-

forms the best available MILP Elloumi’s model for all OR-library instances except

pmed38. Our MBpBM allows solving PMPs with much less execution times than
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required by the best known models in the literature. It also allows solving much

larger problems by general-purpose MILP software than is currently possible us-

ing previous model formulations. The MBpBM has been able to obtain an optimal

solution to the fl1400 instance with p = 400, which remained unsolved in Avella

et al. (2007) by their state-of-the-art-algorithm for PMP as well as by Beltran’s et al.

advanced semi-Lagrangean approach based on Proximal-Analytic Center Cutting

Plane Method (Beltran et al., 2006). Our models MBpBM, MBpBMb, MBpBMb1 are

computationally more efficient than all available in the literature MILP formulati-

ons of PMP and outperform corresponding state-of-the-art algorithms available in

the literature, see Cornuejols et al. (1980), Church (2003), Church (2008), Senne et al.

(2005), Beltran et al. (2006), Avella et al. (2007), Brusco & Köhn (2008), and Elloumi

(2010).

Computational results reported in Table 2.5 show that our MBpBM will be use-

ful for p-median approach applicable to large cell formation instances in group

technology such that the optimal number p of cells can be found (see, e.g., Won &

Lee, 2004). To summarize, in this paper we have shown that our model extends the

ability to solve large scale p-median problem instances to optimality by means of

general-purpose software, e.g., Xpress-MP.

With regard to the main subject of this thesis – the cell formation problem –

one may conclude that application of PMP to solving the cell formation problem

is beneficial as the former can be solved to optimality very efficiently using the

introduced MBpBM formulation. Taking into account that the size of the problem

is quite limited (e.g., 100 machines is already too much for a typical manufacturing

system) one may expect tiny solution times and this expectation will be verified in

the following chapters.
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Table 2.4. Comparison of computing times for our and Elloumi’s NF formulations
(Resende and Werneck random instances)

instance m p MBpBM MBpBMb MBpBMb1 Elloumi

rw100 100 10 678.91 671.28 452.52 845.30
100 20 4.00 6.44 2.22 5.25
100 30 0.09 0.43 0.03 0.13
100 40 0.08 0.34 0.02 0.14
100 50 0.06 0.28 0.02 0.13

rw250 250 10 – – – –
250 25 – – – –
250 50 340.86 1633.58 225.83 335.86
250 75 1.09 8.50 0.48 2.08
250 100 0.50 5.44 0.11 0.88
250 125 0.66 5.02 0.27 1.38

rw500 500 10 – – – –
500 25 – – – –
500 50 – – – –
500 75 – – – –
500 100 – – – –
500 150 2.97 105.63 1.22 12.27
500 200 2.25 54.78 0.28 4.11
500 250 1.77 44.83 0.13 4.36

rw1000 1000 10 – * – –
1000 25 – * – –
1000 50 – * – –
1000 75 – * – –
1000 100 – * – –
1000 200 – * – –
1000 300 118.91 * 13.40 234.99
1000 400 11.49 * 1.16 21.81
1000 500 9.08 * 0.77 28.47

– Not solved within 1 hour.
∗ Not enough memory for the MILP solver
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Table 2.5. MBpBM for different numbers of medians in pmed39/pmed40

pmed39 pmed40

p fC(S∗) Mtr constr MBpBM fC(S∗) Mtr constr MBpBM
1 14720 29042 706612 7.3 17425 31641 744257 12.8
5 11069 28839 705976 79.7 12305 31268 743056 39.3
9 9690 27883 702341 429.2 10740 30155 738633 54.8

10 9423 27637 701168 121.2 10491 29905 737406 88.0
20 7894 26008 690135 80.5 8717 28143 725285 104.3
30 7051 24983 679640 567.4 7731 27109 714318 138.7
40 6436 24272 669999 182.9 7037 26372 703930 113.4
50 5941 23688 660138 93.9 6518 25813 694355 782.7
60 5545 23229 651280 38.6 6083 25304 684402 171.9
70 5215 22815 641971 5.7 5711 24883 674846 33.3
80 4929 22439 632520 4.6 5398 24503 665476 5.5
90 4684 22147 624079 4.5 5128 24164 656067 5.7

100 4462 21844 615198 4.9 4878 23851 646520 5.4
200 2918 19731 529883 2.7 3132 21623 557661 3.1
300 1968 18252 449160 2.0 2106 20066 473237 2.4
400 1303 17000 371790 1.5 1398 18725 391820 1.7
500 821 15812 298029 1.3 900 17431 314045 1.3
600 471 14495 223027 1.0 530 16040 237199 0.9
700 244 12962 151916 0.7 271 14337 161826 0.6
800 100 10684 81510 0.3 100 11781 86772 0.7
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Table 2.6. Running times in seconds for our MBpBM and Elloumi’s NF for OR
instances and our complex instances of the corresponding size

OR instances our instances
m p MBpBM MBpBMb Elloumi MBpBM MBpBMb Elloumi

100 5 0.22 0.20 0.25 4434.66 3443.13 24684.42
10 1.47 0.58 4.08 878.78 1141.05 3926.20
20 0.11 0.06 0.14 92.95 26.25 62.94
33 0.22 0.05 0.13 0.28 0.11 0.61

200 5 15.22 17.67 17.06 * * *
10 0.73 0.55 0.77 * * *
20 0.49 0.31 0.55 * * *
40 0.41 0.28 0.45 1616.33 1218.45 1753.47
67 0.27 0.14 0.41 1.08 0.63 1.34

300 5 4.00 4.61 4.50 * * *
10 8.59 8.33 7.36 * * *
30 0.80 0.56 1.25 * * *
60 1.05 1.13 2.34 * * *

100 0.48 0.30 0.86 1.16 0.27 1.81
400 5 42.47 30.78 23.38 * * *

10 25.16 21.19 32.02 * * *
40 1.73 1.31 2.97 * * *
80 0.97 0.72 1.61 * * *

133 0.73 0.80 1.25 3.83 1.86 6.28
500 5 4.52 3.92 6.22 * * *

10 51.63 64.05 98.59 * * *
100 1.42 0.97 2.33 * * *
167 1.44 0.88 1.84 14.91 4.14 18.56

600 5 163.84 111.81 180.31 * * *
10 27.59 21.31 43.73 * * *

120 1.78 1.31 2.91 * * *
200 1.50 0.78 4.81 49.81 15.41 201.39

700 5 153.22 57.05 90.95 * * *
10 33.13 43.39 37.64 * * *
70 3.09 2.69 4.73 * * *

140 3.72 1.97 7.11 * * *
800 5 70.30 154.41 514.72 * * *

10 2256.83 4252.13 6737.25 * * *
80 3.91 3.08 7.00 * * *

900 5 1328.34 2041.28 1143.97 * * *
10 572.81 444.08 473.95 * * *
90 5.39 4.02 8.42 * * *

* not solved within 24 hours





Chapter 3

Application of the PMP to cell

formation in group technology

3.1 Introduction

Cell formation, being a popular concept in industrial engineering, suggests group-

ing machines into manufacturing cells and parts into product families such that

each family is processed mainly within one cell. The problem of optimal (usually,

with respect to the amount of intercell movement) cell formation has been stud-

ied by many researchers. An overview can be found in (Selim et al., 1998; Yin &

Yasuda, 2006) and recently in Bhatnagar & Saddikuti (2010). However, no tract-

able algorithms that guarantee optimality of the obtained solutions were repor-

ted because of computational complexity of the problem. Moreover, even worst-

case performance estimates are not available for most approaches. In fact, it was

only checked that they produce good solutions for artificially generated instances

without any kind of worst or average case analysis. At the same time, today’s

highly competitive environment makes it extremely important to increase the ef-

ficiency of manufacturing systems as much as possible. In these conditions any

noticeable improvement (e.g., achieved by properly designed manufacturing cells)

can provide a secure position for a company in a highly competitive market.

This chapter is based on the papers (Goldengorin & Krushinsky, 2011b; Goldengorin et al., 2012).
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3.1.1 Background

The problem of cell formation can be traced back to the works of Flanders (1925)

and Sokolovski (1937) but is oftenly attributed to Mitrofanov’s group technology

(Mitrofanov, 1959, 1966) and Burbidge’s product flow analysis (PFA, see Burbidge,

1961). Burbidge showed that it can be reduced to a functional grouping of machines

based on binary machine-part incidence data. Thus, in its simplest and earliest form

cell formation is aimed at the functional grouping of machines based on similarity

of the sets of parts that they process. Input data for such a problem is usually

given by a binary machine-part incidence matrix A = [aij], where aij = 1 if and

only if part j machine i at some step of its production process. In mathematical

terms, the problem of cell formation was first defined as one of finding independent

permutations of rows and columns that lead to an (almost) block-diagonal structure

of matrix A – uncapacitated functional grouping.

Early approaches to cell formation (McCormick et al., 1972; King, 1980; Chan-

drasekharan & Rajagopalan, 1986b; H. M. Chan & Milner, 1982; Kusiak & Chow,

1987) (see Figure 3.1) were restricted to the functional grouping and produced op-

timal results only for the data with a perfect cellular structure. The next step in

the development of the cell formation problem was made by introducing the pro-

duction volumes issue. A binary input matrix was replaced by a real-valued one

with entries reflecting actual production volumes. Further, various types of data

from real manufacturing systems (e.g. operational sequences, alternative routings,

available workers) and/or additional constraints (e.g., on the number of machines

or workers within a cell, workload) were taken into account leading to a bunch of

new approaches to solving the corresponding problems. Some of these approaches

use genetic (Mak et al., 2000; Filho & Tiberti, 2006) or simulated annealing heurist-

ics (Adil & Rajamani, 2000; Xambre & Vilarinho, 2003). Others focused on artificial

neural networks exploiting their ability of (self-)learning and a variety of avail-

able architectures and learning paradigms: backpropagation learning Kao & Moon

(1991), competitive learning (Malave & Ramachandran, 1991), adaptive resonance

theory (Suresh et al., 1999; Yang & Yang, 2008), self-organizing maps (Guerrero et

al., 2002). Despite being robust and adaptive, neural networks usually need an

adjustment of learning parameters that are hard to interpret and are selected on

a trial-and-error basis. In contrast to neural network approaches, the ones based

on mixed-integer linear programming, MILP, (Chen & Heragu, 1999; Slomp et al.,

2005) and graph theory, in particular, on the p-Median problem (Wang & Roze,

1997; Deutsch et al., 1998; Ashayeri et al., 2005; Won & Currie, 2006) and its modi-
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fications (see, e.g., Bhatnagar & Saddikuti, 2010), are easy to understand and to

interpret, and need only the dissimilarity measure to be defined for each pair of

machines. However, as these approaches lead to computationally intractable (NP-

hard) problems (except the ones based on the minimum spanning tree problem, see,

e.g., Ng (1996)), researchers still focus on development of sophisticated heuristics.

We also would like to mention the paper by Chen & Heragu (1999) separately, be-

cause it differs from the bulk of other works in several aspects. First of all, authors

made an attempt to solve the problem exactly. However, they were able to solve op-

timally only instances of moderate size. Secondly, their formulation does not use a

dissimilarity measure and deals directly with machine-part relations. This makes

the applicability of the model questionable, as in the real systems the number of

parts can be estimated in thousands leading to a huge formulation, even though

the number of machines is small. For example, an instance with 4415 parts was

considered by Park & Suresh (2003), and we experienced much larger ones.

Thus, until now there is no approach that guarantees optimality of obtained

solutions. In fact, for most of the available approaches even worst-case quality ana-

lysis is not available. This means that for real problems it is not known how far from

true optima the obtained solutions are. Finally, most models, being an approxim-

ation of the original cell formation problem, are solved by heuristic methods thus

accumulating two errors: an intrinsic error of modelling and an error induced by a

heuristic solution method.

3.1.2 Objectives and outline

This chapter is motivated by the observation that while most approaches induce a

modelling error, the underlying problems are usually solved by heuristics leading

to a computational error that further deteriorates the solution quality. In contrast,

by means of the p-Median problem (PMP) we show that the computational error

can be completely avoided. We also provide an experimental study showing that

the modelling error is relatively low. Despite its NP-hardness, our PMP-based mo-

del can be solved to optimality in acceptable time for real world data just by in-

tensively exploiting its properties and reducing its size. I.e. we can transform the

original NP-hard problem into another NP-hard problem of a size small enough to

allow its resolution by a general-purpose MILP solver within seconds. By this ex-

ample we would like to draw the attention of the OR community to the importance

of a careful model choice and opportunities provided by problem size reduction

techniques.
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This chapter is aimed at the development of a tractable MILP model for solv-

ing real-world cell formation problems. We present an efficient formulation that

is based on the p-Median problem (PMP) and allows solving large-size cell form-

ation instances (typical for the real manufacturing systems) in acceptable time by

general-purpose MILP solvers. We show that our model outperforms contempor-

ary approaches in terms of solutions quality and can be used as a starting point

for further extensions. Even though PMP is NP-hard (Kariv & Hakimi, 1979), we

present an efficient MILP formulation that intensively exploits the structure of the

input data thus substantially reducing the problem size. Moreover, we show that

additional linear constraints reflecting capacities of the cells, workload balancing,

sequencing of operations, etc. can be incorporated into our model while preserving

its practical computational tractability. We also claim that our model not only

allows solving previously considered problems but also presents a new flexible

framework for dealing with real world cell formation. Numerical experiments will

show that our model outperforms several other contemporary approaches in qual-

ity of the obtained solutions, while keeping computing times below one second.

In addition, it is worth mentioning that the applicability of our approach is not re-

stricted to cell formation applications as models based on the p-Median problem

were proposed in various fields, including cluster analysis, quantitative psycho-

logy, marketing, telecommunications industry, sales force territories design, polit-

ical districting, optimal diversity management, vehicle routing, and topological

design of computer communication networks (references can be found in AlBdaiwi

et al. (2009)). Thus, we would like to draw attention of both – managers, industrial

engineers and researchers – to the new possibilities provided by our flexible and

optimally solvable p-Median model.

The chapter is organized as follows. The next section describes the p-Median

approach to the cell formation problem including general formulation of the PMP,

its interpretation in terms of cell formation and our efficient MILP formulation.

Section 3.3 gives some examples of constraints that can be incorporated into the

proposed model to illustrate its practical applicability. In Section 3.4 we provide

results of our experiments with instances used in recent papers. Finally, Section 3.5

summarizes the chapter and outlines possible directions for future research.
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Figure 3.1. Evolution of cell formation problem and applicability of approaches.

3.2 The p-Median Approach to Cell Formation

The p-Median Problem (PMP) was applied to cell formation in group technology by

a number of researchers (see Won & Lee (2004), Deutsch et al. (1998) and references

within). However, to the best of our knowledge, in all CF related papers PMP (as

well as almost any other model based on graph partitioning or MILP) is solved by

some heuristic method. At the same time, for the p-Median problem there exist

efficient formulations (the most recent one derived in Elloumi (2010)) that allow

solving medium and large size instances to optimality. In this paper we utilize our

new model for the PMP that represents the instance data even in a more compact

way thus leading to a smaller MILP formulation. This allows solving large scale CF

problems to optimality within seconds.

PMP is one of well-known minisum location-allocation problems. A detailed

introduction to this problem and solution methods appears in Reese (2006) and

Mladenovic et al. (2007). For a directed weighted graph G = (V, A, C) with |V|
vertices, set of arcs (i, j) ∈ A ⊆ V ×V and weights (distances, dissimilarities, etc.)

C = {cij : (i, j) ∈ A}, the PMP consists of determining p nodes (the median nodes,

1 ≤ p ≤ |V|) such that the sum of weights of arcs joining any other node and one

of these p nodes is minimized (see Figure 3.2).

In terms of cell formation, vertices represent machines and weights cij repres-

ent dissimilarities between machines i and j. These dissimilarities can be derived

from the sets of parts that are being processed by either of the machines (e.g., if

two machines process almost the same set of parts they have small dissimilarity

and are likely to be in the same cell) or from any other desired characteristics (e.g.

workers skill matrix, operational sequences, etc.). Moreover, usually there is no
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need to invent a dissimilarity measure as it can be derived from one of the avail-

able similarity measures using an expression d(i, j) = c− s(i, j), where d(., .)/s(., .)

is a dis/similarity measure and c – some constant large enough to keep all dissimil-

arities non-negative. As can be seen from the literature, several similarity measures

were proposed and the particular choice can influence results of cell formation. For

our experiments we have chosen one of the most widely used – Wei and Kern’s

“commonality score” (Wei & Kern, 1989), and derived our dissimilarity measure as

d(i, j) = r · (r− 1)−
r

∑
k=1

Γ(aik, ajk) (3.1)

where

Γ(aik, ajk) =


(r− 1), i f aik = ajk = 1

1, i f aik = ajk = 0

0, i f aik 6= ajk

(3.2)

where aij - entries of the machine-part incidence matrix, r - number of parts.

Thus, if applied to cell formation, the p-Median problem means finding p ma-

chines that are best representatives (centres) of p manufacturing cells, i.e. the sum

over all cells of dissimilarities between such a centre and all other machines within

the cell is minimized. Once p central machines are found, the cells can be produced

by assigning each other machine to the central one such that their dissimilarity is

minimum. Note that the desired number of cells p is part of the input for the model

and should be known beforehand. Otherwise, it is possible to solve the problem

for several numbers of cells and pick the best solution.

Further, for the sake of clarity for those familiar with the PMP, we will follow

the terminology inherited from location–allocation applications and represent the

set of vertices V as a union of two (possibly intersecting) sets I and J, such that

|I| = m, |J| = n. We will call the elements of I locations and those of J – clients.

Moreover, we treat weights cij as costs of serving client j (j ∈ J) from location i

(i ∈ I). In terms of cell formation the set of locations I contains potential centres

of the cells and the set of clients J contains all machines. Clearly, in case of cell

formation sets I and J coincide as any machine, potentially, can be a centre of a cell.

This implies that PMP applied to cell formation has a symmetric costs matrix.
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Figure 3.2. The p-Median problem: minimize the total weight of solid edges.

3.2.1 The MBpBM Formulation

Our approach is based on a compact MILP formulation for PMP – the Mixed-

Boolean pseudo-Boolean formulation (MBpBM), discussed in detail in Chapter 2

and in Goldengorin & Krushinsky (2011a). Here we briefly describe the major idea

behind the formulation, as needed for the further analysis.

The MBpBM formulation is derived from the so-called pseudo-Boolean formu-

lation of PMP (see AlBdaiwi et al. (2009) or Goldengorin & Krushinsky (2011a)) that

associates with a cost matrix C a permutation matrix Π, a differences matrix ∆ and

a vector of Boolean variables y = (y1, . . . , ym), reflecting opened (yi = 0) and closed

(yi = 1) locations. Each column of Π is a permutation that sorts the entries from the

corresponding column of C in a nondecreasing order; each column of ∆ contains

differences between consecutive sorted entries of C (δi1 is defined as the smallest

elements in column i). It can be shown that the PMP can be expressed in terms of a

polynomial on Boolean variables, abbreviated as BC,p(y), with only one constraint

requiring exactly p locations to be opened: ∑m
i=1 yi = m− p. The pseudo-Boolean

formulation can then be linearised by introducing for each product of y-variables

in BC,p(y) a nonnegative z-variable and a constraint reflecting the relation between

z- and y-variables. The resulting MBpBM formulation can be expressed as follows:

f (y) = α0 +
m

∑
r=1

αryr +
|B|

∑
r=m+1

αrzr → min

s.t.
m

∑
i=1

yi = m− p (3.3)

zr ≥ ∑
i∈Tr

yi − |Tr|+ 1, r = m + 1, . . . , |B| (3.4)

zr ≥ 0, r = m + 1, . . . , |B| (3.5)
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y ∈ {0, 1}m, (3.6)

where αr are coefficients of BC,p(y), |B| denotes the number of monomials in BC,p(y),

and Tr is the set of variable indices in monomial r, i.e. zr = ∏i∈Tr yi.

The following example demonstrates how our formulation works for a small

CF instance.

Example. Let the instance of the cell formation problem be defined by the following

machine-part incidence matrix (MPIM)

parts

machines

1 2 3 4 5

1 1 1 1

2 1 1

3 1 1

4 1 1

(3.7)

with 4 machines and 5 parts (zero entries are skipped for better visualisation).

Now one can construct the machine-machine dissimilarity matrix C by applying

the defined above dissimilarity measure (3.1):

C =


6 20 10 20

20 9 19 9

10 19 9 19

20 9 19 9

 (3.8)

For example, the left top entry c11 is obtained in the following way:

c11 = r(r− 1)−
r
∑

k=1
Γ(a1k, a1k) =

5(5− 1)− Γ(0, 0)− Γ(1, 1)− Γ(0, 0)− Γ(1, 1)− Γ(1, 1) =

20− 1− 4− 1− 4− 4 = 6

(3.9)

These dissimilarities can be thought of as some constant (needed to ensure nonneg-

ative values) minus the weighted sum of the number of matching zeros and ones in

two corresponding rows of the MPIM. The weights are chosen such that to ensure

that any matching one cannot be compensated by any number of matching zeros

within a row.
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Possible permutation and differences matrices for the costs matrix (3.8) are:

Π =


1 2 3 2

3 4 1 4

2 3 2 3

4 1 4 1

 ∆ =


6 9 9 9

4 0 1 0

10 10 10 10

0 1 0 1

 (3.10)

These lead to the following pseudo-Boolean polynomial BC(y):

BC(y) = 33 + 4y1 + 1y3 + 20y1y3 + 20y2y4 + 2y2y3y4 (3.11)

If one is interested in having two manufacturing cells then the number of medians

p in the formulation should be set to 2 and the pseudo-Boolean polynomial can be

truncated to the degree of (m− p) = 2:

BC,p=2(y) = 33 + 4y1 + 1y3 + 20y1y3 + 20y2y4 (3.12)

The obtained polynomial has two non-linear terms that we have to linearise by

introducing additional z-variables: z5 = y1y3 and z6 = y2y4. Now, our MBpBM

formulation allows expressing the given instance of cell formation as the following

mixed-integer LP problem:

f (y, z) = 33 + 4y1 + 1y3 + 20z5 + 20z6 −→ min (3.13)

y1 + y2 + y3 + y4 = 2 (3.14)

z5 ≥ y1 + y3 − 2 + 1 (3.15)

z6 ≥ y2 + y4 − 2 + 1 (3.16)

zi ≥ 0, i = 5, 6 (3.17)

yi ∈ {0, 1}, i = 1, . . . , 4 (3.18)
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Its solution y = (0, 0, 1, 1)T , z = (0, 0)T leads to the following cells:

parts

machines

2 4 5 1 3

1 1 1 1

3 1 1

2 1 1

4 1 1

(3.19)

/

3.2.2 Compactness of the MBpBM formulation

Taking into account that there is a one-to-one correspondence between nonlinear

monomials of BC,p(y) and nonnegative variables and constraints in MBpBM, the

properties of BC,p directly apply for the MBpBM formulation.

The fundamental property of the pseudo-Boolean formulation is that for real-

world instances the number of monomials in BC,p(y) can be essentially reduced

comparatively to the number of entries in the initial costs matrix. In particular, the

following three reductions take place:

• only pairwise different elements in each column of the costs matrix play a

role;

• all equal column subpermutations in Π contribute to a single monomial in

BC,p(y);

• the degree of BC,p(y) is at most m− p, i.e. only m− p + 1 smallest different

entries in each column of the costs matrix are meaningful (“p-truncation”).

The cell formation application supports these reductions. Consider, for example,

an instance with p perfect cells, i.e. its machine-part incidence matrix can be trans-

formed into an ideal block-diagonal form with p blocks. In this case each column

of the corresponding costs matrix for PMP has at most p different entries, which is

normally much less then m− p + 1. Next, the number of different subpermutations

of each length is also equal to p. Thus, in case of p perfect cells the objective has at

most p × p monomials, irrespectively of the number of machines and parts. This

results in a MBpBM formulation with at most p × (p − 1) nonnegative variables
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and corresponding constraints, irrespectively of the number of machines and parts.

Of course, perfect cells are uncommon in practice and the problem becomes larger,

however, these considerations demonstrate that the size (and, therefore, complex-

ity) of the model is closely related to the complexity of the instance. It should be

noticed that the classical formulation of the PMP (which is most widely used, see,

e.g., Won & Lee (2004)) contains all m×m coefficients in the objective function.

To illustrate this point we performed a number of computational experiments.

A 200 × 200 block-diagonal matrix with 5 ideal blocks was generated and then

gradually perturbed by adding random flips (change 1 within a diagonal block into

0, or 0 outside a block into 1). For each obtained instance we estimated the number

of coefficients in the objective of the MBpBM formulation and the solution time.

The size of the instance (200 machines) was intentionally chosen larger than nor-

mally occur in practice: we could not find instances with more than 50 machines

in literature, while the number of parts does not influence the formulation. This

was done in order to show that the performance of our model does not deterior-

ate with an increase in the instance size. The experimental results are presented

in Figure 3.3, where the numbers of coefficients in the objective and running times

are plotted against the amount of flips, expressed as a percentage of the total num-

ber of elements in the input matrix. Only the cases with less than 15% of flips are

considered because otherwise the potential intercell movement becomes too large

and the CF itself does not make sense. As can be seen from the figure, even for

the instances with 200 machines the computing times are normally below 1 second,

except rare cases (85 out of 6000) when up to 10 minutes were needed. We believe

that these outliers are caused only by the MILP solver due to “incorrect” branching.

Speaking more generally, MBpBM contains all known reductions for PMP not

involving (pre)-solving the instance, unlike other MILP formulations for PMP. For

example, the formulation from (Elloumi, 2010) does not use p-truncation. On the

other hand, it is possible to reduce the size of the MBpBM formulation further by

involving estimation of lower bounds on the subspaces of feasible solutions (a pos-

sible framework is described in Goldengorin & Krushinsky, 2011a).

3.2.3 A note on optimality of PMP based models

The PMP does not explicitly optimize the goal of cell formation, see (Goldengorin

& Krushinsky, 2011b). Thus, it is important to analyse the quality of solutions pro-

duced by a PMP based model.

Let us first consider the case of a manufacturing system in which p perfect cells
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Figure 3.3. Performance of a PMP based model for CF (m = 200, r = 200, p = 5.)

are possible. It is not hard to understand that a PMP model equipped with a reason-

able dissimilarity measure (like the one described above (3.1)) will discover those

p cells, thus producing optimal results; see (Goldengorin & Krushinsky, 2011b).

In practice, however, perfect cellular structure is distorted to some extent. If input

data are given in a form of a machine-part incidence matrix then there are two types

of distortions: voids – zeroes in diagonal blocks, and exceptions – ones outside the

diagonal blocks.

The following propositions provide sufficient conditions for optimality of

the obtained solution.

Proposition 3.1. Suppose that a block structure without exceptions exists (only voids are

allowed). In this case a PMP based model produces an optimal solution if in each cell there

is at least one machine that is needed for all parts from the corresponding part family.

Proof. First we prove that only machines needed for all parts in the cells can be-

come medians. Observe that the dissimilarity measure (3.1) is designed in such a

way that for any two machines (rows of the machine-part incidence matrix) each

coinciding one weighs more than any number of zeros. This implies that only the
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machine that is needed for all parts assigned to a cell will “cover” the maximum

number of ones and will be selected as a median. As soon as medians are defined,

all other machines are uniquely assigned to the cells where they are needed – as-

sumption of the proposition implies that a structure where each machine is needed

in exactly one cell is possible. As a result, completely independent cells will be

obtained.

Proposition 3.2. Suppose that a solution with a block structure without exceptions is

found (only voids are allowed). If in each cell the median machine has at least one part in

common with any other machine in a cell, then the solution is optimal.

Proof. Straightforward, as moving any machine to a different cell will create at least

one exception.

Proposition 3.3. Suppose, a solution with a block structure without voids is found (only

exceptions are allowed). If the number of exceptions in each row is strictly less than the

number of within-block ones in this row then the solution is optimal.

Proof. Absence of voids in the blocks guarantees that the assignment of machines

(rows) to cells (blocks) is not sensitive to a particular choice of medians. At the same

time, a limited number of exceptions induced by any machine guarantees that its

current position is optimal, irrespectively of the configuration of other blocks. This

is due to the fact that moving a machine to the other cell will reduce the number of

matching ones and this cannot be compensated with any increase in the number of

matching zeros, due to the used dissimilarity measure (3.1).

Proposition 3.3 can be generalized to allow for both voids and exceptions.

Proposition 3.4. If there exist an optimal solution to the CF problem satisfying the fol-

lowing requirement, then it will be found by a PMP-based model: for any two machines

(rows) i and j belonging to the same cell (block) k the total number of voids in rows i and j

is strictly less than the difference between the number of parts (columns) assigned to cell k

and the number of exceptions in either of the rows i and j. The inverse is also true: if such

a solution is found then it is optimal.

Proof. The condition insures that any machine (row) has more matching ones with

any other machine from the same cell (by the pigeonhole principle) than with a

machine from another cell. This guarantees that the assignment of machines (rows)

to cells (blocks) is not sensitive to a particular choice of medians. The rest of the

reasoning is similar to the proof of Proposition 3.3.
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As is noticeable in Propositions 3.1–3.3, presence of dense blocks is critical for an

optimality unless exceptional elements can be avoided. These propositions assume

some properties of the optimal solution, thus they can only be used for posterior

assessment of optimality. Yet, as our numerical experiments show, the solution time

for our model is very small and it is reasonable to solve the problem and then check

the optimality of the obtained solution.

As the conditions of Propositions 3.1–3.3 are not always met, we performed an

experimental study on the possible modelling error introduced by the PMP mod-

els for CF. We generated input matrices with an ideal block-diagonal structure and

then gradually destroyed it by adding (unbiased) random flips (change 1 within a

diagonal block into 0, or 0 outside a block into 1). For each instance we compared

the performance of the original configuration of the cells and the one discovered

by our PMP-based model in terms of the number of exceptions (expressed as a per-

centage of the total number of ones in the matrix). The latter quantity is exactly

the amount of intercell movement. The typical behaviour of a PMP based model

is presented in Fig.3.4, where the number of flips is expressed as a percentage of

the total number of elements m× r in the input matrix and each data point is aver-

aged for about 1000 trials. As the figure shows, the average error is quite low and

does not exceed 1%. The maximum error in our experiments was also quite lim-

ited and did not exceed 10%. Clearly, as the number of flips gets larger, the initial

configuration of cells is no more optimal and becomes dominated. It can be easily

checked that as the amount of flips approaches 50%, the matrix approaches a com-

pletely random one (i.e. each element is 1 with probability 0.5). It is also important

to understand that in this case the CF problem itself does not make sense because

the underlying system does not possess a cellular structure and cannot be decom-

posed in a reasonable way. In fact, cellular decomposition of the manufacturing

system makes sense in practice only if the resulting amount of intercell movement

(exceptions in the block-diagonalized matrix) is below 10− 15%; in these cases the

maximum modeling error in our experiments does not exceed 4%, while the aver-

age error is of the order 10−3%.

Thus our experimental study on the modelling error can be summarized as fol-

lows: if a PMP-based model discovers a reasonable solution (with less than 15%

intercell movement) then it is very close to the optimal one, otherwise a “good”

solution most probably does not exist.
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Figure 3.4. Solution quality of a PMP based model for CF (m = 25, r = 50, p = 4,
cell sizes vary from 4× 9 to 8× 15

3.3 Possible Extensions of the Model

In this section we would like to discuss the possibilities of introducing additional

real-life factors and constraints into the model. Thus, we are not interested here in

describing all constraints that can be incorporated, but rather in demonstrating the

possibility of extending the model appropriately.

Clearly, there are three places in our model where additional factors can be in-

corporated:

• dissimilarity coefficients

• objective function (structure)

• constraints

The use of dissimilarity coefficients can be illustrated, for example, as follows.

The availability of skills in a manufacturing system can be represented by a machine-

worker skills matrix, i.e. in a way very similar to the input for machine-part group-

ing. This means that any available machine-machine (dis)similarity measure can be

applied to this skills matrix. Being then plugged into a similarity-based cell form-

ation approach such measure minimizes a number of workers that can operate a

machine outside of their cell, or, equivalently, maximizes a number of machines
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that each worker can operate within his cell. Similarities based on either of these

data can be combined in a number of ways, e.g. linearly or multiplicatively. The

case of a linear combination with equal weighting coefficients is equivalent to hav-

ing a one aggregated incidence matrix where each column corresponds either to

a part or to a worker. It should be mentioned that the same approach is used in

Bhatnagar & Saddikuti (2010) for what they call a concurrent model. In that paper

it is also demonstrated that such an approach gives better results than two-stage

procedures that make cells and assign workers consecutively.

The objective function can be extended, e.g., by penalising assignment of some

machines to the same cell. In this way an issue of equivalent machines (the ones

with similar functionality) can be resolved. Another example is the use of manu-

facturing sequences: terms accounting for multiple transits of a part between the

cell can be added to the objective.

Finally, a wide variety of linear constraints can be included. These range from

simple variable fixing constraints, to capacity, workload balancing and other ones.

For example, just by fixing some z-variables one can force or prohibit assignment

of some machines to the same cells – this can be necessary because of safety, engin-

eering or managerial considerations.

In the rest of this section we provide examples of extending the model with

several particular factors.

3.3.1 Availability of Workforce

The availability of skills in a manufacturing system can be represented by a machine-

worker skills matrix, i.e. in a way very similar to the input for machine-part group-

ing. This means that any available machine-machine (dis)similarity measure can be

applied to this skills matrix. Being then plugged into a similarity-based cell form-

ation approach such measure minimizes a number of workers that can operate a

machine outside of their cell, or, equivalently, maximizes a number of machines

that each worker can operate within his cell. Clearly, cells produced by skills-

based clustering can differ from those produced by functional grouping. Thus,

the machine-part incidence matrix cannot be simply substituted by skills matrix

in the definition of (dis)similarity measure. On the other hand, (dis)similarities

based on either of these data (dp(i, j) and dw(i, j), respectively) can be combined in

a number of ways, e.g. linearly (d(i, j) = α1dp(i, j) + α2dw(i, j)) or multiplicatively

(d(i, j) = dp(i, j)× dw(i, j)). The case of a linear combination with equal weighting

coefficients is equivalent to having a one aggregated incidence matrix obtained by
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simply joining the machine-part incidence matrix and a skills matrix together:

parts workers

machines

1 2 . . . r

1
...

m

1 2 . . . w

(3.20)

It should be mentioned that the same approach – joint use of machine-part and

skills matrices in definition of (dis)similarity coefficients is used in Bhatnagar &

Saddikuti (2010) for what they call a concurrent model. In that paper it is also

demonstrated that such an approach gives better results than two-stage procedures

that make cells and assign workers consecutively.

3.3.2 Capacity Constraints

The considered above model does not account for the size of cells that it produces

and thus can lead to highly unbalanced manufacturing systems (e.g. having cells

containing only one machine). This implies that some additional constraints re-

stricting the number of machines in a cell are needed. Suppose we want each cell

to contain at least nL and at most nU machines. Keeping in mind that our MBpBM

model can be augmented by any linear constraints there emerge two major ques-

tions:

• can such capacity constraints be expressed in a linear form?

• is the number of these new constraints small enough to ensure acceptable

solution times?

Let us consider the first question. By constructing a linear capacity constraint we

will show that it has a positive answer. Let us introduce auxiliary Boolean vari-

ables xij such that xij = 1 iff j-th machine is assigned to a cell clustered around

i-th machine (or, in terms of PMP, j-th client is served from i-th facility). This can

happen only if two conditions are satisfied simultaneously: i-th machine is a center

of the cluster and all machines k such that ckj ≤ cij are not centres of the clusters

(i.e. for all k s.t. πkj ≤ πij holds yk = 1). These considerations lead to the following
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expression for xij:

xij = (1− yi) ∏
k: πkj≤πij

yk = ∏
k: πkj≤πij

yk − yi ∏
k: πkj≤πij

yk (3.21)

If the corresponding entries ∆[i, j] and ∆[i− 1, j] in the differences matrix are nonzero

then our MBpBM formulation contains z-variables that are equal to the products in

(3.21)

z′ = ∏
k: πkj≤πij

yk , z′′ = yi ∏
k: πkj≤πij

yk

and xij can be expressed as xij = z′ − z′′. Having linear expressions for xij (in terms

of z-variables), capacity constraints can be written as:

∑
j∈J

xij ≥ nL and ∑
j∈J

xij ≤ nU , i ∈ I

Let us now consider the question about the number of additional constraints.

Naturally, 2m constraints are always needed, however, depending on products in

(3.21) something else may be required. Even though some products can be elimin-

ated from (3.21) by p-truncation as they always contain at least one zero variable,

there may still be products for which additional z-variables must be introduced, as

well as the corresponding constraints of type (3.4). To sum up, the number of addi-

tional constraints is equal to m plus number of zero entries in first (m− p) rows of

the differences matrix (this number is always less then m(m− p) and is polynomial

in the instance size).

The capacitated version of the considered above model for cell formation in-

stance is as follows:

f (y, z) = 33 + 4y1 + 1y3 + 20z5 + 20z6 −→ min

y1 + y2 + y3 + y4 = 2

z5 ≥ y1 + y3 − 1

z6 ≥ y2 + y4 − 1

1 + y3 − y1 − z5 ≥ nL

1 + y3 − y1 − z5 ≤ nU

2 + 2z5 − 2y2 ≥ nL

2 + 2z5 − 2y2 ≤ nU

1 + y1 + 2z6 − y3 − z5 ≥ nL
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1 + y1 + 2z6 − y3 − z5 ≤ nU

2y2 − 2y6 ≥ nL

2y2 − 2y6 ≤ nU

zi ≥ 0, i = 5, 6

yi ∈ {0, 1}, i = 1, . . . , 4

3.3.3 Workload Balancing

Another type of constraints that can be incorporated into the MBpBM force the

obtained cells to have almost equal workload in terms of machine-hours spent by

each cell. The workload of a cell is a sum of workloads of all the machines within

it. Within any model based on the PMP (including ours) a cell can be indicated by

its central machine (a median point in PMP terminology) – a machine that can be

considered the most typical representative of its cluster. Now, suppose some ma-

chine i is the centre of the cluster. Any other machine j is assigned to cell containing

machine i if and only if among all the central machines it minimizes a dissimilarity

measure, i.e.

i = arg min
k∈I,yk=0

d(k, j)

In other words, machine j is assigned to the cell containing machine i iff in jth

column of the permutation matrix the first entry that corresponds to a zero y-

variable is i, i.e. holds γ(j, i) = 1 where

γ(j, i) =
K: πjK=i

∏
k=1

yπjk (3.22)

Equation (3.22) defines a value that can be used as an indicator for adding or

not adding a workload of a particular machine j to the total workload of the cell

clustered around machine i. To introduce workload balancing into the model one

has to sum up workloads of all machines multiplied by such indicators and do that

for cell clustered around every machine, thus leading to O(m) constraints. I.e., if

one wants to bound the workload of all cells from below by some value WL or from

above by WU then the following constraints are to be added:

m

∑
j=1

[γ(j, i) · w(j)] ≥WL(1− yi), i = 1, . . . , m (3.23)
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(1− yi)
m

∑
j=1

[γ(j, i) · w(j)] ≤WU , i = 1, . . . , m (3.24)

where w(j) - a number of hours that are needed to process all parts by machine j.

The multiplier (1− yi) is used in order to cancel the restrictions on the cells that

are not actually established. It is straightforward that constraints (3.23)-(3.24) are

nonlinear if used as they are given because of the products in γ(j, i), however, for

most of these products there were defined z-variables that can be substituted into

the constraints thus making them linear. We will illustrate these constraints with

the considered above numerical example (3.7), assuming for the sake of simplicity

that each operation on any machine takes one time unit and w(j) = ∑r
k=1 akj. The

load balancing constraints for machines 1, 2, 3, and 4 will be:

1 : 3 + 2y2y3y4 + 2y3 + 2y2y3y4 ≥WL(1− y1) (3.25)

(1− y1)(3 + 2y2y3y4 + 2y3 + 2y2y3y4) ≤WU (3.26)

2 : 2 + 3y1y3 + 2y1y3 + 2 ≥WL(1− y2) (3.27)

(1− y2)(2 + 3y1y3 + 2y1y3 + 2) ≤WU (3.28)

3 : 2 + 2y1 + 2y2y4 + 2y2y4 ≥WL(1− y3) (3.29)

(1− y3)(2 + 2y1 + 2y2y4 + 2y2y4) ≤WU (3.30)

4 : 2 + 2y1y2y3 + 2y2 + 2y1y2y3 ≥WL(1− y4) (3.31)

(1− y4)(2 + 2y1y2y3 + 2y2 + 2y1y2y3) ≤WU (3.32)

It should be mentioned that these constraints can be subjected to combining similar

monomials and p-truncation by observing that each product of more than (m− p)

variables is zero in any feasible solution, like it was done for the objective function

in (2.13), i.e. for a pseudo-Boolean polynomial. After doing that and replacing all

the products by z-variables, constraints (3.25)-(3.32) will become:

1 : 3 + 2y3 + WLy1 ≥WL (3.33)

3 + 2y3 − 3y1 − 2z5 ≤WU (3.34)

2 : 4 + 5z5 + WLy2 ≥WL (3.35)

4 + 5z5 − 4y2 ≤WU (3.36)

3 : 2 + 2y1 + 4z6 + WLy3 ≥WL (3.37)

2 + 2y1 + 4z6 − 2y3 − 2z5 ≤WU (3.38)

4 : 2 + 2y2 + WLy4 ≥WL (3.39)
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2 + 2y2 − 2y4 − 2z6 ≤WU (3.40)

and the augmented MBpBM model (3.13) looks like:

f (y, z) = 33 + 4y1 + 1y3 + 20z5 + 20z6 −→ min (3.41)

y1 + y2 + y3 + y4 = 2 (3.42)

z5 ≥ y1 + y3 − 1 (3.43)

z6 ≥ y2 + y4 − 1 (3.44)

3 + WLy1 + 2y3 ≥WL (3.45)

3− 3y1 + 2y3 − 2z5 ≤WU (3.46)

4 + WLy2 + 5z5 ≥WL (3.47)

4− 4y2 + 5z5 ≤WU (3.48)

2 + 2y1 + WLy3 + 4z6 ≥WL (3.49)

2 + 2y1 − 2y3 − 2z5 + 4z6 ≤WU (3.50)

2 + 2y2 + WLy4 ≥WL (3.51)

2 + 2y2 − 2y4 − 2z6 ≤WU (3.52)

zi ≥ 0, i = 5, 6 (3.53)

yi ∈ {0, 1}, i = 1, . . . , 4 (3.54)

3.3.4 Utilizing Sequences of Operations

Sequences of operations on parts are not taken into account in the classical models

of cell formation, while in real world this factor influences optimality of the ob-

tained decomposition into cells. This can be explained by the following considera-

tions. Assume, a perfect cell decomposition is not possible, i.e. it is not possible to

exclude all intercellular interactions and some parts have to travel from one cell to

another. It should be mentioned that this assumption is very realistic as most of the

real manufacturing systems does not possess a perfect cellular structure (see, e.g.,

Chu & Hayya, 1991). In such a setting there is a difference between parts that start

their production process in one cell and end it in another and those parts that start

at one cell then move to another and then move back to the cell from which they

started. Clearly, in the latter case the intercellular flow is twice as much as that for

the former case and the classical model for cell formation can substantially under-

estimate the real intercellular flows. Even though there exist an acceptable for our

model approach that accounts for operational sequences by defining a machine-
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machine similarity measure based on them (Suresh et al., 1999), here we propose a

different method in order to demonstrate the flexibility of our MBpBM based mo-

del. Hence, in order to take into account the impact of operational sequences we

propose to penalize the objective function when two machines that are adjacent in

the operational sequence of some part are placed in different cells. Such penalty

terms for a pair of machines i and j can have the following general form:

P(i, j) = (1− γ(i, j))
r

∑
k=1

V(k)γk(i, j) (3.55)

where V(k) – production volume of part k, γk(i, j) ∈ {0, 1} is 1 iff part k should

be processed by machine j immediately after machine i, γ(i, j) ∈ {0, 1} is 1 iff

machines i and j are in the same cell, and summation is done for all parts. The sum

in (3.55) is just a constant that can be calculated directly from the input data, while

for indicators γ(i, j) a linear representation is needed. If we represent each γ(i, j)

by a Boolean variable uij then the objective function will have the form

f (y, z, u) = f (y, z) +
m

∑
i,j=1

(1− uij)
r

∑
k=1

V(k)γk(i, j)

and some constraints are needed to force new variables uij to take value 1 iff ma-

chines i and j are placed into the same cell. In a general form u-variables can be

defined by the following Boolean expression:

〈y1 = 0 AND machines i and j are clustered around machine 1〉
OR 〈y2 = 0 AND machines i and j are clustered around machine 2〉
OR 〈y3 = 0 AND machines i and j are clustered around machine 3〉
OR 〈y4 = 0 AND machines i and j are clustered around machine 4〉

Now, it is enough to find a set of linear constraints that represent the above Boolean

expressions. As in general case such a representation leads to extensive notations,

we will use a small example to derive it. Suppose, in the considered above manu-
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facturing system (3.7) the operational sequences for the five parts are given as:

1 : 2→ 4

2 : 1→ 3

3 : 4→ 2

4 : 1→ 3

5 : 1

Assuming unit production volumes of all parts for simplicity, there are only three

nonzero penalties P(i, j):

P(1, 3) = (1− γ(1, 3)) · 2
P(2, 4) = (1− γ(2, 4)) · 1
P(4, 2) = (1− γ(4, 2)) · 1

We can see that P(4, 2) = P(2, 4) in this case by comparing their expressions and

recalling that indicator γ(i, j) is symmetric, i.e. γ(2, 4) = γ(4, 2). Let us consider

the corresponding u-variables:

u13 = (ȳ1 ∧ 1∧ y3) ∨ (ȳ2 ∧ y1y3 ∧ y1y3) ∨ (ȳ3 ∧ y1 ∧ 1) ∨ (ȳ4 ∧ y1y2y3 ∧ y1y2y3)

u24 = (ȳ1 ∧ y2y3y4) ∨ (ȳ2 ∧ 1∧ 1) ∨ (ȳ3 ∧ y2y4 ∧ y2y4) ∨ (ȳ4 ∧ y2 ∧ y2)

u42 = u24

The last equality holds because both u42 and u24 indicate that machines 2 and 4

are placed into the same cell. Observing that any product of more than (m − p)

variables is 0 for any feasible solution and applying elementary transformations

one can get:

u13 = (ȳ1 ∧ y3) ∨ (ȳ2 ∧ y1y3) ∨ (ȳ3 ∧ y1)

u24 = (ȳ2) ∨ (ȳ3 ∧ y2y4) ∨ (ȳ4 ∧ y2)

u42 = u24

As we have a minimization problem with an objective function that contains u-

variables with negative coefficients, these variables will be maximized and disjunc-
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tion of n variables xi can be represented by the constraints

u =
n∨

i=1
xi

u→ max
⇔

u ≤
n
∑

i=1
xi

u ≤ 1

and nonnegativity of u-variables is sufficient, i.e. no new Boolean variables are in-

troduced. Conjunctions can be replaced by products and, in turn, by z-variables.

After all substitutions and transformations the augmented model (3.13) is (we defined

u7 = u13, u8 = u24 = u42):

f (y, z, u) = 37 + 4y1 + 1y3 + 20z5 + 20z6 − 2u7 − 2u8 → min (3.56)

y1 + y2 + y3 + y4 = 2 (3.57)

z5 ≥ y1 + y3 − 1 (3.58)

z6 ≥ y2 + y4 − 1 (3.59)

u7 ≤ y1 + y3 − z5 (3.60)

u8 ≤ 1 (3.61)

ui ≤ 1, i = 7, 8 (3.62)

ui ≥ 0, i = 7, 8 (3.63)

zi ≥ 0, i = 5, 6 (3.64)

yi ∈ {0, 1}, i = 1, . . . , 4 (3.65)

We would like to conclude the section by saying that the reductions that make

our model efficient are based exclusively on the properties of the underlying clus-

tering model and assume nothing about its further extension. This implies that

any additional constraints expressed in a linear form can be added to our compact

formulation.

3.4 Experimental Results

The aim of our numerical experiments was twofold. First, we would like to show

that the model based on PMP produces high-quality cells and in most cases outper-

forms other contemporary approaches, thus making their use questionable. Second,

by showing that computation times are negligibly small, we argue the use of heur-

istics for solving PMP itself.

Up to this point one basic notion remained undefined in this paper – the quality
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measure of the obtained decomposition into cells. We used two most widely used

measures so as to ensure consistent comparison of results. The first one, the group

capability index (GCI) proposed by Hsu (1990) can be calculated as follows:

GCI = 1− number o f exceptional elements
total number o f ones

× 100% (3.66)

where exceptional elements are those nonzero entries of the block-diagonalized machine-

parts coincidence matrix that lie outside of the blocks and the total number of ones is

the total number of nonzero entries in the machine-parts incidence matrix. It should

be mentioned that this measure does not account for zeroes inside the blocks, i.e.

does not take into account density of intracell flows. The second quality measure,

group efficiency (η), was proposed by Chandrasekharan & Rajagopalan (1986a) and

is a weighted sum of two factors η1 and η2:

η = ωη1 + (1−ω)η2 × 100% , 0 ≤ ω ≤ 1 . (3.67)

In turn, η1 and η2 are expressed as:

η1 =
o− e

o− e + v

η2 =
mr− o− v

mr− o− v + e

where m – number of machines, r – number of parts, o – number of ones in the

part-machine matrix, e – number of exceptional elements, v – number of zeroes in

diagonal blocks. The weighting factor ω is usually set to 0.5 and we used this value.

For the considered above instance (3.19) these performance measures have the

following values: GCI = 100%, η = 0.5 · ( 9−0
9−0+1 + 20−9−1

20−9−1+0 ) × 100% = 95%. It

should be mentioned that the sum of voids and exceptions (v + e) sometimes is

used as a performance measure (see, e.g., Bhatnagar & Saddikuti, 2010).

Taking into account the aim of our experiments, we compared our results with

those reported in four recent papers and (Chen & Heragu, 1999). The main focus

was made on the largest instances. The first paper is by Won & Lee (2004) and,

like us, uses a p-Median approach but solves PMP by a heuristic procedure. They

use Wei and Kern’s (Wei & Kern, 1989) similarity measure and GCI (3.66) as a qual-

ity measure. We were not able to derive the value of η because solutions are not

provided in their paper. The second paper by Yang & Yang (2008) applies the ART1

neural network to cell formation, thus using a completely different approach. The

authors used η-measure (3.67) to estimate solution quality and included solutions
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(block-diagonalized matrices) in their paper, thus making it possible for us to com-

pute GCI and to fill in the gaps in the following Table 3.1 that summarizes results

of our comparative experiments. The third paper is by Ahi et al. (2009) and demon-

strates an application of a decision-making technique (TOPSIS) to the cell formation

problem. Authors report values of group efficiency η and we derived values of GCI

from their solutions.

Table 3.1 contains data on computational experiments with instances used in

the three mentioned above papers: Won & Lee (2004), Yang & Yang (2008) and Ahi

et al. (2009). Column “source” indicates the source of the cell formation instance

and of the performance data. Next two columns contain information on the size of

input, such as the number of machines m, the number of parts r, and the number of

cells to be made p. The last four columns indicate quality of solutions (in terms of

GCI and η) reported in the discussed papers and obtained by us, correspondingly.

As can be seen from Table 3.1, in most of the considered cases our results out-

perform those reported in literature by up to 85.43%− 68.02% ≈ 17% (see second

to the last row in Table 3.1). On the other hand, there exist scarce instances for

which our model gives is dominated by other heuristics. This can be explained by

the fact that even though we solve PMP to optimality, the p-Median problem itself

is not explicitly an exact model to optimize any of the used above quality measures

of cell decomposition (their appropriateness can also be debated). Consequently,

any model based on the p-Median problem is of a heuristic nature. However, un-

like most of the other heuristics it grasps the clustering nature of cell formation

and presents a flexible framework by allowing additional constraints reflecting real

world manufacturing systems to be introduced. Such flexibility is inherent, in par-

ticular, to mathematical programming approaches, but in contrast to them, for PMP

we have found an efficient formulation (see Section 3.2.1).

The fourth and the most recent paper considered in our computational experi-

ments is by Bhatnagar & Saddikuti (2010). It uses a model that is very similar to the

p-Median problem but differs in the following detail: a restriction specifying the

number of cells is replaced by a constraint ensuring that each cell has at least two

machines. To our opinion, this model has a potential drawback as it tends to split

“reasonable” cells as can be seen from its objective function (taking into account

that for similarities holds s(i, i) ≥ s(i, j) for any two machines i, j). We implemen-

ted the models for machine cell formation and part assignment from Bhatnagar &

Saddikuti (2010) in Xpress and performed a number of experiments with the largest

available in literature instances. Like in the previous cases we used only machine-
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part incidence matrices as an input and Wei and Kern’s (dis)similarity measure.

Taking into account that the model from (Bhatnagar & Saddikuti, 2010) automatic-

ally defines the best number of cells, we had to solve our PMP based model for all

possible values of p and pick the best results.

Finally, we compared performance of our model and the one from Chen & Her-

agu (1999), which we implemented in Xpress. As this model, like ours, does not

define the optimal number of cells, we tried to solve it for all possible values of p.

However, this was not always possible due to the complexity of the model. We also

limited the running time of the model by 10 hours and provide the best results that

we could obtain.

The results for our model and the ones from Bhatnagar & Saddikuti (2010) and

Chen & Heragu (1999) are summarized in Table 3.2, where the first column enu-

merates the test instances, the second one refers to the original source of the in-

stance and the next column shows the number of machines and parts. The follow-

ing six columns report the quality of solutions obtained by the three models. The

last column indicates the time (in seconds) spent by the model from Chen & Her-

agu (1999) (note, that for our model it took about 1 second to solve either of the

instances). As can be seen from Table 3.2, our model considerably outperforms the

model from Bhatnagar & Saddikuti (2010). Also, in most of the cases our model

outperforms the one from Chen & Heragu (1999) in terms of the two used perform-

ance measures. Moreover, in terms of computing times the difference is clear. This

can be explained by the adaptability of our model to the input data. Consider, for

example, instance 7 from Table 3.2 that has a perfect cellular structure with 7 cells.

For this instance our MBpBM formulation has 42 variables, 19 constraints and 19

coefficients in the objective, while for the model from Chen & Heragu (1999) these

numbers are 7168, 6851 and 20224. At the same time, for instances with perfect cells

our model provides provably optimal solutions!

Also, we would like to mention that our results strongly outperform those men-

tioned in Doulabi et al. (2009).

Concerning the solution times of our PMP based model, each of the considered

instances was solved within one second on a PC with 2.3GHz Intel processor, 2GB

RAM and Xpress as a MILP solver. In our opinion, even if some heuristic can be

faster, then the difference in computing times is negligibly small.



120 Chapter 3

3.5 Summary and Future Research Directions

There is a tendency in the literature for the cell formation models to become more

and more complicated. Such complication has two negative side effects. First of all,

the sophisticated structure of the model usually prohibits its extension to additional

factors and/or constraints taking place in real manufacturing systems. Secondly,

a complicated model that was designed in order to improve the quality of the

obtained solutions usually raises a problem of computational intractability. This

forces the use of heuristics for solving not the initial cell formation problem but the

model of it. Suboptimality of these heuristics can overwhelm the advantages of the

model, making them questionable.

In this chapter we showed that these negative side effects can be avoided by

presenting an efficient reformulation of the p-Median problem. Our reformulation

is flexible enough to accept additional real-life constraints, like capacities, opera-

tional sequences, etc. At the same time, the computational experiments show that

our model is computationally efficient and can be solved to optimality within one

second on a standard PC by means of general purpose software, like CPLEX or

Xpress. For the computational experiments we picked instances from four recent

papers in the field and showed that the PMP-based model outperforms contempor-

ary heuristics. We did not perform a thorough comparison of computation times as

for our model it took less than one second to solve each of the considered problems.

It should be also mentioned that the main part of our model can be solved by a

general-purpose MILP solver and transformations with a pseudo-Boolean polyno-

mial use only basic algebraic operations. This means that an implementation of our

model does not require extensive additional efforts. A comparison with an exact

approach was also performed and showed that in most cases our model provides

better solutions (in terms of the widely used quality measures) while having in-

comparably smaller running time. Finally, by means of computational experiments

we showed that the modelling error of a PMP based model is quite limited with

an average of 1% and solution times stay within 1 second in 99% cases even for

instances with 200 machines, i.e. much larger than those occurring in practice.

In the numerical experiments we considered the simplest possible approach to

cell formation aimed at functional grouping of the machines (equivalently, at block-

diagonalising the machine-part incidence matrix) without taking into account ad-

ditional factors taking place in real manufacturing systems. There are two reasons

for this. First, we wanted to demonstrate that even a computationally intractable

model of cell formation (at least in its simplest form) can be solved to optimality,
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and this possibility, to the best of our knowledge, was overlooked in literature.

Second, this choice was partially governed by available recent papers in the field

with which we wanted to compare our results. At the same time, we showed that

a wide range of constraints can be incorporated into the PMP based cell formation

model thus making it more realistic and allowing to use all the available informa-

tion about the manufacturing system.

Taking into account that the current trend is towards introducing into CF mod-

els additional real-world factors, the possible future research direction is to incor-

porate additional constraints into our model, such as availability of several ma-

chines of same type, alternative operational sequences, setup and processing times,

etc. As our MBpBM formulation is optimal in the number of coefficients in the

objective function and the number of linear constraints, insertion of new (linear)

constraints, in our opinion, will preserve its tractability and will make it possible to

create a flexible and efficient model for cell formation based on the p-Median prob-

lem. The issue of efficiency (low computing times) is getting importance from the

perspective of Virtual Cell Manufacturing (Slomp et al., 2005) with its Virtual Cell

Formation (VCF), a paradigm that becomes more and more promising nowadays.

At the same time, our computational results show that at least in case of uncapacit-

ated functional grouping our fast model is a feasible candidate for VCF.

To summarize, all ideas and attempts of extending the decision making for cell

formation in group technology based on the classical p-Median model might be

revised and essentially improved by using our MBpBM reformulation and adding

practically motivated additional constraints reflecting the specific manufacturing

environment. Thus, we would like to stress the importance of the model choice and

to conclude by saying that the above considerations about the problem complexity

and appropriateness of heuristics can be valid also for other applied operations

research problems (especially for those that can be modelled via the PMP).
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Table 3.1. Experimental comparison with Won & Lee (2004), Yang & Yang (2008)
Ahi et al. (2009) .

source m× r p GCI GCIour η ηour

Won & Lee (2004) 30× 41 3 92.2 95.3 59.38
4 93.0 93.0 64.39
5 91.4 91.4 72.14
6 89.8 90.6 75.25
7 81.3 89.8 77.93

30× 50 3 77.2 77.3 59.53
4 74.9 76.1 62.14

30× 90 3 79.9 77.5 61.00
40× 100 2 79.5 93.6 55.61

3 93.1 91.5 59.59
4 89.8 88.8 63.84
5 89.3 87.4 69.33
6 89.3 88.1 75.77
7 87.6 88.6 81.38
8 85.5 89.1 85.66

50× 150 2 96.5 96.5 57.49
3 86.4 90.1 62.63
4 88.4 92.7 69.05
5 89.7 91.5 76.44
6 87.3 93.1 81.89

Yang & Yang (2008) 28× 35 6 73.7 73.7 90.68 90.74
46× 105 7 84.1 84.9 87.54 87.57

Ahi et al. (2009) 8× 20 3 83.6 83.6 92.11 98.08
12× 19 4 66.2 66.2 80.10 77.09
20× 20 6 67.1 82.3 87.89 90.11
18× 35 4 77.2 77.2 74.10 81.26
25× 40 7 61.5 76.2 68.02 85.43
20× 51 6 67.8 77.2 82.62 82.07
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Table 3.2. Experimental comparison of our model and that from Bhatnagar & Sad-
dikuti (2010) [BS10] and Chen & Heragu (1999) [CH99].

(e
+

v)
η

,%
ti

m
e,

s

#
so

ur
ce

m
×

r
[B

S1
0]

[C
H

99
]

ou
r

[B
S1

0]
[C

H
99

]
ou

r
[C

H
99

]
1

Sa
nd

bo
th

e
(1

99
8)

*
20
×

10
16

9
11

95
.4

0
94

.2
9

95
.9

3
2

2
A

hi
et

al
.(

20
09

)
20
×

20
34

26
26

92
.6

2
90

.7
0

93
.8

5
23

85
3

M
os

ie
r,

Ta
ub

e
(1

98
5)

*
20
×

20
79

74
77

85
.6

3
79

.5
1

88
.7

1
36

00
0

4
Bo

e,
C

he
ng

(1
99

1)
*

20
×

35
87

77
83

88
.3

1
84

.4
4

88
.0

5
24

72
4

5
C

ar
ri

e
(1

97
3)

*
20
×

35
46

40
41

90
.7

6
88

.9
3

95
.6

4
11

0
6

A
hi

et
al

.(
20

09
)

20
×

51
11

1
96

83
87

.8
6

83
.1

8
94

.1
1

36
00

0
7

C
ha

nd
ra

se
kh

ar
an

,R
aj

ag
op

al
an

(1
98

9)
*

24
×

40
20

0
0

98
.8

2
10

0.
00

10
0.

00
2

8
C

ha
nd

ra
se

kh
ar

an
,R

aj
ag

op
al

an
(1

98
9)

*
24
×

40
37

21
21

95
.3

3
95

.2
0

97
.4

8
13

63
9

C
ha

nd
ra

se
kh

ar
an

,R
aj

ag
op

al
an

(1
98

9)
*

24
×

40
55

40
39

93
.7

8
91

.1
6

96
.3

6
29

00
9

10
C

ha
nd

ra
se

kh
ar

an
,R

aj
ag

op
al

an
(1

98
9)

*
24
×

40
86

12
2

81
87

.9
2

74
.3

8
94

.3
2

14
89

0
11

C
ha

nd
ra

se
kh

ar
an

,R
aj

ag
op

al
an

(1
98

9)
*

24
×

40
96

11
2

89
84

.9
5

77
.6

8
94

.2
1

10
96

8
12

C
ha

nd
ra

se
kh

ar
an

,R
aj

ag
op

al
an

(1
98

9)
*

24
×

40
94

11
8

89
85

.0
6

75
.2

9
92

.3
2

16
90

6
13

N
ai

r,
N

ar
en

dr
an

(1
99

6)
*

24
×

40
40

19
4

25
96

.4
4

69
.9

0
97

.3
9

36
00

0
14

N
ai

r,
N

ar
en

dr
an

(1
99

6)
*

24
×

40
39

27
26

92
.3

5
92

.2
7

95
.7

4
35

75
15

N
ai

r,
N

ar
en

dr
an

(1
99

6)
*

24
×

40
60

50
50

93
.2

5
90

.5
6

95
.7

0
36

00
0

16
N

ai
r,

N
ar

en
dr

an
(1

99
6)

*
24
×

40
59

10
9

50
91

.1
1

78
.0

8
96

.4
0

36
00

0
17

A
hi

et
al

.(
20

09
)

25
×

40
59

63
56

91
.0

9
86

.0
0

95
.5

2
36

00
0

18
Ya

ng
&

Ya
ng

(2
00

8)
28
×

35
10

8
72

71
93

.4
3

91
.2

1
93

.8
2

36
00

0
19

K
um

ar
,V

an
el

li
(1

98
7)

*
30
×

41
63

61
54

90
.6

6
86

.7
8

97
.2

2
16

96
7

20
St

an
fe

l(
19

85
)*

30
×

50
99

11
5

93
88

.1
7

81
.5

8
96

.4
8

36
00

0
21

K
in

g,
N

ak
or

nc
ha

i(
19

82
)*

30
×

90
22

8
20

2
20

6
83

.1
8

83
.2

5
94

.6
2

36
00

0
22

C
ha

nd
ra

se
kh

ar
an

,R
aj

ag
op

al
an

(1
98

7)
*

40
×

10
0

13
6

72
72

94
.7

5
95

.9
1

95
.9

1
36

00
0

23
Ya

ng
&

Ya
ng

(2
00

8)
46
×

10
5

37
6

26
8

27
1

90
.9

8
87

.1
2

95
.2

0
36

00
0

24
Z

ol
fa

gh
ar

i,
Li

an
g

(1
99

7)
*

50
×

15
0

54
4

50
2

47
0

93
.0

5
82

.0
0

92
.9

2
36

00
0

* – a reference to the original source of the instance can be found in [BS10]





Chapter 4

The minimum multicut

problem and an exact model for

cell formation

4.1 Introduction

Cell formation (CF) is a key step in the implementation of group technology – a

concept in industrial engineering developed by Mitrofanov (1966) and Burbidge

(1961), suggesting that similar things should be processed in a similar way. In the

most general setting, the (unconstrained) CF problem can be formulated as follows.

Given finite sets of machines and parts that must be processed within a certain time

period, the objective is to group machines into manufacturing cells (hence the name

of the problem) so that each part is processed mainly within one cell. This objective

can be reformulated as minimization of what is usually referred to as the amount

of intercell movement – the flow of parts travelling between the cells. This amount

can be expressed via the number of parts, their total volume or mass, depending

on the particular motivation for CF. For example, if cells are spatially distributed it

may become important to reduce transportation costs that depend on the mass or

volume rather than on the number of parts.

Throughout the decades the problem has gained a lot of attention resulting in

This chapter is based on the paper (Krushinsky & Goldengorin, 2012).
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hundreds of papers and dozens of approaches that use all the variety of tools ran-

ging from intuitive iterative methods (e.g., McCormick et al., 1972; King, 1980; Wei

& Kern, 1989) to neural networks (e.g., Kaparthi & Suresh, 1992; Yang & Yang, 2008),

evolutionary algorithms (e.g., Adil & Rajamani, 2000; Filho & Tiberti, 2006) and

mixed-integer programming (e.g., Chen & Heragu, 1999; Bhatnagar & Saddikuti,

2010); an overview can be found in Selim et al. (1998). Despite all this variety, to the

best of our knowledge, there is no tractable approach that explicitly minimises the

intercell movement. In particular, all the available approaches have at least one of

the following drawbacks:

• the model itself is an approximation to the original CF problem;

• the model is solved by a heuristic procedure.

To illustrate the first point we would like to mention that it is a common practice

to reduce the size of the problem by considering only relations between machines

instead of considering machine-part relations. Such a framework is quite benefi-

cial due to the fact that the number of machines is quite limited (usually less then

100) while the number of parts can be magnitudes larger. This point will be clearly

illustrated below by means of an industrial example. The reduction is usually im-

plemented by introducing a machine-machine similarity measure that can be based

on the similarity of sets of parts that are being processed by a pair of machines, on

similarity of manufacturing sequences of these parts, etc. Literature reports several

similarity measures, an overview can be found in Yin & Yasuda (2006). However,

all of them are based on intuitive considerations and there is no strict reasoning

why one of them is better than another. If such an inexact similarity measure is

further plugged into some model, then the whole model is nothing more than an

approximation to the CF problem. Finally, the resulting model often appears to be

NP-hard and its authors are forced to use heuristic solution methods further deteri-

orating the solution quality.

The purpose of this chapter is to formulate an exact model for the CF problem,

flexible enough to allow additional practically motivated constraints and solvable

in acceptable time at least for moderately sized realistic instances.

The chapter is organized as follows. In the next section we discuss the exact

model for cell formation, show that it is equivalent to the minimum multicut prob-

lem and discuss its computational complexity. In Sections 4.3 and 4.4 we motiv-

ate and present two MILP formulations for the problem. Section 4.5 is focused

on additional constraints that may be introduced into the model, while Section 4.6
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Figure 4.1. An example of a machine-part incidence matrix (MPIM): (a) raw data;
(b) block-diagonalized form (blocks are highlighted). Zero entries are not shown
for clarity

provides results of experiments with real manufacturing data. Section 4.7 summar-

izes the chapter with a brief discussion of the obtained results and further research

directions.

4.2 The essence of the cell formation problem

In this section we formalize the CF problem given two types of the input data and

show how it can be modelled via the minimum multicut problem. For the rest of

this chapter let sets I = {1, . . . , m} and J = {1, . . . , r} enumerate machines and

parts, respectively, and let p denote the number of cells.

Quite often, the input data for the CF problem is given by an m × r binary

machine-part incidence matrix (MPIM) A = [aij] where aij = 1 only if part j needs

among others machine i, see Fig.4.1a. Given such an input, the problem is equival-

ent (see, e.g., Burbidge (1991)) to finding independent permutations of rows and

columns that turn A to an (almost) block-diagonal form or, equivalently, minim-

ize the number of out-of-block ones, also known as exceptional elements. The diag-

onal blocks correspond to cells, and the number of exceptional elements reflects the

amount of intercell movement, see Fig.4.1b.

Given such an interpretation, the problem is similar to the biclustering problem

(Madeira & Oliveira, 2004, see, e.g., ). Though for the general biclustering problem

there exist efficient exact methods (see, e.g., DiMaggio et al., 2008), they are hardly

applicable to CF because most of them allow each row or column to belong to more

than one cluster (see, e.g., Madeira & Oliveira, 2004, p. 41), while for CF the issue

of non-overlapping blocks is critical. In addition, as we show further in this sec-
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tion, block-diagonalisation does not exactly minimise the intercell movement as it

ignores operational sequences.

Though the well known block-diagonal interpretation is easy to perceive, we

will consider the problem from a completely different, yet insightful, viewpoint.

Without any loss of generality one can associate with matrix A an undirected bi-

partite graph G(I ∪ J, E) by simply treating A as an incidence matrix of G. (Note,

that such an interpretation was also considered for the biclustering problem.) Tak-

ing into account that each nonzero element of A corresponds to an edge in G, it is

not hard to understand that diagonal blocks of A correspond to disjoint nonempty

subgraphs G1, . . . , Gp of G. Consider now the set of edges E′ corresponding to ex-

ceptional elements and observe that each edge from E′ has its endpoints in different

subgraphs Gi , i ∈ {1, . . . , p}. Thus, E′ can be thought of as a cut that splits G into p

nonempty subgraphs. Further, we call a cut with this property a p-cut. Assuming

that all edges of G have a unit weight and taking into account the relation between

E′ and exceptional elements, it is possible to reformulate the CF problem in terms

of graphs as follows: given an undirected weighted graph find a p-cut of the mini-

mum weight. Let us abbreviate this problem as MINpCUT, in literature it is also

known as “min k-cut” (we prefer to denote the number of subgraphs by p as letter

k is handy as an index).

One may notice that the MINpCUT based approach has a negative feature as

compared to many other models. Instead of using machine-machine relations it

works directly with machine-part data, i.e. a MINpCUT instance can be very large

(G may have thousands of vertices) and there is no straightforward way to over-

come this. However, we argue that this impossibility of reducing the problem size

is induced by the “inadequate” format of input data rather than by the model itself.

Indeed, irrespectively of the solution approach, the MPIM does not contain enough

information to correctly handle the following aspects:

• distinguish between the following two cases:

(a) a part is processed in one cell and then finished in the second cell;

(b) a part is processed in one cell, then in the second cell and then again in

the first one;

• a part visits some machines several times, i.e. its manufacturing sequence

looks like . . .–M1–M2–M1–M2–. . . (this may correspond, for example, to cyc-

les of thermal processing).



The minimum multicut problem and an exact model for cell formation 129

Thus, all approaches using the machine-part incidence matrix as an input (e.g., the

one from Chen & Heragu (1999)) solve only approximation of the original problem,

quite oftenly by a heuristic. In addition, the common practice of deriving machine-

machine relations from a MPIM looks somewhat awkward from the methodolo-

gical point of view. It seems more logical to derive these relations directly from the

manufacturing data normally containing more information, e.g., the sequence in

which machines are visited by each part.

The mentioned above considerations motivated us to reconsider the essence of

the cell formation problem. As mentioned in the Introduction, the objective is to

minimize the parts flow between cells. The latter quantity is nothing else than the

parts flow between two machines summed up for all pairs of machines belong-

ing to different cells. In terms of graphs this can be expressed as follows. Con-

sider a weighted graph G(I, E), where each vertex corresponds to a machine. An

edge (i, j) ∈ E is assigned a weight equal to the amount of parts going directly

from machine i to j and in the opposite direction. Clearly, a p-cut in such a graph

produces p machine cells and its weight is exactly equal to the amount of inter-

cell movement that must be minimized. In particular, this means that an exact

machine-machine similarity measure must be defined as the amount of parts trav-

elling directly between a pair of machines. Once the machine cells are generated,

part families can be compiled by assigning each part to a machine cell performing

most operations on it. Thus, we again end up with the MINpCUT problem, but now

it is defined on a graph that has only m vertices, as compared to m + r vertices in

case of input data given by a machine-part incidence matrix. We would like to men-

tion that somewhat similar considerations about the graph-theoretic origins of the

exact model for CF can be found in Boulif & Atif (2006). However, these authors do

not mention its relation to the min multicut problem, nor provide evidence of tract-

ability for their approach. Another graph-related approaches to CF include those

based on the minimum spanning tree (MST; see, e.g., Ng, 1993) and the p-median

(PMP; see, e.g., Won & Lee, 2004) problems. Their difference from our approach

can be made clearer by observing that by minimising a p-cut one maximises the

total weight of edges within p subgraphs. Instead of optimising all weights within

subgraphs, MST and PMP-based approaches consider only those falling within a

certain pattern: a spanning tree or a tree of depth 1, respectively.

Once we know that the cell formation problem is equivalent to MINpCUT, we

may analyse its complexity based on the properties of the latter. First of all, consider

the case p = 2. MIN2CUT is a straightforward generalization of the well-known
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min s− t cut problem where optimization is to be done for all pairs (s, t). A closer

view makes it possible to conclude that for a graph G(V, E) it is enough to solve

|V| − 1 min s− t cut instances. As the minimum 2-cut (as well as any 2-cut) splits G

into 2 subgraphs, one can fix s lying in one of them and iterate through all possible

vertices t until the one lying in the other subgraph is found. Thus, in case of two

cells the CF problem without additional constraints is polynomially solvable. On

the other hand, as p gets close to |V| the problem becomes easy as well. For ex-

ample, if p = |V| − 1 there is exactly one pair of vertices that must be placed in one

subgraph (other p− 1 subgraphs are just singletons). Further, if p = |V| − 2 there

are either two pairs or one triple of vertices that must not be disconnected by a cut.

This intuition can be extended further and it becomes clear that the combinatorial

complexity of the problem quickly increases as p tends to |V|/2.

In a general case when p is a part of the input the problem is NP-hard, hav-

ing a polynomial complexity O(np2
T(n)) for fixed p (Goldschmidt & Hochbaum,

1994); T(n) denotes time for solving one min s− t cut problem1 for a graph with

n vertices. For a particular case p = 3 there also exists an efficient O(mn3) al-

gorithm by Burlet & Goldschmidt (1997), where n and m are numbers of vertices

and edges, respectively. A number of approximate algorithms are known (see, e.g.,

Saran & Vazirani (1995); Ravi & Sinha (2008)) with the best approximation ratio

being (2− 2/p) (Saran & Vazirani, 1995).

Thus, for p = 2, 3 and |V| − 2, |V| − 1 the MINpCUT problem (therefore, the

unconstrained CF problem) can be efficiently solved even for large instances, while

becoming computationally intractable as p gets closer to |V|/2. Moreover, most

papers on MINpCUT propose specialized algorithms, not allowing additional con-

straints to be involved and thus inapplicable to CF. This lack of flexible approaches

motivated us to develop MILP formulations that can be extended by any linear con-

straints and solved using a general purpose solver (at least, for moderately sized

instances).

4.3 MINpCUT: a straightforward formulation (SF)

In this section we present and discuss a straightforward formulation (SF) of MIN-

pCUT problem that will be further used in the numerical experiments. Let G(V, E)

be an undirected weighted graph with |V| = n vertices, let cij denote the weight

of edge (i, j) ∈ E and define constant S as a sum of all edge weights. Through-

1 This is equivalent to the maximum flow problem with source s and sink t.
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out this paper, let indices i and j enumerate vertices, i, j ∈ {1, . . . , n}, and index k

enumerate subgraphs, k ∈ {1, . . . , p}. SF uses two sets of variables: vik variables

reflecting assignment of vertices to subgraphs and zijk variables reflecting assign-

ment of pairs of vertices i and j to subgraphs k. Under the introduced notations the

SF formulation can be written as follows:

S−∑
i

∑
j>i

∑
k

cijzijk −→ min (4.1)

∑
i

vik ≥ 1 ∀k (4.2)

∑
k

vik = 1 ∀i (4.3)

zijk ≤ vik ∀i 6= j, k (4.4)

zijk ≤ vjk ∀i 6= j, k (4.5)

zijk ≥ vik + vjk − 1 ∀i 6= j, k (4.6)

vik ∈ {0, 1} ∀i, k (4.7)

zijk ∈ [0, ∞) ∀i 6= j, k . (4.8)

The objective (4.1) minimizes the difference between the sum of all edge weights

and the sum of weights of the edges within subgraphs, i.e. the weight of the p-

cut. Constraints (4.2) ensure that each subgraph has at least one vertex, i.e. there

are exactly p nonempty subgraphs. Constraints (4.3) ensure that each vertex is

included into exactly one subgraph. Finally, constraints (4.4)–(4.6) are needed to

guarantee that a pair of vertices i and j are assigned to the subgraph k if and only

if each of them is assigned to subgraph k. The formulation uses n× p Boolean v-

variables, while for z-variables nonnegativity is sufficient as constraints (4.4)–(4.6)

force them to take Boolean values.

It is easy to see that the formulation SF has the following property: the number

of variables and, therefore, complexity increases with increasing p. Though for

small p the formulation is rather efficient (as will be shown in Section 4.6) for larger

values of p it becomes intractable. It should be noted that SF does not reflect the

fundamental property of the problem: tractability for both small and large (close to

n) values of p. This observation motivated us to develop an alternative formulation

that will reflect its complexity more adequately.
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4.4 MINpCUT: an alternative formulation (AF)

Without any loss of generality one can think of G as of a complete graph with some

edges (those not actually present) having zero weight. Under this assumption of

completeness, a p-cut decomposes G into p subcliques, leading to the following

properties of the feasible solutions. First of all, for any three vertices presence of any

two edges between them induces presence of the whole triangle on these vertices. If

one calls two edges having a vertex in common adjacent edges, then the property can

be expressed as follows: each pair of adjacent edges induces the third edge adjacent

to both of them. The next property is that any particular vertex in a subclique is

connected to any other vertex in a subclique. These two simple properties play an

important role in our formulation AF. It uses the following Boolean variables: xij

is nonzero only if edge (i, j) is not removed by a p-cut, and yi is nonzero only if

vertex i is selected as a special vertex. Each vertex in a subclique can be selected

as a special vertex, and exactly one vertex in a subclique is special. This setting is

needed to count subcliques. The rest of notations are preserved from the previous

sections, and AF can be expressed as:

S−∑
i

∑
j>i

cijxij −→ min (4.9)

∑
i

yi = p (4.10)

xij ≤ 2− yi − yj ∀i 6= j (4.11)

xij ≥ xil + xjl − 1 ∀i 6= j 6= l (4.12)

xij = xji ∀i 6= j (4.13)

yi ∈ {0, 1} ∀i (4.14)

xij ∈ {0, 1} ∀i 6= j . (4.15)

Similarly to SF, the objective (4.9) minimizes the difference between the sum of all

edge weights and the sum of weights of the edges within subcliques, i.e. the weight

of the p-cut. Constraint (4.10) ensures that exactly p special vertices must be selec-

ted, while constraints (4.11) force each pair of special vertices to be disconnected,

such that each subclique contains a single special vertex. Constraints (4.12) ensure

the mentioned above property: any two adjacent edges force the third adjacent

edge to be preserved. Finally, constraints (4.13) preserve undirected structure of

the problem. It is not hard to understand that these constraints can be used to elim-

inate half of the x-variables, i.e. to use only those xij for which i < j holds. In our
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experiments we used such a reduced formulation.

4.5 Additional constraints

Though the MINpCUT based model exactly minimises the intercell movement, ad-

ditional constraints ensuring practical feasibility of obtained solutions are usually

needed. Moreover, it is desirable to be able to take into account additional factors

and managerial preferences. As our model has quite a general structure, in prin-

ciple, any constraints that can be expressed in a linear form can be included. In

this section we give some examples of extending our formulations SF and AF with

additional constraints.

First of all, some flexibility in the model is provided by weights cij. It is not

hard to understand that these values can be defined either as the number of parts

travelling between machines i and j, or their total mass, volume, etc. However, the

range of possible factors is not limited to properties of parts. For example, it may

be desirable to account for the available workforce and reduce the so-called cross-

training costs (see, e.g., Bhatnagar & Saddikuti (2010)). In this case, the objective

is to ensure that each worker is able to deal with as much machines in his cell

as possible. This issue can be modelled by making weights cij dependent on the

number of workers able to operate both machines i and j.

The next issue that can be easily dealt with is based on the fact that some ma-

chines cannot be placed in the same cell (e.g., because of safety reasons) while oth-

ers must be placed close to each other because of managerial considerations or con-

structional peculiarities. In both formulations SF and AF it is easy to force a pair

of machines i and j to be grouped in one cell or in different cells. In case of SF, the

constraints

vik = vjk ∀k (4.16)

and

vik + vjk ≤ 1 ∀k (4.17)

force or prohibit assignment of machines i and j to the same cell, respectively. For

AF the corresponding constraints are

xij = 1 (4.18)
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and

xij = 0 , (4.19)

leading to a problem with fewer Boolean variables (as some x-variables become

fixed).

Capacity constraints are, probably, the most popular ones in cell formation;

these set a limit on the minimum or maximum number of machines in a cell. In-

deed, there is little sense in cells containing a single machine, while such solutions

are common for the manufacturing data that we experienced. In order to limit the

number of machines per cell from below by nL, SF must be equipped with the fol-

lowing constraints:

∑
i

vik ≥ nL ∀k . (4.20)

For AF the constraints look like

∑
j

xij + 1 ≥ nL ∀i . (4.21)

Validity of these constraints can be expressed by the fact that each vertex is connec-

ted to all other vertices within its subclique. Thus, the number of incident edges not

removed by a p-cut plus the vertex i itself is equal to the total number of vertices in

a subclique. It should be mentioned that the system of constraints (4.21) is redund-

ant in a sense that p constraints written for vertices i all lying in different subcliques

are sufficient. However, it is not known beforehand which p vertices will belong to

different subcliques in an optimal solution (these are determined by y-variables).

Upper bounds on the number of machines per cell can be set in a similar way.

Workload balancing constraints are used to ensure that cells have a balanced

load in terms of working hours, so that the tasks are evenly divided between the

cells. Such balancing helps to avoid the situation when one cell (and the corres-

ponding team of workers) is overloaded, while another is underutilised. If one de-

notes by wi the workload of machine i and by wL the lower bound on the workload

per cell, then constraints for SF and AF become

∑
i

wivik ≥ wL ∀k (4.22)
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and

∑
j

wjxij + wi ≥ wL ∀i , (4.23)

respectively. It can be seen that the workload balancing and capacity constraints

have very similar structure. Instead of limiting the workload per cell one may be

interested in limiting the difference between workloads of cells. The corresponding

constraints can be easily derived from (4.22) and (4.23) by observing that the left

hand side of these constraints calculates the workload for each cell and by limiting

the differences between all possible pairs of these workloads.

In the rest of this section we discuss a much less trivial issue – the presence of

identical machines. It is not uncommon, especially in large manufacturing systems,

that some most extensively used machines are present in several copies. This means

that each part can be processed on either of these machines equally well and if

one applies any clustering algorithm directly, the identical machines will always

be grouped together. On the other hand, placing them in different cells reduces

intercell movement (if they are needed in more than one cell). This issue is usually

hard to model as it leads to the so-called disjunctive constraints – a part can be

processed on either of the identical machines. However, here we show that our

formulations can be adjusted to account for identical machines without significant

complication.

Note that in the above discussion we could have used the term “machine types”

instead of “machines”, implicitly assuming that identical machines are placed to-

gether. Let us call placement of identical machines in different cells separation of

identical machines. Now we are going to modify the formulations SF and AF such

that they allow separation of identical machines; these will be denoted as SFs and

AFs, respectively.

Let us denote by ni the number of identical machines of type i. Recall that

indices i and j enumerate machine types, i, j ∈ {1, . . . , n}, and index k enumerates

cells or subgraphs, k ∈ {1, . . . , p}. The modification SFs of formulation SF can be

written as follows:

S−∑
i

∑
j>i

cijxij −→ min (4.24)

∑
i

vik ≥ 1 ∀k (4.25)

∑
k

vik ≥ 1 ∀i (4.26)
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∑
k

vik ≤ ni ∀i (4.27)

zijk ≤ vik ∀i 6= j, k (4.28)

zijk ≤ vjk ∀i 6= j, k (4.29)

zijk ≥ vik + vjk − 1 ∀i 6= j, k (4.30)

xij ≤∑
k

zijk ∀i 6= j (4.31)

xij ≤ 1 ∀i 6= j (4.32)

vij ∈ {0, 1} ∀i 6= j (4.33)

zijk ∈ [0, ∞) ∀i 6= j, k (4.34)

xij ∈ [0, ∞) ∀i 6= j , (4.35)

where v-, x- and z-variables have the same meaning as in Sections 4.3 and 4.4. The

objective (4.24) minimizes the total weight of the edges removed by a p-cut, and

constraints (4.25), (4.28)-(4.30) and (4.33)-(4.34) are inherited from SF. Constraints

(4.26)-(4.27) are a generalization of constraint (4.3). These require each vertex (ma-

chine type) i to be included into at least one subgraph (cell) and at most ni sub-

graphs (at most ni machines of type i are used). Finally, constraints (4.31)-(4.32) cut

the edge between i and j if this pair of vertices is not contained in any of p sub-

graphs and ensure that each edge can be cut only once. It can be seen that these

constraints also force x-variables to take 0-1 values and the numbers of Boolean

variables in formulations SF and SFs are equal.

The modification of the formulation AF to allow separation of the machines is

even simpler than in case of SF. This task can be accomplished by considering a

graph where each vertex corresponds to a single machine (not to a machine type,

as in case of SFs) and penalising the objective such that vertices corresponding to

identical machines are forced to be assigned to different subcliques. The penalising

term for any pair of identical machines i and i′ can be written as

+

[
∑

j
cij

]
xii′ , (4.36)

where the constant in brackets is large enough to ensure that the negative impact of

placing vertices i and i′ into one subclique cannot be compensated by any arrange-

ment of other vertices. Instead of penalising the objective, one may also add the
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following constraint:

xii′ = 0 . (4.37)

However, such constraints may conflict with capacity or other constraints leading

to an infeasible problem. Thus, AFs inherits the structure of AF and has few addi-

tional constraints or terms in the objective function.

In conclusion, we would like to mention that if for some machine type i holds

ni ≥ p, then it can be excluded from consideration as a machine of this type can be

added to each cell. In particular, this implies that in case of two cells identical ma-

chines make the problem smaller, therefore easier. On the negative side, separation

of equivalent machines may lead to load-related problems: one of the machines

may become overloaded while the other is rarely used. Thus, additional load bal-

ancing constraints may be necessary.

4.6 Computational Experiments

In order to motivate the exact model for cell formation we considered several used

in literature instances that were tackled by heuristic approaches. The scope of this

study was restricted to the instances containing the operations sequence data and

to the papers reporting complete solutions (assignment of machines to cells) so

that the amount of intercell movement can be estimated. In order to ensure the

most consistent comparison, we restricted the number of machines per cell both

from below and from above by the values inherent to the corresponding solutions

from the literature. The computational results are summarised in Table 4.1, where

the first two columns indicate the number of machines, parts, and the number of

cells to be made. The next column indicates the amount of intercell movement

achieved by our MINpCUT based model. The following two columns contain the

best result we could find in the literature and a corresponding reference; the last

column reports running times for SF. As can be seen from Table 3.1, in most cases

contemporary heuristics were unable to find optimal solutions. At the same time,

running times for our model are quite limited, except the last considered instance

which we could not solve to optimality. In these and the following experiments we

used a moderate PC (Intel Core2 Duo, 2.33 GHz, 2 GB RAM) and Xpress-MP as a

MILP solver. The solver was restricted to use one processor core.

The aim of our further experiments was to check computational properties of



138 Chapter 4

Table 4.1. Performance comparison with heuristic approaches from literature in
terms of intercell movement.

size p our result best known source time, sec.

8×20 3 17 17 Nair & Narendran (1998) <1
12×19 2 9 16 Ahi et al. (2009) <1
12×19 3 20 27 Ahi et al. (2009) <1
18×35 4 47 54 Ahi et al. (2009) 7
20×20 5 17 18 Ahi et al. (2009) 10
20×51 5 36 36 Ahi et al. (2009) 17
20×20 5 18 19 Nair & Narendran (1998) 13
25×40 4 17 22 Ahi et al. (2009) 8
25×40 6 27 45 Ahi et al. (2009) 140
25×40 8 56 72 Nair & Narendran (1998) ∼ 24 h*

* – interrupted due to memory limitations, best integer solution is reported (best
lower bound is 50.963). In fact, the reported solution was found within 1 hour, the
rest of the time was spent on tightening the lower bound.

the introduced model and to show its practical applicability by means of an in-

dustrial case. As a testbed for the experiments we considered data from a small

company producing high precision tools. The quantitative characteristics of the

dataset are as follows:

• time period: 11 months;

• 30 machine types;

• 7563 part types;

• 25080 operations (4149 part moves between machines).

First, we tried to solve the unconstrained CF problem for all possible values of p

using both our formulations. We limited the running time by 10 hours and the

results are summarised in Fig.4.2. As predicted in Section 4.3, the running times for

SF grow with increasing p, while AF is efficient for p close to 1 and to n. Note that

the instance with 30 machines for p up to 15 can be solved within an hour, which is

more than reasonable taking into account that cells are not reconfigured every day.

Note also that the size of the instance under consideration is quite substantial: after

reviewing hundreds of papers on cell formation we were able to find only 3 realistic

instances with more than 30 machines (the largest one having 50 machines). At the

same time, the number of parts does not affect the performance of our model.
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Figure 4.2. Solution times for an instance with 30 machines (limited by 10 hours)

Next, we conducted several experiments in order to demonstrate the issue of

identical machines and its possible impact. Figure 4.3 shows the intercell move-

ment, expressed as a percentage of the total parts movement, for p = 2 cells and

different lower bounds on the number of machines per cell. It can be seen that

if possibility of separating identical machines is ignored, balanced cells are im-

possible due to a large intercell movement of 18.29%. In the opposite case, two

reasonable cells can be obtained with only 0.19% intercell movement. In case of

three cells, the corresponding figures are 24.13% and 1.16%. Figures 4.4 and 4.5

illustrate the obtained cellular decompositions, matrices display the numbers of

parts travelling directly between each pair of machines. Note that the fact that the

rightmost cell in Figure 4.5 has much fewer intracell movement than the other two

cells does not imply that this cell has very low load in terms of working hours.

Small intracell movement means only that machines within a cell share very few

parts, while each one can be sunstantially loaded in order to produce its unique set

of parts.

4.7 Summary

In this chapter an exact model for the cell formation problem in group technology

is developed. We have demonstrated that a machine-parts incidence matrix does

not contain enough information to obtain truly optimal solutions. As becomes ap-

parent from the presented experimental comparison, recent heuristics taking op-

erational sequences into account usually lead to suboptimal solutions. We have
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Figure 4.3. Intercell movement for different restrictions on the number of machines
per cell for the case of two cells

Figure 4.4. An optimal decomposition into two cells (zero entries are denoted by
dots)
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Figure 4.5. An optimal decomposition into three cells (zero entries are denoted by
dots)
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also showed that an exact model can be independent on the number of parts and

demonstrated importance of this property by an industrial example.

It was shown that the cell formation problem with a fixed number of cells is

equivalent to the minimum multicut problem (also, if the input data is given by a

machine-part incidence matrix). This fact immediately implies polynomial solvab-

ility of the former in case p = 2. For an arbitrary number of cells, however, the

problem remains NP-hard. Yet, it can still be solved to optimality in many prac-

tical cases due to the limited number of machines in real manufacturing systems.

If the instance is too large to be solved optimally, the following iterative heuristic

procedure can be used. For the initial problem solve a MIN2CUT problem, then

iteratively pick the largest cell and solve for it the minimum 2-cut until p cells are

obtained. It is easy to show that whenever (almost) independent cells are possible

the obtained solution will be globally optimal. Optimality conditions for this or

another heuristics may become possible directions for future research.

We presented two MILP formulations that we call SF and AF, and demonstrated

their tractability for moderately sized instances by means of an industrial example.

It was found that SF is more efficient than AF for small values of p, becoming in-

tractable for larger ones. At the same time, AF performs well for values of p close

to 1 and to the number of vertices in a graph. The latter formulation better reflects

structure of the problem and, potentially, may be more suitable for size reduction

based on graph-theoretic considerations.

We considered several additional constraints ranging from very popular capa-

city constraints to the particular case of disjunctive constraints induced by identical

machines. To the best of our knowledge, there are no models adequately handling

identical machines, even though some attempts are reported in literature. In con-

trast, we showed that identical machines can be modelled in both our formulations

and demonstrated how it works by means of an industrial example. Overall, our

numerical experiments confirmed practical applicability of the proposed model for

real-life problems with a moderate number of machine types.

Possible directions for the further research may include development of ad-

vanced formulations for the minimum multicut problem, and/or problem size re-

duction approaches. Such directions may be interesting taking into account that

the problem has quite a general clustering nature and its possible applications are

not limited to cell formation in group technology.
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Multiobjective nature of cell

formation

5.1 Introduction

Throughout the long history of the cell formation problem, not only the solution

methods evolved but also the major goal of making independent cells was inter-

preted differently by different authors. The earliest approaches to CF, dealing with

a binary machine-part incidence matrix, were aimed only at minimising the num-

ber of intercell moves (exceptional elements in the block-diagonalised matrix, ne).

Quite soon this goal was extended to simultaneous minimisation of the number of

intercell moves and maximisation of the number of intracell ones (i.e. minimisation

of the number of voids in the diagonal blocks, nv). Up to now, this objective has

proved extremely popular, as becomes clear while looking at objective functions

and the widely used similarity and solution quality measures (see Section 1.3).

The reasoning for introducing nv into the objective is twofold. First of all, this

value plays a crucial role for the algorithms determining the optimal number of

cells. As discussed in Chapter 1, the minimum value of ne is a nondecreasing func-

tion on the number of cells. This implies that any such algorithm tends to group

all machines into one cell resulting in zero intercell movement. Taking into ac-

count that the minimum value of nv has the opposite behaviour (depending on the

number of cells), combining the two values in the objective forces a “reasonable”

number of cells to be generated. Secondly, some authors (see, e.g., F. T. S. Chan et

al., 2008) argue on an importance of intracell movements and claim that nv must be

present in the objective, irrespectively of the type of an algorithm. However, very
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little is said about the reasonable ratio between importances of the two factors, usu-

ally these are supposed to be equally important. For example, in the expression for

grouping efficiency (3.67) the weighting coefficients for the two factors are equal.

While a majority of the papers in the field deals with intercell movement, a num-

ber of authors consider completely different objectives, for example, minimisation

of cross-training costs (see, e.g., Bhatnagar & Saddikuti, 2010), minimisation of

load imbalance (Suresh & Slomp, 2001) or set-up time reduction (see, e.g., Suresh,

1992; Shafer & Rogers, 1993).

The goal of this chapter is to consider several objectives relevant to cell forma-

tion and to present the ways of including them into the models from Chapters 3

and 4.

In the rest of this chapter we discuss appropriateness of combining the amounts

of inter- and intracell movement in the objective and demonstrate possible pitfalls

of minimizing only the intercell movement. We also discuss some other possible

goals considered in the literature, like those related to workforce or set-up time

savings. For each of the goals we describe how it can be integrated into the models

presented in Chapters 3 and 4.

5.2 Problems with a minimisation of the intercell move-

ment

Before discussing the appropriateness of minimising the amount of inter- and in-

tracell movement, let us mention that by minimising the number of exceptions in a

machine-part incidence matrix (MPIM) one does not necessary minimise the actual

amount of intercell movement in the system (as shown in Chapter 4). This can be

explained by the fact that each exception indicates that a certain part has to travel

between two cells, without indicating how many travels are needed. Moreover, it

is possible to prove that if an approach uses a (dis)similarity measure derived from

the MPIM, it does not, in general case, minimise the number of exceptions.

Theorem 6. None of the approaches using similarity coefficients derived from the machine-

part incidence matrix minimises the number of exceptions.

Proof. The counter-example shown in Figure 5.1 illustrates the issue. It can be seen

that machine i shares several parts with only one machine from cell 1 and one part

with several machines from cell 2. Thus, similarity between i and any other ma-

chine from cell 2 is some small value. On the other hand, machine i shares a more
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noticeable number of parts with machine j from cell 1 and, clearly, should be as-

signed to this cell in order to minimise the intercell movement. Consider the fol-

lowing three extreme cases:

1. for each cell the objective function contains a sum of similarities only from

one central machine to all the other ones within the cell (like in case of the

PMP);

2. for each cell the objective function contains a sum of similarities for all pairs

within the cell (like in case of the MINpCUT);

3. for each cell the objective function contains a sum of similarities for some

pairs falling into a spanning tree pattern (like in case of MST or hierarchical

clustering).

In the first case it is always possible to force machine j to be not the central machine,

leading to a zero similarity between i and centre of cell 1. Thus, machine i will be

assigned to cell 2. In the second case, if cell 2 contains sufficiently large number

of machines, then the sum of small similarities with all other machines results in

a substantial number exceeding similarity between i and j. The third case reflects

hierarchical clustering methods. Though being capable to deal with the example

from Figure 5.1, they are heuristic by their nature and for each of them counter-

examples exist.

Speaking more generally, if the objective function can be represented as follows

(xik define if machines i and k are in the same cell, I2 – set of machines from cell 2):

. . . + sijxij + ∑
k∈I2

sikxik + . . . , (5.1)

then the sum of small similarities of machine i with machines from cell 2 may over-

whelm the substantial similarity with machine j from cell 1. In addition, if in a

feasible solution not all similarities within a cell are counted, then the similarity

between machines i and j may be excluded from consideration. For a particu-

lar algorithm, one may arrange non-fixed elements in the matrix from Figure 5.1

such that at least one of these cases takes place. The only exception for which this

may not work includes sequential algorithms (like MST or hierarchical clustering)

that group machines by picking the “heaviest” links first (these all have a heuristic

nature).

Clearly, the above considerations are valid not only for sums but also for any

nondecreasing function.
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Figure 5.1. Counter-example illustrating Theorem 6 .

To make the further analysis accurate, we will refer to a MINpCUT based model,

that was proven to be exact in Chapter 4. Clearly, the amount of intercell movement

is an important characteristics that reflects the degree of cell independence and

must be included into the objective. Though some authors (see, e.g, F. T. S. Chan

et al., 2008) claim that the amount of intracell movement must also be optimised,

we argue that it may be excluded from consideration. In order to support this argu-

ment, we would like to give an illustrative example based on real manufacturing

data. Consider the cells presented in Figure 5.2 (we restricted the number of ma-

chines per cell such that the difference is at most 4). It can be seen that one of

the cells has almost no intracell movement and contains machines that have very

little in common. Clearly, this situation does not fit into the classical “theory” of

cell formation. Yet, there is a natural reasoning behind the obtained solution and it

can be checked that it is the best possibility available. Clearly, classical cells (with

substantial intracell movement and small intercell movement) are not possible in

the considered case because the pattern of connections is very dense. The model

“understands” that and finds the only possible solution: separate machines that

have fewer connections with the “core” of the manufacturing system. Such a solu-

tion makes sense from different perspectives. For example, if cells were made in

order to comply with spatial constraints and/or are spatially distant, then the goal

is reached: obtained cellular decomposition ensures the minimum traffic of parts

between cells. If cells were made in order to make the management easier, then

the goal is again reached: there are two smaller systems with a limited interaction
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Figure 5.2. Industrial example demonstrating “non-classical” cells.

implying a lower amount of uncertainty. In addition, one of these systems rep-

resents a set of non-interacting machines and is, therefore, very easy to manage

(non-interacting machines can be managed independently). Thus, intracell move-

ment does not play an important role, as sometimes cells with almost independ-

ent machines may be preferable. Note, that this example also illustrates another

shortcoming of similarity based approaches: all of them assume intensive intracel-

lular traffic and are very unlikely to produce the given in Figure 5.2 solution, even

though it minimises the intercellular traffic. While providing a reasonable decom-

position of the manufacturing system, this solution does not support implementa-

tion of group technology. Thus, Figure 5.2 illustrates that from the GT perspective

the minimisation of intercell movement cannot be a sole objective.

5.2.1 Inter- versus intra-cell movement

The idea of minimising the intercell movement can be generalised, as done, for

example, by Fallah-Alipour & Shamsi (2008): instead of minimising the cells de-

pendence, minimise the total cost of cells. When aiming at independent cells, one

minimises the intercell movement and implicitly assumes that any amount of in-

tracell movement is acceptable. From the cost point of view, this can be interpreted

as follows: intercell moves of parts are given some nonnegative cost, while intra-

cell ones cost zero. At the same time, one may assume intracell moves to also have

nonzero costs.

It is not hard to understand that such a generalised problem can be easily mod-
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elled within the MINpCUT framework just by extending the objective function by

+∑
i

∑
j>i

c′ij

(
1−∑

k
zijk

)
(5.2)

or

+∑
i

∑
j>i

c′ij(1− xij) (5.3)

for the formulations given in Sections 4.3 and 4.4, respectively; c′ij – the cost of an

intracell movement between machines i and j, indices i and j enumerate machines,

k enumerates cells. It can be seen that these modifications change only the coeffi-

cients in the objective function without affecting its structure. This means that the

complexity of the problem does not increase with these extensions.

It should be noted that the presence of two types of costs implies two object-

ives having an opposite behaviour depending on the number of cells p: as p in-

creases, the amount of intercell movement also increases, while the amount of in-

tracell movement decreases (see Section 1.3.2). The two objectives balance each

other and the constraint on the number of cells can be dropped. In formulation AF

(Section 4.3) this can be done in a straightforward way by eliminating constraint

(4.10). As the formulation SF (Section 4.3) encodes the number of cells in its struc-

ture (the number of variables depends on p), an upper bound on the number of

cells must be set and cells may be allowed to be empty by dropping constraints

(4.2).

Thus, if both inter- and intracell movement have nonnegative costs, the MIN-

pCUT based model does not need the number of cells to be predefined and can find

the optimal one automatically. The PMP based model from Section 3.2 can also be

adjusted appropriately, but the necessary modifications are more involved than in

case of MINpCUT.

5.2.2 Preserving flows

Based on the example from Fig. 5.2, it is possible to conclude that in case no clear

cells are present, minimisation of intercell movement tends to place the least con-

nected machines together. One may argue that this tendency may lead to inap-

propriate results. For example, consider the two cellular configurations depicted in

Figure 5.3 (a) and (b), respectively. In this figure, M1,. . .,M8 denote machines, num-
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(a)

(b)

Figure 5.3. Two cellular configurations: (a) minimising intercell movement; (b)
preserving line flows

bers at the edges denote the numbers of parts travelling between the corresponding

machines. Configuration (a) is generated by minimising the intercell movement,

while (b) is made manually. In both cases cells are forced to have an equal num-

ber of machines. One may argue that configuration (b) is preferred as it allows

for two flows, going through machines M1–M2–M3–M4 and M5–M6–M7–M8. Yet,

configuration (a) preserves one even more prominent closed flow going through

M2–M3–M6–M7, while the rest of machines are put aside.

If one is interested in preserving flows, it is always possible to force either of the

considered in the previous chapters models to keep certain machines in the same

cell. However, identification of flows is an interesting problem on itself. Here we

propose a simple and computationally efficient MILP model for the flows identifi-

cation problem. The model uses Boolean decision variables xij, where indices i and

j enumerate machines (i, j ∈ {1, . . . , m}), and can be written as:

∑
i

∑
j,j 6=i

cijxij −→ max (5.4)

s.t. (5.5)
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∑
j,j
6= ixij ≤ 1 ∀i (5.6)

∑
i,i 6=j

xij ≤ 1 ∀j (5.7)

xij ∈ {0, 1} ∀i, j , (5.8)

where cij may be chosen either to denote the amount of parts travelling between

machines i and j (i.e. have the same meaning as in Chapter 4) or as an amount

of parts travelling in one direction (in this case cij 6= cji and these correspond to

elements of the from-to matrix). The second alternative is better as it takes into

account real directed flows instead of aggregated undirected ones. Objective (5.4)

maximizes the total amount of flows, while constraints (5.6)-(5.7) ensure that each

machine has at most one incoming flow and at most one outgoing flow, respect-

ively. Such setting ensures that a solution will contain three types of flows:

• line flows;

• closed (loop) flows;

• isolated machines.

By playing with the right-hand sides of constraints (5.6)-(5.7) it is possible to extend

this set of allowed flow types. For example, if one changes the r.h.s. in (5.7) to

10, tree-like flows with each machine having at most 10 outgoing flows become

allowed.

It can be shown that formulation (5.4)-(5.8) essentially represents the well-known

assignment problem (see, e.g., Papadimitrou & Steiglitz, 1998, p. 248) and is poly-

nomially solvable. This also implies that combinatorial algorithms for the assign-

ment problem can be applied to solve the flows identification problem. In practice,

instances with hundreds of machines can be solved within seconds.

Finally, we would like to mention that the presented flows identification model

can be directly used for cell formation, however, it does not guarantee highly inde-

pendent cells. On the positive side, the model does not require the number of cells

to be defined beforehand. Thus, we propose the flows identification model only

for preliminary analysis such that its output (the number of cells, dominant flows,

etc.) can be used to refine the input for cell formation (e.g. by assigning certain

machines to the same cell so that flows are not interrupted).
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5.3 Workforce related objectives

Unless a manufacturing system is completely automated, workforce plays an im-

portant role in its performance. For example, workers’ skills directly influence the

setup and processing times of parts, as well as quality of the latter. Moreover, work-

ers may become ill, retire, etc., and it is desirable that someone can substitute them.

In other words, it is desirable that a worker is able to operate more than one ma-

chine – this is usually referred to as cross-training. Importance of cross-training is

discussed in a number of papers on CF (see, e.g., Bokhorst et al., 2004; Bhatnagar

& Saddikuti, 2010) and the main related goals can be formulated as:

• it is desirable that a worker can operate as much machines in his cell as pos-

sible (this improves flexibility and robustness);

• it may be desirable that a worker can operate only machines within his cell

(ability to operate machines from other cells means qualifications that are not

used but might be paid for);

• costs of additional training must be as small as possible.

The simplest way of reaching the above goals is to define the machine-worker

incidence matrix (MWIM, similarly to the machine-part incidence matrix – MPIM)

and use it as an input. This idea was used, for example, in Bhatnagar & Sad-

dikuti (2010) by augmenting the MPIM with columns corresponding to workers

and reflecting their abilities to operate machines. Such a setting suggests that cell

independence from parts and workers points of view are equally preferable. At

the same time, it is possible to give these two objectives different priorities by de-

riving machine-machine similarities from MPIM and MWIM separately and then

combining them with weighting coefficients. Clearly, this setting can be directly

implemented within the models proposed in Chapters 3 and 4.

It is also worth mentioning that Bhatnagar & Saddikuti (2010) show that the

described setting outperforms two-stage procedures that first make machine cells

and then assign workers. This is quite natural, as in two stage procedures cells are

actually made without taking workforce into an account.

5.4 Set-up time savings

One may notice that all the considered above objectives only implicitly improve

the performance of the manufacturing system. In particular, based on the objective
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values of either of them (nor on the obtained solutions) it is not straightforward

how to estimate, for example, the gains in the throughput time of the parts, savings

in terms of labour hours, etc. The only exception is as follows: if cells are spatially

distant then the amount of intercell movement influences the time needed to deliver

parts from one cell to another and then translated into the throughput time of parts.

It is quite natural to pose the following question: is it possible to make cells

that explicitly optimise some quantitative manufacturing factors? In this section

we consider set-up times of parts as an example of such a factor and propose ob-

jectives that make cells supporting a set-up time reduction. Such an objective was

considered, for example, in Suresh (1992) and Shafer & Rogers (1993).

First of all, let us briefly consider what is the set-up time and why it can be

reduced. Clearly, before a part can be processed by a machine the latter must be

adjusted in a proper way and have all necessary tools installed. The time needed

for these operations is called the set-up time of a particular part on a particular ma-

chine. The set-up time is thus a fraction of the total throughput time of a part,

and this fraction can be quite substantial. Naturally, several different parts may

need similar setups at certain machines and if these parts are processed sequen-

tially then the machines must be adjusted only once before processing all these

parts. This means that for all but the first such part the set-up time will be zero.

Thus, by proper scheduling of parts at each machines it is possible save on setups.

In reality, time needed to change one setup to another may differ for each pair of

parts. In this case the problem of finding an optimal schedule (a sequence of parts

minimising the total set-up time) can be modelled by the well-known Asymmetric

Travelling Salesman Problem (ATSP, see, e.g., Garey & Johnson, 1979) defined on

a graph where vertices correspond to parts and weights of the edges correspond

to the times needed to switch between the corresponding setups. This implies that

a minimisation of set-up times is, generally speaking, an NP-hard problem, even

for one machine and without precedence constraints (some parts arrive later than

others).

The reality can be somewhat simplified by introducing a notion of a part family

– a set of parts that have the same setup at a particular machine. Throughout the

rest of this thesis we deal with machine-dependent part families, i.e. any two parts

belonging to the same family at one machine may belong to different families at

another machine. This setting is quite realistic. For example, two parts may need

holes of equal diameter and belong to the same family at a drilling machine but if

they have different thickness, they belong to different families at a cutting machine.
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If these two parts must be painted into the same colour, then at a dyeing machine

they are again in the same family. Now, scheduling can be done at a level of part

families, rather then at a level of parts. In this way it is possible to reduce the prob-

lem size and if the number of families is small (say, 5) then an optimal schedule

for a machine can be found reasonably fast even by a complete enumeration1. As-

suming further that the set-up time of a part family at a machine is independent of

which family was processed at this machine before, one may completely eliminate

the scheduling issue as the order of families becomes irrelevant, the only require-

ment is that the parts from one family are processed consecutively.

An optimal scheduling is beyond the scope of this thesis, and here we concen-

trate on making cells that support set-up time savings, i.e. provide most opportun-

ities for that.

Let us denote by F the maximum number of families per machine; one may

assume that each machine has F families, some being empty. Let us also introduce

the following notation:

Fj, f ,i =

 1, if part j belongs to family f on machine i

0, otherwise
(5.9)

Under the introduced notations one may define for each pair of machines i and j

the following similarity measure s(i, j):

s(i, j) =
r

∑
k=1

F

∑
f=1

(Fk, f ,i · Fk, f ,j), (5.10)

where r is the number of parts. The similarity measure (5.10) reflects the number

of parts belonging to the same family on both machines. It can be directly plugged

into the MINpCUT based model presented in Chapter 4 or used to derive a dissim-

ilarity measure for the PMP based model presented in Chapter 3. In either case, the

cells made using this similarity measure will lead to the cells where the (machine-

dependent) part families are as similar as possible. This implies that the orders in

which parts (families) are processed at each machine in a cell can be similar (in the

best case – identical). This becomes especially beneficial if cells have prominent line

flows (identification of such flows in considered in Section 5.2), as similar schedules

on machines in a line ensure that set-up time savings can be made at each machine

1 Scheduling several interacting machines remains a complex problem even if each machine has a single
part family due to precedence constraints
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in this line.

In case set-up times of part families at a machine vary a lot, it becomes necessary

to adjust the similarity measure such that the families with larger set-up times can

be better scheduled. This can be achieved by modifying the similarity measure

(5.10) in the following way:

s(i, j) =
r

∑
k=1

F

∑
f=1

Fk, f ,i · Fk, f ,j · (Si, f + Sj, f ), (5.11)

where Si, f and Sj, f are set-up times of family f on machines i and j, correspon-

dingly.

5.5 Concluding remarks

This chapter presented several possible objectives that can be optimised while cre-

ating cells. This list is, of course, not exhaustive, as a particular manufacturing

system may need an objective not relevant to other systems. We tried to cover the

most common objectives and to show how these can be incorporated into the mod-

els proposed in the previous chapters.

An important question not covered in the chapter is how to combine several

possible objectives in one formulation. In fact, the range of possibilities is quite

broad and here we would like to mention only few most widely used. First of all,

objectives can be combined in a linear way with weighting coefficients reflecting

a relative importance of each one. Though this way is the easiest one, it may not

cover all optimal solutions. In particular, this happens if the Pareto-optimal front

(the set of non-dominated solutions) of a particular multiobjective problem is non-

convex. Furthermore, the choice of weights is not straightforward, especially if

the objective values are measured in different units (e.g., a number of parts vs. a

number of additional workers).

If objectives can be arranged in a linear order of importance, one may perform

a sequential optimisation by improving one objective at a time and adding a con-

straint requiring the value of this objective to stay within certain limits. A similar

approach is to simultaneously move some objectives to constraints. For example,

one may be interested in maximising the possibilities for set-up time reduction

while keeping intercell movement and cross-training costs below certain levels.

Finally, decision making techniques (e.g., TOPSIS; see Ahi et al., 2009) may

be applied in order to select the best solution from several ones corresponding to
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varying weights or sequences in which objectives were optimised.

We would like to conclude by saying that the choice of objectives and the ways

of combining them in a mathematical formulation essentially depends on particu-

lar goals and motivation for switching to a cellular layout at a particular company.

Thus, we may leave these questions to management. At the same time, a method-

ology for estimating appropriateness and importance of different objectives based

on given manufacturing data can be a topic for future research.
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Summary and conclusions

6.1 Summary

The thesis is focused on relevant and effective mathematical models for solving the

cell formation (CF) problem, i.e. grouping machines into manufacturing cells such

that the principles of group technology are implemented. Despite its long history

and hundreds of published papers, very few attempts of solving the problem to op-

timality are known. At the same time, in today’s highly competitive environment

any noticeable improvement in performance is critical to the company’s survival.

As can be seen from the literature review presented in Chapter 1, most of the

available approaches to cell formation are based on intuitive considerations and

incorporate at least one of the two error types: the modelling error (the objective

function of the model does not exactly reflect the objective of CF) and the computa-

tion error (emerges if a resulting problem is solved heuristically). Even if only the

modelling error takes place, its quantitative analysis is very complicated (e.g., in

case of neural network approaches). Another problem of the existing approaches

is flexibility: a substantial portion of them is based on ad hoc algorithms, and ad-

dition of new constraints or objectives requires a substantial modification of the

approach. Finally, different performance and similarity measures are used, and the

effect on the outcomes is not clear (they are motivated by intuitive considerations

rather than by strict reasoning). The rest of the thesis presents two models for CF,

based on the p-Median and the minimum multicut problems, respectively. The first

one has zero computing error while keeping the modelling error and running times

very limited. The second one is an exact model and can be solved to optimality only

for reasonably sized (yet realistic) instances, as shown by a case study.
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Chapter 2 is completely focused on the p-Median problem (PMP) and its proper-

ties. It is shown that by using a pseudo-Boolean representation of PMP it is possible

to construct an efficient MILP formulation that includes all known problem size

reductions for PMP (not relying on pre-solving the problem). The proposed for-

mulation allows some large size instances to be solved to optimality. In particular,

by efficiently reducing the problem size the proposed formulation allows a MILP

solver to handle instances that could not be handled in earlier formulations because

of the memory limitations. A pseudo-Boolean representation also provides insights

into a complexity of instance data and properties of the PMP feasible polytope. A

methodology for constructing PMP instances that are expected to be complex for

any solution algorithm (existing or forthcoming) is described.

In Chapter 3 a model based on the proposed compact formulation for the PMP

is presented and analysed in detail. It is shown that PMP based models have quite

limited modelling error in case reasonable from the manufacturing perspective cells

are possible, i.e. the amount of intercell movement is within 10-15%. A comparison

with approaches from several recent papers was done. The results of the compar-

ison show that our PMP based model outperforms other contemporary approaches

in solution quality (in terms of widely used performance measures) and has very

short running times (about 1 sec.). It is also shown that a number of additional

realistic factors and constraints can be introduced into the compact model making

it practically useful.

In Chapter 4 an exact model for CF that minimises the amount of intercell move-

ment is derived. It is shown that the exact model is equivalent to the minimum mul-

ticut problem (that we abbreviate as MINpCUT), implying polynomial solvability

of the former in case two cells are needed. Though there exist efficient algorithms

for MINpCUT, these are hardly applicable to CF because they do not allow for

additional constraints that are almost always needed to make practically feasible

cells. Therefore, we propose two MILP formulations for the MINpCUT problem

and show how different constraints can be introduced into either of them. Finally,

a practical applicability of the proposed model is demonstrated by means of a case

study with real manufacturing data. It is shown that in case of a reasonable number

of machines (about 30) the proposed MILP formulations can be solved reasonably

fast, and the solution time is not affected by the number of parts that can be quite

substantial (the order of thousands). It is also shown that to guarantee optimal

solutions (w.r.t. minimum intercell movement), the similarity between a pair of

machines must be defined as an amount of parts travelling directly between these
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two machines.

Finally, in Chapter 5 several alternative objectives for CF are discussed. These

include balancing inter- and intracell movements, workforce related objectives, and

set-up time reduction. Ways of introducing these objectives into the proposed mod-

els are given, together with a brief discussion about how to combine several ob-

jectives. It is also proven that none of the similarity measures derived from the

machine-part incidence matrix can guarantee optimal solutions, irrespectively of

the approach used.

6.2 Conclusions

The goal of this thesis was to provide a flexible and efficient tool for solving the

CF problem. In order to achieve the goal two models based on two different but

related graph-partitioning problems, PMP and MINpCUT, were developed. Either

of the proposed models proved to be efficient in solving the CF problem, but has its

own weaknesses. For example, the PMP based model is extremely fast but intro-

duces a (limited) modelling error. The MINpCUT based model is an exact one and

is somewhat more flexible, but has a somewhat limited applicability in terms of the

problem size. The effectiveness of the two proposed models can be explained by the

fact that all the three problems (PMP, MINpCUT and the generic CF problem) have

a common clustering nature. Yet, there are certain differences in constraints im-

posed on the clusters. For example, in case of the PMP each cluster is supposed to

have a prominent centre (median) that is tightly connected with any other element

in the cluster. Presence of this structure, in particular, makes the problem much

easier – even for random 100× 100 input matrices it can be solved within a minute.

The MINpCUT problem, on the contrary, does not have any special constraints on

clusters, and solving it for a 100× 100 matrix normally takes many hours. The ori-

ginal CF problem normally does not restrict the structure of the cells1 but imposes

certain qualitative constraints. This makes the problem even more complex. How-

ever, the complexity of the problem can be made dependent only on the number

of machines, unlike, for example, the model from (Chen & Heragu, 1999) where

the number of parts also plays a role. In this case, it appears that real life instances

have quite limited size (we could not find instances with more than 50 machines

in the literature). This means that quite soon the ongoing progress in a develop-

1 Sometimes it does: some machines may be required or prohibited to be in one cell. In this case some
variables can be fixed and the problem becomes smaller.
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ment of computers and MILP solution methods will make it possible to solve any

CF instance to optimality by the proposed MINpCUT model. On the other hand,

the size of manufacturing systems is not increasing with a trend towards smaller

and more specialised ones. Thus, in this perspective, both proposed models are

computationally tractable.

Possible directions for future research include development of more efficient

methods for solving the constrained MINpCUT problem and extending either of

the proposed models with real life constraints not mentioned in the thesis. An-

other direction is to introduce dynamics into the models: in reality, the product mix

changes over time, and cells must be adjusted. At the same time, it is desirable

that the cells do not change substantially from period to period. Thus, either a ro-

bust (with regard to a changing product mix) or a dynamic (with smooth changes)

solution can be sought.

A final avenue of research is the development of a methodology for estimating

appropriateness and importance of different objectives for CF based on manufac-

turing data.
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Samenvatting

De moderne industrie heeft te maken met een aantal uitdagingen, zoals groeiende

diversificatie van producten en toenemende concurrentie. Deze ontwikkelingen

dwingen bedrijven hun processen voor zover mogelijk effectiever te maken. De

indeling van machines op de werkvloer is heel belangrijk want deze bepaalt onder

andere de doorlooptijd van producten. Dit komt vooral door de koppeling tus-

sen de indeling van de machines en de afstanden die door de producten worden

afgelegd. Daarnaast spelen wachttijden en voorraden ook een rol. Een juiste in-

deling van machines kan voordelen bieden bij het maken van roosters (schedules).

Als machines bijvoorbeeld in (bijna) onafhankelijke groepen kunnen worden inge-

deeld, is het mogelijk voor elke groep afzonderlijk een rooster te construeren. Dit

is voordelig omdat de complexiteit van de meeste roostering problemen zeer snel

toeneemt naarmate de invoer groter wordt.

Zoals uit de literatuur blijkt, heeft de groepsgewijze indeling (in cellen) een aan-

tal voordelen en is deze geschikt voor de meeste bedrijven, behalve in extreme si-

tuaties waarin sprake is van een zeer lage of juist heel hoge mate van productdiver-

sificatie. In deze gevallen zijn de “production line” of de “functional layout”meer

geschikt. Om bijbehorende voordelen te realiseren moet de indeling in groepen op

de juiste manier plaatsvinden. Dat betekent vooral dat de cellen voor zover mo-

gelijk onafhankelijk zijn (elke cel produceert zijn eigen verzameling van produc-

ten, een productfamilie, die bijna geen machines uit de andere cellen nodig hebben),

maar er zijn ook andere factoren en beperkingen. Zo moeten het aantal machines

in een cel, het aantal werknemers per cel en het aantal productie-uren per cel geba-

lanceerd zijn. Het indelen van machines in groepen (cellen) wordt celformatie (CF)

genoemd. Het CF probleem deelt machines in groepen in zodat het aantal product-

bewegingen tussen verschillende cellen (intercell movements) minimaal is. Het CF

probleem is dus gericht op optimale celformatie. Hoewel gedurende meer dan 50
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jaar veel onderzoek is gedaan naar dit probleem, is er in de literatuur geen methode

of model bekend die tegelijkertijd de volgende kenmerken heeft:

• gegarandeerde kwaliteit van oplossingen (geen of aantoonbaar gelimiteerd

aantal fouten);

• redelijke rekentijden (rekentijden van bijvoorbeeld 1 seconde en 10 minuten

zijn even goed aangezien cellen niet elke dag worden veranderd);

• flexibiliteit: bij elke bedrijf komen andere beperkingen voor, waarmee de me-

thode (het model) rekening moet kunnen houden.

Dit proefschrift concentreert zich op de ontwikkeling van relevante mathemati-

sche modellen voor celformatie, die rekening houden met bovenstaande doelstel-

lingen en in de praktijk kunnen worden gebruikt om bedrijfsprestaties te verbete-

ren.

Hoofdstuk 1 introduceert het CF probleem, geeft een beschouwing van de lite-

ratuur en beschrijft hiaten die worden ingevuld in dit proefschrift. Zoals het uit de

literatuur blijkt, baseren de meeste CF-methoden zich op intuı̈tieve consideraties

en kampen met ten minste één van de volgende fouten:

(a) modelleringsfout (modelling error); hiervan is sprake als de doelstellingsfunc-

tie van een model het doel van CF niet juist weergeeft;

(b) rekenfout (computation error); deze komt voor als het probleem met behulp

van een heuristiek wordt opgelost.

Zelfs als er alleen sprake is van een modelleringsfout, is de kwantitatieve analyse

normaal gesproken al zeer complex (denk bijvoorbeeld aan neurale netwerkmo-

dellen). Een ander nadeel van de meeste bestaande modellen is hun gebrek aan

flexibiliteit: als een model op een ad hoc procedure is gebaseerd, veroorzaakt elke

nieuwe beperking een belangrijke wijziging van het model. Tenslotte wordt ge-

bruik gemaakt van verschillende performance en similarity measures, zonder dat

de keuze voor een bepaalde measure duidelijk wordt onderbouwd. Daardoor is

het gebruik van een bepaalde measure dubbelzinnig en is de invloed op het re-

sultaat vaak onduidelijk. In het resterende deel van dit proefschrift worden twee

modellen ontwikkeld die gebaseerd zijn op het p-Median en het minimum multicut

problemen. In het eerste model is slechts sprake van een beperkte modelleringsfout

terwijl er geen rekenfouten optreden en de rekentijden kort zijn. Het tweede model
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is exact, maar met dit model kunnen alleen kleine en middelgrote (maar desalniet-

temin realistische) CF problemen worden opgelost. De praktische toepasbaarheid

van dit model wordt door een case study aangetoond.

Hoofdstuk 2 concentreert zich op het p-Median probleem (PMP) en zijn eigen-

schappen. Een pseudo-Booleaanse representatie is gebruikt om een doeltreffende

Mixed-Integer Linear Programming (MILP) formulering op te bouwen die alle be-

kende reducties (behalve pre-solving) bevat. Met dit model kan de optimale oplos-

sing van een aantal grote problemen worden bepaald. Doordat de probleemgrootte

door de nieuwe formulering gereduceerd wordt is een aantal problemen, dat tot op

heden vanwege beperkingen van het beschikbare geheugen van een computer niet

kon worden opgelost, nu behapbaar geworden voor een MILP solver, bijvoorbeeld

CPLEX of Xpress. Een pseudo-Booleaanse representatie geeft bovendien meer in-

zicht in de complexiteit van input data van verschillende instanties en van het PMP

toelaatbare polytoop. In dit hoofdstuk wordt voorts een methodiek voorgesteld om

PMP instanties te genereren die moeilijk zijn voor alle mogelijke algoritmen (zowel

bestaande als nog te ontwikkelen algoritmen).

In hoofdstuk 3 wordt een op het PMP gebaseerd model gepresenteerd. Het mo-

del maakt gebruik van de doeltreffende formulering uit het voorgaande hoofdstuk

en heeft korte rekentijden (plusminus 1 seconde). Het wordt aangetoond dat de

modelleringsfout voor op PMP gebaseerde modellen beperkt is (hoogstens enkele

procenten) wanneer de input data een praktische waarde hebben: de omvang van

het aantal intercell movements ligt rond de 10 a 15%. Het hoofdstuk bevat ook een

studie waarin methoden die recent in de literatuur beschreven zijn worden vergele-

ken. Hieruit blijkt dat ons model betere oplossingen levert in termen van de meest

gebruikte performance measures. We bewijzen ook dat andere realistische facto-

ren en beperkingen in het model kunnen worden verwerkt, zodat de praktische

waarde ervan verhoogd wordt.

In hoofdstuk 4 wordt een exact model voor CF afgeleid, met als doel de om-

vang van het aantal intercell movements te minimaliseren. Het wordt aangetoond

dat het exacte model equivalent is aan het minimum multicut probleem (dat we af-

korten als MINpCUT). Dit feit impliceert dat het CF probleem makkelijk kan wor-

den opgelost (polynomially solvable) als er maar twee cellen nodig zijn. Hoewel er

effectieve methoden voor MINpCUT bestaan, hebben die weinig waarde voor de

CF praktijk aangezien ze geen mogelijkheden bieden om extra beperkingen toe te

voegen. Daarom worden twee MILP formuleringen voor het MINpCUT probleem

beschreven. Tevens wordt geı̈llustreerd hoe een aantal praktische beperkingen kan
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worden opgenomen in elk van deze twee modellen. De toepasbaarheid van de

MINpCUT-gebaseerde methode is met een case study geı̈llustreerd. Het belang-

rijkste kenmerk van deze methode is dat haar complexiteit alleen van het aantal

machines (tientallen) afhankelijk is en niet van het aantal producten (duizenden).

Het wordt ook aangetoond dat om optimale oplossingen te garanderen (met be-

trekking tot het aantal intercell movements) het aantal bewegingen van onderdelen

tussen een tweetal machines gebruikt moet worden als similarity measure van de

desbetreffende machines.

Hoofdstuk 5 richt zich op alternatieve doelen van CF, zoals het balanceren van

inter- en intracel bewegingen, arbeidsgerelateerde doelen, en reductie van de instal-

latietijden (set-up times). Een uiteenzetting wordt gegeven van mogelijke manieren

om deze doelen aan alle bovengenoemde modellen toe te voegen en het wordt be-

sproken hoe meervoudige doelen in een MILP formulering kunnen worden opge-

nomen. Voorts wordt aangetoond dat similarity measures die gebaseerd zijn op de

“machine-part incidence matrix” geen optimale oplossingen kunnen garanderen,

onafhankelijk van de methode die gebruikt wordt.

Hoofdstuk 6 resumeert tot slot de onderzoeksresultaten van dit proefschrift en

formuleert enkele suggesties voor toekomstig onderzoek.


