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ABSTRACT

Molecular hydrogen is the most abundant molecule in the universe. A large fraction of H2 forms by association
of hydrogen atoms adsorbed on polycyclic aromatic hydrocarbons (PAHs), where formation rates depend crucially
on the H sticking probability. We have experimentally studied PAH hydrogenation by exposing coronene cations,
confined in a radio-frequency ion trap, to gas phase atomic hydrogen. A systematic increase of the number of H
atoms adsorbed on the coronene with the time of exposure is observed. Odd coronene hydrogenation states dominate
the mass spectrum up to 11 H atoms attached. This indicates the presence of a barrier preventing H attachment
to these molecular systems. For the second and fourth hydrogenations, barrier heights of 72 ± 6 meV and 40 ±
10 meV, respectively, are found, which are in good agreement with theoretical predictions for the hydrogenation
of neutral PAHs. Our experiments, however, prove that the barrier does not vanish for higher hydrogenation states.
These results imply that PAH cations, as their neutral counterparts, exist in highly hydrogenated forms in the
interstellar medium. Due to this catalytic activity, PAH cations and neutrals seem to contribute similarly to the
formation of H2.
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1. INTRODUCTION

Molecular hydrogen is the most abundant molecule in the
universe and the main constituent of regions where stars are
forming. H2 plays an important role in the chemistry of
the interstellar medium (ISM), and its formation governs the
transformation of atomic diffuse clouds into molecular clouds.
Because of the inefficient gas phase routes to form H2, dust
grains have been recognized to be the favored habitat to form H2
molecules (Oort & van de Hulst 1946; Gould & Salpeter 1963).
The sticking of H atoms onto surfaces has received considerable
attention because this mechanism governs the formation of H2,
but also other molecules that contain H atoms. The sticking of
H atoms onto dust grains can also be an important mechanism
to cool interstellar gas (Spaans & Silk 2000). In the past few
decades, a plethora of laboratory experiments and theoretical
models have been developed to understand how H2 forms. As H
atoms arrive on dust surfaces, they can be weakly (physisorbed)
or strongly (chemisorbed) bound to the surface. The sticking
of H in the physisorbed state (Pirronello et al. 1997, 1999,
2000; Perry & Price 2003) and in the chemisorbed state (Zecho
et al. 2002; Hornekær et al. 2006; Mennella 2006) has been
highlighted by several experiments on different types of surfaces
(amorphous carbon, silicates, and graphite).

In the ISM, dust grains are mainly carbonaceous or silicate
particles with various sizes and represent an important surface
for the formation of H2. However, a large part (∼50%) of
the available surface area for chemistry is in the form of
very small grains or polycyclic aromatic hydrocarbons (PAHs;
Weingartner & Draine 2001). These PAHs are predicted to have
characteristics similar to graphite surfaces; however, once the
first H atom is chemisorbed on the basal plane, subsequent
adsorptions of H atoms in pairs appear to be barrierless for
the para dimer and with a reduced barrier for the ortho dimer
(Rougeau et al. 2006). H2 can then form by involving a pre-
adsorbed H atom in monomer (Sha & Jackson 2002; Morisset

et al. 2003, 2004; Martinazzo & Tantardini 2006) or in a para-
dimer configuration (Bachellerie et al. 2007). However, while
these routes represent efficient paths to form H2, the inefficient
sticking of H atoms in monomers constitutes an important
obstacle to enter the catalytic regime for H2 formation. This
results in a very low H2 formation efficiency on graphitic/PAH
surfaces (Cazaux et al. 2011).

The hydrogenation on the PAH edges has been identified
as an important route to form H2 in the ISM (Bauschlicher
1998; Hirama et al. 2004; Le Page et al. 2009; Mennella
et al. 2012; Thrower et al. 2012). Density functional theory
calculations have shown that the first hydrogenation of neutral
coronene is associated with a barrier (∼60 meV) but that
subsequent hydrogenation barriers vanish (Rauls & Hornekær
2008). Recently, coronene films exposed to H/D atoms at
high temperature were studied by means of IR spectroscopy
(Mennella et al. 2012) and mass spectrometry (Thrower et al.
2012). These measurements showed that neutral PAHs, when
highly hydrogenated, are efficient catalysts for the formation of
H2, and confirmed the high H2 formation rate attributed to PAHs
in photodissociation regions (PDRs; Mennella et al. 2012).

PAH cations, which are usually present at lower extinction
AV , and therefore reside at the surfaces of PDRs, also represent
an important route to form H2 (Bauschlicher 1998; Le Page
et al. 2009). The addition of the first H atom is predicted to be
barrierless. This reaction is exothermic but the product should
be stabilized by IR emission. A second H atom can react with the
already adsorbed H to form H2 without a barrier (Bauschlicher
1998; Hirama et al. 2004).

In this Letter, we study experimentally the hydrogenation
of coronene cations in the gas phase through exposure to
hydrogen atoms. By using mass spectrometry, we show that
odd hydrogenation states of coronene cations predominantly
populate the mass spectrum. Our results highlight the fact that
the further hydrogenation of PAH cations is associated with a
barrier if the number already attached H atoms is odd, and no
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Figure 1. Setup used, with the ion funnel, quadrupoles, ion trap, hydrogen
source, and detector.

(A color version of this figure is available in the online journal.)

barrier if this number is even. This alternating barrier–no-barrier
occurrence seems to remain with increasing hydrogenation.
These results suggest that PAH cations can also enjoy highly
hydrogenated states in the ISM, and acts as catalysts for H2
formation.

2. EXPERIMENTS

In this pilot experiment, we show the feasibility of studying
the hydrogenation of PAHs in the gas phase. For this purpose, we
use a setup designed to study molecular ions in a radio-frequency
(RF) ion trap. Time-of-flight (TOF) mass spectrometry of the
trap content is used to identify the changes in mass of the
coronene cations and therefore deduce their respective degrees
of hydrogenation.

2.1. Setup

The experiments have been performed using a home-built
tandem-mass spectrometer shown schematically in Figure 1
(Bari et al. 2011). A beam of singly charged coronene radical
cations ([C24H12]+, m/z 300) was extracted from an electrospray
ion source. The ions were phase-space compressed in an RF ion
funnel and subsequently in an RF quadrupole ion guide. Mass
selection was accomplished by using an RF quadrupole mass
filter. Accumulation of the ions took place in a three-dimensional
RF ion trap (Paul trap). An He buffer gas at room temperature
was used to collisionally cool the trapped cations. Exposure
to gas-phase atomic hydrogen for variable periods of time led
to multiple hydrogen adsorption on the coronene cations. An
electric extraction field was then applied between the trap end
caps to extract the trapped hydrogenated cations into a TOF mass
spectrometer with a resolution of M/ΔM ∼ 200. To obtain mass
spectra of sufficient statistics, typically a couple of hundred TOF
traces were accumulated.

Electrospray ionization allows us to gently transfer ions from
the liquid phase into the gas phase. Inspired by the method of
Maziarz (2005), we have run the ion source with a solution
consisting of 600 μL of saturated solution of coronene in
methanol, 350 μL of HPLC grade methanol, and 50 μL of
10 mM solution of AgNO3 solution in methanol. In the liquid
phase, electron transfer from a coronene molecule to a silver ion
leads to formation of the required radical cation.

The trapped ions are exposed to hydrogen atoms produced
from H2 by a Slevin type source which has been extensively
used in crossed beam experiments (Hoekstra et al. 1991; Bliek
et al. 1997). While in the earlier work the dissociation fractions
were determined by means of electron impact excitation or He ii
line emission, we now use charge removal (captured ionization)

and dissociation induced by 40 keV He2+. For these processes,
the cross sections are well known (Shah & Gilbody 1978).
In this way, we determine a hydrogen dissociation fraction of
n (H) / (n (H) + n (H2)) ≈ 0.3. The temperature of the H beam
is around room temperature (∼25 meV).

2.2. Results

Coronene ions are exposed to a constant flux of H atoms for
different periods of time before their degree of hydrogenation
is determined by means of mass spectrometry. The irradiation
time is varied from 1.0 up to 30 s to study the time dependence
of coronene hydrogenation.

The data obtained from our experiment are a series of mass
spectra of hydrogenated coronene cations as a function of H
exposure time. Some of the spectra are shown in Figure 2.
Figure 2(a) shows the mass spectrum of the native m/z = 300
coronene cations. A similar, thus unchanged, mass spectrum
is obtained (not shown in this article) if we irradiate coronene
cations with molecular hydrogen. This means that molecular
hydrogen does not stick to coronene cations at room tempera-
ture.

After turning on the hydrogen source and exposing the
coronene cations to the atomic hydrogen beam for 1.0 s
(Figure 2(b)), the peak at m/z = 300 shifts to 301, which
means that the trap content main constituent is (C24H12+H)+.
For increasing irradiation time (Figure 2(c) t = 2 s, (d) 3 s,
(e) 4 s, and (f) 4.75 s), the peak at m/z = 301 disappears
progressively while a peak at m/z = 303 and then at m/z = 305
(for t = 4.75 s; see Figure 2(f)) appears, which indicates the
addition of three and five hydrogen atoms, respectively. At
longer exposure time (t ∼ 15 s; Figure 3(a)), the m/z = 303
peak dominates the signal, and a peak at m/z = 305 appears. At
even longer irradiation times (t ∼ 30 s; Figure 3(b)), the peak
m/z = 305 dominates and peaks at m/z = 307 and 309 appear.
These peaks clearly show the evolution of the hydrogenation
states of coronene cations with H irradiation time.

3. ANALYSIS AND DISCUSSION

Our results show that the most important peaks measured
in the mass spectrum shift from lower masses to higher masses
with increasing H exposure time. In order to follow the evolution
of the first hydrogenated state of coronene cation (C24H12+H)+

(CorH+) to the second (C24H12+2H)+ (CorH+
2), third (CorH+

3),
and fourth (CorH+

4) hydrogenated states, we use a simple model
that describes this evolution:

dnCorH+

dt
= −

(
A2e

− E2
kBTgas nCorH+

)
nH, (1)

dnCorH+
2

dt
=

(
A2e

− E2
kBTgas nCorH+ − A3nCorH+

2

)
nH, (2)

dnCorH+
3

dt
=

(
A3nCorH+

2
− A4e

− E4
kBTgas nCorH+

3

)
nH, (3)

dnCorH+
4

dt
=

(
A4e

− E4
kBTgas nCorH+

3
− A5nCorH+

4

)
nH. (4)

Hydrogenation of CorH+
2n+1 follows an Arrhenius expression

where A2n+2 is the prefactor and E2n+2 is the barrier, while
hydrogenation of CorH+

2n follows the same expression with a
prefactor A2n+1 and no barrier. kB is the Boltzmann constant and
T the temperature of the H beam (T ∼ 25 meV).
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(a) (b) (c)

(d) (e) (f)

Figure 2. Mass spectrum of coronene (a) without and with exposure to H atoms during (b) 1 s, (c) 2 s, (d) 3 s ,(e) 4 s, and (f) 4.5 s.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 3. Same as Figure 2 for much longer H exposures of (a) 15 s and (b) 30 s.

(A color version of this figure is available in the online journal.)

In these equations, we do not include abstraction, meaning
that the time evolution of the contribution of each state is
governed entirely by hydrogenation. This assumption is made
in order to derive the first barriers of hydrogenation. Abstraction
can be neglected in the conditions of our experiments for low
exposure times. This is supported by previous experiments
where the cross section for the addition of hydrogen to neutral
coronene is predicted to be 20 times that for abstraction
(Mennella et al. 2012). Further support is drawn from a kinetic
chemical model we developed, which shows that abstraction
must be very low compared to hydrogenation to be able to mimic
the experimental results (Boschman et al. in prep). However, for
long H exposure time we expect the hydrogenation degree of
the coronene cations to reach a steady state which will allow
us to derive the contribution of abstraction relative to addition,
and therefore derive the H2 formation rate due to PAH cations.
It should also be kept in mind that in the conditions of our
experiments, the H atoms are at room temperature, meaning
that they cross the barriers for abstraction (10 meV; Rauls &
Hornekær 2008) and addition (40–60 meV; Rauls & Hornekær

2008) with similar ease. Under interstellar conditions, however,
the abstraction will dominate by eight orders of magnitude (at
20 K) because of the barrier differences.

The first hydrogenation is expected to take place at the outer
edge carbon atom (Hirama et al. 2004). This state provides
more conformational freedom to the four neighboring outer
edge carbon atoms, ensuring a preference for the second
hydrogenation to take place at one of those four carbon atoms.
The third hydrogenation will preferentially take place at the
outer edge carbon next to the second H atom. Again, the fourth
H atom can be bound to one of the four neighboring outer
edge carbon atoms, and the fifth sticks on the neighboring outer
edge carbon. This scenario of H atoms sticking preferentially on
outer edge carbons next to already adsorbed atoms is described
in Rauls & Hornekær (2008).

The contribution of every peak is determined by fitting our
data with Gaussians with identical widths (see Figure 4(a)).
The ratios between different hydrogenation states as a func-
tion of time are reported in Figure 4(b). It appears that the
ratio between the contribution of the first (CorH+) and the
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(a) (c)(b)

Figure 4. (a) Contribution of every peak determined by fitting our data with Gaussians with identical widths. (b) Ratios between different hydrogenation states as a
function of time. (c) Barrier heights for the second and fourth hydrogenations.

(A color version of this figure is available in the online journal.)

second (CorH+
2) hydrogenation states does not evolve with time

for short timescales ((nCorH+/nCorH+
2
) ∼ 3 until 5 s). Also,

the ratio between the third (CorH+
3) and the forth (CorH+

4)
hydrogenation states shows identical behavior after t � 2 s
((nCorH+

3
/nCorH+

4
) ∼ 3 from 2 s onward). Before this exposure

time, the nCorH+
3

and nCorH+
4

signals are very weak, and the ratio
is uncertain. We can therefore assume that for these measure-
ments d/dt(nCorH+

2
/nCorH+ ) = 0 and d/dt(nCorH+

3
/nCorH+

3
) = 0.

The expressions for the CorH+ to CorH+
2 as well as for the CorH+

3
to CorH+

4 energy barriers can then be written as

E2 = −kBTgas ln

⎛
⎝A3

A2

1

1 + nCorH+

nCorH+
2

⎞
⎠ (5)

E4 = −kBTgas ln

⎛
⎝A5 + A3

nCorH+
2

nCorH3
+

A4

1

1 +
nCorH+

3
nCorH4

+

⎞
⎠ . (6)

From these expressions, we derive the energy barrier E2 as
72 ± 6 meV and E4 as 43 ± 8 meV, as shown in Figure 4(c).
This shows that hydrogenation barriers are decreasing with in-
creasing hydrogenation. However, our results also show that odd
hydrogenated states dominate the mass spectrum even for high
degrees of hydrogenation (Figure 3). This highlights the pres-
ence of a barrier–no-barrier alternation from one hydrogenated
state to another, up to high hydrogenation states. Our results
indicate that even if the hydrogenation barriers decrease for the
first hydrogenations, they do not vanish completely and remain
at higher hydrogenation states. The barriers derived in our study
are similar to the one calculated by Rauls & Hornekær (2008)
for neutral coronene. This means that the first hydrogenations
of coronene cations should be comparable to the hydrogena-
tion of neutral coronene. However, for a higher degree of hy-
drogenation we show that these barriers still exist, while the
calculations from Rauls & Hornekær (2008) predict that these
barriers vanish after a few hydrogenations. Recent mass spectro-
metric measurements of coronene films exposed to H/D atoms
do not show preferences for even or odd hydrogenation states
of neutral coronene (Thrower et al. 2012). However, these mea-
surements are not very sensitive to barrier heights well bellow
100 meV, since the experiments were performed with atoms at
beam temperature of 170 meV.

In PDRs exposed to UV fields less than few hundreds G0,
the spatial distribution of H2 and PAHs does correlate (Habart
et al. 2003, 2005; Compiègne et al. 2007), contrary to what is
seen in the presence of strong UV fields (Tielens et al. 1993;
Berné et al. 2009). The H2 formation rates have been derived

for several PDRs exposed to various UV radiation fields. These
rates can be explained by the contribution of PAHs to the
formation of H2 (Habart et al. 2004). Depending on the UV
intensity, the PAHs observed can be either PAH cations, which
are present in regions at low visual extinctions AV, or neutral
PAHs, which are located at higher extinctions. Wolfire et al.
(2008) and Spaans & Meijerink (2005) have shown that high-
UV and high-density PDRs (nH � 103 cm−3 and G0 � 100 ,
G0 = 1.6 × 10−3 erg cm−3 s−1) can maintain a ∼30% cationic
fraction up to a few mag in AV . More relevant to this work,
Cox & Spaans (2006) have studied low-UV PDRs (G0 � 100),
and followed the PAH charge balance for different densities,
UV radiation fields, and metallicities. They found that PAH
cations dominate over neutrals and anions for AV � 2 mag. The
H2 formation rates observed in PDRs exposed to different UV
fields can therefore be partly attributed to neutral and cationic
PAHs.

Our results show that the hydrogenation processes of neutral
and cationic PAHs are similar and should contribute similarly
to the formation of H2. Further experimental investigations will
allow us to derive the H2 formation rate for PAH cations.

4. CONCLUSIONS

We have investigated the addition of hydrogen atoms to
coronene cations in the gas phase and observed increasing
hydrogenation with H exposure time. Our results show that
odd hydrogenated states dominate the mass spectrum, which
evidences the presence of a barrier for the further hydrogenation
of odd hydrogenation states. The first hydrogen sticks to
the coronene cations without a barrier (Snow et al. 1998;
Hirama et al. 2004). The second and fourth hydrogenations
are associated with barriers of about 72 ± 6 meV and 43 ±
8 meV, while the third and fifth hydrogenation are barrierless.
These barriers are similar to the one calculated for neutral
coronene (Rauls & Hornekær 2008). Our results indicate that
superhydrogenated PAH cations (Li & Draine 2012) should also
be found in the ISM, and be important catalysts for the formation
of H2, as it is the case for their neutral counterparts.

L.B. and S.C. are supported by the Netherlands Organization
for Scientific Research (NWO). G.R. recognizes the funding
by the NWO Dutch Astrochemistry Network. We thank the
anonymous referee for the helpful comments.
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