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Abstract

This paper presents the progicnet programme. It proposes a general frame-

work for probabilistic logic that can guide inference based on both logical

and probabilistic input, and it introduces a common calculus for making

inferences in the framework. After an introduction to the programme as

such, it is illustrated by means of a toy example from psychometrics. It is

shown that the framework and calculus can accommodate a number of ap-

proaches to probabilistic reasoning: Bayesian statistical inference, eviden-

tial probability, probabilistic argumentation, and objective Bayesianism.

The progicnet programme thus provides insight into the relations between

these approaches, it illustrates how the results of different approaches can

be combined, and it provides a basis for doing efficient inference in each

of the approaches.

1 Introduction

While in principle probabilistic logics might be applied to solve a range of prob-
lems, in current practice they are rarely applied. This is perhaps because they
seem disparate, complicated, and computationally intractable. In fact, as we
shall illustrate in this paper, several approaches to probabilistic logic fit into a
simple unifying framework. Furthermore, there is the potential to develop com-
putationally feasible methods to mesh with this framework. A unified framework
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†Department of Engineering and Information Technology, Bern University of Applied Sci-
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§Centre for Research in Artificial Intelligence, New University of Lisbon
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for dealing with logical relations may contribute to probabilistic methods in ma-
chine learning and statistics, much in the way that the notion of causality and
its relation to Bayesian networks have contributed to advances in these fields.

The unifying framework is developed in detail in Haenni et al. [6]. Here we
shall very briefly describe the gist of the whole approach.

1.1 Probabilistic Logic

Probabilistic logic asks what probability (or set of probabilities) should attach to
a conclusion sentence ψ, given premises which assert that certain probabilities
(or sets of probabilities) attach to various sentences ϕ1, . . . , ϕn. That is, the
fundamental question is to find a suitable set Y such that

ϕX1
1 , . . . , ϕXn

n |≈ ψY , (1)

where |≈ is a notion of entailment, X1, . . . , Xn, Y are sets of probabilities and
ϕ1, . . . , ϕn, ψ are sentences of some logical language L. This is a schematic
representation of probabilistic logic, inasmuch as the entailment relation |≈ and
the logical language L are left entirely open.

1.2 The Progicnet Programme

What we call the progicnet programme consists of two basic claims:

Framework. A unifying framework for probabilistic logic can be constructed
around Schema 1;

Calculus. Probabilistic networks can provide a calculus for probabilistic logic—
in particular they can be used to find a suitable Y such that the entailment
relation of Schema (1) holds.

These two claims offer a means of unifying various approaches to combining
probability and logic in a way that seems promising for practical applications.
We shall now take a look at these two claims in more detail.

1.2.1 Framework

The first claim is that a unifying framework for probabilistic logic can be con-
structed around Schema (1). This claim rests on the observation that several
seemingly disparate approaches to inference under uncertainty can in fact be
construed as providing semantics for Schema (1):

Standard Probabilistic Semantics. According to the standard semantics,
the entailment ϕX1

1 , . . . , ϕXn
n |≈ ψY holds if all probability functions P

which satisfy the premisses—i.e., for which P (ϕ1) ∈ X1, . . . , P (ϕn) ∈
Xn—also satisfy the conclusion P (ψ) ∈ Y . The logical language may be
a propositional or predicate language.
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Bayesian Statistical Inference. Under this account, the probabilistic pre-
misses contain information about prior probabilities and likelihoods which
constitute a statistical model, the conclusion denotes posterior probabili-
ties, and the entailment holds if, for every probability function subsumed
by the statistical model of the premisses, the conclusion follows by Bayes’
theorem. Again a propositional or predicate language may be used.

Evidential Probability. Here the language is a predicate language that can
represent statistical statements of the form ‘the frequency of S in refer-
ence class R is between l and u’. The ϕi capture the available evidence,
which may include statistical statements. These evidential statements are
uncertain and the Xi characterise their associated risk levels. The entail-
ment holds if the conclusion follows from the premisses by the axioms of
probability and certain rules for manipulating statistical statements.

Probabilistic Argumentation. Here the language is propositional and the
entailment holds if Y contains the proportion of worlds for which the left-
hand side forces ψ to be true.

Objective Bayesian Epistemology. This approach deals with a propositional
or predicate language. The ϕXi

i are interpreted as evidential statements
about empirical probability, and the entailment holds if the most non-
committal (i.e., maximum entropy) probability function, from all those
that that satisfy the premisses, satisfies the conclusion.

With the exception of the first, these different semantics for probabilistic logic
are presented more fully in the subsequent sections of this paper.

1.2.2 Calculus

In order to answer the fundamental question that a probabilistic logic faces—
i.e., in order to find a suitable Y—some computational machinery needs to be
invoked. Rather than appealing to a proof theory as is usual in logic, the prog-
icnet programme appeals to probabilistic networks. This is because determining
Y is essentially a question of probabilistic inference, and probabilistic networks
can offer a computationally tractable way of inferring probabilities. It turns out
that under the different approaches to probabilistic inference outlined above, it
is often the case that X1, . . . , Xn, Y are single probabilities or intervals of proba-
bility. When that is the case, a Bayesian network (a tool for drawing inferences
from a single probability function) or a credal network (which draws inferences
from a closed convex set of probability functions) can be used to determine Y .
The construction of the probabilistic network depends on the chosen seman-
tics, but given the network the determination of Y is independent of semantics.
Hence the progicnet programme includes a common set of tools for calculating
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Y [6]. Examples of the use of probabilistic networks will appear in the following
sections; here we shall introduce the key features of probabilistic networks and
their role in the progicnet programme.

A probabilistic network is based around a set of variables {A1, . . . , Ar}. In
the context of probabilistic logic, these may be propositional variables, taking
two possible values True or False; if the language L of the logic is a predicate
language, the propositional variables may represent atomic propositions, i.e.,
propositions of the form Ut where U is a relation symbol and t is a tuple of con-
stant symbols. A probabilistic network contains a directed acyclic graph whose
nodes are A1, . . . , Ar. This graph is assumed to satisfy the Markov condition:
each variable is probabilistically independent of its non-descendants, conditional
on its parents in the graph. For instance, the following directed acyclic graph
implies that A3 is independent of A1 conditional on A2:

����
A1

-����
A2

-����
A3

Figure 1: Example of a probabilistic network.

A probabilistic network also contains information about the probability dis-
tribution of each variable conditional on its parents in the graph. In a Bayesian
network, these conditional probabilities are all fully specified; a Bayesian net-
work then determines a joint probability distribution over A1, . . . , Ar via the
relation P (A1, . . . , Ar) =

∏r
i=1 P (Ai|Par i) where Par i is the set of parents of

Ai. In our example, we might have

P (A) = 0.7, P (B|A) = 0.2, P (C|B) = 0.9,

P (B|¬A) = 0.1, P (C|¬B) = 0.4,

from which we derive, for example, P (A∧¬B∧C) = P (A)P (¬B|A)P (C|¬B) =
0.224.

In a credal network, the conditional probabilities are only constrained to lie
within closed intervals. A credal network then determines a set of joint proba-
bility distributions: the set of those distributions determined by Bayesian nets
that satisfy the constraints. For example, a credal network might by satisfied
by the above graph together with the following constraints:

P (A) ∈ [0.7, 0.8], P (B|A) = 0.2, P (C|B) ∈ [0.9, 1],

P (B|¬A) ∈ [0.1, 1], P (C|¬B) ∈ [0.4, 0.45].

In the context of probabilistic logic, we are given premisses ϕX1
1 , . . . , ϕXn

n ,
and a conclusion sentence ψ, and we need to determine an appropriate Y to
attach to ψ. The idea is to build a probabilistic network that represents the
set of probability functions satisfying the premisses, and use this network to
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calculate the range of probabilities that these functions give ψ. As mentioned
above, the construction of the probabilistic network will depend on the chosen
semantics, but common inference machinery may be used to calculate Y from
this network. The approach taken in Haenni et al. [6], §8.2 is to implement this
common machinery as follows. First, compile this network: i.e., transform it
into a different kind of network which is guaranteed to generate inferences in
an efficient way. Second, use numerical hill-climbing methods in this compiled
network to generate an approximation to Y .

In this paper we will illustrate the general approach of the progicnet pro-
gramme by means of an example in which a number of applications can be
exhibited. The example stems from psychology, more specifically from psycho-
metrics, which studies the measurement of psychological attributes by means
of tests and statistical procedures performed on test statistics. This example is
constructed with the aim of bringing out the use of logical relations in proba-
bilistic inference. In the next section we shall introduce the psychometric case
study. In subsequent sections we shall see how the inferential procedures intro-
duced above can be applied to this problem domain, and how they fit into a
single framework within which the progicnet calculus can be utilized.

2 Applying the Progicnet Framework

We now illustrate the progicnet programme with an example on the measure-
ment of psychological attributes. The first subsection introduces the example,
and the second subsection indicates how each of the approaches that is cov-
ered by the progicnet framework can be employed to solve specific problems.
At times, the example may come across as somewhat contrived. If so, this is
because we illustrate all procedures with a single example. Straightforward ap-
plications of the framework and calculus will typically involve two procedures
only.

2.1 A Psychometric Case Study

Psychometrics is concerned with the measurement of psychological attributes
in individuals, for example to do with cognitive abilities, emotional states, and
social strategies. Typically, such attributes cannot be observed directly. What
we observe are the behavioural consequences of certain psychological attributes,
such as a high score in a memory test, a certain reaction to emotionally charged
images, or the characteristics of social interactions in some game. In many
psychometric studies, the psychological attributes are taken as the hidden causes
of these observable facts about subjects, or in short, they are taken as latent
variables. The observable variables, and the correlational structure among them,
are used to derive facts about these latent variables.
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Notice that the general aim of psychometrics fits well with the general out-
look of the progicnet framework. As in the progicnet framework, most psy-
chometric questions start out with a number of probabilistic facts, deriving
directly from the observations, and a number of logical and probabilistic re-
lations among observable and latent variables, deriving from the psychological
theory. The goal is then to find further logical and probabilistic facts concerning
the latent variables, which satisfy the constraints determined by the observa-
tions and the psychological theory. Hence psychometrics lends itself well to a
conceptualisation in terms of the progicnet framework.

Let us make this more concrete in the context of a version of a cognitive
psychological experiment, which we concede is still rather abstract. Say that
we have presented a number of subjects, indexed j, with three cognitive ability
tasks, A, B, and C, which they can either pass or fail. We denote the corre-
sponding test variables by Aj , Bj , and Cj , denoting the scores of subjects j
on the three tests, respectively. Each test variable can be true or false, which,
in the case of Aj , is denoted by the assignments a1

j (or aj) and a0
j (or ¬aj),

respectively.
Imagine further that these tests are supposed to inform us about a psycho-

logical theory concerning three aspects of cognition, two of them to do with
different developmental stages of the subjects and the other with processing
speed. The corresponding latent variables are denoted by Fj , Gj , and Hj ,
respectively. Say that the categorical variables Fj and Gj each discern two de-
velopmental stages, and are thus binary. The processing speed Hj ∈ [0,∞) is
continuous, but for convenience we may view Hj as categorical on some suit-
able scale, taking integer values n for 1 ≤ n ≤ N and N sufficiently large, say
N = 100. The atomic statements in the language are then valuations of these
variables for subjects. For example, b05 or ¬b5 mean that subject j = 5 failed
test B, and h15

3 means that subject j = 3 has a latent processing speed n = 15.
For convenience we collect the variables in Vj = {Aj , Bj , Cj , Fj , Gj , Hj}.

Imagine first that the psychological theory provides the following indepen-
dence relation among the variables in the theory:

∀j 6= k : P (Vj) = P (Vk). (2)

This relation expresses that all subjects are on the same footing, in the sense that
they are each described by the same probability function over all the variables.
Because of this the order in which the subjects are sampled does not matter to
the conclusions we can draw from the sample. Moreover, unless we condition
on observations of specific subjects and assignments, we can omit reference to
the subjects j in the probability assignments to the variables.

Second, imagine that the developmental stages F andG and processing speed
H are independent components in determining the test performance, and further
that test scores are determined only by these latent variables, i.e. conditional
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on the latent variables, the performance on the tests is uncorrelated. The exact
independence structure might be:

P (A,B,C, F,G,H) = P (F )P (G)P (H)P (A|F,G)P (B|G,H)P (C|H). (3)

Both the independence among the subjects j, and the independence relations
between the variables within each subject present strong simplifications to the
psychometric example.

Next to the independence premises, psychological theory might determine
the following relations between assignments to the latent and the observable
variables. All these relations hold for all subjects j, and thus we omit again any
such reference.

f ∧ g → ¬a, (4)

¬g → a, (5)

P (b|g ∧ hn) =
n

N
, (6)

P (c|hn) =
N + n

2N
. (7)

Again these relations may be taken as premises in the progicnet framework,
because each of these relations effectively restricts the set of probability assign-
ments over both latent and observable variables. Or in terms more familiar to
statisticians, the above premises determine a model: they fix the likelihoods of
the hypotheses about subjects. Note, however, the available knowledge about
the outcome of test A, as expressed in Equations (4) and (5), is purely logical
and in this sense qualitative. One of the challenges is to combine such purely
logical constraints with the probabilistic facts given in the other premises.

2.2 Various Approaches in a Unifying Framework

As signalled at the beginning of this section, the reader may feel that the psycho-
metric example is unnecessarily complicated. We hope it will be apparent from
subsequent sections why the example is so multi-faceted. One of the strengths
of the progicnet framework is that it can accommodate a large variety of infer-
ential problems, and we have chosen the example such that all these inferential
problems find a natural place.

Of course a large number of problems on the psychometric example are
essentially statistical. We may want to estimate the probability that a subject
will pass test C given her performance on A and B, or how probable it is that
her processing speed exceeds a certain treshhold. Most of these problems will
be dealt with in Bayesian statistical inference, which is sketched in Section 3.
There we define a probability over the latent variables, by observing a number
of subjects and then adapting the probability over latent variables accordingly.
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Because this type of inference is particularly well-suited for the example, we will
pay a fair amount of attention to it.

Of course there are also statistical inference problems to which Bayesian
statistical inference is not that easily applicable. For example, we might discover
that an additional factor D influences the performance on the tests A, B, and C,
so that we have to revise our predictions over these performances. Alternatively,
we might be given further frequency information from various experimental
studies on the variables already present in the example, say

P (g|b) ∈ [0.2, 0.4], (8)

P (g|c) ∈ [0.3, 0.5]. (9)

On the addition of such information, we can employ inferences that use so-called
evidential probability. It tells us how to employ the discovery of the factor D
in improving predictions, and how to adapt the predictions for G after learning
the further frequency information. Section 4 introduces this approach.

Evidential probability provides solutions to a number of inferential problems
on which Bayesian inference remains silent. But there are yet other problems
for which both these statistical approaches are unsuited, for instance those con-
cerned with logically complex combinations of observable and latent variables.
Say that growing theoretical insight entails that

(a ∧ g) ∨ b. (10)

We might then ask what probability to attach to other complex formulae. As
worked out in Section 5, probabilistic argumentation is able to provide answers
on the basis of a strict distinction between logical and probabilistic knowledge,
and by considering the probability of a hypothesis to be deducible from the
given logical premises. However, answers to such questions will typically be
intervals of probability, which makes actual computations less efficient. Here
objective Bayesianism, as dealt with in Section 6, presents a technique to select
a single probability assignment from all assignments that are consistent with
the premises.

In the next few sections we show that inferential problems such as the above
can be answered by the variety of approaches alluded to in the above, that these
approaches can all be accommodated by the progicnet framework, and that
their accommodation by the framework makes them amenable to the common
calculus introduced in the foregoing. In this way we illustrate the use of this
framework.

3 Bayesian Statistical Inference

This section introduces Bayesian statistical inference, illustrates how it is cap-
tured in the progicnet framework, and finally shows that it can be employed
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to solve inferential problems on the psychometric example. Bayesian statistical
inference is a relatively important approach in this paper. It covers a fairly large
number of the inferential problems in the example, because the example itself
has a statistical nature. However, it also misses important aspects. In subse-
quent sections, we will show how each of the other approaches in this paper can
be used to fill in these lacunas.

3.1 Simple Bayesian Inference in the Progicnet Frame-

work

The key characteristic of Bayesian statistics is that it employs probability as-
signments over statistical hypotheses, next to probability assignments over data.
More specifically, a Bayesian statistical inference starts by determining a model,
or a set of statistical hypotheses that are each associated with a full probability
assignment over the data, otherwise known as likelihood functions, and further
a so-called prior probability assignment over the model. Relative to a model
and a prior probability, the data then determine a so-called posterior distribu-
tion over the model, and from this posterior we can derive expectation values,
predictions, credence intervals, and the like [1, 13].

We may illustrate the general idea of Bayesian inference with the psychome-
tric example of the previous section. In the example, {h1

j , . . . , h
N
j } is a model

with a finite number of hypotheses concerning the latent speed of some subject
j, and Equation (7) determines the likelihoods P (c1j |hnj ) = N+n

2N of the hypothe-
ses hnj for c1j , the event of subject j passing the test Cj . Finally, we might take
a uniform distribution P (hnj ) = 1

N as prior probabilities. With Bayes’ theorem
it follows that

P (hnj |c1j ) = P (hnj )
P (c1j |hnj )
P (c1j )

=
2(N + n)
N(3N + 1)

. (11)

That is, upon learning that subject j passed test Cj , we may adapt the prob-
ability assignment over processing speeds for that subject to the values on the
right hand side. This transition from the prior P (hnj ) to the posterior P (hnj |c1j )
is at the heart of all Bayesian statistical inferences.

It may be noted that the probability of the datum P (c1j ) appears in Bayes’
theorem. This probability may seem hard to determine directly. However, by
the law of total probability we have

P (c1j ) =
N∑
n=1

P (hnj )P (c1j |hnj ) =
3N + 1

4N
. (12)

So relative to a model, the probability of c1j is easily determined. We simply need
to weigh the likelihoods of the hypotheses with the prior over the hypotheses in
the model.
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We can represent the transition from prior and likelihoods to posterior in
the progicnet framework, as it was introduced in Section 1. Recall that in
Schema (1), all premises take the form of restrictions to a probability of a logical
expression, ϕXi

i . However, the likelihoods P (c1j |hnj ) = N+n
2N cannot be identified

directly with probability assignments to specific statements, because c1j |hnj does
not correspond to a specific proposition. They do represent restrictions to the
probability assignments, but rather they are restrictions of a different type.
Since

P (c1j |hnj ) =
P (c1j ∧ hnj )
P (hnj )

,

we may write out this restriction in terms of two related and direct restrictions
to the probability assignments, as follows:(

c1j |hnj
)N+n

2N ⇔ ∀γ ∈ [0, 1] :
(
hnj
)γ and

(
c1j ∧ hnj

)γ N+n
2N . (13)

The left side of this equivalence is the likelihood in the notation of Schema (1),
while the right side fixes the probability of two related propositions in parallel.
In words, we restrict the set of probability functions over the algebra to those
functions for which the ratio of the probabilities of the two propositions c1j ∧hnj
and hnj is N+n

2N .
With this notation in place, all expressions in Equation (11) are seen to be

restrictions to a class of probability assignments, or models for short. More
specifically, the restrictions together determine the set of models uniquely: only
one probability assignment over the hnj ’s and c1j ’s satisfies the restrictions on
the left hand side. But this is not to say that the complete credal set, as
introduced in Section 1, is a singleton. The one probability assignment over the
hnj ’s and c1j ’s can still be combined with any probability assignment over the
other propositional variables.

Still restricting attention to the transition from prior to posterior for the
hypotheses hnj and the data c1j , the Bayesian inference can now be represented
straightforwardly in the form of Schema (1):

∀n ∈ {1, . . . , N} : (hnj )
1
N , (c1j |hnj )

N+n
2N |= (hnj |c1j )

2(N+n)
N(3N+1) . (14)

Equation (14) is a representation of the Bayesian statistical inference, starting
with a model of hypotheses hnj , their priors and likelihoods

P (hnj ) =
1
N
, P (c1j |hnj ) =

N + n

2N
,

and ending with a posterior

P (hnj |c1j ) =
2(N + n)
N(3N + 1)

.

The derivation of the posterior employs standard probability theory and con-
cerns credal sets. It is therefore amenable to the calculus intrduced in Section 1.
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In sum, provided we supply the relevant premises, we can also interpret
inferences within the progicnet framework as Bayesian statistical inferences.
One type of premise concerns the statistical model, the other type of premise
determines the prior probability assignment over the model. From these two
sets of restrictions we can derive, by using the progicnet calculus, a further
restriction on the posterior probability P (hnj |c1j ).

3.2 Bayesian Inference across Subjects

The above makes explicit what Bayesian statistical inference is, and how it
relates to the progicnet framework. In the remainder of this section, we will
show that we can accommodate the psychometric example in its entirety in a
Bayesian statistical inference. That is, we extend Bayesian inference to apply to
all variables and subjects, and we include all probabilistic restrictions presented
in the example. It is noteworthy that this involves additional assumptions to do
with a prior over latent and observable variables. If we want to do without such
assumptions, we must move to one of the other approaches for incorporating
logical and probabilistic relations that this paper deals with.

Recall that the idea of statistical inference is not just that we can learn about
values of variables within subjects, but that we can learn about them across
subjects. For example, from observing the value of Cj for a subject j we should
be able to derive something about the probability assignment over the values Hk

for a different subject k. The independence expressed in Equation (3) determines
in what way this learning across subjects can take place. It expresses that each
subject has a valuation over both latent and observable variables, that is drawn
from the same multinomial distribution P (V ) with V = {A,B,C, F,G,H}. By
learning valuations and expectations over these variables for some subjects, we
therefore also learn the expectations over variables for other, as yet unobserved
subjects. Moreover, the valuations of the variables are not drawn from just any
multinomial distribution over the variables. Because we only have access to the
observable variables, the latter would mean we could never learn anything about
the latent variables. Fortunately the psychometric example offers a number of
relations among latent and observable variables, and these relations restrict the
set of multinomial distributions from which the valuations of the observable
variables are drawn.

To make this specific, consider again the relation between the observable
variables Cj and the latent variables Hj . To keep things manageable we choose
N = 3, so that we have 3 × 2 = 6 complete valuations of Cj and Hj to-
gether. Without further restrictions, we thus have a multinomial distribu-
tion determined by 6 parameters, namely probabilities for each full valuation
P (cij ∧ hnj ) = θk with k = ni+ n, and a restriction that these probabilities add
up to 1, leading to 5 degrees of freedom. We can also parameterise this distri-
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bution differently, with a probability P (hnj ) = θhn for the latent variables hn, a
restriction that these sum to 1, and next to that three conditional probabilities
P (c1j |hnj ) = 1 − P (c0j |hnj ) = θCn . In either case we have a set of multinomial
distributions from which valuations of observed and latent variables may be
drawn.

As suggested in the foregoing, we have some additional restrictions to this set
of distributions deriving from the likelihoods of Hj for Cj : P (c1j |hnj ) = N+n

2N . In
the latter parameterisation of the multinomial distributions, these restrictions
can be accommodated very easily, because they come down to setting parameters
θCn to specific values, namely

θCn =
N + n

2N
. (15)

Once the restrictions given by the likelihoods P (c1j |hnj ) are put in place, all
remaining degrees of freedom in the parameter space derive from the freedom in
the probability over the hypotheses P (hnj ). Every point in the parameter space
θh = 〈θh1 , θh2 , θh3〉 is associated with a particular value for the probability of
the observable variable Cj , according to

Pθh
(c1j ) =

3∑
n=1

P (c1j |hnj )P (hnj ) =
3∑

n=1

N + n

2N
θhn . (16)

Note that these values need not be unique: it may happen, and indeed it does
happen in the example, that several probability assignments over the hnj , or
points θh in the parameter space, lead to the same overall probability for c1j .
Hence observing the relative frequency of values for the variables Cj may not
lead to a unique probability over the hypotheses P (hnj ). In any case, the main
insight is that learning the relative frequency of values for the variables Cj
does tell us something about the probabilities of hnk for some as yet unobserved
subject k.

3.3 Setting up the Statistical Model

The foregoing concludes the introduction into Bayesian statistical inference for
the psychometric example. We will now fill in the details of this approach. The
aim is to specify a Bayesian inference for F , G and H from the observation of
A, B, and C and the relations (4) to (7), along the lines just sketched for H
and C. Readers who are more interested in the complementary tools provided
by the other approaches can skip the present subsection.

As indicated in Section 1, to make actual inferences in the psychometric
example it is convenient to build up a so-called credal network, a graphical rep-
resentation of the probability assignment over all the variables, and to build
up the parameterisation of the multinomial distribution, from which observa-
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tions are drawn, on the basis of this network. By the independence relation of
Equation (3) we have the following network:

����
F -����

A

����
G
��

��
�*

-����
B

����
H
��

��
�*

-����
C

Figure 2: The network for the psychometric case study.

This network captures the independence relations for each subject j sepa-
rately. It expresses exactly the independencies brought out by Equation (3):
conditional on certain latent variables certain test variables are independent of
each other, and the three latent variables are independent of each other as well.

Now that we have pinned down this overall structure of the model, we can fill
in some of the details by means of the relations between latent and observable
variables. More specifically, from the likelihood of Equation (5) we can derive
that

g0
j ∧ a0

j

is false, so that we have P (a0
j |g0

j ) = 0 and hence

P (a0
j |g0

j ∧ f ij) = 0

for i = 0, 1. Similarly, from the likelihood of Equation (4) we can derive that
f1
j ∧ g1

j ∧ a1
j is false, so that we have

P (a1
j |g1

j ∧ f1
j ) = 0.

Equations (6) and (7) provide input to the Bayesian inference even more straight-
forwardly: they fix the values for P (b1j |g1

j ∧ hnj ) and P (c1j |hnj ) respectively. The
nice thing about the above network representation is that its parameterisation,
in terms of probabilities for latent variables and probabilities of observable vari-
ables conditional on these latent variables, allows us to include these restrictions
directly. All the relations between latent and observable variables restrict the
space of multinomial probability distributions, by setting one or more of its
parameters to specific values.

After all these relations have been incorporated, we have narrowed down
the set of multinomial distributions to a specific set, which we may denote P.
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Within this specific set, we have the following degrees of freedom left:

P (a1
j |f0

j ∧ g1
j ) = θA1|F 0G1 , (17)

P (b1j |g0
j ∧ hnj ) = θB1|G0Hn , (18)

P (f1
j ) = θF 1 , (19)

P (g1
j ) = θG1 , (20)

P (hnj ) = θhn . (21)

So for N = 3 we have 7 degees of freedom left in the space of multinomial
distributions. Note that the uncertainty of the likelihoods, Equations (17) and
(18), is quite different from the uncertainty over the latent variables, Equations
(19) to (21). The former uncertainty concerns the evidential bearing that the
observable variables have on the latent variables, while the latter uncertainties
concern the latent variables themselves.

For each point within the above space of multinomial distributions, we can
derive likelihoods for the observable variables A and B, analogously to Equa-
tion (16) for C:

P (a1
j ) = (1− θF 1) θG1 θA1|F 0G1 , (22)

P (b1j ) =
3∑

n=1

θhn

(
θG1

n

N
+ (1− θG1) θB1|G0Hn

)
. (23)

Because Equations (4) to (7) do not pin down all evidential relations, the like-
lihoods for Aj and Bj will also depend on the values of θA1|F 0G1 and θB1|G0Hn .
One possible reaction to this is that we stipulate specific values for the latter
parameters, for instance by the maximum entropy principle. This approach is
developed further in Section 6.

The fully Bayesian reaction, however, is to include the unknown likelihoods
in the space of multinomial distributions, and to work with a second-order prob-
ability assignment over the entire space, which includes parameters pertaining
to the probability of latent variables, and parameters pertaining to observable
variables conditional on latent variables. We then assign a prior probability
assignment to each point in the space of multinomial distributions. And once
we have provided a prior probability over all parameters, we can integrate the
parameters θA1|F 0G1 and θB1|G0Hn out, and come up with a marginal likelihood
for Aj and Bj of all probability assignments over latent variables.

3.4 Bayesian Inference and Beyond

With these last specifications, we are ready to apply the machinery of Bayesian
statistical inference. We have a model, namely the space of multinomial distri-
butions over observable and latent variables, suitably restricted by Equations

14



(2) to (7). And we have a prior probability over this model. So from a sample
of subjects with their scores on the observable variables, we can derive a poste-
rior probability distribution over the possible multinomial distributions, which
entails expectations for the latent variables and test scores of as yet unobserved
subjects. This completes the exposition of a Bayesian statistical inference for
the psychometric example.

But can we accommodate this full Bayesian inference in the progicnet frame-
work? Recall that this framework only takes finite numbers of probability as-
signments as input. However, the space of multinomial distributions used in the
foregoing comprises of a continuum of statistical hypotheses. Fortunately, this
can be solved by making the θ-parameters of the above vary discretely, exactly
like we made the hypotheses Hj on processing speed vary discretely in order to
fit it into the progicnet framework. With this discretisation of the probability
space, we can indeed accommodate the advanced version of Bayesian statisti-
cal inference in the progricnet framework, and use the common calculus to the
inference problems.

There are, however, shortcomings of the Bayesian approach that invite us
to supplement it with other approaches. It depends on the details of the re-
lations between latent and observable variables whether inferences such as the
above can guide us to a unique probability assignment over latent variables. As
repeatedly indicated in the foregoing, different points in the space of multino-
mial distributions may have the same marginal likelihoods for the observable
variables, and in such cases the statistical model is simply not identified. For
example, setting aside the extreme cases, there will always be several probabil-
ity assignments over the latent variables hnj that have maximal likelihood for
the observed relative frequency of c1j . Unfortunately, this paper is too short to
include a discussion of the exact conditions under which this occurs. But we are
sure that if it does occur, the results of the statistical analysis crucially depend
on the prior probability assignment over the model, and in a way that cannot
be resolved by collecting more data.

Shortcomings of this kind call for different approaches to the problem pre-
sented by the psychometric example. To improve on the estimations we might,
for example, try and employ statistical knowledge on test and latent variables
for slightly different classes of subjects. In the next section we will show how ev-
idential probability enables us to employ such knowledge, and furthermore how
this approach is covered by the progicnet framework. Alternatively, we might
try and avoid the use of priors over the model altogether and simply work with
the set of probability assignments determined by the input. This is the ap-
proach of probabilistic argumentation, which is dealt with in Section 5. Finally,
we may also take the preferred element in the set of allowed distributions under
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some preference ordering of probability distributions. This objective Bayesian
approach, finally, is dealt with in Section 6.

4 Evidential Probability

The first of the above suggestions is nicely accommodated by evidential proba-
bility (EP). We will first briefly review EP and then illustrate it in the context
of the psychometric example.

4.1 Introduction into EP

The theory of evidential probability rests on two central ideas [10, 12, 7]: proba-
bility assessments should be based upon relative frequencies, to the extent that
we know them, and the assignment of probability to specific events should be
determined by everything that is known about that event.

The crux of the difference between evidential probability and Bayesian sta-
tistical inference is how approximate joint statistical distributions are handled.
Bayesian statistical methods assume that there are always joint distributions
available for use, whereas evidential probability does not. Instead, EP maintains
that there must be empirical grounds for assigning a joint frequency probability
and that we must accept the uncertainty that attends our incomplete knowledge
of statistical regularities. There are of course many inference problems where
the two approaches perfectly align: both theories agree that Bayes’ theorem
is a theorem. But the two accounts differ sharply in their assessment of the
range of reasonable applications of Bayesian inference structures, and whether
the alternative evidential probability methods are appropriate. See Seidenfeld
[14] and Kyburg [11] for a succinct comparison.

Evidential probability is conditional in the sense that the probability of a
sentence ψ is relative to a finite set of sentences Γδ, which represent background
knowledge. The evidential probability of ψ(j) given Γδ is an interval, [l, u], in
view of our limited knowledge of relative frequencies. Prob(ψ(t),Γδ) = [l, u] ex-
presses that the evidential probability that individual j is a ψ given the relevant
statistical information in Γδ is [l, u], where relevant information in Γδ includes

• the relative frequency information that the proportion of a reference set
R that is also ψ(j) is between l and u percent, and

• the information that the individual j is a member of R,

but excludes

• the relative frequency information of rival reference sets R∗ to which j

belongs that are no stronger than R, and
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• all other frequency information about ψ except those from sets R′ that j
belongs to that are larger than R, i.e., R ⊂ R′.

There may well be several classes that satisfy these conditions with respect to
ψ(j), each with conflicting statistics to associate to j, but there is nevertheless a
unique evidential probability assigned to ψ(j) given Γδ: it is the smallest cover
of the intervals associated with the set of undominated reference formulas.

There are two types of inference in EP, corresponding to direct inference and
indirect inference. First, direct inference, the inference from known frequencies
of ψ in a population that are R to a member t of that population, is effected
in EP by each canonical statement. The statement Prob(ψ(j),Γδ) = [l, u] is an
instance of direct inference. It is straightforward to accommodate this inference
in the progicnet framework, because it essentially relies on a fixed set of prob-
ability assignments. The other type is indirect inference, the inference from an
interval valued probability that an individual j is ψ to an interval valued prob-
ability assignment of ψ in a population R. It is effected in EP by its rules for
adjudicating between strength and conflict among potential reference classes.

EP is much less easily accommodateed in the progicnet framework than other
semantics we consider, because EP employs probability distributions that are
defined over different populations and the semantics for the entailment relation
are determined primarily by rules for resolving conflict among relevant reference
statistics. However, as is further worked out in the progicnet programme, the
error probabilities that are associated with this type of inference can still be
treated within in the progicnet framework.

4.2 Illustration in the Psychometric Example

Since all probability assessments in EP are based upon observed relative fre-
quencies, the probabilistic components of our psychological theory—relations
(6) and (7)—do not have direct expression within EP: there is no place for a
‘latent’ random variable within the theory. Nevertheless, the sentences repre-
senting the psychological theory within EP may include the bi-conditionals

fj ↔ ρ

gj ↔ ρ′

hj ↔ ρ′′

for all j, where each ρi is an open reference formula occurring in some or another
closed direct inference statements in Γδ that effect the constraints described
by (6) and (7). There may be several statistical statements in Γδ in which
each open reference formula appears, of course. We are simply specifying the
potential statistics for our inference problem, and pointing out that the list of
potential statistics are determined by knowledge in Γδ.
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Suppose that we have a particular subject, j = 5. We said at the outset that
EP uses two sources of knowledge for assigning probabilities that concern subject
5: it draws upon knowledge of relevant statistical regularities known to affect
subject 5, and it draws upon everything that is known about that individual,
subject 5. We now demonstrate how each of these features is exercised in EP,
and how this is represented in terms of the fundamental question of the progicnet
framework.

Imagine that we have the medical files on our subjects and that what war-
rants accepting constraint (6) is that none of them have a record of adverse
exposure to lead during childhood, which is taken to be a quantity greater than
10 micrograms of lead per deciliter of blood. However, news reaches us that any
exposure to lead greater than 5 micrograms per deciliter is adverse, and a review
of files reveals that there are subjects in the study who have had exposure above
this threshold. Thus a new parameter is introduced, D, for exposure to lead.

Our theory says that adverse exposure to lead reduces the pass rates for task
B of late development subjects. In other words, (6) is now available in leaded
(d) or unleaded (¬d) grades:

%j(bj , ρ′j ∧ hnj ∧ dj) =
n−m
N

, for some positive m < n (24)

%j(bj , ρ′j ∧ hnj ∧ ¬dj) =
n

N
(25)

So if we know that subject 5 was a late development subject exposed to lead
as a child, we would discount his expected performance category H by m in
predicting his success at task B, and if we know all this about subject 5 but
that he was not poisoned as a child then we would predict his success at B to
be n

N .
And what if we had no pediatric records for subject 5? Here we would expect

a prediction of success on B to be within the interval [n−mN , nN ], since leaded and
unleaded are values of a binary variable and thus represent mutually exclusive
categories. Still we do not know which state subject 5 is in, and it won’t do to
pick some point in between: subject 5 is either a leaded or unleaded subject.
Thus, the evidential probability assigned to the direct inference b5 given that
(24) and (25) are in Γδ, and that no other relevant statistics are known, is the
interval [n−mN , nN ].

Suppose now that we want to know the developmental category G that
subject 5 belongs to, and that Γδ is fixed. We know that there are replacements
for (8) and (9) in Γδ, of the form

%j(ρ′, bj , [0.2, 0.4]), (26)

%j(ρ′, cj , [0.3, 0.5]) (27)

respectively. Sentence (26) expresses that a proportion between 0.2 and 0.4 of
the subjects who pass B belong to observable class ρ′, which has the same truth

18



value as category 1 of G. Sentence (27) expressed that between 0.3 and 0.5 of
the subjects who pass C also belong to observable class ρ, which has the same
truth value in our theory as category 1 of G. Suppose subject 5 has passed B

and has also passed C. What is the probability that he is in category 1? Subject
5 belongs to two references sets, B and C, that yield conflicting probabilities
regarding subject 5’s membership to category 1 of G. There are no reference
sets to which j belongs that offer stronger frequency information, nor are there
larger sets to which either B or C belong. Thus, B and C represent undominated
relevant reference statistics for ρ′. Therefore, EP assigns the shortest cover to
ρ′, [0.2, 0.5]. Thus Prob(g(j),Γδ) = [0.2, 0.5].

Each of these inferences may be represented as an instance of the basic
question,

ϕX1
1 , . . . , ϕXn

n |≈ ψY ,

by substituting ϕX1
1 , . . . , ϕXn

n by Γδ on the left hand side and ψ by an ordered
pair, 〈χ, [l, u]〉, on the right hand side, which expresses that the evidential prob-
ability of formula χ is [l, u]. So, the inference towards Prob(g(j),Γδ) = [0.2, 0.5]
would be represented as∧

i

p%x(τ(x), ρ(x), [l′, u′])1
i
q
∧
j

ϕ1
j |≈ 〈g(j), [0.2, 0.5]〉1,

where the left hand side consists of the conjunction of all direct inference state-
ments (p%x(τ(x), ρ(x), [l, u])1q) and all logical knowledge about relationships
between classes (ϕ1), the entailment relation |≈ is non-monotonic, the right
hand side asserts that the target sentence g(j) is assigned [0.2, 0.5]. That g(j)
is [0.2, 0.5] just means that the proportion of EP models of∧

i

p%x(τ(x), ρ(x), [l′, u′])1
i
q
∧
j

ϕ1
j

that also satisfy g(j) is between [0.2, 0.5]. Since the semantics for |≈ are given by
the rules for resolving conflict rather than by probabilistic coherence, we assign
1 to all premises and also to ψ = 〈g(j), [0.2, 0.5]〉.

This shows that EP fits into the progicnet framework. For statistical infor-
mation that is fully certain the application of the common calculus is uninter-
esting, since the semantics for |≈ is determined by the EP rules for resolving
conflicts among reference statistics. Nevertheless, we can pose a question about
the robustness of an EP inference, where error probabilities are assigned to the
statistical premises. This ‘second-order’ EP inference does utilize the calculus,
and we refer to the joint progicnet paper [6] for details.
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5 Probabilistic Argumentation

In the above we have concentrated on statistical questions concerning the psy-
chometric example. Probabilistic argumentation tackles a different set of ques-
tions that we might ask about subjects and psychological attributes, concerning
the logical relations between the attributes. To some extend such logical rela-
tions can be accommodated by Bayesian statistical inference, as was illustrated
in Section 3. But probabilistic argumentation provides tools for dealing with
logical and probabilistic relations without taking recourse to prior probability
assignments.

5.1 Introduction into Probabilistic Argumentation

In the theory of probabilistic argumentation [3, 4, 5, 9], the available knowledge
is partly encoded as a set of logical premises Φ and partly as a fully specified
probability space (Ω, 2Ω, P ). Variables which constitute the multi-variate state
space Ω are called probabilistic. This setting gets particularly interesting when
some of the logical premises include non-probabilistic variables, i.e., variables
that are not contained in the probability space. The two classical questions
of the probability and the logical deducibility of a hypothesis ψ can then be
replaced by the more general question of the probability of a hypothesis being
logically deducible from the premises. In other words, we use the given logical
constraints to carry the probability measure P from Ω into the state space of
all variables involved.

For this, the state space Ω is divided into an area Args(ψ) = {ω ∈ Ω : Φω |=
ψ} of so-called arguments, whose elements are each sufficient to make the hy-
pothesis ψ a logical consequence of the premises, and another area Args(¬ψ) =
{ω ∈ Ω : Φω |= ¬ψ} of so-called counter-arguments, whose elements are each
sufficient to make the complementary hypothesis ¬ψ a logical consequence of
the premises (by Φω we denote the set of premises obtained from instantiating
the probabilistic variables in Φ according to ω). Note that the premises them-
selves may restrict the possible states in the probability space, and thus serves
as evidence to turn the given prior probability measure P into a (conditional)
posterior probability measure P ′.

The so-called degree of support of ψ is then the posterior probability of the
event Args(ψ),

dsp(ψ) = P ′(Args(ψ)) =
P (Args(ψ))− P (Args(⊥))

1− P (Args(⊥))
, (28)

and its dual counterpart, the so-called degree of possibility of ψ, is 1 minus the
posterior probability of the event Args(¬ψ),

dps(ψ) = 1− P ′(Args(¬ψ)) = 1− dsp(¬ψ). (29)
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Intuitively, degrees of support measure the presence of evidence supporting the
hypothesis, whereas degrees of possibility measure the absence of evidence re-
futing the hypothesis. Probabilistic argumentation is thus concerned with prob-
abilities of a particular type of event of the form “the hypothesis is deducible”
rather than “the hypothesis is true”. Apart from that, they are classical addi-
tive probabilities in the sense of Kolmogorov’s axioms. In principle, degrees of
support and possibility can therefore be accommodated in the progicnet frame-
work.

When it comes to quantitatively evaluate the truth of a hypothesis ψ, it is
possible to interpret degrees of support and degrees of possibility as respective
lower and upper bounds of an interval. The fact that such bounds are obtained
without effectively dealing with probability intervals or probability sets distin-
guishes the theory from most other approaches to probabilistic logic. Note that
the use of probability intervals or sets of probabilities is by no means excluded
in the context of probabilistic argumentation. This would simply lead to respec-
tive intervals or sets of degrees of support and degrees of possibility. Indeed, in
order to solve the psychometrical example from Section 2.1, it turns out that
we need to introduce such intervals of support and possibility.

5.2 Illustration in the Psychometric Example

Looking at the example from Section 2.1 from the probabilistic argumentation
perspective, we first observe that the probabilistic constraints (6) to (9) affect
the variables B, C, G, and H only, whereas variables A and F are tied to
variable G by (4) and (5) on a purely logical basis. This allows us to consider a
set of premises Φ = {f ∧ g → ¬a,¬g → a} and a restricted state space Ω which
includes the variables B, C, G, and H, but not A and F . If further logical
constraints are observed, for example (a∧ g)∨ b from (10) or any other complex
formula, they can be easily incorporated by extending Φ accordingly. The multi-
faceted psychometric example is thus a nice illustration of the setting on which
probabilistic argumentation operates. It also underlines the large variety of
inferential problems the progicnet framework accommodates.

Since the probabilistic constraints in the example do not sufficiently restrict
the possible probability measures relative to Ω to a single function P , we must
cope with a whole set P of such probability measures. Recall that we speci-
fied this set in Section 3, where we identified the space of multinomial distribu-
tions that is consistent with the relations provided in the psychometric example,
Equations (17) to (21). Recall further that for Bayesian inference, even when
it came to inference about a single subject, we needed to define a prior proba-
bility over the model. But probabilistic argumentation does not need any such
prior. Relative to what we have already learnt about a subject, for example that
she passed test A, each P ∈ P in the remaining set of probability assignments
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leads to respective degrees of support and possibility for a given hypothesis, for
example the hypothesis that the subject passes test C.

Moreover, from the fact that all given probabilistic constraints are either
point-valued or intervals, we know that the resulting sets for degrees of support
and possibility will also be point-valued or intervals. Note that hypotheses in-
volving only probabilistic variables B, C, G, or H have equal degrees of support
and possibility, i.e., the two intervals will coincide in those cases, but this does
not hold for hypotheses involving A or F . In general, we may interpret the
numerical difference between respective degrees of support and possibility as
a quantification of the amount of available evidence that is relevant to the hy-
pothesis in question. Besides the usual interpretation of probabilities as additive
degrees of belief, which is central to the Bayesian account of rational decision
making, classical Bayesian inference is not designated to provide such a separate
notion of evidential strength relative to the resulting degrees of belief.

From a computational point of view, however, the step from a fixed probabil-
ity measure to a set of probability measure, as required in our example, makes
the inferential procedure of probabilistic argumentation much more challenging.
As suggested in Subsection 1.2, one solution would be to incorporate the given
constraints over the probabilistic variables into a credal network [2], and to use
that network to compute lower and upper probabilities for the events Args(ψ)
and Args(¬ψ) to finally obtain respective bounds for degrees of support and
possibility. Thus, the progicnet framework neatly accommodates inferences in
probabilistic argumentation that employ interval-valued degrees of support and
possibility (for corresponding algorithms and technical technical details we refer
to [6]).

As inference in credal networks still gets extremely costly, even for small or
mid-sized networks, the solution sketched above is not always a satisfactory way
out. More promising is the idea of choosing (according to some principles) the
“best” probability measure among the ones in P, and then proceed as in the
default case. The next section proposes a possible strategy for this.

6 Objective Bayesianism

To some extent the previous sections have had the idea of the progicnet frame-
work as an epistemological scheme in the background: the inferences in the
psychometric example tell us what to believe on the basis of the input provided.
In objective Bayesianism, this perspective is brought to the fore. To answer the
questions posed at the end of Section 2.1, they are recast explicitly in terms
of the strengths of one’s beliefs. For example, given background knowledge,
assumptions and data—such as Equations (2) to (7)—and the observed per-
formance of a subject on tests A and B, how strongly should one believe that
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the subject will pass test C? By reformulating the questions this way, one can
invoke the machinery of Bayesian epistemology.

6.1 Bayesian Epistemology and Objective Bayesianism

According to the Bayesian view of epistemology, the strengths of our beliefs
should be representable by real numbers in the unit interval, and these num-
bers should satisfy the axioms of probability: an agent should believe a tautol-
ogy to degree 1 and her degree of belief in a disjunction of mutually exclusive
propositions should equal the sum of her degrees of beliefs in those individual
propositions. Thus the strengths of the agent’s beliefs should be representable
by a probability function P . Moreover, an agent’s degrees of belief should be
compatible with her background knowledge, assumptions, data and evidence
(which we shall collectively call her epistemic background or simply evidence
E). The notion of compatibility can be explicated by principles of the following
kind:

1. If a proposition is in her evidence, then the agent should fully believe it.

2. The agent’s degrees of belief should match her best estimates of the phys-
ical probabilities: if the agent knows that 70% of subjects who pass A
and B also pass C, and she knows that the subject in question has passed
A and B, but no other relevant facts, then she should believe that the
subject will pass C to degree 0.7.

3. If no probability function fits the evidence using the above principles—
the evidence is inconsistent—then some consistency maintenance strategy
should be invoked. E.g., deem a probability function to be compatible
with the evidence if it is compatible with a maximal consistent subset of
the evidence.

4. If two probability functions are compatible with the evidence then so is
any function that lies between them; if a sequence of probability functions
are compatible with the evidence then so is the limit of that sequence.

Via principles 1 and 2 the evidence E imposes constraints χ on the agent’s
degrees of belief. The set of probability functions that satisfy these constraints
will be denoted by Pχ. If this set is empty we may need to consider a set P′χ
that is obtained by a consistency maintenance procedure (principle 3). Invoking
principle 4 we consider the convex closure [P′χ] of this set of probability functions.
Then E, the set of probability functions that are compatible with the evidence
E , is just [P′χ]. See Williamson [15], §5.3 for a more detailed discussion of these
principles and their motivation.

Subjective Bayesian epistemology holds that an agent should set her de-
grees of belief according to any probability function in E—she can subjectively

23



choose which function to follow. Objective Bayesian epistemology, on the other
hand, holds that while an agent’s degrees of belief should be compatible with
her evidence, her degrees of belief should equivocate on issues that are not
decided by this evidence. Thus the agent’s degrees of belief should be set ac-
cording to a function PE in E that is maximally equivocal. Where the domain
is specified by a finite set Ω of elementary outcomes, the function in E that is
maximally equivocal is the function in E that is closest to function P= which
gives the same probability 1/|Ω| to each elementary outcome. (P= is called
the equivocator .) Distance from the equivocator is measured by cross entropy
d(P, P=) =

∑
ω∈Ω P (ω) logP (ω)/P=(ω) =

∑
ω∈Ω P (ω) log(|Ω|P (ω)). Distance

from the equivocator is minimised when entropy −
∑
ω∈Ω P (ω) logP (ω) is max-

imised, and so this procedure is often called the Maximum Entropy Principle
or maxent for short. On a finite domain, there will be a unique function PE

that is closest to P= in E, so the agent has no choice about what degrees of be-
lief to adopt—they are objectively determined by her evidence. (On an infinite
domain—such as that determined by an infinite predicate language—there are
cases in which degrees of belief are not objectively determined; nevertheless, PE
tends to be very highly constrained, leaving little room for subjective choice.)

Note that this equivocation requirement yields a substantial difference be-
tween subjective and objective Bayesian epistemology. If a doctor knows nothing
about a particular patient, she is perfectly entitled, on the subjective Bayesian
account, to fully believe that the patient does not have particular ailment A.
On the objective Bayesian account, however, the doctor should equivocate—i.e.,
she should believe that the patient has A to degree 1

2 . This equivocation con-
straint is motivated by considerations of risk. More extreme degrees of belief
tend to be associated with riskier actions: with a full belief in ¬A the doctor
is likely to dismiss the patient, who may then deteriorate or perish, but with
degree of belief 1

2 the doctor is likely to seek further evidence. Now one should
not take on more risk than the evidence demands: if the evidence forces a full
belief then so be it; if not, it would be rash to adopt a full belief. Thus one
should equivocate as far as evidence allows. This line of argument is developed
in Williamson [17].

The objective Bayesian approach fits into the progicnet programme as fol-
lows. First, objective Bayesian epistemology provides a semantics for the prob-
abilistic logic framework of Schema (1): ϕX1

1 , . . . , ϕXn
n |≈ ψY . According to

this semantics, the premisses ϕX1
1 , . . . , ϕXn

n are construed as characterising the
agent’s evidence E . Here ϕXi

i is understood as saying that the physical prob-
ability of ϕi is in Xi (perhaps as determined by appropriate frequency infor-
mation). This evidence imposes constraints χ on an agent’s degrees of belief,
where χ = {P (ϕ1) ∈ X1, . . . , P (ϕn) ∈ Xn}. The set of probability functions
compatible with this evidence is E = [P′χ]. An agent with this evidence should
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adopt degrees of belief represented by a function PE in E that is maximally
equivocal. The question arises as to what value PE gives to ψ, and one can
take Y = {PE(ψ) : PE ∈ E is maximally equivocal}. On a finite domain Y will
be a singleton. Thus objective Bayesianism provides a natural semantics for
Schema (1). Now according to the progicnet programme, probabilistic networks
might be used to calculate Y . Indeed, as we shall now see, objective Bayesian
nets can be used to calculate Y .

6.2 Illustration in the Psychometric Example

Returning to the psychometric case study, the objective Bayesian approach pro-
vides the following recipe. Equations (2) to (7) and the subject’s performance
on tests A and B constitute the evidence E . We should then believe that the
subject will pass C to degree PE(C), where PE is the maximally equivocal prob-
ability function out of all those that are compatible with E .

In general, objective Bayesian nets can be used to calculate objective Bayesian
probabilities Williamson [16] and Williamson [15], §§5.6–5.8. The idea here is
that the objective Bayesian probability function PE can be represented by a
Bayesian net, now called an objective Bayesian net, and standard Bayesian net-
work algorithms can be invoked to calculate the required probabilities, such
as PE(C). Because this probability function is a maximum entropy probabil-
ity function it will automatically satisfy certain probabilistic independencies and
the graph in the Bayesian network that represents these independencies is rather
straightforward to construct. Join two variables by an undirected edge if they
occur in the same constraint of E . Then separation in the resulting undirected
graph implies independence in PE : if X separates Y from Z in the graph then
it is a fact that PE renders Y and Z probabilistically independent conditional
on X. This undirected graph can easily be transformed into a directed acyclic
graph that is required in a Bayesian net.

The example of Subsection 2.1 is actually a very special case. Here Equa-
tion (2) is a consequence of the objective Bayesian procedure: since there are
no known connections between different subjects in E , PE will render the fea-
tures of different subjects probabilistically independent. In this example we
also have a causal picture in the evidence, namely that depicted in Figure 2,
where the latent variables F , G and H are causes of the test results. When we
have a causal graph, the graph in the objective Bayesian network is just this
graph [15, §5.8], and hence the factorisation of Equation (3) is also a conse-
quence of the objective Bayesian procedure. The evidence can thus be viewed
as the causal graph Figure 2 together with the constraints Equations (4) to
(10). Since we have the graph in the objective Bayesian net, it remains to de-
termine the conditional probability distributions, i.e., the distributions PE(F ),
PE(G), PE(H), PE(A|F,G), PE(B|G,H), PE(C|H). Since the causal structure

25



is known, these distributions can be determined iteratively: first determine the
distribution PE(F ) that is maximally equivocal, then PE(G), and so on up to
PE(C|H) [15, §5.8]. By iteratively maximising entropy we obtain:

PE(f) = 1/2, PE(a|f, g) = 0, PE(b|g, hn) = n/N,

PE(g) = 1/2, PE(a|f,¬g) = 1, PE(b|¬g, hn) = 0.4,

PE(hn) = 1/N, PE(a|¬f, g) = 1/2, PE(c|hn) = (N + n)/2N,

PE(a|¬f,¬g) = 1.

With these probability distributions and the directed acyclic graph we have a
Bayesian network and can use standard Bayesian network methods to answer
probabilistic questions. For example, how strongly should we believe that sub-
ject j will pass C given that she has passed tests A and B?

PE(cj |aj , bj) =

∑
fj ,gj ,hj

PE(c|hj)PE(b|gj , hj)PE(a|fj , gj)PE(fj)PE(gj)PE(hj)∑
fj ,gj ,hj

PE(b|gj , hj)PE(a|fj , gj)PE(fj)PE(gj)PE(hj)

=

∑
fj ,gj ,hj

PE(c|hj)PE(b|gj , hj)PE(a|fj , gj)∑
fj ,gj ,hj

PE(b|gj , hj)PE(a|fj , gj)

=
24N(3N + 1) + (N + 1)(5N + 1)

6N(21N + 5)
= 0.61 as N −→∞.

With the more extensive evidence of Equations (2 to (10), the procedure is just
the same, though of course the conditional distributions and final answer differ
from those calculated above.

From a computational point of view, the objective Bayesian approach is
relatively straightforward for two reasons. First, there is only a single proba-
bility function PE under consideration. As we have seen, other approaches deal
with sets of probability functions. Second, since this function is obtained by
maximising entropy, we get lots of independencies for free; these independen-
cies permit the construction of a relatively sparse Bayesian net, which in turn
permits relatively quick inferences.

Computationally feasibility is one reason for preferring the objective Bayesian
approach over the Bayesian statistical methods of Section 3, but there are oth-
ers. A second reason is that the whole approach is simpler under the objective
Bayesian account: instead of defining (higher-order) probabilities over statistical
models one only needs to define probabilities over the variables of the domain.
It may be argued that the move to higher-order probabilities is only warranted
when the evidence includes specific information about these higher-order prob-
abilities. Such information is generally not available.

A third argument for preferring the objective Bayesian approach appeals
to epistemological considerations. Since Bayesian statistics defines probabili-
ties over statistical hypotheses, these probabilities must be interpreted episte-
mologically, in terms of degrees of belief—it makes little sense to talk of the
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chance or frequency of a statistical model being true. Hence the Bayesian
statistical approach naturally goes hand in hand with Bayesian epistemology.
Typically, Bayesian statisticians advocate a subjective Bayesian approach to
epistemology—probabilities should fit the evidence but are otherwise a mat-
ter of subjective choice. As we have seen, however, there are good reasons for
thinking that this is too lax: such an approach condones degrees of belief that
are more extreme than the evidence warrants, and degrees of belief that are too
extreme subject the believer to unjustifiable risks and so are irrational.

Hence Bayesian statistics should minimally be accompanied by a principled
way to determine reasonable priors, such as is provided by objective Bayesian
epistemology. While there is a growing movement of statisticians who advocate
such a move, it is well recognised that objective Bayesian epistemology is much
harder to implement on the uncountable domains of Bayesian statistics than
the finite domain considered here. This is because there may be no natural
equivocator on an uncountable domain (c.f. the discussion of the wine-water
paradox in Keynes [8]), unless we can provide an argument to favour a particular
parameterisation of the domain.

For lack of a preferred parameterisation, we have a dilemma: Bayesian
statistics needs to be accompanied by a Bayesian epistemology; if a subjective
Bayesian epistemology is chosen then Bayesian statistics is flawed for normative
reasons; on the other hand if an objective Bayesian epistemology is chosen then
there are implementational difficulties; moreover, the move to higher-order prob-
abilities should only be made where absolutely necessary. Such a move is not
absolutely necessary in the example of this paper. It may be argued, therefore,
that in the context of the case study considered here, the objective Bayesian
approach outlined in this section is more appropriate than the Bayesian statis-
tical approach of Section 3. Minimally, it will provide a valuable addition to the
statistical treatment considered there.

7 Conclusion

In this paper we have sketched a number of different approaches to combining
logical and probabilistic inference. We showed how each of these approaches can
be used to answer questions in the context of a toy example from psychomet-
rics, how each approach can be subsumed under a unifying framework, thereby
making them amenable to a common underlying calculus. But what exactly did
we gain in doing so? We give a number of reasons for saying that the formula-
tion of framework and calculus, as part of an overarching progicnet programme,
amounts to progress.

First of all, we hope to have shown that the standard statistical treatment
of the psychometric example, in this case using Bayesian statistics, can be sup-
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plemented in various ways by other approaches to logical and probabilistic in-
ference. The progicnet programme provides a way to unify these approaches
systematically. More specifically, and as illustrated in the psychometric exam-
ple, the progicnet framework allows us to supplement the statistical inference
that is standard in the psychometric context with some powerful inference tools
from logic, all subject to the same calculus. We believe that there are many
cases, in the sciences and in machine learning, in which the context provides a
lot of logical background knowledge. The psychometric example is one of them,
but many more such examples can be found in data mining, bioinformatics,
computational linguistics, and sociological modelling. In all of these fields the
existing statistical techniques cannot optimally employ the logical background
knowledge. The progicnet framework may provide the means to use logical and
statistical background knowledge simultaneously, and in a variety of problem
domains.

More specifically, let us reiterate the conclusions on the use of the different
approaches, that were reached in the preceding sections.

Bayesian statistical inference allows for dealing with the standard inferen-
tial problems of the psychometric example. In this paper it serves as a
backdrop against which the merits of the other approaches covered by
the progicnet framework can be made precise. Note that this is not to say
that Bayesian statistical inference occupies a central place in the progicnet
framework more generally.

Evidential probability is particularly suited if we learn further statistical
information that conflicts with the given statistical model or introduces
further constraints on it. It provides us with the tools to incorporate
this new information and find trade-offs, where Bayesian inference must
remain silent.

Probabilistic argumentation can be employed to derive upper and lower
bounds on the probability assignments on the basis of the statistical model
and the logical relations between the variables in the model only, without
presupposing any prior probability assignments. This is very useful for
investigating the properties of the model and the probabilistic implications
of logical relations.

Objective Bayesianism offers a principled technique for reducing a set of
probability assignments, such as the statistical model of the example, to a
single probability assignment. For complicated models with many param-
eters, this provides a powerful simplification, and thus efficient inferential
procedures.

Other reasons for using a common framework are more internal to the philo-
sophical debate. The field of probabilistic inference is rather disparate, and
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discussions over interpretation and applications frequently interfere with dis-
cussions to do with formalisation and validity. Perfectly valid inferences in one
approach may appear invalid in another approach, and even while all approaches
somehow employ Kolmogorov’s measure theoretic notion of probability, what is
being measured by probability, and consequently the treatment of probability in
the approaches, varies wildly. We hope that by providing a common framework
for probabilistic logic, we help to structure the discussions, and determine more
clearly which disagreements are meaningful and which are not.

Finally, the existence of a common framework also proves useful on a more
practical level. Now that we have described a common framework, we can apply
the common calculus of credal networks to it. As indicated in Section 1, and
roughly illustrated in Section 3 and 6, credal networks can play an important
part in keeping inferences manageable in probabilistic logic. More generally, the
application of these networks will lead to more efficient inferences within each
of the approaches involved. We must admit, however, that in the confines of
the present paper, we have not explained the advantages of using networks in
detail. For the exact use of credal networks in the progicnet programme, we
again refer the reader to the central progicnet paper [6].
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