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with José Luis Moraga-González, and am looking forward to have more of them.

I am very grateful to the members of the Research School SOM, Rina Koning,

Ellen Nienhuis, Astrid Beerta, and our former and current PhD coordinators Dirk

Pieter van Donk and Martin Land, respectively, for their support and help in solv-

ing all kinds of administrative and legal issues. I also appreciate the assistance of

Rina Koning and Ellen Nienhuis in organizing the translation of the Dutch sum-

mary of my thesis, which was proofread and “corrected” by Erik Dietzenbacher.

Thanks a lot.

The indirect role of other people outside academia is not at all less important. In

fact, it energized and stimulated me equally in going on with my research. Friends

unquestionably make up one of the principal parts of a social life outside work. I

would like to express my deepest gratitude to my lifelong friends Muhsinjon Ah-

madov, Sulaimon Shohzoda, Sorbon Fozilov, Khushvakhtsho Pirmamadov, Farid

Davlatshoev, Shodi Abdulvosiev, and Behruz Gulruzov for the happy, unforget-

table times we had together in Khorog and/or Bishkek, for keeping our friendship



iv

strong and alive, and for knowing that whatever happens they are always ready to

share with me my happiness or sadness. Indeed, having real friends is an invalu-

able part of our everyday life, that is what my parents taught me, and that is what

I strongly believe in. And I am extremely happy to possess this priceless asset of

life. Later on, in Bishkek, Prague and Groningen, the group of lifelong friends was

expanded with Pakeeza Shirinova, Zarina Izmailova, Zamira Yusufjonova, Artem

Protsenko, Tigran Poghosyan, Matilda Dorotic, and Froukje Schaaf. It was my plea-

sure that Artem and Ira’s son Victor was born in Groningen while they were visiting

us in May 2009. I am also glad that Matilda and Froukje – my Croatian and Dutch

friends are accompanying me as paranymphs during the defence.

I want to thank Stanislav Stakhovych and Ksenya Stakhovych for being our

closest family friends in Groningen. Indeed, our frequent meetings and trips across

the Netherlands were always inspiring and joyful. Further, it was always (and is)

my pleasure to have non-academic talks with Jutta Bolt, Tamara Markova, César

Garcı́a Dı́az, Maaike Bouwmeester, Jiang Xuemei, Yusuf Saari, Pei Jiansuo, Janneke

Pieters, Gaaitzen de Vries, Abdul Azeez Erumban, Aljar Meesters, Reitze Gouma,

Vaiva Petrikaite, Tu Phan, Vo Van Dut, Ana Moreno Monroy, Anton Sugonyako,

Adriana Krawczyk, Addisu Lashitew, and Ilya Voskoboynikov. I very much en-

joyed playing volleyball for two years with VV Kroton, hence I thank all my team-

mates and other members of this wonderful club with whom I spent part of my

social life in Groningen. I would like to thank all other friends, my teachers and

colleagues, and apologize for not mentioning their names due to space constraints.

Finally and most importantly, I would like to express my special thanks to all

my family members. Adiba, thank you very much for your unconditional love

and support. Thank you for your heroic tolerance towards my late working days.

The last three years it was namely you who brought more light and sense into my

life. I am happy that I met you in the summer of 2006, and am looking forward to

spending the rest of my life with you.

Temursho, Mehrangez (my only sister), Safaralibek and Sherzodjon, thank you

for being very loyal and respectful younger brothers and sister. Sorry for not being

physically close to you for almost eleven years now. I would like to thank my

aunt Aziza, who supported me in every respect when I was studying in Khorog.

I express also my gratitude to all my other close relatives, who always made my

visits home so special.

And, of course, my parents! Whatever I achieved today and will achieve in the

future is only your merit. I am indebted to my father Khilvatsho and mother Niyoz-



v

begim, who always stimulated me to acquire knowledge, provided me with their

irreplaceable love, support, and understanding, which I will need forever. Nanjonat

Tatjon, qulughi bisyor Tamard tama mehnatat sabru toqatard. Uz rostiyath disga jumlaen

navirimide Tamard khu hissiyotat fikrienat khu hurmat nisbati Tama bayon kinum, mu

fikrard disga gapenen nist. Qulugh Tamard tama Mehrat Muhabbatjatat, khushbakhtiyat

puragii mash fuk khonaet ca. Lak fukvakhtath dar amoni Mavloyat sihatat salomat viet!

Mam khu kitob uz Tamard bakhshidayum.

Umed Temurshoev

January 22, 2010

Groningen, the Netherlands





Contents

1 Prologue 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Industrial organization and finance . . . . . . . . . . . . . . . . . . . . 2

1.3 The link to network economics and social network analysis . . . . . . 5

1.4 Interindustry economics and game theory . . . . . . . . . . . . . . . . 7

1.5 Outline of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Some general notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Ownership relations in the presence of cross-shareholding 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Basics of the Leontief-type model of ownership structure . . . . . 16

2.3 A measure of ownership network complexity . . . . . . . . . . . . . . 19

2.4 An empirical application to the banking sector in the Czech Republic 24

2.4.1 Analyzing the ownership structure . . . . . . . . . . . . . . . . 24

2.4.2 Visualizing the ownership structure . . . . . . . . . . . . . . . 29

2.4.3 Ownership network complexity and separation of dividend

and control rights . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.A The list of primary and secondary owners of the banking sector in

the Czech Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.B The initial property distribution of the banking sector in the Czech

Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Cross-shareholding in the Japanese banking sector 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Profits of horizontally interrelated firms . . . . . . . . . . . . . . . . . 51

3.3 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



viii Contents

3.4 Empirical estimation and results . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Comparison with related studies . . . . . . . . . . . . . . . . . 64

3.4.4 Market power test . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Partial cross ownership and tacit collusion under cost asymmetries 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Tacit collusion absent PCO . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Tacit collusion with unilateral partial ownership by firm 1 . . . . . . 80

4.4 Tacit collusion with multilateral PCO . . . . . . . . . . . . . . . . . . . 83

4.4.1 The accounting profits under PCO . . . . . . . . . . . . . . . . 83

4.4.2 Collusion with multilateral PCO . . . . . . . . . . . . . . . . . 86

4.4.3 A firm increases its stake in a rival firm by buying shares from

an outsider or from the rival’s controller . . . . . . . . . . . . . 88

4.4.4 A firm increases its stake in a rival firm by buying shares from

another rival firm . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.5 Conditions for firm 1 to be the maverick . . . . . . . . . . . . . 94

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Key groups in networks and their optimal size 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 The problem of selecting the appropriate target . . . . . . . . . . . . . 103

5.2.1 Key player search . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Key group search . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Key player/group search: accounting for players’ exogenous hetero-

geneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Optimal size of the key group . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Application to a covert network example . . . . . . . . . . . . . . . . 119

5.6 Concluding comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



Contents ix

6 Identifying optimal sector groupings with the hypothetical extraction me-

thod 135

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Formalizing the hypothetical extraction problems . . . . . . . . . . . 138

6.2.1 Finding the key sector . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.2 From individual key sector to key group . . . . . . . . . . . . 143

6.2.3 The key group problem is not equivalent to the sequential key

sector problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.4 The key group problem in an interregional setting . . . . . . . 149

6.2.5 The key sector/group problem in a net IO setting . . . . . . . 150

6.3 The link to the fields of influence approach . . . . . . . . . . . . . . . 153

6.4 Connection to game theory . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5 Application to the Australian economy . . . . . . . . . . . . . . . . . 160

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.B Codes assigned to 136 Australian sectors . . . . . . . . . . . . . . . . 173

7 Epilogue 175

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3 Related future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.1 Engines of growth: a hypothetical extraction approach . . . . 180

7.3.1.1 Productivity analysis of spillovers . . . . . . . . . . . 180

7.3.1.2 Engines of growth from a hypothetical extraction

perspective . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3.2 On interregional feedbacks in input-output models . . . . . . 186

7.3.3 Algorithmic considerations of the group intercentrality and

group worth measures . . . . . . . . . . . . . . . . . . . . . . . 190

7.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 197

Samenvatting (Summary in Dutch) 211





List of Tables

2.1 Matrices T and Y for the banking sector in the Czech Republic, end

of 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 WADILs and WADTLs for the banking sector in the Czech Republic,

end of 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Control rights according to the “weakest link” approach for the Czech

banking sector (in %) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Matrices C and P + SC for the banking sector in the Czech Republic,

end of 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Simple correlation between ownership network complexity measures

and the degrees of separation of control and dividend rights . . . . . 41

3.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Empirical results (year 2003, obs.= 63) . . . . . . . . . . . . . . . . . . 62

3.3 Market power test of the Japanese commercial banks in 2003 . . . . . 68

5.1 Centrality and intercentrality measures . . . . . . . . . . . . . . . . . 120

5.2 Similarity matrix of the covert network in Figure 5.2 . . . . . . . . . . 122

5.3 The α-weighted centrality and residual aggregate activity . . . . . . . 127

6.1 A hypothetical IO table and the relative group output worths . . . . 147

6.2 Relative group factor worths in the gross and net IO settings . . . . . 153

6.3 Relative group factor worths of Australian industries, 1994-1995 . . . 162





List of Figures

1.1 A rough sketch of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Indirect connection between PO6 and SO11 for the banking sector in

the Czech Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Indirect linkages for the banking sector in the Czech Republic . . . . 31

2.3 Indirect linkages for the Czech banking sector, based on the matrix T

and WADTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Identification of control rights of PO6 according to the “weakest link”

methodology (without threshold) . . . . . . . . . . . . . . . . . . . . . 38

3.1 Partial ownership relations among the Japanese banks . . . . . . . . . 61

4.1 Illustrating Assumption 3 . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 PCO structure resulting in lsj = lsilij/lii . . . . . . . . . . . . . . . . . 90

5.1 Decomposition of the cross effects . . . . . . . . . . . . . . . . . . . . 104

5.2 A hypothetical example of the covert network . . . . . . . . . . . . . 119

5.3 Hierarchical dendrogram of the covert network in Figure 5.2 . . . . . 123

5.4 Key group intercentrality and losses ( α = β = 1, γ = ν = 0.1 and

φ = 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 The network of interindustry transactions . . . . . . . . . . . . . . . . 148





CHAPTER 1

Prologue

1.1 Introduction

This thesis was supposed to be only about cross ownership of firms, which was

reflected in the title of my research proposal “The consequences of cross-shareholding

for ownership structures and economic behavior”. The following quotation from this

proposal, written in May 2006, gives a brief description of my original research

intentions: “... this project aims at theoretically and empirically (i) constructing

and analyzing national and (inter-) regional frameworks of ownership structures,

(ii) quantifying the complex network of direct and indirect property relations, and

(iii) studying the implication of cross-shareholding for several topics in industrial

organization”. Of course, as is, in general, the case for the majority of PhD theses,

the current final output addresses only parts of the main issues in my proposal.

Other issues addressed in this thesis were not included in the proposal, and were

raised and investigated “along the way”.

It is obvious that interdependencies of any kind at very different levels (e.g.,

individuals, firms, industries, regions, countries) may have a crucial impact on

and implications for the activity of agents involved in such networks of bilateral

and multilateral interactions. Therefore, it is not surprising that economists devote

considerable attention to the complex interrelations between economic agents. As

mentioned above, the aim of this research was to analyze the consequences of cross

ownership of firms on their behavior and ownership structure. To give a simple

example that sketches the complex network of interdependent owners, suppose

that individual A owns a share in company B, which has a share in company C.

In its turn, firm C owns a share in B. A few readily observable implications of
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such shareholdings are the following. Although individual A has no direct inter-

est in C, there is an indirect relation via B. If the operating surplus (profits from

ordinary production) of C increases, A benefits through its shares in B. If the op-

erating surplus of B increases, A benefits not only directly but also indirectly (for

instance, via the gains in C that are beneficial to B again). It turns out that using

ownership distributions of private stockholders and companies, one can derive an

analytical framework that totally redistributes ownership from firms to the “real”

equityholders (e.g., individuals, the state, municipalities), which provides a basis

for evaluating the true ownership structure of an economy. As a result many inter-

esting questions arise: What is the value of the property embedded in shares that

real owners hold in companies? How to assess decision making power in the pres-

ence of complex ownership links between firms? What is the role of the state or

any other owner? What are the implications of firms’ cross ownership on control

power of shareholders, and does it have any impact on tacit collusive arrangements

of firms? What is the effect of cross-shareholding on prices, outputs, profits, and

social welfare? What happens if the structure of cross-shareholding changes? And

many more.

While studying these issues, I came across the paper by Ballester et al. (2006)

on finding a key player in social networks, where the key player exerts the largest

impact on the overall (equilibrium) activity of the network.1 This important study

raised some related questions to me, focusing on which ultimately resulted in two

papers that constitute two chapters (5 and 6) of this thesis. By doing so I also

crossed the borders of my original research plan, from topics mainly in Industrial

Organization to issues in such fields as Network Economics, Interindustry Eco-

nomics and Social Network Analysis. In what follows these issues will be discussed

in more detail.

1.2 Industrial organization and finance

Often it is argued that Continental Europe and Japan have an enterprise oriented

system of ownership structure, while the Anglo-American system is market ori-

ented. One of the important factors in determining such orientation of the own-

ership structure of an economy is the presence or absence of complex webs of in-

tercorporate holdings. These are believed to play a prominent role in Continental

1 I would like to thank José Luis Moraga-González for bringing this paper to my attention, and the
industrial organization reading group of the University of Groningen, led by Marco Haan, that made
me to delve deeper into the topic.
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Europe and Japan. The question is how this ownership complexity can be quanti-

fied (which was, in fact, the second point of my original research proposal). Chap-

ter 2 focuses on this issue, where two types of owners are distinguished: primary

owners that own intermediary institutions but cannot be owned themselves (e.g.,

individuals, the state, municipalities), and secondary owners that can own other

intermediary institutions but are surely owned themselves by other owners (e.g.,

companies, banks, industrial corporations). In quantifying ownership interrelated-

ness both the size of direct and indirect shareholdings and the “average distance”

between primary owners and secondary owners are taken into account. The latter

is obtained from the average number of secondary owners via whom ownership

links between primary owners and secondary owners run. Combining the link-

age size and the distance allows us to visualize the cross-shareholding interlocks

and the true ownership relations in an industry (economy). The methodology is

applied to the banking sector in the Czech Republic, where the complexity of the

network of relations between primary and secondary owners are quantified, and

the relevant shareholding chains are graphed.

Chapter 2 further explores the link between the proposed measures of own-

ership network complexity and the degree of separation of dividend and control

rights, widely studied in the finance literature. To give an idea of the issue at stake,

suppose we have the following ownership chain: A → B → C. That is, firm A

owns a share in firm B, which in its turn owns a share in company C. Hence,

although the dividend rights of A in firm C are zero, there is an indirect owner-

ship connection via B that makes it possible for firm A to have positive control

rights in C (which may be very large depending of the size of these direct share-

holdings). Thus, it is not surprising that there are ample studies in Finance that

focus on the issue of separation of ownership and control rights due to pyramid-

ing ownership structures and cross-holdings. It is obvious that in the presence of

mutual cross-shareholdings the chains of ownership stakes are not at all easy to

trace. Thus, quantifying the control power embedded in such complex ownership

networks is also far from trivial. For example, using the well-known “weakest

link” methodology that defines the minimum stake along the ownership chain as

the corresponding control right is simply unpractical. This is because in the pres-

ence of cross-shareholdings there exists an infinite number of ownership paths of

different lengths. On the other hand, our proposed measures of ownership com-

plexity fully take into account such means of enhancing control as non-pyramidal

cross ownership links, where also the sizes of shareholdings and distances between
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owners are explicitly accounted for. Hence, we consider these indicators as alter-

native measures of the separation of ownership and control rights. That is, the

more complex the network of non-negligible relations is, the larger is the degree of

control enhancement due to cross-shareholding links among firms. Therefore, also

the difference between the control and the ownership stakes of primary owners in

secondary owners is larger. The empirical results confirm this for the Czech bank-

ing sector, where the results are compared to the “weakest link” and “dominant

shareholder” approaches of identifying control rights.

In reality, shareholdings are often silent (or partial) by their nature, meaning that

they do not give control power for their owners. However, as partial cross owner-

ship (PCO) results in commonality of interests of firms engaged in such sharehold-

ing interlocks, it is interesting to investigate what are the effects of PCO on the

market performance and market power of the individual firms in an industry. This

is the subject of study in Chapter 3. For this purpose we modify the well-known

framework of the “structure-conduct-performance paradigm” for estimating firms’

market power and the degree of tacit collusion inherent to the market by consider-

ing both direct and indirect PCO holdings among firms. It is shown that, unlike in

the no-PCO case, the link between firms’ price-cost margins and the degree of tacit

collusion is nonlinear in the presence of PCO. Thus, if PCO is present, ignoring it

will most likely lead to biased results due to model misspecification. The modified

framework is applied to the Japanese banking sector in 2003. We find that Japanese

banks compete in a modest collusive environment. If, however, PCO is neglected,

the results indicate a Cournot oligopoly. Further, it is shown that banks with pas-

sive holdings in rivals exert a strictly larger market power than those without any

PCO. In particular, city banks with many shareholdings are found to exercise a

much larger market power than regional banks with none or few stockholdings.

Hence, the hypothesis is confirmed that acquiring shares in rivals is one of the cru-

cial means for a firm to enhance its market power.

Passive investments of firms in rivals were either granted a de facto exemption

from antitrust liability or have gone unchallenged by antitrust agencies in recent

cases. However, recently Gilo et al. (2006) showed that there are cases in which

PCO arrangements can facilitate tacit collusion among rival firms, hence such a le-

nient approach towards passive investments in rivals may be misguided. However,

Gilo et al. (2006) assumed that firms are symmetric and have the same marginal cost

functions. Chapter 4 relaxes this assumption and examines the effect of PCO on the

incentives of asymmetric firms to collude. Unlike Chapter 3, which studies some-
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what similar issues in a one-period conjectural variations setting, Chapter 4 posits

an infinitely repeated Bertrand oligopoly model. We first consider the case where

only the most efficient firm in the industry invests in rivals. Since there are no other

firms involved in partial ownership acquisition, we refer to this case as partial own-

ership (PO) case. (PCO, on the other hand, indicates that more than one firm are

involved in stockholdings, thus could mutual shareholdings are possible.) It is

shown that even unilateral partial ownership by this firm may facilitate a market-

sharing scheme in which all firms charge the same collusive price and divide the

market between them. Unlike the case where firms have the same marginal costs,

here firms have different monopoly prices on which they wish to collude, and the

collusive price is assumed to be a compromise between the monopoly prices of the

different firms. We show that when the most efficient firm invests in rivals, the

collusive price increases relative to the case where there are no PO arrangements.

Further, Chapter 4 shows that in the case of multilateral PCO arrangements an

increase in the stake that firm r holds in firm s will never hinder collusion and it will

strictly facilitate collusion if and only if (i) the industry maverick (the firm with the

strongest incentive to deviate from a collusive agreement) has a direct or indirect

stake in firm r, and (ii) firm s is not the industry maverick. When either (i) or (ii) fails

to hold, the increase in firm r’s stake in firm s does not affect tacit collusion. These

results extend the earlier findings in Gilo et al. (2006) and show that the results

for firms with symmetric cost functions generalize to the asymmetric costs case.

Then Chapter 4 investigates the effect of a transfer of PCO between firms on tacit

collusion, and shows that depending on the initial structure of shareholdings of

firms directly involved in the ownership transfer, tacit collusion may be facilitated,

be hindered, or remain unchanged.

1.3 The link to network economics and social network

analysis

In the sociology literature, the problem of identifying the most important actors in

social networks has been studied extensively, and still remains an essential topic

of concern. In particular, within the field of Social Network Analysis a vast num-

ber of indicators, the so-called network centralities, have been proposed in order

to identify key actors in networks. For example, the best-known and most often

used measures are centralities of degree, closeness, betweenness, information, Katz

status measure, and Bonacich centrality (see e.g., Wasserman and Faust, 1994, pp.
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169-219).

A similar problem from an economic perspective was first analyzed by Ballester

et al. (2006), who introduce a network game, where actors’ payoffs depend on each

other through network embeddedness. Players choose a level of activity in a game

with negative global externalities (e.g., competition) and local positive externali-

ties (e.g., learning, collaboration) that come through the network. Obviously, such

system has feedback effects, which are taken into account in the Nash equilibrium

activity levels that are dependent on the underlying network topology. The au-

thors show that individual equilibrium levels of agents are proportional to their

Katz-Bonacich centrality measures. Hence, they provide a behavioral foundation to

the status measure of Katz (1953) and the network centrality measure of Bonacich

(1987). However, these measures are not sufficient to identify a key player – the

player with the largest impact on the overall equilibrium outcome. Hence, Ballester

et al. (2006) propose a new measure of network centrality, named the intercentrality

measure, that is derived from the planner’s optimization concern. Since it inter-

nalizes all the network payoff externalities of agents, the intercentrality measure

identifies the key player.

Chapter 5 considers a more general setting of finding a key group in such net-

work games, and also takes explicitly players’ ex ante heterogeneity into account.

Similar to the key player definition, the key group is a group of players that ex-

ert the maximum possible impact on the overall equilibrium activity level of the

network. It should be noted that the assumption of ex ante identical players in

the search of a key player used in Ballester et al. (2006) is quite restrictive from a

practical point of view, because in that case all observable differences between in-

dividuals are ignored. These heterogeneity factors include, for example, a player’s

age, education, occupation, race, gender, parents education, or family size. We

show that once this exogenous heterogeneity is accounted for, the results of the key

player/group problem may change dramatically. In searching for the key group

we make use of weighted and unweighted Katz-Bonachich (KB) centralities and

group intercentrality measures, where the weights are the observable differences of

the players.

Chapter 5 also endogenizes the size of the key group. The need for such endo-

genization arises because in reality targeting a certain set of players also incurs

costs, next to benefits. In a majority of cases, these benefits and costs are directly re-

lated to the group size. As an example, suppose that a planner wants to maximally

disrupt the functioning of a network of criminals in some location. It is obvious that
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the larger the size of the key group of criminals is, the larger is the benefit in terms

of reducing criminal activity in this society. However, there are costs involved in

the “elimination” of criminals, such as costs related to gathering information, time,

hiring people, and other costs for planning and implementation of such an anni-

hilating aim. All these costs are generally higher for a larger key group. We show

that within the class of network games studied in Ballester et al. (2006) the op-

timal size of the key group is determined by the minimal key group loss measure

that depends on players’ weighted and unweighted KB centralities and key group

intercentralities, and the costs of group targeting.

1.4 Interindustry economics and game theory

The key group problem within the network games discussed in the previous sec-

tion has a close relation (at least, technically) to the problem of finding key sectors

in the framework of input-output (IO) linkage analysis. Key sectors are the indus-

tries with the largest potential of spreading growth impulses throughout the econ-

omy. There are several methods for identifying key sectors in Interindustry Eco-

nomics, but for our purposes we focus on the hypothetical extraction method (HEM)

developed in the 1960s, which is extensively used in the IO literature. The HEM

in identifying key sectors measures the importance of industries in terms of their

contribution to the overall gross output of an economy by extracting them from the

production structure. We show that this approach is similar to that of finding the

key player in a social network in Network Economics and Social Network Anal-

ysis, where players are eliminated from the network of local interactions, which

enables one to quantify these players’ marginal contribution to the overall activity

level and/or network functioning.

The main contribution of Chapter 6 to the literature on key sectors identification

from the HEM perspective is that it distinguishes between and explicitly formulates

the optimization problems of finding a key sector and a key group of sectors, and de-

rives analytical solutions for these problems in terms of simple measures called

industries’ factor worths. The term “factor” refers to any indicator that is of interest

in identifying the most important industries. This might be any social, environ-

mental, and/or economic factor (e.g., employment, water use, GDP, etc.), or any

combination of these factors. Our formal formulation of the HEM problems has

several important implications, one of which is that the key group of k > 1 sec-

tors is, in general, different from the set of top k sectors with the largest individual
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contributions to the overall factor production/consumption. This is confirmed in

the empirical application of the key sector and the key group problems to the Aus-

tralian economy in case of water use and CO2 emissions. This (expected) finding is

important, since up to date, to the best of our knowledge, the linkage literature (im-

plicitly) accepted the top k sectors (selected on the basis of the key sector problem)

as the key group. Technically speaking, this incongruence is due to the fact that

while the key sector problem looks for the effect of the (hypothetical) extraction of

one sector, the key group problem considers the effect of a simultaneous extraction

of k ≥ 2 sectors that takes differently into account the cross-contributions of the

extracted industries to total factor arising within and outside the group. Its eco-

nomic interpretation has to do with what sociologists call the redundancy principle

(see e.g., Burt, 1992). In the IO framework, this means that sectors might be redun-

dant with respect to each other if they have similar patterns of production linkages

with other industries, and similar structures of final demand and factor generation

capabilities. Hence, the optimal target should consist of rather nonredundant sec-

tors that have different patterns of (significant) interindustry linkages and factor

generation ability. Therefore, which sectors will be part of the key group is largely

dependent on the (dis)similarity of the production linkage patterns of sectors to

each other and of their final demand and factor generation structures. At this point

we have to mention that the redundancy principle also plays an important role in

identifying the key group of players within the network games that are discussed

in detail in Chapter 5.

Revealing the connection of the HEM to the well-known fields of influence ap-

proach in the IO literature (Sonis and Hewings 1989, 1992) gives an alternative

economic interpretation of the HEM problems in terms of the overall impact on

aggregate factor generation due to an incremental change in sectors’ input self-

dependencies. Further, we explore the related issues of finding the key region and

the key group of regions in an interregional IO setting, and discuss the effect of net-

ting out (nullifying) the intrasectoral transactions on industries’ (or regions’) factor

worths. Also discussed in Chapter 6 is the link of the (generalized) HEM approach

of finding the key sector to the coalitional game literature on fair allocation of gains

from cooperation. In particular, the properties (axioms) of the well-known Shap-

ley value are given, and it is elaborated whether these properties also hold for the

industry’s factor worth. Hence, there is also a connection to Game Theory, and to

measuring the power of players, in particular.
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1.5 Outline of the study

A rough sketch of the present study is presented in Figure 1.1. As mentioned in

the previous sections, the interdependencies that we are interested in are of three

types, namely, cross ownership (or shareholding interlocks) of firms, social net-

works, and intersectoral relations. Obviously, since these interrelationships are dif-

ferent in their own nature, the analytical frameworks that are used in their anal-

ysis are also different. Hence, there are several well-established and seemingly

independent fields of economics and sociology that are the focus of this study. As

discussed in some detail in the previous sections these are Finance, Industrial Orga-

nization, Network Economics, Social Network Analysis, Interindustry Economics,

and Game Theory.

It is worth noting, however, that all the issues considered in this work are closely

related, because in the end the analysis boils down to focusing on all kinds of im-

pacts due to the presence of the complex networks of linkages between firms, in-

dividuals, and/or sectors of an economy. Moreover, the mathematical techniques

developed for one type of analysis (say, in Interindustry Economics) can be read-

ily used to address related issues in the other fields (e.g., Industrial Organization,

Network Economics). For example, the well-known open Leontief model in Input-

Output Analysis, which is capable of quantifying both direct and indirect sectoral

relations in an economy, is quite useful in modeling and analyzing cross owner-

ship links of firms and easily allows to distinguish between the direct and indirect

shareholdings. As will be discussed in the text this setting has important theoret-

ical and practical implications. Similarly, our Lemmas 5.1 and 6.2 that are in fact

mathematically equivalent, are the building blocks of the studies in Chapter 5 and

Chapter 6. Thus, they directly connect the analysis of key players search in net-

work games and key sectors identification in an input-output setting. Therefore,

this thesis in fact shows that the above mentioned fields are not totally indepen-

dent of each other, but are closely related, at least, when the focus is the analysis of

interdependencies.

Some main issues of each chapter are also given Figure 1.1. For example, one

of the main aims of Chapter 5 is the study of the problem of identifying key group

of players in social networks, where the observable differences (or exogenous het-

erogeneity) of individuals are taken into account. This links our study to the Net-

work Economics’ topics on network games. But since in the course of this analysis

such important sociology notions as centrality measures and redundancy principle

play a crucial role, there is also a close relation to the Social Network Analysis of
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Figure 1.1: A rough sketch of the thesis
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finding the most important actors in networks. Similarly, Chapter 6 extends the

traditional hypothetical extraction method (HEM) in Interindustry Economics in

finding a key sector with the maximum potential of spreading total output growth

impulses throughout the economy to the problem of identifying a key group of

sectors with the highest economy-wide impact on factor generation/consumption.

This generalized HEM is then linked to another widely used approach in the same

field, namely, the fields of influence method, which will be also discussed in detail

in the chapter. The solutions of the HEM problems have direct connection to the

intercentrality measures (discussed in Chapter 5) and the so-called Shapley value

in the coalitional game literature. The Shapley value identifies the worth (or impor-

tance) of each participant of the coalition to its functioning. In this way, Chapter 6

also discusses briefly this link to Game Theory.

1.6 Some general notations

Due to the nature of our study, matrix algebra will be extensively used throughout

the book. Therefore, it makes sense to introduce some important notations at this

point.
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Vectors and matrices. Adopting usual convention, matrices are given in bold, capital

letters (e.g., X); vectors in bold, lower case letters (e.g., x); and scalars in italicized,

lower case letters (e.g., x). Vectors are columns by definition, thus row vectors

are obtained by transposition, indicated by a prime (e.g., x′). x̂ denotes the n × n

diagonal matrix with the elements of the vector x on its main diagonal and zeros

elsewhere. The zero matrix and the zero vector are, respectively, denoted by O and

0. The summation vector ı consists of ones, i.e., ı′ = (1 1 · · · 1).

Matrix (and vector) inequalities. The following notation for inequalities between ma-

trices (and vectors) is adopted.

X ≤ Y means xij ≤ yij for all i and all j;

X < Y means X ≤ Y, but X 6= Y, i.e., xij ≤ yij for all i, j, with at least one strict

inequality;

X � Y implies xij < yij for all i and all j.





CHAPTER 2

Ownership relations in the

presence of cross-shareholding∗

2.1 Introduction

The ownership structure of an economy is nowadays often characterized by a com-

plex network of interdependent owners. For example, individual A owns a share

in company B, which has a share in company C. In its turn, C owns a share in B.

Although A has no direct interest in C, there is an indirect relation via B. If the

operating surplus of C increases, A benefits through its shares in B. If the operating

surplus of B increases, A benefits not only directly but also indirectly (for instance,

via the gains in C that are beneficial to B again). This is just a very simple case, but

it suffices to sketch the setting. Using pure accounting identities, Bolle and Güth

(1992) constructed a general model of such interdependent property structures and

arrived at the Leontief input-output scheme (see also Turnovec, 1999, 2005). In par-

ticular, they showed that eliminating all indirect ownership relations results in the

final or true distribution of property over the individual owners.

There is a huge body of literature on ownership structures, but only few papers

deal with the indirect effects arising from the so called “cross-shareholding” of com-

panies. Due to cross-shareholding, companies have indirect interests in each other.

In the literature this structure of ownership and control is also called an “insider

system”, which is an integral feature of Japanese, German and Swedish business

groups in particular (see e.g., Kester, 1992). Franks and Mayer (1995) distinguish

∗ A shorter version of this chapter is published in the Journal of Economics, vol. 95, no. 3, pp. 189-212,
2008 (joint work with Erik Dietzenbacher).
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two types of ownership structures: insider and outsider systems. An insider (or

enterprise-oriented) system has a small number of listed companies, an illiquid

capital market with infrequent trade of ownership and control, and complex sys-

tems of intercorporate holdings. In contrast, an outsider (or market oriented) sys-

tem is characterized by the existence of a large number of listed companies, a liquid

capital market with frequent trade of ownership and control rights, and few inter-

corporate holdings. In general, it is believed that Continental Europe and Japan

have an insider system of ownership structure, while the Anglo-American system

is market oriented.

Although indirect interests (such as the one sketched above) have been recog-

nized in the literature (see e.g., Bresnahan and Salop, 1986; Reynolds and Snapp,

1986; Flath, 1989, 1991), only few papers take them into full account by implement-

ing such interests in the models that are used. For example, Ellerman (1991, 1995)

studies the cross ownership relations between corporations and uses the input-

output framework to develop the so called primal and dual theories of ownership

and control. His model is particularly relevant for control questions and the propor-

tional representation scheme in voting systems. In a series of papers, Flath (1992a,

1992b, 1993) measures indirect shareholding for six major keiretsu groups in Japan.

He shows that indirect shareholding in these groups is large, and should not be

neglected because there are gains from indirect shareholding (which might explain

the existence of keiretsu groups). Such gains were quantified by Dietzenbacher et

al. (2000) in an empirical study for the Dutch financial sector. The effects of cross-

shareholding for collusion were studied by Reitman (1994); Alley (1997); Gilo et al.

(2006) and in Chapter 3 of this thesis.

The cross-shareholding of companies may result in a complex network of in-

terdependent relations between economic agents.1 Analyzing complexity and re-

latedness of national production structures has induced a considerable amount of

input-output research (going back to Yan and Ames, 1965). In this study we want

to quantify ownership interrelatedness (and ownership network complexity) in an

economy between primary owners (e.g., individuals, the state, municipalities, indi-

viduals’ non-profit associations) and secondary owners (e.g., companies, banks, in-

dustrial corporations) that is the consequence of cross-shareholding links. In doing

so, we take into account not only the size of direct and indirect shareholdings, but

1 It should be noted that the term “cross-shareholding” as used in the industrial organization literature
includes all kinds of ownership relations that are distinguished in the finance literature. These include
the pyramiding structure, one-sided shareholdings, and mutual (reciprocal) shareholdings (which also
includes “ring-form” links).
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also the “average distance” between primary owners and secondary owners. The

latter is obtained from the average number of secondary owners via whom such

shareholding links between primary owners and secondary owners run. Combin-

ing the linkage size and the distance, allows us to visualize the cross-shareholding

interlocks and the true ownership relations.

Taking indirect ownership relations into full account has important theoretical

and empirical implications. First, a primary owner may indirectly own a substan-

tial part of some secondary owner, although there may be no direct interest at all.

Using the observed property distribution for various purposes (e.g., valuing the

property embedded in shares that primary owners hold in secondary owners, as-

sessing decision making power, identifying the role of the state or any other pri-

mary owner, finding the distribution of national property or profits) may be quite

misleading. In the presence of cross-shareholding, the observed direct ownership

distribution may be very different from the true property distribution that incorpo-

rates indirect linkages as well.

Second, quantifying indirect ownership relations allows for comparing different

sectors in an economy and/or different economies. In some cases, however, qual-

itative judgments are immediately clear because the shareholding matrices exhibit

certain characteristics (such as reducibility).

Third, it would be of interest to link measures of indirect property relations to

financial performance indicators. For example, the empirical evidence of the effect

of cross-shareholding on corporate performance is ambiguous (see e.g., Prowse,

1990; Flath, 1993; Lichtenberg and Pushner, 1994; Weinstein and Yafeh, 1995, 1998;

Morck et al., 2000; Yafeh and Yosha, 2003). The stable shareholding in Japan, which

persisted for almost three decades, began to unwind dramatically in the 1990s.2

This raised many questions about causes, effects and implications of the changes

in the Japanese ownership structure. Quantifying ownership relations may shed a

new light on the link between ownership structure and corporate performance.

Finally, there is a clear link between our measures of ownership network com-

plexity and the degree of separation of dividend and control rights, widely studied

in the finance literature (see e.g., La Porta et al., 1999, 2002; Bebchuk et al., 2000;

Claessens et al., 2000; Faccio et al., 2001; Faccio and Lang, 2002; Attig and Gad-

houm, 2003; Gadhoum et al., 2005; Dorofeenko et al., 2008). Cross-shareholding is

2 According to Nippon Life Insurance Research Institute the stable shareholder ratio, defined as the
ratio of shares owned by commercial banks, insurance companies, and other non-financial firms (busi-
ness partners and the parent company) to the total of issued shares of listed firms (calculated on a value
basis), was 45% in the early 1990s, but decreased to 27% in 2002.
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one of the most important control enhancement devices and our proposed mea-

sures of distance take this into full account. We show that, as a consequence, our

distance concept can be used as an alternative measure of separation of ownership

and control. Ownership relations that are more complex and non-negligible in size

may be expected to exhibit a larger gap between dividend and control rights.

The rest of this chapter is organized as follows. Section 4.2 describes the Leontief-

type model of property structure. New measures of ownership network complexity

are developed in Section 4.3. The method has been applied to the banking sector

of the Czech Republic, the results of which are discussed in Section 4.4. Also in

that section we explore the link to the finance literature, studying the separation of

ownership and control. The summary and conclusions are presented in Section 4.5.

2.2 Basics of the Leontief-type model of ownership

structure

The main point of departure is the model of property structure, developed by Bolle

and Güth (1992) to study a complex network of interdependent owners (see also

Turnovec, 1999, 2005). Essentially, there are two types of economic agents: prin-

cipal or primary owners (e.g., individuals, the state, municipalities) and interme-

diary or secondary owners (e.g., companies, banks, industrial corporations). Prin-

cipal owners can own intermediary institutions, but cannot be owned themselves.

Intermediary institutions can own other intermediary institutions, but are surely

owned themselves (by primary and other secondary owners). Due to this cross-

shareholding of intermediary owners, principal owners may have no (or little) di-

rect interest in some intermediary owner, but a huge indirect interest (via other

secondary institutions).

Suppose there are m primary owners and n secondary owners. The n×m matrix

P gives the direct primary property distribution. Element pik indicates the share in

company i (= 1, . . . , n) that is held by primary owner k (= 1, . . . , m). The n × n

matrix S denotes the secondary property distribution. That is, element sij gives

the share in company i that is held by company j (= 1, . . . , n).3 It is assumed that

the shares are all non-negative and that their sum equals one. That is, ∑n
j=1 sij +

∑m
k=1 pik = 1 holds for all i. In matrix notation we thus have Sın + Pım = ın,

3 Usually, it is assumed that no secondary owner holds shares in itself, so that the main diagonal of S is
zero. However, as noted in previous chapters, this assumption is not always true because due to the tax
advantage of capital gains, the share repurchases have recently become the dominant payout policy for
corporations. From a mathematical point of view, it is no problem to allow for sii > 0.
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where ın, for example, indicates the n-dimensional summation vector consisting of

ones. This assumption simply states that any secondary owner i is totally owned

by principal and other intermediary owners.

P and S give the direct property distributions that are actually observed. Elim-

inating indirect ownership relations results in a total property distribution, which

may be significantly different from the observed ownership scheme. The first step

in eliminating indirect ownership relations follows from the observation that pri-

mary owner k directly holds a share pik in company i, but it also holds a share phk

in company h which holds a share sih in i itself. This holds for all h, so that pri-

mary owner k holds an indirect share in i that amounts to ∑n
h=1 sih phk and which

runs via one intermediate owner. The link k → h → i thus involves two steps,

which indicates the “distance” between k and i. The “two-step” indirect property

distribution is given by the matrix SP. In the same way, primary owner k also holds

an indirect share in i via two intermediate owners and thus involving three steps

(i.e., k → h → l → i). This yields the “three-step” indirect property distribution

∑n
l=1 ∑n

h=1 silslh phk, which is element (i, k) of matrix S2P. And so forth.

Taking all such indirect property distributions into consideration (next to the

direct initial property structure), gives the total property distribution. It is given

by (I + S + S2 + S3 + · · · )P, where I denotes the identity matrix. It is well known

that the power series expansion of a non-negative matrix S equals (I− S)−1, under

certain conditions. In the present context, it suffices to assume that for each sec-

ondary owner, there is a primary owner that holds a positive share, i.e., matrix P

has some positive element in each row (see Takayama, 1985 for a concise overview

of all mathematical details). This implies that the total or “true” property distribu-

tion is given by the matrix

T = (I− S)−1P. (2.1)

Because Sın + Pım = ın implies (I−S)ın = Pım, we have ın = (I−S)−1Pım = Tım.

This means that T satisfies the properties of a distribution. Note that in the end,

all property is owned - directly or indirectly - only by principal owners, and all the

secondary owners are left with nothing.

The primary property distribution matrix P with direct shareholding gives the

direct ownership relations that are also observed in practice. The indirect relations

run via one or more secondary owners and are given by the matrix

Y = (S + S2 + S3 + · · · )P = [(I− S)−1 − I]P = T− P. (2.2)
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An alternative formulation yields Y = S(I + S + S2 + · · · )P = S(I− S)−1P = ST.

Consider a simple example of a hypothetical ownership structure with two prin-

cipal owners (PO1 and PO2), and three secondary owners (SO1, SO2, SO3). The

observed primary and secondary property distributions P and S are

P =


0.4 0

0.3 0.3

0 0.3

 and S =


0 0.5 0.1

0.4 0 0

0.7 0 0

 .

The matrix T with the true property distribution and the matrix Y with indirect

property distribution become

T =


0.753 0.247

0.601 0.399

0.527 0.473

 and Y =


0.353 0.247

0.301 0.099

0.527 0.173

 .

This example exhibits several features that are characteristic for cross-shareholding.

First, note that each primary owner has an indirect interest in every secondary

owner. Second, while PO1 holds no direct shares in SO3, it turns out that indirectly

it owns no less than 53% of the property of SO3, which is more than the property

held by PO2, who has a direct share of 30% in SO3. The same applies (albeit to a

lesser extent) for the ownership of SO1 by PO2. Third, both primary owners hold a

direct share of 30% in SO2, whereas the true property distribution shows that PO1

owns 50% more than PO2 does. The example clearly shows that focusing only on

the observed property distribution in P may be quite misleading.

The element tik of matrix T gives the direct and indirect property of secondary

owner i that is held by primary owner k.4 Denote the elements of L ≡ (I− S)−1 by

lij. Then (2.1) implies that tik = ∑n
h=1 lih phk, where lih phk indicates the part of the

property tik that is embedded in the share that primary owner k holds in secondary

owner h. This implies that for determining what is embedded in a certain share,

the elements lij are crucial. For our example we find

L = (I− S)−1 =


1.370 0.685 0.137

0.548 1.274 0.055

0.959 0.480 1.096

 .

For instance, the elements in the first column show that a 10% direct share in SO1

4 Dorofeenko et al. (2008) calls the element tik the imputed ownership share of investor k in firm i.
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held by some primary owner, embeds 13.7% of the property of SO1 (as follows from

l11), 5.5% of the property of SO2 (from l12), and no less than 9.6% of the property

of SO3 (from l13). In contrast, holding a 10% direct share in SO3 embeds only 1.4%

of the property of SO1, 0.6% of SO2, and 11.0% of SO3. Similar direct shares (e.g.,

of 10%) in secondary owners may thus embed true property holdings that are very

different. This suggests that the matrix L may also play a role for the value of the

shares.

If the value of the secondary owners is known, we can determine the value of

the property that is embedded in, for example, a 1% share in secondary owner j.

Let v′ denote the row vector of the values for the firms (i.e., secondary owners).

Then the jth element of the row vector 0.01 × v′L gives the value embedded in a

1% share in secondary owner j. In the example above, suppose that the values

of the firms are equal to each other (say 100v). It then turns out that a 1% share

in secondary owner 1 is worth 2.877v, 2.439v in case of owner 2, and only 1.288v

for a 1% share in secondary owner 3. So a share in secondary owner 3 is worth

much less than a share in the other secondary owners. It is now also possible to

evaluate the properties of the primary owners. The kth element of the row vector

v′LP = v′T gives the property value of primary owner k. If we suppose again that

the values of the firms are the same, it follows that primary owner 1 has a property

of 63% of the total property (i.e., v′ı = v1 + v2 + v3) and primary owner 2 only 37%.

This is in sharp contrast to the finding - which follows from the observed data -

that the primary owners hold similar amounts in secondary owners.5 Note that the

entire property of the secondary owners is distributed over the primary owners, as

follows from v′Tım = v′ın.

2.3 A measure of ownership network complexity

Given the importance of the indirect relations (or linkages), we will study the com-

plexity of their underlying network. It turns out in the empirical analysis that this

allows us to get some insight into the hidden property structures. As will be clear

from the next section, the network complexity measure is a useful indicator of se-

paration of control and ownership rights, since the more complex is the system of

non-negligible ownership links, the larger is the control power on firms exerted

by primary owners through firms cross-holdings. Secondly, network complexity

5 That is, PO1 holds 40% of SO1 and 30% of SO2, while PO2 holds 30% of both SO2 and SO3. These
holdings are fairly similar, because in this example all secondary owners were assumed to have the same
value.
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measures can be used for comparative analysis. For instance, one economy can be

compared with an other in terms of the overall degree of complexity of indirect re-

lations, which identifies the market– or enterprise–orientedness of their ownership

structures.

The complexity of the indirect ownership relations between principal and in-

termediary owners is quantified by their weighted average distance. Distance is

defined as the number of intermediary owners via whom the relation runs, plus

one. For example if the link between a primary owner k and a secondary owner i

runs through secondary owner h (i.e., k → h → i), the distance is 2. It indicates

the number of steps that are required to get from k to i. The weighted average

distance is defined as one plus the average number of participating intermediary

owners. In determining the latter average, we use a technique originally developed

in the context of input-output models by Harthoorn (1988) and later extended by

Dietzenbacher et al. (2005).

Consider the matrix of indirect property relations

Y = (S + S2 + S3 + · · · )P = SP + S2P + S3P + · · · . (2.3)

Denote element (i, k) of matrix SrP as (SrP)ik. In building up the total indirect

relation yik, a share (SP)ik/yik reflects all relations with distance 2 (i.e., running

through exactly one secondary owner). Note that element (i, k) of matrix SP yields

∑n
j=1 sij pjk, where the relationship sij pjk between primary owner k and secondary

owner i runs through secondary owner j. In the same way, the share (S2P)ik/yik

gives the connections between k and i with distance 3 that run via two secondary

owners, because ∑n
j=1 ∑n

h=1 sihshj pjk. In general, the share (SrP)ik/yik gives all indi-

rect relationships with distance r + 1 that require r secondary owners.

The weighted average distance between primary owner k and intermediary

owner i is given by the weighted average of the distances r + 1 with corresponding

weights (SrP)ik/yik, where r = 1, 2, 3, . . .. That is,[
2(SP)ik + 3(S2P)ik + 4(S3P)ik + · · ·+ (r + 1)(SrP)ik + . . .

]
/yik

=
1(SP)ik + 2(S2P)ik + 3(S3P)ik + · · ·+ r(SrP)ik + · · ·

yik
+ 1.

(2.4)

The second line of (2.4) is due to the fact that the shares (SrP)ik/yik are non-negative

and sum to one (i.e., ∑∞
r=1(SrP)ik/yik = 1). This shows that the weighted average

distance equals one plus the weighted average number of intermediary owners
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involved. The numerator on the right hand side of expression (2.4) yields qij, with

Q = ∑∞
r=1 rSrP. Premultiplication by (I− S) and using (2.3) gives

(I− S)

(
∞

∑
r=1

rSrP

)
=

∞

∑
r=1

rSrP− S
∞

∑
r=1

rSrP =
∞

∑
r=1

rSrP−
∞

∑
r=1

rSr+1P =
∞

∑
r=1

SrP = Y.

Hence, (I − S)Q = Y and thus Q = (I − S)−1Y. This yields a simple expres-

sion for the weighted average number of secondary owners involved as defined in

(2.4). The weighted average distance of the indirect linkages yields WADILik =
(qik/yik) + 1. The corresponding values in our hypothetical example are given in

the matrix 
3.158 2.740

3.013 3.740

3.013 3.740

 .

Analyzing for instance the smallest and the largest elements WADILik is relatively

easy, because the underlying example is fairly simple. The smallest weighted av-

erage distance is found for the link between PO2 and SO1, i.e., corresponding to

WADIL12 = 2.740. Using the matrices P and S of this example given in Section 4.2

the connections between PO2 and SO1 can be graphed as follows.

SO1        0.3                      0.5           0.4                       0.5 
PO2                               SO1                               SO1 … 
            0.3                       0.1           0.7                       0.1 

SO2

SO3

SO2

SO3

It shows that the “shortest” indirect connection between PO2 and SO1 involves

two steps and runs through one secondary owner, i.e., either via SO2 or via SO3.

The property in SO1 that is attributed to PO2 in this link is 0.180 (i.e., the (1, 2)-th

element of SP), which is 73% of the total property of SO1 (i.e., y12 = 0.247) that

is redistributed to PO2 through indirect relations. The next connection between

PO2 and SO1 involves three secondary owners (and thus four steps) and note that

there are four different “paths” (via SO2 → SO1 → SO2; SO3 → SO1 → SO2;

SO2 → SO1 → SO3; and SO3 → SO1 → SO3). The property attributed in this way

to PO2 amounts to (S3P)12 = 0.049, which is 20% of the total. The next connection

involves eight different paths, each via five secondary owners (i.e., six steps) and

attributes to the primary owner 5% (i.e., 0.013) of the total property of SO1 that

is redistributed to PO2 through indirect relations. And so forth. The weighted

average distance (or number of steps involved) then equals 2 × 0.73 + 4 × 0.20 +
6× 0.05 + · · · = 2.740.
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The largest value WADILik for an indirect connection between a primary and

secondary owner is found between PO2 and either SO2 or SO3 (because WADIL22 =
WADIL23). Also in this case, the above graph illustrates the connections. If we fo-

cus on the connections between PO2 and SO2, we see that the “shortest” connection

is a direct connection. The shortest indirect connection between PO2 and SO2 in-

volves three steps and runs through two intermediary owners (i.e., via SO2 → SO1

and via SO3 → SO1). The next connection has five steps and runs through four

intermediary owners and involves four different paths, etcetera.

In real world cases, the number of primary and secondary owners may become

substantial implying numerous indirect relations. The distance becomes larger and

the number of paths with the same distance grows rapidly when the number of

primary and secondary owners increases. The complexity of this network of indi-

rect relations between primary owner k and secondary owner i is summarized by

the corresponding weighted average distance of the indirect linkages WADILik =
(qik/yik) + 1. A larger distance indicates a more complex network involving a

larger number of different paths and is indicated by a larger value of WADILik.

Several remarks seem to be in place. First, it may happen that WADILik cannot

be determined, because yik = 0. This occurs for example if the matrix S is reducible.

In that case, the secondary owners can be reclassified into two clusters (I and II)

and no owner in cluster II holds a share in any of the owners in cluster I. If primary

owner k holds only shares in the secondary owners of cluster II, we have that there

is no indirect relation between k and secondary owners in cluster I. That is, yik = 0

for all i in cluster I. Using partitioned matrices in (2.2), and denoting the direct

property distribution of primary owner k by the vector p and the indirect property

distribution by the vector y, we have

[
I−

(
SI,I O

SII,I SII,II

)]−1(
0

pII

)
−
(

0

pII

)
=

(
0

yII

)
,

where, for example, SII,I indicates the shares in a secondary owner in cluster II that

are held by a secondary owner in cluster I, pII is the shares in secondary owners

in cluster II that are held by primary owner k, yII gives the indirect property of

secondary owners in cluster II as attributed to primary owner k, and O and 0 are,

respectively, the null matrix and the null vector. As a matter of fact, we have yII =
(I− SII,II)

−1pII − pII.

Whenever yik = 0 we define WADILik = 0, so that the formal definition of the

WADIL becomes
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WADILik =

{
(qik/yik) + 1 if yik > 0,

0 if yik = 0.
(2.5)

with Q = (I− S)−1Y. Note that whenever an indirect relation exists (i.e., yik > 0),

the number of secondary owners involved in this link cannot be smaller than one.

Therefore, also the average number of secondary owners (i.e., qik/yik) cannot be

smaller than one and WADILik is thus at least two.

Second, if we are interested in the total linkages (i.e., direct plus all indirect

linkages) between a primary and a secondary owner, matrix T can be analyzed

in the same way. We have T = LP = (I + S + S2 + · · · + Sr + · · · )P and let r

denote the number of secondary owners that act as an intermediate in the total

link between primary owner k and secondary owner i. Note that this implies that

a direct relation between k and i has zero intermediary owners and involves one

step. Then, the weighted average distance or number of steps involved is, similar

to (2.4), given by[
pik + 2(SP)ik + 3(S2P)ik + 4(S3P)ik + · · ·+ (r + 1)(SrP)ik + . . .

]
/tik

=
0pik + 1(SP)ik + 2(S2P)ik + 3(S3P)ik + · · ·+ r(SrP)ik + · · ·

tik
+ 1

= (qik/tik) + 1.

In line with (2.5), we define the weighted average distance of total linkages (WADTL)

as

WADTLik =

{
(qik/tik) + 1 if tik > 0,

0 if tik = 0.
(2.6)

Note that if there are neither direct nor indirect linkages we have tik = 0 and it

makes no sense to examine the average distance. Hence, WADTLik = 0 by defi-

nition. Also observe that in the case when there is a direct linkage but no indirect

linkages, we have that pik > 0 and yik = 0 imply qik = 0 and tik > 0, which yields

WADTLik = 1.

In general, however, there are indirect linkages between k and i, implying that

qik/tik > 0. Values close to one indicate that the link is essentially of a direct nature,

while larger values express that the link is brought about by a complex network of

relations. The reason is that (if pik > 0) generally a large part of the total link is of

a direct nature and thus involves only one step (i.e., no intermediary owner). Note
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that because Y = T− P, we have that WADTLik = (qik/tik) + 1 ≤ (qik/yik) + 1 =
WADILik. That is, the WADTL between k and i is smaller than the WADIL (unless,

of course, there are no direct linkages).6

2.4 An empirical application to the banking sector in

the Czech Republic

For our empirical analysis, we have used the data in Turnovec (1999) for the bank-

ing sector in the Czech Republic at the end of 1997.7 There are 13 primary owners

and 12 secondary owners (see Appendix 2.A for a list, see Turnovec 1999 for further

details). The primary property distribution P and the secondary property distribu-

tion S are given in Appendix 2.B.

2.4.1 Analyzing the ownership structure

For three secondary owners (SO5, SO8 and SO12) we observe that their shares are

held only by primary owners. Since the corresponding rows in S contain only zeros,

it is not possible to own a part of these secondary owners indirectly (i.e., via one or

more secondary owners). This implies that the relation between a primary owner

and these three secondary owners can only be direct. The matrix Y with indirect

linkages will thus show only zeros in the corresponding rows. In other words,

for these three secondary owners, the primary property distribution in matrix P

tells the whole story. Since there are no indirect linkages, also the matrix with the

average distances of the indirect linkages (WADILik) shows rows with only zeros

for these secondary owners.

The matrices T and Y with the sizes of total and indirect shares in secondary

owners held by primary owners are given in Table 2.1. Because all the shares that

are held by secondary owners are now accrued to primary owners, the matrix Y

has more positive elements than the matrix P. In analyzing this matrix Y, let us

focus first on the zero elements. Next to the rows for SO5, SO8 and SO12 (which

contain only zeros, as has been explained above), we observe that also the row for

SO4 contains primarily zeros. Note that SO4 is owned by four primary owners

6 Absent of direct linkages, all total linkages are indirect. That is, if pik = 0 we have tik = yik and thus
WADTLik = WADILik .

7 See for example the study by Kenway and Klvacova (1996) on Czech financial institutions, who argue
that “... cross-ownership is not only a web but also a mask, hiding the extent to which the state remains
an owner” (p. 800).
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(PO1, PO5, PO9, PO13) and one secondary owner (SO12). In its turn, however, all

shares in this secondary owner are held by primary owners PO5, PO6, and PO13.

Therefore, PO5, PO6, and PO13 are the only primary owners that have an indirect

link to SO4, so that y4k = WADIL4k = 0 for k 6= 5, 6, 13. Note that the indirect

link between, for example, PO5 and SO4 runs only through SO12. We have y45 =
s4,12 × p12,5 = 0.0786× 0.4110 = 0.0323. SO12 being the only intermediary owner

also explains why WADIL45 = WADIL46 = WADIL4,13 = 2 in Table 2.2 (which

gives the matrices with the WADILs and WADTLs). PO1 and PO9 have a direct

link to SO4 (i.e., p41, p49 > 0), but not an indirect link.

Additional zeros in the matrix Y and WADILs are found for the linkages be-

tween primary owners PO4, PO8, PO10 and PO11, and secondary owners SO2,

SO9 and SO10. It turns out that each of these primary owners, only holds shares

in (and thus has a direct link to) one or more secondary owners in the cluster SO1,

SO3, SO6, SO7, SO11. In addition, each of these secondary owners only holds

shares in one or more other members of the cluster. So, the indirect linkages only in-

volve members of the cluster and it is thus impossible to achieve a link between one

of the four primary owners (PO4, PO8, PO10 and PO11) and a secondary owner

other than SO1, SO3, SO6, SO7, SO11. This implies that all remaining entries (i.e.,

in rows 2, 4, 5, 8, 9, 10, 12) are zero in the columns 4, 8, 10 and 11.

Another interesting issue is the case where some primary owner k has no direct

link to a certain secondary owner i (i.e., pik = 0), but substantial indirect linkages

(i.e., yik > 0). In this case, the information in the actually observed matrix P does

not at all reflect the true ownership structure. For example, PO7 has no direct share

in SO2, but indirectly it owns more than 20% of the property of SO2. Similarly,

about 15% of the property of SO6, SO7 and SO11 is indirectly held by PO1 although

there is no direct interest in them. The same applies to the majority of primary and

secondary owners relations, but to a much lesser extent. Tables 2.1 and 2.2 also

show that the presence of a direct interest does not necessarily mean that there is

an indirect link as well. For instance, y41 = WADIL41 = 0, although p41 > 0.

Note that in Table 2.2 we have used two types of numbers. Integer numbers

(i.e., without any decimals) are exact. For example, WADILik = 3 indicates that all

indirect connections between primary owner k and secondary owner i involve al-

ways exactly three steps (i.e., two intermediary owners). Using the initial property

distribution in P, we see that, say, WADIL93 = WADIL10,3 = 3 are both brought

about through the intermediation of SO5 and SO2. An exceptional case is under-

lying WADIL21 = 2. All indirect linkages between PO1 and SO2 involve exactly
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two steps, but there are two of such paths. One runs via SO4 and the other via SO5.

Outcomes that are not given as an integer reflect that there are at least multiple

paths of different lengths.

Closer inspection of the numbers in Y and WADILs suggests that there is an

inverse relationship between WADILik and the size yik of the indirect sharehold-

ings. This should not be too much of a surprise as follows from (2.4). A ”large”

value of WADILik (say, 5 or so) indicates that the weight (SrP)ik/yik must be rea-

sonably large for values r = 4, 5, and 6, for example. Thus (S4P)ik , (S5P)ik, and

(S6P)ik have a considerable contribution to yik. In general, however, (SrP)ik de-

clines rapidly when r increases. This explains why in many cases ”large” values of

WADILik are found for values yik close to zero. The correlation coefficient between

size and weighted average distance is 0.534 for the indirect linkages (based on the

95 cases with yik > 0). Hence, smaller average distances are associated, to some

extent, with larger indirect shares.

Figure 2.1: Indirect connection between PO6 and SO11 for the banking sector in the
Czech Republic
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Table 2.2 shows that WADIL11,6 = 6.023 is the largest, i.e., PO6 owns shares of SO11

through 5.023 secondary owners on average. Using the primary and secondary

property distributions in Appendix 2.B, this connection is graphed in Figure 2.1.

The graph shows that the “shortest” connection between PO6 and SO11 can be es-

tablished through three paths, each involving six steps (via five secondary owners:

SO12 → SO4 → SO2 → SO1 → SO3; SO12 → SO4 → SO2 → SO9 → SO3; and

SO12 → SO4 → SO2 → SO10 → SO3). Because of mutual shareholdings (between

the cluster SO6, SO7, SO3 on the one hand and SO1 on the other hand, and between

SO3 and SO11) there is in fact an infinite number of paths through which PO6 in-

directly owns property of SO11. It should be stressed, however, that the property

attributed to PO6 through paths involving eight or more steps is practically zero.

Figure 2.1 also graphs the connections of PO6 with any other secondary owner. For
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example, PO6 owns 0.58% of SO2 via exactly two intermediary owners (i.e., three

steps), thus we have y26 = 0.58 and WADIL2 6 = 3.

So far we have discussed the WADIL, which is of particular interest to detect

the interests that cannot be seen straightforwardly from the observed data. One

might be more interested in the total linkages between a principal and a secondary

owner, no matter whether they are direct or indirect. The total linkages are obtained

from the matrix T = P + Y. The number of intermediary owners involved in any

specific link is given by WADTLik = (qik/tik) + 1, expressing the weighted average

distance of total linkages between primary owner k and secondary owner i. The

results are given in the bottom part of Table 2.2. Note that WADTLik = 0 if tik = 0

which indicates that there is no link, neither directly nor indirectly. The cases where

tik 6= 0 and qik = 0 yield WADTLik = 1 and reflect that there is a direct link but no

indirect link. This implies that any cell for which WADILik = 0 in the upper part

of Table 2.2, shows a 0 or a 1 for corresponding WADTLs. No indirect linkages (i.e.,

WADILik = 0) means that there are only direct linkages (i.e., WADTLik = 1) or no

linkages at all (i.e., WADTLik = 0).

Comparing the non-zero elements of WADILs and WADTLs in Table 2.2 shows

that 0 < WADTLik < WADILik if and only if there is a direct link between k and

i (i.e., pik > 0).8 In most cases, the average distance falls substantially once direct

links are taken into account, because the direct linkage is a large part of the total

linkage. Hence, values of WADTLik that are close to one indicate that the link is

mainly direct. As was the case with WADILik, large values hint at the existence of

a complex network of relations that underlie a certain link.

2.4.2 Visualizing the ownership structure

It is important to note that focusing entirely on either T or WADTL (or similarly on

either Y or WADIL) would be misleading. This holds in particular if we are inter-

ested in obtaining a rough picture of the structure of relations between primary and

secondary owners. The drawback of only considering the matrix T and/or Y is that

it does not reflect the complexity of a certain relation. The elements of T and/or Y

do not allow to distinguish how many intermediary owners are involved in a cer-

tain link. The limitation of focusing entirely on WADTL and/or WADIL is that

the size of the total and/or indirect linkages is ignored. The only issue that mat-

ters is the “distance” between a primary and a secondary owner. For example, for

8 WADILik > 0 implies yik > 0 and thus qik > 0 (because Q ≥ Y). Then tik > yik if and only if pik > 0,
and using the definitions in (2.5) and (2.6) straightforwardly proves the equivalence.
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the case with the largest WADIL (which was graphed in Figure 2.1), we have that

t11,6 = y11,6 = 0.00, which is a very negligible share. The issue thus arises whether

it makes sense to consider this specific relation if one is interested in an overview

of the ownership structure of a sector (or in making a graphical representation of

its main characteristics).

To solve this problem both types of indicator are combined. That is, we take the

average distance into account only if the size of the linkage is sufficiently large, us-

ing a threshold value a. In our application we will focus on analyzing the indirect

linkages between primary and secondary owners. The reason is that this reflects a

part of the ownership structure that is “hidden” in the sense that it cannot be di-

rectly observed from the data, while it represents a substantive part. For example,

the data in Appendix 2.B show that the shares of three secondary owners (SO5,

SO8, and SO12) are held just by primary owners. For the other nine secondary

owners, on average 21% (with a maximum of 52% for SO2) of their shares are held

by secondary owners and need to be redistributed and attributed to primary own-

ers.

In our first exercise we take only the indirect linkages into account that are at

least 3% (i.e., yik ≥ 0.03). This results in 23 combinations of a primary owner k

and a secondary owner i that exhibit non-negligible indirect linkages. It should

be stressed that the choice of the threshold is arbitrary. Lower thresholds imply a

larger number of admissible combinations which renders complex graphs, causing

that one cannot see the wood for the trees anymore. Setting the threshold too high

implies that one admits only few combinations, which causes the corresponding

graph to be overly simplistic. For each of the 23 combinations, the WADILik is

rounded to the nearest integer. It turns out that in all cases the rounded average

distance is 2 (indicating that on average there is approximately one intermediary

owner involved in the connection).

The corresponding graph for the 23 combinations is given in Figure 2.2. We

would like to make three observations. First, PO1 and PO13 are the most impor-

tant primary owners of indirect shares in secondary owners. Both have an indirect

interest in no less than seven secondary owners. Second, taking the opposite view-

point, we see that SO2 is the secondary owner in which the largest number (i.e.,

six) of primary owners has an indirect interest. Third, four primary owners (PO3,

PO9, PO10, and PO11) show no indirect interests in any of the secondary owners.

Next we will analyze each of these observations in more detail.

With respect to the first observation, note that PO1 (Fund of National Property)
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Figure 2.2: Indirect linkages for the banking sector in the Czech Republic
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and PO13 (all minority investors taken together) hold large amounts of shares di-

rectly and their portfolios are very diversified in the sense that they have a direct

interest in many secondary owners. Recall that the size of the two-step indirect link-

ages between primary owner k and secondary owner i is given by y(1)
ik = ∑j sij pjk.

For k = 1 and k = 13, we see that pjk is fairly large for many secondary owners

j. So y(1)
ik easily surpasses the threshold level 0.03 for quite a number of secondary

owners i. With respect to the second observation, note that 47.96% of the shares in

SO2 are directly held by primary owners and 52.04% by secondary owners. These

52.04% have to be redistributed and attributed to primary owners by means of in-

direct linkages. This is a very large part of the property of SO2. When we compare

this with the other secondary owners we see that the direct share held by secondary

owners is 29% for SO11; ranges between 20 and 25% for SO1, SO6 and SO7; and

is less than 15% for the others. With respect to the third observation, consider the

columns 3, 9, 10 and 11 of the matrix Y and note that the largest element y23 reflects

an indirect share of 2.74%, which is lower than the 3% threshold. This indirect link-

age runs exclusively through SO5. That is, PO3 has a 19.59% direct interest in SO5,

which in its turn holds a 14.00% share in SO2. The indirect interest of PO3 in SO2

thus amounts to 0.1959× 0.1400 = 0.0274.

Figure 2.2 provided a quick overview of the most important indirect linkages

from the perspective of the entire banking sector. However, it might also be in-

sightful to adopt the perspective of the individual primary owner. Returning to

our third observation above, note that the indirect property (2.74%) that PO3 holds

of SO2 is quite substantial in comparison to the total linkages of PO3. The question
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Figure 2.3: Indirect linkages for the Czech banking sector, based on the matrix T and
WADTLs
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is whether this indirect linkage should have been neglected. As an alternative, one

might thus want to focus on indirect shareholding that is important for a primary

owner when compared to its direct and indirect shareholding (i.e., total linkages).

To this end, we have applied the same analysis to the WADTLs. The threshold

was chosen such that finally we arrived at a comparable number of combinations to

include in the graph. This led to the criteria that tik ≥ 0.02 and for all combinations

that satisfied this criteria the corresponding WADTLik was rounded to the nearest

number. Next, only the combinations with a rounded average distance of at least

2 were taken into account. That is, pure direct linkages and indirect linkages that

are dominated by direct linkages were left out. This resulted in 17 combinations

(i, k) that satisfy tik ≥ 0.02 and WADTLik ≥ 1.500. Their graphical representation is

given in Figure 2.3.

We see that 14 combinations between a primary and a secondary owner have

a rounded average distance 2, and three combinations have a distance 3. They are

graphed by solid (−→) and dashed (99K) arrows respectively. Cross-shareholdings

between secondary owners, represented by dotted arrows (···>), are included for

the three cases with distance 3. For example, the distance 3 link between PO7 and

SO10 is built up from a distance 2 link between PO7 and SO2 and a direct link

between SO2 and SO10.

Observe that PO13 (which was one of the most important primary owners in

Figure 2.2) has completely vanished. Although its total linkages are huge (as re-

flected by column 13 of the matrix T) and many indirect linkages are very large in

size, the indirect linkages turn out to be relatively minor in comparison to the total

linkages. As a consequence, the total linkages are dominated by the direct linkages,
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which explains why the average distance between PO13 and any secondary owner

is always less than 1.500. To a lesser extent, the same applies to PO1. Of the four

primary owners that were absent in Figure 2.2, two (PO3 and PO10) are now in-

cluded in Figure 2.3. For example, PO10 has a 30% direct share in SO6 and SO7,

who in their turn have a 5.10% and 2.50% share in SO1, respectively. As was the

case in Figure 2.2, the primary owners PO9 and PO11 are also absent in Figure 2.3.

In contrast to Figure 2.2, PO7 turns up in Figure 2.3 as an important primary

owner in terms of indirect linkages with secondary owners. Just like PO1, it shows

four connections in the last figure, three of which have a distance 3 and run through

SO2. From the initial property distribution in Appendix 2.B, it follows that PO7

holds a 100% share in SO8. In its turn, SO8 has a 20.86% shares in SO2 so that in-

directly PO7 owns 20.86% of the property of SO2. Next, SO2 holds shares in SO1

(10.10%), SO9 (13.80%) and SO10 (10.10%), which explains the indirect distance 3

connections. As was the case in Figure 2.2, SO2 has the largest number of share-

holders also in Figure 2.3. Five primary owners indirectly own a relevant part of

SO2’s property.

Another application of the proposed indirect measures is that they can be used

for comparative analyses. For example, the banking sector could be compared with

another sector, or the banking sector could be compared for different years, or the

banking sector in one country could be compared with that in another country. The

overall degree of complexity of the network of indirect relations is reflected by the

overall average of the weighted average distances (based on indirect or total link-

ages). In our empirical application, this average of the weighted average distances

is 1.949 for the indirect linkages and 1.861 for the total linkages. The first indicator

is the simple average of all the WADILs and the second of the WADTLs. Recall that

WADILik = 0 if there is no indirect linkage between k and i, and WADILik ≥ 2 oth-

erwise. Similarly, we have that WADTLik = 0 if there is no linkage between k and i,

WADTLik = 1 if there is only a direct link, and WADTLik > 1 if there is an indirect

link.9 Thus, the results for the overall average distance indicate that shareholding

linkages in the Czech banking sector are brought about by a complex network of

9 It should be emphasized that the WADILs (WADTLs) that are zero are included in calculating the
overall average indirect (total) linkages. Neglecting the zero-elements would give us the average of the
weighted average distances for the cases in which an indirect linkage exists. As an overall measure for
comparative purposes, however, this would have a clear drawback that is sketched by the following
example. Consider a sector with many secondary owners but no cross-shareholding except for a mu-
tual interest between, say, SO1 and SO2. The overall average distance could well be substantial if the
zero-elements were not taken into consideration, whereas the network of indirect relations is extremely
simple. Taking all WADILs into account would in this example yield a very low overall average, in
line with the simplicity of the structure. So, in determining the overall complexity of a network, it is
important to take all possible connections into consideration.
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relations, and that they cannot be associated with linkages of a direct nature only.

2.4.3 Ownership network complexity and separation of dividend
and control rights

An important issue in the finance literature is the separation of control and divi-

dend rights due to the pyramiding structure and cross-holdings (see e.g., La Porta

et al., 1999, 2002; Bebchuk et al., 2000; Claessens et al., 2000; Faccio et al., 2001; Faccio

and Lang, 2002; Attig and Gadhoum, 2003; Gadhoum et al., 2005; Dorofeenko et al.,

2008). One of the main findings in these studies is that control (or voting) rights in

the presence of cross-holdings, pyramiding structures, and dual class shares usu-

ally exceed dividend (or cash-flow) rights. Control rights are obtained from the

so called “weakest link” approach used in all studies cited above, except Doro-

feenko et al. (2008) who propose the “dominant shareholder” methodology for this

purpose. In this subsection we will argue that our measure of property network

complexity may be used as an alternative.

As a very brief introduction to cash-flow and control rights, consider the follow-

ing simple hypothetical cases of a pyramidal structure:

Family a: 50% in firm α → 11% in β → 11% in γ → 10% in δ → 11% in ε

Family b: 10% in ε

The percentages represent the shares held in the “next” firm. For example, family a

holds 50% of the shares in firm α, which holds 11% of the shares in firm β, etcetera.

The question is what the cash flow (O) and control (C) rights of each family are in

the last firm ε.

Clearly, family b owns 10% of both O and C rights in ε, if we assume that there

are no dual-class shares (i.e., under the one-share-one-vote rule). For family a, the

ownership stake is equal to the product of all cash-flow rights along the property

chain. Hence, family a owns only 0.50 × 0.11 × 0.11 × 0.10 × 0.11 ≈ 0.007% of

the O stake in firm ε. According to the “weakest link” methodology, the C stake

of family a is equal to the minimum of the control stakes in the ownership chain.

Hence, the family has 10% C rights in ε, provided that the threshold level is not

larger than 10%.10 For family a, the separation of ownership and control thus is

huge (O≈ 0.007% and C = 10%). According to the “weakest link” approach, both

10 It should be mentioned that usually only control stakes that exceed certain threshold levels (typically
10 and 20%) are considered.
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families have the same control power in ε, although there is a large difference in

their O stakes.

One might argue that it is more reasonable that the direct control of 10% for

family b is much larger in terms of real power than the indirect control of 10% via

four intermediate firms in case of family a. It thus seems that the “weakest link”

approach misses such incongruencies between O and C rights, which occur in the

presence of cross-ownership relations among firms. Precisely these relations are

fully captured by our notion of distance.

Following the above line of reasoning, one might expect that countries with the

largest (smallest) separation of ownership and control have a more (less) complex

network of ownership relations. Consequently, one would expect the proposed dis-

tance measures to be large (small). Claessens et al. (2000); Faccio and Lang (2002);

Attig and Gadhoum (2003) and Gadhoum et al. (2005) report the following O/C

ratios (in ascending order). Japan: 0.602; Switzerland: 0.740; Italy: 0.743; Indonesia:

0.784; Singapore: 0.794; Germany: 0.842: Canada: 0.850; Philippines: 0.908; Por-

tugal: 0.924; France: 0.930; USA: 0.940; Thailand: 0.941; and Spain: 0.941. Some

average O/C ratios are Canada-USA: 0.895; Western Europe: 0.868; and East Asia:

0.746. These results are in line with the reciprocal relationship between complexity

and the O/C ratio. In East Asia and Japan, in particular, firms are historically inter-

linked through strong shareholding interlocks, yielding complex ownership struc-

tures. This suggests that our notion of distance can be considered as an alternative

measure of separation of ownership and control, fully taking into account means

of enhancing control such as non-pyramidal cross-ownerships (both one-sided and

reciprocal).11

Also Dorofeenko et al. (2008) observe that “... for more complicated cross-

ownership the product of shares and the minimum share along the chain are in-

sufficient statistics for ownership and control, respectively” (p. 77). This implies

that the “weakest link” approach is suitable only for pyramidal cross-ownership

relations, where the chains of ownership stakes are easily tractable. Hence, for non-

pyramidal cross-ownership relations more general measures for O and C rights are

required. They suggest to trace a controlling primary owner for each firm, and pro-

pose the methodology that rests on the construction of control assignments on the

11 It should be noted that dual-class shares are not covered by our approach. At the same time, multiple
class shares are not the most common equity structure. According to Bebchuk et al. (2000), the reason
is that “... the corporate law of some jurisdictions restricts both the voting ratio between high- and low-
ratio shares and the numerical ratio between high- and low-vote shares that a firm is permitted to issue”
(p. 297). The studies mentioned above, report that only 19.91, 16.10, and 8.19% of firms in, respectively,
Europe, Canada, and the US issue multiple class equity as a mean to enhance control.
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base of the “dominant shareholder” theorem that identifies controllers according to

relative majority of (both direct and indirect) voting shares. In short, their approach

is as follows. The n×m matrix C gives the control coefficients. Its typical element

cik is an indicator function that takes a positive value if company i (= 1, . . . , n) is

controlled by primary owner k (= 1, . . . , m), and zero otherwise. Then the share of

votes in company i by some primary owner k is given by pik + ∑n
j=1 sijcjk, which in

matrix form yields P + SC. After this reassignment of shares, the remaining “un-

controlled” voting shares reduce to S(I − Ĉım), where Ĉım is the n × n diagonal

matrix with the row sums of C along its diagonal. The authors show that relative

majority, unlike absolute majority as the criterion relevant for control, ensures that

every firm is controlled only by primary owner(s), because a largest shareholder al-

ways exists. Thus the last matrix of “uncontrolled” shares is a zero matrix implying

that Cım = ın.12 So the control rights are given by the matrix P + SC, which also

adds to one for each firm i, i.e., (P + SC)ım = ın.

In the remainder of this subsection, we compare our WADTL and WADIL mea-

sures with the “weakest link” and “dominant shareholder” approaches, applied

to the Czech banking sector. Control rights of primary owners according to the

“weakest link” methodology are given in Table 2.3, where for the moment we do

not impose any threshold level on their sizes (hence, some row sums are bigger

than 100%). To illustrate, we examine the derivation of control rights for the case of

PO6, which is also graphically illustrated in Figure 2.4.

All possible shareholding linkages among secondary owners are illustrated in

Figure 2.4. Assuming the one-share-one-vote rule, first, it is easy to see that PO6 has

42.70% control and cash flow stakes in SO12. The minimum stake in the ownership

chain until SO4 is 7.86%, which is thus the control stake of PO6 in SO4. By the

same logic, PO6 owns 7.86% of control rights in SO2, SO9, and SO10. To find the

control stake in SO3, consider the three ownership chains that pass through SO1,

SO9 and SO10, respectively. Then the corresponding control share is equal to the

sum of the minimum stakes along these three chains, that is 6.30% (= 1.53% + 1.21%

+ 3.56%) gives the control rights of PO6 in SO3. Similarly, the control stake of PO6

in SO1 equals 10.66%, the sum of the minimum stakes in the links via SO2 and SO3

(= 7.86% + 2.80%). Notice that the mutual cross-holdings of SO1 with SO6 and of

SO1 with SO7 have been disregarded. The reason is that we would consider such

12 The control coefficients satisfy the following two conditions. (1) If cik > 0, then pik + ∑j sijcjk ≥
pil + ∑j sijcjl for all l = 1, . . . , m, for all k = 1, . . . , m, and all i, j = 1, . . . , n; and (2) ∑m

k=1 cik = 1 for all
i = 1, . . . , n. The first condition says that only relative majority shareholders can control a firm, while
the second property states that every firm is controlled by some primary owner. See Dorofeenko et al.
(2008) for further details.
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Figure 2.4: Identification of control rights of PO6 according to the “weakest link”
methodology (without threshold)

10.1S 
13.8S   7.86C

10.66C 

1.53S 
25.1S 
10.7C 

   5.1S 
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Note: S stands for the size of shareholding between secondary owners, and C for the control rights of
PO6 in corresponding company.

mutual links only if SO1 owned at least 50% of SO6 and SO7, which in turn own

SO1.13 Since the control stake of 10.66% in SO1 is smaller than the ownership stakes

of the SO1 in SO6 and SO7, we have that PO6 owns 10.66% of the control rights in

SO6 and SO7 as well. Finally, the control stake of PO6 in SO11 is 6.30%, equal to

that in SO3 and smaller than the direct stake of SO3 in SO11 (i.e., 29.01%).

Because our dataset is fairly small, the matrix of control coefficients on the basis

of relative majority of votes is easily found. The underlying intuition is thoroughly

explained in Dorofeenko et al. (2008). For a small dataset the control coefficients

can be derived iteratively as follows. First, take the n×m matrix C(0) that has unity

in all cells that correspond to positive cells in the matrix P, and zeroes elsewhere.

Next, from the secondary property distribution matrix S, the firms are found that

are not owned by any other secondary owner. In our case, these are SO5, SO8,

and SO12. Because these firms cannot be owned indirectly, we search in the corre-

sponding rows of P for the shareholder(s) with the largest stake. These are assigned

13 If this would have been the case, we would have added 5.1% and 2.5% to the 10.66% of PO6 control
rights in SO1.
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a positive value in the corresponding cell(s) of C(0), and the remaining elements be-

come zero. If there is more than one shareholder with the same (largest) stake, they

receive equal control coefficients, such that the sum of coefficients equals one. From

P in Appendix 2.B, it follows that c(0)
5,2 = 1, c(0)

8,7 = 1, c(0)
12,6 = 1, and c(0)

ik = 0 for i =
5, 8, and 12, and all other k’s in these rows. Now, in the second stage we compute

P + SC(0), find from the matrix S firms that are owned only by one other secondary

owner, and for these corresponding rows again search the largest shareholder(s) in

P + SC(0), and assign a positive value of control coefficients in C(0), which after

this adjustment is denoted by C(1). Then compute P + SC(1), and the same pro-

cedure is applied until every firm is assigned to some primary owner(s). Table 2.4

gives both the final control assignment matrix Cfinal and the matrix of control rights

P + SCfinal according to the “dominant shareholder” methodology. Note that the

conditions in footnote 13 are satisfied.

In order to examine the relation between network complexity measures and the

degrees of separation of C and O rights, in Table 2.5 we give the simple correla-

tions between the various indicators. Note that ownership (O) in all cases is repre-

sented by the matrix T. Like in Section 4.4.2, we will mainly focus on non-negligible

linkages by combining both the distance and size of each ownership link, i.e., we

take the average distance into account only if the size of the linkage is sufficiently

large, using a threshold level. First, the relation between control and ownership

differences (C-O), with C measured by the “weakest link” (WL) and “dominant

shareholder” (DS) approaches, is given in the bottom row of Table 2.5. The full

sample takes C-O into account for every pair of primary and secondary owner

(thus, n × m = 12 × 13 = 156 observations). No significant correlation is found

between the WL and the DS indicator of separation of O and C. However, if the

average is taken over all secondary owners (for each primary owner, which yields

m = 13 observations), positive correlations are found. Moreover, the correlations

are much higher with a threshold level of 20% for the ”weakest link” control rights.

Hence, for the Czech banking sector, the two ”standard” approaches result in ap-

proximately the same outcomes for the separation of O and C when the average

control rights of the primary owner are compared, while the results differ signifi-

cantly when all specific control rights are considered.

Next, we consider the results for the case where the control rights are obtained

from the distance measures WADIL and WADTL. When size is not taken into ac-

count (i.e., distance indicators are considered without any threshold), there is no

clear link between the WL and DS measures of separation of C and O, and the cor-
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Table 2.5: Simple correlation between ownership network complexity measures and the
degrees of separation of control and dividend rights

(C−O)ik 156 observations Average (C−O)k 13 observations

WL10 WL20 DS WL10 WL20 DS

WADTL 0.318 −0.026 −0.014 WADTL 0.253 −0.284 −0.145
WADTL2 0.315 0.063 0.059 WADTL2 0.583 0.728 0.470
WADTL5 0.181 0.282 0.245 WADTL5 0.548 0.913 0.746
WADTL10 0.212 0.358 0.310 WADTL10 0.575 0.920 0.739

WADIL 0.377 0.085 −0.023 WADIL 0.332 −0.126 −0.025
WADIL2 0.479 0.385 0.050 WADIL2 0.630 0.843 0.600
WADIL5 0.301 0.451 0.238 WADIL5 0.524 0.860 0.731
WADIL10 0.213 0.357 0.306 WADIL10 0.460 0.681 0.566

DS (C-O) −0.070 0.089 1 DS (C-O) 0.416 0.817 1

Note: C −O is the difference between control and ownership rights. (C −O)ik does
so for the interests of primary owner k (= 1, . . . , 13) in each secondary owner i
(= 1, . . . , 12), (C−O)k takes the average over the secondary owners. WL and DS stand
for, respectively, the “weakest link” and “dominant shareholder” approaches of iden-
tifying control rights. WL10 means that the threshold level for control rights is 10%
(otherwise the corresponding cell in Table 2.3 is set to zero). WADTL5 (WADIL5) takes
the positive values of WADTL (WADIL) if the corresponding total (indirect) ownership
is at least 5%.

responding distances. However, once ownership size is taken into account (with

threshold levels of 2%, 5% or 10%) the WADILs and WADTLs show a positive cor-

relation with the WL and DS measures for C and O differences, i.e., the wedge

between C and O rights is greater (i.e., C-O is larger) when there is more complex

network of ownership links (i.e., when WADTL and WADIL are larger).

Focusing on the cases where a threshold level is applied to the distance mea-

sures yields the following conclusions. First, the correlation is larger for average

indicators (in the right panel of Table 2.5) than for the individual indicators (in the

left panel). Second, in the full sample the correlations of C-O measures from the

“weakest link” approach are on average larger when WADILs are used than when

WADTLs are used, while the opposite holds for C-O measures computed by the

DS approach. In the sample with C-O measures averaged over secondary own-

ers, the correlations are stronger for WADIL than for WADTL at the 2% threshold

level, whereas the opposite holds for the 5% and 10% threshold levels. Thus, for

higher threshold levels (imposed on total and indirect linkages), WADTL measures

are preferred in indicating C and O gap. This is because the WADTLs take direct

and indirect shareholding linkages into account and both matter in determining the
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control power of a primary owner.

The empirical results clearly suggest that the distance measures WADTL and

WADIL can be considered as alternative measures of the degree of separation of

C and O due to pyramiding structures and cross-holding. When compared to the

WL and DS methodologies, using WADIL and WADTL as indicators of separation

of C and O has several clear advantages. First, its computation is extremely sim-

ple. Second, in contrast to the WL approach and similar to the DS methodology,

the notion of distance takes all possible webs of property relations due to cross-

ownership into full account. Furthermore, the distances are weighted by their

corresponding contributions to total and indirect links, which make them prefer-

able to, say, the “minimum distance” approach used in the sociology literature.

Third, unlike the DS approach, there is no such notion as the multiplicity of control

assignments (hence multiple control rights values).14 Consequently, every initial

primary and secondary property distributions have unique WADTL and WADIL

matrices. Fourth, like the DS approach, WADIL and WADTL also consider the no-

tion of “management control”, when a firm is (partially) controlled by an owner

without ownership in dividend rights at all.15 On the other hand, similar to the DS

methodology, the distance concept has a disadvantage that it focuses on the effects

of cross-shareholding and does not consider other control arrangements, like dual

class shares and voting caps. But given our observations mentioned in the begin-

ning of this subsection, we expect the bias from the one-share-one-vote assumption

to be small.16

2.5 Conclusions

In this chapter, we have studied ownership relations between primary owners

(such as individuals and the state) and secondary owners (such as companies and

banks). In the presence of cross-shareholding among secondary owners, the prop-

erty structure may become quite complex. Cross-shareholding is widely observed

in modern economies and is an important characteristic of Japanese, German and

Swedish business groups in particular. The observed property distribution reflects

14 To deal with this issue, Dorofeenko et al. (2008) introduce the notion of control “tightness” that gives
the maximal stable control assignment.
15 In our empirical application this applies to significant indirect ownership of PO7 in SO2, or PO1 in
SO6, SO7, and SO11 with zero direct dividend rights.
16 Dorofeenko et al. (2008), in supporting their assumption of the absence of other control arrangements,
argue that “... these other control devices will most likely reinforce the control assignment emerging
from the pure one-share-one vote arrangement, as they are presumably designed by controlling share-
holders” (p. 80).
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only direct shareholding and may be highly misleading because it hides the true

property distribution. This true property distribution can only be obtained by tak-

ing also all indirect shareholding into full account. As a consequence, all property

that is held by secondary owners accrues to the primary owners. The true property

distribution allows for the calculation of the total property that is embedded in a

1% share in some corporation and the total property that is held by some primary

owner.

For analyzing the ownership relations or linkages, two aspects are important.

These are the size of the indirect or total (i.e., direct and indirect) linkages between

a primary owner and a secondary owner, and the average distance of the linkages

between the two. The last is obtained from the average number of secondary own-

ers via whom the relation runs. The average distance indicates the complexity of

the indirect linkages between a primary and a secondary owner and is taken into ac-

count only for the important linkages (i.e., those that are larger than a pre-specified

threshold).

The methodology has been applied to the banking sector in the Czech Republic,

which allowed us to get some insight into the “hidden property structures” of this

sector. The complexity of the network of relations between primary and secondary

owners was quantified, and the relevant shareholding chains were graphed. There

is ample evidence that indirect ownership relations play a crucial role in the Czech

banking sector.

Further, we found a clear link between ownership complexity measures pro-

posed in this study and the degree of separation of dividend and control rights,

largely investigated in the finance literature. The idea is that the more complex

the network of non-negligible relations is, the larger the degree of control enhance-

ment due to cross-shareholding links among firms. Hence, the larger the difference

is between the control and the ownership stakes of primary owners in secondary

owners. The empirical results confirm this for the Czech banking sector.

As a final remark, it should be noted that the empirical analysis of the Czech

banking sector was carried out as if it were a closed, domestic system. However,

some of the primary owners are in fact secondary owners in other countries. It may

thus be the case that, say, 20% of the property of one of the Czech investment funds

accrues to a German bank, for example. This points at foreign holding of Czech

property. In its turn, it is in principle possible that, for instance, the Czech National

Bank holds (directly and indirectly) 50% of this German bank. This would imply

then that only 10% of the property of this Czech investment fund flows abroad,
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while 10% accrues to the Czech National Bank.

It is clear that the first part (i.e., foreign ownership of Czech property) of the ex-

ample above is included in our analysis. The second part (i.e., Czech ownership of

foreign property), however, is not. To do so, would at least require detailed infor-

mation on shareholding in Germany. In general, if international cross-shareholding

occurs, insight into the property structure and the international ownership relations

would require a full interregional input-output framework.17 That is, the necessary

information would be given by expanded initial property distribution matrices P

and S. Element pRU
ik would give the share in secondary owner i in country R, that

is held by primary owner k in country U. Similarly, sRU
ij would indicate the share

in secondary owner i in country R, that is held by secondary owner j in country

U. Given the ongoing internationalization of shareholding, constructing and ana-

lyzing a full-fledged interregional database will be a major challenge for the future.

17 See e.g., Miller and Blair (2009) for an excellent introduction, and Dietzenbacher and Romero (2007)
for an application of distance to interregional production chains.
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2.A The list of primary and secondary owners of the

banking sector in the Czech Republic

PO1 - Fond národnı́ho majetku (Fund of National Property), state agency

PO2 - Česká národnı́ banka (Czech National Bank), central bank

PO3 - Ministerstvo financı́ (Ministry of Finance), state agency

PO4 - Sdruženı́ měst (Association of Municipalities)

PO5 - Bank Holding, non-state

PO6 - J. Ring stock company, non-state

PO7 - First Privatization Holding, non-state

PO8 - The Bank of New York

PO9 - Nomura Group

PO10 - The Midland Bank

PO11 - The Bankers Trust Investment

PO12 - Slovak Republic

PO13 - minority investors

SO1 - Česká spořitelna (Czech Saving Bank)

SO2 - Česká pojišt’ovna (Czech Insurance)

SO3 - Komerčnı́ banka (Commercial Bank)

SO4 - Invesičcnı́ a poštovnı́ banka (Investment and Post bank)

SO5 - Československá obchodnı́ banka (Czecho-Slovak Trade Bank)

SO6 - Spořitelnı́ privatizačnı́ fond Český (investment fund)

SO7 - Spořitelnı́ privatizačnı́ fond výnosový (investment fund)

SO8 - Prvnı́ privatizačnı́ fond (investment fund)

SO9 - Prvnı́ investičnı́ fond (investment fund)

SO10 - Restitučnı́ investičnı́ fond (investment fund)

SO11 - Investičnı́ privatizačnı́ fond Komerčnı́ banky (investment fund)

SO12 - Vojenskě stavby (stock company)
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2.B The initial property distribution of the banking sec-

tor in the Czech Republic

Primary property distribution - P

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13

SO1 52.80 14.75 11.95
SO2 30.25 17.71
SO3 48.74 12.92 29.83
SO4 31.49 14.97 5.02 40.66
SO5 19.59 26.51 19.59 25.78 8.53
SO6 30.00 44.95
SO7 30.00 10.00 35.01
SO8 100.00
SO9 86.20
SO10 20.37 69.53
SO11 70.99
SO12 41.10 42.70 16.20

Secondary property distribution - S

SO1 SO2 SO3 SO4 SO5 SO6 SO7 SO8 SO9 SO10 SO11 SO12

SO1 10.10 2.80 5.10 2.50
SO2 17.18 14.00 20.86
SO3 1.53 1.21 3.56 2.21
SO4 7.86
SO5
SO6 25.05
SO7 24.99
SO8
SO9 13.80
SO10 10.10
SO11 29.01
SO12

Source: Turnovec (1999).



CHAPTER 3

Cross-shareholding in the

Japanese banking sector∗

3.1 Introduction

There is ample evidence that nowadays firms often acquire shares in their rivals,

and mostly these shareholdings do not give control power. For example, Hansen

and Lott (1996, Table 1) give evidence for substantial cross-ownership relations in

the American computer and automobile industries for 1994-1995, and state that

“slightly over 77 percent of Intel and 71 percent of Compaq are owned by institu-

tions that have holdings in at least one of the other five computer industry com-

panies listed [Apple, Compaq, IBM, Intel, Microsoft, Motorola]. Fully 56 percent

of Chrysler is held by institutions that simultaneously hold shares in Ford and/or

General Motors” (p. 49). In 2002, the leader of the wireless communications busi-

nesses in Korea – SK Telekom – acquired 11.3% of Korea Telecom, the leader in

the wireline communications business, which in its turn already owned 9.3% of eq-

uity of the first company (see Choi et al., 2003, p.498). Firms’ acquisitions of stocks

largely cross the national borders as well. For instance, in 2001, General Motors in-

creased its equity holding in Suzuki Motor from 10.0% to 20.0%, and acquired also

a 21.1% stake in Fuji Heavy Industries.1 Since shareholding interlocks of firms is a

widespread phenomenon,2 it is essential to analyze the implication of the presence

∗ Section 3.2 is partly based on a paper published in the Journal of Economic Studies, vol. 36, no. 3, pp.
296-306, 2009a, while the rest of this chapter is based on joint work with Stanislav Stakhovych.

1 See Industrial Groupings in Japan. The Changing Face of Keiretsu, 14th Edition, Brown & Company Ltd.,
Tokyo, 2001.

2 See Gilo (2000) for more cases of equity acquisitions in various industries.
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of ownership links on the behavior of firms.

Cross-shareholding is, in particular, an important characteristic of Japanese,

German and Swedish business groups (see e.g., Kester, 1992). However, due to

antitrust concerns most cross ownership is silent (or partial) by its nature. Financial

interests are silent when firms do not control the policies (e.g., outputs, prices) of

their competitors.3 That is, firms take the choices of these competitors as given,

although in the presence of cross ownership decisions of one firm affect also the

profits of its rivals. It has been shown that partial cross ownership (PCO) of firms,

when compared to the case without PCO, leads to higher prices,4 lower industry

outputs, and thus lower welfare (see e.g., Reynolds and Snapp, 1986; Flath, 1992a;

Reitman, 1994; Dietzenbacher et al., 2000). Nonetheless, Farrell and Shapiro (1990)

show that welfare may still rise even if prices increase, which occurs when a small

firm acquires shares in a rival in which it previously had no financial interest.

Given the fact that passive investments in rivals were largely neglected by an-

titrust agencies (see e.g., Gilo, 2000), much attention in the literature was given to

the study on explicit links between PCO and tacit collusion. Reitman (1994) shows

that for any number of firms an individually rational PCO equilibrium exists if the

market is more rivalrous than Cournot oligopoly and is close to price competition.

Malueg (1992) concludes that passive investments have an ambiguous effect on the

likelihood of collusion. In a repeated Cournot game, he shows that the effect of an

increase in cross ownership on tacit collusion depends critically on the form of the

market demand. However, Gilo et al. (2006) find that in a Bertrand supergame an

increase in PCO never hinders tacit collusion and surely facilitates it under certain

conditions. They show that an increase of firm r’s stake in firm s strictly facilitates

collusion if (i) firm s is not an industry maverick (a firm with the strongest incentive

to deviate from a collusive agreement), and (ii) each industry maverick has a direct

and/or an indirect stake in firm r (firm i has an indirect stake in firm r if it has a

share in a firm that has a stake in firm r, or has a stake in a firm that has a stake in

a firm that holds a stake in firm r, and so on).5

The results of empirical research on the effect of PCO on market structure mostly

support the collusion hypothesis, which states that a complex web of PCO is an

3 The term “silent financial interests” was introduced by Bresnahan and Salop (1986). Equivalently,
such equity interests in the literature are also termed passive investments, partial ownership arrange-
ments, and partial cross ownership links. We will also use all these terms interchangeably throughout
this chapter.

4 Interestingly, Weinstein and Yafeh (1995) find that keiretsu firms had price-cost margins lower by as
much as 2.5 percentage points than those of non-keiretsu firms.

5 An extension of Gilo et al. (2006) to the case where firms have asymmetric costs will be presented in
Chapter 4.
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important factor for the existence of collusive prices. The focus of such studies are

specific industries, such as the US mobile telephone industry (Parker and Röller,

1997), the Dutch financial sector (Dietzenbacher et al., 2000), and the Norwegian-

Swedish electricity market (Amundsen and Bergman, 2002). Alley (1997) finds that

tacit collusion does occur in both the Japanese and the US domestic automobile

industries, but its degree is lower in Japan.

In this chapter we take into full account both direct and indirect interests of firms

in each other due to PCO, which is ignored, to the best of our knowledge, in all em-

pirical estimations of the level of tacit collusion.6 As mentioned above, for example,

if firm i owns a share in firm k that has a share in j then firm i is said to have an

indirect share in firm j (via firm k). In general, the number of intermediate firms

in the indirect links can be infinity when there are cycles present in the ownership

paths (for instance, when firm i holds shares in firm j and, vice versa, j has a stake

in i). PCO is incorporated in the analysis of Alley (1997), but he considers only

direct shareholdings. It has been shown that indirect interests might be significant

in size, thus should not be neglected in the analysis of industries (economies) with

the presence of PCO (see e.g., Flath, 1992b; Dietzenbacher and Temurshoev, 2008).

We first discuss different profit formulations of firms with cross-shareholdings

that have been used in the literature, where the differences are due to the distinct

ways of considering direct and/or indirect PCO links. Then using the conjectural

variation model we find that (unlike in the case without PCO) the link between

firms’ price-cost margins and the degree of collusion is nonlinear in the presence of

PCO. Hence, if shareholding links among firms are present, ignoring PCO would

most likely give biased parameters’ estimates due to model misspecification. It is

shown that given market shares, number of firms, price elasticity of demand, and

collusion degree, firms with shareholdings exert strictly higher market power than

those without PCO, provided that the market conduct is consistent with Cournot

or a more collusive environment. This is because shareholding interlocks among

firms cause commonality of interests of firms, implying greater monopoly power

for firms with PCO holdings.

The model is applied to the Japanese banking sector for the fiscal year 2003.

The results of our estimations show that Japanese banks are competing in a mod-

est collusive environment. However, disregarding banks’ PCO gives biased result,

6 Dietzenbacher et al. (2000) fully consider PCO links in a Cournot and a Bertrand setting, and find that
such links reduce Dutch banks’ price-cost margins, hence reduce competition. We, however, focus di-
rectly on the indicator of market performance that ranges from perfect competition to monopoly (perfect
cartel).
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indicating a Cournot oligopoly. It is further shown that banks with passive invest-

ments in rivals exert a strictly larger market power than those without any PCO,

which confirms the hypothesis that acquiring shares in rivals is one of the crucial

means for a firm to enhance its market power. In particular, city banks with many

shareholdings are found to exercise a much higher market power than regional

banks with none or few stockholdings.

The model presented here belongs to the conjectural variations (CV) literature.

CV models are often used in empirical research in order to infer the degree of mar-

ket power from real data (see e.g., Brander and Zhang, 1990; Haskel and Martin,

1994; Richards et al., 2001; Fischer and Kamerschen, 2003; Brissimis et al., 2008).

It is well known that these models are subject to some criticism from a theoretical

point of view because they describe the dynamics of firms’ interaction using a static

setting (see e.g., Tirole, 1988, pp. 244-45).7 However, Cabral (1995) shows that CV

models can be interpreted as a reduced form of the equilibrium in a quantity-setting

supergame with linear demand and marginal cost functions, justifying their use in

estimating the competition level among oligopolists. In the same fashion, for his

infinite horizon adjustment cost model, Dockner (1992) shows that any steady state

closed-loop (subgame-perfect) equilibrium coincides with the CV equilibrium. In

addition, Pfaffermayr (1999) proves that CV models represent the joint profit max-

imizing reduced form of a price-setting supergame with product differentiation,

which “. . . provides a comprehensive theoretical foundation of the widely criticized

static CV models” (p. 323).

The rest of this chapter is organized as follows. Section 3.2 discusses different

profit specifications of firms in the presence of PCO used in the literature. Sec-

tion 3.3 describes the CV model with cross-shareholdings and examines the effect

of PCO linkages on firms’ market power. Section 3.4 focuses on the empirical esti-

mation of the degree of tacit collusion in the Japanese commercial banking sector

for 2003, and diagnoses market power of the banks. Section 3.5 concludes. All

proofs are relegated to the Appendix at the end of the chapter.

7 Some authors therefore believe that CV parameters have nothing to do with real conjectures or expec-
tations of firms. To avoid this confusion Krouse (1998, p. 688), for example, refers to them as “equilib-
rium solution parameters”.
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3.2 Profits of horizontally interrelated firms

In this section we briefly present profit formulations of firms in the presence of

partial cross ownership (PCO) that have been used in the literature. The differences

in these profit specifications are the result of the different ways of taking account

of a complex web of interfirm ownership links. Consider an industry with n firms

that are interdependent through PCO ties. Reynolds and Snapp (1982) was one of

the first studies that brought attention to the analysis of firms’ PCO holdings and

formulated the profit of firm i as follows

πi = zi + ∑
k 6=i

wikzk, (3.1)

where πi and zi denote, respectively, the profits and the operating earnings of firm

i, and wik (i, k = 1, . . . , n) represents the share in firm k that is held by firm i.8 That

is, equation (3.1) states that firm i’s profits consists of its own operating earnings

(profits from ordinary production) plus its direct shareholdings in operating earn-

ings of all other firms. This formulation is also used in Bresnahan and Salop (1986),

who study a competitive joint venture, in which parent firms own non-controlling

ownership rights.

Reynolds and Snapp (1986) consider the case of joint ventures, whose profits are

divided according to each partner’s share of equity, and they define profits of firm

i as9

πi =

(
1− ∑

k 6=i
wki

)
zi + ∑

k 6=i
wikzk, (3.2)

which defers from (3.1) in that firm i also considers competitors’ financial interests

in its operating earnings. This specification of the firms’ objective was used in Al-

ley (1997) in analyzing the effect of non-controlling (partial) shareholdings on the

degree of competition in the US and Japanese automobile industries.

The above specifications totally disregard indirect financial interests, when, for

example, firm i has an indirect stake in firm j via intermediate firms. In many

8 First and second subscripts in wik denote, respectively, the owner and the owned firm. Throughout
this chapter it is assumed that a firm cannot own equity interest in itself, i.e., wii = 0 for all i. However,
one can also allow for wii > 0, which would reflect, for example, the share repurchases by firms due
to the tax advantage of capital gains. Note that while in Chapter 2 the cross-shareholding matrix was
denoted by the matrix S, in this chapter its transpose is denoted by W.

9 For other profit specifications depending on the kind of behavior imputed on the joint ventures see
e.g., Bresnahan and Salop (1986) and Martin (2002, Chapter 12.10).
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cases indirect shareholdings are significant in size and thus call for a proper con-

sideration. Hence, equations (3.1) and (3.2) are not adequate when an industry is

characterized by extensive shareholding interlocks. These shareholding links are

fully taken into account in Flath (1991), who defines firm i’s profit as the sum of its

operating earnings and the revenue from shareholding in rivals’ profits:

πi = zi + ∑
k 6=i

wikπk. (3.3)

Equivalently, in matrix form, (3.3) can be rewritten as π = z + Wπ, where W is the

n-square PCO matrix with its typical element wij, and π and z are, respectively, the

column vectors of profits and operating earnings. Solving the last equation with

respect to profits gives

π = (I−W)−1z, (3.4)

where I is the n-square identity matrix.

Assuming that each firm has external shareholders (i.e., private owners and

firms outside the industry) implies that the column sum of the matrix W is smaller

than one, which guarantees non-singularity of the matrix (I−W) (see e.g., Solow,

1952).10 Define L ≡ (I−W)−1 that, similar to the Leontief inverse in input-output

economics, can be written as the matrix power series expansion L = I + W + W2 +
. . . (see e.g., Miller and Blair, 2009). The last expression together with (3.4) allow

us to separate direct and indirect effects of PCO. Namely, profits of firm i consist

of three components (Dietzenbacher et al., 2000, p. 1226). First, its own operating

earnings reflected by the i-th element of the vector z. Second, firm i’s direct share-

holdings in rivals, reflected by the i-th element of the vector Wz. Finally, the third

term gives the indirect equity returns of firm i in other firms and is equal to the i-th

element of the vector (W2 + W3 + . . .)z. So even if wij = 0, the entry (i, j) of the

matrix W3 is positive if firm i partially owns firm k that has a share in firm h that in

its turn holds a stake in firm j.

The profit specification in (3.4) is widely used in the literature (see e.g., Flath,

10 Although, the existence of external shareholders perfectly corresponds with the real life observations,
it is - mathematically speaking - not necessary that all column sums of W are smaller than one. For the
existence of (I−W)−1 it suffices that no column sum of W is larger than one and, at least, one column
sum is strictly less than one, provided that W is an indecomposable matrix. (A square matrix A is called

decomposable if there exists a permutation matrix P such that P−1AP =
(

A11 A12
O A22

)
, where A11 and

A22 are square submatrices, and O is a null matrix of appropriate dimension. If this is impossible, A is
called indecomposable.) Hence, (if W is an indecomposable matrix) for all but one firm it may even be the
case that no external shareholders exist.
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1992a, 1992b; Dietzenbacher et al., 2000; Gilo et al., 2006; Dorofeenko et al., 2008).

These profits “overestimate” industry-wide operating earnings. To see this, let ı be

the summation vector of ones. Then ı′π = ı′(I−W)−1z = ı′(I + W + W2 + . . .)z >

ı′z in the presence of PCO. However, this “overestimation” does not cause any

problem since these profits indicate the value of the firms, and should increase when

firms become interlinked. Say, in a two firms setting, PCO creates a multiplier ef-

fect in the sense that firm A gets a share in firm B’s profit, which includes firm B’s

share in firm A’s profit, which includes firm A’s share in firm B’s profit, and so

on. However, what should concern us is whether there is a problem of overesti-

mation of profits accruing to “real” (i.e., external) shareholders. The last is equal

to ı′(I−W)π = ı′(I−W)(I−W)−1z = ı′z, hence although the aggregate profits

“. . . overstate the firms’ cash flows . . . the aggregate payoffs of ‘real’ equityholders

are not overstated and do sum up to [industry operating earnings]” (Gilo et al.,

2006, p. 86). This approach is very similar to the input-output technique, where

multiplication of, say, the direct employment coefficients vector by the Leontief in-

verse gives total (direct and indirect) labor requirements per unit of final demand

(see e.g., Miller and Blair, 2009). Here, similarly, multiplication of external share-

holders’ direct shares in firms, ı′(I − W), by the “Leontief inverse” of the form

(I−W)−1 results in the total (direct and indirect) equity interests of owners in firms

per unit of operating earnings, or, equivalently, in Gilo et al. (2006) terminology, in

the total effective stake of the “real” equityholders in firms’ profits.

The issue of profits overestimation in Flath’s approach is considered in Merlone

(2007). In terms of our notations, his proposed new formulation of net profits is

πnet = (I − ı̂′W)(I − W)−1z, where ı̂′W is the diagonal matrix with the column

sums of W on its main diagonal and zero elsewhere. The last, unlike the profits in

(3.4), sum up to the overall operating earnings, i.e., ı′πnet = ı′z since ı′(I− ı̂′W) =
ı′(I−W). However, as we just showed above, πnet is nothing else than the profits

accruing to “real” equityholders of firms.11

A few studies focused only on the real cash flows due to firms’ PCO links, hence

effectively neglected the notion of a firm value considered in (3.4). Futatsugi (1978,

1986, 1987) writes firm i’s profits as

11 We should note that Merlone’s (2007) view that his profit specification results in different cartelizing
effects of shareholding interlocks than those based on equation (3.4) is entirely wrong. In fact, the Lerner
indices for homogeneous and product-differentiated oligopolies proposed by Merlone (2007) are noth-
ing else than the corresponding indicators in Merlone (2001). This is because Merlone’s profit specifica-
tion is a netted version of firms’ objective in (3.4). Thus both profit formulations have exactly identical
optimality conditions (from which Lerner indices are derived), since in the maximization process the
structure of PCO is taken as given.
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πi = zi + ∑
k 6=i

wikrkπk, (3.5)

where rk ∈ (0, 1) is the payout ratio (dividend propensity) of firm k. Note that if

rk = 1 for all k, then (3.5) boils down to (3.3). Hence, unlike (3.3), the last equation

considers only dividend returns of firms due to PCO. Its netted version, where

dividend outflows due to PCO are also taken into account, is given in Temurshoev

(2009a) as follows

πnet
i = (1− ri)

(
zi + ∑

k 6=i
wikrk

πnet
k

1− rk

)
, (3.6)

where πnet
i denotes firm i’s profits after dividend payments, hence πnet

i /(1− ri) =
πi is the gross profit including dividend payments.12 Equations (3.5) and (3.6)

in matrix form can be rewritten, respectively, as π = (I − Wr̂)−1z and πnet =
(I− r̂)(I−Wr̂)−1z, where r̂ is the diagonal matrix with payout ratios on its main

diagonal and zero otherwise. Since in the analysis r̂ and W are given, the first-order

conditions for profit maximization are exactly the same for (3.5) and (3.6).

However, equations (3.5) and (3.6) are not suitable for the economic analysis of

cross-shareholdings. The main focus in economic analysis is the value of the firm,

and not its total cash flows due to PCO. For instance, if no firm announces dividend

payments (i.e., ri = 0 for all i), then both (3.5) and (3.6) reduce to πi = πnet
i = zi.

Although from a pure accounting view this is the correct amount of (current) earn-

ings, it is a wrong representation of the PCO presence as far as economic analysis

is concerned. This is because – in that case – (3.5) and (3.6) do not reflect the PCO

links which give firms shares in the profits of rival firms (which in this case are

held as retained earnings). Essentially, an investor’s income from equity consists of

dividends and retained earnings. The difference between the two is only the timing

at which they are received: dividends are received whenever the firm distributes

them, whereas retained earnings are realized either when the equityholder sells his

shares or when the firm is liquidated. Equations (3.5) and (3.6) represent a one

period model, where there should not be any difference between equity sales and

firm liquidation, because the firm is effectively liquidated at the end of the period

(after its profits are realized), and its profits are fully distributed. Therefore, divi-

12 To see this, let ri = di/πi , where di denotes the dividend obligations of firm i. By definition πnet
i =

πi − di , which implies πnet
i /(1− ri) = πi .
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dends do not matter in a static one period model.13 Hence, the only correct profit

specification for economic analysis of PCO is Flath’s formulation given in (3.3) or

(3.4).

3.3 Theoretical framework

In order to diagnose market power of firms and analyze market performance in the

presence of cross ownership links, we modify the well-known conjectural variation

model of Clarke and Davies (1982) by taking into account both direct and indirect

PCO linkages among firms. Assume there are n firms in an industry that are inter-

dependent through PCO ties. The profit of firm i consists of its operating earnings

plus the revenue from shareholding in other firms and is given in equation (3.3) in

the previous section.

Consider a homogeneous product industry. Firm i’s total cost ci(xi) is a function

of its own output level xi. Further, the inverse demand function is p(X), where

X = ∑n
i=1 xi. Let lij be the generic element of the matrix L = (I−W)−1. Since the

operating earnings of firm i is zi = p(X)xi − ci(xi), using (3.4) firm i’s profit can be

written as

πi =
n

∑
j=1

lij
[
p(X)xj − cj(xj)

]
.

We consider only passive financial interests of firms, thus in maximizing profits

firms take the choices of their rivals as given. Following Clarke and Davies (1982)

we further assume that in choosing its output, firm i forms a conjectural variation

about the output response of all other firms to a unit change in its own output level.

Denote the constant conjectural elasticity parameter of firm i by α, which is defined

as

∂xj

∂xi
= α

xj

xi
for all j 6= i. (3.7)

The conjectural elasticity α is interpreted simply as the percentage change in firm

13 In fact, Miller and Modigliani (1961) show that for a given investment policy, a firm’s dividend policy
is irrelevant to its current market valuation. In particular, they state: “[L]ike many other propositions
in economics, the irrelevance of dividend policy, given investment policy, is ‘obvious, once you think
of it.’ It is, after all, merely one more instance of the general principle that there are no ‘financial il-
lusions’ in a rational and perfect economic environment. Values there are determined solely by ‘real’
considerations—in this case the earning power of the firm’s assets and its investment policy—and not
by how the fruits of the earning power are ‘packaged’ for distribution” (p. 414).
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j’s output that firm i expects in response to a one percent change in its own output.

Note that this parameter is assumed to be the same for all firms and measures the

degree of (tacit) collusion inherent in an industry. Positive values of α indicate the

presence of collusion, and its degree is larger if α is larger. This is more obvious

if we rewrite (3.7) as ∂xj/xj = α(∂xi/xi). If 0 < α < 1, lower values of α imply

that firm i’s rivals will react with a smaller (percentage) change to the change in

output i, so that firm i believes that there is some scope for improving its market

share.14 Let c′i be the marginal cost of firm i, then the first-order condition (FOC)

∂πi/∂xi = 0 is ∑j lij
[
(p− c′j)∂xj/∂xi + xj ∑k(dp/dX)(∂xk/∂xi)

]
= 0.

Define firm i’s price-cost margin by mi ≡ (p − c′i)/p, its market share by si ≡
xi/X, and the price elasticity of demand by ε ≡ −(p/X)(∂X/∂p). Using ∂xj/∂xi =
α(sj/si) as an equivalent expression for (3.7), firm i’s FOC after some rearrange-

ments yields 15

mi =
1
ε

[
1 +

∑j 6=i lijsj

liisi

]
[α + (1− α)si]− α

∑j 6=i lijsjmj

liisi
. (3.8)

To represent (3.8) succinctly in matrix form, let L̂ be the diagonal matrix with lii
along its main diagonal and zero otherwise, m and s, respectively, be the vectors of

firms’ markups and market shares. Then (3.8) can be rewritten as16 (see Appendix

3.A)

m = αQm +
α

ε
x1 +

1− α

ε
x2, (3.9)

where Q ≡ ŝ−1(I− L̂−1L)ŝ, x1 ≡ ŝ−1L̂−1Ls, and x2 ≡ L̂−1Ls.

In empirical work equation (3.9) can be used for the estimation of the effect

of PCO on the degree of market power of firms, and on the overall level of tacit

collusion in an industry. For the first task it is obvious that a firm exercises market

power if its markup is positive. In the context of this model, firm i exercises market

power if mi in (3.9) is significantly (in a statistical sense) positive. Without PCO,

14 Throughout the paper the notions of market conduct, degree of tacit collusion, market performance,
and market competitive intensity are used interchangeably for α.
15 Equation (3) in Alley (1997) is mi = 1

ε

[
1 + ∑j 6=i wijsj

(1−∑j 6=i wji)si

]
[α + (1− α)si ]− α

∑j 6=i wijsjmj
(1−∑j 6=i wji)si

. He disregards

indirect shareholdings and since in the PCO presence lii ≥ 1 and lij ≥ wij (i 6= j), in general, these two
equations will give different estimates of α and ε.
16 Theoretically, we can allow for different conjectural elasticities, in which case the scalar α in (3.9) is
replaced by the diagonal matrix α̂ with αi on its ii-th entry and zeros elsewhere. However, for empirical
estimation we need to make an identical conjectural elasticity assumption, hence α instead of αi or α̂ is
entered in all equations. Alley’s model can be also written in the form of (3.9) with the redefinition of
L̂−1L = I + (I− ı̂′W)−1W.
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L = I, and the market power diagnosis of firm i reduces to the condition mi = [α +
(1− α)si]/ε > 0 (see Martin, 1988). In order to identify the market competitiveness,

one needs to estimate the value of α empirically.17

Without PCO, L = I, hence (recalling that ı is the summation vector of ones)

(3.9) boils down to (see e.g., Martin, 2002)

m =
α

ε
ı +

1− α

ε
s. (3.10)

The important difference between (3.9) and (3.10) is that without PCO price-cost

margins are linearly related to the conjectural elasticity, while with PCO this re-

lation is nonlinear. This is because the solution of (3.9) is m = (I − αQ)−1( α
ε x1 +

1−α
ε x2

)
and (I− αQ)−1 is nonlinear in α. Hence, it follows that the failure of taking

firms’ direct and indirect cross-shareholdings in the presence of PCO is likely to

give biased parameter estimates due to model misspecification.18

Using (3.9) the range of the market competitive intensity α consistent with the

economic interpretations is given in the following result, which helps to infer the

industry market performance.

Theorem 3.1. Irrespective of whether PCO is present or absent, the reasonable range of

the market competitive intensity is α ∈ [−1/(n− 1); 1].

In Cournot competition we have ∂xj/∂xi = 0 for all j 6= i, which corresponds to

zero conjectural elasticity, i.e., α = 0. In this case markups in (3.9) become m =
(1/ε)L̂−1Ls (Merlone, 2001, p. 335). The value of α equal to the lower bound of

−1/(n− 1) characterizes the perfect competition outcome, because then price-cost

margins equal zero. The case α = 1 reflects the perfect cartel since then markups

equal the inverse of the price elasticity of demand.19

Given the expressions for price-cost margins with and without PCO, respec-

tively, in (3.9) and (3.10), the obvious question is how the two are interrelated.

Clearly, it is impossible to compare two different real-world environments with

and without PCO as all the endogenous variables (i.e., price-cost margins and mar-

17 It is not possible to directly run an OLS regression of (3.9), since the inverse matrix (I− αQ)−1 (which
would solve (3.9) for the vector of markups) contains the unknown market conduct parameter α. This
problem is similar to the so-called spatial autoregressive models in Spatial Econometrics, where Q and
α can be reinterpreted as a spatial weight matrix, and a spatial autoregressive parameter, respectively
(see Anselin, 1988). The only difference is that α is also included in the regression coefficient vector.
18 Similarly, one may get biased estimates if only direct PCO holdings are taken into account, which in
the model is equivalent to the case when L = I + W and L̂ = I.
19 Note also that if α is close to its lower bound, we say that the market competitive intensity is high,
and, similarly, an increase in α is referred to as the decrease in the market competitive intensity. For the
conjecture’s range without PCO see e.g., Kwoka and Ravenscraft (1986).
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ket shares) are different within the two frameworks. Hence, let us focus on the

difference between the markups assuming that α, ε, n, and s are identical in both

the PCO and the no PCO case.20

Theorem 3.2. Let mi < 1/ε for all i = 1, . . . , n. For given α, ε, n, and s, price-cost

margins of firms with PCO are higher than those of firms without PCO provided that α ∈
[0, 1).

The intuition behind Theorem 3.2 is simple. In this setting, shareholding inter-

locks among firms cause a common interest of firms that in turn leads to greater

monopoly power of firms with PCO holdings. Recall that the requirement mi < 1/ε

means that firm i is not a monopolist (hence the above result excludes the perfect

cartel case).

3.4 Empirical estimation and results

In practice, simple direct use of accounting price-cost margins is insufficient as

marginal costs defined by economists are unobservable, i.e., firms’ costs should

also include opportunity costs. One way to deal with this problem in the literature

is assuming constant returns to scale (CRS), which means that marginal costs equal

average costs. Average costs of firm i, aci, besides costs of variable inputs, include

also the normal rate of return on investments, i.e., aci = (v′li + µKi)/xi, where li

and v are, respectively, the vectors of variable inputs of firm i and input prices, µ

and Ki are, respectively, the rental cost of capital services and the value of capital

assets of firm i. Plugging the last expression in the definition of the price-average

cost margin, one gets firm i’s economic earnings per unit of sales, or, equivalently,

price-cost margins under the CRS assumption as (see e.g., Martin, 2002, p. 137)

mi =
pxi − v′li − µKi

pxi
=

pxi − v′li
pxi

− µ
Ki
pxi

= PCMi − µ
Ki
pxi

, (3.11)

which is equal to accounting price-cost margins (PCMi) minus the normal rate of

return on investments. Solving (3.9) for the vector of markups and combining it

with (3.11) yields the final model for empirical estimation as21

20 Note that the assumption si = s0
i for each i, where the superscript ’0’ refers to the no PCO case, does

not necessarily imply that all firms have equal market shares of 1/n.
21 Evidently (3.12) is a nonlinear function of the unknown parameters α and ε. Therefore, we numeri-
cally estimate parameters in (3.12) using a nonlinear least-squares approach. In MATLAB this is imple-
mented by the function lsqnonlin, which finds the minimum of the objective function on the basis of the
Levenberg-Marquardt method.
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PCMi =
α

ε

[
(I− αQ)−1x1

]
i +

1− α

ε

[
(I− αQ)−1x2

]
i + µKSi + νi, (3.12)

where
[
(I− αQ)−1x1

]
i is the i-th element of the vector (I− αQ)−1x1, KSi = Ki/(pxi)

is firm i’s capital-sales ratio, and νi is a random error term. Without PCO, L = I,

thus Q is a null matrix, x1 = ı and x2 = s, and as a consequence (3.12) reduces to

(Martin, 2002, eq. (6.11))

PCMi = a0 + a1si + µKSi + νi, (3.13)

where a0 = α/ε and a1 = (1 − α)/ε. Hence, estimates for a0 and a1 provide the

estimates of α and ε.

3.4.1 Data

As an empirical application, we study the banking sector in Japan. Conventional

wisdom is that the Japanese economy is collusive due to the existence of keiretsu

groups that are historically interlinked through strong shareholding interlocks. We

select city and regional banks from the Bankscope database published by Bureau

van Dijk Electronic Publishing. Trust banks, long-term credit banks, security firms,

and other smaller cooperative institutions (such as Shinkin banks) are excluded

from the analysis because the sample should be consistent with the homogeneity

assumption of the theoretical model described in Section 3.3 in the sense that all

banks face the same inverse market demand function. Trust banks (next to having

banking business) are also engaged in trust business (i.e., asset management ser-

vices). Security firms apparently have different lines of business than commercial

banks, hence do not compete with each other in the same market either. Similarly,

long-term credit banks are mainly specialized in the provision of long-term loans

and debentures. Hence, the city banks and the regional banks constitute the “or-

dinary banks”. Legally, the two are not distinguished from each other and it is

basically the size and area of business that distinguishes them. Regional banks are

much smaller and operate in restricted areas, whereas city banks have nation-wide

branch networks and operation. Uchida and Tsutsui (2005) reports that in 1996 the

shares of city and regional banks in the Japanese loan market were, respectively,

49.6% and 33.1%, thus by analyzing these two groups one is able to cover 82.7%

of the total outstanding loans in Japan. (The total outstanding loan in Japan is de-
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Table 3.1: Descriptive statistics

Mean St. deviation Minimum Maximum

Overall sample (63 obs.)

Markups (PCM) 0.2274 0.1274 0.0288 0.8574
Market share (s) 0.0159 0.0341 0.0008 0.2058
Capital-sales ratio (KS) 2.6753 0.8051 1.0616 4.6928
Growth rate (GR) 0.3808 1.9184 −0.3210 15.3398

City banks (4 obs.)

Markups (PCM) 0.4763 0.3181 0.1983 0.8574
Market share (s) 0.1377 0.0496 0.0878 0.2058
Capital-sales ratio (KS) 2.3848 0.8442 1.6474 3.1439
Growth rate (GR) 3.8812 7.6394 −0.0100 15.3398

Regional banks (59 obs.)

Markups (PCM) 0.2105 0.0869 0.0288 0.5069
Market share (s) 0.0076 0.0049 0.0008 0.0265
Capital-sales ratio (KS) 2.6950 0.8061 1.0616 4.6928
Growth rate (GR) 0.1435 0.1146 −0.3210 0.6172

Note: Computations are based on the data given in thousands of US dollars.
GR is the growth rate of banks’ total revenue in 2003 relative to 2002.

fined as the sum of loans of city banks, long-term credit banks, trust banks, regional

banks, Shinkin banks, and credit cooperations.)

After deleting unprofitable banks and those without necessary data informa-

tion, we end up with a sample of 63 commercial banks for the fiscal year 2003,

which includes 4 city banks and 59 regional banks. Data on accounting price-cost

margins (PCMi) and market shares (si) are derived from the banks’ unconsolidated

statements. The accounting price-cost margin is defined as the ratio of profit be-

fore tax over total revenue, where total revenue is the sum of net interest revenue

and other operating income, and profit before tax is equal to the total revenue mi-

nus overheads, loan loss provisions, and other net expenses. The capital-sales ratio

(KSi) is proxied by the ratio of total equity over total revenue. Descriptive statis-

tics are reported in Table 3.1. It shows that city banks have both economically and

statistically significant larger means of accounting price-cost margins and market

shares than regional banks. In particular, on average, city banks have higher ac-

counting markups and market shares by factors of 2.3 and 18.1, respectively. The

averages of the capital-sales ratios of these banks are roughly identical (i.e., with an

insignificant difference).

Data on ownership are available only for the last year of the bank’s reports,

which varies from 2002 to 2005. Thus in constructing the cross-shareholding ma-

trix for Japan, we assume that these direct shareholdings were also valid for 2003.
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Figure 3.1: Partial ownership relations among the Japanese banks

Note: The figures are direct shareholdings in percentages. The arrows are directed from the shareholder
to the bank(s) it owns. C and R stand for city banks and regional banks, respectively. Source: BankScope,
Bureau van Dijk Electronic Publishing.

However, we should note that the ownership data, though crucial for this analysis,

represent an incomplete picture of the shareholding ties due to its partial (and in

some cases total) unavailability in the Bankscope dataset. In general, the city banks

are the most intensive shareholders in the Japanese commercial banking sector.22

For illustration purposes, a few banks from the sample are chosen and their partial

ownership links are graphed in Figure 3.1. For the sake of simplicity, we disregard

outside shareholding links of these banks, which do exist. As an example, Fig-

ure 3.1 shows that Bank of Fukuoka owns 2.36% of the shares in Higo Bank. Two re-

marks are in place. First, there are cases of mutual shareholding ties in the Japanese

banking sector. In the figure this is the case for Kagoshima Bank and Miyazaki

Bank. Second, given this mutual relationship, one might expect that indirect share-

holdings could matter for the Japanese banks. It is easily seen that Mizuho Cor-

porate Bank has an indirect share in Miyazaki Bank via, for example, Kagoshima

Bank. However, in fact, because of the mutual shareholding described above there

is an infinite number of paths of different length through which Mizuho Corporate

Bank indirectly owns Miyazaki Bank (see Dietzenbacher and Temurshoev, 2008).

3.4.2 Estimation results

The results of the numerical nonlinear least-squares estimation are reported in Ta-

ble 3.2. Since in the presence of local optima, finding the global optimal point de-

22 In the entire financial system of Japan, besides city banks, also long-term credit banks and trust banks
comprise the heavy shareholders of other financial and nonfinancial institutions due to their nature of
operations. For example, trust banks are likely to hold shares in commercial banks as trustees of mutual
funds. Thus it is expected that the effect of PCO would be much stronger if these banks had also been
taken into account, but this would have required a different theoretical model for an industry with
differentiated products. This is, however, beyond the scope of the current chapter.
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Table 3.2: Empirical results (year 2003, obs.= 63)

Full PCO Direct PCO Alley No PCO Full PCO No PCO

α̂
0.0435 0.0435 0.0435 0.0390 0.0281* 0.0255
(0.0404) (0.0404) (0.0404) (0.0401) (0.0163) (0.0160)

ε̂
0.6189* 0.6189* 0.6188* 0.6167* 0.3329** 0.3241**
(0.3631) (0.3631) (0.3630) (0.3674) (0.1466) (0.1501)

µ̂
0.0495*** 0.0495*** 0.0495*** 0.0521*** 0.0410*** 0.0430***
(0.0139) (0.0139) (0.0139) (0.0147) (0.0146) (0.0152)

µ̂GR
-0.0365** -0.0371*
(0.0177) (0.0190)

SSR 0.7382 0.7383 0.7383 0.7542 0.5850 0.6008

Note: The superscripts (*), (**), and (***) denote statistical significance of the coefficients
at 10%, 5%, and 1% levels, respectively. SSR denotes the sum of squired residuals. The
robust standard errors are given in parentheses.

pends on the initial parameters’ values, in the estimation we first constructed grids

for all parameters (i.e., we created a grid structure for α, ε and µ), and used all

possible combinations of these grids as starting points. Then the minimum value

of the sum of squared residuals (SSR) is chosen, and its corresponding estimates

are given in Table 3.2. Column 2 gives the estimates of the parameters in (3.12)

when both direct and indirect (full) PCO links are taken into account (i.e., when

L = (I − W)−1). Positive values of α̂ are indicative of cooperative behavior of

banks. The full PCO model gives the market conduct estimate of α̂ = 0.0435, which

is not statistically different from zero.23 Hence, at this point one may conclude that

commercial banks in Japan in 2003 behaved as Cournot competitors. Table 3.2 also

shows that the Japanese banking sector is characterized by inelastic demand (i.e.,

ε̂ = 0.6189 which is significant at 10% level). So, theoretically, banks in 2003 would

have increased their revenues if they had raised the price. Finally, the sign of the

capital-sales ratio coefficient is positive as expected, and is statistically significant

for all estimated models. This is an estimate of the marginal rental cost of capital to

the firm. One can also interpret the capital-sales ratio as a barrier to entry, and from

this point of view its coefficient should also be positive, meaning that the higher

the capital-sales ratio, the more difficult it is for a new firm to enter the industry.

The third column of Table 3.2 gives the results of the direct PCO model (i.e.,

23 Standard errors are heteroscedastic-consistent. The error vector is ν(θ), where θ is a vector of k pa-
rameters. Denote the n× k Jacobian matrix by J(θ) with (J(θ))ij = ∂νi(θ)/∂θj. Then the heteroscedastic-
consistent estimate of the variance-covariance matrix of the estimate θ̃ is Φ̃ ≡ n

n−k [J̃′ J̃]−1 J̃′ΩJ̃[J̃′ J̃]−1,
where J̃ = ∂ν/∂θ′|θ̃ and Ω is a diagonal matrix with ν̃2

i on its main diagonal (see e.g., Cameron and
Trivedi, 2005, Chapter 5.8).
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when L = I + W). The estimates of the parameters are identical to those of the full

PCO model, implying that for our sample indirect ownership links are insignificant

and do not have any impact on the results. The fourth column of Table 3.2 gives

the results for Alley’s model (i.e., when L̂−1L = I + (I− ı̂′W)−1W, see footnotes 15

and 16), which also gives estimates of the parameters that are very close to those

of the full PCO and direct PCO specifications. Alley’s model is based on the profit

specification given by (3.2), πi = (1− ∑k 6=i wki)zi + ∑k 6=i wikzk, which is different

from (3.3) for the full PCO model. However, the closeness of the outcomes of all

these three models is due to the fact that there is a small number of PCO links in

our sample (to be discussed later) and direct shareholdings are small in size (on

average 3.2%), both of which imply that indirect PCO links are negligible.

Column 5 in Table 3.2 reports the estimates of the parameters in (3.12) when all

the elements of the PCO matrix are set to zero (i.e, L = I, hence effectively (3.13) is

estimated), which gives an estimate of the tacit collusion degree of α̂ = 0.0390 that

is not statistically different from zero either. Hence, without considering any other

additional explanatory variable(s) in (3.12), neglecting PCO links does not give an

economic bias in the results. That is, both the full PCO and the no PCO models

predict that Japanese commercial banks compete in a Cournot oligopoly (although

note that the point estimates are different).

Following Alley (1993, 1997) we re-estimate the full PCO and the no PCO mod-

els in Table 3.2 by adding the growth variable GRi - the growth rate of a bank’s op-

erating income relative to the year 2002, which allows for changes in demand and

thus in accounting price-cost margins to be taken into account.24 Theoretically, the

sign of the effect of the growth rate variable can be either positive, or negative. On

the one hand, an increase in market demand may raise demand on inputs, thereby

increasing their factor prices, hence may lead to lower accounting markups. On the

other hand, the growth rate of demand may increase accounting price-cost margins

by increasing output prices and/or expanding production volume. The results are

given in the last two columns of Table 3.2, where the estimate µ̂GR for the growth

variable is negative, and statistically significant.

Note that including GRi in the full PCO model gives a market conduct estimate

of α̂ = 0.0281 that is statistically significant (at 10% level), while in the no PCO case

α̂ = 0.0255, which does not differ statistically significantly from zero. Hence, ne-

glecting cross-shareholding links in this case yields different economic outcomes:

24 We also estimated the models with other bank-specific factors, such as net loans and total fixed assets
to account for risk and capacity differences. However, these coefficients were insignificant and did not
change the results, hence are not reported.
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the no PCO case predicts Cournot oligopoly in the 2003 Japanese banking sector,

while the full PCO model predicts modest collusive environment in the industry.

Although α̂ in the full PCO case is not highly statistically different from zero, this

result suggests that ownership links should be taken into account in empirical stud-

ies of the Japanese banking sector. In addition, we think that the main reasons for

the almost identical results of all the four models given in columns 2-5 of Table 3.2

are the following. First, as we already noted, the ownership data are incomplete,

and it is quite difficult to obtain the true picture of these linkages. This yields un-

derestimation of the PCO effects.25 Second, some banks with partial ownership

data were excluded from the sample for their unprofitability and/or unavailabil-

ity of other required data. Third, in our 63 × 63 PCO matrix there are 67 cases

of shareholding links, which comprises only 1.7% of the total number of possible

ownership ties of n(n− 1) = 3906. Fourth, in general, in the Japanese financial sys-

tem city banks, long-term credit banks and trust banks are the main shareholders of

other financial (and nonfinancial) institutions (see footnote 22). Hence, we expect

that studies that concentrate also on the last two types of banks should consider

PCO links, otherwise the (economic) bias of the results might be significant. In

this chapter, however, we do not consider trust banks and long-term credit banks,

which would require using a different model of a differentiated-product nature.

3.4.3 Comparison with related studies

There are few studies that estimate the degree of competition in the Japanese bank-

ing sector. Before comparing our results with these studies, we first briefly discuss

different approaches in estimating the competition level (see for details e.g., Bresna-

han, 1989). CV models are frequently used for this purpose, starting with the early

important paper of Iwata (1974). The Clarke and Davies (1982) model, adopted

in this chapter, also belongs to this strand of literature. Since CV models provide

theoretical foundations for firms’ structure-conduct-performance reduced-form re-

lationships (which explains the term “structure-conduct-performance paradigm”),

they are widely used to infer the degree of market competition. The disadvantage

of using such models is that cost data are required, which in many cases are difficult

to obtain. The attempt of avoiding cost data resulted in the so-called “new empir-

ical industrial organization” (NEIO) literature pioneered by Bresnahan (1982) and

25 Dietzenbacher et al. (2000) analyzed the sensitivity in their analysis of the Dutch banking sector, be-
cause banks were only required to report if shares were larger than 5%. They showed that direct interests
below 5% are relevant and have a substantial effect on the estimates of banks’ price-cost margins.
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Lau (1982). Its econometric approach is structural because both demand and sup-

ply sides are explicitly considered. However, modeling the competition level does

not differ from the CV literature, which is stated by Bresnahan (1989, p. 1027) as

follows: “As a matter of fact, there is absolutely no difference between [CV and

NEIO approaches to modeling collusion and] ... the two specifications can nest the

same models”.

Another widely used approach is that of Panzar and Rosse (1987). The Panzar-

Rosse H statistic is the sum of the elasticities of the reduced-form revenues with

respect to all factor prices.26 Its advantage is that few data are required on endoge-

nous variables (revenue is always observable even when price and quantity are

not), though it will require information on all the variables that shift demand or

cost. However, using H statistics in empirical work relies on the assumption that

markets are in the long-run equilibrium in each point of time. In general, speaking

about above methods and others including time-series data analysis, event studies,

studies of the determinants of the price, and fully dynamic models, Martin (2002,

p. 225) concludes: “No one of these are immune from criticism. Broadly speak-

ing, these diverse methodologies yield consistent results, tending to support the

hypotheses advanced by the structure-conduct-performance school”.

The paper closest to our work in terms of the methodology used is Alley (1993),

who uses exactly the same theoretical model, but without considering PCO link-

ages. The author finds that the degree of competitive intensity for 1986-87 Japanese

regional and Sogo banks is α̂ = 0.6013, indicating a high degree of collusion. This

estimate is much larger than our estimate of α̂ = 0.0281 for the Japanese commer-

cial banking sector (column 6 in Table 3.2). Two remarks are in place in this regard.

First, it might very well happen that the estimate of α is biased (upward), given the

fact that back in the 1980s-1990s shareholding interlocks were quite extensive in the

Japanese banking system compared to the current situation (see e.g., Miyajima and

Kuroki, 2007). Second, if the result would not change with PCO consideration, then

comparison of the two would suggest that competition has significantly improved

between 1986-87 and 2003.

Molyneux et al. (1996) employing Panzar-Rosse H statistics, conclude that Japa-

nese commercial (city and regional) banks behaved as if under monopoly in 1986,

but the market conduct improved in 1988 whereby it becomes consistent with mo-

26 If H is negative then firms’ policies are consistent with the monopoly conduct, 0 < H < 1 represents
monopolistic competition and H = 1 under perfect competition. These interpretations can be deduced
from the effect of an upward shift in firms’ marginal, average and total cost curves on the firms’ equilib-
rium revenues.
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nopolistic competition. Using the NEIO approach and long-term panel data from

1974 to 2000, Uchida and Tsutsui (2005) conclude that market competition largely

improved from the 1970s to the 1980s, but deteriorated after 1997. They also find

that the degree of competition is higher for city banks than for regional banks. Fi-

nally, Lee and Nagano (2008) compare the pre-merger period of 1986-1997 to the

post-merger wave period of 1998-2005 in a set of Japanese regional banks that is

divided into seven regions. Essentially their results in terms of H statistics suggest

that in six regions the monopolistic competition environment holds for both peri-

ods, while in only one region there is a tendency towards a more competitive envi-

ronment.27 In relation to this chapter, we think that similar to the first point made

with regard to Alley’s (1993) study, there is a possibility of bias in the estimates of

the market conduct or H statistics due to ignorance of PCO linkages, which is again

much more probable for the results on earlier periods in these studies. The market

performance indicator for Japanese regional banks in 2000 in Uchida and Tsutsui

(2005) shows a collusive environment, which is consistent with our result for 2003.

However, their study does not reject Cournot competition for city banks in 2000.

All in all, we think that taking into account PCO links in all these studies is cru-

cial, which might even change the results, especially, for the period before the mid

1990s when cross-shareholding was believed to be one of the main distinguishing

features of the Japanese business groups.

3.4.4 Market power test

In this section the market power test of each individual bank is carried out. Hav-

ing the estimates of the market competitive intensity and the price elasticity of de-

mand, one can estimate firms’ markups using equation (3.9). Then in the context

of our model, firm i exercises market power if its estimated price-cost margin is

in a statistical sense significantly positive. As mentioned in Section 3.3, in an in-

dustry without PCO, the market power diagnosis of firm i reduces to the condition

[α̂ + (1− α̂)si]/ε̂ > 0 (see Martin, 1988).

The delta method is used in order to compute t-statistics of the markups in (3.9).28

The estimated markups and their t-statistics based on the estimates of the full PCO

27 We should note that the authors’ own conclusion is, however, different. Lee and Nagano (2008) state
that “... the banking sector in Japan’s metropolitan area is very competitive, becoming more competitive
than that of 1986-1997” (p. 614). This conclusion is not consistent with the values of the H statistics with
their appropriate 95% confidence intervals given in their Table 1 on pp. 612-613.
28 Let price-cost margins depend on k parameters given by the vector θ and let C(θ) = ∂m(θ)/∂θ′. Then
according to the delta method, the estimated (asymptotic) variance-covariance matrix of the markups is
given by C̃Φ̃C̃′, where Φ̃ is defined in footnote 23 (see e.g., Greene, 2003).
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model from Table 3.2 (i.e., column 6) are reported in Table 3.3. Note that estimating

markups for the actual no PCO case does not make sense, since we do not know

anything about the real environment without cross-shareholdings between banks.

That is, markups and market shares would be different in that case, implying that

using our data for this purpose would be totally misleading.

The t-statistics of all these markups are computed on the null hypothesis that

the true value of the statistics are zero, which is a market power test for each bank.

Several conclusions can be drawn from Table 3.3. First, given that the smallest t-

statistic in the entire sample is 2.183, we conclude that each bank exercises some

degree of market power (at a 5% significance level). Second, on average, banks

that hold shares in other banks have higher markups than banks without any stock-

holdings in rivals (i.e., 0.271 vs. 0.106). This difference is statistically significant

(the one-sided two-sample t significance test of means gives p = 0.0184 with 9 de-

grees of freedom), implying that PCO increases the market power of banks owning

shares in rivals. In our sample there are in total 67 cases of shareholdings (the sum

of the column “Sub” in Table 3.3, which denotes the number of subsidiaries, or,

equivalently, the sum of the column “Share” for the number of shareholders) that

are made by the 10 banks that hold shares in other banks, consisting of all four

city banks and six regional banks. Note also that the regional banks, and not the

city banks, are owned by others. Moreover, the correlation coefficient between the

estimated markups and the number of banks’ subsidiaries for the entire sample is

0.68, while that between the estimated price-cost margins and the number of banks’

shareholders is equal to −0.26. All in all, this confirms the conjecture that owning

shares in rivals increases (resp. decreases) market power of firms-owners (resp.

owned firms). Third, city banks, on average, have significantly higher price-cost

margins than regional banks (i.e., 0.501 vs. 0.107, and the difference is highly sta-

tistically significant with p = 0.0054). One of the explanations for this (in light of

the second point made above) is that city banks own many more banks with larger

shareholding size than regional banks. Table 3.3 shows that the four city banks, on

average, own 14.5 banks with an average direct stake of 4.98%, while they are not

owned themselves. On the other hand, on average, a regional bank owns only 0.2

banks with 0.21% as the average share, but 3.10% of its shares are owned by 1.1

banks. The six regional banks with shareholdings, on average, hold 2.01% shares in

1.5 banks, whereas 2.75% of their shares are owned by 2.5 banks (not shown in Ta-

ble 3.3). Hence, among other factors, owning larger shares in many regional banks

allows city banks to exercise a larger market power.
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Table 3.3: Market power test of the Japanese commercial banks in 2003

No Bank Name Type m̂i t-stat. Sub. %% Share. %%

1 77 Bank Reg. 0.117 2.634 0 - 2 2.47
2 Akita Bank Ltd Reg. 0.098 2.391 0 - 1 1.65
3 Aomori Bank Ltd. Reg. 0.098 2.392 0 - 2 3.25
4 Awa Bank Reg. 0.102 2.443 0 - 2 2.97
5 Bank of Fukuoka Ltd. Reg. 0.136 2.754 3 2.41 0 -
6 Bank of Ikeda Reg. 0.100 2.415 0 - 1 3.04
7 Bank of Iwate, Ltd. Reg. 0.100 2.418 0 - 1 3.71
8 Bank of Kyoto Reg. 0.111 2.567 0 - 1 3.16
9 Bank of Okinawa Reg. 0.095 2.342 0 - 2 1.48

10 Bank of the Ryukyus Ltd. Reg. 0.098 2.381 0 - 1 1.89
11 Bank of Tokyo - Mitsubishi Ltd City 0.467 2.571 24 3.45 0 -
12 Bank of Yokohama, Ltd. Reg. 0.162 2.850 0 - 0 -
13 Chiba Bank Ltd. Reg. 0.140 2.795 0 - 1 4.59
14 Chiba Kogyo Bank Reg. 0.099 2.399 0 - 2 9.44
15 Chikuho Bank Reg. 0.089 2.223 0 - 0 -
16 Chugoku Bank, Ltd. Reg. 0.115 2.615 0 - 0 -
17 Daishi Bank Ltd. Reg. 0.111 2.569 0 - 2 2.01
18 Eighteenth Bank Reg. 0.101 2.439 0 - 1 4.85
19 Gunma Bank Ltd. Reg. 0.124 2.686 1 1.20 3 2.60
20 Hachijuni Bank Reg. 0.121 2.676 0 - 1 4.76
21 Higo Bank Reg. 0.110 2.510 2 2.40 2 3.53
22 Hiroshima Bank Ltd. Reg. 0.126 2.710 0 - 2 3.25
23 Hokkaido Bank Reg. 0.111 2.575 0 - 2 2.86
24 Hokkoku Bank Ltd. Reg. 0.105 2.493 0 - 0 -
25 Hokuetsu Bank Ltd. Reg. 0.097 2.376 0 - 1 5.41
26 Hokuriku Bank Ltd. Reg. 0.133 2.757 0 - 0 -
27 Hokuto Bank Reg. 0.093 2.308 0 - 3 1.66
28 Hyakugo Bank Ltd. Reg. 0.108 2.535 0 - 2 3.19
29 Hyakujushi Bank Ltd. Reg. 0.106 2.503 0 - 1 2.69
30 Iyo Bank Ltd Reg. 0.113 2.591 0 - 1 5.60
31 Joyo Bank Ltd. Reg. 0.131 2.744 1 1.69 2 2.97
32 Juroku Bank Ltd. Reg. 0.113 2.593 0 - 0 -
33 Kagoshima Bank Ltd. Reg. 0.106 2.488 1 2.63 4 2.26
34 Kanto Tsukuba Bank Ltd. Reg. 0.095 2.343 0 - 0 -
35 Kiyo Bank Reg. 0.107 2.522 0 - 1 1.54
36 Michinoku Bank, Ltd. Reg. 0.094 2.320 0 - 0 -
37 MIE Bank Ltd Reg. 0.093 2.300 0 - 1 6.57
38 Miyazaki Bank Reg. 0.100 2.380 1 2.02 4 2.39
39 Mizuho Bank City 0.483 2.544 5 3.38 0 -
40 Mizuho Corporate Bank City 0.362 2.662 23 3.32 0 -
41 Musashino Bank Reg. 0.104 2.475 0 - 1 3.59
42 Nanto Bank Ltd. Reg. 0.112 2.581 0 - 1 4.56
43 Nishi-Nippon City Bank Ltd. Reg. 0.117 2.635 0 - 1 3.08
44 Ogaki Kyoritsu Bank Reg. 0.106 2.508 0 - 1 0.40
45 Oita Bank Ltd. Reg. 0.100 2.426 0 - 1 2.60
46 San-In Godo Bank, Ltd Reg. 0.109 2.547 0 - 0 -
47 Senshu Bank Ltd. Reg. 0.097 2.368 0 - 1 2.40
48 Shiga Bank, Ltd. Reg. 0.109 2.549 0 - 2 2.68
49 Shikoku Bank Ltd. Reg. 0.101 2.438 0 - 1 4.99
50 Shimizu Bank Ltd. Reg. 0.095 2.340 0 - 1 5.25
51 Shizuoka Bank Reg. 0.131 2.749 0 - 2 2.88
52 Shonai Bank Reg. 0.091 2.255 0 - 1 42.18
53 Sumitomo Mitsui Banking Corporation City 0.692 2.448 6 9.78 0 -
54 Suruga Bank, Ltd. Reg. 0.110 2.561 0 - 0 -
55 Tajima Bank Ltd. Reg. 0.089 2.231 0 - 0 -
56 Toho Bank Ltd. Reg. 0.104 2.484 0 - 0 -
57 Tohoku Bank Reg. 0.089 2.230 0 - 0 -
58 Tokyo Tomin Bank, Ltd. Reg. 0.101 2.434 0 - 1 4.97
59 Tottori Bank Reg. 0.090 2.248 0 - 0 -
60 Toyama Bank, Ltd. Reg. 0.087 2.183 0 - 0 -
61 Yamagata Bank Ltd. Reg. 0.096 2.361 0 - 1 4.80
62 Yamaguchi Bank Reg. 0.115 2.615 0 - 0 -
63 Yamanashi Chuo Bank Ltd. Reg. 0.099 2.406 0 - 3 2.92

Overall sample average 0.132 1.1 0.51 1.1 2.91
City banks average 0.501 14.5 4.98 0.0 -
Regional banks average 0.107 0.2 0.21 1.1 3.10
All shareholders average 0.271 6.7 3.23 1.5 1.37
All non-shareholders average 0.106 0.0 - 1.0 3.19
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3.5 Concluding remarks

Nowadays there is ample evidence of the presence of partial cross ownership (PCO)

links among firms. This study examines empirically the influence of PCO on the

degree of competitive intensity of an industry and on firms’ market power. The

model of Clarke and Davies (1982) is adopted and modified by taking into full ac-

count both direct and indirect interests of firms in each other via PCO ties. To the

best of our knowledge, in all empirical estimations of the degree of tacit collusion,

PCO is totally neglected, except for Alley (1997), who, however, disregards indirect

shareholdings.

It has been shown that, unlike in the no PCO case, with cross-shareholding the

link between firms’ price-cost margins and the market competitive intensity is non-

linear. Hence, in the presence of extensive shareholding links among firms, ignor-

ing PCO leads to biased parameter estimates due to model misspecification. It has

been shown that when market shares, number of firms, price elasticity of demand,

and collusion degree are given, firms with shareholdings exert a strictly larger mar-

ket power than those without PCO, provided that the market conduct is consistent

with Cournot or a more collusive environment. This is because shareholding inter-

locks among firms cause a common interest of firms, implying greater monopoly

power for firms with PCO holdings.

As an empirical application we have studied the Japanese banking sector in

2003. We found that the Japanese banks are competing in a modest collusive en-

vironment, while neglecting PCO yields a different economic outcome that indi-

cates a Cournot oligopoly. (By modest we mean that the degree of collusion is

relatively small being closer to the Cournot outcome rather than a monopoly.) Sec-

ondly, banks with passive investments in rivals exert a strictly larger market power

than those without any PCO, which confirms the hypothesis that acquiring shares

in rivals for a firm is one of the crucial means of enhancing its market power. Also,

city banks with many shareholdings were found to exercise a much larger market

power than regional banks with none or few stockholdings.

A few simplifying assumptions have been made throughout the chapter and

need some clarification. First, we did not consider product differentiation, and fo-

cused only on homogeneous market environment, which, in general, does not hold

in the real world. Analyzing a differentiated-product industry is rather complex,

since one has to compute all the own- and cross-price elasticities, for instance.29

29 See, for example, the “menu approach” for identifying market conduct proposed by Nevo (1998).
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Nonetheless, the empirical results of the homogeneous model used here are still

useful in discovering the collusion degree within an industry, as the estimates of

the market competitive intensity indicate “the similarity of margins between firms

of different size” (Clarke et al., 1984, p. 447). As a matter of fact this has been con-

firmed in our study, as the low degree of collusion implies rather different levels

of firms’ market power. Second, the PCO structure has been assumed to be exoge-

nous, which might not reflect the optimal decisions of firms. However, similar to

the Gilo et al. (2006) study, our analysis was done from the perspective of antitrust

agencies facing a given pattern of PCO. Third, in the empirical part we have disre-

garded the PCO of banks with other financial and non-financial institutions. This

allowed us to focus on the commercial banking sector only, while neglecting the

potential effect of banks’ shareholding interlocks with firms in other industries.30

However, for that one needs to use a different theoretical model for an industry

with differentiated products, which is beyond the scope of the current study.

30 Ideally, one would like to consider all possible shareholding links, but this would be unfeasible or,
at least, a complicated task in light of unavailability of (access to all) ownership data of firms in the all
involved industries.
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3.A Proofs

Derivation of equation (3.9). Equation (3.8) can be expressed in matrix form as

m =
α

ε
[I + L̂−1ŝ−1(L− L̂)ŝ]ı +

1− α

ε
[I + L̂−1(L− L̂)]s− α[L̂−1ŝ−1(L− L̂)ŝ]m,

(3.A.1)

where ı is the summation vector of ones.

All the three terms in square brackets can be further simplified as

I + L̂−1ŝ−1(L− L̂)ŝ = ŝ−1L̂−1Lŝ, I + L̂−1(L− L̂) = L̂−1L,

L̂−1ŝ−1(L− L̂)ŝ = ŝ−1(L̂−1L− I)ŝ. (3.A.2)

Plugging results from (3.A.2) in (3.A.1) we obtain

m = (1/ε)
[
αŝ−1L̂−1Ls + (1− α)L̂−1Ls

]
− αŝ−1(L̂−1L− I)ŝm. (3.A.3)

With definitions Q ≡ ŝ−1(I− L̂−1L)ŝ, x1 ≡ ŝ−1L̂−1Ls, and x2 ≡ L̂−1Ls the equation

(3.A.3) yields (3.9).

Proof of Theorem 3.1. From economic point of view, the lower limit of α corre-

sponds to zero price-cost margins for all firms i = 1, . . . , n. Using x2 = ŝx1, (3.9) can

be rewritten as m = (1/ε)(I− αQ)−1[αI + (1− α)ŝ]x1, which together with (3.10)

imply that markups are zero both with and without PCO when αI = −(1 − α)ŝ,

or, equivalently, when α = −(1− α)si. This implies that market shares should be

equal, thus plugging si = s = 1/n in the last condition gives α = −1/(n− 1). The

highest possible price-cost margins are those of the monopolist (perfect cartel) that

equal the inverse of the price elasticity of demand, which is the case when α = 1 in

(3.9), since then m = (1/ε)(I−Q)−1x1 = (1/ε)(I− I + ŝ−1L̂−1Lŝ)−1x1 = (1/ε)ı.

The same holds for the no PCO case in (3.10), hence the (economic) upper bound of

the conjectural elasticity both with and without PCO is α = 1.

Proof of Theorem 3.2. For simplicity denote A ≡ L̂−1L and B ≡ A − I. Premul-

tiplication of (3.9) by εŝ yields εŝm = αAs + (1 − α)ŝAs − εαBŝm. Add to and

subtract from the right-hand side (rhs) of the last equation αs + (1 − α)ŝs, which

in turn is equal to εŝm0 as follows from (3.10), where m0 is the vector of markups

in the no PCO case provided that α0 = α, ε0 = ε, n0 = n, and s0 = s. This yields
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εŝm = αBs + (1− α)ŝBs− εαBŝm + εŝm0. Hence,

εŝ(m−m0) = αBs + (1− α)ŝBs− αεBŝm = (1− α)ŝBs + αBŝ(ı− εm). (3.A.4)

For α = 0, the rhs in (3.A.4) is ŝBs and its i-th element is strictly positive if and

only if firm i owns shares in rival(s). Hence, with α = 0 we have mi > m0
i for all i

with PCO holdings, otherwise mi = m0
i . Equally, for α ∈ (0, 1) and mi < 1/ε, the

i-th element in the rhs of (3.A.4) is positive if i has shareholdings, implying again

that mi > m0
i for all firms i with PCO holdings. Note that if α = 1 (or equivalently

ı = εm), the rhs in (3.A.4) is a zero vector, hence we get an expectable outcome of

m = m0.



CHAPTER 4

Partial cross ownership and

tacit collusion under cost

asymmetries∗

4.1 Introduction

There are many cases in which firms acquire their rivals’ stock as passive invest-

ments that give them a share in the rivals’ profits but not in the rivals’ decision

making. These investments are often multilateral; examples of industries that fea-

ture complex webs of partial cross ownerships are the Japanese and the US auto-

mobile industries (Alley, 1997), the global airline industry (Airline Business, 1998),

the Dutch financial sector (Dietzenbacher et al., 2000), the Nordic power market

(Amundsen and Bergman, 2002), and the global steel industry (Gilo et al., 2006).

While horizontal mergers are subject to substantial antitrust scrutiny and are often

opposed by antitrust authorities, passive investments in rivals were either granted

a de facto exemption from antitrust liability or have gone unchallenged by antitrust

agencies in recent cases (Gilo, 2000).1 This lenient approach towards passive in-

∗ This chapter is based on joint work with David Gilo (The Buchman Faculty of Law, Tel-Aviv Univer-
sity) and Yossi Spiegel (Recanati Graduate School of Business Adminstration, Tel Aviv University).

1 For example, to the best of our knowledge, Microsoft’s investments in the nonvoting stocks of Ap-
ple and Inprise/Borland Corp. were not challenged by antitrust agencies while Gillette’s 22.9% stake
in Wilkinson Sword was approved by the US Department of Justice (DOJ) after the DOJ was assured
that this stake would be passive (see United States v. Gillette Co. 55 Federal Register at 28312). The
US Federal Trade Commission (FTC) approved Tele-Communications Inc.’s (TCI’s) 9.0% stake in Time
Warner which at the time was TCI’s main rival in the cable TV industry and even allowed TCI to raise its
stake in Time Warner to 14.99% in the future, after being assured that TCI’s stake would be completely
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vestments in rivals stems from the courts’ interpretation of the exemption for stock

acquisitions “solely for investment” included in Section 7 of the Clayton Act.

In an earlier work Gilo et al. (2006) began to investigate the merits of this lenient

approach of courts and antitrust agencies towards passive investments in rivals.

They showed that partial cross ownership (PCO) arrangements can facilitate tacit

collusion among rival firms though cases exist in which such investments have no

effect on the incentive of firms to collude. In particular it was shown that when

firm r increases its stake in a rival firm s, then collusion is never hindered, and

that it will be surely facilitated if and only if (i) each firm in the industry holds a

stake in at least one rival, (ii) the maverick firm in the industry (the firm with the

strongest incentive to deviate from a collusive agreement)2 has a direct or an indi-

rect stake in firm r,3 and (iii) firm s is not the industry maverick. These results were

established, however, under the assumption that firms are symmetric and have the

same marginal cost functions. In the current study, we relax this assumption and

examine the effect of PCO on the incentives of asymmetric firms to collude. This

is obviously an important question since most industries feature cost asymmetries

among firms.

To address this question we posit an infinitely repeated Bertrand oligopoly mo-

del in which firms have asymmetric marginal costs and they acquire some of their

rivals’ (nonvoting) shares. This simple setting allows us to deal with the complexity

generated by multilateral PCO. This complexity arises since, in general, multilateral

PCO arrangements create multiplier effects so the profit of each firm, both under

collusion as well as under deviation from collusion, depends on the whole set of

PCO in the industry and not only on the firm’s own stake in rivals. Another ad-

vantage of this model is that PCO does not affect the equilibrium in the one shot

case and therefore does not have any unilateral competitive effects. This allows us

to focus on the effect of PCO on the ability of firms to engage in tacit collusion.

We say that PCO arrangements facilitate tacit collusion if they expand the range of

discount factors for which tacit collusion can be sustained.

passive (see Re Time Warner Inc., 61 Federal Register 50301, 1996). The FTC also agreed to a consent
decree approving Medtronic Inc.’s almost 10% passive stake in SurVivaLink, one of the only two rivals
of Medtronic’s subsidiary in the automated External Defibriallators market (see Re Medtronic, Inc., FTC
File No. 981-0324, 1998).

2 The Horizontal Merger Guidelines of the US Department of Justice and FTC define maverick firms as
“firms that have a greater economic incentive to deviate from the terms of coordination than do most of
their rivals,” see http://www.usdoj.gov/atr/public/guidelines/hmg.htm. For an excellent discussion
of the role that the concept of maverick firms plays in the analysis of coordinated competitive effects,
see Baker (2002).

3 Firm i has an indirect stake in firm r if it either has a stake in a firm that has a stake in firm r, or if it
has a stake in a firm that has a stake in a firm that has a stake in firm r, and so on.
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In the first part of this study we consider the case where only the most efficient

firm in the industry invests in rivals. We show that even unilateral PCO by this

firm may facilitate a market-sharing scheme in which all firms charge the same

collusive price and divide the market between them. Unlike the case where firms

have the same marginal costs, here firms have different monopoly prices on which

they wish to collude. We assume that the collusive price is a compromise between

the monopoly prices of the different firms. We show that when the most efficient

firm invests in rivals, the collusive price would increase relative to the case where

there are no PCO arrangements. Moreover, we show that the most efficient firm in

the industry prefers to first invest in its most efficient rival both because this is the

most effective way to promote tacit collusion and because such investment leads

to a collusive price that is closer to the most efficient firm’s monopoly price. Only

if investment in the most efficient rival is insufficient to sustain a market-sharing

scheme, then the most efficient firm begins to invest in less efficient rivals.

In the second part of this chapter, we turn to multilateral PCO arrangements.

In that case, cost asymmetries raise the complexity of the analysis considerably

because the most efficient firm earns a positive profit even after the collusive agree-

ment breaks down. Consequently, an increase in a firm i’s direct or indirect stake

in the most efficient firm has conflicting effects on firm i’s incentive to collude. On

the one hand, a larger (direct or indirect) stake in the most efficient firm makes firm

i less eager to deviate from collusion, because firm i obtains a larger share in the

collusive profit of the most efficient firm. But on the other hand, the increased stake

of firm i in the most efficient firm also gives it a larger share in the profit of the

most efficient firm once the collusive agreement breaks down. This second effect

weakens the incentive of firm i to collude.

Despite these complications, we are able to show that an increase in the stake of

firm r in firm s never hinders collusion and it will strictly facilitate collusion if and

only if (i) the industry maverick has a direct or indirect stake in firm r, and (ii) firm

s is not the industry maverick. When either (i) or (ii) fails to hold, the increase in

firm r’s stake in firm s does not affect tacit collusion. These results extend the earlier

findings in Gilo et al. (2006) and show that the results when firms have symmetric

cost functions generalize to the asymmetric costs case.

Apart from Gilo et al. (2006), we are aware of only one other paper, Malueg

(1992), that studies the coordinated effects of PCO. His paper differs from ours in

several ways as he considers a repeated symmetric Cournot game in which firms

hold identical stakes in one another, and moreover, in his paper, it is effectively
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the controllers rather than the firms that hold stakes in rivals. This difference is

important because investments by controllers do not feature the complex chain-

effect interaction between the profits of rival firms which is a main focus of our

study. Other papers that look at the competitive effects of PCO include Reynolds

and Snapp (1986), Bolle and Güth (1992), Flath (1991, 1992a), Reitman (1994), and

Dietzenbacher et al. (2000). These papers, however, examine the unilateral effects

of PCO arrangements in the context of static oligopoly models.4

The rest of the chapter is organized as follows. Section 4.2 examines the ability of

firms to achieve the fully collusive outcome in the context of an infinitely repeated

Bertrand model with asymmetric firms without PCO. Section 4.3 examines the case

where only the most efficient firm in the industry invests in rivals. Section 4.4

examines multilateral PCO arrangements. Conclusions and final remarks are given

in Section 4.5. All technical proofs are given in Appendix 4.A.

4.2 Tacit collusion absent PCO

We examine the coordinated competitive effects of PCO in the context of an in-

finitely repeated Bertrand oligopoly model with n ≥ 2 firms. We assume that the n

firms produce a homogenous product using a constant returns to scale technology

and face a downward sloping demand function Q(p). In every period, the n firms

simultaneously choose prices and the lowest price firm captures the entire market.

In case of a tie, the set of lowest price firms get equal shares of the total sales. The

firms, however, have different marginal costs: let ci be the (constant) marginal cost

of firm i and assume c1 < c2 < . . . < cn. That is, higher indices represent higher

cost firms. The profit of firm i when it serves the entire market at a price p is given

by

yi(p) = Q(p)(p− ci).

We shall make the following assumptions on yi(p).

Assumption 1: yi(p) has a unique global maximizer, pm
i .

4 See also Bresnahan and Salop (1986) and Kwoka (1992) for a related analysis of static models of hori-
zontal joint ventures. Alley (1997) and Parker and Röller (1997) provide empirical evidence on the effect
of PCO on collusion. Alley (1997) finds that failure to account for PCO leads to misleading estimates of
the degree of tacit collusion in the Japanese and US automobile industries (see also Chapter 3 for similar
conclusion in the case of the Japanese banking sector). Parker and Röller (1997) find that cellular tele-
phone companies in the US tend to collude more in one market if they have a joint venture in another
market.
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Assumption 2: pm
1 > cn and y1(c2) > y1(cj)/(j− 1) for all j = 3, . . . , n.

Assumption 1 is standard and holds whenever the demand function is either con-

cave or not too convex. Since c1 < c2 < . . . < cn, then pm
1 < pm

2 < . . . < pm
n , where

pm
i ≡ arg maxp yi(p) is the monopoly price from firm i’s point of view.5 That is,

higher cost firms prefer higher monopoly prices. The first part of Assumption 2

ensures that all firms are effective competitors because it states that the monopoly

price of the most efficient firm exceeds the marginal cost of the least efficient firm.

The second part of Assumption 2 implies that in a static Bertrand game, firm 1 will

prefer to set a price slightly below c2 and capture the entire market than share the

market with firm 2 at a price slightly below c3, or share the market with firms 2

and 3 at a price slightly below c4, and so on. Given this assumption, it is clear that

absent collusion, firm 1 will prefer to monopolize the market by charging a price

slightly below c2.6

When the stage game is infinitely repeated, firms may be able to engage in tacit

collusion. The fact that different firms have different monopoly prices raises the ob-

vious question of which price would they coordinate on in a collusive equilibrium?

If side payments were possible, firms would clearly let firm 1, which is the most

efficient firm, serve the entire market at a price pm
1 (e.g., firms 2, ..., n would all set

prices above pm
1 and would make no sales). The firms will then use side payments

to share the monopoly profit

ym
1 ≡ Q(pm

1 )(pm
1 − c1). (4.1)

We rule out this possibility by assuming that side payments are not feasible, say

due to the fear of antitrust prosecution.

Instead, we consider a collusive scheme led by firm 1. According to this scheme,

firm 1 sets a price p̂, which is some compromise between the monopoly prices of

the various firms, i.e., pm
1 ≤ p̂ ≤ pm

n . All firms adopt p̂ and consumers randomize

between them.7 Consequently, each firm i serves 1/n of the market and its profit in

5 By revealed preferences, the fact that yi(·) has a unique maximizer implies that Q(pm
i )(pm

i − ci) >
Q(pm

j )(pm
j − ci), and Q(pm

j )(pm
j − cj) > Q(pm

i )(pm
i − cj). Summing up the two inequalities and sim-

plifying, yields Q(pm
i )(cj − ci) > Q(pm

j )(cj − ci). Assuming without loss of generality that j > i, and
noting that Q′(·) < 0, it follows that pm

j > pm
i .

6 For example, the case of a linear demand function Q(p) = a − bp and all cj’s at equal distance (i.e.,
cj+1 − cj = ϑ > 0 for all j = 1, . . . , n− 1) satisfies Assumption 2, since then y1(c2) = Q(c2)ϑ > Q(cj)ϑ =
y1(cj)/(j− 1) for all j = 3, . . . , n.

7 That is, we study “pure” price fixing. A more elaborate collusive scheme might also involve market
division in which case the market shares need not be equal. Such a scheme, however, will be in general
much harder to enforce and easier for antitrust authorities to detect.



78 Chapter 4

every period is ŷi/n, where

ŷi ≡ Q( p̂)( p̂− ci), i = 1, . . . , n. (4.2)

Although p̂ can exceed firm 1’s monopoly price, pm
1 , it cannot exceed it by too much.

To see why, note that firm 1 can always ensure itself a profit of y1(c2) by setting a

price slightly below c2 and capturing the entire market. Hence, to ensure that firm

1 has an incentive to collude at p̂, it must be the case that ŷ1/n ≥ y1(c2). Since by

Assumption 2, c2 < pm
1 ≤ p̂, it follows that p̂ is bounded from above by p, where

p is implicitly defined by y1(p)/n = y1(c2) (see Figure 4.1). If this is not the case,

i.e., if p̂ > p, then firm 1 would be better off deviating to c2 and capturing the entire

market than colluding at p̂. Before proceeding, we add the following assumption

which is illustrated in Figure 4.1:

Assumption 3: p < pm
2 , where p is implicitly defined by y1(p)/n = y1(c2).

Figure 4.1: Illustrating Assumption 3
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Recalling that pm
1 < pm

2 < . . . < pm
n , Assumption 3 implies that p < pm

i for all

i = 2, . . . , n. Since p̂ ≤ p, it follows that p̂ < pm
i for all i = 2, . . . , n: the collusive

price is below the monopoly prices of all firms but 1. This implies in turn that the

optimal deviation for firm i = 2, . . . , n is to set a price slightly below p̂, while the

optimal deviation for firm 1 is to set a price pm
1 . Following any deviation from the
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collusive scheme (including a deviation by firm 1), firm 1 charges a price slightly

below c2 forever after and captures the entire market.

Recall that we have assumed that firm 1 prefers to set a price of cj and share the

market with firms i = 2, . . . , j− 1 than set a price of cj+1 and share the market with

firms i = 2, . . . , j (second part of Assumption 2). Recalling that on the equilibrium

path, it must be the case that ŷ1/n ≥ y1(c2) (otherwise firm 1 does not wish to

collude), this implies that firm 1 prefers to collude with all n − 1 rivals at p̂ than

collude with only j firms by setting a price just below cj+1.

We assume that the pricing decisions of each firm are effectively made by its

controller (i.e., a controlling shareholder) whose ownership stake is γii. We are

now interested in finding conditions that will ensure that in a subgame perfect

equilibrium of the infinitely repeated game, every controller will set p̂ in every

period.

Using δ to denote the intertemporal discount factor, the condition that ensures

that the controller of firm i = 2, . . . , n does not wish to deviate from the collusive

scheme is given by

γii
ŷi

n(1− δ)
≥ γii ŷi, i = 2, . . . , n. (4.3)

The left-hand side of (4.3) is the infinite discounted payoff of firm i’s controller

which consists of his share in firm i’s collusive profit. The right-hand side of (4.3) is

the controller’s share in the one-time profit that firm i earns in the period in which

it undercuts its rivals slightly and captures the entire market. Condition (4.3) can

be rewritten as

δ ≥ δ̂ ≡ 1− 1
n

.

That is, the controllers of firms 2, . . . , n have an incentive to participate in the collu-

sive scheme provided that they are sufficiently patient. This condition is identical to

the well-known condition for tacit collusion in the context of an infinitely repeated

Bertrand model with n identical firms (see e.g., Tirole, 1988, Ch. 6.3.2.1).8

As for firm 1, then its controller does not wish to deviate from the collusive

scheme provided that

8 To see how realistic this condition is, one can use the identity δ = 1/(1 + r), where r is an interest
rate. Then δ > 1− 1/n is equivalent to r < 1/(n− 1). Thus, for n = 10 collusive scheme is sustainable
if r < 11.1%.
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γ11
ŷ1

n(1− δ)
≥ γ11

(
ym

1 +
δy1(c2)
1− δ

)
, (4.4)

where ym
1 is the one-time profit of firm 1 in the period in which it deviates and

captures the entire market while charging pm
1 , and y1(c2) is the per-period profit of

firm 1 in all subsequent periods. Condition (4.4) can be rewritten as

δ ≥ δ̂1( p̂) ≡
ym

1 − ŷ1/n
ym

1 − y1(c2)
. (4.5)

Note that

δ̂1( p̂) >
ym

1 − ŷ1/n
ym

1
≥ 1− 1

n
≡ δ̂,

where the weak inequality follows because ym
1 ≥ ŷ1. Since δ̂1( p̂) > δ̂, it is clear that

if firm 1 wishes to collude then all other firms surely wish to collude. That is, firm

1 is the maverick firm in the industry, i.e., the firm with the strongest incentive to

deviate from a collusive agreement. Hence, (4.5) is a necessary and sufficient con-

dition for the collusive scheme led by firm 1 to be sustained as a subgame perfect

equilibrium of the infinitely repeated game. Moreover, since p̂ ≥ pm
1 , it follows that

ŷ1 increases as p̂ is lowered towards pm
1 . As a result, firm 1’s controller would pre-

fer to set p̂ = pm
1 and thereby maximize his infinite discounted stream of collusive

profits while relaxing constraint (4.5). Hence,

Theorem 4.1. Absent PCO by firms, firm 1 is the industry maverick and its controller

would like to set the collusive price equal to pm
1 . Collusion at pm

1 can be sustained as a

subgame perfect equilibrium of the infinitely repeated game provided that δ ≥ δ̂1(pm
1 ).

4.3 Tacit collusion with unilateral partial ownership by

firm 1

In this section we will only examine the competitive effects of unilateral partial

ownership (PO) investments by firm 1 in rival firms. The competitive effects of

multilateral PCO arrangements are considered in Section 4.4. We will now use

δ̂1(pm
1 ) (the critical discount factor above which the collusive scheme characterized

in the previous section can be sustained) as our measure of the ease of collusion;
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accordingly, we will say that PCO facilitates tacit collusion if it lowers δ̂1(pm
1 ), and

will say that PCO hinders tacit collusion if it raises δ̂1(pm
1 ).9

Specifically, assume that firm 1 invests in rivals and let w12, . . . , w1n be its own-

ership stakes in firms 2, . . . , n.10 Since the collusive profit of each firm i is ŷi/n, it

follows that firm 1’s infinite discounted stream of profits under collusion is

ŷ1 + ∑i 6=1 w1i ŷi

n(1− δ)
.

If firm 1’s controller deviates from the collusive scheme, all rivals make zero profits,

so firm 1’s payoff is

ym
1 +

δy1(c2)
1− δ

,

exactly as in the absence of PO. Consequently, the condition that ensures that firm

1’s controller does not wish to deviate from the collusive scheme is now given by

γ11

(
ŷ1 + ∑i 6=1 w1i ŷi

n(1− δ)

)
≥ γ11

(
ym

1 +
δy1(c2)
1− δ

)
, (4.6)

or

δ ≥ δ̂
po
1 ( p̂) ≡

ym
1 −

(
ŷ1 + ∑i 6=1 w1i ŷi

)
/n

ym
1 − y1(c2)

. (4.7)

Notice that δ̂
po
1 ( p̂) is decreasing with each w1i: the larger the stakes of firm 1 in

rival firms, the stronger is firm 1’s incentive to collude. The reason for this is that

the collusive payoff of firm 1 increases when it invests in rivals, while its payoff

under deviation is unaffected because rival firms make a profit of 0 in the period

in which firm 1 deviates as well as in all future periods. Clearly, firm 1 does not

have an incentive to invest in rivals up to the point where δ̂
po
1 ( p̂) drops below δ̂

since then it might very well happen that firm 1 is no longer the industry maverick

(and thus firm 1’s stakes in rivals no longer facilitate tacit collusion). Hence, we

shall assume in the rest of this section that firm 1 remains an industry maverick

even when it holds PO stakes in rivals. A sufficient condition for that to be the

case is that firm 1’s profit when the collusive agreement breaks down, y1(c2), is at

9 Of course, the infinitely repeated game admits multiple subgame perfect equilibria. We restrict atten-
tion to the most collusive equilibrium and focus on δ̂1(pm

1 ) because this is a standard way to capture the
notion of “ease of collusion”.
10 Hence, for PCO holdings we adopt the same notation as in Chapter 3.
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least as large as firm 1’s average stake in the profits of rival firms under collusion,(
∑i 6=1 w1i ŷi

)
/(n− 1), because then,

δ̂
po
1 ( p̂) ≥

ym
1 −

(
ym

1 + ∑i 6=1 w1i ŷi
)

/n
ym

1 − y1(c2)
≥

ym
1 −

(
ym

1 + (n− 1)y1(c2)
)

/n
ym

1 − y1(c2)
= 1− 1

n
≡ δ̂,

where the first weak inequality follows because ym
1 ≥ ŷ1.

Assuming then that firm 1 is the industry maverick, firm 1’s controller selects p̂

to maximize the infinite discounted sum of firm 1’s collusive profits given by the

left-hand side of (4.6) subject to (4.7). The following result follows (see Appendix

4.A).

Theorem 4.2. Suppose that firm 1 invests in rivals but still remains the industry ma-

verick. Using p̂∗ to denote the optimal collusive price from firm 1’s perspective, the follow-

ing holds:

(i) p̂∗ is increasing with each w1i and is above firm 1’s monopoly price: p̂∗ > pm
1 .

(ii) δ̂
po
1 ( p̂∗) is decreasing with each w1i and is below δ̂1(pm

1 ) – the critical discount factor

above which collusion can be sustained absent PO.

(iii) PO in an efficient rival raises p̂∗ by less and lowers δ̂
po
1 ( p̂∗) by more than a similar

PO in a less efficient rival.

Theorem 4.2 implies that investments by firm 1 in rivals do not only facilitate tacit

collusion by lowering the critical discount factor above which tacit collusion can be

sustained, but also lead to a higher collusive price. The latter result arises because,

due to its investment in rivals, firm 1 is interested in maximizing a weighted aver-

age of its own profit and the profits of the firms it invests in. The higher firm 1’s

investments in rivals, the higher the weight that firm 1’s assigns to the rivals’ profits

in its objective function. Maximizing the rivals’ profits requires a higher monopoly

price than the monopoly price from firm 1’s own perspective.

The theorem suggests that to the extent that firm 1 invests in rivals, it always

prefers to invest in its most efficient rival first, since this leads to a collusive price

that is closer to firm 1’s monopoly price and also expands the range of discount fac-

tors above which collusion can be sustained. This also implies that firm 1 will have

an incentive to minimize its investments in rivals subject to being able to facilitate

tacit collusion. If investment in the most efficient rival is not sufficient to sustain

collusion, then firm 1 invests in the next efficient rival.
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4.4 Tacit collusion with multilateral PCO

In this section we turn to the case where all firms potentially invest in rivals. To

this end, let wij be firm i’s partial cross ownership stake in firm j and define the

following n× n PCO matrix:

W =


0 w12 · · · w1n

w21 0 · · · w2n
...

...
. . .

...

wn1 wn2 · · · 0

 .

Row i in the matrix W specifies the stakes that firm i has in all rival firms, while

column j in the matrix W specifies the stakes that rival firms hold in firm j. Since

apart from rival firms each firm is also held by its controller and possibly by outside

stakeholders, the sum of each column of W is strictly less than 1. It is also assumed

that a firm cannot own shares in itself, i.e., all diagonal terms in the matrix W are

equal to 0.

4.4.1 The accounting profits under PCO

When firms hold stakes in each other, the profit of each firm potentially depends

on the profits of all other firms in the industry. For instance, firm 1 may get a share

w12 of firm 2’s profit while at the same time firm 2 owns a share w23 in the profit of

firm 3, which in turn holds a share w31 in the profit of firm 1. Hence, we potentially

have a multiplier effect that drives a wedge between the direct profit of each firm

and its overall profit that also includes the firm’s share in the profits of rival firms.

Therefore, before characterizing the conditions that ensure that a collusive scheme

can be supported as a subgame perfect equilibrium of an infinitely repeated game,

we first need to express the profit of each firm under collusion and in the case of a

deviation from collusion.

Under collusion, all firms charge the same price, p̂. Since the products are ho-

mogeneous, consumers choose which firm to buy from at random, so the market

share of each firm is 1/n. Hence, the direct profit of each firm i (excluding its share

in the profits of rivals) is ŷi/n, where ŷi is given by equation (4.2). Since by as-

sumption, c1 < c2 < . . . < cn, we have ŷ1 > ŷ2 > . . . > ŷn: the direct profit of

firm 1 exceeds that of firm 2, which in turn exceeds that of firm 3, and so on. In

addition to its direct profit, each firm i also gets a share in its rivals’ profits due to
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its cross ownership stake in these firms. Hence, the (column) vector of collusive

profits, π = (π1, π2, . . . , πn)′, is given by the solution to the following system of n

equations:

π = (1/n)y + Wπ, (4.8)

where y ≡ (ŷ1, ŷ2, . . . , ŷn)′.

Next, we consider what happens when the controller of firm i deviates from the

collusive scheme. If i 6= 1, then firm i will slightly undercut p̂, so the direct profit

of all firms but i will be 0, while the direct profit of firm i will be arbitrarily close to

ŷi. Consequently, the vector of current profits, πdi = (π
di
1 , π

di
2 , . . . , π

di
n )′, is defined

by the solution to the following system:

πdi = ydi + Wπdi , for all i = 2, ..., n, (4.9)

where ydi ≡ (0, . . . , 0, ŷi, 0, . . . , 0)′ is an n-dimensional vector with ŷi in the i-th

entry and 0’s elsewhere.

If the deviant is firm 1 (i = 1), then it charges pm
1 and its profit in the current

period will be ym
1 (see equation (4.1)). The current direct profits of all other firms

will be 0. Hence, the vector of profits in period in which firm 1’s controller deviates,

πd1 = (πd1
1 , πd1

2 , . . . , πd1
n )′, is defined by the solution to the system

πd1 = yd1 + Wπd1 , (4.10)

where yd1 ≡ (ym
1 , 0, . . . , 0)′ is an n-dimensional vector with ym

1 in the first entry and

0’s elsewhere.

Once the collusive agreement breaks down, firm 1 will charge a price slightly

below c2 in every period and will capture the entire market. Hence the vector of

profits following a breakdown of the collusive agreement, π f = (π
f
1 , π

f
2 , . . . , π

f
n)′,

is defined by the solution to the following system:

π f = y f + Wπ f , (4.11)

where y f ≡ (y1(c2), 0, . . . , 0)′ is an n-dimensional vector with y1(c2) in the first

entry and 0’s elsewhere.

To solve systems (4.8)-(4.11), note that since the PCO matrix, W, is nonnegative

and the sum of each of its columns is strictly less than 1, systems (4.8)-(4.11) are

Leontief systems and have unique nonnegative solutions (see Sydsæter et al., 2005,
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Chapter 22; see also discussions after equation (3.4) in Chapter 3) defined by

π( p̂; W) = (1/n)Ly,

πdi ( p̂; W) = Lydi , i = 1, . . . , n, (4.12)

π f (c2; W) = Ly f ,

where L ≡ (I − W)−1 is the inverse Leontief matrix that specifies the aggregate

imputed shares of “real” equityholders (i.e., outside equityholders that are not part

of the n firms) in the accounting profits of the n firms.11 That is, the ij-th entry

in the matrix L, denoted lij, is the aggregate imputed share that the real equity-

holders of firm i have in the accounting profit of firm j. Equation (4.12) implies

that the accounting collusive profit of firm i 6= 1 is πi( p̂; W) =
(

∑n
j=1 lijŷj

)
/n,

its one-time profit in the period in which it deviates from the collusive scheme is

π
di
i ( p̂; W) = lii ŷi, and its profit in any subsequent period is π

f
i (c2; W) = li1y1(c2).

The corresponding accounting profits of firm 1 are π1( p̂; W) =
(

∑n
j=1 l1jŷj

)
/n,

πd1
1 ( p̂; W) = l11ym

1 , and π
f
1 (c2; W) = l11y1(c2).

Given the important role that the aggregate imputed shares matrix, L, plays in

our analysis, we state the following result whose proof appears in Gilo et al. (2006).

Lemma 4.1. The aggregate imputed shares matrix L has the following properties:

(i) lii ≥ 1 for all i, and 0 ≤ lij < lii for all i and all j 6= i.

(ii) Let i and j be two distinct firms. Then, lij = 0 if and only if firm i does not have a

direct and an indirect stake in firm j.12

(iii) lii > 1 if and only if firm i has a direct or an indirect stake in some firm j which in

turn has a direct or an indirect stake in firm i (i.e., lij > 0 and lji > 0).

(iv) l̂i ≡ ∑n
j=1
(
1−∑k 6=j wkj

)
lji = 1 for all i.

To interpret Lemma 4.1, recall that lij is the aggregate imputed share that the real

equityholders of firm i have in the accounting profit of firm j 6= i through the direct

or indirect cross ownership of firm i in firm j and lii is the aggregate imputed share

that the real equityholders of firm i have in the accounting profit of their own firm.

Part (i) of Lemma 4.1 says that a 1% stake in firm i may give the real equityhold-

ers of firm i more than a 1% imputed share in the firm’s profit (i.e., lii ≥ 1), and

the real equityholders always have larger imputed shares in their own firm’s profit

than in the profits of rival firms (i.e., lij < lii for all i and all j 6= i). Part (ii) of the

11 The terminology “imputed shares” is due to Dorofeenko et al. (2008).
12 We will say that firm i has no indirect stake in firm j, if it has no stake in a firm that has a stake in firm
j, and has no stake in a firm that has a stake in a firm that has a stake in firm j and so on.
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lemma says that the real equityholders of firm i will get a share in the profit of a

rival firm j if and only if firm i has a direct and/or indirect stake in firm j. Part

(iii) of the lemma says that if the real equityholders of firm i have a direct or an

indirect stake in some rival firm j and this firm’s real equityholders in turn have

a direct or an indirect stake in firm i, then the aggregate imputed share that a real

equityholder of firm i will have in firm i will exceed 1. In other words, a 1% stake

in firm i will give a “real” equityholder of firm i more than a 1% share in the firm’s

profit. The reason for this surprising property is that multilateral cross ownership

arrangements create a multiplier effect that results in an overstatement of the firms’

cash flows.13 Part (iv) of the lemma ensures, however, that the aggregate effective

shares of “real” equityholders in each firm i sum up to 1. Hence, while the account-

ing profits of firms will overstate the total cash flows, the aggregate payoff of all

real equityholders will sum up exactly to the total cash flows.

4.4.2 Collusion with multilateral PCO

Given the accounting profits of the n firms under collusion and following a devi-

ation from the fully collusive scheme, the condition that ensures that the collusive

outcome can be sustained as a subgame perfect equilibrium is

γiiπi( p̂; W)
1− δ

≥ γii

(
π

di
i ( p̂; W) +

δπ
f
i (c2; W)
1− δ

)
, i = 1, . . . , n. (4.13)

The left-hand side of (4.13) is the infinite discounted payoff of firm i’s controller

under collusion, consisting of the controller’s share in firm i’s collusive profit. The

right-hand side of (4.13) is the controller’s share in the profit that firm i earns when

it undercuts its rivals slightly (the one-time profit π
di
i ( p̂; W) in the period in which

firm i deviates and π
f
i (c2; W) in all subsequent periods). If (4.13) holds, no con-

troller wishes to unilaterally deviate from the fully collusive scheme.

Recalling that πi( p̂; W) =
(

∑n
j=1 lijŷj

)
/n and π

f
i (c2; W) = li1y1(c2) for all i,

πd1
1 ( p̂; W) = l11ym

1 , and π
di
i ( p̂; W) = lii ŷi for all i 6= 1, and using zij ≡ lij/lii

to denote the relative imputed share that the equityholders of firm i have in firm

j (relative to their imputed share in their “own” firm i), the necessary condition

(4.13) for collusion can be rewritten as

13 See Dietzenbacher et al. (2000), Dorofeenko et al. (2008), and Chapter 3 of this thesis for additional
discussion of this effect of PCO.
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δ (ym
1 − y1(c2)) ≥ ym

1 −
1
n

n

∑
j=1

z1jŷj, and (4.14)

δ (ŷi − zi1y1(c2)) ≥ ŷi −
1
n

n

∑
j=1

zijŷj, i = 2, . . . , n. (4.15)

Notice that by definition, ym
1 > ŷ1/n ≥ y1(c2) (see Figure 4.1) and recall that

ŷ1 > ŷ2 > . . . > ŷn. Since, part (i) of Lemma 4.1 implies that zii = 1 for all i and

zij < 1 for all i and all j 6= i, it follows that both sides of (4.14) are positive. More-

over, ŷ1/n ≥ y1(c2) implies that
(

∑n
j=1 zijŷj

)
/n = zi1ŷ1/n +

(
∑n

j 6=1 zijŷj
)
/n ≥

zi1y1(c2), with strict inequality when zij > 0 for some j. Hence, ŷi − zi1y1(c2) ≥
ŷi −

(
∑n

j=1 zijŷj
)
/n. Before proceeding we impose the following assumption on ŷi:

Assumption 4: ŷi >
(

∑n
j=1 zijŷj

)
/n for all i 6= 1.

Assumption 4 implies that each firm i 6= 1 earns more money when it unilaterally

deviates from a collusive scheme than it earns under collusion. This assumption

ensures that both sides of (4.15) are positive. Notice that in the presence of PCO

this need not be the case because under collusion, firm i gets a share in the profits

of its rivals, while under deviation it does not. If firm i is relatively inefficient, then

its profit under collusion may exceed its profit when it deviates even though in the

latter case the firm serves the entire market while under collusion it serves only 1/n

of the market (but it gets a share in the profits of its rivals).

With Assumption 4 in place, (4.14) and (4.15) imply the following result.

Lemma 4.2. Let zij ≡ lij/lii be the relative imputed share that the equityholders of firm i

have in firm j (relative to their imputed share in their “own” firm i). Then, the fully collusive

outcome can be sustained as a subgame perfect equilibrium of the infinitely repeated game

provided that

δ ≥ δ̂po(W) ≡ max
{

δ̂1(W), . . . , δ̂n(W)
}

,

where

δ̂1(W) ≡
ym

1 −
1
n ∑n

j=1 z1jŷj

ym
1 − y1(c2)

, (4.16)
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and

δ̂i(W) ≡
ŷi − 1

n ∑n
j=1 zijŷj

ŷi − zi1y1(c2)
, i = 2, ..., n. (4.17)

It is easy to see that the incentives of firms to collude depend on cross ownership

only through the matrix Z whose characteristic element is zij. In what follows we

shall therefore examine how changes in cross ownership affect the matrix Z and

consequently the critical discount factors above which firms wish to collude.

4.4.3 A firm increases its stake in a rival firm by buying shares
from an outsider or from the rival’s controller

Now, suppose that firm r increases its stake in firm s, wrs by ω > 0. The resulting

new PCO matrix is Wω; it differs from the original PCO matrix only in that its rs-th

entry is wrs + ω rather than wrs. Our main question is whether δ̂i(Wω) is higher or

lower than δ̂i(W).

To address this question, note from equation (4.16) that ∂δ̂1(W)/∂z1j < 0 for all

j, and note from equation (4.17) that ∂δ̂i(W)/∂zij < 0 for all i 6= 1 and all j 6= 1.

Moreover, from equation (4.17) it follows that

∂δ̂i(W)
∂zi1

=
− ŷ1

n (ŷi − zi1y1(c2)) + y1(c2)
(

ŷi − 1
n ∑n

j=1 zijŷj

)
(ŷi − zi1y1(c2))

2

=
−ŷi

(
ŷ1
n − y1(c2)

)
+ y1(c2)

n

(
zi1ŷ1 −∑n

j=1 zijŷj

)
(ŷi − zi1y1(c2))

2

= −
ŷi

(
ŷ1
n − y1(c2)

)
+ y1(c2)

n ∑n
j 6=1 zijŷj

(ŷi − zi1y1(c2))
2 < 0,

where the inequality follows because by assumption ŷ1/n ≥ y1(c2) (otherwise firm

1 has no incentive to collude) and ∑n
j 6=1 zijŷj = zii ŷi + ∑n

j 6=1,i zijŷj ≥ ŷi > 0 (recall

that zii = 1). Hence,

Lemma 4.3. ∂δ̂i(W)/∂zij < 0 for all i and all j: the critical discount factor above which

firm i wishes to collude is a strictly decreasing function of each of firm i’s relative imputed

shares in rival firms.

Lemma 4.3 implies that in order to determine the effect of the increase in firm r’s

stake in firm s by ω on firm i’s incentive to collude, we only need to know how it

affects the i’th row in matrix Z, which specifies the relative imputed shares of firm
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i in all rival firms. To this end, note from Lemma A1 in Gilo et al. (2006) that

zω
ij ≡

lω
ij

lω
ii

=
lij + εilsj

lii + εilsi
, εi =

ωlir
1−ωlsr

≥ 0, (4.18)

where lω
ij is the typical element of the new matrix of aggregate imputed shares

Lω = (I−Wω)−1.

Straightforward differentiation yields

∂zω
ij

∂ω
=

liilsj − lsilij
(lii + εilsi)2 ×

lir
(1−ωlsr)2 . (4.19)

Using this equation we are able to prove the following result, which generalizes

Theorem 1 in Gilo et al. (2006) to the case of asymmetric firms (see Appendix 4.A).

Theorem 4.3. Starting with a PCO matrix W, suppose that firm r increases its stake in

firm s by some ω > 0, so that the new PCO matrix Wω differs from W only with respect

to the rs-th entry which is increased by ω. Then

(i) δ̂s(Wω) = δ̂s(W),

(ii) δ̂i(Wω) = δ̂i(W) if lir = 0 (firm i has no direct and indirect stake in the acquiring

firm r), and

(iii) δ̂i(Wω) < δ̂i(W) otherwise, i.e., for all i 6= s and lir > 0.

Theorem 4.3 shows that an increase in the stake of firm r in firm s never hinders

collusion. In fact, the theorem shows that there are only two special cases in which

collusion is not strictly facilitated: one case arises when the maverick firm is the

target firm (firm s). Collusion is not facilitated in this case because the incentive of

the target firm to collude is not affected by the fact that firm r has increased its stake

in firm s. Intuitively, when firm r increases its stake in firm s, the relative imputed

shares of firm s do not change because the imputed shares of firm s in all j, lsj, must

change by the same constant proportion.14 This is because lsj will change in this

case if and only if the target firm s has a direct or an indirect stake in the acquiring

firm r (i.e., when lsr > 0), thus a change in lsj for any j is only due to the link of firm

s to firm r. The second special case arises when the maverick firm has no direct or

indirect stake in the acquiring firm (firm r). Then, the increase in wrs does not affect

the relative imputed shares of the maverick firm in any way and hence its incentive

to collude are not affected either. In all other cases collusion is strictly facilitated.

We summarize this conclusions in the next corollary.

14 In fact, from Lemma A1 in Gilo et al. (2006) it follows that lω
sj = [1/(1−ωlsr)]lsj for all j.
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Corollary 4.1. An increase in firm r’s cross ownership stake in firm s never hinders tacit

collusion and surely facilitates it if and only if (i) each industry maverick has a direct or an

indirect stake in firm r, and (ii) firm s is not an industry maverick.

The proof of Theorem 4.3 provides a simpler proof for Theorem 1 in Gilo et al.

(2006). To see why, note that in the special case where all firms have the same

marginal cost (the case considered in Gilo et al., 2006), ŷ1 = . . . = ŷn = ym
1 and

y1(c2) = 0. Hence, equations (4.16) and (4.17) imply that ∂δ̂i(W)/∂zij < 0 for all i

and all j. Then, the proof of Theorem 4.3 implies immediately that δ̂i(W) ≥ δ̂i(Wω)
with strict equality if and only if i = s or lir = 0.

To get some intuition for Theorem 4.3, note that the key step in the proof is the

observation that liilsj − lsilij ≥ 0 for all j with strict inequality for j = s. In order to

find an interpretation for liilsj − lsilij ≥ 0, consider the following two cases of firms’

direct shareholdings as depicted in Figure 4.2.

Figure 4.2: PCO structure resulting in lsj = lsilij/lii

�

�

�

�

s�

Other�
firms,�
excluding�

firm��j�
i� j s i

Other�
firms,�
including�

firm��j�
j

(a) �������������������������������������������������������������������������������������������������������������(b)�

Note: The arrows are directed from a firm-holder of direct stakes to owned firm(s). These links can be
mutual.

Case (a) applies when only firm i has a direct stake in firm j, and case (b) applies

when only firm s holds a direct stake in firm i that has a direct or an indirect stake

in firm j. In both cases the absence of firm i would immediately imply that firm s

has no shares in firm j. Hence, in such cases we say that firm s has a share (direct

and/or indirect) in firm j only due to firm i.15

To quantify such “dependence” of firm s ownership in firm j on the presence

of an intermediate firm i, let W−i be the modified PCO matrix derived from W

by setting its i-th row and i-th column to zero, and let L−i = (I−W−i)−1 be the

associated matrix of imputed shares. Theorem 1 in Zeng (2001) implies that the

15 For the sake of simplicity, in Figure 4.2 we did not draw double-sided arrows as we are primary
interested in the ownership paths that stem from firm s and end at firm j. Notice that the number of
such paths are infinite if there are cycles present, and potentially all firms can participate in such indirect
links infinite number of times.
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sj-th element of L−i, l−i
sj , is equal to

l−i
sj =

liilsj − lsilij
lii

, for all i 6= s. (4.20)

Therefore, the part of firm s’s imputed share in firm j which is due to (the presence

of) firm i ( 6= s) is equal to

lsj − l−i
sj =

lsilij
lii

.

This also implies that if firm s has a stake in firm j only due to firm i (i.e., in the

absence of firm i there is no direct and/or indirect share of firm s in firm j, l−i
sj = 0)

then it must be true that lsj = lsilij/lii, which holds for any i 6= s. This exactly

corresponds to the cases depicted in Figure 4.2.

With respect to the intuition behind the inequality liilsj − lsilij ≥ 0, note that it

is equivalent to lsj ≥ lsilij/lii. Here, lsj is the imputed share of firm s in firm j and

lsilij/lii is the part of firm s’s imputed share in firm j which is due to (the presence

of) firm i. It is then intuitively clear that lsj ≥ lsilij/lii, because lsilij/lii takes into

account only part of the imputed share of firm s in firm j.

Example: To illustrate the case of lsj = lsilij/lii and Theorem 4.3, we will now

examine the following example. Consider an industry with 3 firms where the PCO

matrix is

W =


0 α 0

β 0 β

η 0 0

 .

The associated matrix of imputed shares is given by

L = (I−W)−1 =
1

1− αβ(1 + η)


1 α αβ

β(1 + η) 1 β

η αη 1− αβ

 .

Note that without firm 2, firm 1 has no stake in firm 3, so l−2
13 = 0. Since the to-

tal stake of firm 1 in firm 3 due to (the presence of) firm 2 is given by l13 − l−2
13 =

l12l23/l22, it follows that l13 = l12l23/l22, which can be verified to hold in the exam-

ple. Likewise, firm 3 has a stake in firm 2 only through firm 1, so l−1
32 = 0; hence,

l32 = l31l12/l11, which again can be verified to hold in the example.
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Now assume that firm 1 increases its stake in firm 2 by ω > 0 (hence r = 1 and

s = 2). Then simple algebra shows that

Zω − Z =


0 ω βω

0 0 0
αηω

F
ηω(1+α2−αβ)

F 0

 ,

where F ≡ (1 − αβ)(1 − α(β + ω)) > 0. Note that the second row in the matrix

contains zeros. Hence, z2j for all j does not change, implying that the collusive

incentive of the target firm (firm 2) is not affected by the increase in firm 1’s stake in

firm 2 (case (i) of Theorem 4.3). Moreover, if firm 3 does not have a stake in firm 1

(the acquirer), i.e., η = 0, then l31 = 0, and z3j does not change as well for all j (case

(ii) of Theorem 4.3). Finally, so long as η > 0 and li1 > 0 for i = 1, 3 (i.e., lir > 0 for

i = 1, 3), then the above result for Zω − Z shows that z12, z13, z31, and z32 increase

as case (iii) of Theorem 4.3 predicts.

4.4.4 A firm increases its stake in a rival firm by buying shares
from another rival firm

Theorem 4.3 assumes implicitly that when firm r increases its stake in firm s, it buys

additional shares from the outside investors or the controller of firm s. However,

cases exist in which one firm buys shares in a rival firm from another rival. A

case in point is a recent transaction in the global steel industry, where Luxemburg-

based Arcelor has increased its stake in the Brazilian steelmaker CST from 18.6% to

27.95% by buying shares from Acesita which is also based in Brazil.16 To examine

the effect of such ownership transfers on the incentives to collude, suppose that

firm r increases its stake in firm s by buying an ownership stake φ from firm k. The

resulting PCO matrix Wφ is obtained from the original PCO matrix W by increasing

the rs-th entry in W by φ and lowering the ks-th entry by φ. Equation (2) in Zeng

(2001) shows that in this case,

zφ
ij ≡

lφ
ij

lφ
ii

=
lij + ε

φ
i lsj

lii + ε
φ
i lsi

, ε
φ
i ≡

φ(lir − lik)
1− φ(lsr − lsk)

. (4.21)

Note that (4.21) is somewhat similar to the expression we used earlier for zω
ij in

16 Acesita sold its entire 18.7% stake in CST to Arcelor and to CVRD which is a large Brazilian miner of
iron and ore. In addition to its stake in CST, Arcelor also owns stakes in Acesita and in Belgo-Mineira,
which is another Brazilian steelmaker (see “CVRD, Arcelor Team up for CST”, The Daily Deal, December
28, 2002, M&A; “Minister: Steel Duties Still Under Study - Brazil”, Business News Americas, April 8, 2002.)
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(4.18). The main difference is that while εi ≥ 0, now ε
φ
i R 0 as lir R lik.

Using (4.21) yields

∂zφ
ij

∂φ
=

liilsj − lsilij(
lii + ε

φ
i lsi
)2 ×

lir − lik(
1− φ(lsr − lsk)

)2 . (4.22)

Repeating the same steps as in Theorem 4.3, we obtain the following result.

Theorem 4.4. Starting with a PCO matrix W, suppose that firm r buys a stake φ in firm

s from firm k, so that the new PCO matrix Wφ is obtained from W by increasing the rs-th

entry by φ and decreasing the ks-th by φ. Then,

(i) δ̂s(Wφ) = δ̂s(W),

(ii) δ̂i(Wφ) = δ̂i(W) if lir = lik (firm i has the same imputed share in firms r and k), and

(iii) δ̂i(Wφ) ≶ δ̂i(W) for all i 6= s as lir ≷ lik.

Theorem 4.4 implies the following result:

Corollary 4.2. A transfer of partial cross ownership in firm s from firm k to firm r does

not affect tacit collusion if the industry maverick is firm s or if, at the outset, the industry

maverick has the same imputed share in firms k and r. Otherwise, the transfer of partial

cross ownership facilitates tacit collusion if the industry maverick has a larger imputed

share in firm r (the acquirer) than in firm k (the seller) but hinders tacit collusion if the

reverse holds.

Proposition 3 in Gilo et al. (2006) also considered the effects of a transfer of partial

cross ownership in firm s from one firm to another but under the special assump-

tion that at the outset all firms hold the exact same ownership stakes in one another.

In this case, the matrix L is symmetric in the sense that its diagonal terms are all the

same and its off-diagonal terms are all equal to each other. In particular, lir = lik
for all i 6= r, k, so part (ii) of Theorem 4.4 shows that δ̂i(Wφ) = δ̂i(W) for all i 6= r, k

(which includes part (i) of Theorem 4.4 if i = s). As for firms r and k, then part

(i) of Lemma 4.1 implies that lrr > lrk and lkr < lkk. Hence, equation (4.22) shows

that ∂zφ
rj/∂φ ≥ 0 and ∂zφ

kj/∂φ ≤ 0 for all j with strict inequality for j = s. Hence,

by Lemma 4.3, δ̂r(Wφ) < δ̂r(W) and δ̂k(Wφ) > δ̂k(W), implying that the transfer

of partial cross ownership in firm s from firm r to firm k strengthens the incentive

of firm r to collude, weakens the incentive of firm k to collude and has no effect on

the incentives of other firms to collude. In the symmetric case considered by Gilo et

al. (2006), δ̂1(W) = . . . = δ̂n(W), so the incentives of all firms to collude before the

transfer of ownership are the same. Hence, the transfer of partial ownership turns
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firm k (the seller) into a maverick firm and since δ̂k(Wφ) > δ̂k(W), tacit collusion is

hindered.

In the present case where firms have asymmetric marginal costs, any firm can

potentially be the maverick firm. In particular, Corollary 4.2 shows that collusion

is hindered when the maverick is firm k and is facilitated if the maverick is firm r.

4.4.5 Conditions for firm 1 to be the maverick

Recall from Section 4.3 that when only firm 1 invests in a rival, firm 1 is the indus-

try maverick. In the following theorem, we provide sufficient (but not necessary)

conditions that ensure that firm 1 continues to be the industry maverick even in the

presence of multilateral PCO arrangements (in the sense that δ̂1(W) > δ̂i(W) for all

i 6= 1).

Theorem 4.5. Sufficient (but not necessary) conditions for firm 1 (the most efficient firm

in the industry) to be the industry maverick is that (i) z1j ≤ zij for all i, j 6= 1, and (ii)

lii ŷi ≤ li1y1(c2) for all i 6= 1.

Recall from the profits definitions in (4.12) that for all i 6= 1 we have π
di
i ( p̂; W) =

lii ŷi and π
f
i (c2; W) = li1y1(c2). Hence, Theorem 4.5 ensures that the most efficient

firm (firm 1) is the industry maverick in the multilateral PCO setting if (i) its relative

imputed share in each other firm j ( 6= 1) is no greater than the relative share of any

other firm in firm j, and (ii) the deviation profit of any other firm i ( 6= 1) is no greater

than i’s profit after the failure of collusion.

4.5 Conclusion

Acquisitions of one firm’s stock by a rival firm have been traditionally treated un-

der Section 7 of the Clayton Act which condemns such acquisitions when their ef-

fect “may be substantially to lessen competition.” However, the third paragraph of this

section effectively exempts passive investments made “solely for investment.” As ar-

gued in Gilo (2000), antitrust agencies and courts, when applying this exemption,

did not conduct full-blown examinations as to whether such passive investments

may substantially lessen competition.17

17 We are aware of only two cases in which the ability of passive investments to lessen competition was
acknowledged: the FTC’s decision in Golden Grain Macaroni Co. (78 F.T.C. 63, 1971), and the consent
decree reached with the DOJ regarding US West’s acquisition of Continental Cablevision (this decree
was approved by the district court in United states v. US West Inc., 1997-1 Trade cases (CCH), 71,767,
D.C., 1997).
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In this study we showed that although there are cases in which passive invest-

ments in rivals (both at the expense of outside shareholders and through owner-

ship transfer among rivals) have no effect on the ability of firms to engage in tacit

collusion, an across the board lenient approach towards such investments may

be misguided. This is because passive investments in rivals may well facilitate

tacit collusion, especially when these investments are multilateral and in firms that

are not industry mavericks. We believe that antitrust courts and agencies should

take account of these factors when considering cases involving passive investments

among rivals.

Throughout the paper we have focused exclusively on the effect of PCO on the

ability of firms to engage in (tacit) price fixing. However, if in addition to price

fixing firms can also divide the market among themselves, then they would clearly

be able to sustain collusion for a larger set of discount factors since they would

have more instruments (the collusive price and the market shares). In particular, it

would be possible to relax the incentive constraints of maverick firms by increasing

their market shares at the expense of firms with nonbinding incentive constraints.

This suggests in turn that in the presence of market sharing schemes, firms may

have an incentive to become industry mavericks in order to receive a larger share

of the market. As our analysis shows, one way to become an industry maverick

is to avoid investing in rivals. Interestingly, this implies that besides the fact that

market sharing schemes are harder to enforce (firms need to commit to ration their

sales) and are more susceptible to antitrust scrutiny, they have another drawback,

which is that they provide firms with a disincentive to invest in rivals and thereby

facilitate tacit collusion.
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4.A Proofs

Proof of Theorem 4.2. (i) Firm 1 chooses p̂ to maximize the left-hand side of (4.6).

Assume that only w1i > 0 for some i 6= 1. Then the corresponding first order

condition (FOC) is ∂ŷ1/∂ p̂ + w1i∂ŷi/∂ p̂ = 0. Since ∂ŷk/∂ p̂ = (∂Q( p̂)/∂ p̂)( p̂ −
ck) + Q( p̂), the last FOC can be rewritten as

w1i = −
ζ

p̂−c1
p̂ + 1

ζ
p̂−ci

p̂ + 1
≡ Υ( p̂, c1, ci), (4.A.1)

where the price elasticity of demand is ζ = (∂Q/∂ p̂)( p̂/Q) < 0. Hence, if w1i

changes, the right-hand side (rhs) of (4.A.1), Υ( p̂, c1, ci), also has to change. Thus,

for given c1 and ci the collusive price must change. Using the fact that ∂ζ/∂ p̂ =
ζ(1− ζ)/ p̂ + ( p̂/Q)(∂2Q/∂ p̂2), the derivative of the rhs of (4.A.1) with respect to

the collusive price after some simple mathematical transformations can be shown

to be given by

∂Υ( p̂, c1, ci)
∂ p̂

=
(ci − c1)

(
2ζ2

p̂ − ∂2Q
∂ p̂2

p̂
Q

)
(

ζ
p̂−ci

p̂ + 1
)2 for all i = 2, . . . , n. (4.A.2)

Assumption 1 implies that the rhs of (4.A.2) is positive: for concave demand func-

tions ∂2Q/∂ p̂2 ≤ 0. Note that Assumption 1 also allows for not too convex demand

functions (with ∂2Q/∂ p̂2 ≥ 0), which we interpret here as 2ζ2

p̂ − ∂2Q
∂ p̂2

p̂
Q > 0. Thus

from (4.A.1) and (4.A.2) it follows that p̂∗ is increasing with w1i and is above pm
1

recalling that pm
1 < pm

2 < . . . < pm
n . The economic intuition is simple: when firm

1 gives a positive (or more) weight to the direct profits of other firms that call for

higher prices, the collusive price must go up.

(ii) Absent PCO, the critical discount factor above which collusion can be sus-

tained is δ̂1(pm
1 ). Using (4.5) and (4.7) it is clear that,

δ̂1(pm
1 ) >

ym
1 −

(
ym

1 + ∑i 6=1 w1iyi(pm
1 )
)

/n
ym

1 − y1(c2)
≥

ym
1 −

(
ŷ∗1 + ∑i 6=1 w1i ŷ∗i

)
/n

ym
1 − y1(c2)

≡ δ̂
po
1 ( p̂∗),

where ŷ∗i = Q( p̂∗)( p̂∗ − ci) and the weak inequality follows because p̂∗ maximizes

ŷ1 + ∑i 6=1 w1i ŷi. To complete the proof, note that by the envelope theorem,

dδ̂
po
1 ( p̂∗)
dw1i

= − ŷi/n
ym

1 − y1(c2)
< 0.



Partial cross ownership and tacit collusion under cost asymmetries 97

(iii) Since c2 < . . . < cn, it follows that ŷ∗2 > . . . > ŷ∗n, implying that PCO by

firm 1 in an efficient rival raises p̂∗ by less and lowers δ̂
po
1 ( p̂∗) by more than does

a similar investment in a less efficient rival. The (more) formal proof of the first

statement is the fact that one can easily show that the rhs of (4.A.2) is increasing in

ci, i.e., ∂Υ( p̂,c1,ci)2

∂ p̂∂ci
> 0. That is, the higher ci (the less efficient is firm i), the more

price change is needed for the FOC in (4.A.1) to hold.

Proof of Theorem 4.3. (i) Equation (4.19) implies that if i = s (firm i is the target

firm s), then ∂zω
sj/∂ω = 0 for all j. Hence, by Lemma 4.3, δ̂s(Wω) = δ̂s(W).

(ii) Equation (4.19) implies that if lir = 0 (firm i has no direct and indirect stake

in the investing firm r), then ∂zω
ij /∂ω = 0 for all j. Again, by Lemma 4.3, δ̂i(Wω) =

δ̂i(W).

(iii) Now suppose that i 6= s and lir > 0. Theorem 1 in Zeng (2001) ensures

that liilsj − lsilij ≥ 0 for all j. When j = s, the inequality is strict since then liilsj −
lsilij = liilss − lsilis > 0, where the inequality follows because part (i) of Lemma 4.1

establishes that lij < lii for all j 6= i. Together with the fact that lir ≥ 0, this implies

that ∂zω
ij /∂ω ≥ 0 for all i and all j, with a strict inequality for j = s. Hence, by

Lemma 4.3, δ̂i(Wω) < δ̂i(W) for all i 6= s.

Proof of Theorem 4.5. Using (4.16) and (4.17) we obtain

δ̂1(W)− δ̂i(W)

=

(
ym

1 −
1
n ∑n

j=1 z1jŷj
)(

ŷi − zi1y1(c2)
)
−
(
ŷi − 1

n ∑n
j=1 zijŷj

)
(ym

1 − y1(c2))

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
)

=

(
ŷi − zi1ym

1
)

y1(c2)− 1
n ∑n

j=1 z1jŷj (ŷi − zi1y1(c2)) + 1
n ∑n

j=1 zijŷj
(
ym

1 − y1(c2)
)

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
)

=
−(ŷi − zi1ym

1 )
( ŷ1

n − y1(c2)
)
− 1

n ∑j 6=1 z1jŷj (ŷi − zi1y1(c2))
(ŷi − zi1y1(c2))

(
ym

1 − y1(c2)
)

+
1
n ∑j 6=1 zijŷj

(
ym

1 − y1(c2)
)

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
) ,

where the last equality follows because by definition, z11 = 1. Adding and sub-

tracting 1
n ∑n

j 6=1 zijŷj (ŷi − zi1y1(c2)) and 1
n ∑j 6=1 zijŷj (ŷ1 − ny1(c2)) to the numera-

tor and rearranging terms yields
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δ̂1(W)− δ̂i(W)

=

(
zi1ym

1 + ∑j 6=1 zijŷj − ŷi
)( ŷ1

n − y1(c2)
)
+ 1

n ∑j 6=1
(
zij − z1j

)
ŷj (ŷi − zi1y1(c2))

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
)

+
1
n ∑j 6=1 zijŷj

((
ym

1 − y1(c2)
)
− (ŷi − zi1y1(c2))− (ŷ1 − ny1(c2))

)
(ŷi − zi1y1(c2))

(
ym

1 − y1(c2)
)

=

(
zi1ym

1 + ∑j 6=1 zijŷj − ŷi
)( ŷ1

n − y1(c2)
)
+ 1

n ∑j 6=1
(
zij − z1j

)
ŷj (ŷi − zi1y1(c2))

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
)

+
∑j 6=1 zijŷj

( ym
1 −ŷ1

n + (n−1)y1(c2)
n + li1y1(c2)−lii ŷi

liin
)

(ŷi − zi1y1(c2))
(
ym

1 − y1(c2)
) ,

Recalling that zii = 1, it follows that ∑j 6=1 zijŷj > ŷi. Moreover, ŷ1/n ≥ y1(c2) (see

Figure 4.1). Hence, the first term is positive. Therefore, firm 1 is the maverick firm

in the industry in the sense that δ̂1(W) > δ̂i(W) for all i 6= 1 if z1j ≤ zij for all

i, j 6= 1, and lii ŷi ≤ li1y1(c2) for all i 6= 1. This completes the proof.



CHAPTER 5

Key groups in networks and

their optimal size∗

5.1 Introduction

One of the important topics in the sociology literature is the problem of identifi-

cation of key actor(s) in social networks. So-called “centrality” measures have been

proposed for this purpose that identify how “central” or powerful (on the basis of

different criteria) each actor is in a network. These measures include centralities

of degree, closeness, betweenness, and information (see e.g., Sabidussi, 1966; Free-

man, 1977, 1979; Stephenson and Zelen, 1989). Other often used centralities are the

status measure also known as the rank prestige index (Katz, 1953), an eigenvec-

tor based centrality measure (Bonacich, 1972, 1991), and the related centrality in

Bonacich (1987). (A thorough discussion of centrality and many more references

can be found in Wasserman and Faust, 1994, pp. 169-219.) The idea of finding the

“most important” actors in social networks has been applied to a large number of

cases across different disciplines.

Recently, however, Everett and Borgatti (1999, 2005) proposed new measures of

a network’s group centrality to account for the fact that the optimal selection of a

set of k (> 1) actors is quite different from selecting the k actors with the largest

individual centralities. These are the so-called group degree, group closeness, and

group betweenness centralities. The inconsistency of the individual and group cen-

tralities is termed an “ensemble issue” in Borgatti (2006), who interprets this by a

∗ An earlier and much reduced version of this chapter appeared as the NET Institute Working Paper,
08-08, September 2008.
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redundancy principle inherent to the majority of real-life networks (see also Burt,

1992). That is, for example, two actors with the largest individual centralities can-

not be optimal set (target) of two individuals if they “... are redundant with respect

to their liaising role – they are equivalent in that they connect the same third parties

to each other” (p. 24), or these actors are structurally equivalent, meaning that they

are connected to the same third parties. In both cases, the two actors have similar

patterns of connections, and thus have exactly the same impact on the network.

Hence, choosing one of them as a member of the target set implies that the second

actor is redundant and should not be included in the optimal set.

Borgatti (2006) shows that depending on the situation, one needs to use cer-

tain measures of centrality. For instance, he distinguishes between a “Key Player

Problem/Negative” (KPP-Neg) and a “Key Player Problem/Positive” (KPP-Pos).

Given a social network, the aim of the KPP-Neg is finding a set of k actors who,

if removed, would maximally disrupt the network, while that of the KPP-Pos is

finding a set of k actors that is maximally connected to all other parties. In prac-

tice KPP-Neg, for example, arises whenever it is needed to immunize or quaran-

tine a subset of the population in order to optimally contain an epidemic, or in a

military context, to neutralize a small number of actors in a criminal network in

order to maximally disrupt its functioning. KPP-Pos arises, for instance, in a pub-

lic health context, when a health agency wishes to optimally spread information

about health promoting practices and attitudes using a small subset of the popula-

tion, or in a military context, when one needs to select an optimal set of actors to

quickly diffuse (mis)information to all criminals. A similar optimization problem,

termed KPP-Com, is defined in Puzis et al. (2007), and searches for the group with

the maximal potential of controlling traffic in communication networks. All in all,

the existence of such a large number of “importance” indicators implies that there

is not a systematic criterion for choosing the “right” measure of network centrality

in each particular situation.

In economics the impact and implications of the actors’ networks of connections

are usually studied using modern game theoretic tools. For example, the impor-

tant feature of network games is that actors’ payoffs depend on each other through

network embeddedness (structure). In such games, each player chooses a level

of some activity in an environment with negative global externalities (e.g., com-

petition) and local positive externalities (e.g., learning, collaboration) that come

through the network. This system has feedback effects, which are taken into ac-

count in the Nash equilibrium activity levels that are dependent on the underlying
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network topology. Recently, such a network game was analyzed by Ballester et al.

(2006), who show that the individual equilibrium levels of agents are proportional

to the so-called Katz-Bonacich centralities of the actors. Hence this study provides

a behavioral foundation to the status measure of Katz (1953) and the network cen-

trality measure of Bonacich (1987), “singling [them] out from the vast catalogue of

network measures” (p. 1404).1 Ballester et al. (2006) also propose a new measure of

network centrality, named the intercentrality measure, that finds a key player from a

social planner’s perspective, i.e., the player with the maximum influence on overall

activity (e.g., social welfare, aggregate crime level). In particular, it is shown that

the key player is not necessarily the player with the highest KB centrality.

In this chapter we consider a more general setting of finding a key group in such

network games. In the key group problem, the planner targets a certain number

of players by removing them from the network of local interactions, which causes

a complete modification of the distribution of individual outcomes. Further, the

assumption of ex ante identical players used in Ballester et al. (2006) is quite restric-

tive from a practical point of view, because in that case all observable differences

between individuals are ignored. Such heterogeneities are, for example, with re-

spect to the player’s age, education, occupation, race, gender, etcetera. This study

also explicitly takes into account these ex ante exogenous heterogeneities of players,

and shows that the results of the key player/group problem dramatically change if

compared to those based on the assumption of ex ante identical players. In search-

ing for the key group we make use of weighted and unweighted Katz-Bonachich

(KB) centralities and group intercentrality measures, where the weights are the ob-

servable differences of players. We should mention that the group intercentralities

are derived in terms of the initial network configuration only. As a comparison, an

unweighted group intercentrality, proposed in Ballester et al. (2004) in the frame-

work of a crime network model, is defined in terms of k different networks with

and without the group-members (to be discussed Section 5.2). For its calculation in

empirical applications, it is required that players are deleted consecutively from the

network(s). Then, the sum of the computed individual intercentralities in these net-

works is the group intercentrality measure. In contrast, our alternative expressions

for the weighted and unweighted group intercentrality measures (defined within

the more general framework of the network games in Ballester et al., 2006) do not

require any extraction of players from the network.

The removal of more than one player from a network has two effects. First, less

1 As will be shown later, the two centrality measures are affine transformations of each other.
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players contribute to the aggregate equilibrium outcome (direct effect), and, sec-

ond, the network geometry is modified, implying that the remaining players adopt

different actions (indirect effect). These effects are fully taken into account in the

group intercentrality measure with ex ante identical agents, which considers not

only the individual KB centralities of the group-members, but also their contribu-

tions to the KB centralities of players outside the group. However, in a more general

setting with ex ante heterogeneous agents, it is not only the weighted group inter-

centrality, but also its interaction with the unweighted group (inter)centrality that

matters for the direct and indirect effects. Hence, with players’ ex ante heterogene-

ity, the weighted and unweighted group intercentrality and KB centrality measures

(together with other parameters of the model to be discussed later) jointly identify

the key group.

The second contribution of this study is that we endogenize the size of the key

group, which is important since targeting groups incurs costs, next to certain ben-

efits. These gains and costs are largely dependent on the size of the key group.

Hence, from the planner’s point of view it is crucial to know what is the optimal

size of the target group. It is shown that within the class of network games studied

in Ballester et al. (2006), the optimal size of the key group is determined by the min-

imal key group loss measure that depends on players’ weighted and unweighted KB

centralities and key group intercentralities, and the costs of group targeting. Fur-

ther, we provide a condition, which guarantees that the problem of choosing the

optimal size of the key group has an interior solution.

The rest of this chapter is organized as follows. In Section 5.2 we characterize

the optimal target selection tasks – both the key player and the key group problems

with ex ante identical players. Some properties of the group intercentrality measure

are discussed. Section 5.3 relaxes the homogeneity assumption, and shows that the

solution of the key player/group problem depends on individuals’ weighted and

unweighted group intercentralities and KB centralities. We endogenize the size

of the key group in Section 5.4. Section 5.5 applies the key group problem to an

hypothetical example of the covert networks that characterize the organizational

structure of large terrorist organizations. In particular, it is shown that once individ-

uals’ observable differences are taken into account, the results dramatically change

if compared to those based on the assumption of ex ante identical agents. Section

5.6 contains some concluding remarks. All proofs are given in the Appendix.
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5.2 The problem of selecting the appropriate target

In what follows, we (briefly) present the Ballester et al. (2006, henceforth BCZ)

model and their proposed intercentrality measure in finding the key player in net-

works with ex ante identical agents. Then we extend the problem to a search of

groups consisting of an arbitrary number of players that have the highest impact

on the overall activity.

5.2.1 Key player search

Each player i = 1, . . . , n selects an effort xi ≥ 0 and gets the bilinear payoff

ui(x) = αixi +
1
2

σiix2
i + ∑

j 6=i
σijxixj, (5.1)

which is strictly concave in its own effort, ∂2ui/∂x2
i = σii < 0, hence marginal

utility of player i is decreasing in its own action. Further, we set αi = α > 0 and

σii = σ for all i = 1, . . . , n.

The network payoff (relative) complementarities across pairs of actors are re-

flected by the cross-derivatives ∂2ui/∂xi∂xj = σij for i 6= j. That is, the marginal

utility of actor i is increasing in actor j’s effort if σij > 0, implying that the efforts by

i and j are strategic complements. Similarly, σij < 0 means that the actions of i and

j are strategic substitutes from i’s perspective.

Let σ = min{σij |i 6= j}, σ = max{σij |i 6= j}, σ < min{σ, 0} and define

γ = −min{σ, 0} ≥ 0. If efforts are strategic substitutes for some pair of players,

then γ > 0, otherwise, σ ≥ 0 implies γ = 0. Hence, as will be also shown below, the

parameter γ reflects the global substitutability of efforts across all pairs of players.

Let λ = σ + γ ≥ 0. Assuming σ 6= σ implies λ > 0, which is a generic property.

From the last definition, it follows that λ corresponds to the highest possible rela-

tive complementarity for all pairs of players.2 Finally, let gij = (σij + γ)/λ for i 6= j,

and gii = 0 for all i = 1, . . . , n. By construction, 0 ≤ gij ≤ 1. The parameter gij mea-

sures the relative complementarity in efforts from player i’s perspective within the

pair (i, j) with respect to the benchmark value −γ ≤ 0. The above interpretations

can be easily seen in Figure 5.1, where the figure in the upper panel shows the case

of both strategic substitutability and complementarity of efforts (i.e., σ < 0) and

2 Note that λ is not the highest possible complementarity for all pairs of players (indicated by σ), but
the largest possible relative complementarity with respect to−γ. To see this difference, note that if σ < 0,
then γ = −min{σ, 0} > 0, thus σ + γ = λ > σ.
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Figure 5.1: Decomposition of the cross effects
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Source: Ballester et al. (2005).

the lower panel corresponds to the case of strategic complementarity of players’

efforts only (i.e., σ > 0). Note that given the assumption σ < min{σ, 0}, without

loss of generality, the (common) second-order derivative in own efforts is set as

∂2ui/∂x2
i = σ = −β− γ, where β > 0.

The matrix G = [gij] is a zero-diagonal nonnegative n-square matrix, which is

interpreted as the adjacency matrix of the network g of relative payoff complemen-

tarities across pairs. A particular case corresponds to the symmetric matrix G with

gij = gji. In addition, if the cross effects take only two values, i.e., σij ∈ {σ, σ} for

all i 6= j with σ ≤ 0, then G is a symmetric (0,1) matrix, and thus g is an undirected

and unweighted network.3

Given the definitions of β, γ, λ and G, the matrix of cross-effects Σ = [σij]
can be readily decomposed into three additive components (or sources of bilateral

interactions) as σij = −γ + λgij if i 6= j and σii = −β− γ if i = j. That is,

3 An unweighted network is represented by binary data that indicate only the presence or absence of
ties between pairs of actors, while in a weighted network also the intensities or frequencies of such links
are quantified. In a nondirected network the relation is mutual, while in a directed network the relation
is not always reciprocal, hence the origin and the end of links are distinguished.
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Σ = −βI− γU + λG, (5.2)

where I is the n-square identity matrix and U is the n-square matrix of ones.

In (5.2) the idiosyncratic effect, −βI, which is the same for each player, reflects

(part of) the concavity in own efforts. The global interaction effect, −γU, gives a

uniform substitutability in efforts across all pairs of players. The local interaction

effect, λG, reflects a relative complementarity in efforts, which can be heteroge-

neous across different pairs of actors. In what follows, the strength of local interac-

tions relative to own concavity is denoted by a ≡ λ/β.

Denote the largest (or dominant) eigenvalue of G by µ(G) > 0. Then if aµ(G) <

1, the matrix B(g, a) = (I− aG)−1 = ∑+∞
k=0 akGk is well defined,4 and its coefficients

bij(g, a) count the number of paths in g starting in i and ending in j, where paths

of length k are weighted by ak. Hence, whenever λ < β, the parameter a in this

interpretation is a decay factor that scales down the weight of longer paths. Denote

the summation vector, i.e., the vector of ones, by ı. The vector of Katz-Bonacich

(KB) centralities of parameter a in g is b(g, a) = B(g, a)ı, and its i-th component

bi(g, a) = ∑n
j=1 bij(g, a) indicates the total number of direct and indirect paths in g that

start from position i.5 Note that, by definition, bii(g, a) ≥ 1, hence bi(g, a) ≥ 1 with

equality holding when i is an isolated actor, i.e., when gij = gji = 0 for all j 6= i.6

From Theorem 1 in BCZ (2006) follows that for aµ(G) < 1, the unique interior

Nash equilibrium of the network game is

x∗(Σ) =
α

β + γb(g, a)
b(g, a), (5.3)

where b(g, a) = ∑n
i=1 bi(g, a).

Equation (5.3) shows that players’ individual equilibrium outcomes are propor-

tional to their KB centralities. The condition aµ(G) < 1 (or equivalently, λµ(G) <

β) for the equilibrium existence and uniqueness requires the payoff complemen-

tarity (reflecting size and pattern of positive synergies), λµ(G), to be smaller than

the own concavity, β. This interpretation holds because λ measures the level of

4 This follows from Theorem III* in Debreu and Herstein (1953, p. 601).
5 In fact, Bonacich (1987) defines the network centrality measure by the vector h(g, a, b) = b(I −

aG)−1Gı, where the parameter b “affects only the length of the vector [h(g, a, b)]” (p. 1173). It is not difficult
to show that b(g, a) = ı + ah(g, a, 1). This measure is directly related to the Katz (1953) network status
measure k(g, a) = a(I−G)−1Gı, since k(g, a) = ah(g, a, 1) = b(g, a)− ı.

6 Or when a = 0, which is not allowed in this network game.
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positive cross-effects, whereas µ(G) captures the population-wide pattern of these

positive cross-effects. Or, in terms of the decomposition given in (5.2), the equilib-

rium exists, is unique and interior, only when the positive feed-back loops +λG are

dampened by own concavity −βI.

Given the equilibrium efforts, it is clear that the planner can manipulate the net-

work geometry by removing one or more players from the network g, in which case

the distribution of individual outcomes is completely modified. In this sense, the

policy relevant issue (e.g., reducing crime rate) studied in BCZ (2006) is removing

one player, and identifying the network’s optimal target. The optimal target is the

actor whose removal maximally reduces the aggregate equilibrium outcome. De-

note by G−i the new adjacency matrix derived from G by setting to zero all of its

i-th row and column elements. The new matrix of cross-effects Σ−i is similarly de-

rived from Σ. The resulting network is g−i. Then the planner’s problem is picking

the player i from the population, whose removal from the initial network g gives

the highest possible reduction in the aggregate equilibrium level. Note from (5.3)

that the aggregate equilibrium outcome is proportional to the total number of di-

rect and indirect paths in g that stem from all players. Formally, the problem is

max{x∗(Σ)− x∗(Σ−i)|i = 1, . . . , n}, where x∗(Σ) = ı′x∗(Σ). The planner’s prob-

lem is thus equivalent to

min
{

x∗(Σ−i) | i = 1, . . . , n
}

. (5.4)

The key player i∗ is a solution to (5.4).

The intercentrality of player i in g is defined as7

ci(g, a) = bi(g, a) + ∑
j 6=i

[
bj(g, a)− bj(g−i, a)

]
=

bi(g, a)2

bii(g, a)
. (5.5)

While the KB centrality of actor i (i.e., bi(g, a)) counts the number of direct and

indirect paths in g stemming from i, equation (5.5) clearly shows that the “inter-

centrality counts the total number of such paths that hit i; it is the sum of i’s [Katz-]

Bonacich centrality and i’s contribution to every other player’s [Katz-] Bonacich

centrality” (BCZ, 2006, p. 1411). Theorem 3 in BCZ (2006) proves that the key

player i∗ has the highest intercentrality, i.e., ci∗(g, a) ≥ ci(g, a) for all i = 1, . . . , n. In

their Example 1, the authors further show that the most central player (according

to the KB centrality measure) is not the key player for relatively large values of a.

7 The last part of (5.5) follows from Lemma 1 in BCZ (2006).
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This occurs since then indirect effects matter and, as the intercentrality takes into

account both a player’s centrality and his contribution to the centralities of the oth-

ers, the key player (with the highest joint direct and indirect effect on the aggregate

outcome) might well differ from the most central player.

Given the definition of the KB centrality, we have that the n× 1 vector of KB cen-

tralities after the removal of player i is b(g−i, a) = B(g−i, a)ı. All the i-th row (and

column) off-diagonal elements of the matrix B(g−i, a) = (I− aG−i)−1 are equal to

zero, while its corresponding diagonal entry is positive and equals bii(g−i, a) = 1.

Hence, the KB centrality of the eliminated player i is bi(g−i, a) = 1. Therefore, the

middle part in (5.5) gives an alternative expression for the intercentrality measure

in terms of the sums of the KB centralities before and after elimination of player i

from the network of local interactions as ci(g, a) = b(g, a)− b(g−i, a) + 1.

5.2.2 Key group search

In this section we wish to generalize the key player problem studied in BCZ (2006)

to a group target selection problem. Thus, the planner’s objective is now opti-

mally reducing the aggregate equilibrium outcome by picking k appropriate play-

ers i1, i2, . . . , ik (is 6= ir) from the population, where 1 ≤ k ≤ n. Recall that the matrix

of cross-effects, Σ, can be both symmetric and asymmetric, hence the following key

group search analysis can be applied to undirected, directed, binary and/or valued

graphs that are characterized by the network g having a symmetric or asymmetric

adjacency matrix G, which is not necessarily a (0,1) matrix.

The planner is searching for k players from the population, such that the differ-

ence between the equilibrium aggregate outcomes before and after the removal of

the appropriate players from the network is maximal. That is, formally, the planner

solves max
{

x∗(Σ)− x∗(Σ−{i1,...,ik})|{i1, . . . , ik} ⊆ N; ir 6= is
}

, where the set of all

players is N = {1, . . . , n}. This is equivalent to

min
{

x∗(Σ−{i1,...,ik}) | {i1, . . . , ik} ⊆ N; ir 6= is
}

, (5.6)

where Σ−{i1,...,ik} is the new matrix of cross-effects obtained from Σ by setting to

zero all its i1-th, i2-th, . . ., ik-th row and column elements. The resulting network

and adjacency matrix are, respectively, g−{i1,...,ik} and G−{i1,...,ik}. Problem (5.6),

similar to the key player problem in (5.4), is a finite optimization problem, which

admits, at least, one solution. Let {i∗1 , . . . , i∗k} be a solution to the key group problem

(5.6), which we call the key group of size k.
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Let us first extend the individual intercentrality measure in (5.5) to the group

intercentrality, which measures intercentrality of a group of players rather than of a

single player. Analogously to (5.5), the k-th order group intercentrality of players

i1, . . . , ik can be written as

c{i1,...,ik}(g, g−{i1,...,ik}, a) =
ik

∑
r=i1

br(g, a) + ∑
j 6=i1,...,ik

[
bj(g, a)− bj(g−{i1,...,ik}, a)

]
= b(g, a)− b(g−{i1,...,ik}, a) + k,

(5.7)

where k appears in the expression because bis(g−{i1,...,ik}, a) = 1 for all s = 1, . . . , k

and these KB centralities of the eliminated players are not part of the group inter-

centrality measure above.8 Thus, similar to the individual intercentrality measure,

the group intercentrality c{i1,...,ik}(g, g−{i1,...,ik}, a) counts not only the total number

of (weighted) paths in g that stem from positions i1, . . . , ik (i.e., the KB centralities of

players i1, . . . , ik), but also the total number of paths that hit these players. In other

words, it is the sum of the KB centralities of all members of the group {i1, . . . , ik},

and their contributions to every other player’s KB centrality.

We can also express the group intercentrality in terms of the individual inter-

centralities as follows (suppressing a’s):

c{i1,...,ik}(g, g−{i1,...,ik}, a) = b(g)− b(g−{i1,...,ik}) + k

=
[
b(g)− b(g−i1) + 1

]
+
[
b(g−i1)− b(g−{i1,i2}) + 1

]
+
[
b(g−{i1,i2})

− b(g−{i1,i2,i3}) + 1
]
+ · · ·+

[
b(g−{i1,...,ik−1})− b(g−{i1,...,ik}) + 1

]
= ci1(g) + ci2(g−i1) + ci3(g−{i1,i2}) + · · ·+ cik (g−{i1,...,ik−1})

≡ c{i1,...,ik}
(
g, g−i1 , . . . , g−{i1,...,ik−1}, a

)
.

(5.8)

The derived group intercentrality is exactly how Ballester et al. (2004) defined the

group intercentrality measure in their study of a similar problem in the framework

of crime networks. Their Proposition 7 states that the key group of size k, where

1 ≤ k ≤ n − 1, has the highest group intercentrality in g. From (5.8) we see that

c{i1,...,ik}
(
g, g−i1 , . . . , g−{i1,...,ik−1}, a

)
is explicitly dependent not only on the initial

network g, but also on k− 1 extra networks, which are obtained by removing con-

secutively members of the group for which the value of intercentrality is computed.

Similarly, c{i1,...,ik}(g, g−{i1,...,ik}, a) in (5.7) is defined in terms of the two networks

8 That is, the i1-th, i2-th, ..., ik-th row (and column) off-diagonal elements of the matrix
B(g−{i1 ,...,ik}, a) = (I− aG−{i1 ,...,ik})−1 are all zeros, while the corresponding diagonal entries are unity,
i.e., bis is (g−{i1 ,...,ik}, a) = 1 for all s = 1, . . . , k. Hence, bis (g−{i1 ,...,ik}, a) = 1 for all s = 1, . . . , k.
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g and g−{i1,...,ik}. Therefore, the obvious question arises whether this group inter-

centrality measure can be expressed in terms of only the initial network topology,

similar to the solution of the key player problem given in (5.5). In what follows

we give this alternative closed-form expression for the group intercentrality mea-

sure, which is expressed in terms of only the initial network g, hence the removal

of players as in (5.8) above is no longer required. This will also allow us to study

some interesting properties of the group intercentrality measure.

Definition 5.1. Consider a network g with adjacency matrix G and a scalar a such that

B(g, a) = [I− aG]−1 exists and is nonnegative. The k-th order group intercentrality of

players i1, . . . , ik (ir 6= is) in g is

c{i1,...,ik}(g, a) = ı′BE
(
E′BE

)−1 E′b,

where E be the n× k matrix defined as E =
(
ei1 , . . . , eik

)
with eir being the ir-th column

of the identity matrix, and 1 ≤ k ≤ n.

In the proof of Theorem 5.1 (given in Appendix 5.A) we show that c{i1,...,ik}(g, a) =
c{i1,...,ik}(g, g−{i1,...,ik}, a). Summarizing our findings so far, we now have three equiv-

alent expressions for the k-th order group intercentrality. These are (5.7), (5.8), and

the expression given in Definition 5.1. The interpretation of (5.7) thus applies also

to the other two expressions.9

The following important identity characterizes all the path changes in a network

when a group of k nodes is removed (see Appendix 5.A).10

Lemma 5.1. Let B = [I− aG]−1 exists and be nonnegative. Let eir be the ir-th column

of the identity matrix, E =
(
ei1 , . . . , eik

)
, and B−{i1,...,ik} = [I− aG−{i1,...,ik}]−1, where

1 ≤ k ≤ n. Then the identity B− B−{i1,...,ik} = BE (E′BE)−1 E′B− EE′ always holds.

Using Lemma 5.1 we establish the following result that gives the solution to the

problem (5.6) in terms of the k-th order group intercentrality measure (see Ap-

pendix 5.A).

Theorem 5.1. If aµ(G) < 1, the key group {i∗1 , . . . , i∗k} of size k that solves the prob-

lem min{x∗(Σ−{i1,...,ik}) | {i1, . . . , ik} ⊆ N; ir 6= is} has the highest k-th order group

9 Using the analytical formula of the inverse matrix, the closed-form second-order group intercentral-
ity of players i and j ( 6= i) in g with symmetric G can be written as c{i,j}(g, a) = (bjjb2

i + biib2
j −

2bijbibj)/(biibjj − bijbji).
10 Lemma 1 in BCZ (2006) is a particular case of our Lemma 5.1 with k = 1 and G being a symmetric
adjacency matrix.
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intercentrality in g, where 1 ≤ k ≤ n, i.e., c{i∗1 ,...,i∗k}
(g, a) ≥ c{i1,...,ik}(g, a) for all

{i1, . . . , ik} ⊆ N and ir 6= is.

It is interesting to note that Theorem 3 and Remark 5 in BCZ (2006) are particu-

lar cases of our Theorem 5.1 when k = 1 and the matrix of cross-effects Σ is, re-

spectively, symmetric and asymmetric. This follows since with k = 1 the group

intercentrality in Definition 5.1 boils down to

ci(g, a) = ı′Bei
(
e′iBei

)−1 e′ib =
ı′Bei · bi(g, a)

bii(g, a)
,

which is the intercentrality of player i when Σ is not symmetric. Remark 5 in BCZ

(2006) states that this last intercentrality defines the key player in the case of asym-

metric matrix of cross-effects.

When the matrix of cross-effects is symmetric, then bkj(g, a) = bjk(g, a) for all

k and all j, i.e., B = B′. Hence, we have ı′B = ı′B′ = (Bı)′ = b′, implying that

for a symmetric adjacency matrix G the group intercentrality of players i1, . . . , ik in

Definition 5.1 can be rewritten as

csym
{i1,...,ik}

(g, a) = b′E
(
E′BE

)−1 E′b. (5.9)

Then it immediately follows that with k = 1 the above measure is simply the indi-

vidual intercentrality measure given in (5.5).

If we set k = n and choose the ordering of all removed players such that E = I,

the group intercentrality in Definition 5.1 reduces to c{1,2,...,n}(g, a) = ı′BB−1b =
ı′b = b(g, a), which is the sum of the KB centralities of all the n players.11 This

is not surprising, because if we are interested in a group of all players, there are

no outside actors left. Consequently, there are no non-members on which agents

can exert payoff externalities. Recall that such externalities are internalized by the

intercentrality measure, which makes it different from the KB centrality measure.

But for k = n there are no other externalities to account for, hence the group inter-

centrality is nothing else than the sum of the KB centralities of all players.

The above observation also implies that if the network g consists of two separate

(independent) subnetworks, then the group intercentrality of all players from one

of the subnetworks is just equal to the sum of the KB centralities of the players
11 Different ordering of the n players results in a different permutation matrix E of order n, but it will
always give exactly the same outcome. Similarly, using the alternative formulation of the group inter-
centrality in (5.8), c{i1 ,...,ik}(g, a) = b(g, a)− b(g−{i1 ,...,ik}, a) + k, it is easy to confirm that for k = n we
have c{1,...,n}(g, a) = b(g, a), since then b(g−{1,...,n}, a) = ı′(I− aO)−1ı = n, where O is the n-square null
matrix.
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from that group.12 That is, as group outsiders do not have any link with the group

insiders, there cannot be any kind of payoff externalities that group-members exert

on outsiders. Of course, this result does not hold anymore, if the group consists of

players from both subnetworks. Let us consider some other properties of the group

intercentrality measure.

Positivity: The group intercentrality measure is always strictly positive because

c{i1,...,ik}(g, a) ≥ k for all k = 1, . . . , n. This trivially follows from c{i1,...,ik}(g, a) =
b(g, a) −b(g−{i1,...,ik}, a) + k, noting that b(g, a) ≥ b(g−{i1,...,ik}, a). The last inequal-

ity is due to the fact that b(g, a) = ı′(I + aG + a2G2 + · · · )ı and G ≥ G−{i1,...,ik}.

Isolate group: An isolate group has the group intercentrality value equal to its

size, i.e., c{i1,...,ik}(g, a) = k if i1, . . . , ik are all isolates (i.e., gis j = gjis = 0 for all s =
1, . . . , k and all j). In such cases, b(g, a) = b(g−{i1,...,ik}, a) as the two corresponding

networks g and g−{i1,...,ik} are exactly identical. Thus, c{i1,...,ik}(g, a) = b(g, a) −
b(g−{i1,...,ik}, a) + k = k for all k = 1, . . . , n.

Subadditivity (or redundancy): ∑k
s=1 cis(g, a) ≥ c{i1,...,ik}(g, a) for all k = 1, . . . , n,

with equality holding if and only if players i1, i2, . . . , ik are all isolates (see Appendix

5.A). In words, the group intercentrality of order k never exceeds the sum of the

individual intercentralities of the players composing the group. This is the outcome

of the fact that in networks, players may be redundant with respect to adjacency,

distance, and bridging (see e.g., Borgatti, 2006).

Symmetry: If b(g−{i1,...,ik}, a) = b(g−{j1,...,jk}, a) for the two groups {i1, . . . , ik}
and {j1, . . . , jk}, then c{i1,...,ik}(g, a) = c{j1,...,jk}(g, a). That is, two groups of the same

size are symmetric, if they have an identical (marginal) contribution to the overall

equilibrium activity. This interpretation follows, since in this case the Nash equi-

12 Mathematically, this can be proved as follows. Let the network g consist of two clusters (I and II), and
no player in cluster I has a link to any of the players in cluster II, and vice versa, no player in cluster II
has a link to any player of cluster I. That is, in terms of partitioned matrices we have

B =

[
I− a

(
Gk Okt
Otk Gt

)]−1

=
[

Bk Okt
Otk Bt

]
,

where, for example, Gk is the k-square adjacency matrix of all k players in cluster I, Okt is the k× t null
matrix, Bk = (Ik − aGk)−1, and k + t = n. To find the group intercentrality of all players in cluster I,
take E′ = [Ik Okt]. Note that in this case the vector of KB centralities is equal to

b = Bı =
[

bk
bt

]
,

where, for example, bt = Btıt is the vector of KB centralities of all players in cluster II. Then using
the group intercentrality formula in Definition 5.1 and the above partitioned matrix B, one can by sim-
ple matrix multiplication easily verify that the group intercentrality of all k players from cluster I is
c{i1 ,...,ik} = ı′kbk . Similarly, the t-th order group intercentrality of all t players from cluster II is equal to
c{ik+1 ,...,in} = ı′tbt, where we have to redefine E now such that 1’s appear in rows corresponding to the
players of cluster II only.
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librium efforts (5.3) of the network game imply x∗(Σ)− x∗(Σ−{i1,...,ik}) = x∗(Σ)−
x∗(Σ−{j1,...,jk}).

Strict monotonicity: The group intercentrality is strictly monotonically increasing

in the size of the group, i.e., c{i1,...,ik+1}(g, a) > c{i1,...,ik}(g, a) for all k = 1, . . . , n− 1.

This holds as c{i1,...,ik+1}(g, a)− c{i1,...,ik}(g, a) = b(g−{i1,...,ik}, a)− b(g−{i1,...,ik+1}, a)+
1 = cik+1

(g−{i1,...,ik}, a) ≥ 1, where we have used the positivity property of the in-

tercentrality measure.

Constant difference: If eliminating two groups {i1, . . . , ik} and {j1, . . . , jk+r} with

r ≥ 1 totally nullify the new adjacency matrices of the resulting networks, then

c{j1,...,jk+r}(g, a)− c{i1,...,ik}(g, a) = r. This is because then G−{i1,...,ik} = G−{j1,...,jk+r} =
O, implying b(g−{i1,...,ik}, a) = b(g−{j1,...,jk+r}, a). Using then the expression (5.7) for

the intercentrality measure gives the result. Note that this outcome (similar to the

symmetry property) implies that the two groups have equal contributions to the ag-

gregate equilibrium efforts, since then it follows from (5.3) that x∗(Σ−{j1,...,jk+r}) =
x∗(Σ−{i1,...,ik}) = αn/(β + γn).

It might happen that the planner is interested in a group of players whose

removal from the initial network g gives the lowest possible reduction in the ag-

gregate equilibrium outcome, i.e., instead of (5.6) the planner’s problem now is

max
{

x∗(Σ−{i1,...,ik}) | {i1, . . . , ik} ⊆ N; ir 6= is
}

. Since the last problem and (5.6) are

mirror reflections of each other, Theorem 5.1 implies the following.

Corollary 5.1. If aµ(G) < 1, the key group {i∗1 , . . . , i∗k} of size k that solves the problem

max
{

x∗(Σ−{i1,...,ik}) | {i1, . . . , ik} ⊆ N; ir 6= is
}

has the lowest k-th order group inter-

centrality of parameter a in g, where 1 ≤ k ≤ n, i.e., c{i∗1 ,...,i∗k}
(g, a) ≤ c{i1,...,ik}(g, a) for

all {i1, . . . , ik} ⊆ N with ir 6= is.

5.3 Key player/group search: accounting for players’

exogenous heterogeneity

The entire discussion in the previous section was based on the assumption that

players are ex ante exogenously identical. In terms of the model, we have assumed

that αi = α for all i = 1, . . . , n in the utility function (5.1). However, from a prac-

tical point of view this assumption is quite restrictive, since ignoring exogenous

heterogeneity, captured by different values of αi, implies that observable differences

between individuals are neglected. For player i, for example, these heterogeneities

include (among other factors) gender, age, race, motivation, education, parents’
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characteristics (education, occupation, age, etc.), household size, residential neigh-

borhood factors, and also the average levels of all these mentioned factors for all

players that are linked to player i. Evidently, in general, not accounting for such

important differences gives totally biased results in empirical work. A recent study

of Calvó-Armengol et al. (2009) takes such exogenous heterogeneity into account

in studying the effect of social networks on pupils’ school performance in case of

an adolescent friendship network in the US.

Before considering the key player/group problem in the presence of ex ante

heterogeneity, we first introduce the following definition, following BCZ (2006) and

Calvó-Armengol et al. (2009).

Definition 5.2. Given a positive vector u and a small enough scalar a ≥ 0, the vector

of u-weighted Katz-Bonacich centrality of parameter a in the network g is bu(g, a) =
(I− aG)−1u = ∑+∞

k=0 akGku.

Note that the “standard” unweighted KB centrality b(g, a) corresponds to the u-

weighted KB centrality when u = ı. Calvó-Armengol et al. (2009) show that the

previous condition of λµ(G) < β does not anymore guarantee the interiority of

the equilibrium, although it suffices for the equilibrium existence and uniqueness

in case of α 6= αı. Instead the corresponding sufficient condition becomes λµ(G) +
nγ(α/α − 1) < β, where α = max{αi | i = 1, . . . , n}, α = min{αi | i = 1, . . . , n},

and thus nγ(α/α− 1) ≥ 0. Its economic interpretation is somewhat similar to that

of the earlier condition, but now it also depends on the size of the global level of

substitutabilities, γ. The new condition imposes more stringent requirements on

λµ(G) (local complementarities), γ (global substitutabilities) and α/α (marginal

payoff differences) such that “players have no incentives to increase their effort

level without bound [in the presence of payoff complementarities], neither to free-

ride on their network peers by decreasing them to zero [in the presence of payoff

substitutabilities]” (Calvó-Armengol et al., 2008, p. 39).

Theorem 1 in Calvó-Armengol et al. (2009) shows that once different values of αi

across players in the objective function (5.1) are allowed, then the Nash equilibrium

effort levels are different from those in (5.3) and are instead given by

x∗α(Σ) =
1
β

[
bα(g, a)− γbα(g, a)

β + γb(g, a)
b(g, a)

]
, (5.10)

where bα(g, a) = ı′bα(g, a), and the equilibrium efforts are denoted by the super-

script α as well to indicate the fact that compared to (5.3) now players’ ex ante

heterogeneity is taken into account.
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Note that when α = αı, we have bα(g, a) = αb(g, a) and the equilibrium closed-

form expression in (5.10) reduces to (5.3). Now we first wish to establish the re-

lationship between the overall equilibrium outcome, x∗α
(
Σ) = ı′x∗α

(
Σ), and the

density of the adjacency matrix G.13 Consider two adjacency matrices G̃ and G,

not necessarily symmetric, such that g̃ij ≥ gij for all i and all j ( 6= i), with at

least one strict inequality (in matrix notation, G̃ > G). It follows from (5.2) that

Σ̃ = −βI− γU + λG̃. The following result is proved in the Appendix.

Lemma 5.2. Let G̃ and G be two adjacency matrices such that G̃ > G. For given α, β, γ

and λ, if λµ(G̃) + nγ(α/α− 1) < β, then x∗α
(
Σ̃) > x∗α

(
Σ).

The lemma above shows that a network with more links has a strictly larger overall

equilibrium outcome than the network with fewer connections. This is because a

higher density of G implies more complementarities between players that lead to

an increase in the number of un- and α-weighted direct and indirect paths, which

ultimately increase the overall equilibrium activity.

As in the previous section the superscript −{i1, . . . , ik} to the adjacency matrix

G indicates that its corresponding rows and columns elements are all set to zero.

The planner is searching for k players from the population that have the maximal

simultaneous impact on the overall equilibrium efforts. Similar to the players’ ex

ante homogeneity case discussed in Section 5.2, the planner’s problem of maxi-

mizing the difference between the aggregate outputs before and after removal of

individuals i1, . . . , ik from the network is equivalent to

min
{

x∗α
(
Σ−{i1,...,ik}

)
| {i1, . . . , ik} ⊆ N; ir 6= is

}
. (5.11)

Evidently, given the exogenous heterogeneity of players captured by α, in general,

the solutions (i.e., key groups of size k) of (5.6) and (5.11) do not correspond to each

other. Similar to Definition 5.2, we next define a weighted version of the group

intercentrality measure as follows.

Definition 5.3. Given a positive vector u and a small enough scalar a ≥ 0, the u-

weighted group intercentrality of order k of players i1, . . . , ik (ir 6= is) of parameter a in g is

cu
{i1,...,ik}

(g, a) = ı′BE (E′BE)−1 E′bu, where E =
(
ei1 , . . . , eik

)
and bu is the u-weighted

KB centrality vector.

Notice that when u = ı, the u-weighted group intercentrality defined above boils

down to the k-order group intercentrality measure in Definition 5.1. For a symmet-

13 Theorem 2 in BCZ (2006) considers this link for the case of players’ ex ante homogeneity (i.e., α = αı)
and symmetric matrix of cross-effects (i.e., Σ = Σ′).
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ric adjacency matrix G, the u-weighted group intercentrality becomes (compare to

(5.9))

cu,sym
{i1,...,ik}

(g, a) = b′E(E′BE)−1E′bu.

When k = 1, the u-weighted group intercentrality in Definition 5.3 reduces to

cu
i (g, a) = ı′Bei · bu

i /bii, where bu
i is the i-th element of bu(g, a). Further for a

symmetric matrix of cross-effects Σ (or, equivalently, symmetric G) we will have

cu,sym
i (g, a) = bibu

i /bii.

Similar to the unweighted intercentrality, the alternative formulation of the u-

weighted group intercentrality measure can be written as

cu
{i1,...,ik}(g, a) = bu(g, a)− bu(g−{i1,...,ik}, a) +

k

∑
s=1

uis , (5.12)

where bu(g−{i1,...,ik}, a) = ı′B(g−{i1,...,ik}, a)u. The KB centralities of the removed

players are bu
is(g−{i1,...,ik}, a) = uis for all s = 1, . . . , k (see footnote 8) and should not

be part of the group intercentrality measure, hence the sum ∑k
s=1 uis is added.14

It follows from (5.10) that x∗α(Σ) = bα(g, a)/[β + γb(g, a)]. Thus, using (5.12)

and the identity ∑k
s=1 αis = ı′EE′α, the overall equilibrium efforts when players

i1, . . . , ik are removed from the network can be expressed in terms of only the initial

network g as follows

x∗α(Σ−{i1,...,ik}) =
bα(g−{i1,...,ik}, a)

β + γb(g−{i1,...,ik}, a)

=
bα(g, a) + ∑k

s=1 αis − cα
{i1,...,ik}

(g, a)

β + γ
(
b(g, a) + k− c{i1,...,ik}(g, a)

)
=

ı′
[
B + EE′ − BE(E′BE)−1E′B

]
α

β + γı′ [B + EE′ − BE(E′BE)−1E′B] ı
≡ rα

{i1,...,ik}(g, a, γ).

(5.13)

Equation (5.13) shows that the residual aggregate equilibrium activity without play-

ers i1, . . . , ik, rα
{i1,...,ik}

(g, a, γ), besides depending on the main parameters of the

model (i.e., a = λ/β and γ), also depends on α, and on the unweighted and α-

weighted KB centrality and group intercentrality measures. Hence,

Theorem 5.2. If λµ(G) + nγ(α/α − 1) < β, the key group {i∗1 , . . . , i∗k} of size k that

solves the problem min
{

x∗α(Σ−{i1,...,ik})|{i1, . . . , ik} ⊆ N; ir 6= is
}

matches the lowest

14 Thus, in case of players’ exogenous homogeneity, u = ı, we have ∑k
s=1 uis = k, so that cu

{i1 ,...,ik}
(g, a)

reduces to the standard unweighted group intercentrality given in (5.7).
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residual aggregate equilibrium activity of parameters a and γ in the network g, where 1 ≤
k ≤ n, i.e., rα

{i∗1 ,...,i∗k}
(g, a, γ) ≤ rα

{i1,...,ik}
(g, a, γ) for all {i1, . . . , ik} ⊆ N and ir 6= is.

Note that in case of homogeneous observable characteristics of players (i.e., α = αı),

the residual aggregate equilibrium activity boils down to (suppressing (g, a)’s)

r{i1,...,ik}(g, a, γ) =
α
(
b + k− c{i1,...,ik}

)
β + γ

(
b + k− c{i1,...,ik}

) = α

[
γ +

β

b + k− c{i1,...,ik}

]−1

, (5.14)

hence no longer depends on the α-weighted group intercentralities and KB cen-

tralities. One can easily observe that in (5.14) for given k it is only the group in-

tercentrality c{i1,...,ik}(g, a) that is changing when the identities of players i1, . . . , ik

change, and since ∂r{i1,...,ik}(g, a, γ)/∂c{i1,...,ik}(g, a) < 0, minimization of the resid-

ual overall efforts with respect to the group of players i1, . . . , ik is exactly equiva-

lent to such maximization of the group intercentrality measure. That is why Theo-

rem 5.1 followed. But in the presence of players’ ex ante heterogeneity, the overall

residual equilibrium output is also a function of the α-weighted (inter)centralities,

and, moreover, it depends in a non-additive way on α-weighted and unweighted

group intercentralities and KB centralities. Hence it is the interaction of both α-

weighted and standard KB centralities and group intercentralities together with

given levels of concavity, global substitutability and local complementarity param-

eters that identify the key group (or the key player).

As a final remark, note that since αi > 0 for all i = 1, . . . , n, all the properties

of the unweighted intercentrality measure discussed in Section 5.2.2 also hold for

the α-weighted intercentrality measure, except for the properties of isolate group

and constant difference. The isolate group i1, . . . , ik has the group intercentrality

equal to cα
{i1,...,ik}

(g, a) = ∑k
s=1 αis . The difference in two α-weighted group inter-

centralities of orders k + r and k, when removal of the corresponding groups totally

nullify the new adjacency matrices, is no longer equal to r, and using (5.12) instead

is cα
{j1,...,jk+r}

(g, a) − cα
{i1,...,ik}

(g, a) = ∑k+r
s=1 αjs − ∑k

s=1 αis , hence is not constant for

different pairs of groups. This difference boils down to r if αi = 1 for all i. Fur-

ther, the positivity property of the α-weighted group intercentrality holds because

cα
{i1,...,ik}

(g, a) ≥ ∑k
s=1 αis for all k = 1, . . . , n.

Finally, Theorem 5.2 implies the following result if the planner’s problem is

max
{

x∗α(Σ−{i1,...,ik}) | {i1, . . . , ik} ⊆ N; ir 6= is
}

instead of (5.11).

Corollary 5.2. If λµ(G) + nγ(α/α − 1) < β, the key group {i∗1 , . . . , i∗k} of size k that

solves the problem max
{

x∗α(Σ−{i1,...,ik})|{i1, . . . , ik} ⊆ N; ir 6= is
}

matches the highest
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residual aggregate equilibrium activity of parameters a and γ in g, where 1 ≤ k ≤ n, i.e.,

rα
{i∗1 ,...,i∗k}

(g, a, γ) ≥ rα
{i1,...,ik}

(g, a, γ) for all {i1, . . . , ik} ⊆ N.

5.4 Optimal size of the key group

Up to this point the size of the group was assumed to be exogenously given. How-

ever, targeting a group of certain size besides bringing benefits, in general, also

costs a planner time, money, energy, etc., the overall extent of which depends on

the size of the group. For instance, if the aim of the planner is to maximally disrupt

a criminal network by neutralizing a small subset of criminals, then the benefit of

obtaining lower criminal activity in a society comes at the price of all kinds of costs

related to planning and implementing the annihilating aim (i.e., information, time,

people, instruments, etc.), and it is clear that both benefits and costs are largely de-

pendent on the group size. Hence, since targeting groups of different sizes yields

different benefits and costs, one may wish to study what is the optimal size of the

key group that the planner should target on.

We assume that the planner, while targeting a key group of size k, receives a total

benefit proportional to the group’s contribution to the overall equilibrium activity,

φ
[
x∗α(Σ) − x∗α(Σ−{i∗1 ,...,i∗k})

]
with φ > 0, and incurs the total cost of f (k) for k =

1, . . . , n. The cost function may be linear in the group’s size, such as f (k) = νk with

ν > 0, or we can have a convex cost function, say, given by f (k) = νk2 so that the

pattern of increasing marginal cost in the group size is captured. We assume that

∂ f (k)/∂k > 0. The planner optimally chooses the size of the group such that it

maximizes the net gain, i.e.,

max
k

φ
[

x∗α(Σ)− x∗α
(
Σ−{i∗1 ,...,i∗k}

)]
− f (k). (5.15)

As long as g 6= ∅, the key group will have members active in the network (non-

isolates), hence x∗α(Σ) > x∗α(Σ−{i∗1 ,...,i∗k}) as Σ > Σ−{i∗1 ,...,i∗k} for all k = 1, . . . , n (this

follows from Lemma 5.2). However, it follows from Lemma 5.2 that the benefit

(the first part in (5.15)) is monotonically increasing in the key group size, since

x∗α(Σ−{i∗1 ,...,i∗k}) ≥ x∗α(Σ−{i∗1 ,...,i∗k+1}). This last inequality is not strict as it might very

well happen that Σ−{i∗1 ,...,i∗k} = Σ−{i∗1 ,...,i∗k+1} for some (large) k. Since both the ben-

efit and the cost of group targeting are monotonically increasing in the size of the

(key) group, it might very well happen that the net gain is always negative for all

ranges of k ∈ [1, n], thus the optimal size of the key group is zero. To avoid this
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uninteresting case of k∗ = 0, we assume that there exists at least one k > 0 such

that the condition φ
[
x∗α(Σ)− x∗α(Σ−{i∗1 ,...,i∗k})

]
− f (k) > 0 holds. Using (5.13) it can

be shown that the last condition may be rewritten as

φ

f (k)
>

(β + γb)(β + γ(b + k− ci1,...,ik ))

(β + γb)(cα
i1,...,ik

−∑k
s=1 αis)− γbα(ci1,...,ik − k)

, (5.16)

where for simplicity we have suppressed the expression (g, a), and (5.16) in case of

α = αı reduces to

φ

f (k)
>

(β + γb)(β + γ(b + k− ci1,...,ik ))
αβ(ci1,...,ik − k)

. (5.17)

The isolate group property implies that cα
i∗1 ,...,i∗k

(g, a) = ∑k
s=1 αis and ci∗1 ,...,i∗k

(g, a) = k

if and only if each of i∗1 , . . . , i∗k is an isolate player. However, with g 6= ∅ it is

always true that not all the members of the key group are isolate, hence the right-

hand sides of (5.16) and (5.17) are well-defined. Problem (5.15) is equivalent to

min
{
`(α, Σ, k) | k = 1, . . . , n

}
, where a loss of the key group of size k is defined as

`(α, Σ, k) ≡ φx∗α
(
Σ−{i∗1 ,...,i∗k}

)
+ f (k). Hence, the loss of the key group of size k is

equal to

`(α, Σ, k) = φ · rα
{i∗1 ,...,i∗k}

(g, a, γ) + f (k),

where we use the expressions in (5.13) and (5.14) for the residual aggregate equi-

librium activity, rα
{i∗1 ,...,i∗k}

(g, a, γ), with and without considering players’ ex ante ex-

ogenous heterogeneity, respectively. Note also that now we are restricting our focus

on key groups only.

The key group loss thus, in general, depends in a complex way on the α-weighted

and unweighted (inter)centralities. It shows that an increase in k has two oppos-

ing effects on the key group loss. First, the loss decreases since the residual ag-

gregate activity is monotonically decreasing in the group size (which follows from

Lemma 5.2). Second, the loss of the key group goes up due to an increase in costs

of targeting larger sized groups.15 The following result is then obvious.

Theorem 5.3. Assume that the net gain of targeting the key group of size k is given

by φ
[
x∗α(Σ) − x∗α(Σ−{i∗1 ,...,i∗k})

]
− f (k), where φ > 0, and the condition in (5.16) holds

15 This resembles the well-known Baumol-Tobin model of money demand, where the total cost of hold-
ing money consists of: (i) forgone interests that decrease in the number of money withdrawals from a
bank, and (ii) cost of withdrawals that is increasing in the number of trips to the bank.
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Figure 5.2: A hypothetical example of the covert network

for at least one k. Then the optimal key group size k∗ has the lowest key group loss, i.e.,

`(α, Σ, k∗) ≤ `(α, Σ, k) for all k = 1, . . . , n.

5.5 Application to a covert network example

In this section we apply the key player/group problem and the key group loss

measure for identifying the optimal group size to a hypothetical example of a covert

network. The covert network, or the red ream consists of a set of small, but largely

interconnected sets of agents with little links between the sets, which mimics the

organizational structure of large terrorist organizations (see e.g., Krebs, 2002). An

example of (a small part of) such a network is given in Figure 5.2, which consists

of three densely intraconnected groups of six players each that are also weakly

connected to each other.

Let us first consider the case of α = αı. Table 5.1 gives the KB centrality, individ-

ual and group intercentrality measures for k ∈ [1, 4] and a = 0.1.16 Since the graph

of the network is undirected, we use the symmetric group intercentrality measure

given in (5.9). Although players 4, 11 and 13 have the highest number of direct links

16 The largest eigenvalue of the network in Figure 5.2 is equal to 4.894, hence the values of a ∈ (0, 0.204)
result in a well-defined and nonnegative matrix B. The MATLAB program for computation of the group
intercentrality measures is given in the appendix of Temurshoev (2008).



120 Chapter 5

Table 5.1: Centrality and intercentrality measures

Rank Player bi Player csym
i Group of size 2 csym

{i1 ,i2}

1 (key) 13 2.161 4 4.282 {4,11} 8.307
2 4 2.156 13 4.269 {4,13} 8.297
3 11 2.130 11 4.152 {11,13} 8.284
4 16 2.009 16 3.748 {4,12} 7.954

Group of size 3 csym
{i1 ,i2 ,i3}

1 (key) {4,11,13} 12.196
2 {2,11,13}, {5,11,13} 11.716
3 {4,11,15}, {4,11,17} 11.679
4 {4,7,13}, {4,9,13} 11.671

Group of size 4 csym
{i1 ,i2 ,i3 ,i4}

1 (key) {2,4,11,13}, {3,4,11,13}, {4,5,11,13} 14.685
2 {4,7,11,13}, {4,9,11,13}, {4,11,13,15}, {4,11,13,17} 14.575
3 {1,4,11,13}, {4,6,11,13}, {4,6,7,13}, {4,6,9,13} 14.320
4 {2,11,13,16}, {5,11,13,16} 14.311

Note: The intercentralities of all possible groups of size k ∈ [1, 4] were computed,
which mathematically amount to the combinations of n = 18 players taken k at
a time, Cn

k = n!/(k!(n − k)!). Hence, all 18, 153, 816, and 3060 groups of size
k = 1, . . . , 4 were considered, respectively.

(i.e., six direct contacts each), player 13 is the most central player (it has the highest

KB centrality), while player 4 is the key player (it has the highest intercentrality).

This outcome was already shown in a different example in BCZ (2006, Table 1),

which implies that the most central player is not necessarily an optimal target for

the social planner who seeks the key player - i.e., the player with the highest joint

direct and indirect impact on aggregate equilibrium outcome.

Turning our attention to the key group problem, Table 5.1 clearly demonstrates

that the key group of size 2 consists of actors 4 and 11, and that does not match

with the top 2 players with the highest individual intercentralities (i.e, actors 4 and

13). Note that they are also the most central players indicated by their respective

KB centralities. In this example, the key group of size 3 includes the three play-

ers with the largest individual intercentrality (and KB centrality) measures. This

is, in fact, an expectable outcome because these three actors (i.e., 4, 11 and 13) play

liaising roles in connecting the three subsets of the network in Figure 5.2, besides

having the largest number of direct links. Note also that each actor belongs to a

different subset. However, in the case of group size 4, the key group is again not

comprised of players with the highest individual intercentralities (and KB central-

ities). Together with the players from the key group of size 3, the fourth actor is

player 2 (3, and 5, respectively, because there are three key groups of size 4 with
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equal group intercentrality values) and not player 16. Moreover, the set of four

players with the largest individual intercentralities appears only in the fifth rank

with csym
{4,11,13,16} = 14.254 (not shown in Table 5.1).

Observe that in Table 5.1 all the members of the key group of size k are also

included in the key group of size k + 1. This is, however, a mere coincidence, and

is not true in general. That is, the key group selection problem is not identical to a

sequential key player problem.17

The lack of coincidence between the composition of the key group and the ran-

king based on the key player problem is due to a redundancy principle inherent to

the majority of real life networks. Arguing that the information and control ben-

efits of a large and diverse network are more than those of a small and homoge-

neous network, Burt (1992, p.17), for example, states: “What matters is the number

of nonredundant contacts. Contacts are redundant to the extent that they lead to

the same people, and so provide the same information benefits.” In general, re-

dundancy of players in a network may be with respect to adjacency, distance, and

bridging (see e.g., Borgatti, 2006). One of the measures of redundancy is the notion

of structural equivalence of nodes that reflects agents’ similarity in terms of their

linkages to third parties. In our case, some actors might be quite similar to each

other in terms of their linking structure, and thus it is expected that the key group

members consist of players that are relatively nonredundant.

To compare our results of the key group problem (with ex ante identical actors)

with the notion of structural equivalence of players, we use a hierarchical agglome-

rative cluster analysis to identify groups of players that are similar in their patterns

of ties to all other players (see e.g., Lattin et al., 2003, Chapter 8). Cluster analysis

partitions actors to subgroups of perfectly or approximately structurally equivalent

members. Each actor is initially considered as a singleton cluster, and then clusters

are successively joined until all players merge into a single cluster. The process

starts with constructing a so-called similarity matrix of players. We measure simi-

larity of a pair of players by counting the proportion of their matches to all other

actors.18 The resulting similarity matrix is given in Table 5.2. The number 0.938 in

the cell (2,1), for example, means that actors 1 and 2 have the same tie (present or

absent) to other actors 93.8% of the time. That is, actors 1 and 2 have the same tie

with actor k 6= 1, 2 if g1k = g2k, where we have set gij = gji = 1 if there is a direct

17 In fact, the point that the key group problem and the sequential key player problem are not equivalent
is shown in Ballester et al. (2004, pp. 19-20).
18 We also used a matrix of Euclidian distances to measure the “distance” or “dissimilarity” between the
tie profiles of each pair of actors. The outcome of the cluster analysis totally coincides with that based on
the similarity matrix of proportions of matches.
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connection between players i and j ( 6= i). So in the example considered, there are

15 out of 16 links (absent and present) that are the same for players 1 and 2 (thus,

15/16 = 0.9375). Hence, the higher this score the more similar are the players in a

particular pair.

Next the agglomerative cluster analysis starts from n clusters of size 1 and at

each stage of the process finds the two “closest” (most homogeneous) clusters and

joins them together. For example, the pairs of players {2, 5}, {17, 15} and {7, 9}
are perfectly structurally equivalent (i.e., the corresponding cells are equal to 1.000

in Table 5.2). So these pairs are joined together to make the first three clusters of

two actors each. On the basis of new similarity matrices this process continues

until only one cluster of size n remains, and this hierarchical sequence of merging

clusters is visually depicted by a tree diagram, also called a dendrogram. We have

used the average link criteria for forming clusters, which computes the similarity

of the average scores in the newly formed cluster to all other partitions.19 The

resulting tree diagram is given in Figure 5.3.

Figure 5.3: Hierarchical dendrogram of the covert network in Figure 5.2

19 There are two other basic criteria for forming clusters: single link and complete link. The single (com-
plete) method computes similarities on the basis of the similarity of the member of the new cluster that
is most (least) similar to each other cluster. While the single link approach is too myopic, the complete
link method tends to give highly separated diagrams with tightly bound clusters. Hence, the average
linkage is a sort of compromise between the single and the complete linkages. “Some authors prefer
this method [average approach] because it comes closest to fitting a tree that satisfies a least squares
minimization criterion” (Lattin et al., 2003, p. 282).
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As can be seen from Figure 5.3, nonoverlapping clusters are a product of the hierar-

chical agglomerative cluster analysis, i.e., the smaller clusters are subsumed within

successively larger clusters at higher levels of agglomeration. It is clear that higher

values of agglomeration indicate lower structural equivalence, less similarity, or

greater within-cluster “distance”. However, for our purposes we are not interested

in choosing the level of agglomeration that provides the “best” representation of

the number of structurally equivalent positions in the network. Instead we aim at

confirming or rejecting our conjecture that the key group includes less structurally

equivalent (nonredundant) players that are exogenously identical.

The dendrogram in Figure 5.3 identifies two clusters at relatively high agglome-

ration level: {7, 8, 9, 10, 11, 12} and the rest subsuming the second cluster. Note that

the two actors with the highest individual intercentrality measures (i.e., players 4

and 13) are both members of the second cluster, hence are more homogeneous in

their tieing structure than a pair of players from the two different clusters. As we

expected, the key group of size 2 consists of players 4 and 11 that are part of the two

different clusters, thus being less redundant with respect to each other than the pair

{4, 13}. Moreover, within these two clusters, respectively, actors 4 and 11 are less

similar to all other members, which is shown by the fact that they join their clus-

ters only at the highest level of agglomeration. Similarly, the relatively higher level

of similarity produces three clusters: A = {1, 2, 3, 4, 5, 6}, B = {7, 8, 9, 10, 11, 12},

and C = {13, 14, 15, 16, 17, 18}. Again, the members of the key group of size 3 (i.e.,

players 4, 11, and 13) are each part of one of these three different clusters. A higher

similarity level (i.e., lower agglomeration level) disaggregates cluster A into two

sets of relatively homogeneous players by identifying actor 4 as one cluster and

the rest as the second (while clusters B and C remain unchanged). Hence, our key

group of size 4 besides actors 4, 11, 13 picks one player from the remaining part of

cluster A, i.e., from {1, 2, 3, 5, 6}.

However, this coincidence of the key group problem and the cluster analysis

does not hold in general. In particular, for a larger size of the key group and lower

levels of agglomeration the two approaches yield different results. First, observe

from Figure 5.3 that one cannot disaggregate the players into 6, 9, 10, 12, 13, 14,

16 and 17 clusters as certain agglomeration (similarity) levels of the partitions are

equal. Second, not all non-similar actors (i.e., actors from different clusters) com-

prise the key group of a larger size. For example, let us take the key group of size 7.

There are twelve key groups of size 7 with group intercentralities equal to 21.321.

One of these groups is {2, 3, 4, 7, 11, 13, 15}. From Figure 5.3 we have the follow-
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ing seven clusters: {1, 2, 3, 5}, {4}, {6}, {13, 15, 17}, {14, 16, 18}, {7, 8, 9, 10, 12} and

{11}. Hence, four members of the given key group of size 7 are part of only two

clusters (players 2 and 3 are in one cluster, 13 and 15 are in another), while there

is no key group member from clusters {6} and {14, 16, 18}. In fact, these last two

clusters are not represented in any of the other eleven key groups of size 7. These

findings clearly show that using cluster analysis for finding key groups in networks

would be misleading, since the right candidate for the key group should not only

have a diverse direct linking structure, but also a diverse indirect impact on the rest

of the system. Another reason why cluster analysis cannot exactly determine the

key group members is that different criteria for forming clusters may very well give

different outcomes. All in all, however, despite these inconsistencies, the key group

problem and cluster analysis are related in the sense that the key group members

are to some extent less structurally equivalent. In particular, members of the key

group of a smaller size are rather nonredundant with respect to each other in terms

of their linking patterns in the network.20

In our next step, the key group intercentralities for all k = 1, . . . , 18 of our

covert network example are graphed in Figure 5.4 (upper left figure), where it

is assumed that α = β = 1 and γ = 0.1. Key group intercentrality sequen-

tially increases from c4(g, 0.1) = 4.282 up to c{1,...,18}(g, 0.1) = b(g, 0.1) = 34.848,

which reflects the strict monotonicity property of the group intercentrality mea-

sure. In the upper right figure we graph the contribution of the key group to the

overall equilibrium activity (depicted by triangles), i.e., x∗(Σ)− x∗(Σ−{i∗1 ,...,i∗k}) for

all k = 1, . . . , n, and the difference in the key group intercentralities (depicted

by a line). This difference, c{i∗1 ,...,i∗k}
(g, 0.1) − c{i∗1 ,...,i∗k−1}

(g, 0.1), is decreasing for

k = 1, . . . , 12, and remains constant at the value of one afterwards. This is because

removing key group of size k = 12, . . . , 18 totally nullifies the new adjacency ma-

trix in our example, which is what we have called the constant difference property

of the group intercentrality measure in Section 5.2.2. Note that this also implies

that all the key groups of size k ∈ [12, 18] have equal contributions to the aggre-

gate equilibrium output, which is equal to 1.342 (i.e., x∗(Σ) − x∗(Σ−{i∗1 ,...,i∗k}) =
αb(g, 0.1)/(β + γb(g, 0.1))− αn/(β + γn)).

To find out what is the optimal size of the key group, we determine the value

20 Another main reason of (possible) different results of the key group problem and cluster analysis for
groups of larger size, is that, in general, the key group selection problem is not identical to a sequential
key player problem. Thus, comparing the key group outcomes to those from the hierarchical agglo-
merative cluster analysis when the size of the considered group is rather large, in general, makes little
sense. This is because in cluster analysis once actors are part of a group they will never leave it and only
additional actors join the group at a higher level of agglomeration.
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Figure 5.4: Key group intercentrality and losses ( α = β = 1, γ = ν = 0.1 and φ = 5)

for k that gives the minimum key group loss (Theorem 5.3). The bottom part of

Figure 5.4 graphs the key group losses based on the cost functions of f (k) = νk

and f (k) = νk2, respectively, where ν = 0.1 and φ = 5. It shows that in case of

the linear cost function, the optimal size of the key group is k∗l = 12, while that

in case of the convex cost function is k∗c = 3. Hence, the form of the cost function

f (k) plays a crucial role in identifying the optimal size of the key group. This is an

expectable outcome, since with convex cost functions marginal cost is increasing in

k, thus targeting higher order key groups might easily lead to negative net gains for

the planner.

We should also note that when targeting groups of players is costless, i.e., f (k) =
0 for all k = 1, . . . , n, then the smallest size k that results in the largest contribution

to the overall activity level depends on whether there are isolate players in the net-

work present or not. For a connected network, the easiest optimal choice is simply

the group consisting of all players, i.e., k∗ = n. If, for example, in our example

with linear cost function we would have ν = 0, then the optimal group size is

k∗ = 12, . . . , 18. All the key groups of size k = 12, . . . , 18 give an equal net benefit

(of 6.038) because, as already mentioned above, they all contribute equally to the

overall equilibrium outcome.

Finally, let us consider the case of ex ante exogenous heterogeneity of players,
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i.e., α 6= αı, and assume that αi = 1.27 for i = 7, 8, 9, 10 and unity otherwise. From

Figure 5.2 it is clear that we assume that the four players in the bottom right subset

of the covert network (i.e., players 7, 8, 9 and 10) are given more weight in their

exogenous heterogeneity part, while the weights of the rest remain unchanged and

identical across players. The four largest α-weighted KB centralities and smallest

residual equilibrium outputs with corresponding players or group of players for

k ∈ [1, 4] and a = 0.1 are reported in Table 5.2. The α-weighted KB centrality

identifies players 7 and 9 to be the most central actors. Comparing this with the

results of the unweighted KB centralities given in Table 5.1 suggests a big difference

in the outcomes. In particular, players 7 and 9 (together with 2 and 5) have only the

8-th largest unweighted KB centrality of bi = 1.948 (not shown in Table 5.1).

Table 5.3: The α-weighted centrality and residual aggregate activity

R. Player bα
i Player ri Group of size 2 r{i1 ,i2}

1 7; 9 2.3676 7; 9 7.9888 {4,9}, {4,7} 7.8200
2 11 2.3056 11 7.9924 {7,13}, {9,13} 7.8230
3 8 2.1881 12 8.0320 {11,13} 7.8231
4 13 2.1759 8 8.0342 {4,11} 7.8279

Group of size 3 r{i1 ,i2 ,i3} Group of size 4 r{i1 ,...,i4}

1 {4,7,13}, {4,9,13} 7.6409 {4,7,11,13}, {4,9,11,13} 7.4577
2 {4,11,13} 7.6452 {4,7,9,13} 7.4652
3 {4,7,11}, {4,9,11} 7.6537 {2,7,11,13}, {5,7,11,13}, {2,9,11,13}, {5,9,11,13} 7.4929
4 {7,11,13}, {9,11,13} 7.6568 {4,7,11,15}, {4,9,11,15}, {4,9,11,17}, {4,7,11,17} 7.4937

Note: “R.” stands for rank. As before it is assumed that α = β = 1, a = γ = ν = 0.1 and φ = 5.
Given these values, the sufficiency condition in Theorem 5.2 for the equilibrium uniqueness and
interiority is satisfied. See also notes to Table 5.1.

From Theorem 5.2 it follows the the key player/group has the lowest residual over-

all equilibrium output, rα
{i1,...,}(g, a, γ), given in (5.13). Table 5.3 shows that the key

player, when exogenous heterogeneity of all actors is taken into account, is player

7 (or, 9), and not player 4 as identified in Table 5.1. This is an expectable outcome,

since from the “heavy” participants with the largest heterogeneity values (i.e., from

players 7, 8, 9 and 10) actors 7 and 9 have the largest number of direct contacts

(i.e., players 7 and 9 both have 5 direct contacts, while 9 and 10 have only 3 con-

nections). The key group of size two consists of pairs {4, 7} and {4, 9}. Again the

corresponding key group {4, 11} from Table 5.1 takes now the 4-th rank in Table 5.3

(note that the same rank may share more than one group). Further, Table 5.2 shows

that the similarity score is 0.313 for both pairs {4, 7} and {4, 9}, and is 0.375 for

{4, 11}. This means that actors 4 and 7 (or 4 and 9) are less similar in their linking

patterns to their players than actors 4 and 11. Hence, with ex ante heterogeneity,
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both the size of exogenous weights and linking patterns of players determine the

key group members. Note also that the number of key groups can be different with

and without considering individuals’ heterogeneity. For example, there are two key

groups of size 4 in Table 5.3, while neglecting exogenous heterogeneity identifies

three key groups of that size in Table 5.1. Similarly, comparing members of the key

groups of larger sizes confirms that taking exogenous characteristics of individuals

into account results in entirely different outcomes if compared to those based on

the homogeneity assumption.

5.6 Concluding comments

In this chapter we focused on a network game studied by Ballester et al. (2004),

where a group intercentrality measure identifies the key group. That is, a set of players

which, once removed, has the largest (or smallest) impact on the overall activity

level. We derived an alternative closed-form expression for the group intercentral-

ity measure that depends only on the initial network configuration. This general-

izes the key player problem in Ballester et al. (2006) from a search of a single player

to a group selection problem targeting an arbitrary number of players. Further,

unlike the mentioned studies, we consider the key player/group problem taking

into account players’ ex ante exogenous heterogeneity. It is shown that the results

may change dramatically if such heterogeneity is neglected. From a practical per-

spective, this suggests that individual, observable differences must be taken into

account, otherwise the outcome may be considerably biased. Finally, we endo-

genize the size of the key group by taking into account the benefits and costs of a

planner in targeting key groups of different sizes. The optimal size of the key group

gives the lowest key group loss (or, equivalently, the highest net benefit) from the

social planner’s perspective.

Since the equilibrium efforts depend on weighted Katz-Bonacich centrality and

weighted group intercentrality measures, and since the weights represent observ-

able characteristics of players (and their peers), the question arises how in practice

one can deal with the multidimensionality of players’ ex ante heterogeneity (e.g.,

education, age, gender, etcetera). One solution would be to identify as many key

players/groups as the number of observable characteristics of individuals. This

would be helpful in cases where the individuals are targeted only on the basis of

the specific characteristics that concern the planner. On the other hand, if the analyst

were interested in a general indicator of the players’ importance in networks, the
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obvious solution would be to transform all the observable characteristics into one

(or a few) weight variable(s), such that it accounts for as much variability in the

original weights as possible. For reducing the number of exogenous heterogeneity

dimensions one could, for example, use principal component analysis. Once such

weight is (or, few weights are) generated, finding the key player/group in networks

is straightforward as discussed in this chapter.

Possible empirical applications of the key group problem with endogenous group

size depend on the research question and the network content. In any case they will

aim at finding a group of players with the largest (or smallest) influence over the

aggregate activity level, which is a target to be optimized by the social planner.

It is particularly useful for addressing such kind of issues in economics, because

the notions of competition and complementarity due to the network embedded-

ness are explicitly taken into account. Examples include the analysis of crime net-

works (Ballester et al., 2004; Calvó-Armengol and Zenou, 2004), conformism and

social norms (Bernheim, 1994; Akerlof, 1997), firms’ collaboration networks (Goyal

and Moraga-González, 2001; Goyal and Joshi, 2003), networks of interlocking direc-

torates (Dooley, 1969; Mizruchi, 1996; Heemskerk and Schnyder, 2008), and coau-

thor networks (Goyal et al., 2006).

A final remark is that our analysis is not restricted to linear-quadratic utilities

that incorporate the externalities of players’ actions linearly. For a general utility

function that captures nonlinear externalities, a decomposition similar to (5.2) can

be made. This in turn implies that the first-order approximation of the levels of

players’ actions will correspond to the Katz-Bonacich centrality measures. Also, the

entire analysis was done for a given network. Endogenizing the network decision

is possible in a two-stage game, where in the first stage players decide whether to

stay in the network or leave it for some outside option. In the second stage the

network game is played by the remaining actors. This is particularly useful for

the analysis of the effects of different policies in addressing the same issue. Such

a study was undertaken by Ballester et al. (2004), who showed that the policy of

increasing wages raises the effectiveness of the key player policy in reducing crime.
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5.A Proofs

Proof of Lemma 5.1. From the monotonicity of the largest eigenvalue with respect

to the coefficients of the matrix it follows that µ(G) ≥ µ(G−{i1,...,ik}).21 Thus, if B

exists and is nonnegative, so is B−{i1,...,ik} for all {i1, . . . , ik} ⊆ {1, . . . , n} (ir 6= is).

Define A ≡ aG, hence A−{i1,...,ik} = aG−{i1,...,ik}. Without loss of generality, we

partition the matrices A and A−{i1,...,ik} (or, equivalently, B and B−{i1,...,ik}) in such a

way that the k removed players constitute their upper left submatrices. Then from

the theory of partitioned matrices it follows that

B−{i1,...,ik} =

[
Ik Okt

Otk It −Att

]−1

=

[
Ik Okt

Otk (It −Att)−1

]
, (5.A.1)

where, for example, It is the t-dimensional identity matrix, Okt is the k × t null

matrix, and k + t = n.

We know that B = I + A + A2 + · · · , hence B− I = A + A2 + · · · = AB, which

in terms of the above-defined partitioned matrices yields the following identity[
Bkk − Ik Bkt

Btk Btt − It

]
=

[
Akk Akt

Atk Att

] [
Bkk Bkt

Btk Btt

]

=

[
AkkBkk + AktBtk AkkBkt + AktBtt

AtkBkk + AttBtk AtkBkt + AttBtt

]
.

The identities in the second row blocks above result in Btk = (It − Att)−1AtkBkk

and Btt = (It −Att)−1(It + AtkBkt), which are, respectively, equivalent to BtkB−1
kk =

(It − Att)−1Atk and Btt − (It − Att)−1 = (It − Att)−1AtkBkt. Thus using the first

equation in the second yields Btt − (It −Att)−1 = BtkB−1
kk Bkt. This together with

(5.A.1) imply

B− B−{i1,...,ik} =

[
Bkk − Ik Bkt

Btk BtkB−1
kk Bkt

]

=

[
BkkB−1

kk Bkk − Ik BkkB−1
kk Bkt

BtkB−1
kk Bkk BtkB−1

kk Bkt

]

=

[
Bkk

Btk

]
B−1

kk

[
Bkk Bkt

]
−
[

Ik O

O O

]
= BE(E′BE)−1E′B− EE′,

(5.A.2)

21 This follows from Theorem I* in Debreu and Herstein (1953, p. 600).
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where E is the n× k matrix defined as E = (ei1 , . . . , eik ) with ei being the i-th identity

column.

The final result in (5.A.2) shows that the partitioning (i.e., having the k elimi-

nated players in the upper left block diagonal matrix) is quite arbitrary, hence the

result holds for any non-ordered matrix B. Moreover, the set of players i1, . . . , ik

can be arbitrarily ordered in the matrix Bkk as well. Equation (5.A.2) proves that for

all h and all l we have

bhl − b−{i1,...,ik}
hl = e′hBE(E′BE)−1E′Bel − e′hel , (5.A.3)

where, the matrix B is not necessarily partitioned between {i1, . . . , ik} and the rest of

the players (as, for instance, in (5.A.2)). This completes the proof of Lemma 5.1.

Proof of Theorem 5.1. From (5.3) it follows that the aggregate equilibrium activity

is equal to x∗(Σ) = αb(g, a)/(β + γb(g, a)). Hence, for α > 0 we have that

∂x∗(Σ−{i1,...,ik})
∂b(g−{i1,...,ik}, a)

=
αβ(

β + γb(g−{i1,...,ik}, a)
)2 > 0.

This in turn implies that the key group problem given in (5.6) is exactly equiva-

lent to the problem min{b(g−{i1,...,ik}, a) | {i1, . . . , ik} ⊆ N; ir 6= is}, which has the

same solution as max
{

b(g, a) − b(g−{i1,...,ik}, a) | {i1, . . . , ik} ⊆ N; ir 6= is
}

. Using

the definition of the KB centrality, Lemma 5.1, B−1
kk = (E′BE)−1, and the fact that

ı′EE′ı = k, we have

b(g, a)− b(g−{i1,...,ik}, a) = ı′
(
B− B−{i1,...,ik}

)
ı

= ı′
(
BEB−1

kk E′B− EE′
)
ı = ı′BEB−1

kk E′b− k.
(5.A.4)

For fixed k, players i1, . . . , ik that maximize (5.A.4), also maximize ı′BEB−1
kk E′b,

which is exactly the intercentrality measure c{i1,...,ik}(g, a) in Definition 5.1. This

completes the proof.

Proof of the subadditivity property. It is not difficult to show that ∑k
s=1

1
bis is

eis e
′
is =

EE′B̂−1EE′, where B̂ is the diagonal matrix with bii on its main diagonal and ze-

ros elsewhere. Thus, the sum of the individual intercentralities of k players is

∑k
s=1 cis(g, a) = ∑k

s=1
1

bis is
ı′Beis e

′
is b = ı′B

(
∑k

s=1
1

bis is
eis e

′
is

)
b = ı′BEE′B̂−1EE′Bı. Fur-

ther, using the definition of the group intercentrality, the identity E′B̂−1EE′ = E′B̂−1,

and Lemma 5.1, we obtain
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∆ ≡
k

∑
s=1

cis(g, a)− ci1,i2,...,ik (g, a) = ı′
[
BEE′B̂−1EE′B− BE(E′BE)−1E′B

]
ı

= ı′
[
BEE′B̂−1B− B + B−{i1,...,ik} − EE′

]
ı

= ı′
[
B(EE′C− I) + B−{i1,...,ik} − EE′

]
ı,

(5.A.5)

where C ≡ B̂−1B.

Now as in the proof of Lemma 5.1 above, we partition, without loss of gener-

ality, the matrices A and A−{i1,...,ik} (equivalently, B and B−{i1,...,ik}) in such a way

that the k removed players constitute their upper left submatrices. Then from the

theory of partitioned matrices it readily follows that

EE′C =

[
Ik Okt

Otk Ott

] [
Ckk Ckt

Ctk Ctt

]
=

[
Ckk Ckt

Otk Ott

]
,

B(EE′C− I) =

[
Bkk(Ckk − Ik) BkkCkt − Bkt

Btk(Ckk − Ik) BtkCkt − Btt

]
,

B−{i1,...,ik} − EE′ =

[
Okk Okt

Otk (It −Att)−1

]
,

where in the last expression we have used (5.A.1). Thus, using the above partition,

(5.A.5) can be rewritten as

∆ = ı′
[

Bkk(Ckk − Ik) BkkCkt − Bkt

Btk(Ckk − Ik) BtkCkt − Btt + (It −Att)−1

]
ı. (5.A.6)

The matrix in the upper right block of (5.A.6) may be written as BkkCkt − Bkt =
(Bkk − B̂kk)Ckt. Further, to “simplify” the matrix in the bottom right block of (5.A.6)

we make use of the identities Btk = (It −Att)−1AtkBkk and Btt = (It −Att)−1(It +
AtkBkt) derived in the proof of Lemma 5.1 above. Thus, BtkCkt−Btt +(It−Att)−1 =
(It − Att)−1AtkBkkCkt − (It − Att)−1AtkBkt = (It − Att)−1Atk(Bkk − B̂kk)Ckt. Fur-

ther, Ckk − Ik = B̂−1
kk (Bkk − B̂kk). Therefore, (5.A.6) is equal to

∆ = ı′
[

BkkB̂−1
kk (Bkk − B̂kk) (Bkk − B̂kk)Ckt

BtkB̂−1
kk (Bkk − B̂kk) (It −Att)−1Atk(Bkk − B̂kk)Ckt

]
ı ≥ 0, (5.A.7)

where nonnegativity follows because Bkk ≥ B̂kk and the other submatrices in (5.A.7)

are all nonnegative. It is now clear that ∆ = 0 if and only if the whole partitioned
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matrix in (5.A.7) is a null matrix, which is the case only when Bkk = B̂kk. This

happens only if players i1, i2, . . . , ik are all isolates, i.e., gis j = gjis = 0 for all j and

all s = 1, . . . , k, in which case Bkk = B̂kk = Ik. This completes the proof.

Proof of Lemma 5.2. From the objective in (5.1) the first-order condition is ∂ui/∂xi =
αi + ∑n

j=1 σijxj = 0. Using the decomposition of Σ in (5.2), this can be written in

matrix form as −Σx∗α(Σ) = (βI + γU− λG)x∗α(Σ) = α, or, equivalently, as

β(I− aG)x∗α(Σ) + γx∗α(Σ)ı = α, (5.A.8)

where we have used the fact that Ux∗α(Σ) = x∗α(Σ)ı and a = λ/β. Premultiplying

(5.A.8) by the vector ı′B = ı′(I − aG)−1 and using the definitions of the KB cen-

trality measures yields [β + γb(g, a)]x∗α(Σ) = bα(g, a), or x∗α(Σ) = bα(g, a)/[β +
γb(g, a)].

Now in (5.A.8) instead of G we use the denser adjacency matrix G̃ = G + D,

where D is a (semi)positive matrix with at least one positive off-diagonal element.

Then (5.A.8) becomes

β(I− aG)x∗α(Σ̃)− λDx∗α(Σ̃) + γx∗α(Σ̃)ı = α.

Premultiplying the last equation with the vector ı′B, we obtain [β + γb(g, a)]x∗α(Σ̃) =
bα(g, a) + λı′BDx∗α(Σ̃), or, equivalently,

x∗α(Σ̃) = x∗α(Σ) +
λı′BDx∗α(Σ̃)
β + γb(g, a)

. (5.A.9)

From Theorem 1 in Calvó-Armengol et al. (2009) it follows that the unique and

interior equilibrium efforts, x∗α(Σ̃), are guaranteed if λµ(G̃) + nγ(α/α − 1) < β.

This condition in turn implies λµ(G) + nγ(α/α − 1) < β, which is the sufficient

condition for the interiority of x∗α(Σ). This implication is due to the monotonicity

of the largest eigenvalue with the coefficients of the matrix G (see Theorem I* in

Debreu and Herstein, 1953, p. 600), i.e., µ(G̃) ≥ µ(G). Since λı′BDx∗α(Σ̃) > 0,

equation (5.A.9) implies x∗α(Σ̃) > x∗α(Σ) as long as G̃ > G.





CHAPTER 6

Identifying optimal sector

groupings with the hypothetical

extraction method∗

6.1 Introduction

There are ample studies within the input-output (IO) framework that investigate

the issue of the identification of so-called “key sectors”. These are the sectors with

the largest potential of spreading growth impulses throughout the economy. The

issue of key sector determination is seen to be useful for economic planning, in

particular, in developing countries. From a development strategy point of view,

it is reasonable for a country with a limited amount of financial resources to in-

vest in those few industries that have the largest impact on the whole economy

through their buying and selling linkages with other production sectors. It is also

true that the overall economic growth depends on the sectoral growth rates, which

are in turn dependent on the linkages between the sectors. Moreover, strong link-

ages provide an opportunity for industries to gain a competitive advantage. For

instance, if a sector successfully enters a foreign market, it will be easier for indus-

tries (firms) that have high linkages with this sector to gain access to the foreign

market as well (Porter, 1990; Hoen, 2002). The key sectors targeting approach, pio-

neered by Rasmussen (1956) and Hirschman (1958), was followed by a vast number

of theoretical and empirical studies, and still constitutes one of the main areas in

∗ A shorter version of this chapter is forthcoming in the Journal of Regional Science, 2009b.
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IO and regional economics (see e.g., Strassert, 1968; Yotopoulos and Nugent, 1973;

Jones, 1976; Schultz, 1977; Cella, 1984; Hewings et al., 1989; Heimler, 1991; Diet-

zenbacher, 1992; Sonis et al., 1995; Dietzenbacher and van der Linden, 1997; Cai

and Leung, 2004; Cardenete and Sancho, 2006; Midmore et al., 2006; Beynon and

Munday, 2008; Magtibay-Ramos et al., 2008).

The application of key sector determination goes beyond examining only pure

production linkages. For example, since (according to the classical development

economics) economic growth for developing countries is intrinsically linked to chan-

ges in the structure of production, many studies applied the notion of key sectors

for the analysis of structural change (see e.g., Hewings et al., 1989; Sonis et al., 1995;

Roberts, 1995). Analogously, Diamond (1975), Meller and Marfán (1981), Groe-

newold et al. (1987, 1993) and Kol (1991) analyze employment linkages for Turkey,

Chile, Australia, and for Indonesia, South Korea, Mexico and Pakistan, respectively.

It should be mentioned that IO linkage analysis is, in particular, extensively used

nowadays in addressing the growing environmental concerns, e.g., with regard to

emissions of greenhouse gases and the depletion of natural resources. For exam-

ple, Lenzen (2003) focuses on the economic structure of Australia by identifying

key sectors and linkages that have large environmental impacts on the consump-

tion of energy and water, on land disturbance, and on the generation of emissions

of CO2, NOx and SO2. Similarly, Sánchez-Chóliz and Duarte (2003), extending

Rasmussen-type linkages, identify the key sectors in generating water pollution in

the Aragonese economy.

In the current chapter we focus on the linkage analysis based on the hypothetical

extraction method (HEM), which has become increasingly popular (Miller and Lahr,

2001). Just to mention a few recent studies, the HEM has been applied in the anal-

ysis of water use (Duarte et al., 2002), for the key sector identification (Andreosso-

O’Callaghan and Yue, 2004), in the analysis of the economy-wide roles of separate

sectors, such as the agriculture sector (Cai and Leung, 2004), the construction sec-

tor (Song et al., 2006) and the real estate sector (Song and Liu, 2007). Los (2004)

proposes to identify strategic industries using the HEM in a dynamic IO growth

model. The HEM is also a useful tool to evaluate the significance of a sector in

cases of crises-driven threats of industry shutdowns, which may help governments

to decide whether to support financially the sector under threat or not.1 The main

1 The threat of downfall in the US car industry in the current financial crisis and the debates on provid-
ing massive public spending to the industry can serve as an example. Other examples, are the downfall
of the only Dutch aircraft manufacturer Fokker in 1995-96, and the disappearance of the Belgian national
airline Sabena in 2001, both of which resulted in the shutdown of an entire national industry (Los, 2004).
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contribution of this chapter to the literature on key sector identification from the

HEM perspective is that we distinguish between and explicitly formulate the (opti-

mization) problems of finding a key sector and a key group of sectors, and derive their

closed-form solutions that are termed industries’ factor worths. The term “factor”

refers to any indicator that an analyst uses in identifying the most important in-

dustries. This might be a social factor, such as employment, income, government

revenue; or an environmental factor, such as primary energy consumption, green-

house gas emissions, water use, land disturbance; or an economic/financial factor,

such as GDP, gross operating surplus, export/import propensity; or any combina-

tion of these factors.

Our formulation of the HEM has the following implications. Firstly, given that

we have found simple closed-form expressions for quantifying industries’ impor-

tance, an analyst does not have to perform a three-step procedure of the HEM (to

be explained in Section 6.2), which becomes a rather formidable task, in particular,

when the number of industries is rather large (say, 100 or more). Secondly, and

more importantly, we distinguish between a key sector problem and a key group prob-

lem and show that the key group of k ≥ 2 sectors is, in general, different from the set

of top k sectors selected on the basis of the key sector problem. This is important,

since up to date, to the best of our knowledge, the linkage literature (implicitly)

accepted the top k sectors from the ranking of individual sector contributions to the

economy-wide output as the key group. This incongruence is due to the fact that

while the key sector problem looks for the effect of the extraction of one sector, the

key group problem considers the effect of a simultaneous extraction of k ≥ 2 sectors

that takes differently into account the cross-contributions of the extracted indus-

tries to total factor arising within and outside the group. This impact is largely

dependent on the (dis)similarity of the linkage patterns of sectors to each other and

of their final demand and factor production/consumption structures. Thirdly, we

show that the HEM is directly related to the fields of influence approach (Sonis

and Hewings, 1989, 1992), which gives an alternative economic interpretation of

the HEM in terms of the overall impact on aggregate factor due to an incremental

change in sectors’ input self-dependencies. Fourthly, our formulation of the HEM

allows to examine a combined key sector/group problem, where the objective is a

combination of several factors. For instance, one may wish to identify a key sec-

tor that has simultaneously the largest total (direct and indirect) contribution to

economy-wide employment and the smallest total impact on carbon emissions gen-

eration. Finally, it is shown that the related problems of finding a key region and key



138 Chapter 6

group of regions in an interregional IO framework can be investigated in a similar

way.

We also examine the effect of a change in an input coefficient on the factor im-

portance of an industry. It is shown that a positive (negative) change in a direct

input coefficient never decreases (increases) the factor generating importance of

any sector, and we provide necessary and sufficient conditions for a strict change.

The economic interpretations of such a change include, for example, an increase

in complexity of technological links between sectors (or a rise in the density of the

input matrix), an increase in sectoral interdependence, innovation or technological

progress.

The rest of this chapter proceeds as follows. In Section 6.2.1 we present the op-

timization problem of finding a key sector, and examine how a change in a direct

input coefficient affects the factor generating importance of industries. Section 6.2.2

generalizes the key sector problem to a key group identification problem, the solu-

tion of which is defined in terms of a group factor worth of industries. In Section

6.2.3 it is shown that the key group problem is not equivalent to the sequential key

sector problem. The related problems of finding a key region and a key group of

regions are briefly examined in Section 6.2.4. Further, the key sector/group prob-

lem in a net IO setting is discussed in Section 6.2.5. In Section 6.3 the link between

the HEM and the fields of influence methods is explored. In Section 6.4 we dis-

cuss the connection between the HEM approach of finding the key sector/group

and the game theoretic literature on social networks and allocation of gains from

cooperation. Section 6.5 contains results from the empirical application of the key

sector and key group problems to the Australian economy. Section 6.6 concludes.

All proofs are relegated to the Appendix.

6.2 Formalizing the hypothetical extraction problems

In this section, taking the hypothetical extraction method perspective, we formalize

the optimization problems of finding the key sector and the key group of sectors of

the economy. Moreover, the analytical closed-form solutions of these problems are

derived, which helps to identify the key sector/group in empirical work.

6.2.1 Finding the key sector

The main point of departure is the open static Leontief model (see e.g., Miller and

Blair, 2009), given by x = Ax + f, where x is the n× 1 endogenous vector of gross
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outputs of n sectors, A is the n-square direct input requirements matrix, and f is

the n× 1 exogenous vector of final demands (including consumption, investments,

exports, and government expenditures). The domestic input coefficients aij denote

the output in industry i directly required as input for one unit of output in industry

j, hence the i-th element of the vector Ax gives total amount of intermediate inputs of

good i, required for production of output x. That is, the basic equation of the open

Leontief system states that gross output, x, is the sum of all intermediate demand,

Ax, and final demand, f. The reduced form of the model is

x = Lf, (6.1)

where I is the identity matrix and L = (I−A)−1 is the Leontief inverse.

The typical element of the Leontief inverse, lij, denotes the output in industry

i directly and indirectly required to satisfy one unit of final demand in industry j.

The row vector of output multipliers is defined as m′
o = ı′L, where ı is the summation

vector of ones. Its j-th element mo
j = ∑n

k=1 lkj indicates the increase of total output

in all industries per unit increase of final demand in industry j.

For the purpose of identification of important sectors we adopt the hypothetical

extraction method (HEM) originally developed and used by Paelinck et al. (1965),

Strassert (1968) and Schultz (1977), the central idea of which is briefly as follows. To

estimate the importance of sector i to the economy, delete the i-th row and column

of the input matrix A, and then using the basic Leontief equation (6.1) compute the

reduced outputs in this hypothetical case (the final demand vector also excludes

its ith component, fi). The difference between total outputs of the economy before

and after the extraction (called “total linkage”) measures the relative stimulative

importance of sector i to the economy.2

However, unlike the traditional HEM approach, we allow for a rather general

definition of importance, which may be used to address various economic, social,

and/or environmental issues.3 For instance, key sectors may be determined ac-

2 This method was criticized for the reason that it does not distinguish the total linkages into backward
and forward linkages (see e.g., Meller and Marfán, 1981; Cella, 1984; Clements, 1990; Dietzenbacher and
van der Linden, 1997). However, we believe that for measuring a sector’s economy-wide impact it is
the most adequate HEM, since setting to zero only a column (row) to compute the backward (forward)
linkages in the non-complete HEM takes only a one-sided impact into account. Moreover, it is difficult
to entirely separate backward and forward effects from each other, since there are always forward-links
present in the backward linkage measures, and vice versa (see e.g., Yotopoulos and Nugent, 1973; Cai
and Leung, 2004). See Miller and Lahr (2001) for an excellent discussion on all possible extractions,
who state that for the purpose of finding a key sector “... we believe the original hypothetical extraction
approach ... is totally adequate - Meller and Marfán and other modifications notwithstanding” (p. 429).

3 For example, ten Raa (2005, p. 26) states: “Output increases induced by a final demand stimulus are of
little interest in themselves. What matters is the income generated by the additional economic activity.”
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cording to their potential of generating income, emission of greenhouse gases, cre-

ating jobs, or resource use. For the purpose of a general exposition of the HEM

problem, we refer to the various policy-relevant indicators as factors. Let the vector

of direct factor coefficients π denote the sectoral factor usage/generation per unit

of total output, hence the row vector of factor multipliers is m′
π = π′L, and its

j-th element mπ
j = ∑n

k=1 πklkj indicates the economy-wide increase of factor us-

age/production per unit increase of final demand in industry j.

We are now in a position to address the key sector identification problem. Let us

first denote by A−i the new input matrix derived from A by setting to zero all ele-

ments in the i-th row and column. The crucial assumption made (which is usual for

all the HEM approaches) is that in a new system without sector i the input structure

of all sectors j 6= i remains unchanged. From an economic point of view, this im-

plies that foreign (external) industries substitute the domestic sector i in providing

the inputs in order to satisfy the intermediate demands of the remaining industries

and the final demand for commodity i. Although at first glance this assumption

seems restrictive, in fact it is not, given our main aim of identifying the importance

of sector i. The point is that by taking all other input coefficients fixed, we explicitly

allow the resulting outcome to depend only on the elimination of sector i, which is

now not participating in the “roundabout” of the production process. The vector of

total outputs after extracting sector i is x−i = L−if−i, where L−i = (I−A−i)−1, and

f−i is the same as f except its ith entry that is set to zero. The reason for excluding

fi in the final demand vector f−i is that when sector i ceases to exist, its (domes-

tic) output should be zero, which from (6.1) is equivalent to fi = 0 (see also e.g.,

Schultz, 1977; Miller and Lahr, 2001).

The objective is selecting sector i, such that its extraction from the system gen-

erates the largest possible reduction in the factor of interest (say, total income). For-

mally, the problem is

max{π′x−π′x−i | i = 1, . . . , n}. (6.2)

This is a finite optimization problem, which has at least one solution. A solution

to (6.2) is denoted by i∗ and is called a key sector. Removing i∗ from the initial

production structure has the largest overall impact on the factor generation. To

solve (6.2) we use the following result due to Zeng (2001, Theorem 1, p. 304).4

4 Independently, also Ballester et al. (2006, Lemma 1, p. 1411) establish the same result in a social
network framework. We should note that their Lemma 1 is given for a symmetric adjacency matrix, and
does not consider the ii-th element of the difference L− L−i . For the asymmetric case, change mij(g, a)
to mji(g, a) in their Lemma 1. The problems of finding the key players in social networks (Ballester et
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Lemma 6.1. Let L and L−i be, respectively, the Leontief inverses before and after extraction

of sector i from the production system, and ei be the i-th column of the identity matrix. Then

L− L−i = 1
lii

Leie′iL− eie′i.

Using Lemma 6.1, problem (6.2) can after some mathematical transformations be

rewritten as (see Appendix 6.A):

max
{

1
lii

m′
πeie′ix

∣∣∣ i = 1, . . . , n
}

= max
{

mπ
i xi

lii

∣∣∣ i = 1, . . . , n
}

. (6.3)

The problem in (6.2) is equivalent to min{π′x−i |i = 1, . . . , n}. However, a direct

approach to solve (6.2) forces an analyst to extract each sector separately, and com-

pute and compare the required objective. This becomes a formidable task when

the number of sectors, n, is large, although modern technology has reduced the

problem. Nevertheless, the closed form expression in (6.3) shows that there exists

a much simpler (and elegant) way to get the desired outcome.

Definition 6.1. Consider the open Leontief model x = Lf, where L = (I−A)−1, and let

the row vector of factor multipliers be m′
π = π′L, where π is the direct factor coefficient

vector. The factor worth of sector i is ωπ
i (A, f, π) =

(
mπ

i xi
)

/lii.

Therefore, given Definition 6.1 and the objective in (6.3) we have established the

following result.

Theorem 6.1. The key sector i∗ that solves max{π′x − π′x−i | i = 1, . . . , n} has the

highest factor worth, i.e., ωπ
i∗(A, f, π) ≥ ωπ

i (A, f, π) for all i = 1, . . . , n.

From Theorem 6.1 it follows that the standard measure of a high factor multiplier

mπ
i is not sufficient for sector i to be an optimal target, say, for investments. For

that, besides mπ
i , the size of the sector’s output xi and its total self-dependency on

inputs as indicated by lii are equally important, where the first has a positive effect,

while the second has an inverse effect on the worth of sector i.

The traditional gross output approach of the HEM corresponds to problem (6.2)

or (6.3) where the summation vector ı is substituted for the vector of factor coeffi-

cients π. The following result is then an immediate implication of Theorem 6.1.

Corollary 6.1. The key sector i∗ that solves max{ı′x− ı′x−i |i = 1, . . . , n} has the largest

gross output worth, i.e., ωo
i∗(A, f) ≥ ωo

i (A, f) for all i = 1, . . . , n, where ωo
i (A, f) =

mo
i xi/bii is the gross output worth of sector i.

al., 2006, and Chapter 5 of this thesis) and key sectors in the economy are closely related. Lemma 6.1 is
a particular case of our Lemma 6.2, hence its proof is skipped as it directly follows from the proof of our
second lemma.
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Notice that the gross output factor worth of sector i is nothing else than the “total

linkage” of a sector as defined in the classical HEM approach.

Next we examine how stronger interdependence of sectors affects the factor

worth of sector i. Let the input matrix Ã represent the alternative input structure,

and, without loss of generality, assume that Ã differs from A only with respect

to the rc-th element that is increased by α > 0. Then it is apparent that L̃ =
I + Ã + Ã2 + · · · > I + A + A2 + · · · = L,5 which in turn implies that, given f

and π, both the numerator and denominator in the definition of the factor worth of

sector i might increase, hence it is not clear whether ωπ
i (Ã, f, π) is larger or smaller

than ωπ
i (A, f, π). In Theorem 6.2 below we show that a rise in the direct input

interdependence between two sectors never decreases sector i’s factor worth, and,

moreover, we establish necessary and sufficient condition(s) under which such a

change surely increases ωπ
i (Ã, f, π).

Theorem 6.2. Let the input matrix Ã differ from A only with respect to the rc-th entry,

which has been changed by α 6= 0. Given π and the nonnegative final demand f with

fc > 0, if α ≷ 0 then

(a) ωπ
i (Ã, f, π) ≷ ωπ

i (A, f, π) for i = r, c;

(b) ωπ
i (Ã, f, π) R ωπ

i (A, f, π) for all i 6= r, c, with equality holding if and only if

lir = lci = 0.

One implication of Theorem 6.2 is that when domestic industries become more in-

terdependent on each other, then the factor generating importance falls for no sector

and surely increases for sectors directly involved in this higher input dependencies

(i.e., for sectors r and c). Moreover, any other sector i’s worth increases as well if

lir > 0 and/or lci > 0. The second implication is a reduction in the use of domes-

tically produced inputs increases the factor worth of no sector for the same vectors

of final demand and factor coefficients. In particular, if, say, due to innovation arc

decreases, then sectors r and c’s factor worths strictly decrease and any other sector

i’s importance also weakens whenever lir > 0 and/or lci > 0. These two conditions

(i.e., lir and/or lci being positive) imply that sector i should either provide (directly

and/or indirectly) inputs to industry r and/or uses inputs (directly and/or indi-

rectly) from sector c.

The straightforward special case of Theorem 6.2 is when π = ı, which shows

that the gross output worth of sector i increases (decreases) if the input coefficient

arc increases (decreases) and sector i provides inputs (directly and/or indirectly) to

sector r and/or uses inputs from industry c.

5 Matrix inequality notations are given in the subsection “General notations” in Chapter 1.
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Corollary 6.2. Assume that the input coefficient arc changes by α 6= 0, i.e., ãrc = arc + α.

Then, given nonnegative f with fc > 0, ωo
i (Ã, f) ≷ ωo

i (A, f) for i = r, c, and ωo
i (Ã, f) R

ωo
i (A, f) for all i 6= r, c whenever α ≷ 0, with equality holding if and only if lir = lci = 0.

6.2.2 From individual key sector to key group

Although the linkage literature using the HEM acknowledges the possibility of ex-

traction of several industries, the theoretical analysis does not go beyond descri-

bing it using partitioned matrices to the reduced form of the Leontief model (see

e.g., Miller and Lahr, 2001). This, however, is quite cumbersome to implement em-

pirically because one has to consider all possible combinations of a certain number

of industries in order to determine the most important group of sectors. This may

explain the lack of empirical studies on the role of a group of industries. Hence,

in all studies, to the best of our knowledge, the HEM was applied to only one sec-

tor, and the most important industries were defined to be those with the largest

individual contributions to total output (or any other factor).6

In this section we wish to fill this gap in the literature, generalizing the key sec-

tor problem from the previous section to the key group problem. Similar to the notion

of individual key sector, a key group of k ≥ 2 sectors is defined as the group of

industries, whose removal from the production system has the largest impact on

the overall factor consumption/generation.7 Since the two problems are inherently

different, we expect that, in general, the top k sectors with the largest factor worths

do not compose the key group, which is also confirmed in the empirical applica-

tion in Section 6.5. The underlying reason for this outcome is that industries can be

redundant (or, equivalently, similar to each other) with respect to their linkage pat-

terns to other sectors and their structures of final demand and factor production.

Hence, targeting industries with very similar linkage characteristics might not be

an optimal policy strategy. Instead choosing sectors with different patterns of (sig-

nificant) production linkages, and higher values of final demands and factor usage

will induce the largest impact on the factor consumption/production.

6 Dietzenbacher et al. (1993) extended the notion of extracting individual sectors to the non-complete
extraction of individual regions in an interregional setting. The related key region problem is discussed in
Section 6.2.4. We should, however, note that the approach in Dietzenbacher et al. (1993) is not equivalent
to ours because they consider the extraction of only interregional linkages of a region, and not the entire
region. Moreover, we extend the problem to finding a key group of several regions and give its closed-
form solution.

7 Note that if the factor generation is unfavorable from a societal point of view (e.g., an increase in CO2
emissions has detrimental consequences) and the policy-makers want to find the least harmful industries
to target on, then the key group will be defined as the set of industries that has the smallest impact on
the factor generation.
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The objective is now picking k (1 ≤ k ≤ n) sectors i1, i2, . . . , ik (is 6= ir) such that

their extraction from the production structure generates the largest impact on the

overall factor usage/production, i.e.,

max
{

π′x−π′x−{i1,...,ik} | {i1, . . . , ik} ⊆ {1, 2, . . . , n}; is 6= ir
}

, (6.4)

where x−{i1,...,ik} = L−{i1,...,ik}f−{i1,...,ik}, and the superscript −{i1, . . . , ik} refers to

the situation where sectors i1, i2, . . . , ik are hypothetically extracted from the econ-

omy.

The new Leontief inverse is L−{i1,...,ik} = (I−A−{i1,...,ik})−1, where all the ele-

ments of the new input matrix corresponding to the extracted sectors are nullified.

These sectors in the hypothetical case should have zero (domestic) outputs, hence

f−{i1,...,ik} is exactly the same as f but with fis = 0 for all s = 1, . . . , k. The solution

to (6.4) is denoted by {i∗1 , i∗2 , . . . , i∗k} and is called the key group of size k.

The following important identity characterizes the changes in the elements of

the Leontief inverse when a group of k sectors is hypothetically extracted from the

production system (see Appendix 6.A).

Lemma 6.2. Let L−{i1,...,ik} be the Leontief inverse after extraction of sectors i1, i2, . . . , ik

from the production system, where 1 ≤ k ≤ n, and ei be the i-th column of the identity

matrix. Then the identity L− L−{i1,...,ik} = LE(E′LE)−1E′L− EE′ always holds, where E

is the n× k matrix defined as E =
(
ei1 , ei2 , . . . , eik

)
.

Note that Lemma 6.1 is just a special case of Lemma 6.2 with k = 1. We should also

note that the k extracted sectors can be ordered arbitrarily, hence the matrix E can

have any ordering of the identity columns corresponding to the extracted sectors.8

Using Lemma 6.2 it can be shown that the problem (6.4) is exactly equivalent to (see

Appendix 6.A)

max
{

m′
πE(E′LE)−1E′x | {i1, . . . , ik} ⊆ {1, . . . , n}; is 6= ir

}
. (6.5)

Note that in the maximization process the vectors of factor multipliers and gross

outputs and the Leontief inverse matrix (i.e., mπ , x and L) are all given, and only the

k identity columns in E are changed in order to consider all possible combinations

of k sectors from the totality of n industries.

8 If k = n and E = I, then L− L−{i1 ,...,ik} = L− I, which would have been expected. However, in case
k = n, E does not have to be an identity matrix, but E may be any permutation matrix of order n.
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Definition 6.2. Consider the open Leontief model x = Lf, where L = (I − A)−1. Let

the row vector of factor multipliers be m′
π = π′L, where π is the direct factor coefficient

vector, and ei be the i-th column of the identity matrix. The group factor worth of sectors

i1, . . . , ik (ir 6= is) is ωπ
i1,...,ik

(A, f, π) = m′
πE(E′LE)−1E′x, where E =

(
ei1 , ei2 , . . . , eik

)
.

The matrix Lkk ≡ E′LE includes all the elements of the Leontief inverse L that are

directly related to the extracted sectors. Given the key group problem (6.5) and

Definition 6.2, we thus have the following result.

Theorem 6.3. For k ∈ [1, n] the key group of size k {i∗1 , i∗2 , . . . , i∗k} that solves max
{

π′x−
π′x−{i1,...,ik} | {i1, . . . , ik} ⊆ {1, . . . , n}; is 6= ir

}
has the highest group factor worth, i.e.,

ωπ
i∗1 ,...,i∗k

(A, f, π) ≥ ωπ
i1,...,ik

(A, f, π) for all {i1, . . . , ik} ⊆ {1, . . . , n} with is 6= ir.

Note that the key group problem in (6.5) with k = 1 boils down to the key sector

problem (6.3). Hence, given the group factor worth in Definition 6.2, Theorem 6.1 is

also a particular case of Theorem 6.3 when the target is only one sector (i.e., k = 1).

When the key group of size k is searched in the spirit of the traditional HEM

approach, the immediate outcome of Theorem 6.3 is the following corollary.

Corollary 6.3. For k ∈ [1, n] the key group of size k {i∗1 , . . . , i∗k} that solves max
{

ı′x−
ı′x−{i1,...,ik} | {i1, . . . , ik} ⊆ {1, . . . , n}; is 6= ir

}
has the highest group (gross) output

worth, i.e., ωo
i∗1 ,...,i∗k

(A, f) ≥ ωo
i1,...,ik

(A, f) for all {i1, . . . , ik} ⊆ {1, . . . , n} with is 6= ir,

where ωo
i1,...,ik

(A, f) = m′
oE(E′LE)−1E′x.

While the key sector problem looks for the effect of the extraction of one sector, the

key group problem considers the effect of a simultaneous extraction of k ≥ 2 sectors.

Hence, the two problems are not equivalent. If two industries are perfectly identical

with respect to their linkages patterns (including input coefficients’ sizes) and more

or less have similar values of their final demands and factor production, then their

group factor worth is expected to be less than that of another group, which consists

of one of the mentioned sectors and an industry that has a quite different pattern of

interindustry linkages and factor generation ability. This indicates the importance

of the redundancy principle in the IO framework. This principle is well-known in

the sociology literature on social networks and emphasizes the redundancy of ac-

tors with respect to adjacency, distance, and bridging (see e.g., Burt, 1992; Borgatti,

2006). In particular, Ronald Burt is well-known for his notion of structural holes

that is used as an empirical measure of (non)redundancy. “Nonredundant contacts

are disconnected in some way – either directly, in the sense that they have no di-

rect contacts with one another, or indirectly, in the sense that one has contacts that
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exclude the others (Burt, 1992, p. 18). Structural holes are the gaps between nonre-

dundant contacts, and as such there are many structural holes in networks that are

rich in nonredundant contacts. Taking redundancy into account is crucial in deter-

mining the most important group in social networks (see Everett and Borgatti, 1999,

2005; Temurshoev, 2008), which was also discussed in Chapter 5, where the redun-

dancy of links among players was found to be an important factor for key group

identification in network games. However, in the IO framework it is not only the

redundancy of sectors with respect to their production linkages that matters, but

also the similarity of the structures of sectors’ final demands and factor production

is important in determining the key group (see the next section).

In general, within the IO framework, we expect that k (≥ 2) sectors with the

largest individual factor worths will not be much different from the key group of

size k if the IO tables are highly aggregated because then much information on

sectors’ heterogeneity is lost (which has been confirmed in our experimental simu-

lations). Otherwise, the difference should be in place, and will largely depend on

the structures and sizes of the production system, direct factor coefficients and final

demands.9

6.2.3 The key group problem is not equivalent to the sequential
key sector problem

In this section we want to illustrate that the members of the key group of size k are

not necessarily included in the key group of size k + 1. Let us consider a simple

example with seven sectors. The corresponding IO table and the results of the key

group problem, where the objective is gross output, are given in Table 6.1. Group

output worths are given relative to the total output before the extraction (in per-

9 In this generalized HEM setting, one can also focus on several objectives simultaneously. If, for in-
stance, v, w and c denote, respectively, the direct value-added, labor and CO2 coefficients vectors, then
the combined key sector (resp. group) problem is given by (6.2) (resp. (6.4)) with the direct factor coeffi-
cients defined as π = v + w− c. Note that since CO2 generation is unfavorable, its direct coefficients are
entered with a minus sign in the definition of π. Also notice that factors written is this form can have an
economic meaning only if they are all expressed in the same measurement unit. This can be done, for
example, by multiplying the number of jobs by a price so that employment is expressed in some com-
mon for all factors currency term (like in the index number literature). Or, one might assign appropriate
weights to each factor that is included in π. For instance, we may write w = tvj, where the vector of
the (number of) jobs direct coefficients j is expressed in terms of currency using the weight tv = v′x/j′x
that indicates the value of income per one (full-time) job. We should, however, mention that the disad-
vantage of this approach is that the outcome is weight dependent. That is, a different weighting scheme
might very well give a different result. The generalized HEM can also be used in terms of the specific
categories of the final demand. For instance, from a trade policy perspective it might be interesting to
find out the key contributor(s) to some factor in the trade process of a country, in which case instead of
f one uses the vector of exports (minus imports) only.
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Table 6.1: A hypothetical IO table and the relative group output worths

Interindustry transaction matrix Final
demand

Total
outputSector 1 2 3 4 5 6 7

1 0 0 10 10 0 0 0 50 70
2 0 0 10 10 0 0 0 50 70
3 10 10 0 0 10 10 0 30 70
4 10 10 0 0 10 10 0 30 70
5 0 0 10 10 0 0 0 50 70
6 0 0 10 10 0 0 10 50 80
7 0 0 0 0 0 10 0 50 60

Rank Group of size k and its relative gross output worth (RW %)

k = 1 RW k = 2 RW

1 (key) 6 25.0 {3,4} 45.5
2 3; 4 24.7 {1,6}, {2,6}, {5,6} 44.1
3 1; 2; 5 21.0 {3,6}, {4,6} 43.2

k = 3 RW k = 4 RW

1 (key) {1,2,6}, {1,5,6}, {2,5,6} 61.5 {1,2,5,6} 77.6
2 {3,4,6}, {3,4,7} 59.2 {1,2,5,7} 72.3
3 {1,2,5} 57.7 {1,2,6,7},{1,5,6,7},{2,5,6,7} 71.7

centages) of the corresponding groups.

Note that for simplicity we have assumed that the matrix of interindustry trans-

actions is symmetric and all its positive elements are identical (i.e., 10), which will

make the interpretation easier. The results in the table show that the key sector in

this hypothetical economy is sector 6, whose extraction from the production system

causes a reduction in the overall gross output by 25%. However, it is not a member

of the key group of size 2, which is represented by sectors 3 and 4 with the relative

group output worth of 45.5%. Notice that these sectors have the second largest in-

dividual impact on the overall output. Similarly, the key group of size 2, i.e., {3, 4},

does not show up at all within the key groups of size 3 and 4.

Figure 6.1 graphs all the direct intersectoral links represented by the interindus-

try transaction matrix in Table 6.1. From Table 6.1 we see that there are two types

of sectors in terms of final demand. Sectors 3 and 4 have the lowest final demands,

i.e., 30, while the final demands for the other industries are all equal to 50. In the

graph we show this difference by a star superscript for sectors with the largest final

demand. Now it is clear from Figure 6.1 that sectors 1, 2 and 5 are not only identi-

cal in terms of their sizes of final demands, but they are also perfectly structurally

equivalent to each other (or, are redundant with respect to their linkages) because

they are connected to the same third parties, namely to sector 3 and to sector 4. In
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Figure 6.1: The network of interindustry transactions
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their turn, sectors 3 and 4 also have similar patterns of ties to other industries and

the same size of final demands.

Sector 3 (or sector 4) with the largest number of direct intersectoral links cannot

be the key sector because of its low value of final demand. Instead, sector 6 is

the key sector because it has (i) a relatively large number of direct and indirect

connections, and (ii) a large value of final demand, both of which results in its high

contribution to the overall gross output.

However, sector 6 cannot be a part of the key group of size 2 as its joint impact

on the system with some other industry is not maximal. To see this from the net-

work disruption perspective, suppose we eliminate sector 3 and sector 6. Then in

Figure 6.1 out of 9 lines, representing mutual interdependence of sectors, three lines

remain: those connecting sector 4 (with lowest final demand) to each of sectors 1,

2 and 5 (with largest final demands). However, extraction of sector 3 and sector 4

results in the maximal disruption of the above network of production linkages, i.e.,

only one line between sector 6 and sector 7 will remain.

However, the key group problem is not only about the maximal disruption of

the network of production linkages. It may very well happen that sectors whose

joint elimination results in the maximal disruption of the production network do

not compose the key group. If, for example, sectors 3, 4 and 6, were eliminated from

Figure 6.1, the resulting network of production linkages would be empty. Hence,

by removing these sectors the network is totally disrupted, but they do not compose

the key group of size 3 as shown in Table 6.1. For key groups, also the scale of final

demand satisfaction plays a crucial role, hence three groups of sectors with largest

final demands, i.e., {1,2,6}, {1,5,6} and {2,5,6}, are chosen as the key groups of

size 3 even though extraction of these sectors will not give an empty production

network.

Hence, within an IO framework it is not only the redundancy (or, equivalently,

similarity) of sectors with respect to their linkages patterns that matter, but also
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the joint contribution of industries to final demand categories and overall factor

generation (which in this example was gross output) are crucial in determining the

key group members. This is also the reason why the simple sequential key sector

problem is not adequate to totally address the key group problem. By sequential

search we mean that once the key group of size k has been identified, one needs

only to add an extra sector from all possible n− k remaining industries in order to

identify the key group of size k + 1.

6.2.4 The key group problem in an interregional setting

The key sector/group problem can be easily applied in an interregional (or multi-

regional) IO setting. A related issue is to find a key region or key group of regions in

such a setting.10 The basic open Leontief model (6.1) in an interregional framework

with p (≥ 2) regions can be written as


x1

x2

...

xp

 =


In1 −A11 −A12 · · · −A1p

−A21 In2 −A22 · · · −A2p

...
...

. . .
...

−Ap1 −Ap2 · · · Inp −App


−1 

f1

f2

...

fp

 , (6.6)

where Arr is the (intra)regional input coefficients matrix for region r (= 1, . . . , p),

Ars is the matrix of interregional input (trade) coefficients with deliveries from re-

gion r to region s (r 6= s), fr and xr are, respectively, the vectors of final demand

and gross output for region r, and Inr is the identity matrix of dimension nr (i.e.,

the number of sectors in region r; hence each region may have a different num-

ber of industries). The problem of finding the most important region or groups

of regions with respect to some factor is also given by (6.4), where the extended

vectors of gross output and factor coefficients have dimensions corresponding to

the p-region model in (6.6). A group factor worth of regions r1, . . . , rk can be de-

fined as ωπ
r1,...,rk

(A, f, π) = m′
πE(E′LE)−1E′x, where now E = (Ir1 , . . . , Irk ) and

Irk = (O Ink O)′ is the (∑
p
j=1 nj) × nk matrix with the identity matrix Ink placed

in a position corresponding to that of region k, and O is a zero matrix of appro-

priate size. Let πr be the direct factor coefficient vector for region r and Lrs be a

submatrix of the partitioned Leontief inverse in (6.6) corresponding to regions r

and s (note that, in general, Lrr 6= (I − Arr)−1). Then the factor worth of region

r is ωπ
r (A, f, π) = m′

π,r(Lrr)−1xr, where the factor multiplier vector of region r

10 Examining this extension was suggested by one of the anonymous referees.
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is mπ,r = ∑
p
j=1 π jLjr. The j-th element of mπ,r gives the nation-wide increase of

some factor π due to one unit increase in final demand of product j in region r.

Note that the factor multipliers m′
π = (m′

π,1, . . . , m′
π,p) in this setting represent the

nation-wide effects and are not region-specific (e.g., πrLrr) as they are based on the

extended L from the interregional framework. Finally, Theorem 6.3 can be readily

used, i.e., the key group of regions of size k ∈ [1, p] has the highest group factor

worth.

6.2.5 The key sector/group problem in a net IO setting

Earlier works of Leontief were formulated in terms of “net” accounts, i.e., internal

sectoral flows were set to zero. Hence, in the so-called net IO framework intrasec-

toral transactions are excluded from the IO tables (see e.g., Parikh, 1975; Jensen,

1978). In this section we explore the key sector/group problem within the net IO

setting, and show that the results (in a standard or gross IO setting) are invariant to

the netting out of intrasectoral transactions for any factor other than gross output.11

Let us denote by Z the n × n interindustry transaction matrix and by Ẑ the di-

agonal matrix containing zii along its main diagonal and zero otherwise. Then in

the net IO model ZN = Z− Ẑ and x̂N = x̂− Ẑ, where N stands for “net”. Also the

corresponding input matrix becomes AN = ZN x̂−1
N

Definition 6.3. Consider the net open Leontief model xN = LNf, where LN = (I −
AN)−1. Let the row vector of factor net multipliers be m′

πN
= π′

NLN , where πN is the

direct factor coefficient vector, and ei be the i-th identity column. The group factor net

worth of sectors (or regions) i1, . . . , ik is ωπN
i1,...,ik

(AN , f, πN) = m′
πN

E(E′LNE)−1E′xN ,

where E =
(
ei1 , . . . , eik

)
.

It is obvious that Theorem 6.3 can be readily used in this setting as well, i.e., the

highest group factor net worth determines the key group. Now we explore the

difference between the group factor worth and group factor net worth measures,

which will shed light on the difference between the key group problems within the

gross and net IO settings.

Let Â be the diagonal matrix containing direct input coefficients aii along its

main diagonal and zero elsewhere, thus Â = Ẑx̂−1, or Âx̂ = Ẑ. Therefore, x̂N =
x̂− Ẑ = (I− Â)x̂, or, equivalently, xN = (I− Â)x. Using this together with ZN =
Z − Ẑ and x̂N = x̂ − Ẑ imply that LN = (I − AN)−1 =

(
(x̂N − ZN)x̂−1

N
)−1 =

11 We are grateful to one of the referees, who suggested to “revise some results and even concepts to
render them invariant with respect to the netting out. ... Factor usage better be independent of the
reporting or nonreporting of own use ... .”
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(
(x̂N −Z + Ẑ)x̂−1

N
)−1 =

(
(x̂−Z)x̂−1

N
)−1 =

(
(I−A)x̂x̂−1

N
)−1 = x̂N x̂−1L = (I− Â)L.

Thus, we have proved that

lN
ij = (1− aii)lij and xN

i = (1− aii)xi for all i and all j, (6.7)

where lN
ij is the ij-th element of LN (Leontief inverse in the net IO model) and xN

i is

the total output of sector i excluding intrasectoral transaction zii.

Let us denote the sectoral factor production/usage by the vector u, hence the

direct factor coefficient vectors are π′ = u′x̂−1 and π′
N = u′x̂−1

N . In what follows

we make a distinction between the cases when π 6= ı and πN 6= ı (i.e., the factor

coefficients are determined endogenously for given u), and the cases when π =
πN = ı (i.e., the factor coefficients are exogenous and set to unity). The importance

of this distinction will become clear shortly. Using the above derived relation of

LN = x̂N x̂−1L, we also get mπN = π′
NLN = u′x̂−1

N x̂N x̂−1L = π′L = m′
π whenever

π 6= ı 6= πN . Hence, for any factor other than total output, the factor multipliers

of the gross and net IO models are exactly equal to each other.12 Using all these

results we obtain that for any π 6= ı

ωπN
i (AN , f, πN) =

mπN
i xN

i
lN
ii

=
mπ

i (1− aii)xi

(1− aii)lii
=

mπ
i xi

lii
= ωπ

i (A, f, π),

that is, the factor net worth of sector i is nothing else than sector i’s factor worth

(whenever the objective of the key sector problem is not total output).

Next, it can be easily shown that the equality E′(I− Â) = E′(I− Â)EE′ always

holds. Using this equality, (6.7), and mπN = mπ , the group factor net worth for any

π 6= ı can be rewritten as

ωπN
i1,...,ik

(AN , f, πN) = m′
πN

E(E′LNE)−1E′xN

= m′
πE
(
E′(I− Â)LE

)−1E′(I− Â)x

= m′
πE
(
E′(I− Â)EE′LE

)−1E′(I− Â)EE′x

= m′
πE(E′LE)−1(E′(I− Â)E)−1E′(I− Â)EE′x

= m′
πE(E′LE)−1E′x = ωπ

i1,...,ik (A, f, π),

thus the group worth of sectors (regions) in the standard and the net IO frameworks

are exactly equal to each other for any factor other than total output. We have

12 Output multipliers in these settings do not equal each other simply because in the relation LN =
x̂N x̂−1L, in general, x̂N x̂−1 6= ı as usually zii > 0, thus xN

i < xi .
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established the following result.

Theorem 6.4. The group factor worth of sectors (regions) equals their group factor net

worth for any factor other than total output, i.e., ωπ
i1,...,ik

(A, f, π) = ωπN
i1,...,ik

(AN , f, πN)
for all k = 1, . . . , n and π 6= ı 6= πN .

The consequence of Theorem 6.4 is that the composition of the key sector and the

key group in generating/using some factor (other than total output) is invariant to

inclusion or exclusion of intrasectoral transactions in the IO data. Moreover, the

rankings of all groups are exactly the same under the two IO frameworks with and

without internal sectoral flows provided that the objective of the key sector/group

problem is not total output. This is, of course, a desirable property of the group

factor worth measure, since some analysts might prefer using the net IO model.

When, however, π = ı, the group output worth is, in general, not invariant

with respect to the netting out of intrasectoral transactions. This follows since for

all k = 1, . . . , n (using the above results)

ωo
i1,...,ik (A, f)−ωoN

i1,...,ik
(AN , f) = (m′

o −m′
oN

)E(E′LE)−1E′x

= ı′(I− I + Â)LE(E′LE)−1E′x

= ı′ÂLE(E′LE)−1E′x,

(6.8)

where the vector of the so-called net output multipliers is m′
oN

= ı′LN = ı′(I −
Â)L. Hence, equation (6.8) shows that when aii = a for all i, the key sector/group

problem with total output as the objective in the gross and net IO models give

identical results. This is because then (6.8) boils down to ωoN
i1,...,ik

(AN , f) = (1 −
a) × ωo

i1,...,ik
(A, f), which implies that the key sector/group composition and the

rankings of all other groups in the two settings are identical when Â = aI in case of

total output as the objective of the key sector/group problem.13

The above findings are illustrated by a simple example of a three-sector econ-

omy given in Table 6.2. Group factor and output worths are given in relative terms

(i.e., relative to, respectively, total factor and total output before the extraction). It

shows that relative factor worths both with and without intrasectoral transactions

are equal to each other for factor usage (say, water), which is an expectable result

due to Theorem 6.4. However, when the objective of the key sector/group problem

13 The fact that the invariance property of the group output worth does not hold in general is not a big
issue, since many would agree that gross output is a rather uninteresting indicator. One of the referees
stated that “Of course, gross output is a largely uninteresting measure. This is why national accounts
were built! They were designed to make better estimates of what is interesting – gross domestic product,
which avoids the double counting inherent to gross output.”
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Table 6.2: Relative group factor worths in the gross and net IO settings

Agr Mng Mnf f x

Agr 6 3 3 5 17
Mng 2 2 1 5 10
Mnf 2 2 10 5 19

Factor 5 4 8

k = 1 RFW/RFNW ROW RONW

Agr 49.6 55.0 56.6*
Mng 48.1 47.3 52.2
Mnf 61.6* 58.0* 51.0

Groups of size 2
Rank (RFW/RFNW) (ROW) (RONW)

1 Mng, Mnf (86.6) Agr, Mnf (86.4) {Agr, Mng}, {Agr, Mnf}, {Mng, Mnf} (82.1)
2 Agr, Mnf (85.3) Mng, Mnf (83.2) -
3 Agr, Mng (73.9) Agr, Mng (77.1) -

Note: Agr, Mng and Mnf denote, respectively, Agriculture, Mining and Manufacturing. Other
abbreviations are: RFW – relative factor worth, RFNW – relative factor net worth, ROW –
relative output worth, RONW – relative output net worth.

is total output, the results with intrasectoral transactions largely differ from those

based on the net IO model. For example, the highest output worth has Manufactur-

ing (Mnf) with its relative gross output worth of 58.0%, while in the net IO frame-

work Agriculture (Agr) is the key sector with the relative total output net worth

of 56.6%. Further, all possible groups of size 2 (i.e., 3 groups) have equal group

output worths in the net IO model (i.e., the relative group output net worths of all

groups of size 2 is 82.1%), while that is not the case when intrasectoral transactions

are accounted for.

6.3 The link to the fields of influence approach

Another well-known technique for evaluating sectors’ influence on the rest of the

economy is Sonis and Hewings’ notion of a field of influence method (see e.g., So-

nis and Hewings, 1989, 1992). This methodology answers the question of how

changes in some elements of the input matrix affect the rest of the system by ex-

amining the impact on the elements of the Leontief inverse, and is general enough

to handle changes in one direct coefficient, in all elements of a row or column of

the input matrix, or in all coefficients simultaneously. From an economic point of

view this enables one to analyze, for example, the effects of technological change,

improvements in efficiency, changes in product lines, changes in the structure and
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complexity of an economy over time, or changes in trade dependency of a country.

To briefly introduce this method, let us consider a change of α 6= 0 in only

one coefficient arc, with all other input coefficients being fixed. Then the Leontief

inverse after the change is14

L̃ = L +
α

1− αlcr
F(r, c), (6.9)

where F(r, c) = Lere′cL is the first-order field of influence matrix of the coefficient arc.

The sum of all elements of the first-order field of influence matrix, ı′F(r, c)ı,

gives the first-order intensity field of influence of the direct input arc. In Sonis and

Hewings (1989) this concept was introduced in order to measure the inverse impor-

tance of direct inputs. Consequently, those elements of A whose changes lead to the

largest impact on the system are called the inverse-important coefficients.

Unlike the standard first-order intensity ı′F(r, c)ı, the scalar ı′F(r, c)f weights

every purchasing sector in the sum according to the size of its final demand, hence

can be called as the output first-order intensity weighted field of influence of arc. This

makes more sense in computing the global intensity since sectors are not given an

equal importance, but rather their scale of final demand satisfaction is taken into

account. More generally, we term the scalar π′F(r, c)f as a factor first-order intensity

weighted field of influence of the coefficient arc, since it measures the effect of the input

coefficient change on total factor generation rather than on gross output. Having

defined this intensity measure, we can rewrite the factor worth of sector i from

Definition 6.1 as

ωπ
i (A, f, π) =

mπ
i xi

lii
=

π′Leie′iLf
lii

=
π′F(i, i)f

lii
,

which clearly shows that the key sector problem (6.2) searches for the sector i

that, on the one hand, has a large economy-wide impact on the total factor us-

age/generation due to (incremental) change in its direct input self-dependency (i.e.,

due to change in aii), and on the other hand, is less input dependent on itself di-

rectly and indirectly. The first statement is true since the effect of a change in direct

input self-dependency of sector i on the overall factor consumption/generation is

given by the factor first-order intensity weighted field of influence of the input co-

efficient aii, π′F(i, i)f.

From the theory of partitioned matrices it follows that for a nonsingular matrix

14 Notice that
∂l̃ij
∂α

∣∣
α=0 = fij(r, c) = lir lcj = fcr(j, i). Equation (6.9) follows from the well-known Sherman

and Morrison (1950) formula of the inverse change given by l̃ij = lij + αlir lcj/(1− αlcr).
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X the identity∣∣∣∣∣ X b

c′ δ

∣∣∣∣∣ = |X|(δ− c′X−1b) (6.10)

holds, where |X| is the determinant of X.

Using (6.10) with δ = 0 and X = Lkk (recall that Lkk = E′LE), we can write the

ij-th element of the matrix LEL−1
kk E′L as follows

l′i•L−1
kk l•j =

−
∣∣∣∣∣ Lkk l•j

l′i• 0

∣∣∣∣∣
|Lkk|

, (6.11)

where l′i• is the i-th row of the matrix LE and l•j is the j-th column of E′L.

But the numerator in the last equation is nothing else than the ij-th element of

the matrix field of influence of order k of the direct input coefficients ai1i1 , ai2i2 , . . . , aik ik ,

F[(i1, i1), (i2, i2), . . . , (ik, ik)] (see e.g., Fritz et al., 2002).15 That is, this matrix quanti-

fies the effect of an infinitesimal change in the coefficients ai1i1 , ai2i2 , . . . , aik ik on the

elements of the Leontief inverse.

Let us now take k = 2. Then the denominator in (6.11) can be rewritten as

|L22| =
∣∣∣∣∣ lii lij

lji ljj

∣∣∣∣∣ = liiljj − lijlji = lii

(
ljj −

ljilij
lii

)
= liil−i

jj , or

|L22| = liiljj − lijlji = ljj

(
lii −

lijlji

ljj

)
= ljjl

−j
ii ,

where we have used Lemma 6.1. That is, for example, l−i
jj is the jj-th element

of the Leontief inverse after sector i has been removed from the production sys-

tem, L−i (note that i 6= j). Hence, we now may expect that, in general, |Lkk| =
li1i1 l−i1

i2i2
l−{i1,i2}
i3i3

· · · l−{i1,...,ik−1}
ik ik

for all k = 1, . . . , n, where l−{i1,...,ik−1}
ik ik

is the ikik-th

element of L−{i1,...,ik−1}, i.e., the Leontief inverse after the (hypothetical) extrac-

tion of sectors i1, . . . , ik−1 from the economy. Let us prove this by mathematical

induction. Assume that the last expression holds for k − 1, i.e., |L(k−1),(k−1)| =

li1i1 l−i1
i2i2

l−{i1,i2}
i3i3

· · · l−{i1,...,ik−2}
ik−1ik−1

. Then using (6.10) and Lemma 6.2 we derive (note

15 We should note that the only difference comes in signs when k is even, i.e., in the fields of influence
approach the determinant in the numerator of the last equation is multiplied by (−1)k . However, in our
setting there is no sign change of the determinant considered: it cannot be negative, since then it has to
be the case that L−{i1 ,...,ik} > L, which contradicts the Leontief inverse property.
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that ir 6= is)

|Lkk| =
∣∣∣∣∣ L(k−1),(k−1) l•ik

l′ik• lik ik

∣∣∣∣∣ = |L(k−1),(k−1)|
(

lik ik − l′ik•L−1
(k−1),(k−1)l•ik

)
= |L(k−1),(k−1)| · l−{i1,...,ik−1}

ik ik
= li1i1 l−i1

i2i2
l−{i1,i2}
i3i3

· · · l−{i1,...,ik−1}
ik ik

.

Employing the above results in (6.11) implies that the group factor worth of sectors

i1, . . . , ik (ir 6= is) from Definition 6.2 can be rewritten as

ωπ
i1,...,ik (A, f, π) = m′

πEL−1
kk E′x = πLEL−1

kk E′Lf =
π′F[(i1, i1), . . . , (ik, ik)]f

li1i1 l−i1
i2i2

l−{i1,i2}
i3i3

· · · l−{i1,...,ik−1}
ik ik

.

This implies that the key group problem (6.4) searches for a group of k sectors with

the highest group factor worth, which is directly proportional to the impact on

overall factor generation of incremental changes in direct input self-dependencies of

sectors comprising the group,16 and inversely related to the size of their unit own to-

tal input dependence that does not overstate the intermediate role of the group mem-

bers. To see the interpretation of the second effect, let us consider the group of size

two. Then |L22| = liil−i
jj is the product of the unit (i.e., per one unit of final demand)

own total input dependence of sector i and the unit own total input dependence

of sector j without any (intermediate) role for sector i (since it has been removed

from the system). This gives the size of the own total input dependence of the

group {i, j}. Hence, the own input dependence liil−i
jj (or, equivalently, ljjl

−j
ii ) does

not include the contribution of the group-member whose own input dependence

was already accounted for. Exactly the same interpretation holds for the general

case of |Lik ik | = li1i1 l−i1
i2i2

l−{i1,i2}
i3i3

· · · l−{i1,...,ik−1}
ik ik

(note that the order of i1, . . . , ik can be

changed without affecting the result and its economic interpretation). The above

mentioned interpretation of the group factor worth makes sense, because it is rea-

sonable to consider a group of industries as the key group if a (incremental) change

in their internal input structure has the maximum impact on the factor produc-

tion/consumption (the first effect), and the group-members are less input depen-

dent on themselves directly and indirectly (the second effect).

All in all, we have shown that the (generalized) HEM and the fields of influence

approach are closely related, which is, in fact, not surprising since both methods

deal with the same issue of the impact of a change in input coefficients on the entire

16 This interpretation is due to the economic meaning of π′F[(i1, i1), . . . , (ik , ik)]f, which we might simi-
larly term as a factor intensity weighted field of influence of order k of input coefficients ai1 i1 , . . . , aik ik .



Identifying optimal sector groupings with the hypothetical extraction method 157

economic system within the IO framework.

6.4 Connection to game theory

There is a link between the key sector/group identification problem discussed in

Section 6.2 and the game theoretic literature on finding the key players in social net-

works, on the one hand, and on finding a fair allocation of gains from cooperation

among coalition participants, on the other hand. The connection between Chapter 5

on social networks and the previous sections of this chapter is due to the similar

mathematical structure of the problems posed in Section 5.2 and Section 6.2. That

is, comparing the key group problems in the framework of social networks with

ex ante identical individuals and interindustry relations, one can easily observe the

mathematical similarity of their solutions.17 This is not surprising since these prob-

lems address conceptually the same issue, finding sectors or actors that have the

largest overall impact on the aggregate outcome. Of course, their interpretations

are totally different given their different underlying theoretical frameworks.

In what follows we discuss an additional link of the key sector/group problem,

namely to the coalitional game literature on measuring players’ power. The ques-

tion of a fair allocation of gains obtained from cooperation among several actors

was one of the main points of focus at the outset of game theory. The setup is as

follows. A cooperation of actors results in a certain overall gain that has to be di-

vided among the actors within the coalition. However, this is not a trivial issue

given that actors have different contributions to the coalition. The legitimate ques-

tion then is how to allocate “fairly” the gain from cooperation to its participants.

Or in other words, how important is each actor to the coalition, and what payoff

does (s)he deserve? One approach is to use the Shapley value, named in honor of

Lloyd Shapley, who introduced it in his classical 1953 paper “A value for n-person

games”. Using an axiomatic approach, Shapley constructed a solution remarkable

for its intuitive definition and unique characterization by a set of reasonable ax-

ioms. The specialization of the Shapley value to simple games18 is often used as an

index of voting power and is known as the Shapley-Shubik power index (Shapley

and Shubik, 1954). An other related indicator is the Banzhaf power index proposed

17 Note, however, that this is no longer true once the exogenous heterogeneity of players is taken into
account (see Theorem 5.2).
18 A game is simple if payoffs are either 1 or 0, i.e., coalitions are either “winning” or “losing”. See
Shapley (1962) for details on simple games.
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in Banzhaf (1965).19 The generalization of Shapley and Banzhaf values to a coali-

tional structure, where the interaction between players is not symmetric in the sense

that actors may be part of different groups, which might make negotiations be-

tween groups impossible, is studied, in particular, by Aumann and Drèze (1974)

and Owen (1977, 1981).20 A share function solution of van der Laan and van den

Brink (1998) assigns to every player its share in the worth of the grand coalition,

and contains the Shapley share function and the Banzhaf share function as special

cases. A solution in terms of share functions for games with a coalitional structure

is introduced in van der Laan and van den Brink (2002). Since all these values

are closely related to the original contribution of Shapley (1953), we will in what

follows only discuss the link of our factor worth measure to the Shapley value.

Formally, a coalitional form game on a finite set of players N = {1, 2, . . . , n} is a

function v from the set of all coalitions 2N to the set of real numbers R, with the

properties

1. v(∅) = 0,

2. v(S ∪ T) ≥ v(S) + v(T), whenever S ∩ T = ∅.

The interpretation of v(S) is the expected total payoff (gain or rent) that the coalition S

can get in the game v. The second property, the so-called superadditivity condition,

implies that cooperation can only benefit players, and never makes them worse

off. The Shapley value (φ) is one way to distribute the total gain to all players,

which assigns to each game v a vector of payoffs φ(v)′ = (φ1, φ2, . . . , φn) in Rn.

Alternatively, one can think of φi(v) as the measure of i’s power in the game v. For

all S ⊆ N and all i ∈ S, the marginal contribution of player i to coalition S in game

v is defined by v(S) − v(S \ {i}). Shapley constructed the following value that

assigns an expected marginal contribution of each player in the game with respect

to a uniform distribution over the set of all permutations on the set of players:

φi(v) = ∑
S⊆N, i∈S

(s− 1)!(n− s)!
n!

[
v(S)− v(S \ {i})

]
, (6.12)

where s is the cardinality of S (or number of players in S).

In words, φi(v) is essentially the weighted average of player i’s marginal con-

19 Straffin (1977, 1988) interprets the Shapley-Shubik and Banzhaf indices as the probabilities of affecting
the voting outcome. In this sense, he shows that the Shapley-Shubik index is more appropriate when
voters’ decisions are correlated (e.g., a society judging welfare by common standards), while the Banzhaf
index is more appropriate if voters behave independently of each other.
20 Cooperative games with a coalitional structure imply a two-level interaction between the players (see
eg., Hart and Kurz, 1983). Firstly, the value of the grand coalition is distributed amongst the coalitions,
and secondly, the worth of each coalition is allocated amongst the players within this coalition. See also,
Winter (1989, 1992); Owen and Winter (1992).
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tributions v(S)− v(S \ {i}) with corresponding weights (s− 1)!(n− s)!/n!, where

the sum is taken over all the coalitions S to which player i belongs. Note that the

weight is equal to the product of the (s− 1)! different permutations of the members

of coalition S aside from player i and the (n− s)! different permutations of players

outside the coalition S, and then divided by the n! different permutations of all the

players in the grand coalition N.

The Shapley value satisfies the following four axioms.

Efficiency: ∑i∈N φi(v) = v(N), i.e., the resources available to the grand coalition

are precisely distributed amongst all the players.

Symmetry: If v(S ∪ {i}) = v(S ∪ {j}) for every subset S ⊂ N with i, j 6∈ S, then

φi(v) = φj(v). That is, if players i, j ∈ N make the same marginal contribution to

any coalition S that contains neither i nor j, then i and j are symmetric with respect

to game v, and have equal shares.

Dummy: If i is a dummy (or null) player, i.e., v(S ∪ {i}) = v(S) for all S ⊂ N,

then φi(v) = 0. This axiom requires that players with a zero marginal contribution

to every coalition are given zero payoffs.

Additivity: For any two games v and w on a set N of players, φi(v + w) = φi(v) +
φi(w) for all i ∈ N, where v + w is the game defined by (v + w)(S) = v(S) + w(S).

This axiom requires that the value is an additive operator on the space of all games.

The remarkable finding of Shapley (1953) is that there exists a unique value that

satisfies these four simple axioms, and it is the Shapley value given in (6.12).21

Now we are in a position to compare the factor worth of sector i, ωπ
i (A, f, π) =

mπ
i xi/lii, with the Shapley value. These two indicators are similar in the sense that

both assess the power of an agent on the base of its marginal contribution. The

difference, however, is that the factor worth focuses on the marginal contribution

of a sector to the total factor generated by production sectors taken altogether (see

(6.2)), while the Shapley value takes into account the marginal contributions of a

player to all permutations on the set of players.

To see clearly the similarities and distinctions, we will check whether the fac-

tor worth satisfies the above mentioned four axioms. In the framework of the IO

analysis the value of all industries is the resulting aggregate factor, π′x. It can be

shown that for any nonnegative final demand and direct factor coefficients vec-

tors f and π the inequality ∑n
i=1 ωπ

i (A, f, π) ≥ π′x always holds, where the in-

equality is strict when f and π are strictly positive vectors (see Appendix 6.A).

Thus, the sum of the individual factor worths of all sectors is at least as large

21 For more details see e.g., Roth (1988); Winter (2002).
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as the total factor that all the industries generate/use. In other words, the factor

worth does not satisfy the efficiency axiom in the context of the coalitional game.

The symmetry property, however, holds in the key sector framework, which is

an expectable outcome. Two sectors i and j with the same individual contribu-

tions to overall factor have identical factor worths, which follows from the fact that

ωπ
i (A, f, π) = mπ

i xi/lii = π′(x− x−i) = π′(x− x−j) = mπ
j xj/ljj = ωπ

j (A, f, π).

The factor worth measure also satisfies the third axiom of dummy, when the null

(or dummy) sector has ωπ
i (A, f, π) = 0. There are many dummy possibilities. The

definition of the factor worth implies that the null sector has zero output, xi = 0.

For example, if

A =


a11 0 · · · 0

a21 a22 · · · a24
...

...
. . .

...

an1 an2 · · · ann

 and f =


0

f2
...

fn

 ,

then x1 = 0 implying that sector 1 can be viewed as a dummy sector. Hence,

hypothetically extracting sector 1 makes no difference.

Finally, the combined key sector problem briefly discussed in footnote 9 implies

that the additivity property of the Shapley value is also satisfied in case of the factor

worth. If we would define the combined factors worth by ωv,w
i (A, f, v, w), where

v and w are the direct sectoral value-added and labor coefficients, respectively,

then from the factor worth definition it follows that ωv,w
i (A, f, v, w) = ωv

i (A, f, v) +
ωw

i (A, f, w), which is the additivity condition in the context of the coalitional game

literature. All in all, we have shown that the Shapley value and the factor worth

measures are intuitively closely related. Evidently, their applications are quite dif-

ferent given that these measures are the outcome of two entirely different frame-

works.

6.5 Application to the Australian economy

We have already noted that the input-output linkage studies (implicitly) accepted

the k sectors (where 1 < k < n) with the largest individual factor worths as the

key group of k sectors. In this section, using an example of the Australian economy

we show that this is not true as long as the HEM approach is concerned, i.e., the k

sectors with the highest factor worths, in general, do not compose the key group of
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size k.

We have used data from Foran et al. (2005) and Centre for Integrated Sustain-

ability Analysis (2005) that include the 1994-1995 Australian IO tables and satellite

accounts at a 136 industry-level classification.22 For simplicity, the industries were

codified, and the list of codes is given in Appendix 6.B. The key sector/group prob-

lem is performed for two environmental, one financial and one social factor. These

are, respectively, water use, carbon dioxide (CO2) emissions, gross operating sur-

plus, and wages and salaries. The results are reported in the first five columns of

Table 6.3 in terms of relative group factor worths, i.e., the group factor worths as

a percentage of the overall factor use/generation before the extraction of sectors

comprising the group. For instance, the relative profits (gross operating surplus)

worth of sectors i and j ( 6= i) equals (ω
p
i,j(A, f, p)/p′x)× 100, where p is the vector

of sectoral direct profits coefficients, thus p′x is the total gross operating surplus

in the economy. Hence, these relative measures refer to the percentage decrease in

economy-wide factor use/generation caused by the extraction. We only report the

top 5 groups of size k ∈ [1, 4], and, obviously, the group with rank 1 in each list is

the corresponding key group.

Several observations can be made from Table 6.3. The first and most obvious

observation is that different objectives give a different composition of the key group

of a certain size and different rankings of sectors or group of sectors. This is totally

expectable, as different sectors perform different functions in the economy, thus

should not be equivalent in terms of consumption/production of various factors.

Second, the composition of the key group of size k is, in general, different from

the k sectors with the largest (individual) factor worths, which confirms our expec-

tation that the key sector problem is not equivalent to the key group problem. For

example, let us look at the key group problem in terms of water use. The second

column of Table 6.3 shows that Dairy cattle & milk (Dc) is the key sector in water

use with a relative water consumption worth of 19.5%.23 The key group of size

two consists of the key sector Dc and Beef cattle (Bc) jointly accounting for 37.6%

of the economy-wide water consumption, which, however, does not include Diary

products (Dp) that has the second largest water (usage) worth. Further, the key

group of size 3 includes, besides Dc and Bc, Water supply, sewerage and drainage

services (Wa), which has only the sixth rank according to the key sector problem

with water worth of 10.6% (not shown in Table 6.3). The traditional “top-list” ap-

22 Foran et al. (2005) give a detailed description of the data sources and their construction.
23 In the language of the HEM problem, if Dairy cattle & milk (Dc) sector would be eliminated from the
economy, the overall use of water would be reduced by 19.5%.
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proach would consider the “key” group of size 4 consisting of dairy and beef cattle,

and dairy and meet products (i.e., Dc, Dp, Bc and Mp as the top 4 sectors with the

largest individual water usage worths), while the formal key group problem finds

beef and diary cattle (Bc, Dc), Vegetable and fruit growing (Vf), and Water supply,

sewerage & drainage (Wa) to be the part of the key group. The legitimate question

is why the “top-list” approach does not give the true outcome identified by the key

group problem.24 The group factor worth of sectors i1, . . . , ik can be rewritten as

ωπ
i1,...,ik (A, f, π) =

ik

∑
s=i1

πsxs + ∑
j 6=i1,...,ik

πj

(
xj − x−{i1,...,ik}

j

)
,

which shows that the factor worth of the extracted sectors includes not only their

own contributions to factor usage/generation (the first sum), but also their contri-

butions to the factor consumed/produced via every other sector outside the group

(the second sum).25 Hence, with inherently different structures and sizes of inter-

sectoral links, and intermediate and final demands, the group of k sectors will play

quite a different role in overall factor usage/generation process than a single indus-

try, in particular, through its indirect channel.

This result wedges a bridge between the IO linkage analysis and the sociology

literature on actors’ importance in social networks. This link has to do with what

sociologists call the redundancy principle (see e.g., Burt, 1992; Borgatti, 2006), which

in our framework means that sectors may be redundant with respect to their link-

age patterns, factor generation abilities and final demand structures. For example,

two sectors with approximately the same sizes of inter-industry transactions, factor

generation, and final demands are redundant when they connect the same third in-

dustries to each other, or when they are connected to the same third parties. In the

sociological terminology, such redundant sectors are called to be structurally equiv-

alent. In the framework of social networks, Temurshoev (2008) showed that there

is a link between the key group members and clusters of similar agents (see also

Chapter 5 in this thesis). That is, the key group generally contains members from

24 Note that in our example these two approaches give identical results for k ∈ [1, 4] when the objectives
are profits, and wages and salaries. We should, however, stress that these observations by no means sub-
side the existence of the difference between the two approaches, and thus the key group problem should
always be given preference over the “top-list” approach whenever the HEM is a study methodology.
For example, the application to the Kyrgyzstan economy for value-added and gross output resulted in
a dramatic difference between the “top-list” and the key group problem approaches in defining the key
group (these results are not shown here as we have decided to focus only on the Australian economy).
25 Note that in case of gross output being the objective, i.e., when πi = 1 for all i, the group output worth
equals the sum of gross outputs of the extracted sectors and their contributions via every other sector’s
gross output.
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different clusters, i.e., key group members are rather nonredundant. Applying this

redundancy principle to the IO framework may explain the fact that Dairy prod-

ucts (Dp) that ranks high in the key sector problem (i.e., for k = 1) is not contained

in key groups of size k > 1 in Table 6.3 in the case of water usage. For example,

the key group of size 2 contains Dairy cattle & milk and Beef cattle (Dc and Bc) and

not Dc in combination with the second largest consumer of water - Dairy products

(Dp). This is because Dc and Dp have rather similar patterns (and sizes) of produc-

tion linkages, water usage and final demands, whereas Bc and Dc are not similar.26

A partial proof for this argument are the correlation coefficients of -0.008 and 0.706

of the input matrix rows (sales structures) corresponding to Bc and Dc, and to Dc

and Dp, respectively. Since the HEM extracts sectors entirely from the system, the

correlation values for the vectors of both input and sales coefficients are 0.046 for

Bc and Dc, and 0.278 for Dc and Dp. Hence, the key group members (i.e., Bc and

Dc) have a much lower similarity in terms of their direct production (buying and

selling) linkages than Dc and Dp.

The third observation from Table 6.3 is that sectors in the key group of size k are

also part of the key group of size k + 1, which raises the question whether this is

a general property or whether it is a mere coincidence. We have already shown in

Section 6.2.3 that this is not true in general, i.e., the group target selection problem is

not equivalent to a sequential key sector problem. One might (rightly) think that this

fact is unfortunate from a computational perspective, since this urges an analyst

to compute the factor worths for all possible combinations of k from all n sectors,

which, for instance, in our case with groups of size 4 required to consider more

than 13.6 million combinations,27 and that search process would be significantly

reduced (i.e., to only 133 cases) if the key group problem and the sequential key

sector problem would be equivalent. Given that we have conjectured that the key

26 This can be showed formally using cluster analysis, which is, however, beyond the scope of this chap-
ter. In this respect, our study has a link to Hoen (2002), who analyzes the groups of sectors with strong
connections using different cluster identification methods and ends at choosing a block diagonalization me-
thod to suit best for clustering purposes. This method rearranges sectors in such a way that the important
linkages (bigger than some specified threshold level) of a matrix (such as the intermediate values, input
coefficients, Leontief inverse) appear in blocks along the main diagonal, and thus sectors in one block
comprise one separate cluster. However, a word of caution is in place with respect to the diagonalization
method: it does not allow for “cluster switching”. For instance, Howe and Stabler (1989) showed that an
object may be assigned to totally different cluster if the number of identified clusters changes. In fact,
this property of block diagonalization Hoen (2002) considers positively as other “cluster methods ... did
not show this phenomenon [i.e., cluster switching] for sectors” (p. 139). However, the HEM allows for
sector switching if one interprets the key group members in terms of different clusters’ membership, at
least, theoretically (see the next observation).
27 This computation on a PC with a memory (RAM) of 4 GB and a Windows Experience Index base score
of 4.6 took overall 17 minutes and 44 seconds. The MATLAB program can be provided by the author
upon request.
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group members are rather nonredundant with respect to their patterns and sizes of

production linkages, factor generation and final demands, they should be part of

different clusters of similar industries. Thus, the HEM allows, at least theoretically,

for “cluster switching” of sectors once the number of (identified) clusters changes.28

The phenomenon of “cluster switching” has been found, for example, in Howe

and Stabler (1989). In fact, because “cluster switching” exists and because of the

redundancy principle it follows that the key group problem is not equivalent to

the sequential key sector approach. Hence, the fact that the key group problem

requires to search for all possible combinations is, in fact, advantageous as taking

into account “cluster switching” possibilities of industries and their redundancy, it

determines the appropriate (right) key group members.

The fourth observation is that a group of a few industries accounts for the ma-

jority of the environmental factors, while generation of profits and salaries is rela-

tively dispersed among sectors. So 58% and 69% of, respectively, water (direct and

indirect) consumption and CO2 emissions are due to the key groups of size 4 from

the total of 136 sectors. This has, for example, the following policy implication:

focusing on a very few industries would give quite a big impact in terms of, say,

CO2 emissions, but in order to have a large effect on social factors generation many

more industries should be given policy priority. More specifically, we can see that

Electricity supply (El) alone accounts for 32.8% of the Australian carbon dioxide

emissions, while other factor worths (i.e., for water use, profits and wages gener-

ation) of key sectors are much smaller. Beef cattle (Bc) and Electricity supply (El)

only (members of the key group of size 2) are responsible for 52.9% of Australian

CO2 emissions, hence any attempt to reduce carbon emissions should target these

industries in the first place. For example, as suggested by Daniels (1992) in order to

avoid long-term losses of productivity, biodiversity and real income, Australia has

to re-direct its production from these high emissions-intensive industries towards

more value-adding sectors. In case of water use, the key sector is Dairy cattle & milk

(Dc), while Beef cattle (Bc), Dc and Water supply, sewerage and drainage services

(Wa) jointly account for 48.1% of water consumption. Hence, again any policy to-

wards more efficient use of water must consider these mentioned industries in the

first place. Comparing our results given in Table 6.3 to those found in Lenzen (2003,

28 To see this consider the following hypothetical case with four sectors. Suppose there are three clus-
ters: {1,2}, {3} and {4} and the key group of size three is {1,3,4}. It might very well happen that in
reducing the number of clusters we get the following two clusters: {1,3} and {2,4}, in which case sector
2 “switches” from its original cluster {1,2} to the cluster {4}. Then, in this “cluster switching” case the
key group of size two can be, for example, {1,4}. Note that in this case the key group of size 2 is a part
of the key group of size 3, which as shown in Section 6.2.3 does not have to be true in general.
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Table 3) with a different IO apparatus of structural path analysis reveals that the

two methodologies give similar results. As a policy recommendation Lenzen (2003)

analogously mentions that “... in order to reduce the irrigation-induced stress on

the Murray-Darling river system in South-Eastern Australia, shifts in production

from water-intensive industries towards more value-adding sectors have been rec-

ommended” (p. 29). Analogous conclusions can be made with respect to the two

other factors of profits and wages.

The last observation from Table 6.3 is that the percentage decrease in overall

factor usage/ production upon extraction of groups is always smaller than the sum

of the individual relative factor worths of sectors comprising the group. In fact, it is

shown in Appendix 6.A that for any nonnegative final demand vector it is always

true that ∑k
s=1 ωπ

is (A, f, π) ≥ ωπ
i1,i2,...,ik

(A, f, π) for all k = 2, 3, . . . , n. This inequality

reflects the redundancy principle in the IO framework discussed earlier. For exam-

ple, the relative group water worth of Dc and Dp is 19.7% (not shown in Table 6.3),

while the sum of their individual relative water worths is 38.1% (= 19.5 + 18.6).

Hence, the big difference of ωπ
Dc(A, f, π) + ωπ

Dp(A, f, π)−ωπ
Dc,Dp(A, f, π) = 18.4%

(when π is water consumption) shows that indeed the two sectors (i.e., Dc and Dp)

are largely redundant, hence cannot comprise together the key group of size 2. For

the key groups, however, this difference is very small, indicating that there is very

little redundancy between the key group members.

In order to compare the results of the generalized HEM to other indicators, we

present in the last three columns of Table 6.3 the top 5 sectors with the largest fac-

tor multipliers mπ , direct factor usage/production π′x̂, and factor responsibility.

The first two indicators do not need additional explanation, hence we briefly dis-

cuss the third one. Multiplying the diagonalized matrix of the factor coefficients by

the Leontief inverse gives the matrix π̂L, whose ij-th element shows the amount

of factor used/produced by sector i per unit final demand of sector j. Hence, the

ij-th entry of the matrix π̂Lf̂ is the amount of the factor used/generated by sec-

tor i due to final demand of sector j, or equivalently, how much factor was con-

sumed/produced by sector i for final demand of sector j. Thus, summing over all

i gives the amount of the factor consumed/produced by all industries for final de-

mand of product j, which is the j-th element of the vector π′Lf̂ = m′
π f̂. In other

words, this is the amount of the factor that “consumers” of product j are responsible

for, hence the term “responsibility”.29

Multipliers are traditionally used to identify sectors with the largest backward

29 See Hoen and Mulder (2003) for a similar computation in analyzing the Dutch CO2 emissions.
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linkages (if one wants to spend one extra dollar e.g., for investment purposes). Ta-

ble 6.3 shows that factor multipliers can give quite different results than those based

on the HEM. This is expectable since factor worths besides the size of multipliers

also take into account sectors’ gross output size and their own input dependencies.

Rice (Ri) has the highest water use multiplier (7470 litres per A$ of its final de-

mand), while it is not a member of the key groups of size k ∈ [1, 4], and, moreover,

it does not show up in the list of top 5 groups at all. Rice (Ri) though is the 5-th

largest direct consumer of water (1.43 Tl), but it is not in the list of the top 5 respon-

sible sectors. In case of CO2 emissions, Forestry (Fr) has the largest CO2 multiplier,

but it is not a member of the key group of size k < 3. For gross operating surplus

all four indicators give quite close outcomes with Ownership of dwellings (Dw)

being the most important sector in each respect. Education (Ed) has the largest

wages multiplier, and becomes a member of the key group of size 4. An advan-

tage of multipliers lies in the price evaluation of commodities because multipliers

are expressed per unit of final demand. In other words, industries with high fac-

tor multipliers are sensitive to changes in the factor price (see e.g., Dietzenbacher

and Velázquez, 2007). In our case, a pricing policy that tries to internalize the costs

of using water and CO2 emissions will have the largest impact on the prices of,

respectively, Rice (Ri) and Forestry (Fr).30

Notice also that for water use and CO2 emissions there is a good correspondence

between the key group members and the list of sectors with the largest direct factor

usage/generation in Table 6.3. But this is not always the case: the largest capacity

of generating wages has Education (Ed, 14.6 Bln A$), which is not a member of

the key group of size k < 4. Instead, Retail trade (Rt), which is responsible for

the largest amount of wages (18.3 A$), is part of the key group of size k ≥ 2. For

water usage and CO2 emissions dairy and meat products (Dp and Mp) are the most

responsible sectors, while in both cases they do not show up as part of the key

groups. However, these industries are members of groups that are second or third

in the list. All in all, it seems that the HEM takes into account both sectors’ direct

factor consumption/generation and sectors’ responsibility in using/producing the

factor by other industries. This is, of course, the specific advantage of using the

generalized HEM, which fully considers all kinds of interlinkages associated with

the hypothetically extracted sector(s).

30 In this respect for Australian case, Foran et al. (2005) regarding agricultural, forestry and food prod-
ucts state: “... the prices we pay for the products reflect the marginal cost of production, rather than the
full resource and environmental costs of production. ... Moves to internalize the full costs of production
in the final price of the market product may mean substantial price increases” (p. 1).
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6.6 Conclusion

In this chapter we have investigated the issue of the identification of a key sec-

tor and a key group of sectors in the economy by the hypothetical extraction me-

thod (HEM). These two issues are formalized in terms of optimization problems

and their closed-form solutions were derived, which, to the best of our knowledge,

have never been done in the literature. We show that for this purpose the analyst

does not have to perform the three step procedure of the HEM. That is, delete the

corresponding row(s) and column(s) of the input matrix, calculate the overall fac-

tor usage/production in the hypothetical case, and find the difference between the

actual and hypothetical objectives. These steps are rather excessive given that we

have found simple analytical formulas (measures of industries’ factor worths) for

the desired outcome, which make the calculation quite easy.

We showed that the top k (> 1) sectors in the key sector problem do not com-

prise the key group of size k. This is demonstrated in the empirical application

to the Australian economy for four factors (i.e., water use, CO2 emissions, profits,

and wages and salaries). It always holds that the key group has the highest group

factor worth. The last is directly related to the overall impact on aggregate factor

usage/generation of an incremental change in direct input self-dependencies of the

group-members, and inversely related to their own total input dependence. This

interpretation is the outcome of linking the HEM to the fields of influence method.

The key sector/group problem can be easily used to address several policy issues

simultaneously, for instance, finding key sectors in terms of increasing employment

and decreasing emissions of greenhouse gases.

It is further shown that the related problems of finding a key region and key

group of regions within the interregional IO framework can be investigated simi-

larly. We show that industries’ factor worth are invariant to the netting out of intra-

sectoral transactions for any factor other than gross output. Hence, the outcomes

of the key group problems in the standard and the so-called net IO frameworks

are exactly the same for any factor other than total output. Also the connection of

the factor worth measure to the Shapley value from coalitional game literature is

discussed. Finally, it is proved that a positive (negative) change in a direct input co-

efficient never decreases (increases) the factor generating importance of any sector,

and the necessary and sufficient conditions for a subsequent change are provided.

In the empirical application of the key group problem, we, for example, found

that in Australia in 1994-1995 out of all possible combinations of groups of size 2

(i.e., from C136
2 = 9180 groups) Beef cattle and Electricity supply had the highest
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CO2 emissions worth: “closing down” these sectors would reduce carbon emis-

sions by 52.9%. In the case of water consumption, Beef cattle, Dairy cattle, and

Water supply, sewerage and drainage services have the highest relative water us-

age worth of 48.1% (among all groups of size 3). Hence any policy attempt to re-

duce carbon emissions and more efficient use of water in Australia should consider

the fact that the above mentioned industries are heavy carbon- and water-intensive

sectors.
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6.A Proofs

Derivation of problem (6.3). The objective function in problem (6.2) is π′x−π′x−i =
π′(Lf − L−if−i). Adding and subtracting L−if to the expression in parentheses

gives π′x− π′x−i = π′(L− L−i)f + π′L−i(f− f−i). It is apparent that f− f−i =
fiei. This together with Lemma 6.1 yields

π′x−π′x−i = π′
(

1
lii

Leie′iL− eie′i

)
f + fiπ

′
(

L− 1
lii

Leie′iL + eie′i

)
ei

=
1
lii

π′Leie′iLf− fiπi + fiπ
′Lei −

fi
lii

π′Leie′iLei + fiπi

=
1
lii

π′Leie′iLf + fiπ
′Lei −

fi
lii

π′Leie′iLei =
1
lii

m′
πeie′ix,

where the last term follows since e′iLei = lii.

Proof of Theorem 6.2. Using the definitions of the factor worth, factor multiplier

and equation (6.1), we have ωπ
i (A, f, π) = 1

lii
mπ

i xi =
(

∑n
j=1 πjlji

)
∑n

j=1
lij
lii

f j. Then,

∆π
i ≡ ωπ

i (Ã, f, π)−ωπ
i (A, f, π) =

(
n

∑
j=1

πj l̃ji

)
n

∑
j=1

l̃ij
l̃ii

f j −
(

n

∑
j=1

πjlji

)
n

∑
j=1

lij
lii

f j,

where l̃ij is a generic element of the Leontief inverse L̃ = (I− Ã)−1. Adding and

subtracting
(

∑j πj l̃ji
)

∑j
lij
lii

f j to the last expression and noting that m̃π
i = ∑n

j=1 πj l̃ji

yields

∆π
i = m̃π

i

n

∑
j=1

(
l̃ij
l̃ii
−

lij
lii

)
f j +

(
n

∑
j=1

πj(l̃ji − lji)

)
xi
lii

. (6.A.1)

From Sherman and Morrison (1950) it follows that l̃ij = lij + εilcj, where εi =
αlir/(1− αlcr). Therefore,

l̃ij
l̃ii
−

lij
lii

=
lij + εilcj

lii + εilci
−

lij
lii

=
εi(liilcj − lcilij)

lii l̃ii
.

Plugging the last expression in (6.A.1) and using Sherman and Morrison’s formula

again yields

∆π
i = m̃π

i

n

∑
j=1

εi
(
liilcj − lcilij

)
f j

lii l̃ii
+

(
n

∑
j=1

πjεjlci

)
xi
lii
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=
α

lii(1− αlcr)

[
lir

m̃π
i

l̃ii

n

∑
j=1

(
liilcj − lcilij

)
f j + lcim̃π

r xi

]
. (6.A.2)

The well-known property of the Leontief inverse is that lii ≥ 1 and lii > lij ≥ 0 for

all i and all j 6= i given that the column sums of A are less than one (see e.g., Gilo

et al., 2006, Lemma 1, p. 85). Theorem 1 in Zeng (2001) shows that liilcj ≥ lcilij,

with strict inequality holding when j = c 6= i. Hence, ∑j(liilcj − lcilij) f j > 0 for

all i 6= c (assuming that f j ≥ 0, and at least fc > 0). It is not difficult to see that

for i = c every term in this sum is zero, hence the first term of ∆π
c in (6.A.2) (when

i = c) vanishes, however, its second term is positive as lcc ≥ 1. So it always holds

that ∆π
c ≷ 0 if α ≷ 0. This is also always the case when i = r, i.e., ∆π

r ≷ 0 for

α ≷ 0 because then the first term in (6.A.2) is positive due to lrr ≥ 1. However, for

all other i 6= r, c the expression within the square brackets in (6.A.2) is not always

positive, and becomes zero whenever lir = lci = 0 in which case ∆π
i = 0 with

i 6= r, c. Otherwise, if lir > 0 and/or lci > 0 the sign of ∆π
i for i 6= r, c will depend

only on α, and is positive (resp. negative) if α > 0 (resp. α < 0). This completes the

proof.

Proof of Lemma 6.2. Lemma 5.1 in Chapter 5 of this thesis in the framework of

social network analysis is mathematically equivalent to Lemma 6.2 in this chapter.

Hence, see the proof of Lemma 5.1, where instead of matrix B now we have the

Leontief inverse matrix L. Note, however, that unlike B the Leontief inverse always

exists.

Derivation of problem (6.5). As in the derivation of problem (6.3), the objective

function in (6.4) can be rewritten as π′x − π′x−{i1,...,ik} = π′(L − L−{i1,...,ik})f +
π′L−{i1,...,ik}(f − f−{i1,...,ik}), where f − f−{i1,...,ik} = ∑k

s=1 fis eis = EE′f. This, to-

gether with Lemma 6.2 and the fact that EE′EE′ = EE′, gives (defining Lkk ≡ E′LE)

π′x−π′x−{i1,...,ik} = π′[LEL−1
kk E′L− EE′

]
f + π′[L− LEL−1

kk E′L + EE′
]
EE′f

= π′LEL−1
kk E′Lf−π′EE′f + π′LEE′f−π′LEL−1

kk E′LEE′f + π′EE′f

= π′LEL−1
kk E′Lf + π′LEE′f−π′LEL−1

kk LkkE′f = π′LEL−1
kk E′Lf,

which is exactly the objective of the key group problem (6.5), using m′
π = π′L and

x = Lf.

Proof of the inequality ∑k
s=1 ωπ

is (A, f, π) ≥ ωπ
i1,i2,...,ik

(A, f, π). This inequality is com-

parable to the subadditivity property of the group intercentrality measure proved
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in Appendix 5.A from Chapter 5, where now instead of matrix B we have the

Leontief inverse matrix L. Hence, given the definitions of the group intercentrality

and group factor worth measures in Definition 5.1 and Definition 6.2, respectively,

(5.A.7) in the context of the Leontief model can be written as

k

∑
s=1

ωπ
is (A, f, π)−ωπ

i1,i2,...,ik (A, f, π)

= π′
[

LkkL̂−1
kk (Lkk − L̂kk) (Lkk − L̂kk)Ckt

LtkL̂−1
kk (Lkk − L̂kk) (It −Att)−1Atk(Lkk − L̂kk)Ckt

]
f,

(6.A.3)

where Lkk = E′LE, L̂kk = E′L̂E with L̂ being the diagonal matrix with lii on its main

diagonal and zeros elsewhere, Att is the input submatrix that contains input coeffi-

cients of all t sectors not in the group {i1, . . . , ik} (where t + k = n), Atk is the input

submatrix containing the input coefficients with deliveries from non-members to

the members of the group {i1, . . . , ik}, and C = L̂−1L. All these mentioned matrices

are non-negative, and Lkk ≥ L̂kk. Therefore, for any nonnegative vectors π and f,

it always holds that ∑k
s=1 ωπ

is (A, f, π) ≥ ωπ
i1,i2,...,ik

(A, f, π), which is strict if π and f

are strictly positive vectors (given that A is not a null matrix).

If k = n, then (6.A.3) becomes ∑n
i=1 ωπ

i (A, f, π)−ωπ
1,...,n(A, f, π) = π′[LL̂−1(L−

L̂)
]
f = π′[LL̂−1 − I

]
x ≥ 0 provided that the final demand vector is nonnegative.

Since ωπ
1,...,n(A, f, π) = π′x, it follows that ∑n

i=1 ωπ
i (A, f, π) ≥ π′x, i.e., the sum of

individual factor worths of all sectors is at least as large as the size of the overall

factor production/consumption.
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6.B Codes assigned to 136 Australian sectors

We mainly adopt the sectoral codes of Foran et al. (2005), which are listed below in

alphabetical order.

Sym. Industry Sym. Industry

Ac Insecticides, pesticides and other agricultural chemicals Lm Lime
Ai Aircraft Lp Leather and leather products
Al Aluminium alloys and aluminium recovery Ma Agricultural, mining and construction machinery
Ao Alumina Mi Mineral and glass wool and other non-metallic mineral

products
Ap Automotive petrol Mn Exploration and services to mining
At Air and space transport Mp Meat and meat products
Ba Barley, unmilled Ms Legal, accounting, marketing and business management

services
Bc Beef cattle Mv Motor vehicles and parts, other transport equipment
Bk Banking Nb Non-residential buildings, roads, bridges and other con-

struction
Bl Black coal Ne Newspapers, books, recorded media and other publish-

ing
Bm Beer and malt Nf Non-ferrous metal recovery and basic products
Bp Bread, cakes, biscuits and other bakery products Ng Natural gas
Br Brown coal, lignite Oc Adhesives, inks, polishes and other chemical products
Bs Typing, copying, staff placement and other business ser-

vices
Oe Photographic, optical, medical and radio equipment,

watches
Bt Bus and tramway transport services Of Oils and fats
Bu Prefabricated buildings Oi Crude oil
Bv Soft drinks, cordials and syrups Om Coins, jewellery, sporting goods and other manufactur-

ing
Bx Bauxite Os Police, interest groups, fire brigade and other services
Cc Concrete and mortar Ot Cable car, chair lift, monorail and over-snow transport
Ce Cement Pa Paper containers and products
Cg Services to agriculture, ginned cotton, shearing and

hunting
Pc Petroleum bitumen, refinery LPG and other refinery

products
Ch Basic chemicals Pd Property developer, real estate and other property ser-

vices
Cl Clothing Pe Poultry and eggs
Cm Communication services Pg Pigs
Cn Confectionery Ph Pharmaceutical goods for human use
Co Copper Pi Pipeline transport services
Cp Plaster and other concrete products Pl Plastic products
Cr Bricks and other ceramic products Pp Pulp, paper and paperboard
Cs Childminding and other community care services Pr Printing, stationery and services to printing
Ct Cosmetics and toiletry preparations Ps Hairdressing, goods hiring, laundry and other personal

services
Cu Libraries, parks, museums and the arts Pt Paints
Dc Dairy cattle and untreated whole milk Rb Residential building, construction, repair and mainte-

nance
De Soap and other detergents Rd Road freight transport services
Df Defence Rf Railway freight transport services
Dp Dairy products Rh Repairs of household and business equipment
Dw Ownership of dwellings Ri Rice, in the husk
Ed Education Rp Railway passenger transport services
Ee Cable, wire, batteries, lights and other electrical equip-

ment
Rs Sport, gambling and recreational services

El Electricity supply Rt Retail trade
En Electronic equipment, photocopying, gaming machines Ru Rubber products
Eq Pumps, bearings, air conditioning and other equipment Rv Repairs of motor vehicles, agricultural and other ma-

chinery
Et Motion picture, radio and television services Rw Railway equipment
Fc Flour, cereal foods, rice, pasta and other flour mill prod-

ucts
Sb Ships and boats

Fd Raw sugar, animal feeds, seafoods, coffee and other
foods

Sc Seed cotton

Fe Mixed fertilisers Sf Security broking and dealing and other services to fi-
nance

Fi Commercial fishing Sg Sand, gravel and other construction materials mining
Fm Nuts, bolts, tools and other fabricated metal products Sh Sheet containers and other sheet metal products
Fn Money market corporation and other non-bank finance Si Financial asset investors and holding company services
Fo Gas oil, fuel oil Sm Frames, mesh and other structural metal products
Fp Vegetables, fruit, juices and other fruit and vegetable

products
Sp Water transport

Fr Forestry and services to forestry St Travel agencies, forwarding and other services to trans-
port

Fu Furniture Su Sugar cane
Fw Footwear Sw Softwoods, conifers
Ga Gas production and distribution Sz Silver and zinc ores
Gd Sanitary and garbage disposal services Ta Taxi and hired car with driver
Gl Gold and lead Ti Sawn timer, woodchips and other sawmill products
Gp Glass and glass products To Tobacco products
Gv Government administration Tp Carpets, curtains, tarpaulins, sails, tents and other tex-

tiles
Hh Household appliances and hot water systems Ts Scientific research, technical and computer services
Ho Accommodation, cafes and restaurants Tx Processed wool, textile fibres, yarns and woven fabrics
Hs Health services Uo Uranium, nickel, tin, manganese and other non-ferrous

metal ores
Hw Hardwoods, brushwoods, scrubwoods, hewn and other

timber
Vf Vegetable and fruit growing, hay, plant nurseries, flowers

In Insurance Wa Water supply, sewerage and drainage services
Io Iron ores Wh Wheat, legumes for grain, oilseeds, oats and other grains
Is Basic iron and steel, pipes, tubes, sheets, rods, bars,

rails, fittings
Wo Sheep and shorn wool

Ke Kerosene and aviation jet fuel Wp Plywood, window frames, doors and other wood prod-
ucts

Kn Knitting mill products Ws Wine and spirits
Lg Liquefied natural gas, liquefied natural petrol Wt Wholesale trade





CHAPTER 7

Epilogue

7.1 Introduction

This thesis has focused on three types of interdependencies: at the levels of firms,

individuals and economic sectors. These were firms’ shareholding interlocks, social

networks of people, and production linkages of industries. Given that these inter-

relationships have their own distinguishing features, it is obvious that the analyti-

cal frameworks used in their analysis were (quite) different as well. This explains

why this study did not focus on one specific field, but instead investigated top-

ics from several subfields of economics and sociology, such as Finance, Industrial

Organization, Input-Output Economics, Network Economics, and Social Network

Analysis. However, on the other hand, the issues considered in this thesis are not at

all independent of each other, in contrast to what might appear at first glance. The

analyses of the complex webs of interrelations have a lot in common. In some sense

they adopt a unified analytical framework, thus extending the frontiers of common

interests in the above-mentioned fields.

Some of the main questions in this study aimed at the following. How to quan-

tify ownership complexity caused by cross ownership by both individuals and

companies? What is the appropriate measure of separation of ownership and con-

trol rights due to firms’ cross-shareholdings? Does a firm with passive stockhold-

ings in its rivals exert strictly higher market power than a firm without any share-

holdings? Do interfirm shareholding interlocks matter in the empirical study of

market performance? What is the effect of partial cross ownership on the incentives

of asymmetric (in terms of costs) firms to collude and on the collusive price? How

to find the group of individuals with the maximum impact on the overall equilib-
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rium outcome in (social) networks? How to incorporate individuals’ exogenous

heterogeneity into the analysis of key players search? Is the key sector problem

equivalent to the problem of identification of key group of sectors? If no, what are

the underlying reasons?

These questions were thoroughly addressed in the previous chapters. In the

next section we give a brief summary of the obtained results. The last section dis-

cusses three directions for future research, each based on the findings in this thesis.

7.2 Summary of results

Chapter 2 proposed new measures of network complexity due to the existence of

cross ownership links among firms. The measures called “weighted average dis-

tance of indirect linkages” (WADIL) and “weighted average distance of total link-

ages” (WADTL) quantify the complexity of an ownership structure that is charac-

terized by crossholdings of stocks. The proposed measures consider both the sizes

of direct and indirect shareholdings, and the average distance between the owners

and the owned firms. We say that owner (or firm) i has an indirect stake in firm r

if it has a stake in a firm that has a stake in firm r, or if it has a stake in a firm that

has a stake in a firm that has a stake in firm r, and so on. The average distance was

obtained from the average number of intermediate firms via whom the ownership

link between i and r runs. The values of WADILs and WADTLs indicate whether a

certain link is of a direct nature only or whether indirect shareholdings also play a

role in the link. The larger values of WADILs and WADTLs indicate a more complex

network involving a larger number of different ownership paths. Combining the

linkage size and the distance allowed us to visualize the cross-shareholding inter-

locks and the true ownership relations. The methodology was applied to the Czech

banking sector in 1997. It was found that there is ample evidence that indirect

ownership relations play a crucial role in the banking sector in the Czech Repub-

lic. Further, the link between the proposed measures of network complexity and

the degree of separation of dividend and control rights due to cross-shareholdings

was explored. It was suggested that the WADILs and the WADTLs may serve as

alternative measures for the degree of separation. That is, the more complex the

network of non-negligible ownership relations is, the larger is the degree of control

enhancement due to cross-shareholding links among firms. As a consequence, also

the gap between the control and ownership stakes of owners in firms is larger. This

was confirmed by the empirical results for the Czech banking sector. The obtained
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WADILs and WADTLs were also compared to the wedges between ownership and

control rights, where the last were quantified by well-known methodologies from

finance, namely the “weakest link” and the “dominant shareholder” approach.

The effect of disregarding partial cross ownership (PCO) (i.e., shares that do

not give control power to their owners) in empirical studies of market performance

and firms’ market power was investigated in Chapter 3.1 For this purpose the

well-known framework of the “structure-conduct-performance school” in indus-

trial organization was used. For the estimation of firms’ market power and the tacit

collusion that is inherent to an industry, the framework was modified by including

both direct and indirect shareholdings. It was proved that, unlike in the no-PCO

case, the link between firms’ price-cost margins and the degree of market compet-

itiveness is nonlinear in the presence of PCO. Thus, ignoring PCO in an analysis

of an industry with extensive shareholdings between firms, will most likely lead

to biased results due to model misspecification. In an empirical application, it was

found that Japanese commercial banks in 2003 were competing in a modest col-

lusive environment. However, if PCO was disregarded, the results were different

and indicated a Cournot oligopoly. It was further found that banks with PCO in

their rivals exert a strictly larger market power than those without any sharehold-

ings. In particular, city banks with many shareholdings were found to exercise a

much larger market power than regional banks with none or few stockholdings.

Hence, the hypothesis that acquiring shares in rivals for a firm is one of the means

of enhancing its market power was confirmed in Chapter 3.

Chapter 4 adopted an infinitely repeated Bertrand oligopoly model to investi-

gate the effect of partial ownership arrangements of firms under cost asymmetries

on their incentives to collude. We first considered the case where only the most

efficient firm in the industry invests in rivals. It was shown that a unilateral partial

ownership by this firm may facilitate a market-sharing scheme in which all firms

charge the same collusive price and divide the market between them. We showed

that when the most efficient firm invests in rivals, the collusive price, which is a

compromise between the monopoly prices of the different firms, increases relative

to the case where there are no partial ownership arrangements. Further, we focused

on the effect of a change in the PCO structure on tacit collusion. It was shown that

when the stake that firm r has in firm s increases at the expense of outside share-

holders collusion is never hindered. It will even be strictly facilitated if and only

1 In Chapter 4 we also consider the case when only one firms invests in rivals. We call this a par-
tial ownership (PO) case. PCO, instead, reflects the fact that in the presence of multilateral ownership
arrangements, cross-shareholdings by firms are possible.
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if (i) the industry maverick (the firm with the strongest incentive to deviate from a

collusive agreement) has a direct or indirect stake in firm r, and (ii) firm s is not the

industry maverick. When (i) and/or (ii) fail to hold, the increase in firm r’s stake

in firm s does not affect tacit collusion. These results extend the earlier findings in

Gilo et al. (2006) and show that the results for firms with symmetric cost functions

generalize to the asymmetric costs case. Chapter 4 also considered the case of such

an ownership change due to transfer of ownership between firms. It was shown

that a transfer of partial cross ownership in firm s from firm k to firm r does not af-

fect tacit collusion if the industry maverick is firm s or if, at the outset, the industry

maverick has the same total (direct and indirect) share in firms k and r. Otherwise,

the transfer of partial cross ownership facilitates tacit collusion if the industry mav-

erick has a larger total share in firm r (the acquirer) than in firm k (the seller) but

hinders tacit collusion if the reverse holds.

Chapter 5 extended the problem of finding the key player in a network game

studied by Ballester et al. (2006) to the search of the key group, where players’

exogenous heterogeneity was taken into account. The key group is the group of

players that has the maximum (or minimum) possible impact on the overall equi-

librium activity level of the network. We derived a closed-form expression of the

so-called group intercentrality measure, which is used to identify the key group in

networks, and explored some of its properties. Further, the measures of weighted

and unweighted group intercentralities that depend only on the initial network

configuration were shown to be useful for the identification of the key group of

heterogeneous players. The weights are based on observable differences of play-

ers, such as age, education, occupation, race, religion, family size, or parents’ edu-

cation. It was shown that once these observable differences are accounted for, the

results of the key player/group problem may significantly change when compared

to the results based on the assumption of homogeneous players. Finally, the size of

the key group was endogenized, which is an important issue since targeting groups

of different sizes incurs different benefits and costs. Hence, from the planner’s per-

spective it is essential to get an idea of what is the optimal size of the key group,

i.e., what size yields the largest net benefit.

Chapter 6 investigated the issue of finding key sectors of an economy, that is,

sectors with the maximum potential of spreading growth impulses throughout the

economy and thus impacting output or some other factor (such as value added,

employment, or CO2 emissions). For this purpose, the hypothetical extraction me-

thod (HEM) from input-output analysis was adopted, which measures the contri-
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bution of each sector to the overall gross output or any other factor by comparing

the original result with the result that is obtained from omitting one sector (or a

group of sectors) from the model. The reduction in, for example, output is due to

this omission and thus reflects the role of the hypothetically extracted (group of)

sector(s). Explicit formulations of the optimization problems of finding a key sec-

tor and a key group of sectors from the HEM perspective were given, and their

analytical solutions (called industries’ factor worths) were derived. It was shown

that the key group of k ≥ 2 sectors is, in general, different from the k sectors with

the largest individual contributions to the overall factor production/consumption,

which was confirmed in an example of the Australian economy in case of water use

and CO2 emissions in the mid of 1990s. This outcome has to do with the fact that

in reality sectors may be redundant with respect to each other if they have similar

patterns and sizes of production linkages, final demands and factor production ca-

pabilities. The related issues of finding a key region and key group of regions in

an interregional input-output (IO) framework were investigated similarly. Further,

we showed that the factor worth measure is invariant to the netting out of intrasec-

toral transactions for any factor other than gross output. Hence, the outcomes of

the key sector/group problems in the standard and the so-called net input-output

settings are exactly identical so long as the factor is not total output. The link of the

HEM problems to the fields of influence approach was pointed out, which gives

an alternative economic interpretation of these problems in terms of the economy-

wide effects of an incremental change in sectors’ input self-dependencies. Finally,

it was proved that an increase (decrease) in an input coefficient never decreases

(increases) the factor worth/importance of any sector, and the conditions for a sub-

sequent strict change were derived.

7.3 Related future research

Often, doing research raises new issues. In this respect I absolutely agree with my

supervisor Erik Dietzenbacher, who in the final chapter of his dissertation states:

“Answers raise new questions, solutions define new problems, results call for a

generalization or a sharpening, assumptions for a relaxation, gaps need to be filled

up, and loose ends are to be tied up” (Dietzenbacher, 1991, p. 267). Hence, in

what follows I will present three directions for future research, the basis of which

is essentially the current study.
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7.3.1 Engines of growth: a hypothetical extraction approach

In Chapter 6, the problem of the identification of the key sectors for generating

some economic, social, and/or environmental factor was discussed. A similar ap-

proach can be applied to the identification of “key sectors” for generating economy-

wide total factor productivity (TFP) growth. In the literature, such sectors are called

the engines of growth. However, the generalized hypothetical extraction method

(HEM) as discussed thoroughly in Chapter 6 is not adequate to deal with finding

the engines of growth, because TFP growth cannot be directly incorporated into the

input-output framework and needs a somewhat different setting. Such a frame-

work will be discussed below after we briefly present the analysis of productivity

spillovers.

7.3.1.1 Productivity analysis of spillovers

Ten Raa and Wolff (2000) propose to identify the engines of growth as follows. The

departing point is the Solow (1957) residual definition of total factor productivity

(TFP) growth, g:

g =
p′df− wdL− rdK

p′f
, (7.1)

where f is the final demand vector (also termed net output vector), L and K are,

respectively, labor and capital inputs, w and r are their respective prices, and p is

the vector of production prices. These prices reflect zero profits since

p′(I−A) = v′ = wl′ + rk′, (7.2)

where A is the input matrix, and v, l and k are the vectors of direct value-added,

labor and capital coefficients.

Using the balancing equation of the open Leontief model f = (I−A)x, where x

is the vector of total (or gross) outputs, the numerator of (7.1) can be written as

p′df− wdL− rdL = p′d(I−A)x− wd(l′x)− rd(k′x)

= (−p′dA− wdl′ − rdk′)x + (p′(I−A)− wl′ − rk′)dx,
(7.3)

where the last term vanishes if we use the production prices in (7.2). Using (7.3),

(7.1) reduces to
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g =
−(p′dA + wdl′ + rdk′)x

p′f
=

π′p̂x
p′f

, (7.4)

where π′ = −(p′dA + wdl′ + rdk′)p̂−1 is the row vector of sectoral TFP growth

rates, and p̂x/(p′f) is the vector of so-called Domar weights.

Spillovers are measured as a weighted average of the TFP growth in supply-

ing sectors. Four explanatory variables for the TFP growth rate of sector j, πj, are

distinguished: (1) an autonomous source, α, (2) R&D in sector j per dollar of gross

output, ρ = RDj/(pjxj), (3) a direct productivity spillover, ∑i(piaij/pj)πi, and (4) a

capital embodied spillover, ∑i(pibij/pj)πi, where bij is the capital stock coefficient

of capital good i in sector j. This yields the following regression equation (Wolff,

1997):

π′ = αı′ + β1ρ′ + β2π′p̂Ap̂−1 + β3π′p̂Bp̂−1 + ε′, (7.5)

where ε is the vector of error terms.

Let us denote the spillover matrix by

C ≡ β2p̂Ap̂−1 + β3p̂Bp̂−1 = p̂
[
β2A + β3B

]
p̂−1, (7.6)

then, ignoring the error term, (7.5) can be rewritten as

π′ = αı′ + β1ρ′ + π′C. (7.7)

Plugging (7.7) back in (7.4) yields

g =
[αı′ + β1ρ′ + π′C]p̂x

p′f
= αDR + β1

RD′ı
p′f

+
π′Cp̂x

p′f
, (7.8)

where RD is the vector of sectoral R&Ds, ı is the summation vector, and DR =
p′x/p′f is the Domar ratio.

Equation (7.8) gives the direct effect of R&D on TFP growth. β1 measures the

direct rate of return to R&D intensity or, equivalently, the direct return to R&D, in terms

of output value per dollar expenditure, because the denominator in the definition

g in (7.1) is also the dollar value of expenditures, i.e., p′f.

The total returns to R&D, however, are obtained by taking into account the

spillover effects, captured by the last term in (7.8). Define M ≡ (I − C)−1 =
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I + C + C2 + · · · . Solving (7.7) for the vector of TFP growth rates gives

π′ = (αı′ + β1ρ′)M, (7.9)

hence, using (7.4)

g =
π′p̂x
p′f

=
(αı′ + β1ρ′)Mp̂x

p′f
. (7.10)

Therefore the total rate of return to R&D intensity ρi amounts to β1(∑j mij pjxj)/p′f.

Here, β1 is inflated by multipliers mij because of spillover effects and also by gross/net

output ratios as the sectoral R&D intensities ρi are defined as the R&D/gross output

ratios. Note that while the first decomposition in (7.4) is a TFP growth accounting

identity, the second decomposition in (7.10) attributes TFP growth to sources of

growth taking into account the spillover effects.

Since ρ′ = RD′(p̂x̂)−1, we have that

g = α
ı′Mp̂x

p′f
+ β1

RD′(p̂x̂)−1Mp̂x
p′f

,

hence the total return to R&D, in terms of output value per dollar expenditure in sec-

tor i, amounts to β1(∑j mij pjxj)/(pixi). So the direct return to β1 is inflated by the

factor (∑j mij pjxj)/(pixi) because of spillover effects stemming from sector i. Since

the factors (∑j mij pjxj)/(pixi) reinforce the returns to R&D, they are spillover mul-

tipliers. Hence, the vector of spillover multipliers is given by (p̂x̂)−1Mp̂x. Spillover

multipliers are equal to the ratio of the total to the direct return to R&D, thus mea-

sure the external effects of sectoral R&D.

From (7.10) it follows that the overall TFP growth g is decomposed into sources

of growth α + β1ρi aggregated by the linkages ∑j mij pjxj for sector i = 1, . . . , n.

Sectors that contribute much to overall TFP growth in this decomposition are the

engines of growth. For example, the largest engine of growth is the sector, say, i, with

the largest value of (α + β1ρi) ∑j mij pjxj.

7.3.1.2 Engines of growth from a hypothetical extraction perspective

For simplicity, let us denote the vector of spillover linkages by s ≡ Mp̂x. The sectoral

direct and indirect productivity gains are thus given by the vector (αI + β1ρ̂)s as

derived in the previous section. ten Raa and Wolff (2000) define the engines of

growth as the 10 sectors with the largest values in the last vector.
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Let us now consider the problem of identifying the engines of growth from the

HEM approach, i.e., sectors whose elimination from the systems of economy-wide

production and spillover interrelations causes the largest reduction in the overall

TFP growth rate. Consider the identification of k ∈ [1, n− 1] engines of growth. De-

note by C−{i1,...,ik} the new spillover matrix derived from C by setting to zero all its

is-th rows and columns elements, where s = 1, . . . , k. From (7.6), it follows that this

is equivalent to nullifying all rows and columns entries corresponding to i1, . . . , ik

of the input matrix A and the capital stock coefficient matrix B. The assumption

therefore is that in the new system without sectors i1, . . . , ik the production and

capital stock structures of other active sectors j /∈ {i1, . . . , ik} remain unchanged.2

Although at first glance this assumption seems restrictive, in fact it is not, given our

main aim of identifying the importance of sectors i1, . . . , ik in generating nation-

wide growth considering the spillover effects. The point is that by taking all other

input and capital stock coefficients fixed, we explicitly allow the resulting outcome

to depend only on the extraction of sectors i1, . . . , ik, which are now not participat-

ing in the “roundabout” of the production process, hence not contributing to the

TFP growth either. The vector of spillover linkages after extracting sectors i1, . . . , ik

is s−{i1,...,ik} = M−{i1,...,ik}p̂x−{i1,...,ik}, where M−{i1,...,ik} = (I− C−{i1,...,ik})−1, and

x−{i1,...,ik} = (I − A−{i1,...,ik})−1f−{i1,...,ik}. The new net output vector f−{i1,...,ik} is

the same as f except its i1-th, . . ., ik-th entries that are all set to zero. The reason for

setting fis = 0 for all s = 1, . . . , k is that when sectors i1, . . . , ik cease to exist, their

(domestic) gross outputs should be zero.

We further denote the sum of autonomous source and R&D intensities by λ ≡
αı + β1ρ. Given the vectors of sources of growth λ and production prices p, the

objective is picking k (1 ≤ k ≤ n − 1) sectors i1, i2, . . . , ik (is 6= ir) such that their

extraction from the economy generates the highest possible reduction in the overall

TFP growth rate, g = λ′s/p′f. Formally, the problem is

max
{

λ′s
p′f

− λ′s−{i1,...,ik}

p′f−{i1,...,ik}

∣∣∣∣ {i1, . . . , ik} ⊆ {1, . . . , n}; is 6= ir

}
. (7.11)

This is a finite optimization problem, which admits at least one solution. The so-

lution to (7.11) is denoted by {i∗1 , i∗2 , . . . , i∗k} and is called the k engines of growth.

Removing these industries from the initial input and capital stock structures have

the largest impact on the overall TFP growth rate.

2 This is usual for all the HEM approaches, the only difference now is that besides production we also
consider the capital stock structure.
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Before giving an explicit solution to the problem (7.11), first, recall that f =
x−Ax. Its premultiplication by the diagonal matrix of the (fixed) production prices

yields p̂f = p̂x− p̂Ap̂−1p̂x, hence p̂x = (I− p̂Ap̂−1)−1p̂f. Thus, in what follows in

this section the Leontief inverse is defined as L ≡ (I− p̂Ap̂−1)−1.

Let E be the n× k matrix defined as E =
(
ei1 , . . . , eik

)
, where ei is the i-th column

of the identity matrix. Each column of E has all zeros except one positive number

being unity that corresponds to one of the extracted sectors. Hence, the reduced

multiplier matrix Mkk = E′ME includes all the elements of the original multiplier

matrix M that are directly related to the extracted sectors i1, . . . , ik. Similarly, the

reduced Leontief inverse is Lkk = E′LE. Recall from (7.9) that the vector of sectoral

TFP growth rates is π′ = λ′M. Next note that the problem in (7.11) is equivalent to

min
{

λ′s−{i1,...,ik}

p′f−{i1,...,ik}

∣∣∣∣ {i1, . . . , ik} ⊆ {1, . . . , n}; is 6= ir

}
.

The “residual” TFP growth rate in the objective above is defined as the reduced TFP

growth due to extraction of sectors i1, . . . , ik (ir 6= is), and it can be shown to be equal

to (see Appendix 7.A)

gr
i1,...,ik =

π′(I− EM−1
kk E′M

)(
I− LEL−1

kk E′
)
p̂x

p′(I− EE′)f
. (7.12)

Notice that, disregarding the denominator in (7.12), when k = n and E = I the nu-

merator of the reduced TFP growth due to extraction of all sectors in (7.12) becomes

zero, which is entirely expectable because without an industry, the hypothetical to-

tal (direct and indirect) productivity gains should be zero, i.e., λ′s−{1,...,n} = 0. We

have established the following result that expresses the solution of the engines of

growth identification problem (7.11) in terms of the reduced TFP growth rate given

in (7.12).3

Theorem 7.1. For 1 ≤ k ≤ n − 1 the k engines of growth {i∗1 , i∗2 , . . . , i∗k} that solve

the problem (7.11) give the lowest reduced TFP growth rate, i.e., gr
i∗1 ,...,i∗k

≤ gr
i1,...,ik

for all

{i1, . . . , ik} ⊆ {1, . . . , n} with is 6= ir.

First, note that in finding the engines of growth from the HEM perspective, given

the reduced TFP growth measure in (7.12), performing the traditional procedure

of the HEM approach (which includes deleting certain rows and columns of the

3 Alternatively, given the problem (7.11) we could define the group TFP growth worth of sectors i1, . . . , ik
as ω

g
i1 ,...,ik

= g− `
g
i1 ,...,ik

. Hence, in this interpretation, the k engines of growth have the largest group TFP

growth worth, i.e., ω
g
i∗1 ,...,i∗k

≥ ω
g
i1 ,...,ik

for all {i1, . . . , ik} ⊆ {1, . . . , n}.
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matrices A and B) is not needed at all. Matrices A, B, L and M together with the

vectors π, p and x are all given, and only the k identity columns in E are changed

in order to consider all possible combinations of k sectors from the totality of n

industries in a search for the k engines of growth. Second, apparently, for fixed k the

group of sectors that constitutes the engines of growth depends on the joint sectoral

interactions of TFP growth rates, spillover linkages, multiplier effects, and sizes

of the gross and net outputs in a complex way as is captured by the reduced TFP

growth measure. Let us see this in a simple case when k = 1, which implies that one

is looking for the largest engine of growth. Then E = ei, Mkk = E′ME = e′iMei = mii,

and Lkk = lii, thus it can be shown that (7.12) reduces to

gr
i =

1
p′f− pi fi

[
λ′s− πisi

mii
− pixi

miilii
∑
k 6=i

(miiπk −mikπi)lki

]
, (7.13)

which is the reduced TFP growth due to extraction of sector i. Then a corollary to

Theorem 7.1 is that the single engine of growth, i∗, gives the smallest reduced TFP

growth rate, i.e., gr
i∗ ≤ gr

i for all i = 1, . . . , n. So it is not only the TFP growth rate of

sector i, πi, that defines it to be the engine of growth, but also its spillover linkage,

si = ∑j mij pjxj, total (direct and indirect) input self-dependency, lii, total joint input

and capital self-dependency, mii, and its values of gross and net outputs, pixi and

pi fi, are all important. In particular, (7.13) shows that the engine of growth has a

large TFP growth rate and spillover linkage, is less dependent on itself, and, more

engaged in the “roundabout” of the production process, hence having higher gross

and lower net outputs. But it is the joint relative importance of these factors that

defines the engine of growth.

As in the case of key sectors’ identification discussed in Chapter 6, it is impor-

tant to understand that the problem of finding the single engine of growth (i.e.,

k = 1 in (7.11)) is different from problem (7.11) with k > 1. In other words, k (> 1)

sectors, whose extraction results in the smallest reduced TFP growth rates, do not

necessarily comprise the group of k engines of growth. While the single engine of

growth search problem looks for the effect of the extraction of one sector, the more

general problem in (7.11) considers the effect of a simultaneous extraction of k ≥ 2

sectors. Hence, the last problem takes into full account all the cross-contributions

of the extracted sectors to the nationwide TFP growth that is generated both within

and outside the group of sectors. These effects are, of course, differently accounted

for when k = 1.

Consider two industries that are largely identical with respect to their input and
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capital linkage patterns (including input and capital stock coefficients’ sizes) and

that are also similar in terms of their final demands, gross outputs and sources of

growth, then their group contribution to the total TFP growth is expected to be less

than that of the group consisting of two industries that have quite different patterns

of (significant) linkages and TFP growth generation ability. In this case it is said that

the first two industries are redundant with respect to each other, hence should not

be included both in the group with 2 engines of growth. Thus, in general, the k (> 1)

sectors, whose individual extraction yields the smallest reduced TFP growth, do not

comprise the k engines of growth due to the redundancy principle inherent to the

majority of real-life input and capital stock networks of interactions of industries.

Computerization is found to have a dramatic impact on growth and structural

change by Wolff (2002). In ten Raa and Wolff’s (2000) study, the computer and of-

fice equipment industry was found to be the largest engine of growth in the US

economy for two subperiods of 1967-1977 and 1977-1987, while it was only at the

19-th position in 1958-1967. In the HEM approach discussed above, however, ran-

king of the individual sectors from the problem of identification of a single engine

of growth does not tell us anything about the group of engines of growth. It is

the joint contribution of sectors to the economy-wide TFP growth generation that

makes them engines of growth. In this respect it would be, for example, interesting

to find out what is the minimum value of k that allows the computers and office

machinery industry to be a member of the group of k engines of growth. We plan

to do an (extensive) empirical study of the engines of growth determination prob-

lem discussed above for several countries, and make a detailed comparison of the

results both across countries and over time. This might shed more light on the

sectoral analysis of structural change in different countries in terms of industries’

contribution to the nation-wide TFP growth rates.

7.3.2 On interregional feedbacks in input-output models

Consider the following interregional input-output model with p regions:
x1

x2

...

xp

 =


L11 L12 · · · L1p

L21 L22 · · · L2p

...
...

. . .
...

Lp1 Lp2 · · · Lpp




f1

f2

...

fp

 , (7.14)

where
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L =


L11 L12 · · · L1p

L21 L22 · · · L2p

...
...

. . .
...

Lp1 Lp2 · · · Lpp

 =


I−A11 −A12 · · · −A1p

−A21 I−A22 · · · −A2p

...
...

. . .
...

−Ap1 −Ap2 · · · I−App


−1

is the Leontief inverse in an interregional setting, Arr is the (intra)regional input

coefficients matrix for region r (= 1, . . . , p), Ars is the matrix of interregional input

(trade) coefficients with deliveries from region r to region s (r 6= s), fr and xr are,

respectively, the vectors of changes in final demand and gross output for region r,

and I is the identity matrix with appropriate dimension.

The question is how a change of final demand in region, say, 1 (i.e., f1 > 0 and

fr = 0 for all r 6= 1) affects the outputs in that region and what would be the bias if

instead of the interregional framework in (7.14) only a single-region input-output

framework of x1
s = (I−A11)−1f1 would have been used. That is, how big would

be the bias in x1 if the so-called interregional feedback effects were totally ignored.

The term “feedback” refers to the fact that an increase in final demand in region 1

causes more demand also for the intermediate inputs from other regions, but the

production in these regions is in its turn, in general, dependent on the inputs from

region 1 as well. Thus other regions will also demand more intermediate goods

from region 1. Notice that the final demand in region 1 may also decrease, in which

case the directions of all the above mentioned effects will be reversed. If, on the

other hand, some components of the final demand in region 1 increase and others

decrease, then obviously the impact of the feedback effects is analytically uncertain.

To tackle the above assigned question, for simplicity, the components of (7.14)

are reexpressed in terms of two partitioned matrices as follows:

x =

[
x1

x•

]
=


x1

x2

...

xp

 , L =

[
L11 L1•

L•1 L••

]
=


L11 L12 · · · L1p

L21 L22 · · · L2p

...
...

. . .
...

Lp1 Lp2 · · · Lpp

 ,

and the vector of changes in final demand is f′ = [ (f1)′ 0′ ], where f• is set to

zero since there is a change in the final demand for region 1 only, i.e., fr = 0 for all

r 6= 1.

The single-region framework can be rewritten as
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[
x1

s

x•s

]
=

[
I−A11 −O

−O I

]−1 [
f1

0

]
=

[
(I−A11)−1 O

O I

] [
f1

0

]
, (7.15)

which means that in this case in the entire matrix of regional and trade coefficients

A, all elements corresponding to any region other than 1 are set to zero. That is,

A1• = O, A•1 = O and A•• = O, where the null matrix O in each case is as-

sumed to have the appropriate dimension. This nullification is exactly similar to

the (generalized) hypothetical extraction method studied in Chapter 6. Hence, we

can readily use Lemma 6.2, wherein the setting is now an interregional framework

and E′ = [O•1 I•], where I• is the identity matrix of dimension equal to the total

number of industries in all regions except region 1, and O•1 is the null matrix of

row dimension equal to the (row or column) dimension of I• and column dimen-

sion equal to the number of sectors in region 1.4 Denoting the Leontief inverse in

(7.15) by L−{•}, we thus have[
x1

x•

]
−
[

x1
s

x•s

]
=
[
L− L−{•}

] [ f1

0

]
=
[
LE(E′LE)−1E′L− EE′

] [ f1

0

]

=

{[
L1•(L••)−1L•1 L1•

L•1 L••

]
−
[

O O

O I

]}[
f1

0

]
.

Since we are interested in the effect on outputs in region 1, the last equation yields

x1 − x1
s = L1•(L••)−1L•1f1 = L1•(L••)−1L•1(L11)−1x1, (7.16)

where we have used the fact that x1 = L11f1 in (7.14) given that the vectors of the

change in final demands of all other regions are zero.

Equation (7.16) gives the bias of ignoring interregional feedbacks at the sectoral

level of region 1. A widely used measure of an error when a single-region model is

used instead of the full interregional framework is the overall percentage error (OPE),

first employed by Miller (1969) as “a summary measure of deviation” (p. 41) and is

defined as OPE = ı′(x1 − x1
s )/ı′x1 × 100, where ı is a summation vector of ones.

Define the norm of any matrix M as the largest column sum of the absolute values of

its elements, and denote it by ‖M‖. Therefore, OPE can alternatively be rewritten

in terms of norms as OPE = ‖x1 − x1
s‖/‖x1‖ × 100. For any two matrices M and

4 If all regions have the same number of industries equal to n, then I• and O•1 have dimensions of,
respectively, (p− 1)n× (p− 1)n and (p− 1)n× n.
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N the so-called submultiplicative property of the matrix norm holds, i.e., ‖MN‖ ≤
‖M‖ ‖N‖. Employing this property in (7.16) gives the following proposition.

Theorem 7.2. The overall percentage error caused by ignoring interregional feedbacks is

bounded above by ‖L1•(L••)−1L•1(L11)−1‖ × 100.

From (7.14)-(7.16) it follows that L11 = (I − A11)−1 + L1•(L••)−1L•1. Further,

from the theory of (the inverse of) partitioned matrices one can write (L11)−1 =
I−A11 −A1•(I−A••)−1A•1 (see e.g., Sydsæter et al., 2005, p. 140). Using these

two identities we have L1•(L••)−1L•1(L11)−1 =
[
L11 − (I−A11)−1] (L11)−1 = (I−

A11)−1A1•(I − A••)−1A•1. Thus, the upper bound in Theorem 7.2 can also be

rewritten as ‖L1•(L••)−1L•1(L11)−1‖ × 100 = ‖(I−A11)−1A1•(I−A••)−1A•1‖ ×
100. The right-hand side of the last expression (without number 100) is exactly

what Guccione et al. (1988) call the least upper bound (LUB) of the OPE.5 Thus, in

Theorem 7.2 we gave an alternative expression of the LUB in terms of the elements

of the Leontief inverse. Note that there is no need to use more than a two “region”

partition in the analysis of the upper bound for the OPE. This has been tried, for

example, in Miller (1986) for three-region case, who then not surprisingly noticed

that “[t]he algebra is considerably more complex” (p. 292), but more importantly

because applying matrix properties to such partitioning might very well result in a

looser bound that cannot be the least upper bound.

We should mention that the OPE for any other factor than gross output can

be easily accommodated in this framework. For this, similar to the discussions in

Chapter 6, one should consider also the direct coefficients of the factor of interest

(e.g., employment, CO2 emissions, etc.). In that case the expression for LUB within

the norm has to be multiplied by the diagonal matrix of the factor direct coefficients.

Of course, given the ongoing globalization, countries are becoming more and

more interdependent not only via trade of final goods, but also through trade of in-

termediate goods that has been risen steadily over the last several decades. There-

fore, one might expect that the error of ignoring interregional feedbacks is much

larger now than some 40-50 years ago. This trend of globalization is reflected by

more positive and increasing elements in the interregional input coefficient ma-

trices. As a consequence the LUB not surprisingly increases. However, certainly

this differs from region to region (or country to country) depending on the self-

sufficiencies of the regions. So, the question of how big is nowadays the bias caused

by using a single-region framework instead of the multiregional setting is an em-

5 See also Gillen and Guccione (1980) and Miller (1986) that use a looser upper bound.
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pirical issue. In the near future, we plan to quantify this bias in the the empirical

application part of this section.

7.3.3 Algorithmic considerations of the group intercentrality and
group worth measures

In Chapters 5 and 6 we considered the problems of finding the key groups of, re-

spectively, players in networks of social interactions and sectors in an economy. We

have also briefly mentioned the complexity issue of finding the exact solutions to

these problems for a large number of players/industries and a rather large size of

the groups. This is because in order to find the key group of size k, one needs to

consider all possible combinations of k players/sectors out of n players/sectors.

The number of combination is Cn
k = n!/(k!(n− k)!), which increases exponentially

in k and n. For example, in Table 6.3 we have searched for the key groups of size 1

to 4 from a total of 136 sectors, which required to compute the group factor worths

of, respectively, 136, 9.180, 410.040, and 13.633.830 different groups. This example

clearly demonstrates the problem of the computational complexity inherent to the

above mentioned problems. Hence, the cases of searching key group(s) of reason-

able size among very large number of groups becomes potentially intractable from

a computing point of view. Therefore, the question arises whether for a large n

and a rather large k one can find the exact solutions of the key group problems in

reasonable time. It turns out that the answer to this question is negative because

the posed problems are in the class of the so-called NP-hard problems from a com-

binatorial perspective. NP-hardness implies that there is no possible sophisticated

algorithm that will return the exact solution for large n and k in our case. “[N]early

all computer scientists ... believe that there is no such algorithm for solving any NP-

hard problem. A simple reason for this is that, after decades of continuous search,

no one has found efficient algorithm for solving any NP-hard problem” (Ballester

et al., 2009, footnote 15). In what follows we first prove that the discussed key

group problems are indeed NP-hard problems, and then consider the possible effi-

cient approximate solutions to these problems once the computing search becomes

intractable.

Let N = {1, 2, . . . , n} and z : 2N → R be a set function. Nemhauser et al. (1978)

considered the following problem:

max
S⊆N

{z(S) : |S| ≤ k, z(S) submodular}, (7.17)
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where |S| is the cardinality (i.e., the number of players/sectors) in the set S, while

submodularity of a set function is defined as follows.

Definition 7.1. Given a finite set N, a real-valued function z on the set of subsets of N is

called submodular if z(A) + z(B) ≥ z(A ∪ B) + z(A ∩ B) for all A, B ⊆ N.

Without loss of generality z is normalized such that z(∅) = 0. We consider non-

decreasing set functions in the sense that z(S) ≤ z(T) for all S ⊆ T ⊆ N. Let

us denote the individual contribution by ρi(S) = z(S ∪ {i}) − z(S), which repre-

sents the incremental value of adding player/sector i to the set S. Proposition 2.1

in Nemhauser et al. (1978) establishes that an equivalent statement to Definition 7.1

that defines a submodular set function is ρi(S) ≥ ρi(T) for all S ⊆ T ⊆ N and all

i ∈ N \ T.

From Theorem 5.1 and Theorem 6.3 it follows that the key group problems

within the social network and input-output settings are equivalent to the maxi-

mization of, respectively, group intercentrality and group factor worth measures.

Using the last definition of a submodular function in terms of the individual con-

tributions, in Appendix 7.A we establish the following result.

Lemma 7.1. The measures of group intercentrality cS(g, a) and factor worth ωπ
S (A, f, π)

are submodular set functions.

The problem of maximizing a submodular function is NP-hard, in general. There-

fore, Lemma 7.1 implies that the computational complexity becomes large when the

number of players/sectors n and the group size k are large in the key group prob-

lems. Therefore, in such cases algorithmic approximations are used, which require

much less time in the computation. Consider an R-step greedy algorithm (heuristic)

that sequentially eliminates the sets of R players/sectors with the highest group

intercentrality/worth. Formally, suppose that k = qR − p, where q is a positive

integer and 0 ≤ p ≤ R − 1. The R-step greedy heuristic for a set function z works

are follows.

Initialization: Let S0 = ∅, St = ∪t
i=1 Ii, and set t = 1.

Iterations: For t = 1, . . . , q − 1 select It ⊆ N \ St−1 with |It| = R such that ζt−1 =
z(St)− z(St−1) is maximized.

Final step: Choose I∗ ⊆ N \ Sq−1 with |I∗| = R− p so as to maximize z(Sq−1 ∪ I∗)−
z(Sq−1).

Consider, for example, the case when we want to find the key group of size k = 30

from total n = 1000 players using the R-step greedy algorithm, and thus choose
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R = 4 and q = 8. This means that we would like to find out the approximation of

the exact key group of size k = 30 in q = 8 computing steps (iterations). The pro-

cedure first sequentially at seven (q − 1) steps eliminates 4 players as a key group

(which makes 4× 7 = 28 players). The two remaining members of the key group

(i.e., R− p = k− (q− 1)R = 30− 28 = 2, hence p = 2) are found in the final stage

of the 4-step greedy algorithm. Note that if k is a multiple of R, then p = 0.

Let us denote the value of an R-step greedy solution by z(GR), where the ap-

proximate solution set is GR = Sq−1 ∪ I∗, and the exact solution of (7.17) is given by

z(S∗). Then, provided the normalization z(∅) = 0, the following result is proved

in Theorem 4.3 in Nemhauser et al. (1978, pp. 282-283).

Theorem 7.3. Suppose z is nondecreasing and the R-step greedy heuristic is applied to

problem (7.17). If K = qR− p, with q a positive integer and integer p ∈ [0, R− 1], then

the upper bound of the error of approximation is

z(S∗)− z(SGR
)

z(S∗)
≤
(

q− λ

q

)(
q− 1

q

)q−1
,

where λ = (R− p)/R.

The bound in Theorem 7.3 for q > 1 can be rewritten as (using K = qR− p)

(
q− λ

q

)(
q− 1

q

)q−1
=
(

1 +
p

R(q− 1)

)(
q− 1

q

)q
<

(
1 +

p
R(q− 1)

)
1
e

,

where e ≈ 2.718 is the base of the natural logarithm. The last inequality follows

since q is finite and 1/e = limq→∞(1 − 1/q)q. If p = 0, then the bound in The-

orem 7.3 boils down to [(q − 1)/q]q < 1/e ≈ 0.3679. That is, with p = 0 the

maximum possible error when the R-step greedy algorithm is used to approximate

the solution of (7.17) is 36.79%.

Note that if p = 0 and q = 1/R, then the R-step heuristic is a simple greedy al-

gorithm that selects (eliminates) only one member in each iteration. This is exactly

the sequential key player/sector problem that we have discussed in Chapter 5 and

Chapter 6. Note that in the input-output setting, we have already shown in Sec-

tion 6.2.3 that the key group problem is not equivalent to the sequential key sector

problem. Since both the group intercentrality and group factor worth are nonde-

creasing and submodular functions, the result of Theorem 7.3 can be readily used

if one wants to approximate the solutions of the key group problems given in (5.6)

and (6.4). In particular, it shows that the worst approximation through the sequen-
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tial key player/sector problem is less than 36.79%. When instead the groups of size

R are sequentially selected (i.e., the R-step heuristic with R > 1 is used) for the

approximation, the same upper bound holds for p = 0 (see above), while the error

might be larger than 36.79% whenever p > 0. These bounds admittedly are very

high. Ballester et al. (2009) provide some numerical simulations for 100 different

random networks with n = 10 and n = 15, where they found small approxima-

tion errors of at most 1.7% obtained by using a simple greedy algorithm (i.e., the

sequential key player problem) in addressing the key group problem in the social

network setting.6 Whether it holds in general for large-sized networks, and for

large input-output datasets is a matter that needs deeper investigation.

6 We should, however, note that the random networks always tend to be more “symmetric”, thus they
are, in general, different from the real-life networks.
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7.A Proofs

Proof of Theorem 7.1. We already know from Lemma 6.2 in Chapter 6 that L −
L{i1,...,ik} = LEL−1

kk E′L − EE′, where L−1
kk = (E′LE)−1. Note that the last identity

holds also if we use the matrix M instead of L. We further have f−{i1,...,ik} = f−EE′f,

and p̂EE′ = EE′p̂ since EE′ is a diagonal matrix. Recalling that the Leontief inverse

in the current setting is defined as L = (I− p̂Ap̂)−1, we have

p̂x−{i1,...,ik} = L−{i1,...,ik}p̂f−{i1,...,ik} =
(
L− LEL−1

kk E′L + EE′
)
(p̂f− EE′p̂f)

= p̂x− LEL−1
kk E′p̂x + EE′p̂f− LEE′p̂f + LEL−1

kk LkkE′p̂f− EE′EE′p̂f

= p̂x− LEL−1
kk E′p̂x,

where the last four terms in the expression after the second equality cancel out since

L−1
kk Lkk = I and EE′EE′ = EE′. Using s−{i1,...,ik} = M−{i1,...,ik}p̂x−{i1,...,ik}, the above

derived expression, and Lemma 6.2, one obtains

λ′s−{i1,...,ik} = λ′
(
M−MEM−1

kk E′M + EE′
)(

I− LEL−1
kk E′

)
p̂x

= π′(I− EM−1
kk E′M

)(
I− LEL−1

kk E′
)
p̂x + λ′EE′p̂x− λ′ELkkL−1

kk E′p̂x

= π′(I− EM−1
kk E′M

)(
I− LEL−1

kk E′
)
p̂x.

Given our objective in (7.11), we are seeking the group of sectors that minimizes

λ′s−{i1,...,ik}

p′f−{i1,...,ik}
=

π′(I− EM−1
kk E′M

)(
I− LEL−1

kk E′
)
p̂x

p′(I− EE′)f
, (7.A.1)

which is the definition of the reduced TFP growth rate due to extraction of sectors

i1, . . . , ik in (7.12).

Proof of Lemma 7.1. Take S ⊆ T ⊆ N and i ∈ N \ T. The strict monotonicity

property of the group intercentrality measure discussed in Section 5.2.2 of Chap-

ter 5 immediately implies that cS∪{i}(g, a) − cS(g, a) = ci(g−S, a) ≥ ci(g−T , a) =
cT∪{i}(g, a)− cT(g, a), where g−S denotes the network without all members of the

set S. This is exactly the definition of a submodular function in terms of the indi-

vidual contributions.

Using all the necessary definitions from Chapter 6 and the property of the Leon-

tief inverse matrix, for the industries factor worth ωπ
S (A, f, π) we have

ωπ
S∪{i}(A, f, π)−ωπ

S (A, f, π)
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= (π′x−π′x−{S∪{i}})− (π′x−π′x−S)

= π′x−S −π′x−{S∪{i}} = ωπ
i (A−S, f−S, π)

≥ ωπ
i (A−T , f−T , π) = π′x−T −π′x−{T∪{i}}

= ωπ
T∪{i}(A, f, π)−ωπ

T (A, f, π),

which is again the definition of the submodular function. Hence, both the group

intercentrality and group factor worth are submodular set functions.
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Calvó-Armengol, A., Patacchini, E., and Zenou, Y. (2008). Peer effects and social
networks in education. IZA Discussion Paper, 3859.
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Samenvatting

Dit proefschrift heeft zich op drie soorten onderlinge afhankelijkheid geconcen-

treerd: op het niveau van firma’s, dat van individuen en dat van economische

sectoren. Dit waren aandeelhouder-interlocks (waarin bedrijven wederzijds aan-

delen in elkaar hebben, ook wel cross-ownerships genaamd), sociale netwerken van

mensen en productieverbanden tussen bedrijfstakken. Omdat deze inter-relaties

hun eigen onderscheidende kenmerken hebben verschillen de gebruikte analytis-

che kaders ook (nogal) van elkaar. Dit verklaart waarom dit onderzoek zich niet

op één specifiek gebied richt, maar in plaats daarvan onderwerpen uit verschil-

lende deelgebieden binnen de economie en de sociologie heeft onderzocht, zoals fi-

nanciering, industriële organisatie, input-output analyse, netwerkeconomie en so-

ciale netwerkanalyse. Anderzijds zijn de kwesties die in dit proefschrift in over-

weging zijn genomen echter totaal niet onafhankelijk van elkaar, in tegenstelling

tot wat op het eerste gezicht wel zo lijkt te zijn. De analyses van de complexe

netwerken van inter-relaties hebben veel met elkaar gemeen. In zekere zin hebben

ze een uniform raamwerk en breiden zo binnen de bovengenoemde gebieden de

grenzen van de gemeenschappelijke belangen uit.

Een aantal van de hoofdpunten van dit onderzoek waren gericht op het beant-

woorden van de volgende vragen: Hoe kan de complexiteit van de eigendomsstruc-

tuur, veroorzaakt door cross-ownership van zowel individuen als bedrijven, wor-

den gemeten? Wat is een geschikte maatstaf voor het scheiden van eigendom-

srechten en beslissingsbevoegdheden indien er sprake is van wederzijdse belan-

gen in elkaar? Heeft een bedrijf met passieve aandeelhouderschappen in zijn con-

currenten per definitie meer marktmacht dan een firma zonder aandeelhouder-

schappen? Zijn aandeelhouder-interlocks empirisch van belang voor marktgedrag?

Wat is het effect van gedeeltelijke cross-ownership op de neiging van firma’s met

asymmetrische kosten tot het maken van heimelijke (prijs)afspraken? Hoe kan de
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sleutelgroep van individuen worden gevonden, d.w.z. de groep die de grootste in-

vloed uitoefent op het algemene evenwichtsresultaat binnen (sociale) netwerken?

Hoe kan exogene heterogeniteit van individuen worden verwerkt in de analyse van

het zoeken naar sleutelspelers? Is het probleem van het vinden van sleutelsectoren

gelijk aan het probleem van het identificeren van de sleutelgroep van sectoren? Zo

niet, wat zijn hiervoor de achterliggende redenen? Deze vragen zijn uitvoerig be-

handeld in dit proefschrift. In het navolgende geven we een korte samenvatting

van de verkregen resultaten.

In Hoofdstuk 2 werden nieuwe maatstaven voorgesteld voor netwerkcomplex-

iteit, zoals veroorzaakt door het bestaan van verbanden tussen bedrijven tengevolge

van cross-ownership. Deze maatstaven, die ‘gewogen gemiddelde afstand van indi-

recte verbanden’ (WADIL, weighted average distance of indirect linkages) en ‘gewogen

gemiddelde afstand van totale verbanden’ (WADTL, weighted average distance of total

linkages) worden genoemd, meten de complexiteit van een eigendomsstructuur, die

gekarakteriseerd wordt door wederzijdse aandelenparticipatie. De voorgestelde

maatstaven houden rekening met de groottes van zowel direct als indirect aande-

lenbezit en de gemiddelde afstand tussen de eigenaren en hun eigendommen. We

stellen dat eigenaar (of firma) i een indirect belang in firma r heeft als hij een be-

lang heeft in een firma die een belang heeft in firma r, of als hij een belang heeft

in een firma die een belang heeft in een firma die een belang heeft in firma r, en-

zovoorts. De gemiddelde afstand werd gemeten op basis van het gemiddelde aan-

tal tussenfirma’s, die het eigendomsverband vormen tussen i en r. De waarden van

de WADILs en de WADTLs geven aan of een bepaald verband enkel van directe

aard is of dat ook indirecte aandeelhoudershappen een rol spelen in het verband

spelen. Grotere waarden van WADILs en WADTLs verwijzen naar een complexer

netwerk, hetgeen een groter aantal verschillende eigenschapspaden met zich mee

brengt. Het combineren van de grootte van de verbinding en de afstand maakte

het mogelijk om aandeelhouder-interlocks en de werkelijke eigendomsrelaties te

visualiseren. Deze methodologie werd toegepast voor de Tsjechische bankensector

in 1997. Er bleek overvloedig bewijs te zijn dat indirecte eigendomsrelaties een cru-

ciale rol spelen binnen de Tsjechische bankensector. Verder werd het verband on-

derzocht tussen de voorgestelde maatstaven voor netwerkcomplexiteit en de schei-

ding tussen dividendrechten en beslissingsbevoegdheden indien er sprake is van

cross-ownership. Er werd betoogd dat de WADILs en de WADTLs als alternatieve

maatstaven zouden kunnen dienen voor de discrepantie tussen eigendomsrechten

en beslissingsbevoegdheden. Dat wil zeggen, hoe complexer het netwerk van niet-
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verwaarloosbare eigendomsrelaties, hoe groter de beslissingsbevoegdheden, als

gevolg van wederzijdse aandelenparticipatie van firma’s. Daarom is ook het ver-

schil tussen eigendomsrechten en beslissingsbevoegdheden van firma-eigenaren

groter. Dit werd bevestigd door de empirische resultaten voor de Tsjechische banken-

sector. De verkregen WADILs en de WADTLs werden ook vergeleken met de dis-

crepantie tussen eigendomsrechten en beslissingsbevoegdheden, zoals gemeten op

basis van bekende financiële methodologieën, namelijk de ‘zwakste schakel-’ en de

‘dominante aandeelhoudersbenadering’.

Het effect van het veronachtzamen van partial cross-ownership (PCO) (dat wil

zeggen, aandelen die voor de eigenaar niet tot beslissingsbevoegdheid leiden) in

empirisch onderzoek naar prestaties en macht van bedrijven in een markt werd in

Hoofdstuk 3 onderzocht.7 Hiertoe werd het bekende schema van de ‘structuur-

gedrag-prestatie school’ uit de industriële organisatie gebruikt. Voor de schatting

van de marktmacht van firma’s en de heimelijke onderlinge afspraken in een bedri-

jfstak werd het model gewijzigd, door zowel directe als indirecte aandeelhoud-

erschappen op te nemen. Bewezen werd dat, in tegenstelling tot het geen-PCO

geval, het verband tussen de prijs-kostenmarges van firma’s en de mate van con-

currentie in de markt niet-lineair is als er sprake is van PCO. Het negeren van

PCO in een analyse van een bedrijfstak waarbinnen op grote schaal aandelenbezit

tussen firma’s bestaat zal dus hoogstwaarschijnlijk leiden tot onjuiste resultaten,

als gevolg van een misspecificatie van het model. Een empirische toepassing wees

uit dat Japanse commerciële banken in 2003 concurreerden op een markt met ken-

merken van heimelijke afspraken op bescheiden niveau. Als PCO echter buiten

beschouwing werd gelaten leidde dit tot andere resultaten, die duidden op een

Cournot-oligopolie. Verder werd gevonden dat banken met PCO in hun concur-

renten zonder uitzondering een grotere marktmacht hebben dan banken zonder

enige aandeelhouderschappen. In het bijzonder bleken stadsbanken met veel aan-

deelhouderschappen een veel grotere marktmacht te hebben dan regionale banken

met geen of weinig aandeelhouderschappen. Daarom werd in Hoofdstuk 3 de hy-

pothese bevestigd dat het verwerven van aandelen in concurrenten een manier is

voor een firma om de marktmacht te versterken.

In hoofdstuk 4 werd een oneindig vaak herhaald oligopoliemodel van Bertrand

gebruikt om, voor firma’s met kostenasymmetrieën, het effect te onderzoeken van

partial ownership op de drijfveren tot het maken van heimelijke afspraken. We

7 In Hoofdstuk 4 bekijken we ook de zaak waarin slechts één firma in concurrenten investeert. We
noemen dit partial ownership (PO). PCO, daarentegen, weerspiegelt het feit dat in de aanwezigheid van
multilaterale eigendomsafspraken, bedrijven wederzijds belangen in elkaar hebben.
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hebben eerst het geval bekeken waarin alleen de meest efficiënte firma in de bedri-

jfstak investeert in concurrenten. Aangetoond werd dat partial ownership (dat dus

unilateraal is) door deze firma leidt tot een markt waarin alle firma’s dezelfde prijs

vragen en de markt onder elkaar verdelen. We lieten zien dat wanneer de meest

efficiënte firma in concurrenten investeert de heimelijk afgesproken prijs, die een

compromis is tussen de monopolieprijzen van de verschillende firma’s, toeneemt in

vergelijking met situaties waarin er geen partial ownership voorkomt. Verder hebben

we ons gericht op het effect van een verandering in de PCO-structuur op stilzwi-

jgende collusie. Aangetoond werd dat als het belang dat firma r heeft in firma s

groter wordt ten koste van aandeelhouders van buitenaf, de neiging tot het maken

van heimelijke afspraken nooit afneemt. Die neiging neemt toe als (en alleen als)

(i) de industry maverick (de firma met de sterkste stimulans om af te wijken van

een heimelijke overeenkomst) een direct of indirect belang heeft in firma r, en (ii)

firma s niet de industry maverick is. Als (i) en/of (ii) niet gelden zal de toename

van het belang van firma r in firma s geen invloed uitoefenen op de stilzwijgende

collusie. Deze resultaten bouwen voort op eerdere conclusies van Gilo e.a. (2006)

en laten zien dat de resultaten voor firma’s met symmetrische kostenfuncties ook

gelden voor firma’s met asymmetrische kosten. Hoofdstuk 4 bekeek ook de gevol-

gen van een eigendomsoverdracht tussen twee firma’s. Er werd aangetoond dat

een overdracht van PCO in firma s van firma k naar firma r geen invloed heeft op

stilzwijgende collusie als firma s de industry maverick is, of als de industry maver-

ick vanaf het begin hetzelfde totale (directe en indirecte) belang heeft in firma’s k

en r. In alle andere gevallen wordt stilzwijgende collusie bevorderd door de over-

dracht van PCO als de industry maverick een groter totaal belang heeft in firma r

(de koper) dan in firma k (de verkoper), maar wordt dit juist belemmerd in het

tegenovergestelde geval.

Hoofdstuk 5 ging uit van het probleem van het vinden van de sleutelspeler

in een netwerkspel dat Ballester e.a. (2006) heeft onderzocht, en breidde dit uit

naar het zoeken naar de sleutelgroep, waarin exogene heterogeniteit van spelers

in beschouwing werd genomen. De sleutelgroep is de groep spelers die de grootst

(of kleinst) mogelijke impact heeft op het algemene evenwicht van het netwerk. We

hebben een uitdrukking in gesloten-vorm afgeleid om de zogenoemde groepsinter-

centraliteit te meten, die gebruikt wordt om de sleutelgroep binnen netwerken te

identificeren. Daarnaast hebben we enkele kenmerken ervan onderzocht. De maat-

staven voor gewogen en niet-gewogen groepsintercentraliteit, die alleen afhanke-

lijk blijken te zijn van de aanvankelijke netwerkconfiguratie, zijn verder van be-
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lang bij het identificeren van de sleutelgroep van heterogene spelers. De gewichten

waren gebaseerd op waarneembare verschillen tussen spelers, zoals leeftijd, opleid-

ing, beroep, ras, religie, familiegrootte of de opleiding van de ouders. Aangetoond

werd dat zodra er rekening gehouden wordt met deze waarneembare verschillen

de resultaten van het probleem van de sleutelspeler/groep wezenlijk kunnen ve-

randeren als ze vergeleken worden met resultaten die gebaseerd zijn op de veron-

derstelling van homogene spelers. Tenslotte werd de grootte van de sleutelgroep

endogeen genomen, hetgeen een belangrijke kwestie is aangezien voor groepen

van verschillende groottes verschillende kosten en baten gelden. Daarom is het va-

nuit het gezichtspunt van de planner essentieel een idee te krijgen van de optimale

grootte van de sleutelgroep, dat wil zeggen welke grootte tot de grootste nettowinst

leidt.

Hoofdstuk 6 richtte zich op de kwestie van het vinden van sleutelsectoren bin-

nen een economie. Dat wil zeggen, sectoren met een maximale potentie voor het

verspreiden van groei-impulsen binnen de economie en op deze manier voor het

uitoefenen van invloed op de bruto-opbrengst of een andere factor (zoals toege-

voegde waarde, werkgelegenheid of CO2-uitstoot). Hiertoe werd de hypothetische

extractiemethode (HEM) uit de input-output analyse gebruikt, die de bijdrage van

elke sector aan de totale bruto-opbrengst (of een andere factor) meet door het oor-

spronkelijke resultaat te vergelijken met het resultaat dat verkregen is door een

sector (of groep sectoren) uit het model weg te laten. De vermindering in bijvoor-

beeld de bruto-opbrengst is een gevolg van deze omissie, en reflecteert zo de rol van

de hypothetisch geselecteerde sector of groep sectoren. De optimaliseringsproble-

men die zich voordoen bij het vinden van een sleutelsector of een sleutelgroep van

sectoren op basis van het HEM-perspectief werden expliciet geformuleerd, en an-

alytische oplossingen (de ’factorwaarden’ van de bedrijfstakken) werden afgeleid.

Aangetoond werd dat de sleutelgroep van k ≥ 2 sectoren over het algemeen ver-

schilt van de k sectoren met de grootste individuele bijdragen aan de totale bruto-

opbrengst (of een andere factor). Dit werd bevestigd door een toepassing voor de

Australische economie halverwege de jaren ’90, met betrekking tot watergebruik

en CO2-uitstoot. Dit resultaat komt door het feit dat sectoren eigenlijk overbodig

kunnen zijn ten opzichte van elkaar als ze vergelijkbaar zijn (zowel qua patroon als

qua grootte) in termen van productieverbanden, finale vraag en capaciteit van pro-

ductiefactoren. Gerelateerde kwesties die op dezelfde manier werden onderzocht

zijn het vinden van een sleutelregio en een sleutelgroep van regio’s in een interre-

gionaal input-output raamwerk. Verder lieten we zien dat de factorwaardemeting
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onveranderlijk is indien de intrasectorale transacties worden uitgefilterd (tenzij de

totale bruto-opbrengst de gekozen factor is). De uitkomsten van de problemen

van de sleutelsector/sleutelgroep in de standaard en de zogenoemde netto input-

output modellen zijn dus identiek, zolang de factor niet de totale bruto-opbrengst

is. Het verband tussen de HEM-problemen en de zogenaamde fields of influence

werd belicht, wat leidde tot een alternatieve economische interpretatie van proble-

men op het gebied van de economiebrede effecten van een verandering in de mate

waarin een sector afhankelijk is van zijn eigen product als input. Tenslotte werd be-

wezen dat een stijging (daling) van een inputcoëfficiënt nooit de factorwaarde van

een sector laat dalen (stijgen), en werden de voorwaarden voor een strikte stijging

(daling) afgeleid.


