

 University of Groningen

Semantic results for ontic and epistemic change
van Ditmarsch, Hans; Kooi, Barteld

Published in:
Logic and the foundations of game and decision theory (LOFT 7)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Ditmarsch, H., & Kooi, B. (2008). Semantic results for ontic and epistemic change. In G. Bonanno, W.
van der Hoek, & M. Wooldridge (Eds.), Logic and the foundations of game and decision theory (LOFT 7)
(pp. 87 - 117). (Texts in Logic and Games 3). Amsterdam University Press.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/5af40754-6b1a-44b0-b2bc-5d545c479b25

Semantic Results for Ontic and

Epistemic Change

Hans van Ditmarsch
1,2

Barteld Kooi
3

1 Department of Computer Science
University of Otago
PO Box 56
Dunedin 9054, New Zealand

2 Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier
118 Route de Narbonne
31062 Toulouse Cedex 9, France

3 Faculteit Wijsbegeerte
Rijksuniversiteit Groningen
Oude Boteringestraat 52
9712 GL Groningen, The Netherlands

hans@cs.otago.ac.nz, B.P.Kooi@rug.nl

Abstract

We present an epistemic logic incorporating dynamic operators to
describe information changing events. Such events include epistemic
changes, where agents become more informed about the non-changing
state of the world, and ontic changes, wherein the world changes. The
events are executed in information states that are modelled as pointed
Kripke models. Our contribution consists of three semantic results.
(i) Every consistent formula can be made true in every information
state by the execution of an event. (ii) Every event corresponds to
an event with assignments to true and false only. (iii) Every event
corresponds to a sequence of events with assignments of a single atom
only. We apply the logic to model dynamics in a multi-agent setting
involving card players.

1 Introduction

In dynamic epistemic logics [32, 23, 9, 4, 17] one does not merely describe
the static (knowledge and) beliefs of agents but also dynamic features: how
does belief change as a result of events taking place. The main focus of such
logics has been change of only belief, whereas the facts describing the world
remain the same. Change of belief is known as epistemic change. One can
also model change of facts, and the resulting consequences of such factual

Giacomo Bonanno, Wiebe van der Hoek, Michael Wooldridge (eds.). Logic and the Founda-
tions of Game and Decision Theory (LOFT 7). Texts in Logic and Games 3, Amsterdam
University Press 2008, pp. 87–117.

88 H. van Ditmarsch, B. Kooi

changes for the beliefs of the agents. Change of facts is also known as ontic
change (change of the real world, so to speak).1 In this contribution we use
‘event’ to denote any sort of information change, both epistemic and ontic.
Let us begin by a simple example involving various events.

Example 1.1. Given are two players Anne and Bill. Anne shakes a cup
containing a single coin and deposits the cup upside down on the table
(there are no opportunities for cheating). Heads or tails? Initially, we have
a situation wherein both Anne (a) and Bill (b) are uncertain about the
truth of that proposition. A player may observe whether the coin is heads
or tails, and/or flip the coin, and with or without the other player noticing
that. Four example events are as follows.

1. Anne lifts the cup and looks at the coin. Bill observes this but is not
able to see the coin. All the previous is common knowledge to Anne
and Bill.

2. Anne lifts the cup and looks at the coin without Bill noticing that.

3. Anne lifts the cup, looks at the coin, and ensures that it is tails (by
some sleight of hand). Bill observes Anne looking but is not able to
see the coin, and he considers it possible that Anne has flipped the
coin to tails (and this is common knowledge).

4. Bill flips the coin (without seeing it). Anne considers that possible
(and this is common knowledge).

Events 1, 3, and 4 are all public in the sense that the actual event is con-
sidered possible by both agents, and that both agents know that, and know
that they know that, etc.; whereas event 2 is private: Bill is unaware of the
event; the event is private to Anne. Events 3 and 4 involve ontic change,
whereas events 1 and 2 only involve epistemic change. Flipping a coin is
ontic change: the value of the atomic proposition ‘the coin is heads’ changes
from false to true, or from true to false, because of that. But in the case of
events 1 and 2 that value, whether true or false, remains unchanged. What
changes instead, is how informed the agents are about that value, or about
how informed the other agent is. In 1 and 2, Anne still learns whether the
coin is heads or tails. In 1, Bill ‘only’ learns that Anne has learnt whether
the coin is heads or tails: he has not gained factual information at all. In
Example 2.5, later, we will formalize these descriptions.

1 In the areas known as ‘artificial intelligence’ and ‘belief revision’, epistemic and ontic
change are called, respectively, belief revision [1] and belief update [27]. We will not
use that terminology.

Ontic and Epistemic Change 89

Various logics have been proposed to model such events. A well-known
setting is that of interpreted systems by Fagin et al. [21]. Each agent has
a local state; the local states of all agents together with a state of the
environment form a global state; belief of an agent is modelled as uncertainty
to distinguish between global states wherein the agent has the same local
state, and change of belief is modelled as a transition from one global state
to another one, i.e., as a next step in a run through the system. In an
interpreted system the treatment of epistemic and ontic change is similar—
either way it is just a next step in a run, and how the valuation between
different points changes is not essential to define or describe the transition.
There is a long tradition in such research [30, 21].

The shorter history of dynamic epistemic logic started by focusing on
epistemic change [32, 23, 9, 4, 17]. In that community, how to model ontic
change was first mentioned by Baltag, Moss, and Solecki as a possible ex-
tension to their action model logic for epistemic change [5]. More detailed
proposals for ontic change are far more recent [20, 16, 15, 10, 28, 33, 25, 26].
The literature will be discussed in more detail in Section 5.

Section 2 contains logical preliminaries, including detailed examples.
Section 3 contains the semantic results that we have achieved for the logic.
This is our original contribution to the area. These results are that: (i) for
all finite models and for all consistent formulas we can construct an event
that ‘realizes’ the formula, i.e., the formula becomes true after execution of
the event; that: (ii) every event (with assignments of form p := ϕ, for ϕ in
the language) corresponds to an event with assignments to true and false
only; and also that: (iii) every event corresponds to a sequence of events
with assignments for a single atom only. Section 4 applies the logic to model
the dynamics of card players. Section 5 discusses related work in detail.

2 A logic of ontic and epistemic change

We separately introduce the logical language, the relevant structures, and
the semantics of the language on those structures. The syntax and semantics
appear to overlap: updates are structures that come with preconditions that
are formulas. In fact it is properly covered by the double induction used
in the language definition, as explained after Definition 2.4 below. For a
detailed treatment of the logic without ontic change, and many examples,
we recommend [17]; for more examples of the logic involving ontic change,
see [15, 16, 20].

2.1 Language

We use the style of notation from propositional dynamic logic (PDL) for
modal operators which is also used in [10].

90 H. van Ditmarsch, B. Kooi

Definition 2.1 (Language). Let a finite set of agents A and a countable
set of propositional variables P be given. The language L is given by the
following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ
α ::= a | B∗ | (U, e)

where p ∈ P , a ∈ A, B ⊆ A (the dynamic operator [B∗] is associated with
‘common knowledge among the agents in B’), and where (U, e) is an update
as (simultaneously) defined below.

We use the usual abbreviations, and conventions for deleting parenthe-
ses. In particular, [B]ϕ stands for

∧

a∈B[a]ϕ, and (the diamond form) 〈α〉ϕ
is equivalent to ¬[α]¬ϕ. Non-deterministic updates are introduced by ab-
breviation: [(U, e) ∪ (U′, f)]ϕ is by definition [U, e]ϕ ∧ [U′, f]ϕ.

2.2 Structures

Epistemic model. The models which adequately present an information
state in a multi-agent environment are Kripke models from epistemic logic.
The set of states together with the accessibility relations represent the in-
formation the agents have. If one state s has access to another state t for
an agent a, this means that, if the actual situation is s, then according to
a’s information it is possible that t is the actual situation.

Definition 2.2 (Epistemic model). Let a finite set of agents A and a count-
able set of propositional variables P be given. An epistemic model is a triple
M = (S,R, V) such that

• domain S is a non-empty set of possible states,

• R : A→ ℘(S × S) assigns an accessibility relation to each agent a,

• V : P → ℘(S) assigns a set of states to each propositional variable;
this is the valuation of that variable.

A pair (S,R) is called an epistemic frame. A pair (M, s), with s ∈ S, is
called an epistemic state.

A well-known notion of sameness of epistemic models is ‘bisimulation’.
Several of our results produce models that are bisimilar: they correspond
in the sense that even when not identical (isomorphic), they still cannot be
distinguished in the language.

Definition 2.3 (Bisimulation). Let two models M = (S,R, V) and M ′ =
(S′, R′, V ′) be given. A non-empty relation R ⊆ S × S′ is a bisimulation iff
for all s ∈ S and s′ ∈ S′ with (s, s′) ∈ R:

atoms for all p ∈ P : s ∈ V (p) iff s′ ∈ V ′(p);

Ontic and Epistemic Change 91

forth for all a ∈ A and all t ∈ S: if (s, t) ∈ R(a), then there is a t′ ∈ S′

such that (s′, t′) ∈ R′(a) and (t, t′) ∈ R;

back for all a ∈ A and all t′ ∈ S′: if (s′, t′) ∈ R′(a), then there is a t ∈ S

such that (s, t) ∈ R(a) and (t, t′) ∈ R.

We write (M, s) ↔ (M ′, s′), iff there is a bisimulation between M and
M ′ linking s and s′, and we then call (M, s) and (M ′, s′) bisimilar. A model
such that all bisimilar states are identical is called a bisimulation contraction
(also known as a strongly extensional model).

Update model. An epistemic model represents the information of the
agents. Information change is modelled as changes of such a model. There
are three variables. One can change the set of states, the accessibility rela-
tions and the valuation. It may be difficult to find the exact change of these
variables that matches a certain description of an information changing
event. It is often easier to think of such an event separately. One can model
an information changing event in the same way as an information state,
namely as some kind of Kripke model: there are various possible events,
which the agents may not be able to distinguish. This is the domain of
the model. Rather than a valuation, a precondition captures the conditions
under which such events may occur, and postconditions also determine what
epistemic models may evolve into. Such a Kripke model for events is called
an update model, which were first studied by Baltag, Moss and Solecki, and
extended with simultaneous substitutions by van Eijck [5, 20].2 Here we use
van Eijck’s definition.

Definition 2.4 (Update model). An update model for a finite set of agents
A and a language L is a quadruple U = (E,R, pre, post) where

• domain E is a finite non-empty set of events,

• R : A→ ℘(E × E) assigns an accessibility relation to each agent,

• pre : E → L assigns to each event a precondition,

• post : E → (P → L) assigns to each event a postcondition for each
atom. Each post(e) is required to be only finitely different from the
identity id; the finite difference is called its domain dom(post(e)).

A pair (U, e) with a distinguished actual event e ∈ E is called an update.
A pair (U,E) with E′ ⊆ E and |E′| > 1 is a multi-pointed update, first in-
troduced in [19]. The event e with pre(e) = ⊤ and post(e) = id we name

2 In the literature update models are also called action models. Here we follow [10] and
call them update models, since no agency seems to be involved.

92 H. van Ditmarsch, B. Kooi

skip. An update with a singleton domain, accessible to all agents, and pre-
condition ⊤, is a public assignment. An update with a singleton domain,
accessible to all agents, and identity postcondition, is a public announce-
ment.

Instead of

pre(e) = ϕ and post(e)(p1) = ψ1, . . . , and post(e)(pn) = ψn

we also write3

for event e: if ϕ, then p1 := ψ1, . . . , and pn := ψn

The event skip stands for: nothing happens except a tick of the clock.
To see an update as part of the language we observe that: an update

(U, e) is an inductive construct of type α that is built the frame underlying U

(we can assume a set enumerating such frames) and from simpler constructs
of type ϕ, namely the preconditions and postconditions for the events of
which the update consists. This means that there should be a finite number
of preconditions and a finite number of postconditions only, otherwise the
update would be an infinitary construct. A finite number of preconditions is
guaranteed by restricting ourselves in the language to finite update models.
A finite number of postconditions is guaranteed by (as well) restricting
ourselves to finite domain for postconditions. This situation is similar to
the case of automata-PDL [24, Chapter 10, Section 3].

If in case of nondeterministic updates the underlying models are the
same, we can also see this as executing a multi-pointed update. For example,
(U, e) ∪ (U, f) can be equated with (U, {e, f}).

Example 2.5. Consider again the scenario of Example 1.1 on page 88. Let
atomic proposition p stand for ‘the coin lands heads’. The initial information
state is represented by a two-state epistemic model with domain {1, 0}, with
universal access for a and b, and with V (p) = {1}. We further assume that
the actual state is 1. This epistemic state is depicted in the top-left corner
of Figure 1. The events in Example 1.1 can be visualized as the following
updates. The actual state is underlined.

1. Anne lifts the cup and looks at the coin. Bill observes this but is not
able to see the coin. All the previous is common knowledge to Anne
and Bill.

p npba, b a, b

3 The notation is reminiscent of that for a knowledge-based program in the interpreted
systems tradition. We discuss the correspondence in Section 5.

Ontic and Epistemic Change 93

Here, pre(p) = p, post(p) = id, pre(np) = ¬p, post(np) = id. The
update model consists of two events. The event p corresponds to
Anne seeing heads, and the event np to Anne seeing tails; Anne is
aware of that: thus the reflexive arrows (identity relation). Bill cannot
distinguish them from one another: thus the universal relation. The
aspect of common knowledge, or common awareness, is also present
in this dynamic structure: the reflexive arrow for Anne also encodes
that Anne knows that she lifts the cup and that Bill observes that;
similarly for Bill, and for iterations of either awareness.

2. Anne lifts the cup and looks at the coin without Bill noticing that.

p skipba a, b

Event p is as in the previous item and skip is as above. In this update,
there is no common awareness of what is going on: Anne observes
heads knowing that Bill is unaware of that, whereas Bill does not
consider the actual event; the b-arrow points to the other event only.

3. Anne lifts the cup, looks at the coin, and ensures that it is tails (by
some sleight of hand). Bill observes Anne looking but is not able to
see the coin, and he considers it possible that Anne has flipped the
coin to tails (and this is common knowledge).

p np

p′

b

b b

a, b a, b

a, b

Events p and np are as before, whereas pre(p′) = ⊤, post(p′)(p) = ⊥.
The event p′ may take place both when the coin is heads and when
the coin is tails, in the first case atom p is set to false (tails), and in
the second it remains false.

4. Bill flips the coin (without seeing it). Anne considers that possible
(and this is common knowledge).

n skipaa, b a, b

94 H. van Ditmarsch, B. Kooi

Here, pre(n) = ⊤, post(n)(p) = ¬p, and skip is as before. For models
where all accessibility relations are equivalence relations we will also
use a simplified visualization that merely links states in the same
equivalence class. E.g., this final event is also depicted as:

n skipa

2.3 Semantics

The semantics of this language is standard for epistemic logic and based
on the product construction for the execution of update models from the
previous section. Below, R(B)∗ is the transitive and reflexive closure of the
union of all accessibility relations R(a) for agents a ∈ B. Definitions 2.6
and 2.7 are supposed to be defined simultaneously.

Definition 2.6 (Semantics). Let a model (M, s) with M = (S,R, V) be
given. Let a ∈ A, B ⊆ A, and ϕ, ψ ∈ L .

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= [a]ϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ R(a)
(M, s) |= [B∗]ϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ R(B)∗

(M, s) |= [U, e]ϕ iff (M, s) |= pre(e) implies (M ⊗ U, (s, e)) |= ϕ

We now define the effect of an update on an epistemic state—Figure 1
gives an example of such update execution.

Definition 2.7 (Execution). Given are an epistemic model M = (S,R, V),
a state s ∈ S, an update model U = (E,R, pre, post), and an event e ∈ E

with (M, s) |= pre(e). The result of executing (U, e) in (M, s) is the model
(M ⊗ U, (s, e)) = ((S′, R′, V ′), (s, e)) where

• S′ = {(t, f) | (M, t) |= pre(f)},

• R′(a) = {((t, f), (u, g)) | (t, f), (u, g) ∈ S′ and (t, u) ∈ R(a) and
(f, g) ∈ R(a)},

• V ′(p) = {(t, f) | (M, t) |= post(f)(p)}.

Definition 2.8 (Composition of update models). Let update models U =
(E,R, pre, post) and U′ = (E′,R′, pre′, post′) and events e ∈ E and e′ ∈ E′ be
given. The composition (U, e) ; (U′, e′) of these update models is (U′′, e′′)
where U′′ = (E′′,R′′, pre′′, post′′) is defined as

• E′′ = E × E′,

Ontic and Epistemic Change 95

1 0a, ba, b a, b

×

p skipba a, b

(1, p)

(1, skip) (0, skip)

b b

b

a

a, b a, b

Figure 1. In an epistemic state where Anne and Bill are uncertain about
the truth of p (heads or tails), and wherein p is true, Anne looks at the coin
without Bill noticing it. The actual states and events are underlined.

• R′′(a) = {((f, f′), (g, g′)) | (f, g) ∈ R(a) and (f′, g′) ∈ R′(a)},

• pre′′(f, f′) = pre(f) ∧ [U, f]pre′(f′),

• dom(post′′(f, f′)) = dom(post(f)) ∪ dom(post′(f′)) and
if p ∈ dom(post′′(f, f′)), then

post′′(f, f′)(p) =

{

post(f)(p) if p 6∈ dom(post′(f′)),

[U, f]post′(f′)(p) otherwise.

The reason for [U, f]post′(f′)(p) in the final clause will become clear from
the proof detail shown for Proposition 2.9.

Proposition 2.9. |= [U, e][U′, e′]ϕ↔ [(U, e) ; (U′, e′)]ϕ

Proof. Let (M, t) be arbitrary. To show that (M, t) |= [(U, e) ; (U′, e′)]ϕ if
and only if (M, t) |= [U, e][U′, e′]ϕ, it suffices to show that M ⊗ (U ; U′) is
isomorphic to (M⊗U)⊗U′. A detailed proof (for purely epistemic updates)
is found in [17]. The postconditions (only) play a part in the proof that the
valuations correspond:

For the valuation of facts p in the domain of post′′ we distinguish the
cases (p ∈ dom(post(e)) but p 6∈ dom(post′(e′))) (i), and otherwise (ii).
The valuation of a i-atom in a triple (t, (e, e′)) is post(e)(p) according to
the definition of updates composition; and the valuation of a ii-atom is
[U, e]post′(e′)(p). Consider the corresponding triple ((t, e), e′). The valu-
ation of an i-atom in (t, e) is post(e)(p), and because p does not occur
in dom(post′(e′)) its value in the triple ((t, e), e′) will remain the same.
For a ii-atom, its final value will be determined by evaluating post′(e′)(p)
in ((M ⊗ U), (t, e)). This corresponds to evaluating [U, e]post′(e′)(p) in
(M, t). q.e.d.

96 H. van Ditmarsch, B. Kooi

2.4 Proof system

A proof system UM for the logic is given in Table 1. The proof system
is a lot like the proof system for the logic of epistemic actions (i.e., for
the logic without postconditions to model valuation change) in [5]. There
are two differences that makes it worthwhile to present this system. The
axiom ‘atomic permanence’ in [5]—[U, e]p ↔ (pre(e) → p)—is now instead
an axiom expressing when atoms are not permanent, namely how the value
of an atom can change, according to the postcondition for that atom:

[U, e]p↔ (pre(e) → post(e)(p)) update and atoms

The second difference is not apparent from Table 1. The axiom

[U, e][U′, e′]ϕ↔ [(U, e) ; (U′, e′)]ϕ update composition

also occurs in [5]. But Definition 2.8 to compute that composition is in our
case a more complex construction than the composition of update models
with only preconditions, because it also involves resetting the postcondi-
tions. We find it remarkable that these are the only differences: the inter-
action between postconditions for an atom and the logical operators, only
occurs in the axiom where that atom is mentioned, or implicitly, whereas
the interaction between preconditions and the logical operators appears in
several axioms and rules.

The proof system is sound and complete. The soundness of the ‘update
and atoms’ axiom is evident. The soundness of the ‘update composition’
axiom was established in Proposition 2.9. We proved completeness of the
logic as a modification of the completeness proof for the logic without ontic
change—action model logic—as found in [17], which in turn is a simplified
version of the original proof for that logic as found in [5]. We do not consider
the modified proof of sufficient original interest to report on in detail.

3 Semantic results

We now present some semantic peculiarities of the logic. These we deem
our contribution to the area. The results help to relate different approaches
combining ontic and epistemic change (see Section 5). The various ‘normal
forms’ for update models that we define are also intended to facilitate future
tool development. Finally, they are relevant when modelling AGM belief
revision [1] in a dynamic epistemic setting.

3.1 Arbitrary belief change

Let (M, s) and (M ′, s′) be arbitrary finite epistemic states for the same set of
atoms and agents, with M = (S,R, V) and M ′ = (S′, R′, V ′). Surprisingly
enough, there is almost always an update transforming the former into the

Ontic and Epistemic Change 97

All instantiations of propositional tautologies
[α](ϕ→ ψ) → ([α]ϕ→ [α]ψ) distribution
From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer [α]ϕ necessitation
[U, e]p↔ (pre(e) → post(e)(p)) update and atoms
[U, e]¬ϕ↔ (pre(e) → ¬[U, e]ϕ) update and negation
[U, e](ϕ ∧ ψ) ↔ ([U, e]ϕ ∧ [U, e]ψ) update and conjunction
[U, e][a]ϕ↔ (pre(e) →

∧

(e,f)∈R(a)[a][U, f]ϕ) update and knowledge

[U, e][U′, e′]ϕ↔ [(U, e); (U′, e′)]ϕ update composition
[B∗]ϕ→ (ϕ ∧ [B][B∗]ϕ) mix
[B∗](ϕ→ [B]ϕ) → (ϕ→ [B∗]ϕ) induction axiom

Let (U, e) be an update model and let a set
of formulas χf for every f such that (e, f) ∈
R(B)∗ be given. From χf → [U, f]ϕ and
(χf ∧ pre(f)) → [a]χg for every f ∈ E such
that (e, f) ∈ R(B)∗, a ∈ B and (f, g) ∈
R(a), infer χe → [U, e][B∗]ϕ.

updates and common
knowledge

Table 1. The proof system UM.

latter. There are two restrictions. Both restrictions are technical and not
conceptual. Firstly, for the set of agents with non-empty access in M ′ there
must be a submodel of M containing actual state s that is serial for those
agents. In other words, if an agent initially has empty access and therefore
believes everything (‘is crazy’) you cannot change his beliefs, but otherwise
you can. This seems reasonable. Secondly, models M and M ′ should only
differ in the value of a finite number of atoms; more precisely, if we define
that

an atom is relevant in a model iff its valuation is neither empty nor
the entire domain,

then the requirement is that only a finite number of atoms is relevant in
M ∪M ′. This is required, because we can only change the value of a finite
number of atoms in the postconditions. This also seems reasonable: as both
models are finite, the agents can only be uncertain about the value of a finite
number of atoms (in the combined models M and M ′); in other words, they
are ‘not interested’ in the value of the remaining atoms.

For expository purposes we initially assume that all agents consider the
actual state s of M a possibility (as in all S5 models, such as Kripke models
representing interpreted systems), thus satisfying the first of the two re-
strictions above: the serial submodel required is then the singleton model

98 H. van Ditmarsch, B. Kooi

consisting of s, accessible to all agents. The update transforming (M, s) into
(M ′, s′) can be seen as the composition of two intuitively more appealing
updates. That will make clear how we can also describe the required update
in one stroke.

In the first step we get rid of the structure of M . As the epistemic state
(M, s) is finite, it has a characteristic formula δ(M,s) [6, 8].4 We let the
agents publicly learn that characteristic formula. This event is represented
by the singleton update (U, e) defined as

(({e},R, pre, post), e) with pre(e) = δ(M,s),

for all a : (e, e) ∈ R(a),
and post(e) = id

In other words, the structure of the current epistemic state is being publicly
announced. The resulting epistemic state is, of course, also singleton, or
bisimilar to a singleton epistemic state, as δ(M,s) holds in all states in M

bisimilar to s. Without loss of generality assume that it is singleton. Its
domain is {(s, e)}. This pair (s, e) is accessible to itself because for all
agents, (s, s) ∈ R(a) (all agents consider the actual state s a possibility), and
(e, e) ∈ R(a). The valuation of propositional variables in this intermediate
state are those of state s in M . What the value is does not matter: we will
not use that valuation.

Now proceed to the second step. In the epistemic state wherein the
agents have common knowledge of the facts in s, the agents learn the struc-
ture of the resulting epistemic state M ′ = (S′, R′, V ′) and their part in it
by executing update (U′, s′) defined as

((S′, R′, pre′, post′), s′) with for all t′ ∈ S′ : pre′(t′) = ⊤ and
for relevant p : post′(t′)(p) = ⊤ iff t′ ∈ V ′(p)

Note that the domain S′ and the accessibility relation R′ of U′ are precisely
those of M ′, the resulting final epistemic model. The postcondition post′

is well-defined, as only a finite number of atoms (the relevant atoms) is
considered. Because we execute this update in a singleton model with public
access, and because it is executable for every event t′, the resulting epistemic
state has the same structure as the update: it returns S′ and R′ again. The
postcondition delivers the required valuation of atoms in the final model:
for each event t′ in U′ and for all relevant atoms p, p become true in t′ if p
is true in state t′ in M ′ (post(t′)(p) = ⊤), else p becomes false. The value
of irrelevant atoms remains the same.

4 A characteristic formula ϕ for a state (M, s) satisfies that for all ψ, (M,s) |= ϕ iff
ϕ |= ψ. In fact, for the construction we only need formulas that can distinguish all
states in the domain from one another, modulo bisimilarity. Characteristic formulas
satisfy that requirement.

Ontic and Epistemic Change 99

We combine these two updates into one by requiring the precondition of
the first and the postcondition of the second. Consider U′

r that is exactly
as U′ except that in all events t′ in its domain the precondition is not ⊤ but
δ(M,s): the characteristic formula of the point s of (M, s). Update (U′

r, s
′)

does the job: epistemic state (M⊗U′
r, (s, s

′)) is isomorphic to (M ′, s′). This
will be Corollary 3.3 of our more general result, to follow.

Now consider the more general case that the agents with non-empty
access in M ′ are serial in a submodel M ser of M that contains s, with
domain Sser. In other words: at least all agents who finally have consistent
beliefs in some states, initially have consistent beliefs in all states. The
construction above will no longer work: if the actual state is not considered
possible by an agent, then that agent has empty access in actual state (s, s′)
of (M ⊗ U′

r), but not in s′ in M ′. But if we relax the precondition δ(M,s),
for the point s of (M, s), to the disjunction

∨

u∈Sser δ(M,u), that will now
carry along the serial subdomain Sser, the construction will work because
an agent can then always imagine some state wherein the update has been
executed, even it that is not the actual state. This indeed completes the
construction.

Definition 3.1 (Update for arbitrary change). Given finite epistemic mod-
els M = (S,R, V) and M ′ = (S′, R′, V ′) for the same sets of agents and
atoms. Assume that all agents with non-empty access in M ′ are serial in
M ser containing s. The update for arbitrary change (U′′, (s, s′)) = ((E′′,R′′,

pre′′, post′′), (s, s′)) is defined as (for arbitrary agents a and arbitrary rele-
vant atoms p):

E′′ = S′

(t′, u′) ∈ R′′(a) iff (t′, u′) ∈ R′(a)

pre′′(t′) =
∨

u∈Sser

δ(M,u)

post′′(t′)(p) =

{

⊤ if t′ ∈ V ′(p)

⊥ otherwise

The epistemic state (M ⊗ U′′, (s, s′)) is bisimilar to (M ′, s′), which is
the desired result. It will typically not be isomorphic: M ⊗ U′′ can be seen
as consisting of a number of copies of M ′ (namely |Sser| copies) ‘with the
accessibility relations just right to establish the bisimulation’. One copy
may not be enough, namely when the state t in M to which that copy
corresponds, lacks access for some agents. This access will then also be
‘missing’ between the states of ({t} × S′). But because of seriality one of

100 H. van Ditmarsch, B. Kooi

the other M ′ copies will now make up for this lack: there is a u ∈ Sser such
that (t, u) ∈ R(a), which will establish access when required, as in the proof
of the following proposition.

Proposition 3.2. Given (M, s), (M ′, s′), and U′′ as in Definition 3.1. Then
R : ((M ⊗ U′′), (s, s′)) ↔ (M ′, s′) by way of, for all t ∈ Sser and t′ ∈ S′:
R(t, t′) = t′.

Proof. Let R⊗ be the accessibility relation and V ⊗ the valuation in (M ⊗
U′′).

atoms: For an arbitrary relevant atom p: (t, t′) ∈ V ⊗(p) iff (M, t) |=
post′′(t′)(p), and by definition of post′′ we have that (M, t) |= post′′(t′)(p)
iff t′ ∈ V ′(p). Irrelevant atoms do not change value.

forth: Let ((t1, t
′
1), (t2, t

′
2)) ∈ R⊗(a) and ((t1, t

′
1), t

′
1) ∈ R. From

((t1, t
′
1), (t2, t

′
2)) ∈ R⊗(a) follows (t′1, t

′
2) ∈ R′(a). By definition of R we

also have ((t2, t
′
2), t

′
2) ∈ R.

back: Let ((t1, t
′
1), t

′
1) ∈ R and (t′1, t

′
2) ∈ R′(a). As M ser is serial for a,

and t1 ∈ Sser, there must be a t2 such that (t1, t2) ∈ R(a). As (M, t2) |=
∨

t∈dom(M ser) δ(M,t) (because t2 is one of those t) we have that (t2, t
′
2) ∈

dom(M ⊗ U′′). From that, (t1, t2) ∈ R(a), and (t′1, t
′
2) ∈ R′(a), follows that

((t1, t
′
1), (t2, t

′
2)) ∈ R⊗(a). By definition of R we also have ((t2, t

′
2), t

′
2) ∈ R.

q.e.d.

Note that we keep the states outside the serial submodel M ser out of the
bisimulation. Without the seriality constraint the ‘back’ condition of the
bisimilarity cannot be shown: given a ((t1, t

′
1), t

′
1) ∈ R and (t′1, t

′
2) ∈ R′(a),

but where t1 has no outgoing arrow for a, the required a-accessible pair
from (t1, t

′
1) does not exist. A special case of Proposition 3.2 is the corollary

already referred to during the initial two-step construction, that achieves
even isomorphy:

Corollary 3.3. Given (M, s), (M ′, s′), and U′
r as above. Assume that M

is a bisimulation contraction. Then (M ⊗ U′
r)

∼= M ′.

Proof. In this special case we have that (t, t′) ∈ dom(M ⊗ U′
r) iff (M, t) |=

pre′(t′) iff (M, t) |= δ(M,s) for the point s of (M, s). As the last is only the
case when t = s (as M is a bisimulation contraction), we end up with a
domain consisting of all pairs (s, t′) for all t′ ∈ S′, a 1-1-correspondence.
The bisimulation R above becomes the isomorphism I(s, t′) = t′. q.e.d.

A different wording of Proposition 3.2 is that for arbitrary finite epis-
temic states (M, s) and (M ′, s′) also satisfying the serial submodel con-
straint, there is an update (U, e) transforming the first into the second. A
final appealing way to formulate this result is:

Ontic and Epistemic Change 101

Corollary 3.4. Given are a finite epistemic state (M, s) and a satisfiable
formula ϕ. If all agents occurring in ϕ have non-trivial beliefs in state s
of M , then there is an update realizing ϕ, i.e., there is a (U, e) such that
(M, s) |= 〈U, e〉ϕ.

Using completeness of the logic, this further implies that all consistent
formulas can be realized in any given finite model. We find this result both
weak and strong: it is strong because any conceivable (i.e., using the same
propositional letters and set of agents) formal specification can be made
true whatever the initial information state. At the same time, it is weak:
the current information state does apparently not give any constraints on
future developments of the system, or, in the opposite direction, any clue
on the sequence of events resulting in it; the ability to change the value of
atomic propositions arbitrarily gives too much freedom. Of course, if one
restricts the events to specific protocols (such as legal game moves [15], and
for a more general treatment see [11]), the amount of change is constrained.

AGM belief revision and belief update. Our results on arbitrary belief
change seem related to the postulate of success in AGM belief revision [1].
AGM belief revision corresponds to epistemic change, and AGM (in their
terminology) belief update [27] corresponds to ontic change (unfortunately,
in the AGM community ‘update’ means something far more specific than
what we mean by that term). Given this correspondence we can achieve only
expansion by epistemic change, and not proper revision; and the combina-
tion of ontic and epistemic change can be seen as a way to make belief update
result in belief revision. Apart from this obvious interpretation of epistemic
and ontic change, one can also view our result that all consistent formulas
can be realized, differently: a consequence of this is that for arbitrary con-
sistent ϕ and ψ there is an update (U, e) such that [a]ϕ → 〈U, e〉[a]ψ. In
AGM terms: if ϕ is believed, then there is a way to revise that into belief of
ψ, regardless of whether ϕ∧ψ is consistent or not. In other words: revision
with ψ is always successful. That suggests that our way of achieving that
result by combining epistemic and ontic change might somehow simulate
standard AGM belief revision. Unfortunately it is immediately clear that
we allow far too much freedom for the other AGM postulates to be fulfilled.
It is clearly not a minimal change, for example. So walking further down
this road seems infeasible.

3.2 Postconditions true and false only

The postconditions for propositional atoms can be entirely simulated by
the postconditions true or false for propositional atoms. For a simple exam-
ple, the public assignment p := ϕ can be simulated by a two-point update
e——A——f (i.e., a nondeterministic event where all agents in A cannot
distinguish e from f) such that pre(e) = ϕ, post(e)(p) = ⊤, pre(f) = ¬ϕ,

102 H. van Ditmarsch, B. Kooi

post(f)(p) = ⊥. In the public assignment (p := ϕ, q := ψ) to two atoms p
and q we would need a four-point update to simulate it, to distinguish all
four ways to combine the values of two independent atoms.

The general construction consists of doing likewise in every event e of
an update model. For each e we make as many copies as the cardinality of
the powerset of the range of the postcondition associated with that event.
Below, the set {0, 1}dom(post(e)) represents that powerset.

Definition 3.5 (Update model U⊤⊥). Given is an update model U = (E,
R, pre, post). Then U⊤⊥ = (E⊤⊥,R⊤⊥, pre⊤⊥, post⊤⊥) is a normal update model
with

• E⊤⊥ =
⋃

e∈E{(e, f) | f ∈ {0, 1}dom(post(e))}

• ((e, f), (e′, f ′)) ∈ R⊤⊥(a) iff (e, e′) ∈ R(a)

• pre⊤⊥(e, f) = pre(e) ∧
∧

f(p)=1 post(e)(p) ∧
∧

f(p)=0 ¬post(e)(p)

• post⊤⊥(e, f)(p) =

{

⊤ if f(p) = 1

⊥ if f(p) = 0

Proposition 3.6. Given an epistemic model M = (S,R, V) and an update
model U = (E,R, pre, post) with normal update model U⊤⊥ defined as above.
Then (M ⊗ U) ↔ (M ⊗ U⊤⊥).

Proof. We show that the relation R : (M ⊗ U) ↔ (M ⊗ U⊤⊥) defined as

((s, e), (s, e, f)) ∈ R iff (M, s) |= pre⊤⊥(e, f)

is a bisimulation. Below, the accessibility relations in (M⊗U) and (M⊗U⊤⊥)
are also written as R(a).

atoms

Let (s, e, f) be a state in the domain of (M ⊗U⊤⊥). We have to show
that for all atoms p, (M, s) |= post(e)(p) ↔ post⊤⊥(e, f)(p). From the
definition of post⊤⊥ it follows that

post⊤⊥(e, f)(p) iff f(p) = 1 .

From (M, s) |= pre⊤⊥(e, f) and the definition of pre⊤⊥ follows that

(M, s) |= post(e)(p) iff f(p) = 1 .

Therefore
(M, s) |= post(e)(p) ↔ post⊤⊥(e, f)(p) .

Ontic and Epistemic Change 103

forth

Assume that ((s, e), (s′, e′)) ∈ R(a) and that ((s, e), (s, e, f)) ∈ R. Let
f ′ : dom(post(e′)) → {0, 1} be the function such that

f ′(p) =

{

1 if (M, s′) |= post(e′)(p)

0 otherwise

Therefore (M, s′) |= pre⊤⊥(e′, f ′). Therefore ((s′, e′), (s′, e′, f ′)) ∈ R.
From ((s, e), (s′, e′)) ∈ R⊤⊥(a) follows (s, s′) ∈ R(a) and (e, e′) ∈
R(a). From (e, e′) ∈ R(a) and the definition of access R⊤⊥ follows
((e, f), (e′, f ′)) ∈ R⊤⊥(a). From (s, s′) ∈ R(a) and ((e, f), (e′, f ′)) ∈
R⊤⊥(a) follows ((s, e, f), (s′, e′, f ′)) ∈ R(a).

back

Suppose ((s, e), (s, e, f)) ∈ R and (s, e, f), (s′, e′, f ′) ∈ R(a). From the
last follows (s, s′) ∈ R(a) and ((e, f), (e′, f ′)) ∈ R⊤⊥(a), therefore also
(e, e′) ∈ R(a). Therefore ((s, e), (s, e′)) ∈ R(a). Just as in the case of
forth it is established that ((s′, e′), (s′, e′, f ′)) ∈ R.

q.e.d.

Corollary 3.7. The logic of change with postconditions true and false only
is equally expressive as the logic of change with arbitrary postconditions.

Although it is therefore possible to use postconditions true and false only,
this is highly unpractical in modelling actual situations: the descriptions of
updates become cumbersome and lengthy, and lack intuitive appeal.

A transformation result similar to that in Proposition 3.6 can not be
established for the logic with only singleton update models, i.e., the logic of
public announcements and public assignments (as in [28]). If public assign-
ments could only be to true and to false, then updates with assignments
always result in models wherein the assigned atoms are true throughout the
model, or false throughout the model. Therefore, there is no transforma-
tion of, e.g., p——¬p into p——¬p using public assignments and public
announcements only. The construction above results in a two-event update
model, that is not a singleton.

A transformation result as in Proposition 3.6 immediately gives an ex-
pressivity result as in Corollary 3.7 for the languages concerned. It is also
tempting to see such a transformation result as a different kind of expres-
sivity result. In two-sorted languages such as the one we consider in this
paper one can then distinguish between the expressivity of two kinds of syn-
tactic objects. A formula (ϕ) corresponds to a class of models that satisfy
that formula, and a modality (α) corresponds to a relation on the class of
models. The result is stated in terms of the expressivity of formulas, but

104 H. van Ditmarsch, B. Kooi

it is also a result about the expressivity of modalities. These two kinds of
expressivity are not necessarily linked. One can have logics with the same
expressivity of formulas, that have different expressivity of modalities and
vice versa.

3.3 Single assignments only

Consider the update model e——a——f for a single agent a and for two
atoms p1 and p2 such that in e, if ϕ1 then p1 := ϕ2 and p2 := ϕ3, and in f,
if ϕ4 then p1 := ϕ5 and p2 := ϕ6. Can we also do the assignments one by
one? In other words, does this update correspond to a sequence of updates
consisting of events g in which at most one atom is assigned a value: the
cardinality of dom(g) is at most 1. This is possible! First we ‘store’ the value
(in a given model (M, s) wherein this update is executed) of all preconditions
and postconditions in fresh atomic variables, by public assignments. This
can be in arbitrary order, so we do it in the order of the ϕi. This is the
sequence of six public assignments q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4,
q5 := ϕ5, and q6 := ϕ6. Note that such public assignments do not change the
structure of the underlying model. Next we execute the original update but
without postconditions. This is e′——a——f′ with pre(e′) = pre(e) = ϕ1

and pre(f′) = pre(f) = ϕ4 and with post(e′) = post(f′) = id. Note that
q1 remains true whenever e′ was executed, because q1 was set to be true
whenever ϕ1 was true, the precondition of both e and e′. Similarly, q4
remains true whenever f′ was executed. We have now arrived at the final
structure of the model, just not at the proper valuations of atoms.

Finally, the postconditions are set to their required value, conditional to
the execution of the event with which they are associated. Agent a must
not be aware of those conditions (the agent cannot distinguish between e′

and f′). Therefore we cannot model this as a public action. The way out of
our predicament is a number of two-event update models, namely one for
each postcondition of each event in the original update. One of these two
events has as its precondition the fresh atom associated with an event in
the original update, and the other event its negation, and agent a cannot
distinguish between both. The four required updates are

• e1—a—e′1 with in e1, if q1 then p2 := q2 and in e′1, if ¬q1 then id

• e2—a—e′2 with in e2, if q1 then p3 := q3 and in e′2, if ¬q1 then id

• e3—a—e′3 with in e3, if q4 then p5 := q5 and in e′3, if ¬q4 then id

• e4—a—e′4 with in e4, if q4 then p6 := q6 and in e′4, if ¬q4 then id

Now, we are done. These four final updates do not change the structure of
the model, when executed. Therefore, now having set the postconditions
right, the composition of all these constructs is isomorphic to the original

Ontic and Epistemic Change 105

update model! The general construction is very much as in this simple
example.

Definition 3.8 (Update model Uone). Given an update model U = (E,R,
pre, post), update model Uone is the composition of the following update
models: First perform Σe∈E|dom(post(e)) + 1| public assignments for fresh
variables q, . . . , namely for each e ∈ E, qe

0 := pre(e), and for all p1, . . . , pn ∈
dom(post(e)), qe

1 := post(e)(p1), . . . , q
e
n := post(e)(pn). Then execute U but

with identity (‘trivial’) postconditions, i.e., execute U′ = (E,R, pre, post′)
with post′(e) = id for all e ∈ E. Finally, execute Σe∈E|dom(post(e))| two-
event update models with universal access for all agents wherein for each
event just one of its postconditions is set to its required value, by way of the
auxiliary atoms. For example, for e ∈ E as above the first executed update
is e1——A——e2 with in e1, if qe

0, then p1 := qe
1, and in e2, if ¬qe

0 then id.

The following proposition will be clear without proof:

Proposition 3.9. Given epistemic model M and update model U exe-
cutable in M . Then Uone is isomorphic to U, and (M ⊗ Uone) is isomorphic
to (M ⊗ U).

This result brings our logic closer to the proposals in [5, 16] wherein
only one atom is simultaneously assigned a value. The relation to other
proposals will be discussed in Section 5.

4 Card game actions

In this section we apply the logic to model multi-agent system dynamics
in the general settings of various game actions for card players, such as
showing, drawing, and swapping cards. The precise description of card
game dynamics is a prerequisite to compute optimal strategies to play such
games [13, 18]. Card deals are also frequently used as standard represen-
tation for cryptographic bit exchange protocols [22, 34], where communica-
tions/transmissions should from our current perspective be seen as public
announcements and/or assignments.

Consider a deck of two Wheat, two Flax, and two Rye cards (w, x, y).
Wheat, Flax and Rye are called the commodities. Three players Anne, Bill,
and Cath (a, b, and c) each draw two cards from the stack. Initially, given
a deal of cards, it is common knowledge what the deck of cards is, that all
players hold two cards, and that all players (only) know their own cards.
For the card deal where Anne holds a Wheat and a Flax card, Bill a Wheat
and a Rye card, and Cath a Flax and a Rye card, we write wx.wy.xy, and
so on. As the cards in one’s hand are unordered, wx.wy.xy is the same deal
of cards as xw.wy.xy, but for improved readability we will always list cards
in a hand in alphabetical order. There are certain game actions that result

106 H. van Ditmarsch, B. Kooi

xy.wx.wy

wy.wx.xy

wx.wy.xy wx.xy.wy

xy.wy.wx

wy.xy.wx

a

a

a

b b

bc

c c wy.wx.xy

wx.wy.xy wx.wy.xy

wx.wy.xy

c ·

wy.ww.xy wy.wy.wy

yy.wy.wx

a

b
c

Figure 2. On the left is the game state after the cards have been dealt and
Anne received Wheat and Flax, Bill received Wheat and Rye, and Cath received
Flax and Rye. On the right is part of the game state that results if Anne trades
her Wheat card for Bill’s Rye card: only states resulting from trading Wheat for
Wheat, and (what really happened) Wheat for Rye, are present. The actual deal
of cards is underlined. In the figures, assume reflexivity and transitivity of access.
The dotted lines suggest that some states are indistinguishable for Cath from yet
other states but not present in the picture.

in players exchanging cards. This is called trading of the corresponding
commodities. Players attempt to get two cards of the same suit. That is
called establishing a corner in a commodity. Subject to game rules that are
non-essential for our exposition, the first player to declare a corner in any
commodity, wins the game. For example, given deal wx.wy.xy, after Anne
swaps her Wheat card for Bill’s Rye card, Bill achieves a corner in Wheat,
and wins. Of course, players can already achieve a corner when the cards
are dealt. This six-card scenario is a simplification of the ‘Pit’ card game
that simulates the trading pit of a stock exchange [31, 13, 15]; the full game
consists of 74 cards: 8 commodities of each 9 cards, and two special cards.

An initial game state wherein players only know their own cards and
nobody has won the game yet, can be modelled as an epistemic state. There
are six such card deals. Assume that the actual deal is wx.wy.xy. The
(hexagonally shaped) epistemic state (Pit, wx.wy.xy) in Figure 2 pictures
what players know about each other. All six card deals have to occur to
describe the epistemic information present, e.g., Anne cannot distinguish
actual deal wx.wy.xy from deal wx.xy.wy, the other deal wherein Anne
holds Wheat and Flax. But if the deal had been wx.xy.wy, Bill could not
have distinguished that deal from wy.xy.wx, wherein Anne holds Wheat and
Rye. Therefore, Anne considers it possible that Bill considers it possible
that she holds Rye, even though this is actually not the case.

The event wherein Anne and Bill swap one of their cards involves both
epistemic and ontic change. Assume that, given deal wx.wy.xy,

Ontic and Epistemic Change 107

Anne swaps her Wheat card for Bill’s Rye card.

This informal description is not specific enough to be modelled as an update.
In the first place, the role of Cath in the event is not specified. The event

where Cath is unaware of the swap taking place, is different from the event
where Cath observes the swap and where all agents are commonly aware
of this. If Cath had been unaware of the event, she would be mistaken
about the actual state of the world. For example, she would incorrectly still
believe that neither Anne nor Bill has a corner in a commodity, whereas
Bill holds two Wheat cards after the trade (and we assume that he has not
yet so declared). It is hard to conceive of such a scenario as a game: even
in imperfect information games, such as Pit, a basic condition of fairness
must be fulfilled for players to be able to act rationally. This means that
all events should at least be partially observable, and that ‘what actually
happened’ should be considered a possibility for all players. We therefore
assume, for now, that Cath learns that Anne and Bill swap one of their
cards, but not which card it is. (The ‘private swap’ will be modelled later,
as another example.)

Anne and Bill’s roles in the event are also underspecified. Anne may
knowingly choose a card to hand to Bill (the obvious interpretation), or
blindly draw one of her cards to hand to Bill. The latter is not obvious,
given this description, but becomes more so if we see it as Bill drawing
(therefore blindly) one of Anne’s cards. For now, assume the obvious. An-
other specification issue is that we may think of Bill as receiving Anne’s
Wheat card facedown and only then, in a subsequent action, picking it up.
From our modelling perspective, Bill already can be said to own the card
after he has been handed it, but before he has picked it up he does not yet
know that he owns it. We first assume that players immediately ‘see’ the
card they are being traded (in this case maybe not the most obvious choice,
but the simplest one to model). In other words: Anne and Bill jointly learn
the new ownership of both cards.

To describe this multi-agent system and its dynamics, assume a propo-
sitional language for three agents a, b, c and with atoms un

a expressing that
Anne holds n cards of suit u. For example, w2

a expresses that Anne holds
two Wheat cards. In the event where Anne and Bill swap Wheat for Rye,
Anne gets one less Wheat card, Bill gets one more Wheat card, Bill gets
one less Rye card, and Anne gets one more Rye card. In the update model
we have to distinguish separate events for each card deal wherein this swap
can take place, i.e., corresponding to wx.wy.xy, wx.xy.wy, and wy.xy.wx

(in general this depends on a feature of the local states of the card swapping
agents only, namely for both agents on the number of Wheat and Rye cards
in their hands, in this specific case that information is sufficient to determine
the entire card deal). In case the card deal is wx.wy.xy the precondition

108 H. van Ditmarsch, B. Kooi

and postcondition are

If (w1
a ∧ y0

a ∧ w1
b ∧ y1

b), then

w1
a := ⊥ and w0

a := ⊤ and w1
b := ⊥ and w2

b := ⊤

and y0
a := ⊥ and y1

a := ⊤ and y1
b := ⊥ and y0

b := ⊤.

We name this event swapwx.wy.xy
ab (w, y). If two cards of the same suit

are swapped, a simpler description is sufficient. For example, the event
wherein Anne and Bill swap Wheat given deal wx.wy.xy is described as
swapwx.wy.xy

ab (w,w) with (the same) precondition and (empty) postcondi-
tion

If (w1
a ∧ y0

a ∧ w1
b ∧ y1

b), then ∅.

From the point of view of an actual card deal, there are always four
different ways to exchange a single card, namely for each agent either the
one or the other card. All of these are clearly different for Anne and Bill,
because they either give or receive a different card (we assumed that they
know which card they give and see which card they receive). None of these
are different for Cath. For different card deals, card swapping events are
indistinguishable if those deals were indistinguishable. For example, the
event where (Anne and Bill swap Wheat and Rye given wx.wy.xy) is in-
distinguishable for Anne from the event where (Anne and Bill swap Wheat
and Rye given wx.xy.wy), because card deals wx.wy.xy and wx.xy.wy are
the same for Anne.

Therefore, the update model for Anne swapping her Wheat card for
Bill’s Rye card consists of 24 events. The preconditions and postconditions
of the events are as above. The accessibility relations are defined as, for
deals d, d′ ∈ dom(Pit) = {wx.wy.xy, wx.xy.wy, . . . } and cards q, q′, q1, q

′
1 ∈

{w, x, y}, and accessibility relations R(a), R(b), R(c) in the epistemic
model Pit:

(swapd
ab(q, q

′), swapd′

ab(q1, q
′
1)) ∈ R(a) iff (d, d′) ∈ R(a), q = q1 and q′ = q′1

(swapd
ab(q, q

′), swapd′

ab(q1, q
′
1)) ∈ R(b) iff (d, d′) ∈ R(b), q = q1 and q′ = q′1

(swapd
ab(q, q

′), swapd′

ab(q1, q
′
1)) ∈ R(c) iff (d, d′) ∈ R(c)

We name the update model Swap. The event of Anne and Bill swapping
Wheat for Rye has therefore been modelled as update (Swap, swapd

ab(w, y)).
The result of executing this update model in epistemic state (Pit, wx.wy.xy)
has the same structure as the update model, as the preconditions are unique
for a given state, and as access between events in the update model copies
that in the epistemic state. It has been partially visualized in Figure 2.
An intuitive way to see the update and the resulting structure in Fig-
ure 2, is as a restricted product of the Pit model and nine card swapping

Ontic and Epistemic Change 109

events swap(q, q1), namely for each combination of the three different cards.
Figure 2 then shows just two of those copies, namely for swap(w, y) and
swap(w,w). For example, the event swap(w, y) ‘stands for’ the three events
swapwx.wy.xy

ab (w, y), swapwy.xy.wx
ab (w, y), and swapwx.xy.wy

ab (w, y).
Why did we not define such swap(q, q1) as updates in their own right, in

the first place? Although intuitive, this is not supported by our modelling
language. We would like to say that the postconditions are ‘Anne gets
one less Wheat card, and Bill gets one more Wheat card,’ and similarly
for Rye. But instead, we only can demand that in case Bill already had a
Wheat card (extra precondition), then he now has two, etc. Incidentally, we
can also add non-deterministic choice to the update language by notational
abbreviation, as [α ∪ β]ϕ ↔ ([α]ϕ ∧ [β]ϕ) (this corresponds to taking the
union of the epistemic state transformations induced by α and β). We
can then define, in the update language, swap(w, y) = swapwx.wy.xy

ab (w, y)∪
swapwy.xy.wx

ab (w, y) ∪ swapwx.xy.wy
ab (w, y).

The case where Anne does not choose her card but Bill blindly draws
one of Anne’s can also be modelled as an update. The accessibility for Anne
then expresses that she is unaware which of her cards has been drawn:

(swapd
ab(q, q

′), swapd′

ab(q1, q
′
1)) ∈ R(a) iff (d, d′) ∈ R(a) and q′ = q′1

This is somewhat counterintuitive when we still suppose that Anne observes
which card she receives from Bill. (We’d have to imagine Bill blindly draw-
ing one of Anne’s cards, Anne putting her remaining card facedown on the
table, and receiving the card Bill gives her faceup.) A more realistic setting
is then that Bill draws one of Anne’s card and ‘pushes the card he gives
to Anne facedown towards her’. At that stage Anne can already be said
to own the card, but not yet to know that. All four swapping actions for
a given deal are indistinguishable for Anne (as they were and still are for
Cath).

Yet another event is where Anne chooses a card to show to Bill, and
receives Bill’s card facedown (before she picks it up). Access is now

(swapd
ab(q, q

′), swapd′

ab(q1, q
′
1)) ∈ R(a) iff (d, d′) ∈ R(a) and q = q1

Obviously, all these variables can be applied to Bill as well.

Picking up a card. The action of picking up a card after it has been
handed to you, has another description (see, using another dialect of the
language, [15]). One aspect is interesting to observe in the current context.
Imagine that given deal wx.wy.xy after Anne and Bill swapping Wheat and
Rye, Bill receives the card facedown in the following way: after having laid
down his remaining card (a Wheat card) facedown on the table, Anne puts
her Wheat card facedown on top of it or under it in a way that Bill cannot

110 H. van Ditmarsch, B. Kooi

see that. He now picks up his two cards. How does Bill know which of
the two Wheat cards that he then holds, is the received card? He does not
know, but he does not care either. By looking at his cards after the swap,
he effectively learns that he holds two Wheat cards (which was already true
after having received the card), and after that event he then knows that he
holds two Wheat cards. A neat way to express that he learns the suit of the
card he received, is to say that there is a suit for which he learns to have
one more card than he knows. This makes sense in the general Pit game
setting wherein one only is allowed to trade a certain number of cards of
the same suit. This is formalized in our setting by an update (U, e) with an
event with precondition pre(e) = w2

b ∧¬[b]w2
b (and empty postcondition), as

a result of which Bill then knows to hold two Wheat cards, i.e., [U, e][b]w2
b .

Private swap. The event where Anne and Bill swap Wheat for Rye but
where Cath is unaware of the event is modelled by a four-event update with
events swapwx.wy.xy

ab (w, y), swapwy.wx.xy
ab (w, y), swapwx.wy.xy

ab (w, y) and skip,
such that for Anne and Bill access among the swap events is as already dis-
cussed (including all variations), but where ‘Cath thinks nothing happens’:
for the deals d in the three swap events: (swapd

ab(w, y), skip) ∈ R(c), and
(skip, skip) ∈ R(a), R(b), R(c).

5 Comparison to other approaches

Action model logic. Dynamic modal operators for ontic change, in ad-
dition to similar operators for epistemic change, have been suggested in
various recent publications. As far as we know it was first mentioned by
Baltag, Moss, and Solecki as a possible extension to their action model logic
(for epistemic change), in [5]. This was by example only and without a
language or a logic. A precise quotation of all these authors say on ontic
change may be in order:

Our second extension concerns the move from actions as we have been

working them to actions which change the truth values of atomic sen-

tences. If we make this move, then the axiom of Atomic Permanence5

is no longer sound. However, it is easy to formulate the relevant ax-

ioms. For example, if we have an action α which effects the change

p := p∧¬q, then we would take an axiom [α]p ↔ (PRE(α) → p∧¬q).
Having made these changes, all the rest of the work we have done goes

through. In this way, we get a completeness theorem for this logic. [5,
p. 24]

The logic that we present here is a realization of their proposal, and we
can confidently confirm that the authors were correct in observing that
“all the rest (. . .) goes through”. To obtain such theoretical results the

5 I.e., [α]p↔ (PRE(α) → p), [5, p. 15].

Ontic and Epistemic Change 111

notion of simultaneous postconditions (assignments) for a finite subset of
atomic propositional letters is essential; this feature is not present in [5]
(but introduced in [20]).

In a later proposal by Baltag [2] a fact changing action flipP is proposed
that changes (‘flips’) the truth value of an atom P , with accompanying
axioms (for the proper correspondent action α resembling a single-pointed
action model) [α]p ↔ (pre(α) → ¬p) if “p changes value (flips) in α”, and
otherwise [α]p↔ (pre(α) → p) [2, p. 29]. The approach is restricted to ontic
change where the truth value of atoms flips. In the concluding section of
[2], the author defers the relation of this proposal to a general logic of ontic
and epistemic change to the future.

Recent work in dynamic epistemics. More recently, in a Multi-Agent
Systems application-driven line of research [16, 15] assignments are added
to the relational action language of [12] but without providing an axiomati-
zation. In this setting only change of knowledge is modelled and not change
of belief, i.e., such actions describe transformation of S5 models only, such
as Kripke models corresponding to interpreted systems.

A line of research culminating in Logics of communication and change
[10] also combines epistemic and ontic change. It provides a more expressive
setting for logical dynamics than our approach. The logic presented here
is a sublogic of LCC. In [10] the focus is on obtaining completeness via
so-called reduction axioms for dynamic epistemic logics, by extending the
basic modal system to PDL. Our treatment of postconditions, also called
substitutions, stems from [20]. In the current paper we focus on specific
semantic results, and, as said, we use a dynamic epistemic ‘dialect’, not full
PDL.

A recent contribution on combining public ontic and epistemic change,
including detailed expressivity results for different combinations of static
and dynamic modalities, is found in [28]. Our work uses a similar approach
to ontic events but describes more complex than public events: the full
generality of arbitrarily complex events involves exchange of cards among
subgroups of the public, and other events with a ‘private’ (as opposed to
public) character.

Finally, a general dynamic modal logic is presented in [33], where ontic
changes are also studied. The semantics of this logic uses tree-like struc-
tures, and fixed points are introduced in the language to be able to reason
about updates.

Belief revision. An independent recent line of investigation combining
epistemic with ontic change arises from the belief revision community. Mod-
elling belief revision, i.e., epistemic change, by dynamic operators is an old
idea going back to Van Benthem [7]. In fact, this is one of the two original
publications—together with [32]—that starts the area of dynamic epistemic

112 H. van Ditmarsch, B. Kooi

logic. For an overview of such matters see [3, 14, 17]. But modelling on-
tic change—known as belief update [27]—in a similar, dynamic modal, way,
including its interaction with epistemic change, is only a recent focus of on-
going research by Herzig and collaborators and other researchers based at
the Institut de Recherche en Informatique de Toulouse (IRIT) [25, 26, 29].
Their work sees the execution of an event as so-called progression of infor-
mation, and reasoning from a final information state to a sequence of events
realizing it as regression—the last obviously relates to planning. The focus
of progression and regression is the change of the theory describing the in-
formation state, i.e., the set of all true, or believed, formulas. As already
mentioned in Section 3, the results for arbitrary belief change in Proposi-
tion 3.2 and following corollaries can potentially be applied to model belief
update in the AGM tradition.

Interpreted systems. In a way, dynamic epistemic logics that combine
epistemic and ontic change reinvent results already obtained in the inter-
preted systems community by way of knowledge-based programs [30, 21]:
in that setting, ontic and epistemic change are integrated. Let us point out
some correspondences and differences, using the setting of van der Mey-
den’s [30]. This work investigates the implementation of knowledge-based
programs. The transition induced by an update between epistemic states,
in our approach, corresponds exactly to a step in a run in an interpreted
system that is the implementation of a knowledge-based program; the rela-
tion between both is explicit in van der Meyden’s notion of the progression
structure. Now the dynamic epistemic approach is both more general and
more restrictive than the interpreted systems approach. It is more restric-
tive because dynamic epistemics assumes perfect recall and synchronicity.
This assumption is implicit: it is merely a consequence of taking a state
transition induced by an update as primitive. But the dynamic epistemic
approach is also somewhat more general: it does not assume that accessibil-
ity relations for agents are equivalence relations, as in interpreted systems.
In other words, it can also be used to model other epistemic notions than
knowledge, such as introspective belief and even weaker notions.

Knowledge-based programs consist of joint actions 〈ae, a1, . . . , an〉 where
ae is an action of the environment and where a1, . . . , an are simultaneous
actions by the agents 1 to n. An agent a acts according to conditions of
the form ‘if ϕ′ do a′, if ϕ′′ do a′′, . . . ’ etc. Let us overlook the aspect that
conditions ϕ′ have the form of known formulas (by agent a). Still, such
statements look familiar to our alternative format for what goes on in an
event, as in ‘for event e: if ϕ, then p1 := ψ1, . . . , and pn := ψn.’ (see
after Definition 2.4 on page 91). This correspondence is not really there,
but the similar format is still revealing. The different cases in a knowledge-
based program are like the different events in an update model, and they

Ontic and Epistemic Change 113

equally express non-determinism. This is a correspondence. There are also
differences. In dynamic epistemics, the condition ϕ in ‘if ϕ, then p1 := ψ1,
. . . ’ is both an executability precondition and an observation. Inasmuch
as it is an observation, it determines agent knowledge. In the interpreted
systems approach, observations are (with of course reason) modelled as
different from preconditions. The assignments such as p1 := ψ1 in the ‘then’
part of event descriptions are merely the ontic part of that event, with the
‘if’ part describing the epistemic part. Epistemic and ontic features together
correspond to actions such as a′ in ‘if ϕ′ do a′’. In the interpreted systems
approach, epistemic and ontic features of information change are therefore
not separately modelled, as in our approach.

6 Further research

An unresolved issue is whether updates can be described as compositions of
purely epistemic events (preconditions only) and purely ontic events (post-
conditions only). In [25] it is shown for public events, for a different logical
(more PDL-like) setting. Such a result would be in the line of our other
normalization results, and facilitate comparison to related approaches. The
result in Section 3.1 seems to suggest this is possible, since a transition from
one epistemic model to another is achieved by an epistemic event followed
by an ontic event. However, the method described in Section 3.1 is geared
towards the original epistemic model. We would like a decomposition that
is based solely on the update, which would work regardless of the particular
epistemic model to which it is applied.

The logic can be applied to describe cryptographic bit exchange proto-
cols, including protocols where keys change hands or are being sent between
agents. The logic is very suitable for the description of protocols for com-
putationally unlimited agents, such as described in the cited [22, 34]. Using
dynamic logics may be an advantage given the availability of model check-
ing tools for such logics, as e.g., the very versatile epistemic model checker
DEMO [19] by van Eijck. The current version of DEMO only allows epis-
temic events. But van Eijck and collaborators are in the process of extending
DEMO with assignments (postconditions), needed to model events that are
both epistemic and ontic.

Our more fine-grained analysis of events may contribute to the descrip-
tion and verification of more complex protocols that also include non-public
events. An example that demonstrates the applicability of the logic to the
analysis of such protocols is the (solution of the) ‘one hundred prisoners and
a light bulb’ riddle (see e.g., [35]), of which we have a detailed analysis in
preparation that we consider of independent interest.

The results for ‘arbitrary belief change’ suggest yet another possibly
promising direction. Under certain conditions arbitrary formulas are real-

114 H. van Ditmarsch, B. Kooi

izable. What formulas are still realizable if one restricts the events to those
considered suitable for specific problem areas, such as forms of multi-agent
planning? And given a desirable formula (a ‘postcondition’ in another sense
of the word), what are the initial conditions such that a sequence of events
realizes it? This is the relation to AI problems concerning regression as
pointed out in the introductory section [25], and also to reasoning given
specific protocols, such as always has been the emphasis for knowledge-
based programs in the interpreted systems community [21], and as recently
investigated in [11] in a dynamic epistemic context.

Acknowledgments

We thank the anonymous reviewers of this contribution to the volume. We
also thank Johan van Benthem and Wiebe van der Hoek for their comments
and their encouragement.

References

[1] C.E. Alchourrón, P. Gärdenfors & D. Makinson. On the logic of theory
change: partial meet contraction and revision functions. Journal of
Symbolic Logic, 50(2):510–530, 1985.

[2] A. Baltag. A logic for suspicious players: Epistemic actions and belief
updates in games. Bulletin of Economic Research, 54(1):1–45, 2002.

[3] A. Baltag, H.P. van Ditmarsch & L.S. Moss. Epistemic logic and infor-
mation update. In J.F.A.K. van Benthem & P. Adriaans, eds., Hand-
book on the Philosophy of Information. Elsevier, Amsterdam. Forth-
coming.

[4] A. Baltag & L.S. Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

[5] A. Baltag, L.S. Moss & S. Solecki. The logic of public announcements,
common knowledge, and private suspicions. Tech. rep., Centrum voor
Wiskunde en Informatica, Amsterdam, 1999. CWI Report SEN-R9922.

[6] J. Barwise & L.S. Moss. Vicious Circles: On the Mathematics of Non-
Wellfounded Phenomena. CSLI Publications, Stanford, 1996.

[7] J.F.A.K. van Benthem. Semantic parallels in natural language and
computation. In H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido,
D. Lascar & M.R. Artalejo, eds., Logic Colloquium ’87. North-Holland,
Amsterdam, 1989.

Ontic and Epistemic Change 115

[8] J.F.A.K. van Benthem. Dynamic odds and ends. Tech. rep., University
of Amsterdam, 1998. ILLC Publication ML-1998-08.

[9] J.F.A.K. van Benthem. ‘One is a lonely number’: on the logic of com-
munication. In Z. Chatzidakis, P. Koepke & W. Pohlers, eds., Logic
Colloquium ’02, vol. 27 of Lecture Notes in Logic. Association for Sym-
bolic Logic, 2006.

[10] J.F.A.K. van Benthem, J. van Eijck & B.P. Kooi. Logics of communi-
cation and change. Information and Computation, 204(11):1620–1662,
2006.

[11] J.F.A.K. van Benthem, J.D. Gerbrandy & E. Pacuit. Merging frame-
works for interaction: DEL and ETL. In D. Samet, ed., Proceedings of
the 11th Conference on Theoretical Aspects of Rationality and Knowl-
edge (TARK), pp. 72–81. UCL Presses Universitaires de Louvain, 2007.

[12] H.P. van Ditmarsch. Descriptions of game actions. Journal of Logic,
Language and Information, 11(3):349–365, 2002.

[13] H.P. van Ditmarsch. Some game theory of Pit. In C. Zhang, H.W. Gues-
gen & W.-K. Yeap, eds., PRICAI 2004: Trends in Artificial Intelli-
gence, 8th Pacific Rim International Conference on Artificial Intelli-
gence, Auckland, New Zealand, August 9–13, 2004, Proceedings, vol.
3157 of Lecture Notes in Computer Science, pp. 946–947. Springer,
2004.

[14] H.P. van Ditmarsch. Belief change and dynamic logic. In J. Del-
grande, J. Lang, H. Rott & J.-M. Tallon, eds., Belief Change in Ratio-
nal Agents: Perspectives from Artificial Intelligence, Philosophy, and
Economics, no. 05321 in Dagstuhl Seminar Proceedings. IBFI, Schloss
Dagstuhl, 2005.

[15] H.P. van Ditmarsch. The logic of Pit. Synthese, 149(2):343–375, 2006.

[16] H.P. van Ditmarsch, W. van der Hoek & B.P. Kooi. Dynamic epistemic
logic with assignment. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
05), pp. 141–148. ACM Inc., New York, 2005.

[17] H.P. van Ditmarsch, W. van der Hoek & B.P. Kooi. Dynamic Epistemic
Logic, vol. 337 of Synthese Library. Springer, 2007.

[18] S. Druiven. Knowledge Development in Games of Imperfect Informa-
tion. Master’s thesis, University of Groningen, 2002.

116 H. van Ditmarsch, B. Kooi

[19] J. van Eijck. Dynamic epistemic modelling. Tech. rep., Centrum voor
Wiskunde en Informatica, Amsterdam, 2004. CWI Report SEN-E0424.

[20] J. van Eijck. Guarded actions. Tech. rep., Centrum voor Wiskunde en
Informatica, Amsterdam, 2004. CWI Report SEN-E0425.

[21] R. Fagin, J. Halpern, Y. Moses & M. Vardi. Reasoning about Knowl-
edge. MIT Press, Cambridge, MA, 1995.

[22] M. Fischer & R. Wright. Bounds on secret key exchange using a random
deal of cards. Journal of Cryptology, 9(2):71–99, 1996.

[23] J. Gerbrandy & W. Groeneveld. Reasoning about information change.
Journal of Logic, Language, and Information, 6(2):147–169, 1997.

[24] D. Harel, D. Kozen & J. Tiuryn. Dynamic Logic. MIT Press, Cam-
bridge, MA, 2000. Foundations of Computing Series.

[25] A. Herzig & T. De Lima. Epistemic actions and ontic actions: A unified
logical framework. In J.S. Sichman, H. Coelho & S.O. Rezende, eds.,
Advances in Artificial Intelligence — IBERAMIA-SBIA 2006, 2nd In-
ternational Joint Conference, 10th Ibero-American Conference on AI,
18th Brazilian AI Symposium, Ribeirão Preto, Brazil, October 23–27,
2006, Proceedings, vol. 4140 of Lecture Notes in Computer Science, pp.
409–418. Springer, 2006.

[26] A. Herzig, J. Lang & P. Marquis. Action progression and revision
in multiagent belief structures, 2005. Manuscript presented at Sixth
Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC
2005).

[27] H. Katsuno & A. Mendelzon. On the difference between updating a
knowledge base and revising it. In J.F. Allen, R. Fikes & E. Sandewall,
eds., Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91). Cambridge, MA,
USA, April 22–25, 1991, pp. 387–394. Morgan Kaufmann, 1991.

[28] B.P. Kooi. Expressivity and completeness for public update logics via
reduction axioms. Journal of Applied Non-Classical Logics, 17(2):231–
253, 2007.

[29] N. Laverny. Révision, mises à jour et planification en logique doxas-
tique graduelle. Ph.D. thesis, Institut de Recherche en Informatique de
Toulouse (IRIT), Toulouse, France, 2006.

Ontic and Epistemic Change 117

[30] R. van der Meyden. Constructing finite state implementations of
knowledge-based programs with perfect recall. In L. Cavedon, A. Rao &
W. Wobcke, eds., Intelligent Agent Systems, Theoretical and Practical
Issues (based on PRICAI’96), vol. 1209 of Lecture Notes in Computer
Science, pp. 135–151. Springer, 1997.

[31] Pit game rules. See http://www.hasbro.com/common/instruct/pit.
pdf.

[32] J. Plaza. Logics of public communications. In M. Emrich, M. Pfeifer,
M. Hadzikadic & Z. Ras, eds., Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems: Poster Ses-
sion Program, pp. 201–216. Oak Ridge National Laboratory, 1989.
ORNL/DSRD-24.

[33] G.R. Renardel de Lavalette. Changing modalities. Journal of Logic
and Computation, 14(2):253–278, 2004.

[34] A. Stiglic. Computations with a deck of cards. Theoretical Computer
Science, 259(1–2):671–678, 2001.

[35] W. Wu. 100 prisoners and a lightbulb, 2001. Manuscript.

