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Chapter 1

Introduction

Optical spectroscopy is one of the oldest techniques used to determine the proper-
ties of materials [1]. Nowadays it is used in an ample variety of fields (e.g. biology,
physics, chemistry, astrophysics, materials science, paint restoration, forensics)
and materials (e.g. polymers, ferromagnets, organics) in different forms (e.g.
solids, liquids, gases). In the work presented in this thesis, optical spectroscopy
has been used in different materials of current interest in solid state physics. This
introductory chapter describes why optical spectroscopy is important and what
can be learnt from it. Furthermore, a brief review of the materials studied in this
thesis will be presented. Finally the scope of the present work will be outlined.

1.1 Optical Spectroscopy: Why?

In a dictionary-like definition, it can be said that optical spectroscopy is the use of
light to investigate the properties of a material. For the purposes of this work, it
has been used to determine the optical conductivity, σ(ω), of the material under
study and from there investigate its electronic structure or electronic properties.
The question is then, why is optical spectroscopy a good tool to such investigation?
To answer this question, I would like to follow A. J. Millis [2] and A. Chattopad-
hyay et al. [3] who have stated the answer in a simple way. In the first place let us
consider the (complex) optical conductivity which simply describes the response
of a material to an electric field (for more details see Chapter 2):

J(ω) = σ(ω)E(ω) (1.1)

In other words, the optical conductivity describes how the electrons move in re-
sponse to an electrical field and, therefore, it can give information about the
mechanism associated with this motion. In strongly correlated systems, at low
frequencies, the dominant process is the motion from one site to other. This
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Figure 1.1: (a) Localized moments: Heisenberg model. (b) Itinerant magnetism: Stoner
and Hirsch models (adapted from References [4] and [5]).

motion is the result of the interplay between repulsive electron-electron interac-
tions (localizing effect) and wave function hybridization (delocalizing effect). This
interplay is the essence of strong correlations.

1.2 Magnetism and Strong Correlations

1.2.1 Localized vs. Itinerant Magnetism

The ultimate origin of magnetism in solids is the magnetic moment of their in-
dividual atoms (and which originates from the spin and angular momenta of the
electron). However, the main question is how this microscopic magnetism gives
rise to the macroscopic magnetism of solids appearing in some materials below a
transition temperature, called Curie temperature, TC . There are two main and
opposite streams: localized and itinerant models. The former models start with
the electronic states localized in real space, while the latter start with those states
localized in reciprocal space [4]. Both situations are schematically represented in
Fig. 1.1.

The idea of localized moments is the most intuitive one. It was introduced by
Weiss, he argued that the individual magnetic moments interact between them
and therefore can align. He represented this interaction by a mean molecular field.
Heisenberg attributed this field to the quantum mechanical exchange interaction
between neighboring atoms. If Si is the atomic spin operator at a given site, the
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Figure 1.2: Thermal excitation in a itinerant polarized system (after Ref. [4]). It
consists of a spin flip excitation of an electron across the Fermi level. This excitations
produce a spin density density fluctuation.

Heisenberg model for magnetism is:

H =
∑
i,j

JijSi · Sj (1.2)

where Jij is the interatomic exchange interaction constant. Within this model,
the Curie-Weiss law (i.e. χ−1 ∝ T −TC , where χ is the magnetic susceptibility) is
naturally explained. Moreover, materials considered as having localized moments
are expected to have a saturation magnetization, µS , which is an integer multiple
of the Bohr magneton, µB .

On the other hand, magnetism in metals is usually explained from an itinerant
picture. One of the main reasons to invoke a different mechanism is that the
saturation magnetization, µS , is not an integer multiple of µB

∗. In the Stoner
model, magnetism in metals arise from a splitting between the up- and down-
spin bands and it is favored when the density of states is high at the Fermi
level. However, in this form, the Stoner model fails to reproduce the measured
TC and the observed Curie-Weiss law above it. Improvements to this theory have
been made that take into account the effect of spin fluctuations (see Fig. 1.2) in
a self consistent renormalized (SCR) manner [4]. It is claimed [4] that one of
the achievements of SCR theory is the description of several properties of weak
itinerant ferromagnets. Several features define this kind of ferromagnets:

a. Low Curie temperature. Usually, less than 50 K.

b. They follow a Curie-Weiss law quite precisely in the temperature interval
TC < T < 10 TC .

∗Other mechanisms involving localized moments can also predict non integer values of µS .
For example the combination of of spin-orbit interaction and crystal field. Other example is
given in Ref. [6] where a Kondo-like mechanism is described and which is responsible for the
screening of part of the magnetic moment.
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Figure 1.3: Temperature dependence of ρDC in ZrZn2. (a) Data from Ref. [8] (b) Anal-
ysis by Moriya [4] showing the expected temperature dependencies for spin fluctuations
below and above TC , respectively.

c. The magnetization inferred from the Curie-Weiss law is several times the
saturation magnetization.

It usually appears in materials whose components are not magnetic in elemental
form like ZrZn2 and ScIn3. One of the materials studied in this thesis, MnSi, is
considered to be well described by the SCR theory. It indeed describes several of
its properties like the negative magnetoresistance and the temperature behaviour
of the DC resistivity, ρDC , below TC (see Fig. 1.3 for the predictions of the SCR
theory regarding ρDC). However, as it will be seen in Chapter 3, the descrip-
tion is not complete. Moreover, other silicides showing itinerant ferromagnetism
(Chapter 4) do not follow completely its predictions, namely they show a positive
magnetoresistance [7].

More recently, another mechanism for magnetism in itinerant systems has
been proposed [5]. This process is sketched in Fig. 1.1. It has been found that
magnetism can arise without exchange splitting but with a change in the width of
the bands upon spin polarization (although both effects can be combined). The
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Figure 1.4: Reflectivity of EuB6 at several temperatures. The inset shows the temper-
ature dependence of the plasma frequency and width of the Drude peak (from Ref. [11]).

difference is that ferromagnetism from exchange splitting arises from a gain in
potential energy, while in this new model it arises from gain in kinetic energy [5].
This implies that this effect can be seen in optics (see § 1.3). The reduction in
kinetic energy produces a transfer of the spectral weight contained in the optical
conductivity from high to low frequencies as the system enters to the magnetic
state (and vice versa above TC). Hirsch has argued that this effect could be the
driving mechanism in all the different manifestations of metallic ferromagnetism
[9]. In fact, optical experiments in manganites (see Chapter 6), manganese doped
GaAs [10], and rare earth hexaborides [11] seem to corroborate this point of view.
As an example, the optical properties of EuB6 [11] are shown in Fig. 1.4 where
the increase of the spectral weight at low frequencies is manifested by the increase
of the plasma frequency of the Drude peak. In contraposition to this trend, it will
be seen in Chapters 3 and 4 that the spectral weight at low frequencies decreases
when entering the magnetic ordered state in various transition metal silicides.

1.2.2 Heavy Fermion Systems

There are systems where we can find both kind of electrons. On one side, there are
electrons which are localized and are responsible for the magnetic properties. On
the other side, electrons which are delocalized and are responsible for the transport
properties. If they interact it gives rise to a multitude of interesting phenomena.
One of such systems are the so-called heavy fermion systems. Heavy fermion
systems are compounds which usually have an atom (e.g. Ce or U) containing
well localized 4f or 5f electrons.† Below a characteristic temperature T ∗ heavy

†Recently some compounds have appeared which only contain d electrons (e.g. LiV2O4 [12])
that have similar properties as the heavy fermion compounds. Whether they are also governed
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Figure 1.5: (a) Specific heat, (b) resistivity, and magnetic susceptibility in the first
heavy fermion metal discovered, CeAl3 [15].

fermion systems show a Fermi-liquid behaviour with large effective masses, m∗,
of the quasiparticles. In fact, the physical quantities describing the system have
the same temperature dependencies as the normal metals but with much larger
proportional constants and at lower temperatures. [13, 14]

Three conditions are usually taken as defining a heavy fermion system at low
temperatures‡:

a. The specific heat is linear with temperature, C = γT ;

b. The magnetic susceptibility, χ, is constant (Pauli like);

c. The Wilson’s ratio, RW = π2k2
Bχ

3µ2
eff

γ
, is of order unity (µeff is the effective

moment of the quasiparticles).

Since γ and χ are proportional to N(0) which, in turn, is proportional to the ef-
fective mass of the fermionic excitations, m∗, their large values can be interpreted

by the same physical process is an ongoing debate.
‡Remember that for a Fermi gas the specific heat and the susceptibility at low temperatures

are given, respectively, by [16]: C = 1
3
π2N(0)k2

BT , and χ = N(0)µ2, where N(0) is the density
of states at the Fermi level and µ is the magnetic moment of the electron
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Figure 1.6: Simplest example of a strongly correlated system (after Ref. [13]). The
system contains two orbitals denoted L and F with energies εL and εF , respectively.
Between them, there is an hybridization V . Putting two electrons in the orbital F costs
an energy U . Electron interactions in the orbital L and between the two orbitals are
neglected.

as an enhancement of the mass of the quasiparticles. If conditions a.-c. are met,
it is possible to say that there is a one-to-one correspondence between the quasi-
particle excitations in this system and those in a Fermi gas. Other quantities
behave also as in normal metals, e.g. the DC resistivity which is proportional to
T 2. As an example consider Fig. 1.5 where C, χ and ρDC of CeAl3 are plotted
[15]. If R 6= 1 the interaction between quasiparticles is also important. When
T > T ∗, the excitations lose their heavy fermion character: the specific heat lev-
els off and the susceptibility changes from Pauli- to Curie-like. In the remainder
of this subsection, the mechanism originating this behaviour is sketched.

A Strongly Correlated Molecule

Following Fulde [13], let us first consider the system depicted in Fig. 1.6 which
contains the main ingredients necessary to understand the heavy fermion systems.
The Hamiltonian describing it is:

H = εl

∑
σ

l†σlσ + εf

∑
σ

f†σfσ + V
∑
σ

(
l†σfσ + f†σlσ

)
+ Unf

↑n
f
↓ (1.3)

each term describes, respectively, kinetic energy in orbital L, kinetic energy in
orbital F , hybridization between the two orbitals, and electron interaction in
orbital F . For V = 0 and V 6= 0 the accessible states and their are sketched in
Fig. 1.7. In the former case, the ground state is 4-fold degenerate (one electron in
L and the other in F , therefore forming a singlet and a triplet states) and there
is one excited level§ (two electrons in L). If the hybridization is turned on, the
degeneracy of the ground state is partially lifted since now the singlet and the
excited states are coupled. The singlet lowers its energy by 2V 2/∆ε while the
excited state increases its energy by the same amount. The occupancy of F , in
this case, is nf = 1− 2(V 2/∆ε)2 < 1.

§There is another excited state (2 electrons in F ) not considered due to the large value of U
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Figure 1.7: Accessible states and energies in the system considered in Fig. 1.6 for (a)
V = 0 and (b) V 6= 0.

The system, thus, has a characteristic temperature T ∗ ≡ 2V 2/∆ε. At T � T ∗

we can distinguish two different kind of excitations:

a. low-lying spin excitations (between the singlet and triplet states), with an
energy kBT ;

b. excitations involving charge degrees of freedom (promotion of an f electron
into the ligand orbital), with an excitation energy ∆ε.

The basic ingredients of this system are the following. At T = 0, the ground
state is a singlet and the moment of the partially filled F state is zero. When
the temperature increases, with T � T ∗, the triplet state starts to be populated.
Since the triplet has a moment, the magnetic moment of the f electron starts
to appear. For T � T ∗, the magnetic moment is fully present and the singlet
character of the ground state is not noticeable.

Kondo Problem: A Single Magnetic Impurity

Now, let us consider the case of a magnetic impurity, e.g. Ce, embedded in a
metal. This impurity has a total moment j whose z component is described by
the quantum number m. Then the Hamiltonian describing the system is:

H =
∑
kσ

ε(k)c†kσckσ + εf

∑
m

f†mfm

+
∑

kmσ

[
V ∗

mσ(k)c†kσfm + Vmσ(k)f†mckσ

]
+ U

2

∑
m6=m′

nf
mnf

m′
(1.4)
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Figure 1.8: Single magnetic impurity embedded in a metal. After one of the conduction
electrons is moved to the Fermi level, the resulting system is similar to the one depicted
in Fig. 1.6. The f impurity can form a singlet with the conduction electron which lost
its companying electron.

where, similarly as before, the terms represent the kinetic energy of the conduction
electrons (which now form a band), the kinetic energy of the f -electrons (now the f
orbital is νf -fold degenerate), the hybridization between conduction electrons and
the f -electrons, and the electron repulsion between f -electrons, respectively. The
situation for νf = 2 is represented in Fig. 1.8. If one of the conduction electrons
is promoted to the Fermi level, the situation is similar to the one described above
for the L−F system. The remaining conduction electron can form a singlet with
the f -electron. The difference with the L−F system is that the singlet formation
can occur with different conduction-electron states. Those which are closer to
εF are more important since for them it is easier to promote an electron to the
Fermi level. It results that, in the U → ∞ limit and in the presence of weak
hybridization, the energy of the singlet state is always lower that the energy of
the multiplets, just as in the case presented above. The lowering of the energy
due to hybridization is (for details of the calculation see [13]):

ε = −D e−|εf |/(νf N(0)V 2)

where a constant density of states is assumed with height N(0) and a lower cutoff
D. To this energy it is customary to associate a characteristic temperature TK

(Kondo temperature), kBTK = −ε. At T � TK we find again the two kind of
excitations characteristic of strongly correlated systems.

The Kondo Lattice

Finally, let us consider an array of magnetic atoms (which is the case of heavy
fermion systems). The respective Hamiltonian can be obtained by generalizing
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Eq. 1.4:

H =
∑
knσ

εn(k)a†knσaknσ +
∑
mi

εfmf†m(i)fm(i)

+ 1√
No

∑
imknσ

Vmσ(k, n)
[
a†knσfm(i)e−ik·Ri + f†m(i)aknσeik·Ri

]
+U

2

∑
i,m 6=m′

nf
m(i)nf

m′(i)

(1.5)

where i labels the No f -sites at positions Ri, and n is a band index. In the limit
U →∞, the previous Hamiltonian can be solved using a mean field approximation
[13, 17] where it is assumed that the strong repulsion between the f electrons can
be taken into account by a renormalization of the hybridization matrix element
Vmσ(k, n) → rVmσ(k, n) = Ṽmσ(k, n). With this method, we can map the many-
body problem (Eq. 1.5) into a one-particle problem:

HMF =
∑
klτ

El(k)c†lτ (k)clτ (k) + ΛNo(r2 − 1)

where c†lτ (k) denotes the creation operators of quasiparticles in branch l with pseu-
dospin τ , and Λ is a Lagrange parameter. For the case of one conduction electron
band and an f orbital degeneracy νf = 2 (so the index m is not necessary), at
T = 0, two quasiparticle bands are found:

El(k) =
1
2
{[ε(k) + ε̃f ]∓W (ε(k))} (1.6)

where W (ε(k)) =
√

[ε(k) + ε̃f ]2 + 4Ṽ 2, and ε̃f = µ + Ṽ 2

ε(kF )−µ if the condition
El(kF ) = µ is applied (µ is the chemical potential). This situation is depicted in
Fig. 1.9.

The unknowns r and Λ can be expressed in terms of the system parameters. In
particular, it is found that Λ = νfN(0)V 2 ln

(
[ε(kF )−µ]µ

Ṽ 2

)
which permits defining

a characteristic temperature:

kBT ∗ ≡ µ e
− Λ

νf N(0)V 2 (1.7)

With this definition, we obtain ε̃f = µ + kBT ∗. The characteristic temperature
T ∗ is related to the energy gain of the system due to hybridization. In fact it can
be shown that the difference between the hybridized system, E, and the energy
without hybridization, E(0), is

E − E(0) = −kBT ∗

The temperature T ∗ plays the role of a Kondo temperature for the lattice (they
are not the same and usually T ∗ < TK). Calculations at finite temperatures show
that there exists a critical temperature of the order of T ∗ below which there exist
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Figure 1.9: Schematic representation of the hybridization gap (adapted from References
[13] and [17]) (a) At high temperatures (T � T ∗), in the Kondo lattice, the conduction
electrons and the magnetic moments are independent. (b) At low temperatures (T �
T ∗), both set of electrons hybridize, and the system can be represented as renormalized
quasiparticles which occupy two bands. If the Fermi energy lies within the lower band,
the system is a heavy fermion metal.

solutions to the problem with r 6= 0. Above this critical temperature, it is found
that r = 0 and the conduction electrons are completely decoupled from the f
electrons.

As we have seen, the origin of the heavy fermion behaviour in a Kondo lattice is
the weak hybridization between the f electrons with the electrons of neighboring
atoms. As in the case of the single impurity problem, there are two different kind
of excitations:

a. Low-energy singlet-triplet excitations associated with each f site. A direct
evidence of this is the large quasiparticle density of states inferred from the
large specific heat (i.e. the f electrons are seemingly located right at the
Fermi energy).

b. High-energy excitations involving charge degrees of freedom. This is evinced
in photoemission experiments where it takes 2 eV to promote an f electron
into an unoccupied conduction electron state above the Fermi energy, in
apparent contradiction to the f electrons seemingly located right at εF .

As we will see in Chapter 5, with optical spectroscopy it is possible to see both
kind of excitations. In particular, the low-energy optical response is a direct
consequence of the band structure renormalization depicted in Fig. 1.9.

Because the f sites form a lattice, the excitations are coupled to each other.
Below certain temperature Tcoh (such that Tcoh < T ∗), they form coherent quasi-
particle states with large effective masses (which are seen in the specific heat, for
example). Tcoh can be approximately determined by measuring the temperature
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Tcoh

T*

Figure 1.10: DC resistivity of the heavy fermion compounds studied in Chapter 5 (from
[18]). The arrows indicate Tcoh and T ∗, respectively. In these compounds, however, below
Tcoh the resistivity is linear with temperature indicating a non-conventional formation
of the coherent state. Moreover, CeRhIn5 does not show the typical behavior of a heavy
fermion system. One reason of the reasons is that this compound orders antiferromag-
netically below 4 K. The figure also shows the resistivity of two of the relative compounds
not containing f electrons.

dependence of the DC resistivity (see Fig. 1.10). Starting from high temperatures
(usually room temperature), ρDC decreases with decreasing temperature until it
reaches a minimum associated with T ∗, from there ρDC increases (this behavior
is similar to the one found in the single impurity system). However, in contrast to
the the single impurity problem, ρDC in the lattice reaches a maximum (labeled
as Tcoh). Below Tcoh, the resistivity decreases due to the formation of coher-
ent Bloch-like states, and ρDC = AT 2 is observed, typical of electron-electron
correlations.

For T > Tcoh, the mean-free path of the excitations of the f electron sys-
tem becomes so short that the coherence starts to be destroyed and the heavy
quasiparticles start to disappear. For Tcoh � T ∗, the specific heat contains con-
tributions of both the coherent and incoherent part of the f electron excitations.
Finally, when T � T ∗, the f electrons can be treated as localized and interacting
weakly with the conduction electrons.

1.2.3 Manganites

The phase diagram of the perovskite manganites of the general composition
Re1−xAxMnO3 (Re = rare earth, A = divalent alkali) is extremely rich. For
example, see Fig. 1.11 where the phase diagram of one of the best studied man-
ganite system compounds, La1−xCaxMnO3, is shown [19]. The origin of this
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Figure 1.11: Phase diagram of La1−xCaxMnO3 (from Ref. [19]). The richness of
this phase diagram is evident, it comprise the following states: canted antiferromagnet
(CAF), charge order (CO), ferromagnetic insulator (FI), ferromagnet(FM), and anti-
ferromagnet (AF). The arrow indicates the parent compound of the manganites studied
in Chapter 6.

behaviour is also the interrelation between localized and itinerant electrons as we
will see below. The difference is that in this case, both electrons pertain to the
same class of atoms.

The basic crystal structure of the manganites is shown in Fig. 1.12. The main
point here is that the Mn ion is surrounded by O atoms forming an octahedron.
In a perfect octahedron, the crystal field leaves partially the degeneracy of the d
levels forming a triple degenerate, t2g, and a double degenerate, eg, states. The
distortions usually present in the octahedron alters this splitting depending on
whether the eg level is occupied or not (see Fig. 1.12). When it is occupied, the eg

level is further split (Jahn-Teller splitting), otherwise this level decreases its energy
if it is occupied in a short time scale (like in optical transitions) compared to the
response of the lattice. Let us consider the two extremes of the phase diagram
of Fig. 1.11. CaMnO3 has the ionic composition Ca+2Mn+4O−2

2 [20]. Therefore,
the manganese atom has three electrons occupying the t2g level that, due to the
strong Hund’s coupling, JH , form a large (classical) spin, S. These classical spins
tend to align antiferromagnetically between them. On the other hand, in LaMnO3

manganese is present as Mn+3 and, therefore, has an itinerant electron occupying
the eg level that tends to align with the spin of the t2g core due to JH . Between
these two extremes, both Mn ions are present in the ratio Mn+3/Mn+4 = x. The
situation described is known as the double exchange mechanism and was already
proposed by Zener [20] in the fifties just after the discovery of the interesting
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Figure 1.12: (a) Basic crystal structure of the manganites. One of the main important
points to notice is the octahedral surrounding of the Mn atoms. (b) In a perfect environ-
ment, its degenerate d levels are split in the triple degenerate t2g and double degenerate
eg. A distortion of the octahedron, like the one indicated by arrows, alters this situation
depending on whether the eg level is occupied or not. If eg is occupied, it is further split.
If not, the eg level can lower its energy if it is occupied in a short time scale [19].

properties of the manganites [21]. The double exchange (DE) Hamiltonian is:

H = −t
∑
〈ij〉

c†iσcjσ + J
∑
〈ij〉

SiSj − JH

∑
Sic

†
iσσciσ (1.8)

There are no doubts that the DE Hamiltonian contains the most important
physics describing the manganites, especially in describing, at least qualitatively,
the ferromagnetic state. However, another mechanism and ideas have to be added
for a complete description, although to what extent is still matter of discussion
[22]. The most notorious are electron-lattice coupling [19] and phase segregation
[23]. Besides the electron-lattice coupling described above (lattice distortions
producing modifications in the electron configuration), there is another type called
tolerance factor [19]. It originates from the fact that the atoms Re and A, in
Re1−xAxMnO3, have different radiuses producing different stresses in the Mn-
O-Mn bonds. This, in turn, produces buckling of the MnO6 octahedron, which
changes the Mn-Mn electron hoping [24]. Electron-phonon coupling makes the
carriers have a tendency to self trapping: the presence of an electron in a given
Mn orbital disturbs the lattice which in turn produce a potential minimum that
tend to keep the electron in that orbital [19]. If the coupling is strong enough
a self trapped state, called polaron, can be formed. Polaron states, indeed, have
been seen in the optical spectra of manganites. Other indication given by optics
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regarding the importance of lattice distortions is the different spectra obtained in
cleaved and polished samples. These two points will be discussed in Chapter 6.
There, we will also discuss the large isotope effect in some manganites that also
point to the importance to electron-phonon coupling.

The other idea that has to be included in describing the manganites is phase
separation. The traditional treatment of Eq. 1.8 for JH � t > J concludes that
hole doping (increasing x) of the AF state produces a canting of the spins until a
certain crital concentration is reached where the material becomes FM [25]. How-
ever, from the same treatment it is found that the compressibility ∂2E/∂2x < 0,
where E is the electron energy [26]. This means that the canted phase is un-
stable and tends to phase separate. The same conclusion has been found by
numerical calculations [27, 28] and more elaborate treatments of the DE Hamil-
tonian [28, 29]. In particular, in Ref. [28] it was found a phase diagram sim-
ilar to the one found in the traditional treatment [25] with the difference that
the canted phase was replaced by a region with phase separation. The phase
separated phases, however, will not be large as Coulomb repulsion tends to ho-
mogenize the system [26, 23]. In Chapter 6 we will see that the optical data
in (La0.5Pr0.5)0.7Ca0.3MnO3 thin films can also be interpreted in terms of phase
separation.

1.3 Spectral Weight and Strong Correlations

One quantity that we will study in this thesis is the spectral weight contained
in the optical conductivity. As we will see in this section, it contains informa-
tion about strong correlations present in a a given material. Starting from the
Kubo formula, it has been demonstrated [30, 31] that the real part of the optical
conductivity complies with:∫ ∞

0

σ1(ω)dω = − 1
2h̄

πiV 〈[P,J ]〉 (1.9)

where V is the total volume and P and J are the polarization and current density
operators, respectively. The important point is that if all electrons and all bands
are included [32] the current and polarization operators are given by:

J =
e

V m

∑
i

pi δ(r − ri)

P =
e

V

∑
i

ri δ(r − ri)

With these relations, Eq. 1.9 can be written as:∫ ∞

0

σ1(ω)dω =
πne2

2m
(1.10)
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where n ≡ N/V . This expression is, evidently, temperature independent.
Now, in strongly correlated systems the electronic states of interest seem to

be located in narrow bands well separated from other bands [2]. Therefore, tight
binding models considering only few bands, such as the Hubbard and Anderson
hamiltonians, are used to describe these systems. Within these models, if only
nearest neighbor hopping is considered and the system has orthorombic symmetry,
the current and polarization operators in a given direction are (for simplicity,
summations in the spin degree of freedom are omitted)[31]:

J = i
eat

h̄V

∑
i

(
c†i+1ci − c†i ci+1

)
P =

ea

V

∑
i

ic†i ci

where a is the distance between neighboring sites in the considered direction and
t is the hopping parameter. Then, Eq. 1.9 can be written as [31]:∫ ∞

0

σ1(ω)dω = −πne2a2

2h̄2 〈K〉 (1.11)

where K = −t
∑

i(c
†
i ci+1+c†i+1ci) is the kinetic energy of the conduction electrons.

The kinetic energy depends on temperature and interaction strength. Therefore,
the integrated optical conductivity contain information about the interactions
[2]. Moreover, it will have a strong temperature dependence. Equation 1.11 also
implies that there should be a transfer of spectral weight to high frequencies, i.e.
to energies corresponding to the bands that were not included in the model [32].

In the following chapters we will see that in strongly correlated systems there
is, indeed, a large transfer of spectral weight between low to high energies. The
range were this transfer occurs depends on the bands involved. In the systems
containing d electrons (silicides and manganites), this range is much larger than
those involving f electrons (heavy fermion systems).

1.4 Scope of This Thesis

This thesis will start with a short review of the basic concepts of optical spec-
troscopy, as well as of the experimental techniques used (Chapter 2). The fol-
lowing two Chapters deal with the optical properties of several transition-metal
monosilicides. In Chapter 3 one of them, MnSi, is studied thoroughly. Although
it is considered as a typical example of a weak ferromagnet described by the SCR
theory, it will be seen that is not the case. Particular emphasis will be given to
the low frequency properties studied by means of a not so often used optical tech-
nique, grazing incidence reflectivity. Chapter 4 studies FeSi, CoSi, and some solid
solutions between them. FeSi is a system that has been studied for a relatively
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long time. It is not clear if the insulating non-magnetic ground state should be
described by an itinerant or a Kondo-like picture. By studying the transferred
spectral weight it will be argued that the latter is more appropriate. Although
CoSi, as FeSi, is not magnetic, solid solutions between them present, surprisingly,
magnetism. Their optical properties are different from other well studied mag-
netic materials. After studying these itinerant systems, a family of heavy fermion
systems (CeMIn5) will be studied in Chapter 5. In this material it is clear that
there exist itinerant and localized electrons. The interaction between them gives
rise to the heavy fermion behaviour at low temperatures. The formation of this
condensate is characterized by a hybridization gap which is pretty clear in the
optical response. As in the silicides, there is a transfer of spectral weight but
the region where it occurs is much smaller. Finally, another system containing
localized and itinerant electrons will be studied. Chapter 6 present the optical
properties of (La1−yPry)0.7Ca0.3MnO3 (y = 0.5) thin films. Phase separation
and transfer of spectral weight will be analyzed. Moreover, a comparison between
films containing different oxygen isotopes will be made.
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