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Chapter 1
General introduction

1.1 Abstract
In this chapter we will provide a general introduction to this thesis. An introduction to
the theoretical methodology adopted in this thesis and the long term goals of the work
are presented. This includes a brief description of the methods used and developed in this
work and some of the results obtained with these theoretical models. In the end of this
chapter an outline of the thesis is presented.

1



1 General introduction

1.2 Introduction
As a child one of my favourite toys was LEGO. The simple idea that from a bag of small
building blocks one could construct large complex structures fascinated me, and still does.
The same concept is now holding the promise to revolutionize our lives by means of nano-
technology and nanoscience.1–6 Nanoscience is the study of molecules and structures with
at least one dimension ∼ 1− 100 nm, so-called nanostructures, and Nanotechnology is the
application of these nanostructures into nanoscale devises.1 In the vision of nanotechno-
logy the LEGO blocks are replaced by atoms and molecules and complex devices or new
materials are constructed by arranging the molecules or the atoms with nanoscale preci-
sion. This, constructing materials at the molecular level, is often called the ”bottom-up”
approach and was first introduced by Feynman in his famous and highly visionary talk
”There’s Plenty of Room at the Bottom”7 The idea is not that the nanostructures are
constructed by putting one atom at a time, this would require too much time to make a
macroscopic sample,6 but rather that the nanostructures are assembled from larger mo-
lecular building blocks.3 Within nanotechnology and nanoscience the prospects are great
but the challenges even greater.

The interest in nanostructures stems from the fact that at the nanoscale the properties
of materials change and start to exhibit size and shape dependent features. From a techno-
logical point of view this size-dependence enables for making nanostructures having specific
tailored properties, which could not have been arrived at from the bulk properties. From a
scientific point of view a detailed understanding of nanostructures and in particular of how
the properties of nanostructures depend on size, shape and the individual building blocks
is of fundamental interest. If we want to design nanostructures at the molecular level we
need to understand the building blocks, how different building blocks interact and how the
properties of the building blocks change when assembled into a nanostructure. Therefore,
at the heart of nanoscience lies modelling and theory. If we want to achieve an efficient
rational design of nanostructures, a combined theoretical and experimental understanding
is required.1,5

An area receiving a lot of interest, and not only within nanoscience, is the development
of new functional materials exhibiting nonlinear optical (NLO) effects. This is due to their
potential for future application in electronics and photonics.8–11 An important prospect is
the utilization of the intensity dependence of the refractive index in all-optical switching
devices, an essential element in future information processing technology.8,10, 11 Because
the refractive index is governed by the linear susceptibility, χ(1) (at the molecular level the
linear dipole-dipole polarizability, α), and the intensity dependence of the refractive index
by the third-order susceptibility, χ(3) (where the molecular second hyperpolarizability, γ,
is the corresponding microscopic property), an in-depth understanding of these properties
is required.8,12, 13

One promising class of materials are the so-called molecular materials, i.e. materials
consisting of molecular entities. 8 The optical response properties of this class of materials
are to a large extent governed by the properties of the individual molecules and to some
extent by the interactions with the neighboring molecules. These new materials will be

2



1.3 Nonlinear optical properties

designed on a molecular scale and carbon-based materials provide numerous possibilities
to design molecular functionality because of the large variety of molecules that can be
synthesized in organic chemistry. Consequently, a detailed understanding of the electronic
structure of the molecular building blocks, the dependence of the microscopic optical re-
sponse properties on the molecular structure, and the differences between the properties of
isolated molecules and molecules embedded in the actual macroscopic devices are of fun-
damental importance.8,12, 14–22 Therefore, it has been conjectured that applied quantum
chemistry will play a central role in the development of such new NLO materials.18,23

This thesis deals with the theoretical modelling of nonlinear optical response properties
and the application of these models to nanostructures. The strategy taken can be con-
sidered as a sort of molecular ”bottom-up” approach. We want to understand the NLO
properties of complex materials like nanostructures, liquids and molecules in solution from
the point of view of molecules. This means an first understanding of the NLO properties
of the isolated molecule. Then to investigate how the properties of molecules change when
going from the isolated case to the case of many interacting molecules in the condensed
phase. Finally, the properties of the molecules in the condensed phase should then be
related to the macroscopic response of the material which can be measured.

This chapter provides an introduction to the theoretical methodology adopted in this
thesis and describes briefly the methods used and some of the results obtained. In sec-
tion 1.3 we introduce the concepts of nonlinear optical properties and especially how one
can relate the macroscopic properties measured in experiments to the microscopic molecu-
lar properties calculated using quantum chemical methods. In section 1.4 we describe
briefly time-dependent density functional theory and its application to the calculation of
the NLO properties. A study of the nonlinear optical properties of heterofullerenes using
time-dependent density functional theory are discussed in section 1.5. The theory of an
electrostatic interaction model for calculating NLO properties of large molecules or assem-
plies of molecules are discribed in section 1.6 and in section 1.7 the application of this
model to carbon nanostructures such as nanotubes and fullerene clusters is presented. A
discrete solvent reaction field model for the calculation of molecular response properties
and the application of the model to water in aqueous solution are presented in section 1.8.
Finally, an outline of the rest of the thesis is presented in section 1.9.

1.3 Nonlinear optical properties
When a material interacts with an electromagnetic field, either optical or static, the charge
distribution of the material changes, the system becomes polarized, and the propagation of
the electromagnetic field trough the media is altered. Even new electromagnetic fields can
be generated exhibiting different behavior than the original field, e.g. oscillating at two or
three times the frequency of the original field, i.e. showing a different color. Depending
on the strength of the electromagnetic field the polarization will depend either linearly
or nonlinearly on the applied electromagnetic field. Here we will use a semi-classical ra-
diation theory, meaning that the electromagnetic field will be treated as a classical field

3



1 General introduction

described by Maxwell’s equations and the material system will be treated by quantum
mechanics described by the Schödinger equation. Furthermore, the interactions between
the quantum system and the electromagnetic field will be considered within the electric
dipole approximation which means that we can treat the material as a (nonlinear) dielec-
tric medium subjected to an electric field.24 In this work we will restrict the treatment to
purely electronic polarization, meaning that vibrational contributions are not calculated
and rotations are considered by classical isotropic averaging.15,25, 26 This is not to say that
vibrational contributions are insignificant and safely can be ignored but rather that these
effects should be considered separately.15,25 In the literature several different conventions
exist for describing nonlinear optical properties27 which differ in the numerical coefficients
used. Therefore, in order to compare values obtained in different conventions it is import-
ant to correct for the differences in the numerical factors used. This has been clearified by
Willetts et al.27 but remains a problem, since often it is not stated explicitly which conven-
tion is used. In this work we will use a perturbation series expansion for the macroscopic
polarization, which is often used for experimental properties, and a Taylor series expansion
for the microscopic polarization, which frequenctly is used for theoretical properties.

1.3.1 The macroscopic polarization
The macroscopic polarization of a material in the presence of a macroscopic electric field,
Fmac, is expressed as power series in the field strength as8,10

PI(t) = P0
I +χ(1)

IJ Fmac
J (t)+χ(2)

IJKFmac
J (t)Fmac

K (t)+χ(3)
IJKLFmac

J (t)Fmac
K (t)Fmac

L (t)+ · · · (1.1)

where P0 is the permanent polarization, χ(1) the linear optical susceptibility, χ(2) the
second-order nonlinear optical susceptibility, and χ(3) the third-order nonlinear optical
susceptibility. The subscripts I, J, K, L, ... denotes space-fixed axes and the Einstein sum-
mation convention is used for repeated subscripts. If we consider the macroscopic field to
be a superposition of a static and an optical component,

Fmac
J (t) = Fmac

0,J + Fmac
ω,J cos(ωt), (1.2)

the macroscopic polarization can be expressed as8,10

PI(t) = P0
I + PωI cos(ωt) + P2ω

I cos(2ωt) + P3ω
I cos(3ωt) + · · · . (1.3)

The Fourier amplitudes of the polarization are then given in terms of the frequency-
dependent susceptibilities as8,10

Pωs

I = δωs,0P0
I + χ(1)

IJ (−ωs;ωs)F
mac
ωs,J + K(−ωs;ωa,ωb)χ

(2)
IJK(−ωs;ωa,ωb)F

mac
ωa,JFmac

ωb,K

+ K(−ωs;ωa,ωb,ωc)χ
(3)
IJKL(−ωs;ωa,ωb,ωc)F

mac
ωa,JFmac

ωb,K
Fmac
ωc,L + · · · , (1.4)

where the output frequency is given as the sum of input frequencies ωs =
∑

a ωa. The
numerical coefficients K(−ωs;ωa, · · · ) arise from the Fourier expansion of the electric field
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1.3 Nonlinear optical properties

and polarization and ensures that all susceptibilities of the same order have the same
static limit. A tabulation of the coefficients can be found in Ref. 14, 28. The frequency-
dependent susceptibilities can then be found from Eq. 1.4 by differentiation which gives
the linear susceptibility

χ(1)
IJ (−ωs;ωs) =

∂Pωs
I

∂Fmac
ωs ,J

∣∣∣∣∣
Fmac=0

, (1.5)

the second-order nonlinear susceptibility

χ(2)
IJK(−ωs;ωa,ωb) = K−1(−ωs;ωa,ωb)

∂2Pωs

I

∂Fmac
ωa,J∂F

mac
ωb,K

∣∣∣∣∣
Fmac=0

, (1.6)

and the third-order nonlinear susceptibility

χ(3)
IJKL(−ωs;ωa,ωb,ωc) = K−1(−ωs;ωa,ωb,ωc)

∂3Pωs
I

∂Fmac
ωa,J∂F

mac
ωb,K∂F

mac
ωc,L

∣∣∣∣∣
Fmac=0

. (1.7)

Each of the frequency-dependent susceptibilities corresponds to different physical pro-
cesses,8,10 e.g χ(1)(−ω;ω) governs the refractive index, χ(2)(−2ω;ω,ω) the second har-
monic generation (SHG), χ(3)(−3ω;ω,ω,ω) the third harmonic generation (THG) and,
χ(3)(−ω;ω,ω,−ω) the degenerate four-wave mixing (DFWN) or the intensity-dependence
of the refractive index.

1.3.2 The microscopic polarization
In a similar way as for the macroscopic polarization we can expand the microscopic polar-
ization (dipole moment) in terms oscillating at different frequencies as27,29

µα(t) = µ0
α + µωα cos(ωt) + µ2ω

α cos(2ωt) + µ3ω
α cos(3ωt) + · · · . (1.8)

The microscopic dipole moment is then usually given by a Taylor expansion as27,29

µωs
α = δωs,0µ

0
α + ααβ(−ωs;ωs)F

tot
ωs,β +

1

2
K(−ωs;ωa,ωb)βαβγ(−ωs;ωa,ωb)F

tot
ωa,βF

tot
ωb,γ

+
1

6
K(−ωs;ωa,ωb,ωc)γαβγδ(−ωs;ωa,ωb,ωc)F

tot
ωa,βF

tot
ωb,γ

F tot
ωc,δ + · · · (1.9)

where µ0
α is the permanent electric dipole moment, ααβ(−ωs;ωs) is the polarizabillity,

βαβγ(−ωs;ωa,ωb) is the first hyperpolarizability and, γαβγδ(−ωs;ωa,ωb,ωc) is the second
hyperpolarizability. The numerical coefficients K(−ωs;ωa, · · · ) are the same as for the
macroscopic polarization and again this ensures that all (hyper)polarizabilities of the same
order have the same static limit. The subscripts α, β, γ, · · · denote molecule-fixed axes and
again the Einstein summation convention is used for repeated subscripts. The microscopic
polarization is expanded in terms of the actual total electric field, F tot

ωb,γ
, felt by the molecule.
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1 General introduction

Figure 1.1: Separation of the total system into a macroscopic region far from the central
molecule and a microscopic region close to the molecule. In the microscopic region the
actual electric field felt by the molecule should be considered in detail.

In the condensed phase the actual electric field felt by the molecule is different from the
macroscopic electric field. Therefore, in order to express the macroscopic properties in
terms of the microscopic properties we need to relate the actual electric field at a molecule
to the macroscopic electric field.

The concept of relating the actual electric field, often called the internal or local field,
to the macroscopic field dates back to the work of Lorentz.30,31 Lorentz30 derived a simple
relation between the internal electric field, the macroscopic electric field and the macro-
scopic polarization of the system, and due to its simplicity Lorentz local field theory is still
used.8,10, 26, 31 The central idea is that only close to the molecule we need to consider expli-
citly the field from nearby molecules, so the total system is separated into a macroscopic
region far from the molecule and microscopic region close to the molecule. This separation
is illustrated in Figure 1.1. The molecules in the region far from the central molecule can
then be described by the average macroscopic properties. Therefore, inside a macroscop-
ically small, but microscopically large, virtual cavity V we subtract the contribution from
the macroscopic electric field and replace it by the correct discrete local field,

F tot
ωs,α = Fmac

ωs,α − F pol
ωs,α + F disc

ωs,α(Ω), (1.10)

where F pol
ωs,α is the macroscopic electric field in the cavity V and F disc

ωs,α(Ω) is the discrete
electric field field in the cavity V which depends on the local configuration, Ω, of the
molecules inside the cavity. Since we are not allowing the macroscopic region to adjust
to the presence of the cavity the polarization remains homogeneous.31 This approach
neglects that a static electric field tends to orient molecules with a permanent dipole31,32

and therefore a correction due to Onsager32 is often used for static electric fields.

What Lorentz30 did was to show that for a cubic arrangement of identical particles
the discrete field was zero. This is also true on average for a completely random distri-
bution where there is no correlation between the induced dipoles and the position of the
molecules.31 For a spherical cavity the macroscopic field is simply given in terms of the
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1.3 Nonlinear optical properties

macroscopic polarization30,31 and the total electric field can be written as

F tot
ωs,α = Fmac

ωs,α +
4π

3
Pωs
α + F ind

ωs,α(Ω) + F perm
α (Ω) (1.11)

where we have split the discrete electric field, F disc, into two different contributions, F ind

and F perm. The first term arises from the interactions of the macroscopic electric field
with the other molecules in the cavity, i.e. accounts for the induced polarization of the
surrounding molecules due to the electric field. The second term accounts for the inter-
actions between the molecules when there is no electric field present, i.e. arises from the
permanent charge distribution of the surrounding molecules. However, depending on the
theoretical model used for describing the microscopic region, this spitting of the discrete
electric field is not always possible nor necessary. Since the last two terms depend strongly
on the local configuration of the molecules in the cavity and are inherently microscopic in
nature it is better to treat these fields explicitly within the microscopic model used.

Therefore, instead of expanding the induced dipole moment in terms of the total field,
Eq. 1.9, we expand it in terms of an effective macroscopic electric field

F eff
ωs,α = Fmac

ωs,α +
4π

3
Pωs
α . (1.12)

This expansion in terms of the effective field defines the so-called effective properties29 as

µωs
α = δωs,0µ

0
α + αeff

αβ (−ωs;ωs)F
eff
ωs,β

+
1

2
K(−ωs;ωa,ωb)β

eff
αβγ(−ωs;ωa,ωb)F

eff
ωa,βF

eff
ωb,γ

+
1

6
K(−ωs;ωa,ωb,ωc)γ

eff
αβγδ(−ωs;ωa,ωb,ωc)F

eff
ωa,βF

eff
ωb,γF

eff
ωc,δ + · · · . (1.13)

These effective properties give an induced dipole moment due to the effective macroscopic
electric field which is identical to the induced dipole moment in Eq. 1.9 and are the prop-
erties which we will relate to the experimental susceptibilities. This means that the mi-
croscopic contributions to the total field are incorporated into the effective properties.
These effective properties could be compared with experimental results corrected for dif-
ferences between the total field and the macroscopic electric field by the Lorentz local field
method.29

Since we have separated the discrete field into the two contributions mentioned above
we can also choose to expand the induced dipole moment in terms of the field arising
directly from the macroscopic electric field,

F sol
ωs,α = Fmac

ωs,α +
4π

3
Pωs
α + F ind

ωs,α(Ω), (1.14)

where the field arising from the interactions between the molecules when there is no mac-
roscopic field is incorporated into the properties. This gives an expansion which defines
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1 General introduction

the so-called solute properties29 as

µωs
α = δωs,0µ

0
α + αsol

αβ(−ωs;ωs)F
sol
ωs,β

+
1

2
K(−ωs;ωa,ωb)β

sol
αβγ(−ωs;ωa,ωb)F

sol
ωa,βF

sol
ωb,γ

+
1

6
K(−ωs;ωa,ωb,ωc)γ

sol
αβγδ(−ωs;ωa,ωb,ωc)F

sol
ωa,βF

sol
ωb,γF

sol
ωc,δ + · · · . (1.15)

These solute properties relate to the macroscopic properties corrected for the field from the
dipoles of all other molecules induced by the macroscopic field in addition to the Lorentz
local field. This corresponds to a thought experiment where the macroscopic field is allowed
to propagate inside the cavity without being modified by interactions with the molecules.

1.3.3 Relating the macroscopic and the microscopic polarization
The macroscopic polarization is related to the average microscopic dipole moment per
molecule by10,26

Pωs

I = Nd 〈µωs
α 〉I (1.16)

where Nd is the number density and the brackets, 〈〉, denote orientational averaging and
relate the molecule-fixed axes to the space-fixed axes.25,26 Inserting the expansion of the
dipole moment in terms of the effective macroscopic field, Eq. 1.13, we can express the
macroscopic polarization in terms of the effective (hyper)polarizabilities as,

Pωs

I = Nd

〈
δωs,0µ

0
α

〉
I
+ Nd

〈
αeff
αβ (−ωs;ωs)F

eff
ωs,β

〉
I

+
1

2
K(−ωs;ωa,ωb)Nd

〈
βeff
αβγ(−ωs;ωa,ωb)F

eff
ωa,βF

eff
ωb,γ

〉
I

+
1

6
K(−ωs;ωa,ωb,ωg)Nd

〈
γeff
αβγδ(−ωs;ωa,ωb,ωc)F

eff
ωa,βF

eff
ωb,γ

F eff
ωc,δ

〉
I

+ · · · . (1.17)

We see that the averaging is done on the product of the (hyper)polarizabilities and the
effective fields. This is exactly the reason why the total electric field was split into an
effective macroscopic part and a microscopic part which was incorporated into the (hy-
per)polarizabities in Eq. 1.13 by expanding the dipole moment in terms of the effective
field. Since the effective field is macroscopic we can take it outside the averaging and
express the macroscopic polarization in terms of orientational averages of the effective
(hyper)polarizabilities as

Pωs

I = Nd

〈
δωs,0µ

0
α

〉
I
+ Nd

〈
αeff
αβ (−ωs;ωs)

〉
IJ

F eff
ωs,J

+
1

2
K(−ωs;ωa,ωb)Nd

〈
βeff
αβγ(−ωs;ωa,ωb)

〉
IJK

F eff
ωa,JF eff

ωb,K

+
1

6
K(−ωs;ωa,ωb,ωc)Nd

〈
γeff
αβγδ(−ωs;ωa,ωb,ωc)

〉
IJKL

F eff
ωa,JF eff

ωb,K
F eff
ωc,L

+ · · · . (1.18)
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1.3 Nonlinear optical properties

By combinging the definitions of the susceptibilities in Eqs. 1.5, 1.6, and 1.7 with the
expression for the macroscopic polarization in terms of the effective (hyper)polarizabilities
we can obtain a link between the macroscopic and the microscopic properties. In order to
illustrate this we first consider the ZZ component of the linear susceptibility for a pure
isotropic system. By inserting the definition of the effective field, Eq. 1.12, into Eq. 1.18
and using the definition of the susceptibilitiy, Eq. 1.5, we obtain

χ(1)
ZZ(−ωs;ωs) = Nd

〈
αeff
αβ (−ωs;ωs)

〉
ZZ

(
1 +

4π

3
χ(1)

ZZ(−ωs;ωs)

)
. (1.19)

The isotropic orientation average of the polarizability, often refered to as the mean polar-
izability, is given by25 〈

αeff
αβ

〉
ZZ

= αeff =
1

3
(αeff

xx + αeff
yy + αeff

yy ). (1.20)

and denoted α. The linear susceptibility can then be written in terms of the mean effective
polarizability by rewriting Eq. 1.19 as,

χ(1)
ZZ(−ωs;ωs) =

Ndαeff (−ωs;ωs)

1 − 4π
3 Ndαeff (−ωs;ωs)

(1.21)

which is the standard expression for the susceptibility corrected for the Lorentz local
field.10,33 The susceptibility can be related to the refractive index or dielectric constant of
the system as

n(1)(ωs) =
√
ε(1)(ωs) =

√
1 + 4πχ(1)

ZZ(−ωs;ωs) =

√
1 + 8π

3 Ndαeff (−ωs;ωs)

1 − 4π
3 Ndαeff (−ωs;ωs)

(1.22)

which is the familar Lorentz-Lorenz or Clausius-Mossotti equation.30,31, 33

As an expample of a nonlinear susceptibility we will consider the third-order nonlinear
susceptibility corresponding to the third-harmonic generation experiments. We will look
at the ZZZZ component of a pure isotropic sample where the individual molecules are
centrosymmetric, an example could be crystalline C60. The fact that the molecules are
centrosymmetric allows us to ignore cascading contributions34,35 since the molecules have
no intrinsic first hyperpolarizability. The THG susceptibility can then be obtained by
inserting Eq. 1.12 into Eq. 1.18 and using the definition of the susceptibilitiy, Eq. 1.7, as

χ(3)
ZZZZ(−3ω;ω,ω,ω) = Nd

〈
αeff
αβ (−3ω; 3ω)

〉
ZZ

(
4π

3
χ(3)

ZZZZ(−3ω;ω,ω,ω)

)
+

1

6
Nd

〈
γeff
αβγδ(−3ω;ω,ω,ω)

〉
ZZZZ

(
1 +

4π

3
χ(1)

ZZ(−ω;ω)

)3

.(1.23)

We see that we have a contribution both from the linear susceptibility and from the third-
order nonlinear susceptibility. The isotropic orientation average of the second hyperpol-
arizability, often refered to as the mean or parallel second hyperpolarizability, is given

9



1 General introduction

by25 〈
γeff
αβγδ

〉
ZZZZ

= γeff =
1

15

∑
αβ

(γeff
ααββ + γeff

αββα + γeff
αβαβ) (1.24)

The THG susceptibility can then be written as

χ(3)
ZZZZ(−3ω;ω,ω,ω) =

1

6
Ndγ

eff (−3ω;ω,ω,ω)

×
(

1 − 4π

3
Ndα

eff (−3ω;ω)

)−1(ε(1)(ω) + 2

3

)3

(1.25)

where we have used the relation between the linear susceptibility and the dielectric constant
in Eq. 1.22. Using Eq. 1.21 we can express the term with the effective polarizability in
terms of the dielectric constant at 3ω. This allows us to express the third-order nonlinear
susceptibility as

χ(3)
ZZZZ(−3ω;ω,ω,ω) =

1

6
Ndγ

eff (−3ω;ω,ω,ω)

(
ε(1)(3ω) + 2

3

)(
ε(1)(ω) + 2

3

)3

(1.26)

which is the form for the nonlinear susceptibility well known from standard Lorentz local
field theory with n + 1 local field corrections, where n is the number of applied fields.

1.4 (Time-dependent) Density Functional Theory
The use of quantum chemical methods36 enable accurate calculations of molecular response
properties like the electronic excitations and frequency-dependent (hyper)polarizabilities.15

However, due to very high computational demands the most accurate of these methods
can only be used for small systems containing few atoms. Therefore, it is of fundamental
importance to extend the use of these quantum chemical methods to treat large systems
containing many atoms. A method which has attracted considerable interest, especially
within recent years, is Time-Dependent Density Functional Theory (TD-DFT).37–41 The
main reason for this is that (TD-)DFT provides a level of accuracy which in most cases
is sufficient at a lower computational requirement than other methods. The use of TD-
DFT for calculating molecular response properties in the gas-phase has been shown to be
accurate for small and medium size (< 20 atoms) molecules, especially if one uses recently
developed density functionals.42–51

1.4.1 The Kohn-Sham equations
Ground state density functional theory is based on the Hohenberg-Kohn theorems52 which
states that there is a one-to-one correspondence between the ground state density and
the external potential and that the exact ground-state density of a system in an external
potential can be found by minimizing an energy functional. The energy functional for a
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1.4 (Time-dependent) Density Functional Theory

system of interacting particles moving in a field arising from the fixed nuclei (often referred
to as the external potential), υ(r), is given by52

E[ρ] =

∫
drρ(r)υ(r) + FHK [ρ], (1.27)

where ρ is the density and FHK [ρ] is a universal functional of the density. The universal
functional is, however, not known and practical DFT involves finding approximate forms
for the functional.53 Most DFT approaches use the method of Kohn and Sham54 for
constructing the functional. In the Kohn-Sham (KS) approach 54 the functional is split as

FHK [ρ] = Ts[ρ] +
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r − r′| + Exc[ρ], (1.28)

where the first term, Ts[ρ], is the kinetic energy of a non-interacting system, the second
term is the Coulomb interaction and the last term is the unknown part called the exchange-
correlation (xc) energy functional. The central assumption is that for any ground state
density of an interacting system there exists a noninteracting system with the same ground
state density. We can then find the ground-state density by minimizing the energy func-
tional52

0 =
δ

δρ(r)

[
E[ρ] − µ

∫
drρ(r)

]
=
δTs[ρ]

δρ(r)
+ υ(r) +

∫
dr′

ρ(r′)

|r − r′| + υxc[ρ](r) − µ (1.29)

where µ is a Lagrange multiplier ensuring the correct number of electrons. The functional
derivative of the unknown xc-functional, the xc-potential,

υxc[ρ](r) =
δExc[ρ]

δρ(r)]
, (1.30)

has been introduced. This is identical to what one finds for a system of non-interacting
particles moving in an effective potential, υs(r), the KS-potential, given by54

υs(r) = υ(r) +

∫
dr′

ρ(r′)

|r − r′| + υxc[ρ](r). (1.31)

We can therefore find the ground state density of the interacting system by solving a set
of effective one-particle equations, the KS equations, given by[

−1

2
∇2 + υ(r) +

∫
dr′

ρ(r′)

|r − r′| + υxc[ρ](r)

]
φi(r) = εiφi(r). (1.32)

where φi(r) is a KS orbital and εi is the corresponding orbital energy. The density of the
system is given as the sum of the occupied KS orbitals

ρ(r) =
N∑
i

ni|φi(r)|2. (1.33)

11
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where ni is the occupation number. If the xc-potential is exact the density will be the exact
density of the interacting system. Therefore in the KS approach the problem of finding an
approximation to the universal functional, FHK , is reduced to finding an approximation to
the xc-functional. It should however be noted that the name xc-energy is slightly misleading
since it also contains a small part of the kinetic energy, i.e the difference between the kinetic
energy of the true interacting system and the kinetic energy of the non interacting system.

1.4.2 The Time-dependent Kohn-Sham equations
Since we are interested in calculating frequency-dependent properties we have to consider a
time-dependent formalism. The time-dependent extension of the KS equations was derived
by Runge and Gross.37 As in the ground state we have to assume that a potential, υs(r, t),
exists that reproduces the time-dependent density of the interacting system. The density
of the interacting system can then be found from37–41 the time-dependent KS equations

i
∂

∂t
φi(r, t) =

(
−∇2

2
+ υs[ρ](r, t)

)
φi(r, t). (1.34)

The time-dependent KS potential is written as,

υs[ρ](r, t) = υ(r) + υper(r, t) +

∫
dr′

ρ(r′, t)

|r − r′| + υxc(r, t) (1.35)

where υ(r) is the field of the nuclei, υper(r, t) is an external time-dependent perturbation,
the third term is the Columb term and the last term is the time-dependent xc-potential.
The time-dependent xc-potential, υxc(r, t), is usually adopted within the adiabatic aprox-
imation υxc(r, t) ( υxc(r). The time-dependent density is then given by the sum of the
occupied time-dependent KS orbitals as

ρ(r, t) =
N∑
i

ni|φi(r, t)|2. (1.36)

where ni is the occupation number. We are interested in calculating properties due to a
perturbation by an external time-dependent electric field. Within the dipole approximation
this time-dependent perturbation is given by

υper(r, t) = µ̂F (t) = µ̂(F0 + Fω cos(ωt)), (1.37)

where µ̂ is the dipole operator and F (t) is the electric field. The total electronic dipole
moment of the system in the presence of the electric filed can be calculated from the density
as55

µα(t) = −
∫

d3rµ̂αρ(r, t) = −Tr[HαP (t)], (1.38)

where Tr denotes the trace. The time-dependent density matrix is given by

ρ(r, t) =
∑
pq

φ∗
p(r)φq(r)Ppq(t) (1.39)
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and the elements of the dipole moment matrix, Hα, are given by

Hα
pg = 〈φp| µ̂α |φq〉 . (1.40)

We can then expand the density matrix in a Taylor series as56

P = P 0 + P βFβ +
1

2!
P βγFβFγ + · · · , (1.41)

where P 0 is the unperturbed density matrix, P β the linear response and P βγ the quadratic
response. Inserting this expansion into Eq. 1.38 and comparing with Eq. 1.9 allows us
to identify the dipole moment, the frequency-dependent polarizability, and the frequency-
dependent first hyperpolarizabillity as

µα = −Tr[HαP 0] (1.42)

ααβ(−ω;ω) = −Tr[HαP β(ω)], (1.43)

βαβγ(−ωs;ωa,ωb) = −Tr[HαP βγ(ωa,ωb)], (1.44)

where ωs = ωa + ωb. We can then by using time-dependent linear response theory obtain
a set of self-consistent equations for the first order density response,37–41

Pst(ω) =
∆nst

(εs − εt) − ω
δυeff

st (ω), (1.45)

where εs is the orbital energy, ∆nst is the difference in occupation numbers, i.e. 1 for
st = ai and -1 for st = ia, where a denotes virtual orbitals and i denotes occupied orbitals.
The change in the effective potential, δυeff

st , is dependent on the first order change in the
density, δρ, and is given by

δυeff
st (ω) = δυper

st (ω)

+

∫
drφ∗

s(r) [υCoul[δρ](r,ω) + υxc[δρ](r,ω)]φt(r). (1.46)

The first term is the matrix elements of the time-dependent perturbation and the second
term consist of the Coulomb part given by

υCoul[δρ](r,ω) =

∫
dr′

δρ(r′,ω)

|r − r′| , (1.47)

and the xc part, often called the xc-kernal, given by

υxc[δρ](r,ω) =

∫
dr′

δυxc(r)

δρ(r′)
δρ(r′,ω). (1.48)

Since the effective potential in Eq. 1.46 depends on the first-order density matrix through
the potentials υCoul[δρ](r,ω) and υxc[δρ](r,ω) a self-consistent solution of Eq. 1.45 is re-
quired. In a manner similar to the linear response a set of equations for the solution of
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the higher order density response can be constructed.49–51,57, 58 However, a more efficient
approach is to take advantage of the (2n+1) rule which allows for the quadratic response
properties to be rewritten in terms of quantities obtained from a solution of the first order
response equations. Within TD-DFT van Gisbergen et al. have shown how this is done for
the frequency-dependent first hyperpolarizability57 in an approach similar to the TD-HF
approach of Karna and Dupuis.56

1.5 NLO properties of heterofullerenes as studied by TD-
DFT

Quantum chemical studies of structure-property relations for the first hyperpolarizabil-
ity of organic molecules have helped synthetic organic chemist to develop better organic
chromophores for use in electrooptical materials.12,17, 19, 21, 22 Similar to the first hyperpol-
arizability structure-properties relationship for the second hyperpolarizability are emerging
but to a much lesser degree than for the first hyperpolarizability.13,20, 59, 60 Although much
progress has been made, the search for organic chromophores with large hyperpolarizabilit-
ies still continues. Among the molecules of interest are conjugated organic molecules with
delocalized electron systems like polymers and fullerenes. Since the discovery of the C60

fullerene61 there have been numerous theoretical and experimental investigations of its lin-
ear and nonlinear optical properties, see e.g. Ref. 62–66 and references therein. However,
both experiments67,68 and theory64,65, 69 have shown that the third-order nonlinearity of C60

is smaller than first assumed. For this reason the third-order nonlinearity of chemical func-
tionalized C60 have been experimentally investigated and found to provide a large increase
in the nonlinearity compared with the pure C60, see e.g Ref. 62, 68, 70, 71. Substitution of
carbon atoms in C60 with boron or nitrogen atoms has theoretically been suggested as a
way of increasing the nonlinearity by several orders of magnitude.72,73 These studies were
done using an extended Su-Schrieffer-Heeger (SSH) model74 which for the pure fullerene72

predicts a much larger second hyperpolarizability than found with DFT and SCF. 64,65, 69

Therefore, we investigated the effects of substitute-dope C60 with 2 B, 2 N and BN on the
second hyperpolarizability component along the doping-axis using TD-DFT.75 This work
is presented in Chapter 2 and some of the results are summarised in Table 1.1. We found,

C60
76 C58N2

75 C58B2
75 C58BN75 C48N12

76 C48B12
77

γzzzz 137950 130147 155430 208470 232970 470190
γ 137950 - - - 215222 387628

Table 1.1: Static second hyperpolarizability for C48N12 , C48N12 and C60 in a.u calculated
using TD-DFT.

in contrast to the results obtained with a SSH model,72,73, 78 only small differences when
comparing the 2 N- and 2 B-substituted C60 with the pure C60 molecule. Substituting
with 2 N decreases the second hyperpolarizability with about 5% and substituting with
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1.6 An interaction model for the (hyper)polarizability of large molecules

2 B increases it with about 12%. Although an increase with 50% was found when dop-
ing C60 with both B and N the effect of doping was in general found to be very small.
We also calculated the second hyperpolarizability of the newly synthesized79 aza-fullerene
C48N12

76 and the theoretically proposed80 boron analog C48B12.77 The structure of the
aza-fullerene C48N12 is shown in Figure 1.2. This study was part of a computational char-
acterization of the structural, electronic, vibrational and magnetic properties of these new
heterofullerenes.76,77 The results for the second hyperpolarizability of the heterofullerenes
are presented in Table 1.1. For C48B12 the second hyperpolarizability is ∼ 180% larger
that for C60 and for C48N12 it is increased with ∼ 55 %. It is therefore seen that these
new heterofullerenes can have a second hyperpolarizability which is significant larger than
that of C60. However, a comparison of the hyperpolarizabilites of heterofullerenes and
chemical functionalized fullerenes is required in order to determine which systems are the
more interesting.

Figure 1.2: Structure of the aza-fullerene C48N12. Dark atoms nitrogen and light atoms
carbon.

1.6 An interactionmodel for the (hyper)polarizability of large
molecules

Sophisticated quantum chemical methods can be applied only on rather small molecules,
even though considerable effort has been devoted to calculate NLO properties at the SCF
level for relatively large molecules like fullerenes.81 Furthermore, the use of conventional
DFT, which in general gives improved accuracy over the Hartree-Fock approximation at
similar or lower computational cost, gives relatively poor results for nonlinear optical prop-
erties of large conjugated molecular chains.82,83 Although some recent advances within
DFT have been presented for the linear polarizability of conjugated polymers83–86 not
much have been done in the case of the nonlinear polarizabilitites. Therefore, for large mo-
lecules and assemblies of molecules, modelling is currently restricted to less sophisticated
methods.

An alternative approach to quantum chemical methods is based on representing the
molecule as a set of interacting induced point dipoles,87–89 a model exploited extensively
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1 General introduction

by Applequist and coworkers.90,91 In an external field, atomic dipole moments are induced
which interact with each other. A molecular polarizability tensor is thus obtained even
though isotropic(atom-type) atomic polarizabilities are adopted in the model. The mo-
lecular γ is obtained analogously by including also an atomic γ in the interaction model.92

It has furthermore been demonstrated that damping of the interatomic interactions at
short distances is crucial.93 We have developed an interaction model along these lines
based on a parametrization of molecular polarizabilities obtained from quantum chemical
calculations. The model includes the frequency dependence of α, an improved damping
term, and the molecular γ.63,94–96 In chapter 3 we describe the dipole interaction model
for the linear polarizability including the frequency-dependent molecular polarizability, the
improved damping term and some initial applications of the model to the polarizability
of molecular clusters. The dipole interaction model for the second hyperpolarizability is
presented in chapter 4. Here the theory is briefly outlined.

In a system of N point polarizabilities, αI,αβ, the atomic induced dipole moment of
atom I, µind

I,α is given as

µind
I,α = αI,αβF

tot
I,β +

1

6
γI,αβγδF

tot
I,βF

tot
I,γF

tot
I,δ (1.49)

where F tot
I,β is the total microscopic electric field given by31,33

F tot
I,β = F eff

β + F disc
I,β = Fmac

β +
4π

3
Pβ +

N∑
J $=I

TIJ,βγµ
ind
J,γ (1.50)

The term TIJ,βγµind
J,γ is the electric field of the induced dipole moment at site J calculated at

atom I. F disc
I,β is thus the electric field at site I from all other induced dipole moments and

corresponds to the discrete local field in Eq. 1.10 in a dipole approximation. The solutions
of the set of coupled linear equations in Eq. 1.49 may be expressed in terms of a two-atom
relay tensor, B(2)

IJ,αβ, and a four-atom relay tensor B(4)
IJKL,αβγδ as92,95

µind
I,α =

N∑
J

B(2)
IJ,αβF

eff
J,β +

1

6

N∑
J,K,L

B(4)
IJKL,αβγδF

eff
L,δF

eff
K,γF

eff
J,β , (1.51)

where B(2)
IJ,αβ gives the induced dipole moment at atom I from an effective electric field

on atom J . Analogously, B(4)
IJKL,αβγδ gives the induced dipole moment at atom I from

effective electric fields on atoms J , K, and L. The resulting molecular polarizability, αmol
αβ ,

and molecular second hyperpolarizability, γmol
αβγδ, are given as

αmol
αβ =

N∑
IJ

B(2)
IJ,αβ , (1.52)

and

γmol
αβγδ =

N∑
IJKL

B(4)
IJKL,αβγδ . (1.53)
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1.7 NLO properties of large carbon nanostructures

We show in chapter 3 that, by adopting two parameters for each element, a polarizab-
ility, αP , and a damping parameter, ΦP , good results are obtained for example for the
polarizability of large molecular clusters.63 As shown in chapter 4 a parametrization of the
molecular γ includes an atomic γ parameter, γP , in addition to the parameters adopted
for the molecular polarizability.95

The point dipole interaction (PDI) model described in chapter 3 and 4 can be used
to calculate the properties of large molecules and cluster of molecules. When considering
molecular cluster the properties calculated corresponds to properties of the total cluster or
supermolecule. We can therefore use this model, or any supermolecular method, to calcu-
late the effective molecular properties defined in Eq. 1.13. This can be done by calculating
the molecular properties per molecule and extend the cluster until no changes are observed
in the properties. However, if one is interested in obtaining the molecular properties of
the individual members of the cluster the total response has to be distributed over the
molecules. In chapter 5 we discuss possible ways of partitioning the total polarizability
into local contributions. Three general partitioning schemes are described and a localized
dipole interaction model is presented. Here we will shortly summarize the localized dipole
interaction model.

To calculate the (hyper)polarizability of the individual molecules (or subgroups) in
a cluster, we utilize the localized point-dipole interaction model (LPDI) described in
chapter 5.97 The partitioning is carried out by first decomposing the two-atom matrix
into a block diagonal form with M blocks, B̂(2)

I,PQ,αβ, corresponding to a relay tensor for the
I’th molecule or subgroup, where M is the total number of molecules or subgroups in the
cluster. In the decomposition of the relay matrix, the interaction blocks B(2)

P∈IQ∈J,αβ, where
atom P belongs to molecule I and atom Q to molecule J , is assigned to the diagonal blocks
B(2)

P∈IQ∈I,αβ where both atom P and Q belong to molecule I. This assignment is a more
less arbitrary procedure but can be done similarly to the Mulliken population analysis.98

Therefore, we have for molecule I,

B̂(2)
I,PQ,αβ = B(2)

P∈IQ∈I,αβ +
1

2

M∑
J $=I

(
B(2)

P∈IQ∈J,αβ + B(2)
P∈JQ∈I,αβ

)
. (1.54)

The polarizability and second hyperpolarizabilty can subsequently be calculated by Eqs. 1.52
and 1.53 using the diagonal blocks of the decomposed relay matrix, B̂(2)

I,PQ,αβ. They will
give the polarizability and hyperpolarizability of each of the M individual molecules in the
molecular cluster.

1.7 NLO properties of large carbon nanostructures
An important concept in the design of new nonlinear optics materials is the scaling beha-
viour of the optical properties with increasing size. In the limit of infinitely long chains,
both the polarizability, α, and the second hyperpolarizability, γ, will scale linearly with the
length of the chain. In particular, the so-called saturation length, i.e. where the property
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1 General introduction

(α or γ) starts to scale linearly with increasing size of the system, is of interest. We have
used the PDI model described in the chapters 3, 4, and 5 to calculate the polarizability
and second hyperpolarizability of large carbon nanostructures such as carbon nanotubes
and clusters of fullerene molecules. In chapter 6 we present a characterization of the scal-
ing behavior and saturation of the second hyperpolarizability for carbon nanotubes as the
length of the tube increases. For the C60 fullerene clusters we have investigated the size
dependences of a linear chain, a mono-layer film, and a face-centered cubic (FCC) crystal
cluster and the results are presented in chapter 7. We have also calculated the correspond-
ing linear and third-order susceptibilities, χ(1) and χ(3) for the FCC cubic cluster in order
to compare with experimental results. We will here discuss some of the results and present
some results which have not been presented elsewhere.99

In order to validate the PDI model for the carbon nanostructures we compared the
PDI results for α and γ for C60 and C70 with the available SCF and experimental results.
These results for C60 and C70 are presented in Table 1.2. The parameters, αC and ΦC ,

C60 C70

α γ α γ
PDI 77.5 115.2 91.5 145.5
SCF 75.1 109.2 89.8 149.7
Exp 76.5 ± 8 - 102 ± 14 -

Table 1.2: Mean polarizability and mean second hyperpolarizability of small fullenerenes.
Polarizability in Å3 and second hyperpolarizability in 103a.u.

used are the general parameters obtained in chapter 3. 63 These parameters were shown
to give good results for αmol for nanotubes100 and in chapter 3 for the fullerene clusters.63

The last parameter γC has been chosen to describe γmol of C60 obtained from Hartree-Fock
calculations taken from Ref. 65. The reason for not choosing the general γC parameter
obtained in chapter 4 is the problem of describing both αmol and γmol with the same
damping parameters. From Table 1.2 we see that we obtain good results for α and γ for
the small fullerenes, especially α is in good agreement with both SCF and experimental
results.

The molecular α and γ have been calculated for [5,5] and [9,0] open-ended carbon
nanotubes as a function of the tube length and the results for γ are presented in chapter 6.96

The largest tubes studied corresponds to ∼ 6000 atoms and a length of ∼ 75 nm. All
of the results have been characterized by fitting the results to the expression χ(N)

N =
χ∞ − C exp

(− N
Nsat

)
, where χ represents either α or γ. This allows for a description of α

(γ) in terms of three parameters which are independent of the chain length. The parameter
χ∞ represents the asymptotic value and N sat represents the onset of which the saturation
starts. The scaling parameters obtained for the nanotubes are in Table 1.3 compared
with results for conjugated organic oligomers101 obtained using the semiemperical INDO/S
method. We see that the saturation length of γ is significant larger than for α both for the
oligomers and for the nanotubes. It is found that the magnitude of γ with respect to the

18



1.7 NLO properties of large carbon nanostructures

N sat(α) α∞
zz N sat(γ) γ∞zzzz

Oligomers 1.4-4 nm 32.9-84.9 a.u/Å 2-8 nm 6 × 104 − 1.2 × 106a.u/Å
Nanotubes 4.5 nm 238.2 a.u/Å 7.5 nm 1.8 × 106 a.u/Å

Table 1.3: Comparison of the saturation characteristics for the polarizability and second
hyperpolarizability of carbon nanotubes and oligomers. Oligomers results taken from
Ref. 101.

length of carbon nanotubes is comparable with that of conjugated polymers whereas for α
it is larger. For this reason, carbon nanotubes are demonstrated to be a valid alternative
to conjugated polymers for constructing new materials for use in nonlinear optical devices,
especially considering the possibilities of enhancing the nonlinearities of carbon nanotubes
by means of either endohedral, exohedral or substitutional doping (see e.g. ref. 62, 71).

For the fullerene clusters studied in chapter 7 we found that the effects of the sur-
rounding molecules on the molecular α and γ were large, in particular for the chain and
the film because of the anisotropic surroundings, and that large clusters are required to
obtain converged results. In Table 1.4 we present a comparison between the linear, χ(1),
and the nonlinear, χ(3), susceptibilities calculated using three different local field models.
The first model corresponds to a non-interacting model and the susceptibilities are simply
obtained from the gas phase polarizability and second hyperpolarizability. The second
model is a Lorentz-Lorenz model. Here the linear susceptibility is calculated from the
gas phase polarizability. From the linear susceptibility the refractive index is calculated
and used together with the gas phase second hyperpolarizability to calculate the nonlin-
ear susceptibility. Finally the interacting model from chapter 7, where χ(1) and χ(3) have
been calculated using a modified local-field theory which include the induced dipole mo-
ments of the surrounding molecules explicitly. We see that as expected the noninteracting

Local field model χ(1) χ(3)

Non interacting 0.11 0.14 × 10−13esu
Lorentz-Lorenz 0.20 1.7 × 10−13esu
Interacting 0.24 3.2 × 10−13esu
Exp. 0.24-0.29 16.1 − 36 × 10−13esu

Table 1.4: Linear and nonlinear susceptibilities for C60 fullerene cluster calculating using
different local field models.

susceptibilites are significant smaller than in the other models, especially the nonlinear sus-
ceptibility is smaller by an order of magnitude. If we compare the Lorentz-Lorenz model
with the interacting model we see that for χ(1) the difference is only ∼ 15% whereas for
χ(3) it is ∼ 50%. The corresponding refractive index and dielectric constant compare well
with experiments whereas the experimental nonlinear susceptibility is significant larger.
However, one should realize that the comparison of χ(3) with experiments is complicated
by dispersion and vibrational contributions.
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1 General introduction

1.8 A discrete solvent reaction field model for molecular
properties

The calculation of molecular properties of molecules in the condensed phase is a funda-
mental and important theoretical problem which still remains problematic. Most exper-
imental measurements of NLO properties of organic chromophores are made in the con-
densed phase. Therefore, if we want to relate the microscopic properties calculated to the
experimental quantities measured we need to consider the condensed phase explicitly. Fur-
thermore, since molecular properties like (hyper)polarizabilities are sensitive to the local
environment accurate calculations of these properties could serve as a test for the molecular
models used in describing intermolecular forces. This will not only help develop rational
design strategies for new NLO materials but also improve the general understanding of
condensed phase materials at the molecular level.

Accurate calculation of molecular properties requires a quantum mechanical treatment
which currently, due to high computational cost, are limited to small systems. Although,
the size of these ”small” systems grows steadily due to an increases in computational power
and highly efficient software using parallel computing and linear scaling techniques. If we
are for example interested in calculating the NLO properties of a chromophore in solution.
Assuming unlimited computation powers we could calculate these properties using the
supermolecular cluster approach. We keep on extending the cluster by adding more and
more solvent molecules until the properties are converged. However, this approach means
that most of our computational resources are used for calculating the properties of the
solvent and not the chromophore we were interested in. Another example is proteins,
where often the interest is in a small part of the protein, the active site, and the rest of the
protein is consider as a ”solvent”. Therefore the most successful methods divide the total
system into the molecular system of interest, which is treated with a quantum mechanical
method, and another part which contains the rest of the system which is treated by a much
simpler method, usually a classical description.102–116 This separation of the system into
two parts is illustrated in Figure 1.3.

Among these methods are the combined quantum mechanical and classical mechanics
models (QM/MM).105–116 In the QM/MM method the solvent molecules (MM) are treated
with a classical force field and the interactions between the solute and solvent are described
with an effective operator. In the QM/MM method the total (effective) Hamiltonian for
the system is written as105–116

Ĥ = ĤQM + ĤQM/MM + ĤMM (1.55)

where ĤQM is the quantum mechanical Hamiltonian for the solute, ĤQM/MM describes the

interactions between solute and solvent and ĤMM describes the solvent-solvent interactions.
We have recently developed such a method for studying solvent effect on molecular prop-
erties which we denoted the Discrete Solvent Reaction Field model (DRF) [Ref. 117–119,
Chaps. 8, 9, 10] where the QM part is treated using DFT. Within the Discrete Solvent
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1.8 A discrete solvent reaction field model for molecular properties

Figure 1.3: An illustration of the separation of the total system into two subsystem used
in the QM/MM model.

Reaction Field model the QM/MM operator at a point ri is given by

ĤQM/MM =
∑

i

υDRF (ri,ω) =
∑

i

υel(ri) +
∑

i

υpol(ri,ω), (1.56)

where the first term, υel, is the electrostatic operator and describes the Coulombic in-
teraction between the QM system and the permanent charge distribution of the solvent
molecules. The second term, υpol, is the polarization operator and describes the many-
body polarization of the solvent molecules, i.e. the change in the charge distribution of the
solvent molecules due to interaction with the QM part and other solvent molecules. The
charge distribution of the solvent is represented by atomic point charges and the many-
body polarization term is represented by induced atomic dipoles at the solvent molecules.
The QM/MM interactions are introduced into the Kohn-Sham equations and all interac-
tions are solved self-consistently, thereby allowing for the solute to be polarized by the
solvent. Furthermore, the inclusion of polarizabilities in the MM part allows the solvent
molecules to be polarized by the solute and by interactions with other solvent molecules.
The advantage of including polarizabilities in the MM part is that all parameters can be
obtained from gas phase properties. In general it is expected that a distributed polar-
izability approach will give better results than an approach using only an (anisotropic)
polarizability located at a single site, especially when the size of the solvent molecule in-
creases.120 In Chapter 8 we describe the DRF model and the implementation within ground
state DFT.117 The treatment of linear response properties of molecules in solution using
the DRF model within TD-DFT is presented in chapter 9.118 The application of the DRF
model to calculate the frequency-dependent hyperpolarizability of a molecule in solution
within TD-DFT is described in chapter 10.119

Before we start discussing the results a small comment on the molecular properties
actually calculated in the DRF approach, is required. The DRF operator in Eq. 1.56
represents the interaction between the solvent molecules and the solute when there is no
external electric field present. That was exactly the reason for splitting the local discrete
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field in Eq. 1.10 into two distinct parts. The second term, F perm, in Eq. 1.11 arises from
the permanent charge distribution of the surrounding molecules, which is described by
Eq. 1.56 and now incorporated directly into the microscopic description through the ef-
fective Hamiltonian. Therefore, the properties which we calculate are the solute properties
defined in Eq. 1.15. The first term, F ind, in Eq. 1.11 which accounts for the induced po-
larization of the surrounding molecules due to the external electric field are therefore not
included in the present description. The inclusion of this term in the microscopic treatment
would require a coupling of the external electric field with the polarization operator, υpol,
in Eq. 1.56. This extension is required if we want to make a realistic comparison between
experimental properties and calculated properties.

So far we have used the DRF model to study the molecular properties of a water mo-
lecule in a cluster of 127 classical water molecules. We have chosen water not because
we consider it an interesting molecule with respect to its NLO properties, although the
experimentally observed sign change in the first hyperpolarizability upon solvation is in-
teresting. The reason is rather that for this particular cluster of water molecules there
existed uncorrelated and correlated wave function QM/MM results. This enabled us to
assess approximate xc-potentials for calculating molecular response properties in solution.
This water cluster corresponds to an average water structure (AWS) obtained from MD
simulations and should in an average way represent the local environment around the wa-
ter molecule. Here we will extend the comparison between the DFT/DRF model and an
accurate wave function QM/MM method to include results which have not been avail-
able before. In Table 1.5 we summarise the results for the dipole moment, polarizability,

µ α(−ω;ω) β(−2ω;ω,ω) γ(−2ω;ω,ω, 0)
Gas

CCSD a 0.73 9.52 -19.26 1942
DFT b 0.71 9.97 -20.42 2021.3
Exp. c 0.73 9.83 -19.2±0.9 1800±150

Liquid
AWS CCSD/MMa 1.07 10.04 12.21 2169
AWS DFT/DRFb 1.04 10.13 8.57(12.77) 2117.6
DWS DFT/DRF d 1.09±6% 10.61±1% 12.51±48% 2230.36±7%

aResults are taken from: µ) Ref. 121, α) Ref. 122, β) Ref. 123, and γ) Ref. 124.
bResults are taken from: µ) Ref. 117, α) Ref. 118, β) Ref. 119, and γ) Ref. 119.
cResults are taken from: µ) Ref. 125, α) Ref. 126, β) Ref. 127, and γ) Ref. 127.
dResults are taken from Ref. 128

Table 1.5: A comparison of the molecular properties of water in the gas phase and in the
liquid phase. All results presented are in a.u. and the frequency used is ω = 0.0428 a.u.

first hyperpolarizability and the second hyperpolarizability of water in the gas phase and
in solution. In the gas phase we compare the DFT results with Couple Cluster Singles
Doubles (CCSD) wavefunction and experimental results. For the AWS we compare the
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1.8 A discrete solvent reaction field model for molecular properties

DFT/DRF results with the CCSD/MM results. If we compare the gas phase results we
see that for all the properties there is a good agreement between the DRF and the CCSD
results and that both methods are in good agreement with the gas phase experimental res-
ults. Therefore, we see that both DFT and CCSD can reproduce the experimetal results
of water in the gas phase, indicating that vibrational contributions to these properties are
small. If we compare the results for the AWS again we see a good agreement between the
DFT/DRF and the CCSD/MM results. The only exception seems to be the first hyper-
polarizability where the DFT/DRF result is smaller than that of CCSD/MM. However, as
discussed in chapter 10 the cause was that at short distances the DRF operator in Eq. 1.56
is damped. The first hyperpolarizability calculated without the short range damping is
also presented in Table 1.5 and seen to be in good agreement with the CCSD/MM results.
For the other properties only small changes were found by ignoring the damping which
indicated that especially the first hyperpolarizability was sensitive the the local molecular
environment. In order to investigate this sensitivity of the molecular properties to changes
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Figure 1.4: The first hyperpolarizability of water in liquid water as a function of time in
the MD simulation. Each point corresponds to a single DFT/DRF calculation of the first
hyperpolarizability. The time separation between points is 0.5 ps. The lower horizontal line
corresponds to the value of the first hyperpolarizability in the gas phase and the upper line
to the average value in the liquid phase.

in the local environment we performed128 a new MD simulation. From this MD simulation
we selected 101 different water structures (DWS) each containing 256 water molecules, i.e.,
snapshots of the local molecular environment, well separated in time. We then performed
a DFT/DRF calculation for each of the configurations and averaged the molecular prop-
erties obtained from these calculations. The average results are presented in Table 1.5.
We see that the results obtained from AWS are in good agreement with the results from
DWS except for the first hyperpolarizability. The standard deviation given in Table 1.5

represents the average fluctuation in the property. We see that except for the first hyper-
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polarizability the fluctuations in the properties are small. The strong fluctuations in the
first hyperpolarizability are illustrated in Figure 1.4, where the first hyperpolarizability is
plotted for all 101 configurations. Therefore, in order to obtain a realistic description of
molecular properties in solution a proper sampling of the local environment is crucial.

1.9 Outline of this thesis
In this chapter we have discussed several aspects of theoretical modelling of nonlinear
optical response properties and the application of these models to nanostructures. The
focus has been in particular on how to relate the calculated microscopic properties and the
macroscopic properties measured in experiments. We have briefly described the method
developed during this work and some of the results obtained using these models. However,
a more detailed description of the models and the application of the models are described
in the following chapters. In chapter 2 we describe the application of TD-DFT to study
the nonlinear optical properties of substitute-doped fullerenes. The theory and application
of a dipole interaction model to the polarizability of molecular clusters are presented in
chapter 3. The extension of this model to the second hyperpolarizability is described in
chapter 4. A localized dipole interaction model is described in chapter 5 and the applica-
tion of the model to investigate the microscopic polarization in liquids is presented. The
application of the dipole interaction model to investigate the saturation behavior of the
second hyperpolarizability of carbon nanotubes is described in chapter 6. An investiga-
tion of the microscopic and macroscopic polarization in large fullerene cluster using the
dipole interaction model are described in chapter 7. The discrete solvent reaction field
model to describe molecular properties in solution and the application of the model to
describe the dipole and quadrupole moments of water in the liquid phase are described in
chapter 8. The extension of the discrete solvent reaction field model to time-dependent
density functional theory is described in chapter 9. Finally, in chapter 10 the applica-
tion of the discrete solvent reaction field model to calculate the nonlinear optical response
properties of molecules in solution is presented.
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Chapter 2
TD-DFT study of the second hyperpolarizability
of substituted C60

L. Jensen, P. Th. van Duijnen, J. G. Snijders, and D. P. Chong ”Time-dependent density
functional study of the second hyperpolarizability of BB-, NN- and BN-substituted C60”
Chem. Phys. Lett. 359, 524-529, 2002.

2.1 Abstract
In this work we have investigated the effects of substituting carbon atoms with B and N on
the second hyperpolarizability of C60 using time-dependent density functional theory. We
have calculated the second hyperpolarizability of the double substitute-doped fullerenes
C58NN, C58BB and C58BN. For C60 only small changes in the second hyperpolarizability
were found when doping with either 2B or 2N. However, by doping C60 with both B and
N, creating an donor-acceptor system, an increase in the second hyperpolarizability with
about 50% was found.
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2 TD-DFT study of the second hyperpolarizability of substituted C60

2.2 Introduction
Molecules which exhibit large nonlinear optical (NLO) response properties are of great
technological importance. They define a new generation of compounds useful in informa-
tion technology, where rapid communication processes are based on optical methods rather
than electronics.8,14 Conjugated organic molecules with delocalized electron systems are
interesting because of their potentially large optical response properties. Fullerenes and
carbon nanotubes have an extended π-system and are therefore promising candidates for
new photonic materials.

Recently both experiments67,68 and theory64,65, 69 have shown that the third-order non-
linearity of C60 is smaller than first assumed. For this reason the third-order nonlinearity
of derivatives of C60 have been experimentally investigated and found to provide a large
increase in the nonlinearity compared with the pure C60, see e.g. Ref. 68,70. Theoretically,
substitute-doping of the fullerene C60 with B or N has been suggested as another way of
increasing the nonlinearity of the fullerenes.72,73 These studies have been done using an
extended Su-Schrieffer-Heeger (SSH) model74 and show that doping enlarges the second
hyperpolarizability by several orders of magnitude compared to the pure fullerenes, sug-
gesting B-, N-, and BN-doped fullerenes as serious candidates for photonic devices. Since
the SSH model predicts results72 for the pure fullerene which are larger than that pre-
dicted with first-principle methods such as DFT and ab initio SCF64,65, 69 it is interesting
also to investigate the effects of substitute-doping on the second hyperpolarizability of the
fullerenes using DFT.

In this work we will investigate the effects of substitute-doped C60 with 2 B, 2 N and
BN on the second hyperpolarizability component along the doping-axis. The calculation of
the second hyperpolarizability will be done using time-dependent density functional theory
(TD-DFT).

2.3 Computational details
Here we use TD-DFT for the calculations of the second hyperpolarizability, γ, as described
in Ref. 57, 64, 129. First the first hyperpolarizability, β, is calculated analytically in the
presence of a small electric field. The second hyperpolarizability can then be obtained by
finite-field differentiation of the analytically calculated first hyperpolarizability as

γαβγδ(0; 0, 0, 0) = lim
Eδ→0

βαβγ(0; 0, 0)|Eδ

Eδ
. (2.1)

For all the TD-DFT calculations we used the RESPONSE code 57,130 in the Amsterdam
Density Functional (ADF) program.131–135 The ADF program uses basis sets of Slater
functions where in this work a triple zeta valence plus polarization (in ADF basis set IV)
were chosen as basis. The basis set was then augmented with field-induced polarization
(FIP) functions of Zeiss et al.136 They chose the exponents based on results of an exact
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2.4 Results

Figure 2.1: Position of substituted atoms in C60.

analysis of field induced changes in hydrogen atom orbitals. We use both first- and second-
order FIP functions since for the calculation of γ the second-order FIP functions are needed
in order to get good results.137 This basis set will here be denoted as IV++ ([6s4p2d1f] for
C,N,B and [4s2p1d] for H). In order to test the quality of this basis set we also calculated
γ for benzene and borazine using a large even-tempered basis set with additional diffuse
functions ([8s6p4d4f] for C,N,B and [4s3p3d] for H), here called ET.

For the calculations of γ for the fullerenes we used the local density approximation
(LDA) and the calculations were restricted to the static γzzzz component, which is the
component along the doping-axis. This was done for two reasons. The first is to keep the
computational burden as low as possible and the second is that the aim was to investigate
the effects on γ by doping the fullerene not obtaining highly accurate results. However,
in order to assess the validity of LDA we also tested three different exchange-correlation
(xc) potentials, the Becke-Lee-Yang-Parr (BLYP),138,139 the Perdew-Wang (PW91)140 and
the van Leeuwen-Baerends (LB94)141 potentials for the calculations of γ for the benzene
molecule.

All molecular geometries were optimized using the PW91 xc-potential. The benzene
and borazine molecules are placed in the xy-plane. All geometries are available from the
authors on request. The location of the doping atoms in the fullerene are illustrated in
Fig. 2.1. For C60 the doping atoms are on opposite sides of the carbon cage and are
identical to the (1,60) doping configuration of Xu et al.73 The z-axis is taken along the
direction from the pentagon in the bottom to the pentagon on the top. This configuration
of the doping atoms were previously found to give the largest doping effects on the second
hyperpolarizability73 and is therefore the configuration used in this work.
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LDA/ET LDA/IV LDA BLYP PW91 LB94 SCF a MP2a

αxx 84.46 80.43 84.05 84.03 82.11 81.19 74.21 76.02
αzz 45.46 39.68 45.42 46.37 44.46 36.76 39.47 41.28
γxxxx 21878 9459 16251 19530 17302 8540 14190 19332
γyyyy 21875 9417 16216 18875 17317 8550 14190 19332
γxxyy 7288 3142 5419 6899 5767 2851 4728 6402
γzzzz 16050 2381 14863 18190 16323 3724 12480 15708
γyyzz 8506 2140 7369 9276 7974 2190 6456 8688
γxxzz 8506 2140 7369 9276 7974 2190 6456 8688
γ b 21681 7220 17529 21499 18874 7055 15228 20386
γ c 19000 23800 - 12900 - -

aFrom Ref. 142
bγ = 1

15

∑
i,j(γiijj + γijij + γijji).

creal-space results from Ref. 49.

Table 2.1: Static polarizability and second hyperpolarizability for benzene (in au).

2.4 Results
2.4.1 Second hyperpolarizability of benzene and borazine
The results for the static polarizability and second hyperpolarizability tensor for benzene
and borazine are displayed in Tables 2.1 and 2.2, respectively. The errors introduced in
adopting the combination of single-side finite-field and analytical techniques can be estim-
ated from the differences between γxxxx and γyyyy which by symmetry arguments should be
identical for both benzene and borazine. It is found that the difference between γxxxx and
γyyyy is very small, especially using LDA. With LDA we performed calculations both with
the IV, IV++ and the ET basis sets. In general there is reasonable agreement between
the results obtained with the IV++ and the ET basis sets, especially for the polarizability.
The IV basis set clearly underestimates the second hyperpolarizability most noticeable in
the direction perpendicular to the ring, i.e. γzzzz, which illustrates the importance of the
FIP’s. Comparing the results obtained with IV++ and ET the largest deviation, around
25%, is found for the γxxxx and γyyyy components of benzene. However, comparing the
mean hyperpolarizability, γ, for benzene with the recent results of Iwata et al.49 we only
find around an 8% deviation. In their work they use a real-space TD-DFT method which
gives results for the second hyperpolarizability in agreement with TD-DFT results close to
the basis-set limit.49 We therefore believe that the basis-set (IV++) used here, captures
most features of the second hyperpolarizability and is adequate for the study on larger
systems where the basis-set effect are expected to be smaller.

In Table 2.1 we also present the polarizability and second hyperpolarizability for ben-
zene calculated using the basis set IV++ and various xc-potentials. First it is noted that
the effect of using a GGA functional (PW91,BLYP) gives an increase in the second hy-
perpolarizability but the effect is very small. This is in good agreement with studies of
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LDA/ET LDA/IV LDA SCF a MP2a

αxx 76.45 72.20 76.66 66.85 75.64
αzz 48.51 40.83 46.53 40.39 44.31
γxxxx 21814 12273 17745 - -
γyyyy 21654 12128 17606 - -
γxxyy 7213 4042 5865 - -
γzzzz 13203 4221 13901 - -
γyyzz 5874 1775 5565 - -
γxxzz 5874 1775 5565 - -
γ 18919 8761 16648 - -

aFrom Ref. 143.

Table 2.2: Static polarizability and second hyperpolarizability for borazine (in au).

the second hyperpolarizability for small molecules.49,129, 137 Secondly, the effect of using a
xc-potential which has the correct asymptotic behavior (LB94) on the second hyperpolar-
izability is large. The results using the LB94 potential is between 2 and 4 times smaller
than the LDA results. This finding is in agreement with the results of van Gisbergen et al.
using the same functional.129 However, the LDA results for the second hyperpolarizability
for benzene obtained here is in good agreement with both the SCF and MP2 results of
Perrin et al.142 Also, the static polarizability for benzene and borazine calculated using
LDA are larger than the MP2 and SCF results in good agreement with previous findings.144

Therefore, to improve the LDA results a functional which provides both correct inner and
outer parts of the xc-potential is needed.45

2.4.2 Second hyperpolarizability of C60

The static second hyperpolarizability components along the z-axis for the fullerene C60

are presented in Table 2.3. For C60 there is only one independent component and γzzzz is
therefore equal to the average second hyperpolarizability. Also presented in Table 2.3 are
three recent theoretical predictions of the second hyperpolarizablility of C60. A comparison
with experiments are difficult due to the large differences in the experimental results64,65, 69

and the comparison will therefore only be made with theoretical results. In this work
we have neglected vibrational, dispersion and solvent effect and these factors have to be
considered when comparing with experiments. Karna et al. also discussed other problems
in relating calculated values with experimental results for benzene.145 Our results for the
second hyperpolarizability of C60 is about 35% larger than the previously reported LDA
result64 but is in reasonable good agreement with the recent real-space LDA result49 and
the SCF result.65 This again supports the notion that the basis set used here is adequate to
study the second hyperpolarizability of large systems, especially, because of the agreement
with our results and the real-space results both for benzene and C60.
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2 TD-DFT study of the second hyperpolarizability of substituted C60

C60 C58N2 C58B2 C58BN
βzzz - - - -602.01
γzzzz 137950 130147 155430 208470
γzzzz

a 124000
γzzzz

b 87438
γzzzz

c 113765

aReal-space LDA result from Ref. 49
bLDA result from Ref. 64
cSCF results from Ref. 65

Table 2.3: Second hyperpolarizability of pure and substituted fullerenes(in au).

2.4.3 Second hyperpolarizability of substituted C60

In Table 2.3 the results for the first and second hyperpolarizability of B,N-substituted
C60 are displayed. Only the BN substituted fullerene has a first hyperpolarizability which
is different from zero. We find only small differences in the second hyperpolarizability
between the 2N- and 2B-substituted C60 and the pure C60 molecule. Substituting with 2N
decreases the second hyperpolarizability with about 5% and substituting with 2B increases
the second hyperpolarizability with about 12%. This is in contrast to the results obtained
with a SSH model72,73, 78 where increases by several orders of magnitude were found both by
substituting with B and with N. This increase in the second hyperpolarizability were found
both for mono-substituted C60

72 and double substituted C60
73 where the largest increase

were found for two B-substituted C60. From populations analysis it was found that N acts as
an electron acceptor and B as an electron donor in the doubly substituted fullerene 1 which
was also found in a previously study.146 Therefore, the effects of doping C60 with either
B or N will affect the π-electron density in different ways and therefore also the nonlinear
optical properties. For this reason we also calculated the second hyperpolarizability of C60

substituted with both B and N creating a donor-acceptor system with B as donor and N
as acceptor. For this system it is found that the second hyperpolarizability is increased
with around 50% compared with the undoped system. Also, the first hyperpolarizability
is of the same order as that of p-nitroaniline calculated with SCF, see e.g. 147. However,
in general the doping effect on the hyperpolarizabilties of C60 found here is very small
compared with that found for fullerene derivatives.68,70 Since the hyperpolarizabilities are
expected to increase with an increase in the distance between the donor and acceptor
it would be interesting to investigate the scaling behaviour of the hyperpolarizability of
doped fullerenes as a function of the cage size. Also, in push-pull derivatives of C60 a
relationship between the conjugation path length between donor/acceptor groups and the
first hyperpolarizability was found.148 For pure carbon structures it is found that the
carbon nanotubes have larger second hyperpolarizabilities than the fullerenes with the

1The Mulliken charge on B in C58B2 was 0.97 and the charge on N in C58N2 was -0.53. In C58BN the
charge on B was 0.93 and on N -0.52.
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same number of atoms149 and the effect of substituting nanotubes instead of fullerenes as
a way of increasing the second hyperpolarizability would also be interesting.

2.5 Conclusion
We have used TD-DFT to calculate the second hyperpolarizability of the doubly substitute-
doped fullerenes C58NN, C58BB and C58BN after testing the procedure on benzene and
borazine. Reasonable good agreement is found with previously results for benzene, borazine
and C60, especially considering the small size of the basis set used in this work. Only
small changes in the second hyperpolarizability were found when doping C60 with either
2B or 2N. However, an increase with 50% was found when doping C60 with both B and
N. We therefore propose BN-doped fullerenes as an interesting starting point for further
investigations of the hyperpolarizabilities of doped fullerenes and carbon nanotubes.
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Chapter 3
A dipole interaction model for the polarizability

L. Jensen, P.-O. Åstrand, A. Osted, J. Kongsted, and K. V. Mikkelsen ”Polarizability
of molecular clusters as calculated by a dipole interaction model” J. Chem. Phys. 116,
4001-4010, 2002.

3.1 Abstract
We have developed and investigated a dipole interaction model for calculating the po-
larizability of molecular clusters. The model has been parametrized from the frequency-
dependent molecular polarizability as obtained from quantum chemical calculations for
a series of 184 aliphatic, aromatic and hetero-cyclic compounds. A damping of the in-
teratomic interaction at short distances is introduced in such a way as to retain a traceless
interaction tensor and a good description of the damping over a wide range of interatomic
distances. By adopting atomic polarizabilities in addition to atom-type parameters de-
scribing the damping and the frequency-dependence, respectively, the model is found to
reproduce the molecular frequency-dependent polarizability tensor calculated with ab initio
methods. A study of the polarizability of four dimers has been carried out: the hydrogen
fluoride, methane, benzene and urea dimers. We find in general good agreement between
the model and the quantum chemical results over a wide range of intermolecular distances.
To demonstrate the power of the model, the polarizability has been calculated for a linear
chain of urea molecules with up to 300 molecules and one- and two-dimensional clusters
of C60 with up to 25 molecules. Substantial intermolecular contributions are found for the
polarizability anisotropy, whereas the effects are small for the mean polarizability. For the
mean polarizability of C60, we find good agreement between the model and experiments
both in the case of an isolated molecule and in a comparison of a planar cluster of 25 C60

molecules with experimental results on thin films.
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3 A dipole interaction model for the polarizability

3.2 Introduction
The design of new carbon-based materials for potential use in optoelectronic and photonic
devices is of great technological importance. These new materials will lead to a new
generation of information technology where optical methods are the basis for rapid com-
munication processes.8,9, 11 One promising class of materials is the so-called molecular
materials, i.e., materials consisting of molecular entities. The optical response properties
of this class of materials are to a large extent governed by the properties of the indi-
vidual molecules and to some extent by the interactions with the neighboring molecules.
Therefore, understanding the response properties of the bulk materials, the molecular re-
sponse properties and the perturbations caused by environmental interactions are needed
in order to achieve an efficient procedure for designing optical molecular materials at the
atomistic level.8,12, 14–18 From a theoretical point of view, the molecular response to an
external electromagnetic field is calculated most efficiently by applying quantum chemical
response theory.150 Accurate quantum chemical calculations of molecular properties can,
however, only be carried out for rather small molecules due to the large requirements of
computer resources. Furthermore, the use of conventional density functional theory, which
in general gives improved accuracy over the Hartree-Fock approximation at a similar or
lower computational cost, gives relatively poor results for nonlinear optical properties of
large conjugated molecular chains.82,83 Therefore, for large molecules and assemblies of
molecules, modeling is currently restricted to less sophisticated methods.

The isotropic part of the molecular polarizability is to a good extent an additive prop-
erty, indicating that the polarizability can be calculated from a sum of transferable atomic
or bond contributions. However, perfect additivity can only occur if the subunits are non-
interacting, which obviously is not the case for atoms in molecules. Therefore, as pointed
out by Silberstein,87 the molecular polarizability is not additive unless the chemical envir-
onment of each atom is considered in detail. The chemical environment was first introduced
by using bond polarizability models,151,152 which were quite successful in reproducing the
static mean polarizability (the isotropic part of the polarizability tensor) of alkanes.152

Different methods using the additivity concept have also been proposed153–155 and these
models are in general successful in reproducing the molecular mean polarizability. Re-
cently, the additivity model was adopted for the static polarizability tensors of organic
molecules156,157 and also for both the static and frequency-dependent polarizability tensors
of halogen derivatives of benzene158 using atomic polarizability tensor elements. However,
since the molecular polarizability is a tensor, also the atomic contributions have to be
tensors in an additive model leading to a larger number of parameters to be determined.

A more elaborate model, but yet very simple compared with quantum chemical calcu-
lations, is the dipole interaction model of Applequist et al.90,91, 159 based on the early work
of Silberstein.87–89 In the interaction model, the atoms of a molecule in an external field
interact by means of their atomic induced dipole moments according to classical electro-
statics. Even if the atomic parameters are isotropic polarizabilities, an anisotropy of the
molecular polarizability is introduced by the electric fields from the surrounding atoms. An
important extension of the interaction model was to include overlap effects on the internal
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3.3 The Dipole Interaction Model

electric fields,93,160, 161 i.e., the electric field at the nucleus is damped. In particular, the
model of Thole93 has turned out to be successful in predicting the molecular polarizability
tensor using model atomic polarizability parameters independent of the chemical environ-
ment of the atom. Thole’s model has recently been investigated in more detail94,162–166

and also extended to include atom-type damping parameters and the treatment of the
frequency-dependent polarizability tensor.94,166

However, despite the success of the Thole model, a problem arises from the introduction
of the damping term into the interaction tensor. The modification of the interaction
tensor leads to a tensor which, in contrast to the undamped tensor, is not traceless. In
addition, the most promising damping function suggested by Thole93 is not continuous.
This discontinuity may give problems at small intermolecular distances and is therefore
not suitable for investigating intermolecular interactions.165

In this study, we present a way of introducing a damping of the interaction tensor which
preserves the traceless property of the interaction tensor. The formulae will in principle be
valid for all terms of the interaction tensor in the multipole expansion. Furthermore, the
way that atom-type damping parameters are introduced is given a more firm theoretical
base than the more ad hoc approach adopted previously.

Both in the additivity and interaction models, the model atomic (or bond) polariz-
abilities are fitted to the molecular polarizabilities of a trial set of molecules. Therefore,
the quality of the data in the trial set will affect the accuracy and the actual values
of the model parameters. In particular, experimental molecular polarizabilities also in-
clude zero-point vibrational and pure vibrational contributions that most probably are
not negligible.25,167, 168 It is therefore preferred to use quantum chemical calculations of
molecular electronic polarizabilities for the parameterization. Here, we extend the set of
aromatic and aliphatic molecules employed previously94 to also include hetero-monocyclic
compounds containing B, N, and C atoms and we parameterize the model from ab initio
frequency-dependent molecular polarizabilities. The obtained model will be used to study
the interaction polarizability of four dimers, the HF, methane, benzene and urea dimers.
Since the aim of the work is to treat large molecular assemblies, we also present results for
one-dimensional urea chains with up to 300 molecules and for one- and two-dimensional
C60 clusters with up to 25 molecules. To our knowledge, this is the first theoretical study
of the polarizability of C60 clusters and it gives the possibility of comparing with the po-
larizability obtained from experiment on thin films. The additional boron parameters are
used in a separate work on boron nitride nanotubes.100

3.3 The Dipole Interaction Model
Considering a set of N interacting atomic polarizabilities, the atomic induced dipole mo-
ment, µind

p , due to an external electric field, Eext, is given by

µind
p,α = αp,αβ

(
Eext
β +

N∑
q $=p

T (2)
pq,βγµ

ind
q,γ

)
, (3.1)
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where T (2)
pq,βγ is the so-called dipole interaction tensor given as

T (2)
pq,βγ =

3rpq,βrpq,γ

r5
pq

− δβγ
r3
pq

. (3.2)

In Eq. 3.1 the Einstein summation convention for repeated indices has been employed, and
it is used throughout this work. The molecular polarizability can be written as90

αmol
αβ =

N∑
p,q

Bpq,αβ, (3.3)

where B is the relay matrix defined in a supermatrix notation as

B =
(
α

−1 − T(2)
)−1

. (3.4)

If we consider two interacting atoms, p and q, the polarizability parallel, α‖, and perpen-
dicular, α⊥, to the axes connecting the atoms are given by Silberstein’s equations89

α‖ =
αp + αq + 4αpαq/r3

1 − 4αpαq/r6
, (3.5)

α⊥ =
αp + αq − 2αpαq/r3

1 − αpαq/r6
. (3.6)

Inspection of Eqs. 3.5 and 3.6 shows that when r approaches (4αpαq)1/6, α‖ goes to infinity
and it becomes negative for even shorter distances. Thole avoided this “polarizability
catastrophe” by modifying the dipole interaction tensor using smeared-out dipoles.93 The
interaction tensor was first rewritten in terms of a reduced distance upq,β = rpq,β/(αpαq)1/6

as

T (2)
pq,βγ = (αpαq)

1/2t(upq) = (αpαq)
1/2 ∂2φ(upq)

∂upq,β∂upq,γ
(3.7)

where φ(upq) is a spherically symmetric potential of some model charge distribution ρ.
Thole considered several different forms of the charge distribution and obtained the most
promising results using an interaction tensor of the form,

T (2)
pq,βγ =

3υ4
pqrpq,βrpq,γ

r5
pq

− (4υ3
pq − 3υ4

pq)δβγ
r3
pq

(3.8)

where υpq = rpq

spq
if rpq < spq, otherwise υpq = 1 and the normal dipole interaction tensor

is recovered. Thole originally defined spq = a(αpαq)1/6 with a global damping parameter

a. We recently investigated a slightly modified definition, namely spq = (ηpηq)
1
4 where ηp

is a fitting parameter assumed to be proportional to the atomic second order moment,94

thereby introducing in an ad hoc fashion atom-type damping parameters. Here, this model
will be termed the IM-MT model, where IM denotes interaction model and MT denotes
modified Thole.
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3.3 The Dipole Interaction Model

The modification of the interaction tensor in Eq. 3.8 leads to a tensor with a trace
different from zero. The undamped interaction tensor is traceless and the importance of
this can be illustrated by considering the molecular quadrupole moment. The quadrupole
moment is often chosen as being traceless,169 and one reason for this is that its trace
does not contribute to the interaction energy according to classical electrostatics. This is
noticed from regarding the interaction between a test charge and a quadrupole moment,
1
3qAT (2)

AB,αβQB,αβ and adding a small contribution ∆ to each of the diagonal components of
QB,αβ . The additional contribution from ∆ to the interaction energy is obtained as

1

3
qA∆

(
T (2)

AB,xx + T (2)
AB,yy + T (2)

AB,zz

)
(3.9)

which normally is zero because T (2)
AB,αβ is traceless. The non-traceless tensor will in prin-

ciple not give wrong polarizabilities, but the choice will affect the obtained values of the
fitted parameters. However, in order to retain the property of T (2) as being traceless, we
introduce the damping in a different way. In particular, this will be of importance if the
interaction model is extended to molecular dipole-quadrupole polarizabilities and dipole-
dipole hyperpolarizabilities. For example, the leading term to an interaction model for the
first hyperpolarizability, β, arises from an atomic dipole-quadrupole hyperpolarizability,170

and includes normally a traceless definition of the quadrupole moment. However, the trace-
less definition of the quadrupole moment has been criticized because some electromagnetic
observables apparently become origin-dependent for this choice of definition.171

Damping may be included by modifying the distance rpq to obtain a scaled distance,
spq,

spq = vpqrpq = f(rpq), (3.10)

where vpq is a scaling factor and f(rpq) is an appropriately chosen function of rpq. Further-
more, if each component of rpq also is scaled by vpq, the reduced distance becomes,

spq =
√

spq,αspq,α = vpq
√

rpq,αrpq,α = vpqrpq, (3.11)

which is consistent with the definition in Eq. 3.10. The interaction tensor can thus be
obtained from

T (n)
pq,α1...αn

= ∇α1 . . .∇αn

(
1

spq

)
, (3.12)

which is equivalent to replacing rpq by spq and rpq,α by spq,α in the regular formulae for the
interaction tensor.

To derive explicit formulas for the scaling function f(rpq) we consider the interaction
between two spherical Gaussian charge distributions with exponents Φp and Φq and nor-
malized to one. The interaction energy is given by172,173

V =

∫∫
ρp(r1)ρq(r2)

r12
dr1dr2 =

erf(
√

arpq)

rpq
. (3.13)

where a is the reduced exponent a = ΦpΦq/(Φp + Φq) and erf(
√

arpq) is the regular error
function. As the exponent

√
arpq tends to infinity, the error function tends to 1 and we
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recover the usual expression for a point charge. This leads to a scaling function of the
form,

f(rpq) =
rpq

erf(
√

arpq)
. (3.14)

The components of the scaled distance vector, spq,α, are calculated as vpqrpq,α, where vpq is
obtained from Eq. 3.10 as

vpq =
f (rpq)

rpq
. (3.15)

However, due to the relatively complex form of the error function we have also investigated
two approximations of this function,174 namely

f(rpq) =

√
r2
pq +

π

4a
(3.16)

and

f(rpq) =

(
r4
pq +

π2

16a2

)1/4

. (3.17)

The approximations in Eqs. 3.16 and 3.17 can be realized considering the limits of Eq. 3.13
at rpq → 0 and rpq → ∞, i.e.

lim
rpq→∞

erf(
√

arpq)

rpq
=

1

rpq
(3.18)

and

lim
rpq→0

erf(
√

arpq)

rpq
=

1√
π
4a

. (3.19)

To give the correct limiting behavior, the combination of Eqs. 3.18 and 3.19 may lead
to either Eq. 3.16 or Eq. 3.17. The three different models will be denoted according to
the scaling function used, i.e., IM-ERF, IM-SQRT or IM-QDRT if, respectively, Eq. 3.14,
Eq. 3.16 or Eq. 3.17 is used. It is noted that in particular the form of the damping in
Eq. 3.16 would be efficient in molecular dynamics simulations of condensed phases because
in principle it only involves an extra addition in the calculation of the distance.

Well below the first electronic absorption, the frequency-dependence of the molecular
polarizability is often approximated with an Unsöld-type of expression.15 Here we assume
that the atomic polarizability has a similar frequency-dependence,94

αp(−ω;ω) = αp(0; 0) ×
[

ωp
2

ωp
2 − ω2

]
, (3.20)

where ωp is an atom-type parameter and ω is the frequency.
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3.4 Quantum chemical calculation
The quantum chemical computations of frequency-dependent polarizabilities were car-
ried out with the DALTON program package175 as described in Refs. 150, 176, 177 us-
ing linear response functions at the self-consistent field (SCF) level. The basis set of
Sadlej178 was employed because it has been shown previously that it gives good res-
ults for polarizabilities considering its limited size.158 The following frequencies have
been used: ω(a.u.)/λ(nm) = 0.0/∞, 0.02389/1907, 0.04282/1064 and 0.0774/589 (1 a.u.
= 27.21 eV). A series of 74 molecules has been generated from four disubstituted six-
membered hetero-monocyclic compounds containing B, N, and C atoms.179 The hetero-
rings investigated were borazine, 1,3,5-triborate, hexahydro-1,3,5-triazine and hexahydro-
1,4-diboro-2,5-diazine where the nomenclature used is the extended Hantzsch-Widman
system.180 The geometry of the substituted hetero-rings were optimization at the PM3
level with the GAUSSIAN 94 program package.181 The set of 74 hetero-rings were added
to the set of 113 molecules (the original set of 115 molecules apart from the two biphenyls)
used in the previous study of aliphatic and aromatic molecules.94 The geometry of the
molecules in the original set were generated adopting standard bond lengths and bond
angles taken from Refs 182, 183. We have not included olephines in the trial set since in
this case intramolecular charge-transfer effects are important, and these effects cannot be
modeled on the basis of atomic polarizabilities only.184–186 It is noted that we use differ-
ent kinds of molecular geometries for different molecules. The obtained atomic parameters
should, however, be independent of the choice of molecular geometry because the geometry
dependence is included explicitly in the T (2) tensor (see Eq. 3.2). In contrast, for applica-
tions the choice of molecular geometries can be crucial in the comparison of model results
with experimental data. A crucial test of the atomic parameters would be to calculate
polarizability derivatives and thereby Raman scattering parameters in line with the work
by Applequist and Quicksall.91,187

The parameters describing the frequency-dependent polarizabilities have been optim-
ized using the same scheme as in Ref 94. For the static polarizability, the root-mean-square
(rms) of the differences between the quantum chemical molecular polarizability tensors,
αQC
αβ,i, and the model molecular polarizability tensors, αmodel

αβ,i , are minimized as

rms =

√√√√∑N
i=1

∑3
α,β=1

(
αmodel
αβ,i − αQC

αβ,i

)2

N − 1
, (3.21)

where N is the number of molecules.
The parameters describing the frequency-dependence of the molecular polarizability

have been optimized by minimizing

rms =

√√√√∑N
i=1

∑3
α,β=1

[(
αmodel
αβ,i (ω) − αmodel

αβ,i (0)
)− (

αQC
αβ,i (ω) − αQC

αβ,i (0)
)]2

N − 1
, (3.22)
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i.e. we parameterize the frequency-dependence only and do not attempt to correct for
errors introduced in the parameterization of the static polarizability.

The interaction polarizability, ∆α, was calculated as the difference between the dimer
polarizability and twice the monomer polarizability as

∆α = αdimer − 2αmonomer, (3.23)

and for the SCF calculations on the complexes, we corrected for basis set superposition
errors (BSSE) by the counterpoise method.188 Four different kinds of dimers were included
in the study. The HF dimer has a single hydrogen bond whereas the linear urea dimer
forms two hydrogen bonds. In addition, two nonpolar complexes, the methane and benzene
dimers, are included where the attractive part of the interaction is dominated by dispersion
interactions. In the case of the benzene dimer, it was arranged such that the π-electrons
are perturbed which is not the most likely orientation but it serves as a severe test of the
model. The relative orientations of the molecules in the dimers are displayed in Fig. 3.1.

(a) HF dimer (b) Methane dimer (c) Benzene dimer (d) Urea dimer

Figure 3.1: Relative orientation of the four dimers.

It should be noted that the interaction polarizabilities are often rather small compared
with the molecular polarizability and they will therefore be critical tests of the model.
The HF, methane and benzene molecules have been included in the training-set described
above, whereas the urea molecule was not included. The geometry of the urea molecules was
taken from Ref. 189. For the calculations on the urea chains, the intermolecular distance
between the centre-of-mass of the urea molecules in the planar urea chains is 9.5 bohr
which corresponds to the equilibrium distance of the linear dimer.190 The structure of the
C60 molecule was taken from our previous work.94 Solid C60 exhibits a face-centered-cubic
structure with a lattice vector a0 = 14.17 Å giving a nearest-neighbor distance of a =
10.02. Å191 The one- and two-dimensional clusters were constructed using this nearest-
neighbor distance and the two-dimensional structure is illustrated in Fig. 3.2.

3.5 Results
The optimized parameters describing the static polarizability for the IM-MT, IM-ERF,
IM-QDRT, and IM-SQRT models are given in Table 3.1, where also the parameters from
our previous work94 on the IM-MT model are included. A detailed comparison with the
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Figure 3.2: The 2-dim. C60-cluster with 13 molecules. The distance between nearest
molecules is a = 10.02 Å.

Applequist model and the Thole model has not been carried out here but can be found in,
e.g., Ref. 94.

For the IM-MT model, which includes the additional heterocyclic molecules in compar-
ison with our previous work, we find that the inclusion of the heterocyclic molecules in the
training set does not reduce the accuracy of the model. However, the actual values of the
parameters change considerably, and in particular the damping parameters are different.
For the polarizability parameters, the largest changes are found for αN . The reason is
that all added molecules contain BN-ring systems, which means that we have added a new
type of nitrogen-containing molecules. This indicates that damping is especially import-
ant for ring-systems which is also discussed by Applequist185 in his partial neglect of ring
interactions (PNRI) approximation for aromatic molecules. In the PNRI approximation,
C is assigned an anisotropic polarizability (components parallel and perpendicular to the
ring) and interactions between carbon atoms in the same conjugated system are neglected.
The PNRI approximation is required in the Applequist model in order to get a reasonable
description of the polarizability perpendicular to the ring in aromatic molecules.

As noticed in Table 3.1, the values of the polarizability parameters are lowered for the
approaches included here (IM-ERF, IM-QDRT, IM-SQRT), but this is compensated by
modifying the damping parameters. In general, it seems like the damping parameters are
more affected by the choice of training set, optimizing procedure, etc. than the atomic
polarizabilities. Both the polarizability and damping parameters are very similar for all
three models as expected due to the similarity of the damping functions. The best fit is
obtained for the simplest model, IM-SQRT, although no significant difference between the
IM-SQRT model and the IM-QDRT model is found. Compared with the IM-MT model,
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Damping IM-MT IM-ERF IM-QDRT IM-SQRT
Atom αp Φp αp

a Φp
a αp Φp αp Φp αp Φp

H 2.118 1.090 1.84 2.75 1.335 0.267 1.310 0.336 1.280 0.358
B 10.612 9.475 - - 8.782 0.047 8.611 0.075 8.649 0.074
C 11.111 7.600 11.52 20.99 8.405 0.083 8.415 0.124 8.465 0.124
N 8.365 6.491 10.55 26.55 5.994 0.177 6.127 0.274 6.169 0.268
O 6.982 3.825 5.64 12.16 3.626 2.794 3.805 2.649 3.754 4.103
F 2.603 1.752 2.25 4.78 1.967 1.667 1.937 1.653 1.907 1.468
Cl 15.342 4.921 16.08 17.64 13.101 0.185 13.084 0.468 13.081 0.453

rms b 6.29 6.67 5.71 5.30 5.29
mae c 4.98 ± 2.98 % - 3.71 ± 2.66 % 3.50 ± 2.56 % 3.55 ± 2.60 %

aSee Ref. 94. Fitted to 115 aliphatic and aromatic molecules.
bOptimized error, see Eq. 3.21.
cMean absolute error in diagonal components.

Table 3.1: Atomic parameters fitted to model the static polarizability (in a.u.,
1 a.u.=0.1482 Å3).

the IM-SQRT model gives an improvement of around 15% which is substantial considering
that only the damping function has been changed and no additional fitting parameters
have been included.

The relative mean absolute error (mae) in the diagonal components is also presented
in Table 3.1. It should be noted that the rms includes both diagonal and off-diagonal
components. The IM-QDRT model gives the lowest mae but again there is little difference
between the IM-SQRT and IM-QDRT models. The IM-SQRT is therefore expected to give
results which are within 6% of the SCF results.

If the atomic parameters are compared, it is found for the IM-MT model that αB

is slightly smaller than αC , which is unphysical. In contrast, for the three new models
αB is slightly larger than αC . The differences are, however, small and changes in the
α-parameters may be compensated by modifying the Φ-parameters. For the three new
models, it is also noted that in particular ΦO but also ΦF are considerably larger than the
other Φ-parameters. This can be understood since the damping term 1

a can be rewritten
as 1

a = 1
Φp

+ 1
Φq

and therefore the smallest damping parameter will to a large extent
determine the damping. Even if one may regard the Φ-parameters as a measure of an
atomic second moment, it is, as already mentioned, our experience that the actual values
of the Φ-parameters are sensitive to the optimization procedure. Presently, it is therefore
difficult to regard the Φ-parameters as anything else than fitting parameters.

In Table 3.2, we present the parameters describing the frequency-dependence of the
polarizability. As in our previous work,94 we find a significant improvement by dividing
the molecules in the training set into three groups, i.e. aliphatic, aromatic and molecules
containing the element B. It is interesting that improvements were found by separating the
BN-rings into its own group. It may be related to the special electrooptic properties found
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all molecules aliphatic aromatic boron
Atom ωp ωp

a ωp ωp
a ωp ωp

a ωp

H 0.471 0.605 0.413 0.414 0.341 0.351 1.081
B 0.446 - - - - - 0.467
C 0.541 0.445 0.784 0.714 0.447 0.396 0.596
N 0.811 0.342 0.658 0.432 0.295 0.223 0.649
O 0.386 0.561 0.493 0.430 1.773 1.339 0.408
F 0.311 0.404 0.896 0.973 1.934 1.085 1.149
Cl 0.461 0.441 0.532 0.530 0.544 0.432 0.535

rms 1.286 0.809 0.375 0.424 0.559 0.712 0.582

aTaken from Ref. 94.

Table 3.2: Parameters describing the frequency-dependence of molecular polarizabilities
(in a.u.).

for boron-nitride tubes (see, e.g., Ref. 90,100 and references therein). The rms values are
reduced by almost a factor of two for all three groups as compared to including all molecules
in one group. In general, we find good agreement with the results from our previous work.94

For the aliphatic molecules the largest changes are found for the ωN parameter. This is
due to that the hexahydro-1,3,5-triazine rings have been added to this group. The fact
that the rest of the parameters are only slightly affected illustrates the transferability of
the parameters. In the case of the group of aromatic molecules, large changes are found
for ωO and ωF parameters. Since the set of aromatic molecules employed in this work
are the same as in the previous study, the changes are due to minor differences in the
optimization routine used. The reason for this is that ωO and ωF have the largest values.
Therefore, they give an almost negligible contribution to the total frequency-dependence
of the polarizability (see Eq. 3.20) and are not very well determined in the optimization.
It is demonstrated that the frequency-dependence of the molecular polarizability for the
hetero-rings can also be described with atom-type parameters. However, for the boron
group in particular the H parameter is different from the other groups. Equivalently to the
discussion above, ωH has become that large that it is not contributing to the frequency
dependence. Qualitatively, it should not be expected that the electrons related to the
hydrogen atoms contribute to the frequency dependence for these molecules because the
most important absorption band is related to the ring structure.

3.5.1 Dimers
The interaction polarizabilities of the HF, methane, benzene and urea dimers are displayed
in Figure 3.3, 3.4, 3.5 and 3.6, respectively. The interaction polarizability calculated with
the IM-SQRT model is compared with SCF results. For the HF dimer (Figure 3.3), the
results of the IM-MT model are also included in order to illustrate the discontinuous
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Figure 3.3: Interaction polarizability of
the HF dimer in a.u. R is the intermolecu-
lar distance between H and F as indicated
in Fig. 3.1(a). SCF results : (!) α‖ and
(×) α⊥. IM-MT results : (· · · , +) α‖ and
(· · · , ,) α⊥. IM-SQRT results : (- -) α‖

and (—) α⊥. Vertical line indicate equilib-
rium distance taken from Ref. 192.
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Figure 3.4: Interaction polarizability of
the Methane dimer in a.u. R is the inter-
molecular distance between C and H as in-
dicated in Fig. 3.1(b). SCF results : (+)
α‖ and (!) α⊥. IM-SQRT results : (—
) α‖ and (- -) α⊥. Vertical line indicate
equilibrium distance taken from Ref. 193.

damping function of the IM-MT model. From the discontinuity in Figure 3.3, we see that
in the IM-MT model there is no damping for distances larger than 2 bohr. This is expected
since the IM-MT model is optimized to reproduce damping effects at typical bond distances
for covalent bonds and not at typical intermolecular distances. Using the IM-SQRT model
improves the damping greatly at short intermolecular distances for the HF dimer. Although
the discontinuity in the IM-MT models only occurs at very short intermolecular distances,
it may still not be suitable for being used in molecular dynamics simulations as discussed
by Burnham et al.165 For the other three dimers (Figures 3.4, 3.5 and 3.6) the IM-
SQRT model slightly overestimates the intermolecular damping which again is due to that
the IM-SQRT model is optimized to describe damping at intramolecular bond distances.
Furthermore, it is observed that the SCF results predict that the interaction polarizability
of the benzene and HF dimer parallel to the separation axes become almost stationary
around the equilibrium distance. This behavior cannot be reproduced with the damping
function employed here.

In spite of the chemical difference of the four dimers studied some general trends are
found for the interaction polarizability. The interaction polarizability of the dimers in-
creases in the direction along the axes connecting the the molecules (”dimer axes”) and
decreases in the directions perpendicular to the dimer axes which is expected from Eqs. 3.5
and 3.6. The mean polarizability is, however, almost unchanged by the intermolecular in-
teractions. That the isotropic part of the polarizability is almost additive for a linear
dimer may be realized from Eqs. 3.5 and 3.6. If a diatomic molecule, consisting of atoms
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Figure 3.5: Interaction polarizability of
the Benzene dimer in a.u. R is the inter-
molecular distance between mass center as
indicated in Fig. 3.1(c). SCF results :
(+) α‖ and (,) α⊥. IM-SQRT results : (-
-) α‖ and (—) α⊥. Vertical line indicate
equilibrium distance taken from Ref. 194.
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Figure 3.6: Interaction polarizability of
the Urea dimer in a.u. R is the inter-
molecular distance between mass center as
indicated in Fig. 3.1(d). SCF results : (+)
α‖ , (,) α⊥ in plane and (!) α⊥ out of
plane. IM-SQRT results : (– – ) α‖, (—)
α⊥ in plane and (- - -) α⊥ out of plane.
Vertical line indicate equilibrium distance
taken from Ref. 190.

p and q, is considered, the isotropic part of the polarizability is α = 1
3

(
α‖ + 2α⊥

)
, which

becomes α = αp + αq if the short-range 1/r6-terms in the denominator of Eqs. 3.5 and 3.6
are neglected. The agreement between the IM-SQRT model and the SCF results are in
general reasonable over a wide range of intermolecular distances. The largest discrepancy
is found at short distances for the benzene dimer perpendicular to the separation axes (see
Figure 3.1). This was expected due to the non-classical effects arising from perturbations
of the π-system in the benzene dimer at short distances. At large intermolecular distances,
the difference between the SCF results and the IM-SQRT model becomes small. This
indicates that the long-range induced polarizability at the SCF level is well described in
terms of dipole-induced-dipole interactions in good agreement with the result on the He
dimer.195 The results for the interaction polarizability of the HF dimer compare well with
that obtained from the equilibrium structure of the HF dimer which is bent compared with
the linear dimer structure adopted here.196 Similar trends for the interaction polarizability
are also observed for the linear acetylene dimer,197 the linear dimer of H2NO,198 the water
dimer,199 the linear dimer of urea200 and parallel chains of polyacetylene oligomers.201 Also,
since a similar behavior is observed for the second hyperpolarizability197,201, 202 this indic-
ates a general scheme for enhancing the (hyper)polarizability of assemblies of molecules by
aligning the molecules along the axes with the largest polarizability. Furthermore, interac-
tions between different chains should be minimized since these interactions tend to lower
the polarizability.201 However, further studies of the interaction (hyper)polarizability are
needed in order to determine the usefulness of this type of alignment schemes.
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3 A dipole interaction model for the polarizability

N αxx
a αzz

a αyy
a α a

1 39.68 22.09 38.23 33.33
2 76.69 (-3.4) 43.01 (-2.6) 84.03 ( 9.9) 67.91 (1.9)
4 149.97 (-5.5) 84.59 (-4.3) 179.51 (17.4) 138.02 (3.5)
6 223.03 (-6.3) 126.11 (-4.9) 276.10 (20.4) 208.41 (4.2)
8 296.03 (-6.7) 167.60 (-5.2) 372.97 (21.9) 278.87 (4.6)
10 369.01 (-7.0) 209.09 (-5.3) 469.94 (22.9) 349.35 (4.8)
15 551.42 (-7.4) 312.79 (-5.6) 712.55 (24.3) 525.59 (5.1)
20 733.81 (-7.5) 416.49 (-5.7) 955.27 (24.9) 701.86 (5.3)
30 1098.55 (-7.7) 623.87 (-5.9) 1440.79 (25.6) 1054.40 (5.5)
50 1828.01 (-7.9) 1038.63 (-6.0) 2411.94 (26.2) 1759.53 (5.6)
100 3651.61 (-8.0) 2075.51 (-6.0) 4839.99 (26.6) 3522.37 (5.7)
200 7298.78 (-8.0) 4149.26 (-6.1) 9696.18 (26.8) 7048.07 (5.7)
300 10945.95 (-8.0) 6223.00 (-6.1) 14552.39 (26.9) 10573.78 (5.7)

aPercent deviation from additivity in parentheses

Table 3.3: Polarizability of urea chains calculated using IM-SQRT (in au). N is the
number of molecules in the chain. Y-axes is along the chain, X-axes is perpendicular to
the chain but in the plane and Z-axes is perpendicular to the plane

3.5.2 Chain of urea molecules
The polarizability of chains of urea molecules with increasing number of molecules in the
chain and their deviation from additivity are presented in Table 3.3. The mean polariz-
ability, α, is defined as α = 1

3(αxx + αyy + αzz). With increasing number of molecules,
we find that the polarizability parallel to the chain increases more than expected from an
additive model and perpendicular to the chain it increases less rapidly than an additive
model. A significant deviation from additivity is found for the tensor component along
the chain which amount to around 25%. For the mean polarizability, however, the largest
deviation from additivity is around 5%. These results are in good agreement with the ab
initio study of Perez and Dupuis200 on urea dimers and trimers. A chain length of around
100 molecules is needed before the deviation from additivity becomes stationary. Since the
polarizability is converging slowly with respect to the number of molecules in the chain,
extrapolation schemes are often employed to get the polarizability in the infinite limit.
However, the polarizability for infinitely long chains is dependent on both the adopted
extrapolation scheme and the total number of entities.203

3.5.3 C60 clusters
For C60, we have investigated the polarizability both for one- and two-dimensional clusters.
The results are presented in Table 3.4 and again the deviation from additivity is given in
parentheses. The polarizability components parallel to the chain and in the plane of the
film increase more rapidly with the number of molecules than expected from an additive
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one-dimensional cluster two-dimensional cluster
N α⊥

a α‖
a α/N a α⊥

a α‖
a α/Na

1 522.62 522.62 522.62 - - -
2 981.71( -6.1) 1231.67(17.8) 532.52(1.9) - - -
3 1434.69( -8.5) 1994.32(27.2) 540.41 (3.4) - - -
5 2336.31(-10.6) 3568.27(36.6) 549.39(5.1) 2273.72(-13.0) 2919.66(11.7) 540.87(3.5)
7 3236.09(-11.5) 5162.48(41.1) 554.03(6.0) - - -
13 5932.65(-12.7) 9971.86(46.8) 559.93(7.1) 5410.12(-20.4) 8118.21(19.5) 555.04(6.2)
25 11323.15(-13.3) 19612.55(50.1) 563.45(7.8) 9879.24(-24.4) 16284.52(24.6) 565.98(8.3)

aPercent deviation from additivity in parentheses

Table 3.4: Polarizability of C60 calculated using IM-SQRT (in au). N is the number of
molecules in the cluster.

model, whereas the components perpendicular to the chain and out of the plane increase
less rapidly than an additive model. The deviation from additivity is larger for the chain
than for the film. It is around 50 % along the chain and around -15 % perpendicular to the
chain. In the case of the two-dimensional cluster the relative deviations from additivity
perpendicular to the plane and in the plane are nearly identical but with different sign.
The largest deviation from additivity in the mean polarizability is around 8 % both for the
chain and the film.

The mean polarizability of the isolated C60 molecule is calculated to 77.5 Å3 which
agrees well with the experimental result of 76.5±8 Å3 (Ref. 204) and an accurate SCF
result of 75.1 Å3.205 In addition, good agreement is found between the results of the
largest two-dimensional cluster of 83.9 Å3 and experimental results on thin films where the
results range between 80.5 and 91.9 Å3.206–211 The experimental estimate of the vibrational
contribution to the polarizability is only about 2 Å3,211 indicating that our model gives
reasonable results for C60 clusters as compared to experiments.

3.6 Conclusions
In this work, we have investigated an approach for modeling the damping contribution
in the dipole interaction model. In contrast to the Thole model, the interaction tensors
in this approach remain traceless. The modification discussed here also gives a significant
improvement compared with the models adopted in previous work, even though also hetero-
cyclic compounds have been included in the model. Although the model can describe
the frequency-dependent molecular polarizability with one parameter for each element
describing the frequency-dependence, a significant improvement is found by dividing the
molecules into aliphatic, aromatic and molecules containing the element B.

The interaction polarizability of four dimers has also been studied. We find in general
good agreement between the model and the SCF results over a wide range of intermolecular
distances. Polarizabilities of linear chains of urea molecules and one- and two-dimensional
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clusters of C60 molecules have also been calculated. The effects of neighboring molecules on
the polarizability anisotropy are substantial, whereas the effects are smaller on the mean
polarizability. For the mean polarizability of C60, we find good agreement between the
model and experiments both in the case of an isolated molecule and a model of a thin film.
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Chapter 4
A dipole interaction model for the second
hyperpolarizability

L. Jensen, K. O. Sylvester-Hvid, P.-O. Å]strand, and K. V. Mikkelsen ”A dipole interaction
model for the molecular second hyperpoalrizability” J. Phys. Chem. A 107, 2270-2276,
2003.

4.1 Abstract
A dipole interaction model (IM) for calculating the molecular second hyperpolarizability,
γ, of aliphatic and aromatic molecules has been investigated. The model has been para-
metrized from quantum chemical calculations of γ at the self-consistent field (SCF) level
of theory for 72 molecules. The model consists of three parameters for each element p: an
atomic polarizability, an atomic second hyperpolarizability, and an atomic parameter, Φp,
describing the width of the atomic charge distribution. The Φp parameters are used for
modeling the damping of the interatomic interactions. Parameters for elements H, C, N,
O, F and Cl were determined and typical differences between the molecular γ derived from
quantum chemical calculations and from the IM are below 30% and on average around
10%. As a preliminary test, the dipole interaction model was applied to the following
molecular systems not included in the training set: the urea molecule, linear chains of urea
molecules, and C60. For these molecules deviations of the IM result for the molecular γ
from the corresponding SCF value were at most around 30% for the individual components,
which in all cases is a better performance than obtained with semi-empirical methods.
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4.2 Introduction
The current development of carbon-based functional materials holding a potential for fu-
ture applications in electronics and photonics has sparked a revolution in materials sci-
ence.8,9 An important prospect is the utilization of the intensity dependence of the re-
fractive index in all-optical switching devices, an essential element in future information
processing technology.8 Since the intensity dependence of the refractive index is governed
by the third-order nonlinearity, materials with a large third-order optical susceptibility,
χ(3) (where the molecular second hyperpolarizability, γ, is the corresponding microscopic
property) are suitable candidates for optical switching components.8,12, 13 These new ma-
terials are intended to be designed on a molecular scale and thus a detailed understanding
of their electronic structure is indispensable. Therefore, it has been conjectured that ap-
plied quantum chemistry will play a central role in the development of such new nonlinear
optical (NLO) materials.18,23

Accordingly, γ has been investigated extensively both theoretically and experimentally
for a variety of molecular systems including conjugated polymers,59,212–226 near-infrared
dyes,17,227, 228 fullerenes,229–238 and nanotubes.239,240

Sophisticated quantum chemical methods can be applied only on rather small mo-
lecules, even though considerable effort has been devoted to calculate NLO properties at
the SCF level for relatively large molecules like fullerenes.81 In addition, methods based
on density-functional theory (DFT) are subject to problems in the calculation of molecular
(hyper)polarizabilities, although some recent advances have been presented.83,84 Hence,
to a large extent modeling optical properties for large molecules and molecular clusters is
restricted to less sophisticated methods. An example is the empirical Su-Schrieffer-Heeger
model,241,242 which has been applied to describe γ of conjugated polymers,243 fullerenes,72

and carbon nanotubes.149,244–247

It is of fundamental importance to seek suitable representations of the molecular elec-
tronic structure. A successful representation of a molecular response property, in terms of
for example atomic parameters, provides an understanding of its behavior in addition to an
often computationally attractive scheme for extrapolation to large systems. An example
is the derivation of intermolecular potentials from molecular wave functions which can be
used for molecular dynamics simulations of liquids and solutions.248

Considering the isotropic part of the molecular polarizability, it has been known for a
long time that to a good degree it can be described by an additive scheme, i.e., a summation
of transferable atom- or bond-type parameters.151,152 Also recently, an additive scheme has
been used for modeling the static polarizability tensor of organic molecules156,157 and for the
frequency-dependent polarizability tensor of halogen-derivatives of benzene.158 To model
the anisotropy of the polarizability tensor within an additive scheme, however, also the
atomic contributions have to be tensors, rendering the model less attractive due to the
increased number of parameters thus introduced.

An alternative model, introduced by Silberstein87 and to a large extent developed by
Applequist and co-workers,90,249 is the so-called dipole interaction model (IM). In this
approach, a set of atomic polarizabilities, α, interact with each other according to clas-
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sical electrostatics in the limit of a vanishing external electrical field. If the molecular α
is modeled by a set of isotropic atomic polarizabilities, the anisotropy of the molecular
α is introduced by the interatomic interactions. Consequently, the isotropic part of the
molecular α to a large degree can be modeled by an additive model for atomic polariz-
abilities whereas its anisotropy is determined entirely by the geometrical arrangement of
the atoms. Similarly, because the atomic first hyperpolarizability, β, is zero for almost all
atoms, also the molecular β is entirely determined by the interatomic interactions.250 In
fact, the leading term in the IM for β arises from atomic dipole-quadrupole hyperpolariz-
abilities.170 Considering the molecular γ, the components γαααα and γααββ (α, β = x, y or
z) are nonzero for atoms250 and consequently, these components may to a good degree be
modeled by an additive model.251 To model the molecular β is thus in principle equally
difficult as calculating the anisotropies of α and γ.

Dipole interaction models have been used extensively, and in particular to model the
polarizability.159,162, 165, 252, 253 In addition, we have recently studied the polarizability of
carbon nanotubes,166 boron nitride nanotubes,100 and fullerene clusters. [Ref. 63, Chap. 3]
Examples of other molecular properties studied by the IM include optical rotation,254,255

Raman scattering,187,256 absorption,257,258 circular dichroism,259,260 and hyperpolarizabil-
ities.170,261, 262 Generalized dipole interaction models for electronic polarization have also
been discussed.249,263

From a computational point of view the IM is very attractive since computational times
are many orders of magnitude faster than the corresponding quantum chemical methods.
The approximations posed by the IM are at the same level as in accurate force fields
calculations used to derive intermolecular interaction energies, even though interactions
within a molecule are considered here.

An important extension of the IM for the molecular polarizability is the inclusion of
a damping term for the interatomic interactions.93,160 In particular, the Thole model has
been investigated in detail,94,163 and recently a new model for the damping was investigated
which improved the IM considerably. [Ref. 63, Chap. 3] In the present work, we extend
this approach to an IM for the molecular γ and present some initial applications.

4.3 Theory
The molecular response to an external electric field, Eext

β , may be written in terms of an
induced molecular dipole moment, µind

α , as169,250

µind
α = ααβE

ext
β +

1

2
βαβγE

ext
γ Eext

β +
1

6
γαβγδE

ext
δ Eext

γ Eext
β + . . . , (4.1)

where ααβ is the molecular polarizability, βαβγ the molecular first hyperpolarizability and
γαβγδ the molecular second hyperpolarizability with (α, β, γ, δ) designating Cartesian
coordinates. In Eq. 4.1 and elsewhere in this paper, the Einstein summation convention
for repeated indices is employed.
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For a set of N atom-like interacting particles, we may write the induced atomic dipole
moment, µind

i,α as

µind
i,α = αi,αβE

tot
i,β +

1

6
γi,αβγδE

tot
i,δE

tot
i,γE

tot
i,β , (4.2)

where αi,αβ is the polarizability and γi,αβγδ the second hyperpolarizability of atom i. The
total electric field at atom i, Etot

i,β , is given by the external field and the electric fields from
all other atoms as

Etot
i,β = Eext

β +
N∑

j $=i

T (2)
ij,βγµ

ind
j,γ , (4.3)

where T (2)
ij,βγ is the so-called interaction tensor given as

T (2)
ij,βγ =

3Ri,βRj,γ

R5
ij

− δβγ
R3

ij

. (4.4)

Ri,β is a Cartesian coordinate component for atom i and Rij the distance between atoms i
and j. We have not included an atomic β in Eq. 4.2 since β is zero for spherically symmetric
particles. Similarly, the same symmetry properties are assumed for the atomic α,

αi,αβ = αiδαβ , (4.5)

and the atomic γ,250

γi,αβγδ =
1

3
γi (δαβδγδ + δαγδβδ + δβγδαδ) , (4.6)

where δαβ is the usual Kroenecker delta function. Alternatively, if the electric field at each
atom is regarded as an independent variable, the atomic induced dipole moment may be
expanded in terms of relay tensors in a Taylor expansion as92

µind
i,α =

N∑
j

B(2)
ij,αβE

ext
j,β +

1

2

N∑
j,k

B(3)
ijk,αβγE

ext
k,γE

ext
j,β +

1

6

N∑
j,k,l

B(4)
ijkl,αβγδE

ext
l,δ Eext

k,γE
ext
j,β + . . . , (4.7)

where the n-atom relay tensor B(n)
i1i2...in,α1α2...αn

is defined as

B(n)
i1i2...in,α1α2...αn

=
∂(n−1)µind

i1,α1

∂Eext
i2,α2

. . . ∂Eext
in,αn

, (4.8)

in the limit of vanishing external fields. The molecular induced dipole moment, µind
α , is

simply the sum of the atomic induced dipole moments in Eq. 4.7, and if it is furthermore
assumed that the external field is homogeneous, i.e. Eext

j,β = Eext
β for all j, we have

µind
α =

(
N∑
i,j

B(2)
ij,αβ

)
Eext
β +

1

2

(
N∑

i,j,k

B(3)
ijk,αβγ

)
Eext
γ Eext

β

+
1

6

(
N∑

i,j,k,l

B(4)
ijkl,αβγδ

)
Eext
δ Eext

γ Eext
β + . . . . (4.9)
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4.3 Theory

By comparison of Eqs. 4.1 and 4.9, the molecular (hyper)polarizabilities may be identified.

The two-atom relay tensor, B(2)
ij,αβ, may be obtained from the regular approach for a dipole

interaction model for the molecular polarizability as

B(2)
ij,αβ = αi,αγ

(
δijδγβ +

N∑
k $=i

T (2)
ik,γδB(2)

kj,δβ

)
, (4.10)

which in supermatrix notation is cast into90,93

B(2) =
(
α

−1 − T(2)
)−1

. (4.11)

The three- and four-atom relay tensors can be obtained by the scheme deviced by Sund-
berg.92 The four-atom relay tensor is defined as

B(4)
ijkl,αβγδ =

∂3µind
i,α

∂Eext
j,β ∂E

ext
k,γE

ext
l,δ

, (4.12)

which is obtained by differentiating Eq. 4.2. As demonstrated in section 4.8, the four-atom
relay tensor for a system of spherically symmetric particles may be written as

B(4)
ijkl,αβγδ =

N∑
m

γm,λµνξB̃(2)
ml,ξδB̃(2)

mk,νγB̃(2)
mj,µβB̃(2)

mi,λα , (4.13)

where B̃(2)
ij,αβ is defined as

B̃(2)
ij,αβ = δijδαβ +

N∑
k $=i

T (2)
ik,αγB(2)

kj,γβ . (4.14)

Since the electronic charge distribution is smeared out, the electric field at a nucleus will
be damped by the charge distribution.93,160 The damping may be modeled by modifying
the distance Rij to obtain a scaled distance Sij, [Ref. 63, Chap. 3]

Sij = vijRij = f(Rij) , (4.15)

where vij is a scaling factor and f(Rij) an appropriately chosen function of Rij . Further-
more, if each component of Rij also is scaled by vij , the reduced distance becomes,

Sij =
√

Sij,αSij,α = vij

√
Rij,αRij,α = vijRij , (4.16)

consistent with the definition in Eq. 4.15. The damped interaction can thus be obtained
by modifying the interaction tensors only,

T (n)
ij,α1...αn

= ∇α1 . . .∇αn

(
1

Sij

)
, (4.17)
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which is equivalent to replacing Rij by Sij and Rij,α by Sij,α in the regular formulae for the
interaction tensor. The form of the scaling function employed here is [Ref. 63, Chap. 3]

f (Rij) =
√

R2
ij +

π

4aij
, (4.18)

where aij is given by aij = ΦiΦj/(Φi + Φj), and Φi is the damping parameter for atom i.
This particular form of the scaling function was obtained by approximating the interaction
between two Gaussian charge distributions on atoms i and j with exponents Φi and Φj .

4.4 Quantum chemical calculation
To obtain highly accurate values of γ, it is necessary to consider both electron correlation
and large basis sets with many diffuse functions.142,264–267 Because the aim of this work
has been to investigate a dipole interaction model for γ, the quantum chemical compu-
tations have been invoked at the SCF level using the DALTON program package175 as
described in Refs. 268,269. The polarization basis set by Sadlej178 is used since it has been
shown previously that it gives reasonable results for (hyper)polarizabilities considering its
limited size158,267, 270–272 and further is consistent with our previous work on the molecular
polarizability. [Ref. 63, Chap. 3] Obviously, the choice of method will affect the results
and in particular the ratio between tensor components. For example, the out-of-plane
component, γzzzz, of benzene is, unrealistically, larger than the in-plane component, γxxxx,
obtained with the Sadlej basis set at the SCF level. This is due to the fact that the basis
set is tailored to describe the dipole moment and polarizability by including the first-order
polarized functions whereas a highly accurate description of γ also requires second-order
polarized functions.267,270 In the present work, the SCF calculations of the γ tensor have
been restricted to the components contributing to the average γ,

γ =
1

15

∑
α,β

γααββ + γαβαβ + γαββα, (4.19)

and we have carried out SCF calculations for 72 molecules273 adopting standard bond
lengths and angles taken from Refs. 182, 183.

Geometries of the molecules not included in the training set, i.e. urea, linear chains of
urea molecules and C60 are all taken from [Ref. 63, Chap. 3]. We will in this work use atomic
units (a.u.) for γ but the conversion factor to cgs units is : 1 a.u. = 5.03670 × 10−40 esu.
The molecular geometries are available from [Ref. 63, Chap. 3], and the quantum chemical
molecular γ are made available as supporting informations.

4.5 Optimization procedure
The parameters describing γ have been optimized by minimizing the root-mean-square,
rms, of the difference between the components of the SCF tensor, γSCF

αβγδ,n, and the IM
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tensor, γIM
αβγδ,n, as

rms =

√∑N
n=1

∑
α,β,γ,δ

(
γIM
αβγδ,n − γSCF

αβγδ,n

)2

N − 1
, (4.20)

where N is the number of molecules in the training set. It should be noted that in the
second sum in Eq. 4.20, only components have been included which contribute to γ in
Eq. 4.19, implying that the sum includes in total 21 terms per molecule.

4.6 Results
4.6.1 Optimization of the training set
We have performed in all two types of optimizations : The parameters in the first optimiza-
tion (A) have been obtained by optimizing the atomic γp, keeping the atomic polarizabilit-
ies, αp and damping parameters, Φp, constant. In the second optimization (B), also the Φp

parameters were optimized. A third optimization was tried in which all parameters, i.e. αp,
Φp, and γp were optimized. This gave only a small improvement on the results compared
with the second optimization although one extra parameter was included for each element.
For this reason this optimization was not considered in more details. The values of αp used
in (A) and (B) and Φp used in (A) are taken from a previous study [Ref. 63, Chap. 3] where
the parameters were optimized to describe the molecular polarizability for 187 molecules in
a similar fashion. The 72 molecules of the present study were among these 187 molecules.

(A) (B)
Atom αp

a Φp
a γp αp

a Φp γp

H 1.280 0.358 350.309 1.280 0.0909 -211.0525
C 8.465 0.124 233.335 8.465 0.0211 2194.3233
N 6.169 0.269 111.169 6.169 0.0499 888.8899
O 3.754 4.103 -80.050 3.754 14.4795 -233.4550
F 1.907 1.468 -49.390 1.907 2.0271 -1666.8621
Cl 13.081 0.453 732.170 13.081 0.2921 820.2538

rms b 8971.54 4434.98
mean absolute div. in γ c (%) 18.57 12.70
mean absolute div. in γαβγδ (%) 38.15 21.44

aParameters taken from Ref. 63,Chap. 3 (not optimized)
bOptimized error
cγ = 1

15

∑
αβ γααββ + γαβαβ + γαββα

Table 4.1: Atomic parameters fitted to model the static second hyperpolarizability (in
a.u.).

The optimized parameters describing the molecular γ are presented in Table 4.1 and
the results from (A) and (B) displayed in Figures 4.1 and 4.2, respectively, where the SCF
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4 A dipole interaction model for the second hyperpolarizability

tensor components have been plotted against the corresponding IM tensor. A reasonable
description of the molecular γ is obtained by procedure (A) by using only one additional
parameter per element, γp (see Table 4.1). However, large deviations are found for the
aromatic molecules in the γ components perpendicular to the ring. These components
have been singled out in Figure 4.1. The ratios between the diagonal components in the
plane (γxxxx = γip ) and perpendicular to the plane (γzzzz = γ⊥) in the IM are determined
by the interactions between the atoms. At small distances the interatomic interactions,
and therefore also the ratio γip/γ⊥, is determined to a large extent by the damping. In the
limit of infinitely large damping, i.e. infinitely small Φp parameters, the model becomes
additive and the γip and γ⊥ components identical. If the SCF/Sadlej results for benzene
are considered, the ratio γip/γ⊥ is nearly unity whereas the ratio between the polarizabil-
ity components, αip/α⊥, is about two. Therefore, to predict γ⊥ for aromatic compounds,
the damping of the interactions has to be modified as compared to a description for po-
larizability only. The limitations pertinent to the IM for describing the polarizability of
π-conjugated systems correctly have been discussed elsewhere186 and also the importance
of damping in predicting the polarizability component perpendicular to the ring has been
discussed previously. [Ref. 63, 185, Chap. 3] On the other hand, in a theoretical study of
benzene including electron correlation and larger basis set, it is found that γip is around
40% larger than γ⊥.265
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Figure 4.1: Comparison between the
second hyperpolarizability tensor compon-
ents obtained with the IM and with the
SCF/Sadlej method. IM results obtained
with parameters from (A) (only γp is op-
timized). (-) indicates aliphatic molecules
and (+,×) aromatic molecules, respect-
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the ring are displayed with (×) and other
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To improve the description of γ⊥ for the aromatic molecules, a second optimization
(B) was carried out where also Φp was included in the optimization. From the results
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in Table 4.1 and Figure 4.2, it is clear that a substantial improvement in reproducing
the SCF/Sadlej results is obtained. The rms is reduced by a factor of two and also the
mean absolute deviation in the γ components are reduced by nearly a factor of two. In
addition, and foremost, from Figure 4.2 it is seen that the description of γ⊥ for the aromatic
molecules is improved considerably. As a consequence the values of the atomic parameters
have also changed considerably. As expected, the damping parameters, except for O and
F, are much smaller than the parameters used in (A). The reason that the parameters for
O and F still are large is that the damping term, 1

aij
, can be written as 1

aij
= 1

Φi
+ 1

Φj
, and

therefore dominated by the smallest parameters. The contribution to the damping from
ΦF and ΦO are thus small and accordingly these parameters are not well determined in
the optimization.

Since optimization procedure (A) and (B) utilize identical αp (previously optimized to
reproduce molecular SCF polarizabilities [Ref. 63, Chap. 3]) the stronger damping enforced
by procedure (B) implies that the molecular α and γ cannot both be well described using
the parameters of optimization (B). Furthermore, for this reason it is not possible to obtain
a good description of both the molecular α and γ by e.g. optimizing all the parameters.
The molecular α derived IM from parameters of optimization (B) become almost nearly
isotropic due to exaggerated damping (in terms of describing polarizabilities). Using the
benzene molecule as example, the ratio αip/α⊥ is 1.1 calculated with the IM and 1.8 with
the SCF/Sadlej method. However, the mean polarizability predicted with the IM is still
within 15% of the SCF/Sadlej results.

Optimization procedure (B) also implies large changes for the γp parameters and in
general they become larger. Since the interatomic interactions are more strongly damped
in (B), larger γp parameters are necessary in order to describe the same molecular γ. If
the γp values from (B) are compared with the results obtained from an additive model for
γ,251 good agreement is found with respect to both sign and magnitude of the parameters.
This again reflects the stronger damping obtained for the parameters in (B). In addition,
in contrast to (A), the magnitude of γH is smaller than γC which is to be expected from
the small number of electrons in H.

The IM has previously been used to model the experimental γ of a set of 16 small
haloalkanes,262 but this work differs in several ways, and a detailed comparison will not
be sought. In terms of comparison with experimental data the IM is subject to the same
limitations as the ab initio methods from which the parameters are derived;, i.e., standard
SCF derivations of γ do not include vibrational contributions and various solvent-induced
effects. Also, the present study addresses γ in the static limit only, and a proper comparison
with experiment will require the dispersion to be evaluated as well. In a previous study
of α, the IM approach was extended to include the frequency dependence,94 and a similar
approach for γ may be adopted.

4.6.2 Test on molecules not in the training set
As a test of the model, we have also performed calculations for some molecules which
were not included in the training set, i.e. urea, linear chains of urea molecules and the
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4 A dipole interaction model for the second hyperpolarizability

fullerene C60. The reason for choosing these molecules is the large body of previous studies
using both semi-empirical and first-principle methods thus allowing for comparisons on
equal levels of theory. For the urea chains there has only been an ab initio study of the
urea dimer and trimer.200 The larger chains have been included to illustrate the effects of
increasing the chain length.

IM SCF/Sadlej a MNDOa PM3a

γxxxx 3537.84 4447.95 16956.47 2960.25
γyyyy 2922.62 4095.59 7317.23 -89.80
γzzzz 2424.22 3380.39 41.69 11.23
γxxyy 1096.38 1576.34 5126.71 1335.80
γxxzz 979.22 1622.84 341.57 4.81
γyyzz 899.92 1582.75 112.25 205.26
γ 2967.15 4296.04 7095.93 1194.68

aTaken from. Ref. 274

Table 4.2: Static second hyperpolarizability of urea (in a.u.): Y axis parallel to the C-
O bond, X-axis perpendicular to this bond but in the plane. Z axis perpendicular to the
molecular plane. For the IM calculation, parameters from (B) were used.

The results for the urea molecule are presented in Table 4.2 and compared with ab
initio and semi-empirical results taken from Ref. 274. The γ tensor components calculated
with the IM are between 20-40% lower than the corresponding SCF values yielding a γ
which is 30% too low as compared with the SCF results. However, the general agreement
between the IM and SCF methods are better than the agreement between semi-empirical
and SCF methods. For semi-empirical methods, in particular the components with an axis
perpendicular to the plane are underestimated.

N a 1 2 4 6 8 10
γxxxx 3537.84 6631.92(-6.3) 12642.51(-10.7) 18602.53(-12.4) 24548.19(-13.3) 30487.78(-13.8)
γyyyy 2922.62 6618.94(13.2) 14672.84(25.5) 22965.15(31.0) 31324.29(34.0) 39709.98(35.9)
γzzzz 2424.22 4578.63(-5.6) 8781.06(-9.4) 12952.30(-11.0) 17114.64(-11.8) 21273.21(-12.2)
γxxyy 1096.38 2281.60( 4.1) 4712.26(7.5) 7162.60(8.9) 9618.31(9.7) 12076.16(10.1)
γxxzz 979.22 1843.23(-5.9) 3525.13(-10.0) 5193.71(-11.6) 6858.48(-12.4) 8521.66(-13.0)
γyyzz 899.92 1880.89( 4.5) 3896.91(8.3) 5930.62(9.8) 7969.17(10.7) 10009.65(11.2)
γ 2967.15 5968.19( 0.6) 12073.00(1.7) 18218.76(2.3) 24375.81(2.7) 30537.18(2.9)

aNumber of urea molecules in chain.

Table 4.3: Static second hyperpolarizability (in a.u.) of linear urea-chains calculated with
the IM using (B) parameters. Percent deviation from additivity in parentheses. Y axis
along the chain, X axis perpendicular to the chain but in the plane. Z axis perpendicular
to the molecular plane
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In Table 4.3, γ for linear chains of urea molecules with an increasing number of mo-
lecules in the chain along with its deviation from molecular additivity are presented. We
find that γ parallel to the chain increases more than expected from an additive model
with increasing chain length, whereas perpendicular to the chain, γ decreases as expected
from an additive model. The largest deviation from additivity is found for the component
parallel to the chain and it is around 35%. For γ, the deviation is only about 3%. The
results for the urea chains are in agreement with ab initio results found elsewhere for the
urea dimer and trimer,200 however, a larger deviation from additivity was observed in that
study.

Method γ Ref.
IM 132044 This work
LDA 124000 49
SCF 113765 65
PM3 49834 275
SOS-VEH 49040 237
INDO 58967 66

Table 4.4: Mean static second hyperpolarizability for C60 (in a.u.). IM results calculated
using (B) parameters.

Results for C60 are presented in Table 4.4 and are compared with semi-empirical and
quantum-chemical calculations of γ. A comparison with experiment is difficult due to
the large differences in the experimental results64,65, 69 but also since we in this work have
neglected vibrational, dispersion and solvent effects. We find good agreement between the
IM results and the quantum chemical results. The IM value of 132044 a.u. is 16% larger
than the SCF result of 113765 a.u.65 and 7% larger than the DFT result of 124000 a.u.,49

respectively. The semi-empirical results,66,237, 275 are in good agreement with each other
but are about 50% smaller than the SCF result.

4.7 Conclusion
In this work, we have investigated and parametrized a model for the molecular γ tensor of
aliphatic and aromatic molecules based on a dipole interaction model. The model consists
of three parameters for each element: an atomic polarizability, an atomic second hyperpol-
arizability, and a parameter, Φp, describing the damping of the interatomic interactions.
By utilizing atomic polarizabilities and damping parameters obtained in a previous study
of the molecular polarizability, it is demonstrated that γ is modeled reasonably well with
only one extra parameter per element. However, for the aromatic molecules the compon-
ents perpendicular to the ring are underestimated as compared to the SCF calculations.
This was corrected for by additionally optimizing the damping parameters. Preliminary
application of the model to urea, linear chains of urea molecules and C60 in general shows
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good agreement with SCF results and clearly illustrates the usefulness of the interaction
model to model γ for large molecules and molecular aggregates.
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4.8 The four-atom relay tensor

4.8 The four-atom relay tensor
The four-atom relay tensor, B(4)

ijkl,αβγδ, is obtained from Eq. 4.12,

B(4)
ijkl,αβγδ =

∂3µind
i,α

∂Eext
j,β ∂E

ext
k,γE

ext
l,δ

, (4.21)

by differentiating the atomic induced dipole moment, µind
i,α , in Eq. 4.2,

µind
i,α = αi,αβE

tot
i,β +

1

6
γi,αβγδE

tot
i,δE

tot
i,γE

tot
i,β , (4.22)

repeatedly with respect to the external field, Eext
i,α . The straightforward approach is to

adopt partial differentiation by noting that the total electric field, Etot
i,α in Eq. 4.3,

Etot
i,α = Eext

i,α +
N∑

j $=i

T (2)
ij,αβµ

ind
j,β , (4.23)

may be differentiated with respect to the external field as

∂Etot
i,α

∂Eext
k,γ

= δikδαγ +
N∑

j $=i

T (2)
ij,αβB(2)

jk,βγ , (4.24)

which we in Eq. 4.14 denoted as B̃(2)
ik,αγ . Furthermore,

∂2Etot
i,α

∂Eext
k,γ∂E

ext
l,δ

=
N∑

j $=i

T (2)
ij,αβB(3)

jkl,βγδ , (4.25)

which is denoted as B̃(3)
ikl,αγδ, and

∂3Etot
i,α

∂Eext
k,γ∂E

ext
l,δ ∂E

ext
m,ε

=
N∑

j $=i

T (2)
ij,αβB(4)

jklm,βγδε , (4.26)

which is denoted as B̃(4)
iklm,αγδε. Repeated differentiation yields

B(4)
ijkl,αβγδ = γi,αλµνB̃(2)

ij,λβB̃(2)
ik,µγB̃(2)

il,νδ

+

(
αi,αλ +

1

2
γi,αλµνE

tot
i,νE

tot
i,µ

)
B̃(4)

ijkl,λβγδ

+ γi,αλµνE
tot
i,ν

(
B̃(3)

ijk,µβγB̃(2)
il,λδ + B̃(3)

ijl,µβδB̃(2)
ik,λγ + B̃(3)

ikl,µγδB̃(2)
ij,λβ

)
. (4.27)
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Because B̃(4)
ijkl,λβγδ contains B(4)

mjkl,εβγδ, Eq. 4.27 is recast in non-iterative form as

B(4)
mjkl,ελµν =

∑
i

(
γi,αβγδB̃(2)

il,δνB̃(2)
ik,γµB̃(2)

ij,βλB̃(2)
im,αε

+ γi,αβγδE
tot
i,δ B̃(2)

im,αε

(
B̃(2)

ij,βλB̃(3)
ikl,γµν + B̃(2)

ik,βµB̃(3)
ijl,γλν + B̃(2)

il,βνB̃(3)
ijk,γλµ

))
,(4.28)

which apart from notation and definitions is equivalent to the four-atom relay tensor given
by Sundberg.92 For a system of (hyper)polarizabilities the total field, Etot

i,β , vanishes when
the external field, Eext

i,β approaches zero, and thus the second term in Eq. 4.28 vanishes and
the final result for the four-atom relay tensor becomes

B(4)
mjkl,ελµν =

∑
i

γi,αβγδB̃(2)
il,δνB̃(2)

ik,γµB̃(2)
ij,βλB̃(2)

im,αε . (4.29)
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Chapter 5
A localized dipole interaction model

L. Jensen, M. Swart, P. Th. van Duijnen, and J. G. Snijders ”Medium perturbations on the
molecular polarizability calculated within a localized dipole interaction model” J. Chem.
Phys. 117, 3316-3320, 2002.

5.1 Abstract
We have studied the medium effects on the frequency-dependent polarizability of water by
separating the total polarizability of water clusters into polarizabilities of the individual
water molecules. A classical frequency-dependent dipole-dipole interaction model based
on classical electrostatics and an Unsöld dispersion formula has been used. It is shown
that the model reproduces the polarizabilities of small water clusters calculated with time-
dependent density functional theory. A comparison between supermolecular calculations
and the localized interaction model illustrates the problems arising from using supermolecu-
lar calculations to predict the medium perturbations on the solute polarizability. It is also
noted that the solute polarizability is more dependent on the local geometry of the cluster
than on the size of the cluster.
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5.2 Introduction

Since the factors determining the linear and nonlinear optical (NLO) response properties
of single molecules are becoming more clear and the existence of highly accurate methods
to calculate these properties the design of new NLO-materials at the molecular level is
becoming feasible.12,14, 15, 276 However, in molecular crystals, molecules in solution and
polymeric materials the properties of the individual molecules are perturbed by interactions
with the surrounding medium. These intermolecular effects can have significant influence
on the (hyper-) polarizabilities of the molecules.195,200, 202, 277–279 [Ref. 63, Chap. 3]

The presence of a medium (solvent) will affect the molecule (solute) in two ways. First,
the externally applied fields are modified and, second, there is an explicit solute-solvent
interaction. The modulation of the applied fields is in general treated by means of local field
factors, which will not be discussed here, but the reader is referred to e.g. Refs. 29,280,281.
The solute-solvent interactions are most commonly taken into account by adopting the so
called continuum model, see e.g. Refs. 102, 277, 278, 282. The greatest disadvantage of
the continuum models is the neglect of the explicit microscopic structure of the solvent.
In a supermolecular calculation the solvent molecules are taken into account explicitly
and treated at the same level of theory as the solute. This type of brute force method
allows only the nearest neighbor molecules to be included. An alternative is a combination
of the continuum model and a supermolecular calculations, the so called semi-continuum
model.277,283, 284

Although the supermolecular methods are accurate (within the chosen model) the prop-
erties obtained are for the total supermolecule or cluster. Unless the molecular property of
interest is additive the problem of partitioning the total response into local contributions
remains. This resembles the problem of extracting information about molecular prop-
erties from experimental macroscopic properties. Therefore, understanding the response
properties of the bulk materials, the individually molecules and the perturbations caused
by environmental interactions are needed in order to achieve an efficient procedure for
designing optical molecular materials at the atomic level.8,12, 14, 15

Therefore we will in this paper discuss possible ways of partitioning the total polariz-
ability into local contributions. Three general partitioning schemes for any supermolecular
type of calculation will be discussed. Also, a classical localized model in which the me-
dium effect on the molecular polarizability can be calculated is presented. The method is a
modification of a classical dipole interaction model90,93, 94, 163 for calculating the molecular
polarizability. The results from the model will be compared with time-dependent DFT
calculations.
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5.3 Distributed polarizabilities of interacting molecules
5.3.1 General partitioning schemes
In general a proper partitioning scheme should be additive,285 i.e., the sum of effective
properties of the individual molecules in the total aggregate. The simplest way of con-
structing the effective polarizabilities is treating all molecules as identical, i.e., to calculate
the polarizability per molecule (PPM) α/N . Since the PPM model gives an average quant-
ity it is useless for retrieving information about a specific member in the cluster such as
a solute molecule in solution. A simple alternative to the PPM model is the “differential
shell” approach (DSA).277,286 In DSA the solute polarizability is defined as the difference
between the polarizability of the cluster and the polarizability of the solvent. Information
about a specific member of the cluster can be obtained at the expense of one extra cal-
culation. Therefore, the model can also be used for systems where the solute molecule is
different from the surrounding solvent molecules.

If we expand the total polarizability, αtot, in a cluster sum287,288 we can write the
interaction polarizability as

∆αtot = αtot −
∑

i

αi =
∑
i<j

∆ijα(2) +
∑

i<j<k

∆ijkα(3) + · · · , (5.1)

where αi is the polarizability of the isolated monomers and ∆ijα(2) is the induced po-
larizability arising from interaction between molecule i and j. Similarly ∆ijkα(3) is the
nonadditive three-body polarizability of molecules i, j and k. Using the above expansion
of the interaction polarizability we can define a partitioning of the cluster polarizability
into a many-body corrected polarizability, αMBP, as

αMBP = αp +
∑

j

W (2)
pj ∆pjα(2) +

∑
j,k

W (3)
pjk∆

pjkα(3) + · · · , (5.2)

where W (2)
pj and W (3)

pjk are appropriate weight factors chosen such that Eq. 5.1 is fulfilled. A
simple choice of weights would be to divide the interaction polarizability equally among the
molecules. Another, more general method but also more difficult, is a weighted assignment.
The weighting could e.g. be done with the vacuum polarizabilities of the isolated molecules
as

W ij
αβ =

∣∣αj
αβ

∣∣∣∣αj
αβ

∣∣+
∣∣αi
αβ

∣∣ . (5.3)

This weigting scheme is dependent on the different types of molecules involved and also
on the orientation of the molecules. A major drawback of the MBP approach is that it
requires many calculations in order to determine the interaction polarizabilities. However,
for pure liquids, such as water, the two different weighting schemes will be nearly identical
and the method can be used as a test of other partitioning schemes.
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5.3.2 The localized dipole-dipole interaction model
An elaborate model, but yet very simple compared with quantum chemical calculations,
is the dipole interaction model of Applequist et al.90,91 based on the earlier work of
Silberstein.87–89 In the interaction model (IM), the atoms of a molecule in an external
field interact by means of their atomic induced dipole moments according to classical
electrostatics. Even if the atomic parameters are isotropic polarizabilities, an anisotropy
of the molecular polarizability is introduced by interactions with the surrounding atoms.

Considering a set of N interacting atomic polarizabilities, the atomic induced dipole
moment due to an external electric field, Eext, is given by

µind
p,α = αp,αβ

(
Eext
β +

N∑
q $=p

T (2)
pq,βγµ

ind
q,γ

)
, (5.4)

where T (2)
pq,αβ is the interaction tensor which has been modified according to Thole93 to

include a damping term

T (2)
pq,αβ =

3fT
pqrpq,αrpq,β

r5
pq

− fE
pqδαβ
r3
pq

. (5.5)

The screening functions in Eq. 5.5 are given by163

fE
pg = 1 −

[
1 + spq +

1

2
s2

pq

]
exp(−spq) and fT

pg = fE
pg −

1

6
s3

pq exp(−spq), (5.6)

where the term spq is given by spq = arpq/(αpαq)1/6, with a the screening length, and αp

the atomic polarizability of atom p.
The molecular polarizability can be written as90

αmol
αβ =

N∑
p,q

Bpq,αβ, (5.7)

where B is the relay matrix defined in supermatrix notation as

B =
(
α

−1 − T(2)
)−1

. (5.8)

Well below the first electronic absorption, the frequency-dependence of the molecular
polarizability is often approximated with an Unsöld-type of expression.15 Here we assume
that the atomic polarizability has a similar frequency dependence94

αp(−ω;ω) = αp(0; 0) ×
[

ωp
2

ωp
2 − ω2

]
. (5.9)

where ωp is an atomic parameter describing the frequency-dependence.
In order to calculate the polarizability of the solute molecule in the presence of the

solvent molecules we utilize a localized interaction model (LIM). This is done first by
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decomposing the relay matrix into a block diagonal form with blocks, B̃ii, corresponding
to a relay tensor for the i’th molecule or subgroup. In the decomposition of the relay matrix
an assignment of the interaction blocks Bi$=j to the diagonal blocks Bii is needed. This is
arbitrary but can be done similarly to the weighing in the MBP approach. Therefore, we
have for molecule i

αi
αβ =

∑
pq∈i

(
Bii

pq,αβ +
∑
j $=i

W ij
αβB

ij
pq,αβ

)
, (5.10)

where W ij is a weight factor either equal to 1
2 or given by Eq. 5.3. The scheme where

W ij = 1
2 is denoted LIM-1 and the scheme where the weights are given by Eq. 5.3 is

denoted LIM-2.

5.4 Computational methods
The atomic parameters αp and ωp are obtained by fitting to the frequency-dependent po-
larizability of a single water molecule. The screening length parameter a = 2.130 was
taken from Ref. 163. For the benzene molecule only the carbon parameter, αC , was op-
timized, leaving the hydrogen parameter to that obtained from water. The polarizabilities
were obtained by TD-DFT calculations which are described in more details below. The
optimized atomic parameters are, αO = 8.3955 au, αH = 0.3118 au, αC = 14.0775 au,
ωO = 0.5426 au and ωH = ∞. The frequency parameter for hydrogen indicates that all
the frequency-dependence in water is due to the oxygen atom.

For all the DFT calculations we used the RESPONSE code 57,130, 289 in the Amsterdam
Density Functional (ADF) program.131–134,290 The ADF program uses basis sets of Slater
functions. Here we used a triple zeta valence plus polarization and extra diffuse s, p, d
functions (TZ2P+, in ADF basis set VI) were used. The van Leeuwen-Baerends (LB94)
exchange-correlation potential141 was used because of its correct asymptotic behavior.

The intra-molecular geometry of the water molecules was that in gas phase, i.e. RO−H

= 0.958 Å and ∠HOH = 104.5◦. The solute water molecule was placed in the xz-plane
with the z-axis bisecting the H-O-H angle. Experimental evidence291,292 indicates that
a tetrahedrally coordinated water molecule is present in liquid water and therefore we
constructed a cluster containing the 1st solvation shell from Ref. 277. This tetrahedral
structure has 2 donor hydrogen bonds and 2 acceptor hydrogen bonds (see Fig. 5.1). The
O-O distance is RO−O = 2.85 Å. The geometry of the larger clusters (N > 5) was obtained
by MD-simulations keeping the 1st solvation shell fixed. The geometry of the benzene
molecule was taken with standard bond lengths and angles from Ref 182 and is placed in the
xy-plane with the x-axis along a 2-fold axis. The cluster containing benzene molecules was
generated by MD-simulations with one fixed solute in the center and 41 solvent molecules.
The MD-simulations were performed with the DRF90-program293 which uses a polarizable
force field, consistent with the model used in this work. The MD-simulation was done with
the canonical NVT ensemble at a temperature of 298.15 K and a density of 0.9982 g/cm3.
The structure of the clusters was generated by first a 20 ps equilibration run followed by
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5 A localized dipole interaction model

Figure 5.1: A model of the structure of a water molecules and the 1st solvation shell.
The symmetry of the cluster is C2v.

a 100 ps production run from which the lowest energy configuration was chosen.

5.5 Results and discussion
In order to evaluate how well the dipole interaction model represents the polarizability of
larger water clusters TD-DFT calculations were performed for the N = 5 and N = 13
clusters. These results are compared with the results obtained from the IM in Table 5.1.
We find in general good agreement between the TD-DFT results and the IM calculations.
The largest deviations are for the N=13 cluster and are about 3% both in the static and
frequency-dependent case. Especially for the results of the 1st solvation shell (N = 4) there
is excellent agreement between the two methods. This indicate that the “not so close”
interaction is particular well described. At small distance basis sets superposition errors
(BSSE) start to influence the TD-DFT results and accounts for some of the deviations.
Therefore, the results in Table 5.1 clearly illustrate that the dipole interaction model

ω = 0.0000 au ω = 0.0656 au
Method Na α αxx αyy αzz α αxx αyy αzz

IM 1 9.15 9.83 8.40 9.21 9.28 9.97 8.53 9.34
TD-DFT 1 9.15 9.84 8.41 9.19 9.28 9.95 8.56 9.32
IM 4 36.65 34.78 39.36 35.81 37.17 35.28 39.91 36.32
TD-DFT 4 36.67 34.85 39.42 35.73 37.19 35.43 39.87 36.28
IM 5 46.40 45.39 48.24 45.57 47.06 46.05 48.92 46.22
TD-DFT 5 46.88 46.18 49.00 45.45 47.58 46.93 49.66 46.14
IM 13 116.56 115.27 117.98 116.43 118.15 116.85 119.56 118.04
TD-DFT 13 118.82 118.71 119.90 117.84 120.45 120.79 120.77 119.80

aNumber of water molecules in cluster

Table 5.1: Frequency-dependent mean polarizability and polarizability tensor components
of water clusters (in au).
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accounts for the static and frequency-dependent polarizability of these clusters and is
therefore also capable of describing larger clusters.

α αxx αyy αzz

Water in water
vacuum 9.15 9.83 8.40 9.21
LIM-1 8.95 9.72 8.49 8.65
LIM-2 8.96 9.72 8.50 8.66

Benzene in benzene
vacuum a 69.49 82.36 82.36 43.75
LIM-1 63.67 66.67 76.84 47.49
LIM-2 63.91 67.96 77.09 46.67

Water in benzene
vacuum 9.15 9.83 8.40 9.21
LIM-1 8.62 10.56 7.63 7.66
LIM-2 7.99 10.88 6.88 6.21

Benzene in water
vacuum a 69.49 82.36 82.36 43.75
LIM-1 69.94 82.36 80.01 47.44
LIM-2 72.78 86.39 85.61 46.34

aThe TD-DFT results are : αxx = αyy = 82.36 au and αzz = 41.89 au.

Table 5.2: Comparison between LIM-1 and LIM-2 for calculating αsolute. All calculations
were performed with the dipole interaction model and are given in au. The clusters contains
1 solute molecule and 41 solvent molecules.

The convergence of the MBP scheme was checked for the water pentamer. The calcu-
lations were done with the IM approach since it involves quite many calculations, i.e. 5
dimers, 5 trimers, 3 tetramers and 1 pentamer. If TD-DFT were used, extensive corrections
for BSSE would also have to be considered. It was found that the expansion converged by
correcting for the three-body contributions. Also, the polarizability components changed
by no more than 0.02 au as the MBP expansion is taken beyond the pair-wise terms. The
tetramer contributions are an order of magnitude smaller than the trimer corrections and
therefore it is to be expected in general that trimer contributions will be sufficient. To
determine the differences between the two partitioning schemes within LIM we also per-
formed calculations on water in benzene, benzene in water and benzene in benzene. The
results are displayed in Table 5.2. As expected, the results obtained with LIM-1 and LIM-2
are nearly identical for pure liquids. For the “solutions” the largest differences were found
for water in benzene. If the polarizability of the solvent is much larger than that of the
solute the weight factors in Eq. 5.3 become nearly unit and LIM-2 will give large differences
compared with LIM-1. Therefore, the LIM-2 partitioning scheme should be used whenever
the polarizability of the solute and solvent are different. However, in the rest of the work
we only consider water and will therefore not distinguish between LIM-1 and LIM-2. The
results of comparing LIM with PPM, DSA and MBP is presented in Table 5.3, they are

69



5 A localized dipole interaction model

α αxx αyy αzz α αxx αyy αzz

vacuum 9.15 9.83 8.40 9.21
N = 5a N = 13a

LIM 9.55 10.33 8.74 9.58 9.21 9.91 8.17 9.56
PPM 9.28 9.08 9.65 9.11 8.97 8.87 9.08 8.96
DSA 9.75 10.61 8.88 9.76 8.98 9.60 7.73 9.60
MBP-3 9.46 10.24 8.66 9.49 - - - -

aNumber of water molecules in the cluster.

Table 5.3: Comparison between LIM, PPM, DSA and MBP for calculating αsolute. All
calculations were performed with the dipole interaction model and are given in au.

all calculated with the IM approach. The MBP results for the water pentamer shows an
increase in all polarizability components compared with the vacuum results. There is a
good agreement between LIM and MBP results indicating that LIM gives an accurate de-
scription of the “solvation” shift. The increase in the polarizability components predicted
by DSA is about a factor of 2 larger than that predicted with MBP and for PPM the
XX and ZZ components decreases while the increase in the Y Y component is almost 5
times larger than the MBP result. Therefore, we used the LIM model as a reference for
comparing with results for the N = 13 cluster for which the MBP approach becomes very
tedious. For the N = 13 cluster the LIM results predicts a decrease in all polarizability
components compared with the results obtained if only the 1st solvation shell is included.
This trend is also found with DSA, however, the decrease in the polarizability components
is much larger. Using PPM a decrease in all components is also found, but the polariz-
ability is nearly isotropic in contrast to the results from both LIM and DSA. Therefore,
in order to get an accurate description of the solvent shift in the polarizability tensor it is
clearly necessary to go beyond simple models like PPM and DSA. In Fig. 5.2 we display
the mean polarizability of a solute water molecule in water clusters as a function of the
size of the cluster. The calculation has been performed with the LIM-2 method and the
PPM scheme. To check the influence of the nearest neighbor molecules we also performed
a MD simulation where the structure of the 1st solvation shell was relaxed. The solute
polarizability was again calculated with LIM and is also displayed in Fig. 5.2, which clearly
illustrates that the solute polarizability is dependent on the size of the cluster. Both for
LIM and PPM, large fluctuations are found for the smaller clusters, whereas the results are
reasonably converged at a cluster size around N = 21. The result for the cluster with the
relaxed 1st solvation shell shows a large decrease of the mean polarizability. This indic-
ates that the solute polarizability is more dependent on the local geometry of the cluster
than on the actual size. Therefore it might be more important to include a larger number
of different clusters than increasing the size of the individual clusters. In order to get a
better description of the local solvent structure we performed a MD simulation of 100 ps
from which 100 randomly chosen configurations were picked. We used as starting config-
uration the N = 41 cluster with the fixed 1st solvation shell. The solute polarizability
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Figure 5.2: Mean polarizability of a solute water molecule as a function of cluster size
(in au). All calculation were calculated with LIM-2 and PPM schemes. (–,,) LIM-2, (- -
) PPM and (+) indicates the LIM-2 result for the N = 41 cluster with the structure of the
1st solvation shell relaxed.

was then calculated as an average over the 100 configurations. The results are displayed
in Table 5.4, both for the static and the frequency-dependent polarizability at frequency
ω = 0.0656. The mean polarizability of water is lowered by around 1.5% in going from
vacuum to the cluster both in the static and in the frequency-dependent case. The largest
changes, around 4%, were found in the X direction. This was also found for the static mean
polarizability in an ab initio approach at the MP2 level where molecular interaction was
accounted for by coulombic interactions, although a lowering of around 4.6% was found.279

The main difference in the two results can be explained from the difference in the vacuum
polarizabilities predicted by respectively MP2 and TD-DFT.

ω α αxx αyy αzz

0.0000 vac. 9.15 9.83 8.40 9.21
solv. 9.02 ± 0.08 9.47 ± 0.29 8.53 ± 0.36 9.05 ± 0.37
∆ a -1.4 -3.7 1.5 -1.8

0.0656 vac. 9.28 9.97 8.53 9.34
solv. 9.14 ± 0.07 9.59 ± 0.30 8.63 ± 0.35 9.17 ± 0.38
∆a -1.5 -3.8 1.2 -1.8

aSolvent shift as percentage.

Table 5.4: Polarizability and solvation shift of a water molecule averaged over 100 ran-
domly chosen solvent configurations with N = 41. Calculated with the LIM-2 method. The
results are in au.
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5.6 Conclusion
In this work we have discussed the problems arising from using supermolecular calcula-
tions to predict the medium effect on a solute polarizability. Three different schemes for
partitioning the polarizability of a cluster into local contribution are discussed. Within the
dipole interaction model a partitioning scheme has been suggested which allows solvation
effects on the molecular polarizability to be studied with a computationally cheap method.
Results from small water clusters have been used to compare the different partitioning
schemes which clearly illustrate the problems with supermolecular calculations. Also, the
effect of different weighting schemes were examined using clusters where the solute molecule
was different from the solvent molecules. The results from large water clusters indicate
that the polarizability is more dependent on the local geometry of the solvent than on the
actual size of the cluster. However, it is important to include more than the first solvation
shell in the calculations.
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Chapter 6
Saturation of the third-order polarizability of
carbon nanotubes

L. Jensen, P.-O. Åstrand, and K. V. Mikkelsen, ”Saturation of the third-order polarizability
of carbon nanotubes characterized by a dipole interaction model” Nano Lett. 3, 661-665,
2003.

6.1 Abstract
An atomic dipole interaction model has been used for calculating the second hyperpolar-
izability of carbon nanotubes on the length scale up to 75 nm. It is demonstrated that
an atomistic representation of mesoscale systems like nanotubes can be used to obtain a
cubic response property up to a size of the system where the property scales linearly with
increasing size. In particular, it demonstrates that atomistic models are useful also for
designing nonlinear molecular materials, where local modifications may give large macro-
scopic contributions. The saturation length has been calculated for carbon nanotubes. It
is found that carbon nanotubes are comparable to conjugated polymers with respect to the
magnitude of the second hyperpolarizability and is therefore as promising as a candidate
for future nonlinear optical materials.

73
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6.2 Introduction

The prospect of utilizing optical nonlinearities of materials in constructing all-optical
devices holds great promises. Particular promising is the exploitation of the intensity-
dependence of the refractive index due to the second hyperpolarizabilities for constructing
all-optical switching devices, which provides the basis for an all-optical information tech-
nology.8 This requires novel materials exhibiting large nonlinearities characterized at the
macroscopic level by the third-order optical susceptibility, χ(3), and at the microscopic level
by the third-order polarizability or second hyperpolarizability γ. It has been conjectured
that computer modelling will play an essential role in the development of new materials.23

In particular, the modeling of new nonlinear optical materials will require a detailed model
of the electronic structure and its response to an external electric field.18 Since the discov-
ery of fullerenes61 and later carbon nanotubes,294 they have been strong candidates for the
next generation of functional materials. The reason that these all-carbon molecules are of
interest in nonlinear optical application is their extended π-system and that no absorption
occurs due to C-H bonds.62,71

An important concept for designing new materials is the scaling behaviour of the non-
linear optical properties of the molecule with increasing system size and in particular the
saturation limit, i.e. where the property scales linearly with increasing size. For polyenes
it is well-known that for small chain lengths, N , the molecular γ obey a power law γ ∼ Na

with a between 3 and 6.101,295, 296 At large N , γ/N will saturate and the scaling exponent
a will tend towards one. Obviously, the reason is that the most long-range interaction
behaves as 1/R and thus approaches zero when R goes to infinity.

A cubic response property like the second hyperpolarizability is, however, a challenge
to determine accurately both theoretically and experimentally. Considering γ of fullerenes,
experimental results show large variations with respect to the choice of structure and ex-
perimental conditions.62,71 The third-order polarizability of carbon nanotubes or tubular
fullerenes have been studied both theoretical and experimentally to a much lesser de-
gree than the small fullerenes.62,71 However, in general it is found theoretically that the
third-order polarizability varies strongly with the length, diameter and symmetry of the
nanotubes, see e.g. Ref. 71. Theoretically, a scaling law for the third-order polarizabil-
ity for small nanotubes was found using a Su-Schrieffer-Heeger model with the Coulomb
interaction included297 but the saturation limit was not investigated. Ab initio quantum
chemical calculations would in principle be a valuable tool to study γ of these kinds of sys-
tems, but currently they are too computer-demanding to be used systematically to study
for example the scaling of γ with respect to the length of a carbon nanotube. It is noted,
however, that accurate calculations have been carried out for γ of the smallest fullerenes
at the Hartree-Fock level.65

An alternative approach is based on representing the molecule as a set of interacting
point polarizabilities,88,89 a model which has been exploited extensively by Applequist and
coworkers.91 In a system of N interacting point polarizabilties, αI,αβ, the atomic induced
dipole moment of atom I, µind

I,α is given as
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µind
I,α = αI,αβ

(
Eext

I,β +
N∑

J $=I

TIJ,βγµ
ind
J,γ

)
(6.1)

where Eext
I,β is the external electric field at atom I and TIJ,βγµind

J,γ is the electric field of the
induced dipole moment at site J calculated at atom I. Greek suffices denote the Cartesian
coordinates, x, y, or z and the Einstein summation convention is used for repeated indices.

If the atoms are regarded as spherically symmetric particles, αP,αβ = αP δαβ , where
the isotropic atomic polarizabilities, αP , are atom-type parameters. It has been demon-
strated that accurate parameters are obtained if they are parametrized from a training
set of molecular polarizabilities obtained from quantum chemical calculations instead of
experimental data.94 The reasons are that experimental polarizabilities also include large
vibrational contributions in addition to the electronic polarization included in Eq. 6.1. In
addition, experimental results are often obtained from condensed phases and thus include
also solvent effects.

An improved parametrization is obtained if the contributions from a smeared-out charge
distribution is included in terms of a damping of the interaction in Eq. 6.1 by modifying
the TIJ,αβ tensor.93 Consequently, by adopting two parameters for each element, a polar-
izability, αP , and a damping parameter, ΦP , good results have been obtained for example
for the polarizability of large molecular clusters. [Ref. 63, Chap. 3]

The solutions of the coupled set of linear equations in Eq. 6.1 may be expressed in
terms of a two-atom relay tensor, B(2)

IJ,αβ, as92

µind
I,α =

N∑
J

B(2)
IJ,αβE

ext
J,β (6.2)

where B(2)
IJ,αβ gives the induced dipole moment at atom I from an external field on atom J .

The molecular second hyperpolarizability, γmol
αβγδ, may be obtained by including higher-order

terms in Eq. 6.1,

µind
I,α = αI,αβE

tot
I,β +

1

6
γI,αβγδE

tot
I,δE

tot
I,γE

tot
I,β (6.3)

where the total electric field, Etot
I,β, is the sum of the external field and the electric field

from all other induced dipole moments (see Eq. 6.1). A parametrization of the molecular
γ thus includes an atomic γ parameter, γP , in addition to the parameters adopted for the
molecular polarizability. Equivalently, the solutions of Eq. 6.3 may be expressed with an
additional four-atom relay tensor, B(4)

IJKL,αβγδ, as92

µind
I,α =

N∑
J

B(2)
IJ,αβE

ext
J,β +

1

6

N∑
J,K,L

B(4)
IJKL,αβγδE

ext
J,δE

ext
J,γE

ext
J,β (6.4)

The resulting molecular polarizability, αmol
αβ , and molecular second hyperpolarizability,
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Figure 6.1: (Left) Structure of a [5,5] carbon nanotube with 100 carbon atoms. (Right)
Structure of a [9,0] carbon nanotube with 108 carbon atoms. For both carbon nanotubes the
bond length of the C-C bond is 1.42 Å. The atoms displayed with ball structure represents
the definition of the unit cell used in this work. The unit cell of the [5,5] carbon nanotube
contains 20 carbon atoms whereas the unit cell of the [9,0] nanotube contains 18 carbon
atoms.

γmol
αβγδ, are given as

αmol
αβ =

N∑
IJ

B(2)
IJ,αβ (6.5)

and

γmol
αβγδ =

N∑
IJKL

B(4)
IJKL,αβγδ . (6.6)

The theoretical background is described in more detail in a previous work. [Ref. 95, Chap. 4]
In this work, it is demonstrated that an atomistic model can be used for calculating

a cubic response property, the molecular γ, for carbon nanotubes up to a length where γ
scales linearly with the length of the tube. In principle, it is thus possible to use atomistic
models to calculate electronic response properties at all relevant length scales. As in many
other areas, molecular modelling can thus be adopted for asking and answering questions
regarding what happens if specific functional groups are added or modified.

6.3 Results
The parameters, αC and ΦC have been obtained in a previous work where αmol is para-
metrized from Hartree-Fock calculations of αmol for 184 molecules. [Ref. 63, Chap. 3]
These parameters were shown to give good results for αmol for nanotubes100 and fullerene
clusters. [Ref. 63, Chap. 3] The last parameter γC has been chosen to describe γmol of C60

obtained from Hartree-Fock calculations taken from Ref. 65. The values used in this work
are αC= 9.312 a.u., ΦC= 0.124 a.u., and γC= 1600.0 a.u. These parameters give good
results for αmol for fullerenes and nanotubes and for γmol for small fullerenes,99 and it is
therefore expected that they will give reasonable results also for carbon nanotubes.
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It was also demonstrated that the differences for γmol between quantum chemical cal-
culations and the interaction model are on average around 10% and below 30%. [Ref. 95,
Chap. 4] Although, Hartree-Fock calculations by no means represent the true answer, it is
encouraging that a simple model like the interaction model can reproduce quantum chem-
ical calculations consistently. It should therefore be relatively straightforward to repara-
metrize the model when more sophisticated quantum chemical methods become routine for
medium-sized molecules. For comparison, most semi-empirical calculations give unrealistic
values for γ (see examples in Ref. 95, Chap. 4), and density functional theory still presents
difficulties for electric response properties although some recent achievements have been
presented.84

The molecular γ has been calculated for [5,5] and [9,0] open-ended carbon nanotubes
(see Figure 6.1 for structures) as a function of the tube length. The results are given in
Figures 6.2 and 6.3 as γ/N , where N is the number of unit cells (see caption of Figure 6.1

for the definition of unit cells). Results are presented for the average γ, defined as

γ =
1

15

∑
α,β

γααββ + γαβαβ + γαββα (6.7)

and for the individual components γzzzz, γxxxx, and γxxzz, where the z axis is directed along
the tube and the x axis is perpendicular to the tube. The largest tubes of ∼ 300 unit cells
corresponds to ∼ 6000 atoms and a length of ∼ 75 nm. All of the results for the molecular
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Figure 6.2: Mean and ZZZZ component
of the third-order polarizability per unit cell
as a function of the number of unit cells
for the [5,5] and [9,0] carbon nanotube. All
results are in 103 a.u. (+) and (×) denotes
ZZZZ component and mean value, respect-
ively, for the [5,5] nanotube. For the [9,0]
nanotube (∗) denotes the ZZZZ component
and (!) the mean value. Solid lines are
the plot of the corresponding fit.
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Figure 6.3: XXZZ and ZZZZ compon-
ent of the third-order polarizability per unit
cell as a function of the number of unit
cells for the [5,5] and [9,0] carbon nan-
otube. All results are in 103 a.u. (+) and
(×) denotes XXZZ and XXXX component,
respectively, for the [5,5] nanotube. For
the [9,0] nanotube (∗) denotes the XXZZ
component and (!) the XXXX component.
Solid lines are the plot of the corresponding
fit.
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γ have been characterized by fitting the results to the expression

γ (N)

N
= γ∞ − C exp

(
− N

N sat

)
(6.8)

used by Schulz et al.101 to characterize the saturation of γmol of organic oligomers. This
allows for a description of γmol in terms of three parameters which are independent on
the chain length. The parameter γ∞ represents the asymptotic value and N sat represents
the onset of which the saturation starts. The parameters for all the fits are displayed in
Table 6.1 and are plotted with solid lines in Figures 6.2 and 6.3. It is found that all the
γ components and γ are well characterized by this model.

Mean zzzz xxzz xxxx
[5,5]
Nsat 30.47 ± 0.93 30.64 ± 0.94 22.14 ± 0.96 9.13 ± 0.82
γ∞ 965.07 ± 5.95 4421.99 ± 28.6 87.79 ± 0.49 19.65 ± 2.96
C 1048.17 ± 18.02 5039.3 ± 86.2 69.10 ± 1.90 -38.50 ± 2.96
[9,0]
Nsat 35.40 ± 1.07 35.58 ± 1.07 25.78 ± 1.13 10.74 ± 0.99
γ∞ 864.28 ± 5.45 3947.04 ± 26.15 81.05 ± 0.48 18.81 ± 0.29
C 940.98 ± 15.87 4517.83 ± 75.81 64.80 ± 1.80 -37.21 ± 2.94

Table 6.1: Fitting parameters for characterizing mean value and individual components
of the third-order polarizability for [5,5] and [9,0] carbon nanotubes. All parameters are in
a.u.

By comparing the two types of nanotubes, i.e. [5,5] and [9,0], it is noted that nearly
identical results are obtained. The parameters for the [5,5] nanotube obtained from Eq. 6.8
are ∼ 10% higher than the corresponding parameters for the [9,0] nanotube except for N sat

which is ∼ 10% lower. The main reason for this is not due to a different behaviour of the
two types of nanotubes but reflects that the unit cell of [5,5] is ∼ 10% longer than the [9,0]
unit cell. The saturation parameter, N sat, for γ is for the [5,5] nanotube ∼ 30 unit cells and
for [9,0] about ∼ 35 unit cell which corresponds to a tube length of ∼ 7.3 nm for the [5,5]
nanotube and ∼ 7.5 nm for the [9,0] nanotube, respectively. As put forward by Schulz et
al.,101 a characterization of γ in terms of a power law, i.e. γ ∼ Na, is not appropriate since
the exponent a varies strongly with N . This can be illustrated by plotting the variation
in a defined as b ≡ d ln(γ)

d ln(N) as a function of N , which is displayed in Figure 6.4. From the
Figure, it is seen that b tends slowly towards one for long nanotubes and that the strongest
variation in b is found for the small tubes. It is also found that N sat corresponds well with
the point were the variation b start to decrease.

As expected, if the results of γ and the individual components are compared, it is
found that γzzzz has the longest saturation length and the smallest saturation length is
found for γxxxx. For this reason, the saturation of γ is determined by the saturation of
γzzzz. However, its asymptotic value, γsat, as obtained from the fit to γ is ∼ 10% higher
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Figure 6.4: The variation, b ≡ d ln(γ)
d ln(N) , of a power law representation of the mean third-

order polarizability for the [5,5] and [9,0] carbon nanotube as a function of the number of
unit cells. (+) denotes [5,5] nanotube and (×) [9,0] nanotube.

than that obtained from γzzzz/5. Therefore, when extrapolating γ to the asymptotic limit
by only considering the longitudinal components, which is typically done (see e.g. Ref.298),
an error of ∼ 10% is introduced as compared with extrapolating the mean value.

Even if it is difficult to strictly define where the scaling of γ becomes linear with tube
length, it can be concluded that for tubes shorter than 100 unit cells γ and γzzzz behave in
a clearly nonlinear way. For example, γzzzz/N of the [5,5] tube increases by a factor of 20
if the length of the tube is increased from 5 to 100 unit cells, but only with an additional
10% if the tube is extended to 300 unit cells.

The scaling parameters obtained for the nanotubes can be compared with the charac-
terization of a series of conjugated organic oligomers carried out by Schulz et al.101 The
saturation lengths obtained for the oligomers are between ∼ 2 − 8 nm, in comparison to
∼ 7.5 nm obtained for the carbon nanotubes in this work. If γ∞zzzz is considered, a value of
∼ 1.8 × 106 a.u/Å is found for both types of nanotubes compared with the values for the
conjugated oligomers which vary between ∼ 6×104 a.u/Å and ∼ 1.2×106 a.u/Å. If γ∞ for
polyacetylene of 0.66 × 106 a.u./Å obtained using the semiemperical INDO/S method101

is compared with the ab initio Hartree-Fock result of 1.3 × 106a.u./Å,298 it is noted that
the INDO/S result is about a factor of 2 smaller than the ab initio result. Therefore, even
if a possible underestimation of γ using the INDO/S method instead of ab initio methods
is considered, it is found that the magnitude of γ with respect to the length of carbon
nanotubes is comparable with that of conjugated polymers. For this reason, carbon nan-
otubes are demonstrated to be a valid alternative to conjugated polymers for constructing
new materials for use in nonlinear optical devices, especially considering the possibilities of
enhancing the nonlinearities of carbon nanotubes by means of either endohedral, exohedral
or substitutional doping (see e.g. Ref. 62, 71).
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Chapter 7
Microscopic and macroscopic polarization in
C60 clusters

L. Jensen, P.-O. Åstrand, and K. V. Mikkelsen, ”Microscopic and Macroscopic Polarization
in C60 Fullerene Clusters as Calculated by an Electrostatic Interaction Model” Submitted,
2003.

7.1 Abstract
The dipole-dipole polarizability, α, and the second hyperpolarizability, γ, as well as the
corresponding linear and third-order susceptibilities, χ(1) and χ(3), have been calculated
for C60 fullerene clusters by a point-dipole interaction (PDI) model. The size dependences
of a linear chain, a mono-layer film, and a face-centered cubic crystal cluster have been
investigated. It is found that the effects of the surrounding molecules on the molecular
α and γ are large, in particular for the chain and the film because of the anisotropic
surroundings, and that large clusters are required to obtain converged results. A localized
PDI model gives the opportunity to divide α and γ into fragment contributions, and
it is found that α and γ of molecules in the middle of the chain converge slower than
the properties for the end molecules with respect to the length of the chain. Similar
results are found for the mono-layer film. Finally, χ(1) and χ(3) have been calculated using
a modified local-field theory including the induced dipole moments of the surrounding
molecules explicitly. The corresponding refractive index and dielectric constant compare
well with experiments. On the other hand, the comparison of χ(3) with experiments is
complicated by dispersion and vibrational contributions. Nonetheless, our value of χ(3) is
in good agreement with a recent quantum chemical calculation adopting a self-consistent
reaction-field model.
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7.2 Introduction
The development of new functional materials exhibiting nonlinear optical (NLO) effects
holds great potential for future application in electronics and photonics.8,9 An important
prospect is the utilization of the intensity dependence of the refractive index in all-optical
switching devices, an essential element in future information processing technology.8 Be-
cause the refractive index is governed by the linear susceptibility, χ(1) (at the molecular level
the linear dipole-dipole polarizability, α), and the intensity dependence of the refractive
index by the third-order susceptibility, χ(3) (where the molecular second hyperpolarizab-
ility, γ, is the corresponding microscopic property), an in-depth understanding of these
properties is required.8,12, 13 These new materials will be designed on a molecular scale.
Consequently, a detailed understanding of the electronic structure of the molecular build-
ing blocks, the dependence of the microscopic optical response properties on the molecular
structure, and the differences between the properties of isolated molecules and molecules
embedded in the actual macroscopic devices are of fundamental importance. Therefore,
it has been conjectured that applied quantum chemistry will play a central role in the
development of such new NLO materials.18,23

Since the discovery of fullerenes61 and later carbon nanotubes,294 they have been strong
candidates for the next generation of functional materials.299–303 Carbon-based materials
provide numerous possibilities to design molecular functionality because of the large variety
of molecules that can be synthesized in organic chemistry. This is indeed the case in nature
where all functionality exists that we can expect that nanotechnology can provide. The
particular reason that carbon fullerenes are of interest in NLO applications is their extended
π-system and that no absorption occurs due to C-H bonds.62,71 Recently, the scaling
behaviour of the second hyperpolarizability of carbon nanotubes with increasing system
size has been investigated theoretically and it was demonstrated that carbon nanotubes can
be considered as a valid alternative to conjugated polymers for constructing new materials
for use in NLO devices. [Ref. 96, Chap. 6] Since the C60 molecule was the first fullerene to
be discovered, numerous theoretical and experimental investigations have been performed
of its linear and nonlinear optical properties, see e.g. [Ref. 62–66, Chap. 3], and references
therein.

Recently, accurate experimental results have been presented for the dipole-dipole po-
larizability of the C60 molecule in the gas phase.204,304 A value of 76.5 ± 8.0 Å3 was
reported for the static polarizability,204 and a value of 79 ± 4 Å3 was measured for the
polarizability at the frequency 0.0428 a.u. (λ=1064 nm).304 For both the static and the
frequency-dependent polarizability, the results are in good agreement with recent quantum
chemical calculations64,205 and results from a frequency-dependent point-dipole interaction
(PDI) model.166 In contrast, the DFT results of 80.6 Å3 and 82.4 Å364 for the static and
frequency-dependent polarizability, respectively, are slightly higher than the ab initio SCF
results of 75.1 Å3 and 76.4 Å3205 and the results from the PDI model of 77.5 Å3 and
78.2 Å3.166 The overestimation of the polarizability of C60 using conventional density func-
tionals can, however, be improved by using e.g. time-dependent current-DFT.305 Similarly,
the overestimation of the polarizability in DFT for linear polymers is considerably large,
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in particular for longer chains.84,306 In addition, comparison between calculated molecular
properties and experiments in the gas phase is complicated by vibrational contributions.
However, the pure vibrational polarizability for the isolated C60 molecule has been calcu-
lated using first principles methods and is found to be small, ∼ 0.8 Å3, as compared with
the electronic polarizability of around 80 Å3.307

In the condensed phase, experiments are usually carried out on thin films of C60 mo-
lecules and the molecular polarizability is extracted from measurements of the refractive
index or the dielectric constant by means of the Clausius-Mossotti equation and gives res-
ults in the range between 80.5 Å3 and 91.9 Å3.206–211 These values are, as expected, slightly
higher than the results for the isolated molecule. The contribution to the polarizability
from pure vibrational lattice effects has been estimated experimentally to ∼ 2 Å3,211 and it
is therefore too small to account for the difference between the experiments in the gas phase
and in the condensed phase. Most theoretical studies have considered the isolated molecule
C60 and therefore neglect intermolecular interactions. There is, however, a quantum chem-
ical calculation of the polarizability of C60, C70 and C84 in the condensed phase using
self-consistent reaction-field (SCRF) theory.308 The polarizability of C60 was calculated to
93.8 Å3 compared with 75.1 Å3 in the gas phase. In addition, the PDI model has been
used to calculate the polarizability of fullerene mono-layer films which resulted in 83.9 Å3

for a C60 molecule in the film and 77.5 Å3 for the isolated molecule [Ref. 63, Chap. 3], also
in good agreement with experimental results.

For the second hyperpolarizability, the situation is less clear and the differences between
theory and experiment are much larger. In contrast to the polarizability, experiments have
been carried out only for the condensed phase, usually for thin films or in solution, and
the differences between various measurements are substantial.62 The third-order suscept-
ibility is very sensitive to the experimental conditions such as the experimental measuring
techniques, laser power, frequency-dispersion, condensed phase, and even the sample pre-
paration method.62,67 Furthermore, most experimental results have been obtained for the
resonant third-order susceptibility which is in the region where the frequency-dispersion is
the largest. The theoretical results have usually been calculated for the isolated molecule
and often for the static case or at non-resonant frequencies. Even if only the theoretical
results for the static second hyperpolarizability are compared with each other, the spread
of the data is large.62 In particular, methods using a semi-empirical sum-over-states (SOS)
approach seem to give results significantly higher than other theoretical models. Among
methods like DFT and SCF the agreement is much better. There has been a study of the
static second hyperpolarizability in the condensed phase calculated with SCRF at the SCF
level of theory, where a value of 278 × 103 a.u. (140 × 10−36 esu) was found compared
with a value of 109 × 103 a.u. (55 × 10−36 esu) in the gas phase.308 In Ref. 308, the
third-order susceptibility was also calculated using a general local field theory obtained
from the Onsager-Böttcher relation31 and good agreement with experiments was claimed.
However, the comparison between the experimental and the theoretical susceptibility was
carried out without correcting for different conventions adopted.27

In this work, we combine the point-dipole interaction (PDI) model with a local-field
ansatz resulting in that the linear and third-order macroscopic susceptibilities may be
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obtained. Furthermore, adopting a localized PDI model, the (hyper)polarizability of a
molecule in a cluster may be calculated. Calculations have been carried out for C60 fullerene
clusters: linear chains, mono-layer films, and face-centered cubic clusters. The presentation
is organized as follows. A theoretical background is given in section 7.3, computational
details are given in section 7.4, our results are presented in section 7.5, and, finally, the
conclusions are given in section 7.6.

7.3 Theoretical background
7.3.1 The Point-Dipole Interaction Model
An alternative approach to quantum chemical methods is based on representing the mo-
lecule as a set of interacting induced point dipoles,87–89 a model exploited extensively by
Applequist and coworkers.90,91 In a system of N point polarizabilities, αI,αβ, the atomic
induced dipole moment of atom I, µind

I,α is given as

µind
I,α = αI,αβE

tot
I,β +

1

6
γI,αβγδE

tot
I,βE

tot
I,γE

tot
I,δ , (7.1)

where the total microscopic electric field, Etot
I,β is given by31,33

Etot
I,β = Eloc

β + Edip
I,β = Emac

β +
4π

3
Pβ +

N∑
J $=I

TIJ,βγµ
ind
J,γ . (7.2)

Here, Eloc
β is the local field experienced due to the external electric field, which is given as

the sum of the macroscopic electric field, Emac
β , and the macroscopic polarization, Pβ.31,33

The term, TIJ,βγµind
J,γ , denotes the electric field of the induced dipole moment at site J

calculated at atom I, and Edip
I,β is thus the electric field at site I from all other induced

dipole moments. Greek subscripts denote Cartesian coordinates, x, y, or z and the Einstein
summation convention is used for repeated subscripts.

The atoms are regarded as spherically symmetric particles, resulting in that αP,αβ =
αP δαβ, where the isotropic atomic polarizabilities, αP , are treated as atom-type parameters
where one parameter is used for each element. It has been demonstrated that accurate
parameters are obtained if they are parametrized from a training set of molecular polar-
izabilities obtained from quantum chemical calculations instead of experimental data.94

One reason for that is that experimental polarizabilities often have been converted from
macroscopic susceptibilities, which, as demonstrated here, is a non-trivial task.

An improved parametrization is obtained if the contributions from a smeared-out charge
distribution is included in terms of a damping of the interaction in Eq. 7.1 by modifying the
TIJ,αβ tensor.93,309 Consequently, by adopting two parameters for each element, a polariz-
ability, αP , and a damping parameter, ΦP , good results have been obtained for example for
the polarizability of large molecular clusters [Ref. 63, Chap. 3]. A parametrization of the
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molecular γ includes an atomic γ parameter, γP , in addition to the parameters adopted
for the molecular polarizability [Ref. 95, Chap. 4].

The solutions of the coupled set of linear equations in Eq. 7.1 may be expressed in terms
of a two-atom relay tensor, B(2)

IJ,αβ, and a four-atom relay tensor B(4)
IJKL,αβγδ as92 [Ref. 95,

Chap. 4]

µind
I,α =

N∑
J

B(2)
IJ,αβE

loc
J,β +

1

6

N∑
J,K,L

B(4)
IJKL,αβγδE

loc
L,δE

loc
K,γE

loc
J,β , (7.3)

where B(2)
IJ,αβ gives the induced dipole moment at atom I from a local electric field on atom

J . The two-atom relay tensor is given in the regular way as an inverse of a supermatrix,90,93

B(2) =
(
α

−1 − T
)−1

. (7.4)

Analogously, B(4)
IJKL,αβγδ gives the induced dipole moment at atom I from a local electric

field on atom J , K, and L. The four-atom relay tensor for a system of spherically symmetric
particles may be written as [Ref. 95, Chap. 4]

B(4)
IJKL,αβγδ =

N∑
M

γM,λµνξB̃
(2)
ML,ξδB̃

(2)
MK,νγB̃

(2)
MJ,µβB̃

(2)
MI,λα , (7.5)

where B̃(2)
IJ,αβ is defined as

B̃(2)
IJ,αβ = δIJδαβ +

N∑
K $=I

T (2)
IK,αγB

(2)
KJ,γβ = α−1

I,ατB
(2)
IJ,τβ . (7.6)

The resulting molecular polarizability, αmol
αβ , and molecular second hyperpolarizability,

γmol
αβγδ, are given as

αmol
αβ =

N∑
IJ

B(2)
IJ,αβ , (7.7)

and

γmol
αβγδ =

N∑
IJKL

B(4)
IJKL,αβγδ . (7.8)

The theoretical background of the calculation of second hyperpolarizabilities within a PDI
model is described in more detail in a previous work [Ref. 95, Chap. 4].

7.3.2 The Localized Point-Dipole Interaction Model
A localized point-dipole interaction model (LPDI) is utilized to calculate the (hyper)polarizability
of the individual molecules (or subgroups) in a cluster [Ref. 97, Chap. 5]. The partitioning
is carried out by first decomposing the two-atom matrix into a block diagonal form with M

85



7 Microscopic and macroscopic polarization in C60 clusters

blocks, B̂(2)
I,PQ,αβ, corresponding to a relay tensor for the I’th molecule or subgroup, where

M is the total number of molecules or subgroups in the cluster. In the decomposition of
the relay matrix, the interaction blocks B(2)

P∈IQ∈J,αβ, where atom P belongs to molecule

I and atom Q to molecule J , is assigned to the diagonal blocks B(2)
P∈IQ∈I,αβ where both

atom P and Q belong to molecule I. This assignment is a more or less arbitrary procedure
but can be done similarly to the Mulliken population analysis.98 Therefore, we have for
molecule I,

B̂(2)
I,PQ,αβ = B(2)

P∈IQ∈I,αβ +
1

2

M∑
J $=I

(
B(2)

P∈IQ∈J,αβ + B(2)
P∈JQ∈I,αβ

)
. (7.9)

The polarizability and second hyperpolarizabilty can subsequently be calculated by Eqs. 7.7,
7.6 and 7.8 using the diagonal blocks of the decomposed relay matrix, B̂(2)

I,PQ,αβ. They also
give the polarizability and hyperpolarizability of each of the M individual molecules in the
molecular cluster.

7.3.3 The linear and nonlinear susceptibility
In a similar way to the induced dipole moment, the macroscopic polarization, P , can be
expanded in powers of the macroscopic electric field, Emac,10,31

PI = χ(1)
IJ Emac

J + χ(3)
IJKLEmac

J Emac
K Emac

L (7.10)

where χ(1)
IJ is the linear susceptibility and χ(3)

IJKL is the third-order suceptibility. The mac-
roscopic polarization is also given in terms of the microscopic induced molecular dipole
moments, µ, as10,31, 33

PI = Nd 〈µα〉I = Nd

〈
αmol
αβ

〉
IJ

Eloc
J +

1

6
Nd

〈
γmol
αβγδ

〉
IJKL

Eloc
J Eloc

K Eloc
L , (7.11)

where Nd is the number density and 〈〉 denotes orientation averaging which relates the
molecule-fixed axes, α, β, . . . to the space-fixed axes I, J, . . ..25 Inserting the definition of
the local field, Eq. 7.2, in Eq. 7.11 the polarization in the Z direction due to a electric field
in the Z direction can be written as

PZ = Ndα
mol

(
Emac

Z +
4π

3
PZ

)
+

1

6
Ndγ

mol

(
Emac

Z +
4π

3
PZ

)3

, (7.12)

where the average molecular polarizability is given by25

αmol =
〈
αmol
αβ

〉
ZZ

=
1

3
(αxx + αyy + αzz) , (7.13)

and the average molecular second hyperpolarizability by15,25

γmol =
〈
γmol
αβγδ

〉
ZZZZ

=
1

15

∑
αβ

(γααββ + γαββα + γαβαβ) (7.14)

86



7.4 Computational details

Combining this equation with the power expansion of the polarization in Eq. (7.10), the

linear electric susceptibility, χ(1)
ZZ is obtained as

χ(1)
ZZ =

∂PZ

∂Emac
Z

∣∣∣∣
Emac=0

= Ndα
mol(1 +

4π

3
χ(1)

ZZ) , (7.15)

resulting in

χ(1)
ZZ =

Ndαmol

1 − 4π
3 Ndαmol . (7.16)

The related refractive index, n(1), and dielectric constant, ε(1), are given as,33

n(1) =
√
ε(1) =

√
1 + 4πχ(1)

ZZ =

√
1 + 8π

3 Ndαmol

1 − 4π
3 Ndαmol , (7.17)

which is the familiar Lorentz-Lorenz equation or Clausius-Mossotti equation. The corres-
ponding third-order susceptibility, χ(3)

ZZZZ, is given as

χ(3)
ZZZZ =

∂3PZ

∂Emac
Z Emac

Z Emac
Z

∣∣∣∣
Emac=0

=
1

6
Ndγ

mol(1 − Ndα
mol4π

3
)−1(1 +

4π

3
χ(1)

ZZ)3 , (7.18)

which may be rewritten as10

χ(3)
ZZZZ =

1

6
Ndγ

mol(
ε(1) + 2

3
)4 . (7.19)

Although the equations for χ(1) and χ(3) presented here look identical to the standard
Lorentz local-field treatment, it should be emphasized that they are different since the
electric field from the nearby dipoles, Edip

I,β , is included in Eq. 7.2. In the standard Lorentz
local-field approach, this field is ignored since it is zero in a simple cubic lattice and assumed
likewise in a completely random situation.31,33

7.4 Computational details
The parameters, αC and ΦC have been obtained in a previous work where the molecular
α was parametrized from Hartree-Fock calculations on 184 molecules [Ref. 63, Chap. 3].
The model gives good results for α for carbon nanotubes,166 boron nitride tubes,100 and
C60 fullerene clusters [Ref. 63, Chap. 3]. The remaining parameter γC has been chosen
to describe the molecular γ of C60 obtained from Hartree-Fock calculations taken from
Ref. 65. The values used in this work are αC= 9.312 a.u., ΦC= 0.124 a.u., and γC= 1600.0
a.u. This set of parameters have previously been used to study the saturation of the second
hyperpolarizability of carbon nanotubes with increasing tube-length [Ref. 96, Chap. 6]. The
structure of the C60 molecule was taken from our previous work.166 In the solid phase at
room temperature, C60 exhibits a face-centered-cubic (FCC) structure with a lattice vector
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(a) A-Layer: (1 0 0 ) layer with 13 C60 molecules (b) B-Layer: rotated (1 0 0) layer with 12 C60

molecules

Figure 7.1: C60 films. The nearest neighbour distance is a = 10.02 Å. The films are in
the YZ-plane. Figures prepared using the PyMOL program.310

of a0 = 14.17 Å giving a nearest-neighbor distance of a = 10.04 Å .191,211 In this study,
we have investigated chains, mono-layers and FCC clusters of C60 molecules and all the
structures have been constructed using this nearest-neighbor distance. The two different
mono-layers (A and B) used in this work are illustrated in Figure 7.1, which correspond
to the (1 0 0) surfaces of the FCC crystal. The chains of C60 molecules correspond to the
diagonal of the A-layer, the mono-layers studied are A-layers and the FCC-clusters are
constructed by combinations of A- and B-layers.

7.5 Results
The polarizability and the second hyperpolarizability of a C60 molecule in a fullerene cluster
have been calculated in three different ways. In the following ξ represent either α or γ.
The first method is to calculate the average value per molecule ξ(N)/N , the second way is
the ∆ approach,203 i.e., the difference between the value for N molecules and for N − X
molecules ∆ξ = (ξ(N) − ξ(N − X))/X where X is the step-size, and finally the localized

PDI model ξ
LPDI

as described in section 7.3.2. In the average approach, the total ξ of
the system is distributed evenly between the molecules and for this reason resembles the
experimental results. The average approach requires, however, a very large number of
molecules in the cluster before ξ/N converges due to a large number of molecules in the
outer part of the cluster. For this reason, the ∆ approach has been introduced in order
to improve the slow convergence by removing the effect of the outlying molecules.203 As
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Figure 7.2: Mean static polarizability per
molecule for C60 chains as a function of
the number of C60 molecules (in a.u.). (+)
α/N molecule (×) ∆α, and (∗) αLPDI.
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Figure 7.3: Mean static second hyperpol-
arizability per molecule for C60 chains as
a function of the number of C60 molecules
(in 1000 a.u.). (+) γ/N molecule (×) ∆γ,
and (∗) γLPDI.

realized from the definition of the ∆ approach it is most efficient when the step-size is
small compared with the total number of molecules in the cluster, i.e. it is identical to the
average approach in the limit where X becomes identical with N . Here, these approaches
are compared to the LPDI approach [Ref. 97, Chap. 5].

7.5.1 Chains of C60 molecules
The dependence of the (hyper)polarizability of a C60 molecule in a linear chain of C60

molecules on the length of the chain has been investigated. The fullerene chain is not
only a suitable model system for investigating this approach but is also considered as
a model of the edges of a fullerene crystal. Furtermore, linear chains of C60 molecules
have also been found inside carbon nanotubes, so-called peapods, with the same spacing
between the C60 molecules.311 In Figures 7.2 and 7.3, respectively, the polarizability and
second hyperpolarizability of a C60 molecule in a chain of C60 molecules are presented as
a function of the number of molecules in the chain. The longest chain contains 35 C60

molecules corresponding to a chain length of ∼ 35 nm. For this chain, the polarizability
was obtained as α/N = 564.76 a.u., ∆α = 567.57 a.u. and αLPDI = 567.46 a.u. In the ∆
approach a step-size of one was used until N = 11, then a step-size of two until N = 15,
and for the rest a step-size of five was used. The second hyperpolarizability was calculated
to be γ/N = 213.89×103 a.u., ∆γ = 221.67×103 a.u., and γLPDI = 221.34×103 a.u. Good
agreement is found between the ∆ approach and the LPDI model both for the polarizability
and for the second hyperpolarizability, whereas the average approach gives values that are
slightly smaller. In Figures 7.2 and 7.3, it is also noted that the ∆ approach converges
faster than the other approaches. The LPDI approach converges slightly slower but still
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Figure 7.4: Static polarizability in a.u.
for a C60 molecule in a fullerene chains as
a function of the number of C60 molecules
calculated with LPDI. For a molecule in the
end of the chain (+) αxx and (×) αzz. For
a molecule in the middle of the chain, (∗)
αxx, and (!) αzz. x axis perpendicular to
the chain and z axis along the chain.
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Figure 7.5: Static second hyperpolariz-
ability for a C60 molecule in a chains of
fullerene molecules as a function of the
number of C60 molecules in the chain (in
1000 a.u.). For a molecule in the end of
the chain (+) γxxxx and (×) γzzzz. For a
molecule in the middle of the chain, (∗)
γxxxx, and (!) γzzzz. x axis perpendicular
to the chain and z axis along the chain.

much faster than the average method. If the linear chain of C60 molecules is compared
with a carbon nanotube with the same diameter, i.e. a [5,5] or [9,0] carbon nanotube,
α/Natom is ∼ 9.5 a.u. for the chain whereas it is ∼ 14.2 a.u. for the nanotube,99 where
Natom is the number of Carbon atoms. Analogously, γ/Natom is ∼ 3.7 × 103 a.u. for the
chain and ∼ 48 × 103 a.u. for the nanotube [Ref. 96, Chap. 6]. Thus, α/Natom and in
particular γ/Natom are as expected much larger for the carbon nanotube than for the chain
of C60 molecules because of the extended conjugated electronic structure. In Figures 7.4

and 7.5, α and γ are presented for a C60 molecule in the chain calculated with the LPDI
model where the molecule is situated either in the middle of the chain or at the end of the
chain. It is found that αzz and γzzzz increase and αxx and γxxxx decrease with increasing
chain length for both the middle and the end molecules, and that the perturbation is
larger along the chain (z-axis) and, therefore, the components in this direction converge
slower with respect to the length of the chain. Furthermore, the differences are significant
between the middle and the end molecules of the chain. For the chain of 35 C60 molecules,
we obtained αzz=803.89 a.u. and γzzzz=646.26 × 103 a.u. for the middle molecule and
αzz=655.33 a.u. and γzzzz=299.72 × 103 a.u. for the end molecules, respectively. For the
end molecules, both α and γ converge much faster with respect to the length of the chain
than the molecule in the middle which illustrates clearly why the ∆ approach converges
much faster than the average method.
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7.5.2 Mono-layer films of C60 molecules
The second type of system is a C60 molecule in mono-layer films of C60 molecules. The
mono-layer is considered as a model of the (1 0 0) surface of the fullerene crystal.

N 1 5 13 25 41 61
α/N 522.76 541.05 555.24 566.19 574.58 581.15
∆α 522.76 545.62 564.11 578.06 587.69 594.61
αLPDI 522.76 568.74 575.07 586.23 595.05 601.73
γ/N 115.21 150.91 178.06 200.52 218.70 233.55
∆γ 115.21 159.83 195.02 224.85 247.12 263.99
γLPDI 115.21 196.35 218.63 244.86 265.81 282.22

Table 7.1: Static polarizability and second hyperpolarizability for C60 in a monolayer film.
N is the number of C60 molecules in the film. α in a.u. and γ in 103 a.u.

In Table 7.1, α and γ are presented for a C60 molecule in a monolayer film of C60

molecules calculated using the average, ∆ and LPDI approaches. We find for the largest
film, containing 61 C60 molecules, a polarizability of α/N = 581.15 a.u., ∆α = 594.61 a.u.
and αLPDI = 601.73 a.u. For the second hyperpolarizability, we find γ/N = 233.55 ×
103 a.u., ∆γ = 263.99×103 a.u., and γLPDI = 282.22×103 a.u. Compared with the results
for the longest chain, α is increased by ∼ 3%, ∼ 5%, and ∼ 6% for the various methods
and γ by ∼ 9%, ∼ 19%, and ∼ 28%, respectively. For the films, the LPDI approach gives
the largest α and γ values in good agreement with the expectation that the LPDI model
will converge faster than both the ∆ and the average approach when the dimension of
the system increase. For the mono-layer films, both α and γ show similar trends with
increasing system size as was found for the chains.

Using the LPDI model, the results of a C60 molecule in one of the corners of the mono-
layer film with 61 C60 molecules are α = 547.79 Å3 and γ = 168.66 × 103 a.u. This is as
expected much lower than the values of α = 601.73 Å3 and γ = 282.22× 103 a.u found for
the molecule in the middle of the film . Compared with the isolated molecule, the change
in α and γ are for the corner molecule only ∼ 5% and ∼ 45%, respectively, whereas the
changes are ∼ 15% and ∼ 145%, respectively, for the molecule in the middle, i.e. around
three times larger. For the chain with the same number of molecules as on the diagonal
of the film (11 C60 molecules), the results for an end molecule are α = 541.96Å3 and
γ = 149.96× 103a.u. Thus, only small differences are found for the molecule in the corner
of the film as compared with the molecule at the end of the chain.

7.5.3 FCC cluster of C60 molecules
The final type of system is a C60 molecule in a FCC cluster of C60 molecules. The smallest
FCC structure contains 13 C60 molecules and was built as one A-layer with 5 molecules
and two B-layers with 4 molecules (see Figure 1), one above and one below the A-layer
(B4A5B4-cluster). The spacing between two A-layers is 14.17 Å211 and the spacing between
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7 Microscopic and macroscopic polarization in C60 clusters

the B-layers and the A-layer is half of the A-A distance, 7.09 Å. The second structure
contains 37 C60 molecules (B12A13B12-cluster), and the last structure contains 63 C60

molecules (A13B12A13B12A13-cluster). The results for α and γ for a C60 molecule in a FCC

N 1 13 37 63
α/N 522.76 538.22 545.91 546.05
∆α 522.76 539.50 550.09 548.09
αLPDI 522.76 582.71 578.16 571.84
γ/N 115.21 142.17 157.53 158.75
∆γ 115.21 144.42 165.85 163.06
γLPDI 115.21 182.68 194.66 169.12

Table 7.2: Static polarizability and second hyperpolarizability for C60 in a fullerene FCC
cluster. α in a.u. and γ in 103 a.u.

crystal is presented in Table 7.2. The difference is small between the results obtained with
the average and the ∆ approaches. The reason for this is that the step-size, X, is too
large relative to the system size in the three-dimensional cluster such that the ∆ approach
will not be significantly different from the average approach. Secondly, as was the case for
the mono-layer films the results obtained with the LPDI model are larger than the results
obtained with both the average and the ∆ approach. Furthermore, α and γ calculated
using the LPDI model are larger for the N = 13 and N = 37 clusters than for the N = 63
cluster. Furthermore, α decreases whereas γ increases when going from the N = 13 cluster
to the N = 37 cluster. On the other hand, both α and γ decrease when going from the
N = 37 cluster to the N = 63 cluster and they also become smaller than the results for the
N = 13 cluster. Because of these irregularities, it becomes important to have a large cluster
for the three-dimensional cluster. In Table 7.3, we present a comparison of α, γ, and their

Isolated, N =1 Chain, N = 5 Monolayer, N = 13 FCC cluster, N = 63
αxx 522.76 453.18 363.32 571.84
αzz 522.76 767.12 681.38 571.84
α 522.76 557.83 575.07 571.84
γxxxx 115.21 64.74 26.98 169.12
γzzzz 115.21 534.49 335.22 169.12
γ 115.21 196.00 218.63 169.12

Table 7.3: Comparing the chain, film and crystal of C60 molecules. α in a.u. and γ in
103 a.u. z-axis is the long axis and x the short axis.

tensor components αxx, αzz, γxxxx, and γzzzz for a C60 molecule in a chain, a mono-layer
film and a FCC cluster calculated using the LPDI appraoch. The FCC cluster is the cluster
with 63 C60 molecules, the mono-layer film corresponds to the middle layer of the FCC
cluster and contains 13 molecules and the chain corresponds to the diagonal of the film
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and contains 5 molecules. From the table, the differences in the anisotropy of the various
types of systems may be compared with the gas phase. For the chain, the component (z)
along the chain is enhanced whereas the components (x, y) perpendicular to the chain are
screened. In the film, the components (z, y) in plane are enhanced and the component (x)
perpendicular to the plane is screened. All components for the film are smaller than for the
chain but two directions are enhanced and only one direction is screened giving that α and
γ are larger for the film than for the chain. In the FCC cluster, α and γ are enhanced in
all directions and the properties becomes isotropic as in the gas phase. The enhancements
are smaller in the FCC cluster than in the film and chain illustrating the importance of
considering a realistic cluster model in order to account both for the enhancement and for
the screening of α and γ.

7.5.4 Susceptibilities
For the largest FCC cluster, we have also calculated the linear refractive index and the
third-order nonlinear susceptibility and compared with experimental results. The results
for the refractive index is n(1) = 2.0 (ε(1) = 4.0 ) as calculated from Eq. 7.17 with the number
density, Nd = 4/a3 and a lattice constant of a = 14.17 Å.211 Our results are in excellent
agreement with the experimental results for the refractive index, n(1) ∼ 2,206,208, 312 and
for the dielectric constant, ε(1) ∼ 4.0 − 4.6.207,210, 211, 313 This good agreement, especially
with the refractive index, illustrates the accuracy of the local-field approach used here and
indicates that the dipolar term ignored in standard Lorentz local-field theory is required
to get good agreement between theory and experiments. If we use the standard Lorentz-
Lorenz equation, i.e. adopting Eq. 7.17 with the gas-phase value for the polarizability,
gives a refractive index of n(1) = 1.89 and if we use the standard Lorentz local-field theory,
i.e. Eq. 7.15 with the gas phase polarizability and the experimental susceptibility, we
find a refractive index of n(1) = 1.94. Although the differences in the refractive indexes
are small, it becomes important when considering the nonlinear susceptibilities as realized
from Eq. 7.19.

For the third-order nonlinear susceptibility, a value of χ(3) = 3.2×10−13 esu is obtained
using Eq. 7.19 and the dielectric constant calculated here. Only a few experimental studies
have been carried out of the non-resonant third-order nonlinear susceptibility for C60 films.
A third-harmonic generation (THG) experiment at frequency 0.019 a.u. (λ = 2380 nm)
results in χ(3) = 4.1 ± 0.6 × 10−12 esu.312 This value was measured relative to fused
silica and a reference value of χ(3) = 2.8 × 10−14 esu was adopted. However, recently a
value for the THG susceptibility for fused silica of χ(3) = 1.1 × 10−14 esu was found and
believed to be more accurate.314,315 Correcting for this difference in reference values gives
a value of χ(3) = 16.1 ± 2.4 × 10−13 esu for the C60 thin film. The second experiment is
a degenerate four-wave mixing (DFWM) study where the static limit of the third-order
nonlinear susceptibility was found to be χ(3) = 36±12×10−13.316 This value was reported
in the so-called ”Maker-Terhune”317 convention and are therefore multiplied by a factor of
four in order to compare with the convention used here. They used a reference value for
fused silica of χ(3) = 1.6 × 10−14 at λ = 1064 nm which is in good agreement with THG
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7 Microscopic and macroscopic polarization in C60 clusters

results at the same frequency.314,315 The two experiments agree within a factor of two
which, considering the fact that DFWM can be higher than the corresponding THG due
to vibrational contributions,314 is a good agreement. Theoretically, it has also been found
for the isolated C60 molecule that the vibrational contribution to γ obtained in a DFWM
experiment is of the same order as the electronic contribution.307

Comparing our theoretical value for χ(3) with the experimental results, it is a factor
of five smaller than the THG experiment and a factor of ten smaller than the DFWM
experiment. Since in this study only the pure electronic contribution to χ(3) is calculated,
we would expect a better agreement with the THG results than with the DFWM results
which is indeed the case. There has been one previous theoretical study of the third-order
susceptibility where the molecular environment was taken explicitly into account using a
general local-field theory obtained from the Onsager-Böttcher relation and the gas-phase
α and γ calculated within the Hartree-Fock approximation.308 They found for the static
third-order susceptibility a value of χ(3) = 2.7×10−13 esu which here is divided by a factor
of six in order to make the comparison in the convention used here. This value is in very
good agreement with our value of 3.2 × 10−13 esu considering the different methods used.

7.6 Conclusion
We have investigated the dependence of α and γ on the size of C60 fullerene clusters. It
is found that both the ∆ approach203 and the LPDI model [Ref. 97, Chap. 5] give a rapid
convergence of α and γ with respect to the chain length and the size of the mono-layer.
Furthermore, the LPDI model gives the molecular properties of the individual molecules in
a cluster. For a C60 chain and mono-layer film, it is found that the surrounding molecules
perturb the middle C60 molecule much more than the end or corner molecules, which also
results in a slower convergence of α and γ for the middle molecule with respect to the
system size. In addition, the linear and third-order susceptibilities have been calculated
by combining the PDI model with a local-field ansatz. The calculated refractive index and
dielectric constant are in good agreement with experiments. The result for χ(3) is less clear,
but a good agreement with a quantum chemical SCRF calculation is found.308
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Chapter 8
A discrete solvent reaction field model within
DFT

L. Jensen, P. Th. van Duijnen, and J. G. Snijders ”A discrete solvent reaction field model
within density functional theory” J. Chem. Phys. 118, 514-521, 2003.

8.1 Abstract
In this work we present theory and implementation for a discrete reaction field model within
Density Functional Theory (DFT) for studying solvent effects on molecules. The model
combines a quantum mechanical (QM) description of the solute and a classical descrip-
tion of the solvent molecules (MM). The solvent molecules are modeled by point charges
representing the permanent electronic charge distribution, and distributed polarizabilities
for describing the solvent polarization arising from many-body interactions. The QM/MM
interactions are introduced into the Kohn-Sham equations, thereby allowing for the solute
to be polarized by the solvent and vice versa. Here we present some initial results for water
in aqueous solution. It is found that the inclusion of solvent polarization is essential for
an accurate description of dipole and quadrupole moments in the liquid phase. We find a
very good agreement between the liquid phase dipole and quadrupole moments obtained
using the Local Density Approximation (LDA) and results obtained with a similar model
at the Coupled Cluster Singles and Doubles (CCSD) level of theory using the same water
cluster structure. The influence of basis set and exchange correlation functional on the
liquid phase properties was investigated and indicates that for an accurate description of
the liquid phase properties using DFT a good description of the gas phase dipole moment
and molecular polarizability are also needed.
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8 A discrete solvent reaction field model within DFT

8.2 Introduction
An interesting theoretical problem is the modeling of molecular properties in the condensed
phase. In general, the interactions with the solvent changes the molecular properties
considerably when compared with the gas phase. From a quantum chemical point of
view the focus is on a single molecule (or a molecular system) and the solvent effects are
treated as perturbations of the molecular system. The molecular system of interest is then
treated with a quantum mechanical method and the rest of the system is treated by a
much simpler method, usually a classical description.102–116,318

The methods used for the classical description of the solvent can in general be di-
vided into two groups depending on the detail in which the solvent are considered. The
first group of methods are the so-called continuum models102–104in which the solvent is
treated as a continuous medium characterized by its macroscopic dielectric constants. The
continuum models have become a standard approach for modeling solvent effects on mo-
lecular properties within computational chemistry and are very efficient models. However,
in the continuum model the explicit microscopic structure of the solvent are neglected and
therefore provides a poor description of the short range interactions. Also, the results are
affected by the choice of the radius and shape of the cavity in which the solute is embedded
into.319

The second group of methods can be characterized as discrete solvent methods where
one or more solvent molecules are treated explicitly. Among these methods are the
supermolecular model,320 frozen density functional approach,318 ab initio molecular dy-
namics (MD)321 and the combined quantum mechanical and classical mechanical models
(QM/MM).105–116 In both the supermolecular models and in ab initio MD models all mo-
lecules are treated at the same level of theory. This gives a highly accurate description of
solvent-solute interaction but due to the high computational demand only a few solvent
molecules can be included. A problem of these types of models is that there is no unique
way of defining properties of the individual molecules322,323 [Ref. 97, Chap. 5]. The defin-
ition of the molecular properties require an arbitrary partitioning of the wave function or
the electronic charge density among the molecules much in the same way as defining atomic
charges. The molecular properties will depend on the particular partitioning scheme em-
ployed as shown in an ab initio MD study322 of ice Ih where it was found that the average
dipole moment ranges from 2.3 D to 3.1 D depending on which partitioning scheme used.

In the QM/MM methods105–116 the system is divided into a quantum mechanical part,
the solute, and a classical part, the solvent, and the interaction between the two sub-
systems are described with an effective operator. The solvent molecules are then treated
with a classical force field and the method therefore allows for a greater number of solvent
molecules to be included. Like in the continuum model the solute is separated from the
solvent molecules and the molecular properties of the solute are therefore well defined.
The remaining problem is finding an accurate approximate representation of the solvent
molecules and the solute-solvent interactions.248 The discrete representation of the solvent
molecules introduces a large number of solvent configurations over which the solute prop-
erties must be averaged. This is typically done using Monte Carlo or MD techniques which
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lead to a large number of quantum mechanical calculations. For this reason the QM/MM
method is often employed at a semiempirical level of theory.115

The force field used in the QM/MM methods are typically adopted from fully classical
force fields. While this in general is suitable for the solvent-solvent interactions it is not
clear how to model the van der Waals interaction between the solute and the solvent.324

The van der Waals interactions are typically treated as a Lennard-Jones (LJ) potential and
the LJ parameters for the quantum atoms are then taken from the classical force field or
optimized to the particular QM/MM method325 for some molecular complexes. However,
it is not certain that optimizing the parameters on small complexes will improve the results
in a QM/MM simulation324 of a liquid.

In recent years the classical force fields have been improved in order to also describe the
polarization of the molecules.165,326–332 The polarization of the classical molecules has also
been included in QM/MM studies105,106, 333–339 and shown that it is important to consider
also the polarization of the solvent molecules. Since the inclusion of the solvent polarization
leads to an increase in computational time most studies ignore this contribution and use
the more simple pair potentials. When the solvent polarization is included it is usually
treated using either an isotropic molecular polarizability334,338 or using distributed atomic
polarizabilities333,336, 337, 339 according to the Applequist scheme.90 At short distances the
Applequist scheme leads to the so-called ”polarizability catastrophy” 89,90, 93 due to the
use of a classical description in the bonding region. Thole93 avoided this problem by
introducing smeared out dipoles which mimics the overlapping of the charges distributions
at short distances. Thole’s model has been shown to be quite succesful in reproducing the
molecular polarizability tensor using model atomic polarizability parameters independent
of the chemical environment of the atoms.93,94, 163 This model is used in the Direct Reaction
Field model106,112 which is an ab initio QM/MM model. However, so far the inclusion
of solvent polarization using Thole’s model has not been considered within a Density
Functional Theory (DFT) approach.

Therefore, in this work we present an implementation of a QM/MM-type model for
the study of solvation effect on molecules within DFT. The model will be denoted the
Discrete Reaction Field (DRF) model. In the DRF model the discrete solvent molecules
are represented by distributed atomic point charges and polarizabilities. The inclusion
of atomic polarizabilities following Thole’s model allows also for the solvent molecules to
be polarized. The QM/MM interactions are collected into an effective operator which is
introduced directly into the Kohn-Sham equations. We will ignore the van der Waals inter-
actions since we adopt supermolecular cluster obtained separately from a MD simulation
and the structure is kept fixed during the QM/MM calculations. Therefore, the van der
Waals contribution to the energy is a constant independent of the quantum part and can
be obtained directly from the MD simulation.

As an initial application we will present dipole and quadrupole moments of water in
aqueous solution with focus on choosing the atomic point charges, atomic polarizabilites,
basis set and exchange-correlation (xc) potentials.
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8.3 Theory
In the QM/MM method the total (effective) Hamiltonian for the system is written as105–116

Ĥ = ĤQM + ĤQM/MM + ĤMM (8.1)

where ĤQM is the quantum mechanical Hamiltonian for the solute, ĤQM/MM describes the

interactions between solute and solvent and ĤMM describes the solvent-solvent interactions.
In this work we focus on the description of the quantum part in the presence of a solvent.
The solute-solvent interactions are therefore introduced into the vacuum Hamiltonian as
an effective operator which are described in more details in the next section.

8.3.1 The Discrete Reaction Field Operator
The Discrete Reaction Field operator at a point ri contains two terms

υDRF (ri) = υel(ri) + υpol(ri) (8.2)

where the first term, υel, is the electrostatic operator and describes the Coulombic in-
teraction between the QM system and the permanent charge distribution of the solvent
molecules. The second term, υpol, is the polarization operator and describes the many-
body polarization of the solvent molecules, i.e. the change in the charge distribution of
the solvent molecules due to interaction with the QM part and other solvent molecules.

The charge distribution of the solvent is represented by atomic point charges, hence
the electrostatic operator is given by

υel(ri) =
∑

s

qs

Rsi
=
∑

s

qsT
(0)
si , (8.3)

where the zero’th order interaction tensor has been introduced and the index s runs over
all atoms of the solvent molecules. In general the interaction tensor to a given order, n,
can be written as

T (n)
pq,α1...αn

= ∇pq,α1 . . .∇pq,αn

(
1

Rpq

)
, (8.4)

where Rpq is the distance between the interacting entities.
The many-body polarization term is represented by induced atomic dipoles at the

solvent molecules and the polarization operator is given by

υpol(ri) =
∑

s

µind
s,α

Rsi,α

R3
si

=
∑

s

µind
s,αT

(1)
si,α. (8.5)

where Rsi,α is a component of the distance vector and µind
s is the induced dipole at site s.

For Greek indices the Einstein summation convention is employed. The induced dipoles
are discussed in more detail in the next section.
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8.3.2 The Atomic Induced Dipoles
For a collection of atomic polarizabilities in an electric field, assuming linear response, the
induced atomic dipole at site s is given by

µind
s,α = αs,αβ(F

init
s,β +

∑
t$=s

T (2)
st,βγµ

ind
t,γ ) (8.6)

where αa,αβ is a component of the atomic polarizability tensor at site s, which for an
isotropic atom gives αs,αβ = δαβαs. F init

s,β is the initial electric field at site s and the last
term is the electric field from the other induced dipoles. The dipole interaction tensor,
T (2)

st,αβ, is given by

T (2)
st,αβ =

3Rst,αRst,β

R5
st

− δαβ
R3

st

(8.7)

The initial field in Eq. 8.6 is given as a sum of three terms

F init
t,β = F QM,el

t,β + F QM,nuc
t,β + F MM,q

t,β (8.8)

where F QM,el
t,β is the field arising from the electronic charge distribution of the QM part,

F QM,el
t,β = −

∫
ρ(ri)

Rit,β

R3
it

dri =

∫
ρ(ri)T

(1)
it,βdri (8.9)

and F QM,nuc
t,β is the field arising from the QM nuclei,

F QM,nuc
t,β =

∑
m

ZmRmt,β

R3
mt

= −
∑
m

ZmT (1)
mt,β (8.10)

and F MM,q
t,β is the field arising from the point charges at the solvent molecules,

F MM,q
t,β =

∑
s

′ qsRst,β

R3
st

= −
∑

s

′

qsT
(1)
st,β (8.11)

The prime in Eq 8.11 indicates that the sum is restricted to sites which do not belong to
the same molecule. Since the induced dipole in Eq. 8.6 depends on the induced dipoles
at the other sites these equations have to be solved self-consistently. This can be done
analytically by rewriting the equations into a 3N ×3N linear matrix equation, with N the
number of atoms, as

Aµind = F init (8.12)

and the components of the matrix, Ast,αβ, given by

Ast,αβ = (α−1
s,αβδst − T (2)

st,αβ). (8.13)

This matrix equation can then be solved for the induced dipoles using standard mathem-
atical tools for solving linear equations. The inverse of the matrix A, the so called relay
matrix, is a generalized polarizability matrix which describes the total linear response of
the discrete solvent molecules.
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8.3.3 Damping of the induced dipoles
If F init is an uniform external field the polarizability of the classical system can be written
as90

αmol
αβ =

N∑
p,q

Bpq,αβ, (8.14)

where B is the relay matrix defined in a supermatrix notation as

B = A−1 =
(
α

−1 − T(2)
)−1

. (8.15)

The polarizability parallel, α‖, and perpendicular, α⊥, to the axes connecting two inter-
acting atoms, p and q, are given by Silberstein’s equations,89 which are the exact solutions
to Eq. 8.14,

α‖ =
αp + αq + 4αpαq/r3

1 − 4αpαq/r6
, (8.16)

α⊥ =
αp + αq − 2αpαq/r3

1 − αpαq/r6
. (8.17)

From Eqs. 8.16 and 8.17 it is seen that when r approaches (4αpαq)1/6, α‖ goes to infinity
and becomes negative for even shorter distances. In order to avoid this “polarizability
catastrophe” Thole93 modified the dipole interaction tensor using smeared-out dipoles.
The dipole interaction tensor was first rewritten in terms of a reduced distance upq,β =
Rpq,β/(αpαq)1/6 as

T (2)
pq,βγ = (αpαq)

1/2t(upq) = (αpαq)
1/2 ∂2φ(upq)

∂upq,β∂upq,γ
(8.18)

where φ(upq) is a spherically symmetric potential of some model charge distribution ρ. The
screened dipole interaction tensor can be written as

T (2)
pq,αβ =

3fT
pqRpq,αRpq,β

R5
pq

− fE
pqδαβ
R3

pq

. (8.19)

where the damping functions fT
pq and fE

pq have been introduced. If we consider a exponential
decaying charge distribution the screening functions in Eq. 8.19 are given by163

fE
pg = 1 −

[
1 + spq +

1

2
s2

pq

]
exp(−spq) and fT

pg = fE
pg −

1

6
s3

pq exp(−spq), (8.20)

where the term spq is give by spq = aRpq/(αpαq)1/6, with a the screening length, and αp

the atomic polarizability of atom p.
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8.3.4 The QM/MM interaction energy
The QM/MM interaction energy is given by a sum of three terms,

EQM/MM = Eelst,el + Eelst,nuc + Eind (8.21)

where the first two terms are the electrostatic interaction between the QM electrons and
the classical point charges

Eelst,el = −
∑

s

qs

∫
ρ(ri)

1

Ris
dri (8.22)

and the electrostatic interaction between the QM nuclei and the point charges

Eelst,nuc =
∑

s

qs

∑
m

Zm

Rms
, (8.23)

respectively. The last term is the induction energy and is given by31,326

Eind = −1

2
µindF QM , (8.24)

where F QM is the electric field arising from the QM system, i.e. the field from the QM
electrons and nuclei. The induction energy consist of the sum of the energy of the induced
dipoles in the electric field and the polarization cost, i.e. the energy needed for creating
the induced dipoles.

8.3.5 The effective Kohn-Sham equations
The effective Kohn-Sham (KS) equations which has to be solved for the combined QM/MM
system is given by

hKSφi(r) = εφi(r), (8.25)

where hKS is the effective KS-operator and φi is the KS orbital with energy εi. The
effective KS-operator consists of the sum of the vacuum operator, h0

KS, and the reaction
field operator, υDRF , with the vacuum KS-operator given as

h0
KS = −1

2
∇2 + VN(r) + VC(r) + υXC(r) (8.26)

= −1

2
∇2 −

∑
m

Zm

|r − Rm| +

∫
ρ(r)

|r − r′|dr′ +
δEXC

δρ(r)
(8.27)

where the individual terms in the vacuum operator are the kinetic operator, the nuclear
potential, the Coulomb potential (or Hartree potential) and the xc-potential, respectively.

The DRF model has been implemented into a local version of the Amsterdam Dens-
ity Functional (ADF) program package.131,340 In ADF the KS equations are solved by
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8 A discrete solvent reaction field model within DFT

numerical integration which means that the effective KS-operator has to be evaluated in
each integration point. Since the numerical integration grid is chosen on the basis of the
quantum part alone care must be taken when evaluating the DRF operator if the integ-
ration points are close to a classical atom. In order to avoid numerical instabilities we
introduce a damping of the operator at small distances which is modeled by modifying the
distance Rij to obtain a scaled distance Sij [Ref. 63, Chap. 3],

Sij = vijRij = f(Rij) , (8.28)

where vij is a scaling factor and f(Rij) an appropriately chosen function of Rij . Further-
more, each component of Rij is also scaled by vij , so the reduced distance becomes,

Sij =
√

Sij,αSij,α = vij

√
Rij,αRij,α = vijRij , (8.29)

consistent with the definition in Eq. 8.28. The damped operator can thus be obtained by
modifying the interaction tensors in Eqs. 8.3 and 8.5,

T (n)
ij,α1...αn

= ∇α1 . . .∇αn

(
1

Sij

)
, (8.30)

which is equivalent to replacing Rij by Sij and Rij,α by Sij,α in the regular formulae
for the interaction tensors. The particular form of the scaling function employed here
is [Ref. 63, Chap. 3]

f(rpq) =
rpq

erf(rpq)
, (8.31)

which was obtained by considering the interaction between two Gaussian charge distribu-
tions with unity exponents.

8.4 Computational details
All calculations have been performed with the ADF program package. The calculations of
the polarizability of water in the gas phase have been done using time-dependent DFT as
implemented in the RESPONSE code57,130, 289 in ADF. The ADF program uses basis sets
of Slater functions where in this work a triple zeta valence plus polarization (in ADF basis
set V), here denoted TZ2P, is chosen as basis. The basis set is then augmented with diffuse
functions giving TZ2P+,289 added s,p and d functions or TZ2P+++,129 added two s,p,d
and f functions. The TZ2P+++ basis set is expected to give results close to the basis set
limit for (hyper-)polarizabilities.129

We also tested different xc potentials, the Local Density Approximation (LDA), Becke-
Lee-Yang-Parr (BLYP),138,139 the Becke-Perdew (BP),138,341 and the van Leeuwen-Baerends
(LB94)141 potentials. The BLYP and BP are examples of typical Generalized Gradient Ap-
proximations (GGAs) potentials whereas the LB94 is an example of a so-called asymptotic
correct potential due to the correct Coulombic decay of the potential at large distances.
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The water structure we use in this work was taken from Ref. 338 and consists of 128
rigid water molecule where one molecule, the solute, is treated quantum mechanically. The
total structure was obtained from a MD simulation using a polarizable force field327 and
the details about the simulation can be found in Ref. 121. The intra-molecular geometry
of the water molecules was that in gas phase, i.e. RO−H = 0.9572 Å and ∠HOH = 104.49◦.
The solute water molecule was placed in the xz-plane with the z-axis bisecting the H-O-H
angle. Results obtained using this structure will be references as ”liquid” phase results. We
will perform one QM/MM calculation and therefore the molecular properties will not be
averaged over different solvent configurations. However, the choice of this particular water
structure allows for a direct comparison with results obtained from a similar model within
a (Multiconfigurational) Self-Consistent-Field/Molecular Mechanics(MC-SCF/MM)342 or
a Coupled Cluster/Molecular Mechanics (CC/MM)121 approach. Therefore, it is possible
to make a detailed comparison between wave function methods and the DFT method for
liquid phase calculations.

8.5 Results
8.5.1 Solvent models
We investigated six different models for representing the solvent molecules using atomic
parameters in three non-polarizable and three polarizable models. The atomic parameters
used in the different models are given in Table 8.1 along with the molecular dipole mo-
ment and polarizability which they reproduce. The first two non-polarizable models, i.e.

Model qH qO αH αO µ α ∆α
MUL 0.3040 -0.6080 0 0 1.71 0 0
VDD 0.1370 -0.2740 0 0 0.77 0 0
SPC 0.3345 -0.6690 0 0 1.88 0 0
Thole-S 0.3345 -0.6690 2.7929 5.7494 1.88 10.06 4.32
Thole-I 0.3345 -0.6690 0 9.7180 1.88 9.72 0
Thole-A 0.3345 -0.6690 0.0690 9.3005 1.88 9.62 0.51

Table 8.1: Atomic parameters for the different solvent models in atomic units and the
molecular dipole moment, µ, mean polarizability, α, and polarizability anisotropy, ∆α,
modeled by the atomic parameters. Dipole moment in Debye and mean polarizability and
polarizability anisotropy in atomic units. The mean polarizability is defined as α = (αxx +
αyy +αzz)/3 and the polarizability anisotropy as ∆α = (1/2)1/2[(αxx−αyy)2+(αxx−αzz)2+
(αzz − αyy)2]1/2.

charge only models, where obtained by using different ways of partitioning the electronic
charge distribution into atomic charges. The first charge model, MUL, is obtained using
the Mulliken population analysis and the second charge model, VDD, using the so-called
Voronoi deformation density method, for a descriptions of the partitioning schemes see
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8 A discrete solvent reaction field model within DFT

Ref. 340. The last charge model, SPC, is adopted from Ref. 327 and is identical to the
charge model used in the reference works of Refs. 342 and 121. The point charges in model
SPC have been chosen to reproduce the experimental gas phase dipole moment of 1.85 D
for the SPC water geometry,327 however, since we use a different geometry for water the
dipole moment will be slightly larger here. The atomic polarizabilities used in the three
polarizable solvent models were all obtained using Thole’s model, i.e. Eq. 8.14, for repro-
ducing the molecular polarizability. The screening parameter, a = 2.1304, used in all three
models was taken from Ref. 163. The screening parameter together with atomic model
polarizability parameters were obtained by fitting to the experimental mean polarizability
of 52 molecules. The model using these atomic polarizability parameters will be denoted
Thole-S(tandard). In the second model, Thole-I(sotropic), the atomic polarizability para-
meters where chosen to reproduce the isotropic mean polarizability of 9.718 a.u. used in the
reference works.121,342 In the third model, Thole-A(nisotropic), the atomic polarizability
was chosen so as to reproduce the full molecular polarizability tensor of water calculated
using CCSD(T) which was taken from Ref. 343.

Model µ ∆µ Qxx Qyy Qzz

Vacuum 1.86 - 1.83 -1.91 0.08
Without polarization

MUL 2.34 0.48 1.97 -2.09 0.12
VDD 2.08 0.22 1.90 -1.99 0.10
SPC 2.39 0.53 1.98 -2.10 0.12
With polarization

Thole-S 2.69 0.83 2.05 -2.16 0.11
Thole-I/Thole-A 2.58 0.72 2.04 -2.17 0.13

Table 8.2: Dipole and quadrupole moments of water in the gas phase and in the ”liquid
phase” and the induced dipole moment, ∆µ in going from the gas phase to the ”liquid
phase” using different charge and polarization models. Dipole and induced dipole moments
in Debye and quadrupole moment in atomic units. All calculations have been made with
LDA and the TZ2P basis set.

The results for the dipole and quadrupole moments for water in the gas phase and in
the ”liquid” phase and also the induced dipole moment, ∆µ, in going from the gas phase
to the ”liquid” phase using the six different solvent models are presented in Table 8.2.
We only present results for the diagonal components of the quadrupole moment although
off-diagonal elements are present due to the structure of the water cluster. However, these
off-diagonal elements will become zero when averaged over more water configurations.
The results using the non-polarizable solvent models shows that a 10% change in the
atomic parameters, the difference between MUL and SPC, also gives a 10% change in the
induced dipole moment. Especially, the VVD charges underestimate the induced dipole
moment and illustrates the problem using only point charges without including higher
order moments in some way. Therefore, it is important to chose the atomic charges so
that they give a good dipole moment and maybe even reasonable higher order moments.
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However, for water it is not possible to accurately reproduce both dipole moment and
higher order moments using only atomic point charges. We will therefore adopt the SPC
model as starting point for the polarizable models.

From the results in Table 8.2 it is seen that including the polarization of the solvent
molecules increases the dipole moment and quadrupole moment of the ”liquid phase” and
therefore it is very important to include this polarization, especially for the dipole moment.
This has also been found in previous studies using wave function methods.121,334 Comparing
the three different polarization models we see that there is no difference between Thole-I
and Thole-A. Therefore, for water, the effect of distributing the polarizability into atomic
contributions is negligible due to the small polarizability anisotropy of the water molecule.
In general it is expected that a distributed polarizability approach will give better results
than an approach using only a (anisotropic) polarizability located at a single site, especially
as the size of the solvent molecule increases.120 However, as seen from the differences in
the results using Thole-S and Thole-A it is important when using distributed polarizability
that also the anisotropy is accounted for correctly. In the rest of our work we will use the
Thole-A solvent model since it is found that the differences between this solvent model and
the one used in the reference work is negligible.

8.5.2 Basis sets
In Table 8.3 we present results for the dipole moment and quadrupole moment both in
the gas phase and in the ”liquid” phase using the TZ2P, TZ2P+ and TZ2P+++ basis
sets. The static mean polarizability in the gas phase is also shown. In the gas phase the
dipole moment and quadrupole moment is converged already using the TZ2P basis set.
For the polarizability the inclusion of extra diffuse functions are needed in order to achieve
accurate results. We see that the inclusion of the first order field induced polarization
(FIP) functions of Zeiss et al.136 in basis set TZ2P+ gives a mean polarizabilty in good
agreement with the result using the very large basis set TZ2P+++.

Basis set µ ∆µ Qxx Qyy Qzz α
Gas phase

TZ2P 1.86 - 1.84 -1.91 0.08 8.50
TZ2P+ 1.87 - 1.83 -1.90 0.07 10.47
TZ2P+++ 1.86 - 1.84 -1.91 0.07 10.55
”Liquid” phase

TZ2P 2.58 0.72 2.04 -2.17 0.13
TZ2P+ 2.68 0.81 2.07 -2.17 0.10
TZ2P+++ 2.69 0.83 2.08 -2.19 0.11

Table 8.3: Dipole moment, quadrupole moment and mean polarizability for water in the
gas phase and dipole moment, induced dipole moment and quadrupole moment for water in
”liquid phase” using the Thole-A solvent model and different basis sets. Dipole and induced
dipole moment in Debye. Quadrupole moment and mean polarizability in atomic units.
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In the ”liquid” phase the dipole moment is increased considerably by including diffuse
functions in the basis set whereas the basis set effects on the quadrupole moment are negli-
gible. The ∆µ is increased by 12.5% using TZ2P+ and by 15% using TZ2P+++ compared
with the TZ2P basis set. The changes in the ∆µ with the basis sets are in good agree-
ment with the changes in the gas phase polarizability. Therefore, for calculating the dipole
moment in the liquid phase the inclusion of additional diffuse basis functions, normally
associated with calculations of the gas phase polarizability, are required for obtaining good
results. This has also been observed in a previous study 344 using a mean field QM/MM
approach at the Hatree-Fock level of theory.

8.5.3 xc-potentials
Table 8.4 shows the dipole moment, quadrupole moment and mean polarizability of water
in the gas phase and dipole moment, induced dipole moment and quadrupole moment
in the ”liquid” phase calculated using different xc-potentials. The results are compared
with results obtained for the same water structure using a aug-cc-pVTZ basis set and a
CCSD/MM121 approach. In the gas phase the two GGA potentials, BLYP and BP, give

Method µ ∆µ Qxx Qyy Qzz α

Gas phase

LDA 1.87 - 1.83 -1.90 0.07 10.47
BLYP 1.81 - 1.79 -1.85 0.06 10.82
BP 1.81 - 1.80 -1.86 0.06 10.20
LB94 1.97 - 1.72 -1.81 0.09 9.14
CCSD a 1.85 - 1.82 -1.90 0.08 -
”Liquid” phase

LDA 2.68 0.81 2.07 -2.17 0.10
BLYP 2.63 0.82 2.04 -2.13 0.09
BP 2.63 0.82 2.04 -2.13 0.09
LB94 2.65 0.68 1.93 -2.04 0.11
CCSD/MMa 2.71 0.86 2.08 -2.16 0.08

aResults using a aug-cc-pVTZ basis set taken from Ref. 121.

Table 8.4: Dipole moment, quadrupole moment and mean polarizability for water in the
gas phase and dipole moment, induced dipole moment and quadrupole moment for water
in ”liquid phase” using the Thole-A solvent model, TZ2P+ and different xc-potentials.
Dipole and induced dipole moment in Debye. Quadrupole moment and mean polarizability
in atomic units.

identical results for dipole and quadrupole moments and compared with LDA slightly lower
values. There is very good agreement between the LDA results and the CCSD results for
both dipole and quadrupole moments. For a series of small molecules it has been shown that
LDA predicts good dipole and quadrupole moments compared with experimental results,
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especially for the water molecule.345,346 The use of an asymptotic correct functional, LB94,
increases the dipole moment and lowers the quadrupole moment compared with LDA and
made the agreement with the CCSD results less good. For the mean polarizability BLYP
gives a larger value, 10.82 a.u., and BP a smaller value, 10.20 a.u., compared with the LDA
results of 10.47 a.u. but all values are still larger than the CCSD(T) results of 9.62 a.u.
The LB94 results of 9.14 a.u. is much lower than the LDA results and in better agreement
with the CCSD(T) result.

The shifts in the dipole and quadrupole moment in going from the gas phase to the
”liquid” phase predicted using LDA or one of the GGA potentials are almost identical.
The ”liquid” phase dipole and quadrupole moments predicted with the GGA’s are slightly
lower than the LDA results and the differences are identical with the differences found in
the gas phase. The solvent shifts for dipole and quadrupole moments predicted with LB94
are smaller than the shifts found using LDA, in agreement with the smaller gas phase
polarizability found with LB94 compared with LDA. The ”liquid” phase dipole moment
found with LB94 compares well with the LDA value but the quadrupole moment is smaller.
Also in the ”liquid” phase there is a very good agreement between the LDA results and the
CCSD/MM results. Since the induced dipole moment correlates well with the gas phase
polarizability it indicates that to get a good description of the dipole moment in the liquid
phase the gas phase dipole moment and polarizability must also be properly described.

8.5.4 Comparison of theoretical predictions for dipole and quadrupole
moments in liquid phase

A comparison between some continuum and discrete models for calculating the dipole and
quadrupole moments of ”liquid” water is presented in Table 8.5. The continuum models
are the CCSD/D.C. model121 and the LDA/COSMO model347 and the discrete models are
the CCSD/MM and HF/MM models from Ref.121 and the LDA/DRF model from this
work. In all models the same geometry of the water molecules is used and in all discrete
models also the same solvent structure is used. From the results in Table 8.5 we see
that using a continuum model the dipole and quadrupole moments of the liquid phase are
underestimated compared with the discrete models. The induced dipole moment predicted
with the continuum models are a factor of two smaller than the results from the continuum
model. The agreement between the LDA results and the CCSD results are very good both
using the continuum model and the discrete model. Compared with the HF/MM results
we find that the LDA/DRF results are in much better agreement with the CCSD/MM
results.

There has been put a lot of effort into predicting the average dipole moment of liquid
water since there is no way of determining this directly from experiment, although a recent
experimental study348 of liquid water using neutron diffraction predicts a dipole moment
of 2.9±0.6 D. The average dipole moment of liquid water estimated using the experimental
static dielectric constant is about 2.6 D.349,350 The most commonly accepted value for the
dipole moment of liquid water is 2.6 D351 arising from an induction model study on ice
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Method µ ∆µ Qxx Qyy Qzz

Continuum model

LDA/COSMO a 2.26 0.39 1.92 -2.04 0.13
CCSD/D.C. b 2.19 0.34 1.91 -2.09 0.13
Discrete model

LDA/DRF 2.68 0.81 2.07 -2.17 0.10
HF/MM c 2.77 0.79 2.19 -2.01 -0.18
CCSD/MMc 2.71 0.86 2.08 -2.16 0.08

aDielectric constant ε=78.8 and RH=1.44 Å and RO=1.80 Å
bDielectric continuum model using a aug-cc-pVTZ basis set taken from Ref. 121.
cResults using a aug-cc-pVTZ basis set taken from Ref. 121.

Table 8.5: Comparison of continuum and discrete models for the prediction of the dipole
and quadrupole moments of water in the liquid phase. Dipole and induced dipole moments
in Debye. Quadrupole moment in atomic units.

Ih. However, this study has been repeated recently using more accurate input parameters
giving an average dipole moment of 3.1 D.352 The latter value is in good agreement with
an ab initio MD simulation of liquid water using maximally localized Wannier functions
for describing the molecular charge distribution.353,354 A different ab initio MD simulation
of liquid water where the molecular charge distribution is defined using Bader’s zero flux
surface gives a smaller average dipole moment of 2.5 D.323 They also reported results for
the average dipole moment of ice Ih and found that it is considerably larger than the liquid
phase results. The dependency of the molecular results on the partitioning of the charge
distribution was clearly shown in a first principle study on ice Ih322 where the average dipole
moment varied between 2.3 D and 3.1 D dependent on the partitioning scheme. This study
also showed that the dipole moment obtained using Bader’s zero flux surface was smaller
than the results predicted with the accurate induction model. To summarize, we believe
that the dipole moment of liquid water is smaller than found in ice Ih, therefore 3.1 D is
most likely an upper limit. Furthermore, since Bader’s zero flux surface underestimates
the dipole moment in ice Ih, 2.5 D is probably a lower limit for the average dipole moment
in liquid water. Our result for the dipole moment of liquid water of 2.68 D is in good
agreement with previously reported studies121,279, 334, 342, 355, 356 and also within the above
suggested limits.

8.6 Conclusions
In this work we have presented theory and implementation of a discrete reaction field model
within density functional theory. The model combines a quantum mechanical description
at the DFT level of theory of the solute and a classical description of the discrete solvent
molecules. The solvent molecules are described using atomic point charges for representing
the permanent electronic charge distribution and atomic polarizabilities for describing the
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solvent polarization arising from many-body interactions. All atomic parameters have been
chosen to reproduce molecular gas phase properties, i.e. the atomic charges reproduce the
molecular gas phase dipole moment and the atomic polarizabilities reproduce the molecular
gas phase polarizability tensor using Thole’s model for distributed polarizabilities. The
model was tested using a water cluster of 128 water molecules taken from a previous
study using a similar solvent model but the solute molecule was treated either at the
HF or CCSD level of theory, thereby making it possible to assess the quality of DFT for
calculating molecular properties of liquids. The results show that the inclusion of the
polarization of the solvent molecules is essential for an accurate prediction of liquid phase
properties. Also, surprisingly, a very good agreement was found between the LDA results
and the CCSD results for both the dipole and quadrupole moments in the liquid phase. The
use of a GGA xc-potential only affected the results slightly whereas using an asymptotic
correct functional affected the result more strongly and made the agreement with the CCSD
results less well. It was found that the induced dipole moment correlates well with the
gas phase molecular polarizability indicating that a good xc-potential must provide both
good gas phase dipole moment and molecular polarizability in order to accurately describe
the molecular properties in the liquid phase. The results for the dipole moment of 2.68 D
are in good agreement with previous theoretical predictions and also with results based on
experimental predictions.
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Chapter 9
A DRF model for molecular linear response
properties in solution

L. Jensen, P. Th. van Duijnen, and J. G. Snijders ”A discrete solvent reaction field model
for calculating molecular linear response properties in solution” J. Chem. Phys. 119,
3800-3809, 2003.

9.1 Abstract
A Discrete Solvent Reaction Field model for calculating frequency-dependent molecular
linear response properties of molecules in solution is presented. The model combines
a Time-Dependent Density Functional Theory (QM) description of the solute molecule
with a classical (MM) description of the discrete solvent molecules. The classical solvent
molecules are represented using distributed atomic charges and polarizabilities. All the
atomic parameters have been chosen so as to describe molecular gas phase properties of
the solvent molecule, i.e. the atomic charges reproduce the molecular dipole moment and
the atomic polarizabilities resproduce the molecular polarizability tensor using a modified
dipole interaction model. The QM/MM interactions are introduced into the Kohn-Sham
equations and all interactions are solved self-consistent, thereby allowing for the solute
to be polarized by the solvent. Furthermore, the inclusion of polarizabilities in the MM
part allows for the solvent molecules to be polarized by the solute and by interactions
with other solvent molecules. Initial applications of the model to calculate the vertical
electronic excitation energies and frequency-dependent molecular polarizability of a water
molecule in a cluster of 127 classical water molecules are presented. The effect of using
different exchange correlation (xc)-potentials is investigated and the results are compared
with results from wavefunction methods combined with a similar solvent model both at the
correlated and uncorrelated level of theory. It is shown that accurate results in agreement
with correlated wavefunction results can be obtained using xc-potentials with the correct
asymptotic behavior.
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9.2 Introduction
The calculation of molecular properties of molecules in the condensed phase is a funda-
mental and important theoretical problem which still remains problematic. Since molecu-
lar properties like (hyper)polarizabilities are sensitive to the local environment an accurate
calculations of these properties could serve as a test for the molecular models used in
describing intermolecular forces. However, accurate calculation of molecular properties
require a quantum mechanical treatment which, due to high computational cost, are lim-
ited to small systems. Therefore the most successful methods divide the total system into
the molecular system of interest which is treated with a quantum mechanical method and
another part which contains the rest of the system which is treated by a much simpler
method, usually a classical description.102–116

Among these methods are the combined quantum mechanical and classical mechanics
models (QM/MM).105–116 In the QM/MM method the solvent molecules are treated with a
classical force field and the interactions between the solute and solvent are described with
an effective operator, so the problem which remains is to find an accurate approximate
representation of the solvent molecules and the solute-solvent interactions.248 The discrete
representation of the solvent molecules requires a large number of solvent configurations
over which the solute properties must be averaged. This is typically done using Monte
Carlo or MD techniques which lead to a large number of quantum mechanical calculations.
For this reason the QM/MM method is often employed at a semiempirical level of theory.115

We have recently developed such a method which we denoted the Discrete Solvent Re-
action Field model (DRF) [Ref. 117, Chap. 8]. In this model the QM part is treated using
Density Functional Theory (DFT). The solvent molecules (MM) are modeled by point
charges representing the permanent electronic charge distribution, and distributed polariz-
abilities for describing the solvent polarization arising from many-body interactions. The
QM/MM interactions are introduced into the Kohn-Sham equations and all interactions
are solved self-consistently, thereby allowing for the solute to be polarized by the solvent.
Furthermore, the inclusion of polarizabilities in the MM part allows for the solvent mo-
lecules to be polarized by the solute and by interactions with other solvent molecules. The
advantage of including polarizabilities in the MM part is that all parameters can be ob-
tained from gas phase properties. In general it is expected that a distributed polarizability
approach will give better results than an approach using only a (anisotropic) polarizability
located at a single site, especially as the size of the solvent molecule increases.120

The use of Time-Dependent Density Functional Theory (TD-DFT)37–41 allows for the
calculation of frequency-dependent response properties like electronic spectra and frequency-
dependent polarizabilities. The use of TD-DFT for calculating molecular response prop-
erties in the gas-phase has been shown to be accurate especially using recently developed
density functionals42–48 and the extension of TD-DFT to also treat molecules in solution
is of great interest. So far the treatment of frequency-dependent response properties of
molecules in solution within a TD-DFT approach has been done within the polarizable
continuum model.357–359 Therefore, in this work we will include the Discrete Solvent Re-
action Field model within TD-DFT. This allows for the calculation of response properties
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of molecules in solution where the discrete representation of the solvent is retained and
electron correlation of the QM part is included in an efficient manner. Within a QM/MM
approach the treatment of frequency-dependent properties has been done using both cor-
related and uncorrelated wavefunction based methods.122,342, 360 As in our previous study
on dipole and quadrupole moments of water in aqueous solution [Ref. 117, Chap. 8] we will
adopt a single water structure for which there exist wavefunction QM/MM results.122,342

This will allows us to assess approximate exchange-correlation (xc) potentials for calculat-
ing molecular response properties in solution.

9.3 Theory
9.3.1 The Discrete Reaction Field model
In the QM/MM method the total (effective) Hamiltonian for the system is written as105–116

Ĥ = ĤQM + ĤQM/MM + ĤMM (9.1)

where ĤQM is the quantum mechanical Hamiltonian for the solute, ĤQM/MM describes the

interactions between solute and solvent and ĤMM describes the solvent-solvent interactions.
The Discrete Reaction Field model has been described in [Ref. 117, Chap. 8] within time-
independent DFT. Here, the model will be extended to include the effect of an electric field
at frequency, ω, perturbing the QM part.

Within the the Discrete Reaction Field model the QM/MM operator at a point ri is
given by

ĤQM/MM =
∑

i

υDRF (ri,ω) =
∑

i

υel(ri) +
∑

i

υpol(ri,ω), (9.2)

where the first term, υel, is the electrostatic operator and describes the Coulombic in-
teraction between the QM system and the permanent charge distribution of the solvent
molecules. The second term, υpol, is the polarization operator and describes the many-
body polarization of the solvent molecules, i.e. the change in the charge distribution of
the solvent molecules due to interaction with the QM part and other solvent molecules.

The charge distribution of the solvent is represented by atomic point charges, hence
the electrostatic operator is given by

υel(ri) =
∑

s

qs

Rsi
=
∑

s

qsT
(0)
si , (9.3)

where the zero’th order interaction tensor has been introduced and the index s runs over
all atoms of the solvent molecules. In general the interaction tensor to a given order, n,
can be written as

T (n)
pq,α1...αn

= ∇pq,α1 . . .∇pq,αn

(
1

Rpq

)
, (9.4)
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where Rpq is the distance between the interacting entities. The many-body polarization
term is represented by induced atomic dipoles at the solvent molecules and the polarization
operator is given by

υpol(ri,ω) =
∑

s

µind
s,α(ω)

Rsi,α

R3
si

= −
∑

s

µind
s,α(ω)T (1)

si,α. (9.5)

where Rsi,α is a component of the distance vector and µind
s (ω) is the induced dipole at site

s. For Greek indices the Einstein summation convention is employed. The induced dipoles
are discussed in more detail in the next section.

9.3.2 The Frequency-dependent Atomic Induced Dipoles
For a collection of atomic polarizabilities in an electric field, assuming linear response, the
induced atomic dipole at site s is given by

µind
s,α(ω) = αs,αβ[F

init
s,β (ω) +

∑
t$=s

T (2)
st,βγµ

ind
t,γ (ω)], (9.6)

where αa,αβ is a component of the atomic polarizability tensor at site s, which for an
isotropic atom gives αs,αβ = δαβαs. Here we neglect the frequency-dependence of the
classical part, i.e. the atomic polarizability is frequency independent, but the model can
easily be extended to include also this effect.94 [Ref. 63, Chap. 3]

F init
s,β (ω) is the initial electric field at site s and the last term is the electric field from

the other induced dipoles. The dipole interaction tensor, T (2)
st,αβ , is given by

T (2)
st,αβ =

3Rst,αRst,β

R5
st

− δαβ
R3

st

. (9.7)

The initial field in Eq. 9.6 is given as a sum of three terms

F init
t,β (ω) = F QM,el

t,β (ω) + F QM,nuc
t,β + F MM,q

t,β , (9.8)

where F QM,el
t,β (ω) is the field arising from the frequency-dependent electronic charge distri-

bution of the QM part,

F QM,el
t,β (ω) = −

∫
ρ(ri,ω)

Rit,β

R3
it

dri =

∫
ρ(ri,ω)T (1)

it,βdri (9.9)

and F QM,nuc
t,β is the field arising from the QM nuclei,

F QM,nuc
t,β =

∑
m

ZmRmt,β

R3
mt

= −
∑
m

ZmT (1)
mt,β (9.10)
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and F MM,q
t,β is the field arising from the point charges at the solvent molecules,

F MM,q
t,β =

∑
s

′ qsRst,β

R3
st

= −
∑

s

′

qsT
(1)
st,β. (9.11)

The prime in Eq 9.11 indicates that the sum is restricted to sites which do not belong to
the same molecule.

The initial field in Eq. 9.8 does not include the electric field perturbing the QM part
which means that the field perturbing the QM part is in fact the local field felt by the QM
molecule. The reason for this approach is that we are interested in obtaining the properties
of a single molecule in solution. This method leads to the identification of the calculated
properties as the solute properties, i.e the polarizability of the solute including the solvent
effects but not corrected for the difference between the local field and the macroscopic field.
For a discussion of these effects and corrections within the dielectric continuum model see
e.g. Ref. 29, 280, 281.

Since the induced dipole in Eq. 9.6 depends on the induced dipoles at the other sites
these equations have to be solved self-consistently. This can be done analytically by re-
writing the equations into a 3N ×3N linear matrix equation, with N the number of atoms,
as31,90

Aµind(ω) = F init(ω) (9.12)

and the components of the matrix, Ast,αβ, given by

Ast,αβ = (α−1
s,αβδst − T (2)

st,αβ), (9.13)

This matrix equation can then be solved for the induced dipoles using standard mathem-
atical tools for solving linear equations. The inverse of the matrix A, the so called relay
matrix B, is a generalized polarizability matrix which describes the total linear response
of the discrete solvent molecules.

It is well known that if the distance between two polarizable points becomes to small
the induced dipoles will grow towards infinity. In order to avoid this “polarizability cata-
strophe” Thole93 modified the dipole interaction tensor using smeared-out dipoles. The
screened dipole interaction tensor can be written as

T (2)
pq,αβ =

3fT
pqRpq,αRpq,β

R5
pq

− fE
pqδαβ
R3

pq

. (9.14)

where the damping functions fT
pq and fE

pq have been introduced. If we consider an expo-
nential decaying charge distribution the screening functions in Eq. 9.14 are given by163

fE
pg = 1 −

[
1 + spq +

1

2
s2

pq

]
exp(−spq) and fT

pg = fE
pg −

1

6
s3

pq exp(−spq), (9.15)

where the term spq is give by spq = aRpq/(αpαq)1/6, with a the screening length, and αp

the atomic polarizability of atom p.
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9.3.3 The Time-dependent Kohn-Sham equation
If one is interested in time-dependent properties within DFT one has to resort to the
time-dependent Kohn-Sham equations,37–41

i
∂

∂t
φi(r, t) =

[
−1

2
∇2 + υeff(r, t)

]
φi(r, t), (9.16)

with the effective potential given by

υeff(r, t) =

∫
dr′

ρ(r′, t)

|r − r′| + υper(t) + υDRF (r, t) + υxc(r, t), (9.17)

where υDRF (r, t) is the operator defined in Eq. 9.2 and υper(t) is the perturbing field turned
on slowly in the distant past. The last term is the time-dependent xc-potential, given by
the functional derivative of the xc-action, which in the adiabatic approximation is given
by

υxc[ρ](r, t) ≈ δExc[ρt]

δρt(r)
= υxc[ρt](r). (9.18)

The time-dependent electronic density is given by

ρ(r, t) =
occ∑
i

ni|φi(r, t)|2, (9.19)

where ni is the occupation number of orbital i.

9.3.4 Linear response of the density matrix
Since we are interested in linear response properties we look at the first-order change in
the density to a time-dependent perturbation

δρ(r,ω) =
∑
s,t

Pst(ω)φs(r)φ
∗
t (r) =

∑
i,a

Pia(ω)φi(r)φ
∗
a(r) + Pai(ω)φa(r)φ

∗
i (r), (9.20)

where P is the first-order density matrix and a, b indicates virtual orbitals , i, j occupied
orbitals and s, t indicates general orbitals. By expanding the KS-equations to first-order
in the perturbing potential we find that the first-order density matrix is given by

Pst(ω) =
∆nst

(εs − εt) − ω
δυeff

st (ω), (9.21)

where ∆nst is the difference in occupation numbers, i.e. 1 for st = ai and -1 for st = ia.
The change in the effective potential, δυeff

st , is dependent on the first order change in the
density and is given by

δυeff
st (ω) = δυper

st (ω) + δυscf
st (ω) (9.22)

= δυper
st (ω) +

∫
drφ∗

s(r)

[∫
dr′

δρ(r′,ω)

|r − r′| + υxc[δρ](r,ω) + υDRF [δρ](r,ω)

]
φt(r),
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where the self-consistent field, δυscf , denotes terms which depend on the first-order change
in the density. The contribution from the DRF operator is given by

υDRF [δρ](ri,ω) = −
∑

s

µind
s,α [δρ](ω)T (1)

si,α

= −
∑

s

∑
t

Bst,αβF
qm.el
s,β [δρ](ω)T (1)

si,α

= −
∑

s

∑
t

Bst,αβ

∫
δρ(rj ,ω)T (1)

js,βdrjT
(1)
si,α, (9.23)

where B is the relay matrix. The DRF contribution arises from the induces dipoles in the
MM part due to the first-order change in the QM charge distribution. Inserting the first
order change in the density, Eq. 9.20, into Eq. 9.22 allows for the change in the effective
potential to be written as

δυeff
st (ω) = δυper

st (ω) +
∑
uv

Kst,uvPuv(ω), (9.24)

where the coupling matrix, K, has been introduced. The coupling matrix will be described
in more detail later. Inserting Eq. 9.24 into Eq. 9.21 the first-order density matrix can be
written as

Pst(ω) =
∆nst

(εs − εt) − ω
[δυper

st (ω) +
∑
uv

Kst,uvPuv(ω)]. (9.25)

This can be written as a set of coupled linear equations for the first-order density matrix
elements using the fact that only elements relating occupied and virtual orbitals are nonzero∑

jb

[δijδab(εa − εi + ω) + Kia,jb]Pjb +
∑
jb

Kia,bjPbj = −(δυper
ia ), (9.26)∑

jb

[δijδab(εa − εi − ω) + Kai,bj ]Pbj +
∑
jb

Kai,jbPjb = −(δυper
ai ) (9.27)

These equation can be written as one matrix equation using the more common notation
Xjb = Pjb and Yjb = Pbj as[(

A C
C∗ A∗

)
− ω

( −1 0
0 1

)](
X
Y

)
= −

(
δυper

δυper∗

)
, (9.28)

where the individually matrix elements are defined as

Aia,jb = δabδij(εa − εi) + Kia,jb (9.29)

and
Cia,jb = Kia,bj . (9.30)

In TD-DFT the equality Kia.jb = Kia,bj which allows for that the equations can be reduced
to half the size which is not the case in TD-HF where this equality is not valid. From
the solution of the linear equations in Eq. 9.28 we have access to the frequency-dependent
polarizability or by transforming the left hand side into an eigenvalue equation we can
obtain the excitation energies and oscillator strengths.
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9.3.5 The coupling matrix
The coupling matrix describes the linear response of the self-consistent field to changes in
the density and consist of three terms.

Kst,uv =
∂υscf

st

∂Puv

= KCoul
st,uv + Kxc

st,uv + KDRF
st,uv . (9.31)

The first term is the Coulomb part given by

KCoul
st,uv =

∫ ∫
dridrjφ

∗
s(ri)φt(ri)

1

|ri − rj|φu(rj)φ
∗
v(rj), (9.32)

the second term is the xc part

Kxc
st,uv =

∫ ∫
dridrjφ

∗
s(ri)φt(ri)

δυxc(ri,ω)

δρ(rj ,ω)
φu(rj)φ

∗
v(rj) (9.33)

and the last term is the DRF part

KDRF
st,uv =

∫
driφ

∗
s(ri)φt(ri)

∂υDRF (ri,ω)

∂Puv

= −
∫

driφ
∗
s(ri)φt(ri)

∑
s

∑
t

Bst,αβT
(1)
js,βT

(1)
si,α

∂δρ(rj ,ω)

∂Puv

= −
∫ ∫

dridrjφ
∗
s(ri)φt(ri)

∑
s

∑
t

Bst,αβT
(1)
js,βT

(1)
si,αφ

∗
u(rj)φv(rj). (9.34)

9.3.6 Implementation
The DRF model has been implemented into a local version of the Amsterdam Density
Functional (ADF) program package.340,361 The extension to the TD-DFT part has been
implemented into the RESPONSE module of ADF.57,130, 289 In the RESPONSE module
the functional derivative of the xc-potential in Eq. 9.33 is restricted to the Adiabatic LDA
(ALDA) xc-potential. The coupling matrix in Eq. 9.28 becomes very big for large systems
and for this reason this matrix is not contructed but the linear equations in Eq. 9.28 are
solved iteratively, for details see Ref.130 This means that the DRF response operator,
Eq. 9.23, is never calculated by constructing the relay matrix, B, but the induced dipole
moments due to the first-order change in the charge distribution are calculated by solving
a set of linear equations like in Eq. 9.12.

In ADF the KS equations and the linear response equations are solved by numerical
integration which means that the DRF operator has to be evaluated in each integration
point. Since the numerical integration grid is chosen on the basis of the quantum part
alone care must be taken when evaluating the DRF operator if the integration points are
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close to a classical atom. In order to avoid numerical instabilities we introduce a damping
of the operator at small distances which is modeled by modifying the distance Rij to obtain
a scaled distance Sij [Ref. 63, Chap. 3],

Sij = vijRij = f(Rij) , (9.35)

where vij is a scaling factor and f(Rij) an appropriately chosen function of Rij . Further-
more, each component of Rij is also scaled by vij , so the reduced distance becomes,

Sij =
√

Sij,αSij,α = vij

√
Rij,αRij,α = vijRij , (9.36)

consistent with the definition in Eq. 9.35. The damped operator can thus be obtained by
modifying the interaction tensors in Eqs. 9.3, 9.5 and 9.23,

T (n)
ij,α1...αn

= ∇α1 . . .∇αn

(
1

Sij

)
, (9.37)

which is equivalent to replacing Rij by Sij and Rij,α by Sij,α in the regular formulae
for the interaction tensors. The particular form of the scaling function employed here
is [Ref. 63, Chap. 3]

f(rpq) =
rpq

erf(rpq)
, (9.38)

which was obtained by considering the interaction between two Gaussian charge distribu-
tions with unity exponents.

9.4 Computational details
In this work we use a large even-tempered basis set of Slater-type orbitals with orbital
exponent ζ = αβi, i = 1, · · ·n, the details of the basis set is presented in Tabel 9.1. We
tested different xc potentials, the Local Density Approximation (LDA), Becke-Lee-Yang-
Parr (BLYP),138,139 the Becke-Perdew (BP),138,341 the van Leeuwen-Baerends (LB94),141

the statistical averaging of (model) orbital potentials (SAOP),45,362, 363 and the gradient-
regulated asymptotic connection procedure applied to the BP potentials (BP-GRAC).47,48

The BLYP and BP are examples of typical Generalized Gradient Approximations (GGAs)
potentials and the LB94 is an example of a so-called asymptotic correct potential due to
the correct Coulombic decay of the potential at large distances. Whereas SAOP and BP-
GRAC belong to a class of shape-corrected potentials which yield the correct asymptotic
behavior. The BP-GRAC potential sets the HOMO level at the first ionization potential
(IP) and therefore requires the IP as input. The SAOP xc-potential requires no additional
input and the energy of the HOMO corresponds well with the IP.48,364 For this reason
the IP needed as input for the BP-GRAC xc-potential is taken from the SAOP gas-phase
calculation, i.e IP = 0.45 a.u.

The parameters needed for the solvent molecules, i.e. point charges and atomic polar-
izabilities ,where adopted from [Ref. 117, Chap. 8]. The point charges are qH = 0.3345 a.u.
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Atom 1s 2p 3d 4f
H(4s3p3d) 0.282564 0.451156 0.407083
O(8s6p3d4f 0.181199 0.238632 0.530772 0.359191

Table 9.1: Even-tempered basis set for the H, O atoms (in parentheses the number n of
1s, 2p, 3d, 4f) with the orbital exponent ζ = αβi, i = 1, · · ·n, β = 1.7. The value of α for
the most difffuse 1s, 2p, 3d, and 4f is presented.

and qO = −0.6690 a.u. which generate a molecular dipole moment of 1.88 Debye. The
atomic polarizabilities are αH = 0.0690 a.u. and αO = 9.3005 a.u. which reproduced the
molecular polarizability tensor with a mean polarizability of 9.62 a.u. and a polarizability
anisotropy of 0.52 a.u. The screening parameter, a = 2.1304, used in Eq. 9.15, was taken
from Ref. 163.

The water structure we used in this work was taken from Ref. 338 and consists of 128
rigid water molecule where one molecule, the solute, is treated quantum mechanically. The
total structure was obtained from a MD simulation using a polarizable force field327 and
the details about the simulation can be found in Ref. 122,342 but are summarized here for
consistency. The average geometry is obtained from a simulation of a box containing 128
water molecules utilizing periodic boundary conditions with a spherical cut-off distance
of 10.0 Å, temperature, 298 K, and a pressure of 0.103 MPa. After equilibration of the
sample, the average geometry was obtained from a Boltzmann sampling of 8000 trajectories
started from different initial velocity distributions and a simulations time of 20 ps for each
trajectory. The intra-molecular geometry of the water molecules was that in gas phase,
i.e. RO−H = 0.9572 Å and ∠HOH = 104.49◦. The solute water molecule was placed
in the xz-plane with the z-axis bisecting the H-O-H angle. Results obtained using this
structure will be referred to as ”liquid” phase results. We will perform one QM/MM
calculation and therefore the molecular properties will not be averaged over different solvent
configurations. However, the choice of this particular water structure allows for a direct
comparison with results obtained from a similar model within a (Multiconfigurational) Self-
Consistent-Field/Molecular Mechanics(MC-SCF/MM)342 or a Coupled Cluster/Molecular
Mechanics (CC/MM)122 approach. Therefore, it is possible to make a detailed comparison
between wave function methods and the DFT method for liquid phase calculations.

9.5 Results
9.5.1 Excitation energies
In Table 9.2 we present excitation energies, ω, and oscillator strengths, f , for the three
lowest vertical singlet-singlet excitations of a water molecule in the gas phase calculated
using different xc-potentials. The results are compared with results obtained from wave-
function methods , i.e. HF,342 MC-SCF,342 CCSD,122 and experimental results taken from
Ref. 365. From the results in Tabel 9.2 it is noted that LDA and the GGA potentials
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(BP and BLYP) underestimate the excitation energies considerably compared with the
experimental results, i.e. for the first excitation ∼1 eV, the second excitation ∼1.5 eV and
for the third excitation as much as ∼2 eV. The failure of these common xc-potentials to
predict excitation energies for Rydberg-like states (for water the lowest excitations has a
high degree of Rydberg character) has been identified as a result of the wrong asymptotic
behavior of the xc-potentials.43,44 This is clearly illustrated by using the xc-functionals
(LB94, SAOP, and BP-GRAC) with correct asymptotic behavior, for which the excita-
tions energies are greatly improved compared with the experimental results. Especially
the results obtained with the BP-GRAC xc-potentials are in good agreement with the ex-
perimental results. Comparing with the wavefunction results we see that HF overestimates
the excitation energies compared with the experiments but the MC-SCF and CCSD results
are in good agreement with experiment and also with the calculations performed with the
asymptotic correct xc-potentials.

1A1 → 11B1
1A1 → 11A2

1A1 → 21A1

Method ω f ω f ω f .
LDA 6.47 0.04 7.55 - 7.76 0.00006
BLYP 6.24 0.04 7.33 - 7.53 0.0002
BP 6.57 0.04 7.50 - 7.67 0.00006
LB94 7.89 0.04 9.68 - 9.91 0.09
SAOP 7.72 0.05 9.53 - 9.68 0.09
GRAC 7.33 0.05 9.15 - 9.48 0.09
HF a 8.65 - 10.3 - - -
MC-SCFa 7.85 - 9.56 - -
CCSD b 7.62 0.05 9.38 - 9.88 0.06
Exp. c 7.4 - 9.1 - 9.7 -

aResults from Ref. 342 using the aug-cc-pVQZ basis set.
bResults from Ref. 122using the d-aug-cc-pVTZ basis set
cResults taken from Ref. 365

Table 9.2: Excitation energies (ω) and oscillator strengths (f) of a water molecule in
vacuum. ω in eV and f in a.u.

The excitation energies and oscillator strengths for a water molecule in a cluster of
127 classical water molecules calculated using the different xc-functional are presented in
Table 9.3. The results are compared with results for the same water cluster obtained using
the HF/MM,342 MC-SCF/MM342 and CCSD/MM122 method. Also presented in Table 9.3

is the solvation shift, ∆ω, i.e the shift in the excitation energies in going from the gas-phase
to the ”liquid” phase. Comparing results using LDA with the GGA’s (BLYP and BP) res-
ults we find good agreement for excitation energies, oscillator strengths and solvation shifts
which was also observed for the gas-phase results. Furthermore, comparing the results us-
ing the asymptotic correct xc-potentials we also find a good agreement between the results,
especially those obtained using SAOP and BP-GRAC. Comparing the LDA/GGA results
with the results from the asymptotic correct xc-potentials we find that the agreement is less
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good than in the gas-phase. For the first two excitations the excitation energy is underes-
timated considerably and more than in the gas-phase leading to a too small solvation shift.
For the third excitation the excitation energy is still underestimated but the solvation shift
is overestimated. Using LDA/GGA this excitation was actual identified lying above other
excitations which was not the case for the asymptotic correct xc-potentials. This excitation
has a strong Rydberg character and is therefore very sensitive to the asymptotic part of
the xc-potential. Comparing the results from the asymptotic correct xc-potentials with the
wavefunction results we find that the excitation energies obtained with HF/MM are smaller
but there is a good agreement with both the MC-SCF/MM and the CCSD/MM results.
If we look at the solvent shift for the three excitations we see that both the wavefunction
methods and DFT (except using LDA/GGA) predicts that the excitations are shifted by
approximately the same amount, i.e. that the three excitation energies are perturbed by
the solvent in the same manner. Also, if we look at the oscillator strengths for the three
excitations the first and third excitation are stronger than the second excitation. In the
gas phase the second excitation is dipole forbidden. Also, comparing the second and third
excitation energy we find, both in the gas phase and in the ”liquid” phase, that DFT
predicts a smaller difference compared with CCSD.

1A1 → 11B1
1A1 → 11A2

1A1 → 21A1

Method ω ∆ω f ω ∆ω f ω ∆ω f .
LDA/DRF 6.75 0.28 0.051 7.72 0.17 0.008 8.93 1.17 0.060
BLYP/DRF 6.49 0.25 0.055 7.48 0.15 0.009 8.71 1.18 0.063
BP/DRF 6.80 0.23 0.045 7.64 0.14 0.008 9.03 1.36 0.050
LB94/DRF 8.57 0.68 0.070 10.56 0.88 0.001 10.62 0.71 0.116
SAOP/DRF 8.25 0.53 0.075 10.18 0.65 0.003 10.27 0.59 0.112
GRAC/DRF 8.09 0.76 0.084 10.12 0.97 0.003 10.31 0.83 0.118
HF /MM a 9.49 0.84 - 11.3 1.0 - - -
MC-SCF/MMa 8.62 0.77 - 10.5 0.9 - - -
CCSD/MM b 8.18 0.56 0.079 9.97 0.60 0.006 10.56 0.68 0.113

aResults from Ref. 342 using the aug-cc-pVQZ basis set.
bResults from Ref. 122using the d-aug-cc-pVTZ basis set

Table 9.3: Excitation energies (ω), solvation shift (∆ω), and oscillator strengths (f) for
a water molecule in a cluster of 127 classical water molecules. ω and ∆ω in eV and f in
a.u.

In the experimental absorption spectrum of liquid water two absorption peaks are
found.366,367 The first peak has a maximum ∼ 8.2 eV (∆ω ∼ 0.8 eV) and the second
peak ∼ 9.9 eV (∆ω ∼ 0.2 eV). The shifts of the excitation found in ice is even larger. i.e.
the first maximum ∼ 8.5 eV (∆ω ∼ 1.1 eV) and a broad shoulder ∼10.4 eV (∆ω ∼ 0.7
eV).367,368 The first peak is assigned to the 1A1 → 11B1 (first) excitation and the second
peak to 1A1 → 21A1 (third) excitation. Comparing the liquid results with the calculated
results we find a good agreement for the first excitation both for the excitation energy
and for the solvent shift, especially using BP-GRAC. For the third excitation the solvent
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shift is found experimentally to be much smaller than the calculated shift. As indicated,
experimentally the shifts in the two excitations depend on whether the condense phase
is liquid water or ice. This indicates that the solvent shift for the two excitations could
behave differently with respect to the local environment of the solvent. Therefore, it could
be important to include a more appropriate sampling of the local structure of the solvent,
i.e. using a larger number of solvent configurations than the average structure used in this
work. This will also provide line broadening of the excitations due to the fluctuations in the
local environment of the solvent. However, it should be mentioned that also other effects
can account for the difference, e.g. in this approach we neglect the short-range repulsion
between water molecules. Also, the solvent effects are introduced as a mean field theory,
i.e the solvent feels the mean field from the QM electrons (see e.g. Ref 106,369, 370).

9.5.2 Frequency-dependent polarizability
In Table 9.4 we present the static and frequency-dependent polarizability for a single water
molecule at frequencies ω = 0.0428, 0.0570, 0.0856 a.u.(λ = 1064, 800, 532 nm, respectively)
calculated using different xc-potentials. The results are compared with HF,343 MC-SCF,342

CCSD122,371 and experimental results.372 Also, presented is the mean polarizability, α,
defined as

α =
1

3
(αxx + αyy + αzz), (9.39)

and the polarizability anisotopy, ∆α, as

∆α =

√
1

2
[(αxx − αyy)2 + (αxx − αzz)2 + (αyy − αzz)2]. (9.40)

From the results in Table 9.4 we see that the LDA/GGA results are larger than the
results obtained with the asymptotic correct xc-potentials. Also, the size of the individual
components of the polarizability tensor are nearly identical with LDA/GGA resulting in
an anisotropy which is much smaller than that obtained with the asymptotic correct xc-
potentials. The frequency dispersion is also found to be larger with LDA/GGA for the com-
ponents and mean polarizability. However, for the frequency dispersion of the anisotropy
we find the LDA/GGA predicts an increase in the anisotropy with increasing frequency
whereas the asymptotic corrects xc-potentials predicts a decrease. Comparing the results
from the three asymptotic correct xc-potentials we find that BP-GRAC predicts the largest
components and mean polarizability but the smallest anisotropy. LB94 predicts the largest
anisotropy of the functionals due to a small yy component. Comparing with the wavefunc-
tion results we find that SAOP is in good agreement with MC-SCF and CCSD. The static
CCSD results using the d-aug-cc-pVTZ basis set371 are in very good agreement with the
CCSD(T) result.343 Comparing with the static CCSD/d-aug-cc-pVTZ results we see that
SAOP gives a slightly lower mean polarizability but a larger anisotropy due to a to small
yy component. The HF results for the components and anisotropy are the smallest whereas
the anisotropy is among the largest. LB94 gives an improved result compared with HF
but the yy component is still underestimated compared with CCSD/d-aug-cc-pVTZ and
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ω LDA BLYP BP LB94 SAOP GRAC HF a MC-SCF b CCSD c EXP. d

αxx 0.0000 10.59 10.87 10.35 9.89 9.88 10.12 9.18 9.74 9.94 (9.98) -
0.0428 10.65 10.93 10.41 9.94 9.93 10.17 - 9.79 9.99 -
0.0570 10.70 10.98 10.45 9.978 9.97 10.21 - 9.82 10.03 -
0.0856 10.84 11.13 10.59 10.08 10.08 10.33 - 9.92 10.13 10.31

αyy 0.0000 10.65 11.06 10.30 8.57 8.92 9.68 7.90 9.15 9.05 (9.35) -
0.0428 10.78 11.21 10.42 8.63 8.99 9.77 - 9.21 9.13 -
0.0570 10.88 11.33 10.52 8.68 9.05 9.84 - 9.28 9.19 -
0.0856 11.21 11.72 10.82 8.84 9.23 10.07 - 9.45 9.37 9.55

αzz 0.0000 10.60 10.88 10.28 9.30 9.52 9.91 8.52 9.36 9.40 (9.61) -
0.0428 10.68 10.97 10.36 9.36 9.58 9.98 - 9.41 9.45 -
0.0570 10.75 11.05 10.42 9.40 9.63 10.03 - 9.46 9.50 -
0.0856 10.95 11.27 10.61 9.53 9.76 10.19 - 9.58 9.63 9.91

α 0.0000 10.61 10.94 10.31 9.25 9.44 9.90 8.53 9.42 9.47 (9.65) 9.83 e

0.0428 10.70 11.04 10.40 9.31 9.50 9.97 - 9.47 9.52 -
0.0570 10.78 11.12 10.46 9.35 9.55 10.03 - 9.52 9.57 -
0.0856 11.00 11.37 10.67 9.48 9.69 10.20 - 9.65 9.71 9.92

∆α 0.0000 0.05 0.19 0.06 1.14 0.84 0.38 1.11 0.43 0.78 (0.54) -
0.0428 0.11 0.26 0.06 1.13 0.82 0.34 - 0.41 0.76 -
0.0570 0.16 0.33 0.08 1.12 0.80 0.32 - 0.39 0.74 -
0.0856 0.33 0.53 0.22 1.08 0.75 0.22 - 0.34 0.67 0.67

aResults taken from Ref. 343
bResults taken from Ref. 342 using the aug-cc-pVQC
cResults taken from Ref. 122 using the aug-cc-pVTZ basis set. In parenthesis results taken from Ref. 371

using the d-aug-cc-pVTZ basis set.
dResults from Ref 372 at ω = 0.088 a.u. (λ = 514.5 nm).
eResults taken from Ref. 126

Table 9.4: Frequency-dependent polarizability of a water molecule in vacuum. Frequency
(ω) and polarizability in a.u.

therefore gives a too low mean polarizability and a too high anisotropy. Comparing with
the experimental results we see that the BP-GRAC results predict larger values whereas all
other results are lower than the experimental results. Since the experimental results also
contain a contribution from zero-point vibrations, see Ref. 126 for an estimate of this con-
tribution, a smaller theoretical value is expected. The frequency-dependent polarizablility
for a single water molecule in a cluster of 127 classical water molecules calculated using
different xc-potentials are presented in Tabel 9.5. The results are calculated for the same
frequencies as in the gas-phase and are compared with results for the same water cluster
obtained with the MC-SCF/MM342 and CCSD/MM122 method. It should be mentioned
that for the results in the cluster the off-diagonal components of the polarizability tensor
are different from zero. These components are not presented since they will tend to zero if
a careful averaging over different solvent configurations representing the isotropic liquid is
performed. Since there is a good correlation between the magnitude of the polarizability in
the gas phase and in the liquid, i.e. LDA/GGA predict the largest values and MC-SCF the
smallest, we will focus on trends for the shifts in the polarizability in going from gas-phase
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ω LDA BLYP BP LB94 SAOP GRAC MC-SCF a CCSD b

αxx 0.0000 10.51 10.79 10.25 9.79 9.80 9.91 9.54 9.66 (9.77)
0.0428 10.57 10.85 10.31 9.84 9.84 9.96 9.58 9.70 (9.82)
0.0570 10.61 10.90 10.35 9.88 9.88 10.00 9.62 9.74 (9.85)
0.0856 10.75 11.05 10.48 9.98 9.99 10.11 9.71 9.83 (9.96)

αyy 0.0000 11.55 12.09 11.21 9.14 9.55 10.27 9.72 9.62 (10.01)
0.0428 11.69 12.26 11.35 9.21 9.63 10.36 9.80 9.70 (10.10)
0.0570 11.81 12.40 11.46 9.27 9.69 10.44 9.86 9.76 (10.17)
0.0856 12.17 12.83 11.79 9.43 9.89 10.67 10.0 9.96 (10.39)

αzz 0.0000 10.93 11.28 10.64 9.63 9.85 10.15 9.82 9.82 (10.13)
0.0428 11.02 11.37 10.72 9.69 9.91 10.21 9.88 9.88 (10.19)
0.0570 11.08 11.45 10.78 9.73 9.96 10.26 9.92 9.92 (10.24)
0.0856 11.28 11.66 10.96 9.86 10.10 10.41 10.0 10.05 (10.38)

α 0.0000 11.00 11.39 10.70 9.52 9.73 10.11 9.70 9.70 (9.97)
0.0428 11.09 11.50 10.79 9.58 9.79 10.18 9.75 9.76 (10.04)
0.0570 11.17 11.58 10.86 9.62 9.84 10.23 9.80 9.91 (10.09)
0.0856 11.40 11.85 11.08 9.75 9.99 10.40 9.93 9.95 (10.24)

∆α 0.0000 0.90 1.14 0.84 0.59 0.28 0.31 0.25 0.18 (0.32)
0.0428 0.98 1.24 0.91 0.57 0.26 0.35 0.27 0.18 (0.33)
0.0570 1.04 1.32 0.97 0.55 0.24 0.39 0.27 0.17 (0.36)
0.0856 1.25 1.57 1.15 0.50 0.19 0.49 0.29 0.19 (0.43)

aResults from Ref. 342 using the aug-cc-pVQC basis set.
bResults from Ref. 122 using the aug-cc-pVTZ basis set. In parenthesis results using the d-aug-cc-pVTZ

basis set.

Table 9.5: Frequency-dependent polarizability of a water molecule in a cluster of 127
classical water molecules. Frequency (ω) and polarizability in a.u.

to the cluster. All methods predict a decrease in the yy component and a increase in the
xx and zz components leading to an overall increase in the mean polarizability. However,
the LDA/GGA methods predicts an increase in the anisotropy in contrast to the other
methods. The reason for this is that LDA/GGA predict a shift of ∼ 0.9 a.u. in the yy
components whereas the rest of the methods predicts a shift ∼ 0.6 a.u. The shift in the zz
component predicted with CCSD/d-aug-cc-pVTZ and MC-SCF is ∼ 0.5 a.u. whereas the
DFT methods predicts a shift ∼ 0.3 a.u. If we compare the frequency dispersion in the
anisotropy predicted with CCSD or MC-SCF we see an increase with increasing frequency,
this is also found using BP-GRAC whereas LB94 and SAOP predicts a decrease.

The polarizability of liquid water has also been considered in a few other
studies.279,356, 373, 374 [Ref. 97, Chap. 5] In general the models279,374 [Ref. 97, Chap. 5] which
calculate the molecular polarizability by averaging over the polarizability obtained from
different solvent configuration predict a lowering of the mean polarizability in going from
the gas-phase to the liquid phase. The models356,373 which, like in this work, first average
the structure (or the electric field generated by the solvent) and then calculate the molecu-
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9 A DRF model for molecular linear response properties in solution

lar polarizability, predict an increase in the mean polarizability in good agreement with
the results of this work. This indicates that it is important to take the local fluctuation of
the solvent structure into account when calculating the molecular properties.

An estimate of the frequency-dependent polarizability can be obtained from the re-
fractive index, n(ω), by using the Lorenz-Lorentz equation31

α(−ω;ω) =
3Mw

4πNaρ

n(ω)2 − 1

n(ω)2 + 2
(9.41)

where Mw is the molecular weight, Na Avogadro’s number and ρ the density. Using
the refractive index of liquid water at ω = 0.0428 a.u., n(0.0428) = 1.326,375 and ρ =
0.99707g/cm3 we obtain a polarizaibity of α = 9.74 a.u. This estimate is in very good
agreement with the SAOP and MC-SCF results but in less good agreement with the
CCSD or BP-GRAC results. If we instead use the refractive index at ω = 0.077 a.u.
(λ = 589.32nm), n = 1.33283376 we obtain a polarizability of α = 9.93 a.u again in good
agreement with the SAOP and MC-SCF results at ω = 0.0856 a.u. If we compare the
liquid results at ω = 0.0428 a.u. with the static results obtained in the gas phase we find
a small decrease in the mean polarizability in going from the gas phase to the liquid phase
even if we take the frequency dispersion into account.

9.6 Conclusions
We have in this work presented a Discrete Solvent Reaction Field model for calculating
frequency-dependent molecular linear response properties of molecules in solution. The
model combines a TD-DFT description of the solute molecule with a classical description
of the discrete solvent molecules. The classical solvent molecules are represented using
distributed atomic charges and atomic polarizabilities. All the atomic parameters have
been chosen so as to describe molecular gas phase properties of the solvent molecule,
i.e. atomic charges reproduce the molecular dipole moment and atomic polarizabilities
resproduce the molecular polarizability tensor using Thole’s modified dipole interaction
model. As an initial applications of the model we have calculated the vertical electronic
excitation energies and frequency-dependent molecular (hyper)polarizability of a water
molecule in a cluster of 127 classical water molecules. The effect of using different xc-
potentials has been investigated and the results have been compared with the corresponding
wavefunction results obtained using combined HF, MC-SCF or CCSD method with a
similar solvent model. It was shown that accurate results in agreement with the CCSD and
MC-SCF results could be obtained by using xc-potentials which have the correct asymptotic
behavior. The use of the shape-corrected functionals like SAOP and BP-GRAC improved
the results compared with the asymptotic correct LB94. However, the use of BP-GRAC
requires the IP as input and the results are strongly dependent on the input value which
therefore limits the usefulness of this functional.
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Chapter 10
A DRF model for the hyperpolarizabilities of
molecules in solution

L. Jensen, P. Th. van Duijnen, and J. G. Snijders ”A discrete solvent reaction field
model for calculating frequency-dependent hyperpolarizabilities of molecules in solution”
J. Chem. Phys. 119, 12998-13006, 2003.

10.1 Abstract
We present a Discrete Solvent Reaction Field (DRF) model for the calculation of frequency-
dependent hyperpolarizabilities of molecules in solution. In this model the solute is de-
scribed using Density Functional Theory (DFT) and the discrete solvent molecules are
described with a classical polarizable model. The first hyperpolarizability is obtained in
an efficient way using Time-Dependent DFT and the (2n+1) rule. The method was tested
for liquid water using a model in which a water molecule is embedded in a cluster of 127
classical water molecules. The frequency-dependent first and second hyperpolarizabilities
related to the Electric Field Induced Second Hamonic Generation (EFISH) experiment,
were calculated both in the gas phase and in the liquid phase. For water in the gas phase,
results are obtained in good agreement with correlated wavefunction methods and exper-
iments by using the so-called shape-corrected exchange correlation (xc)-potentials. In the
liquid phase the effect of using asymptotically correct functionals is discussed. The model
reproduced the experimentally observed sign change in the first hyperpolarizability when
going from the gas phase to the liquid phase. Furthermore, it is shown that the first hy-
perpolarizability is more sensitive to damping of the solvent-solute interactions at short
range than the second hyperpolarizability.
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10.2 Introduction
Accurate predictions of molecular response properties, like the frequency-dependent (hy-
per)polarizability, in the condensed phase and in the gas phase are of great interest both
from a theoretical and a technological point of view.8,12, 13 However, accurate calculations
of molecular properties require a quantum mechanical treatment, which, due to high com-
putational cost, are limited to small systems. Time-Dependent Density Functional Theory
(TD-DFT)37–41 allows for the calculation of frequency-dependent response properties like
electronic excitations and frequency-dependent (hyper)polarizabilities. The use of TD-
DFT for calculating molecular response properties in the gas-phase has been shown to be
accurate for small and medium size molecules, especially if one uses recently developed
density functionals.42–51 Therefore, the extension of TD-DFT to treat also molecules in
solution is of great interest.

The calculation of response properties of molecules in condensed phase is a fundamental
and important theoretical challenge, which still remains problematic. Since the molecular
properties like (hyper)polarizabilities are sensitive to the local environment, an accurate
calculation of these properties could serve as a test for the molecular models used in
describing intermolecular forces. The most successful methods divide the total system
into two parts, one the molecular system of interest which is described with a quantum
mechanical method and two the rest of the system which is treated by a much simpler
method, usually a classical description.102–116 Among these methods are the combined
quantum mechanical and classical mechanics models (QM/MM).105–116 In the QM/MM
methods the solvent molecules are treated with a classical force field and the interactions
between the solute and solvent are described with an effective operator, so the problem
that remains is to find an accurate approximate representation of the solvent molecules
and the solute-solvent interactions.248

An example of such a QM/MM method is the Discrete Solvent Reaction Field model
(DRF) which we recently developed. [Ref. 117, 118, Chaps. 8, 9] Although in this model
the QM part is treated using Density Functional Theory (DFT) it is not restricted to this
approach. The permanent electronic charge distribution of the solvent molecules (MM) is
modeled by point charges, while distributed atomic polarizabilities are included to model
the solvent polarization arising from many-body interactions. The permanent point charges
represent at least the permanent molecular dipole moment, and the distributed atomic
polarizabilities the full molecular polarizability tensor. The QM/MM interactions are
introduced into the Kohn-Sham equations through an effective operator and all interactions
are solved self-consistently, which allows the solute to be polarized by the solvent. An
important feature of the model is the inclusion of polarizabilities in the MM part which
allows for the solvent molecules to be polarized by the solute and by interactions with other
solvent molecules. The advantages of including polarizabilities in the MM part is that all
parameters can be obtained from gas phase properties. Furthermore, it is expected that
a distributed polarizability approach will give better results than an approach in which
one models the molecular polarizability using only a single (anisotropic) polarizability per
molecule, especially as the size of the solvent molecule increases.120 Although standard
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DFT methods have problems describing van der Waals interactions, see e.g. Ref.,377 these
problems are not present here since the van der Waals interactions are treated purely
classical. The van der Waals interactions are typically treated using a Lennard-Jones (LJ)
potential where the LJ parameters are taken from the classical force field or optimized
to the particular QM/MM method.325 However, it is not certain that optimizing the
parameters on small complexes will improve the results in a QM/MM simulation324 of
a liquid. So far the DRF model has been applied to study the dipole and quadrupole
moments [Ref. 117, Chap. 8] and linear response properties like vertical excitation energies
and frequency-dependent polarizability [Ref. 118, Chap. 9] of a water molecule in aqueous
solution.

Therefore, as a natural extension, we will apply the Discrete Solvent Reaction Field
model to calculate the frequency-dependent hyperpolarizability of a molecule in solution
within TD-DFT. This allows for the discrete representation of the solvent to be retained,
and electron correlation of the QM part to be included in an efficient manner. The cal-
culation of the frequency-dependent first hyperpolarizability will be achieved efficiently by
the use of the (2n+1) rule.57 Within a QM/MM approach the treatment of frequency-
dependent hyperpolarizability has only been considered in one previous study using both
correlated and uncorrelated wave function based methods.360 As in our previous study on
dipole and quadrupole moments [Ref. 117, Chap. 8] and linear response properties [Ref. 118,
Chap. 9] of water in aqueous solution we will adopt the same water structure for which the
wave function QM/MM results exist.360 This will allow us to asses approximate exchange-
correlation (xc) potentials for calculating molecular frequency-dependent hyperpolarizab-
ilities in solution.

10.3 Theory
10.3.1 The Discrete Reaction Field model
In the QM/MM method the total (effective) Hamiltonian for the system is written as105–116

Ĥ = ĤQM + ĤQM/MM + ĤMM (10.1)

where ĤQM is the quantum mechanical Hamiltonian for the solute, ĤQM/MM describes the

interactions between solute and solvent and ĤMM describes the solvent-solvent interac-
tions. The Discrete Reaction Field model is described in [Ref. 117, Chap. 8] within ground
state DFT and in [Ref. 118, Chap. 9] within time-dependent DFT for the linear response
properties and are therefore only briefly outlined here. Within the Discrete Reaction Field
model the QM/MM operator is given by

ĤQM/MM =
∑

i

υDRF (ri,ω) =
∑

i

υel(ri) +
∑

i

υpol(ri,ω), (10.2)

where i runs over all electrons in the QM system. The first term is the electrostatic operator
describing the Coulombic interactions between the QM system and the permanent charge
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distribution of the solvent molecules and is given by

υel(ri) =
∑

s

qs

Rsi
=
∑

s

qsT
(0)
si . (10.3)

Here the zero’th order interaction tensor has been introduced and the index s runs over all
atoms of the solvent molecules. The second term is the polarization operator given by

υpol(ri,ω) =
∑

s

µind
s,α(ω)

Rsi,α

R3
si

= −
∑

s

µind
s,α(ω)T (1)

si,α. (10.4)

where Rsi,α is a component of the distance vector and µind
s (ω) is the induced dipole at site

s. For Greek indices the Einstein summation convention is employed. The polarization
operator describes the many-body polarization of the solvent molecules, i.e., the change in
the charge distribution of the solvent molecules due to interactions with the QM part and
with other solvent molecules.

For a collection of atomic polarizabilities in an electric field the induced atomic dipole
at site s is given, in linear response, by31

µind
s,α(ω) = αs,αβ[F

init
s,β (ω) +

∑
t$=s

T (2)
st,βγµ

ind
t,γ (ω)], (10.5)

where αa,αβ is a component of the atomic polarizability tensor at site s, which, for an iso-
tropic atom, gives αs,αβ = δαβαs. Here we neglect the frequency-dependence of the classical
part, i.e., the atomic polarizability is frequency independent, but the model can easily be
extended to include also this effect.94 [Ref. 63, Chap. 3] F init

s,β (ω) is the initial electric field
at site s and consists of the field arising from the frequency-dependent electronic charge
distribution of the QM part, F QM,el

t,β (ω), the field arising from the QM nuclei, F QM,nuc
t,β , and

the field arising from the point charges at the solvent molecules, F MM,q
t,β . The initial field

does not include the electric field perturbing the QM part which means that the perturbing
field can be identified as the local field felt by the QM molecule. This leads to the identi-
fication of the calculated properties as the solute properties, i.e the (hyper)polarizability of
the solute including the solvent effects but not corrected for the difference between the local
field and the macroscopic field. For a discussion of these effects and corrections within the
dielectric continuum model see e.g. Ref. 29,280,281. The last term is the electric field from
the other induced dipoles. It is well known that if the distance between two polarizable
points become too small, the induced dipoles become infinit. In order to avoid this “polar-
izability catastrophe” we modified the dipole interaction tensor using smeared-out dipoles
according to the model by Thole.93 The induced dipole in Eq. 10.5 depends on the induced
dipoles at the other sites, and therefore the equation should be solved self-consistently.
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10.3.2 The Frequency-dependent (Hyper)Polarizability
The total dipole moment of a molecule in the presence of a time-dependent electric field,
Fβ = F 0

β + F ωβ cos(ωt), can be expanded as a Taylor series in the applied electric field27

µα = µ0
α + ααβ(0; 0)F 0

β + ααβ(−ω;ω)F ωβ cos(ωt)

+
1

2
βαβγ(0; 0, 0)F 0

βF
0
γ +

1

4
βαβγ(0;ω,−ω)F ωβ F ωγ

+βαβγ(−ω; 0,ω)F 0
βF

ω
γ cos(ωt) +

1

4
βαβγ(−2ω;ω,ω)F ωβ F ωγ cos(2ωt) + · · ·(10.6)

where ααβ is the molecular polarizability and βαβγ is the molecular first hyperpolarizability
with (α, β, γ) designating Cartesian coordinates. The total dipole moment can be obtained
from the trace of the dipole moment matrix, Hα, and the density matrix in the presence
of the electric field, P (F ),

µα = −Tr[HαP (F )]. (10.7)

We can expand the density matrix in a Taylor series,

P = P 0 + P βFβ +
1

2!
P βγFβFγ + · · · , (10.8)

where P 0 is the unperturbed density matrix, P β the linear response and P βγ the quadratic
response. Inserting this expansion into Eq. 10.7 and comparing with Eq. 10.6 allows us
to identify the dipole moment, the frequency-dependent polarizability, and the frequency-
dependent first hyperpolarizabillity as

µα = −Tr[HαP 0] (10.9)

ααβ(−ω;ω) = −Tr[HαP β(ω)], (10.10)

βαβγ(−ωσ;ωa,ωb) = −Tr[HαP βγ(ωa,ωb)], (10.11)

where ωσ = ωa+ωb. In the following we will present how to obtain the linear and quadratic
response properties using the (2n+1) rule.

10.3.3 Linear response of the density matrix
In our previous work [Ref. 118, Chap. 9] we showed, using time-dependent response the-
ory,37–41 how to obtain the first-order change in the density matrix, P β(ω), from a set of
linear equations,

Pst(ω) =
∆nst

(εs − εt) − ω
δυeff

st (ω), (10.12)

where ∆nst is the difference in occupation numbers, i.e. 1 for st = ai and -1 for st = ia,
where a denote virtual orbitals and i denote occupied orbitals. This equation now corrects
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a misprint in Eqs. 21 and 25 of our previous paper.118 The change in the effective potential,
δυeff

st , is dependent on the first order change in the density and is given by

δυeff
st (ω) = δυper

st (ω) (10.13)

+

∫
drφ∗

s(r)
[
υCoul[δρ](r,ω) + υxc[δρ](r,ω) + υDRF [δρ](r,ω)

]
φt(r),

where the Coulomb term is given by

υCoul[δρ](r,ω) =

∫
dr′

δρ(r′,ω)

|r − r′| , (10.14)

the xc part in the adiabatic approximation by

υxc[δρ](r,ω) =

∫
dr′

δυxc(r)

δρ(r′)
δρ(r′,ω), (10.15)

and the contribution from the DRF operator by

υDRF [δρ](ri,ω) = −
∑

s

µind
s,α [δρ](ω)T (1)

si,α. (10.16)

The DRF contribution arises from the induced dipoles in the MM part due to the first-order
change in the QM charge distribution. Since the effective potential in Eq. 10.13 depends
on the first-order density matrix through the potentials υCoul[δρ](r,ω), υxc[δρ](r,ω) and
υDRF [δρ](ri,ω) a self-consistent solution of Eq. 10.12 is required.

10.3.4 Quadratic response of the density matrix using the (2n+1) rule
In a manner similar to the linear response a set of equations for the solution of the higher
order density response can be constructed.49–51,57, 58 However, a more efficient approach
is to take advantage of the (2n+1) rule which allows for the quadratic response proper-
ties to be rewritten in terms of quantities obtained from the solution of the first order
response equations. Within TD-DFT van Gisbergen et al. have shown how this is done
for the frequency-dependent first hyperpolarizability57 in an approach similar to the TD-
HF approach of Karna and Dupuis.56 Here we will present the results obtained by van
Gisbergen57 since the inclusion of the DRF operator will not affect the structure of these
equations.

The frequency-dependent first hyperpolarizabilty can be rewritten using the (2n+1)
rule as57

βαβγ(−ωσ;ωa,ωb) = −Tr[HαP βγ(ωa,ωb)]

= p̂{(α,ωσ), (β,ωa), (γ,ωb)}Tr[nUα(−ωσ)[Gβ(ωa), U
γ(ωb)]−]

+ Tr[gxc(ωa,ωb)P
α(−ωσ)P β(ωa)P

γ(ωb)] (10.17)
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where [Gβ(ωa), Uγ(ωb)]− denotes the commutator of Gβ(ωa) and Uγ(ωb), and p̂ the sum of
all permutations of (α,−ωσ), (β,−ωa), and (γ,−ωb). The Gα(ωa) matrix is the first-order
KS matrix57 and is given by

Gαpg(ω) = (10.18)∫
drφp(r)

{
υαper + υCoul[δρα(ω)] + υxc(r)[δρ

α(ω)](r) + υDRF [δρα(ω)](r)
}
φq(r)

which is identical to the effective potential matrix, δυeff(ωa), in Eq. 10.13 due to the α-
component of the perturbation. The first-order transformation matrix, Uα(ω), is given
by

Uαpq(ω) =
Gαpg(ω)

ε(0)q − ε(0)p − ω
(10.19)

and is only nonzero for the occupied-virtual block.57 The last term in Eq. 10.17 is an
additional term in the DFT expression which is not present in the TDHF case and is given
by

Tr[gxc(ωa,ωb)P
α(−ωσ)P β(ωa)P

γ(ωb)] =∫
dr

∫
dr′

∫
dr′′gxc(r, r

′, r′′,ωa,ωb)δρ
α(r,−ωσ)δρβ(r′,ωa)δρ

γ(r′′,ωb), (10.20)

where the xc kernel, gxc, has been introduced,

gxc(r, r
′, r′′,ωa,ωb) =

δ2υxc(r)

δρ(r′,ωa)δρ(r′′,ωb)

∣∣∣∣
ρ(0)

. (10.21)

Usually the adiabatic approximation is invoked for this kernel,

gxc(r, r
′, r′′,ωa,ωb) ( gxc(r, r

′, r′′, 0, 0). (10.22)

10.3.5 Implementation
The DRF model has been implemented into a local version of the Amsterdam Density
Functional (ADF) program package.340,361 The extension to the TD-DFT part has been
implemented into the RESPONSE module of ADF.57,130, 289 In the RESPONSE module
the functional derivative of the xc-potential in Eq. 10.15 and 10.21 is restricted to the
Adiabatic LDA (ALDA) xc-potential. The linear equations for the first-order density
matrix in Eq. 10.12 is solved using an efficient iterative algorithm,130 and, for that reason,
the DRF response operator, Eq. 10.16, is calculated by solving a set of linear equations
like in Eq. 10.5. In ADF the KS equations and the linear response equations are solved
by numerical integration and the numerical integration grid is chosen on the basis of the
quantum part alone. Therefore, care must be taken when evaluating the DRF operator if
the integration points are close to a classical atom. In order to avoid numerical instabilities
we introduce a damping of the operators at small distances. This is done by replacing the
point charge by a gaussian charge distribution with a unit width and the point dipoles are
also smeared out in a similar manner [Ref. 63, 117, 118, Chaps. 3, 8, 9].
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10 A DRF model for the hyperpolarizabilities of molecules in solution

10.4 Computational details
The water structure used in this work, taken from Ref. 338, consists of 128 rigid water
molecules where one molecule is treated quantum mechanically. The total structure was
obtained from a MD simulation using a polarizable force field.327 Details about the simula-
tion can be found in Ref. 122,342 and will be summarized here for consistency. The average
geometry is obtained from a simulation of a box containing 128 water molecules utilizing
periodic boundary conditions with a spherical cut-off distance of 10.0 Å, at a temperature
of 298 K, and a pressure of 0.103 MPa. After equilibration, the average geometry was
obtained from a Boltzmann sampling of 8000 trajectories started with different initial ve-
locity distributions and a simulation time of 20 ps for each trajectory. The intra-molecular
geometry of the water molecules was that as in the gas phase, i.e. RO−H = 0.9572 Å and
∠HOH = 104.49◦. The solute water molecule was placed in the xz-plane with the z-axis
bisecting the H-O-H angle.

The basis set used in this work consists of a large even-tempered basis set of Slater-type
orbitals with orbital exponent ζ = αβi, i = 1, · · ·n (details given in [Ref. 118, Chap. 9] ).
Different xc potentials have been tested: the Local Density Approximation (LDA), Becke-
Lee-Yang-Parr (BLYP),138,139 the Becke-Perdew (BP),138,341 the van Leeuwen-Baerends
(LB94),141 the statistical averaging of (model) orbital potentials (SAOP),45,362, 363 and the
potential obtained from the gradient-regulated asymptotic connection procedure applied
to the BP potentials (BP-GRAC).47,48 The BLYP and BP are examples of typical Gen-
eralized Gradient Approximations (GGAs) potentials and the LB94 is an example of an
asymptotically correct potential. Whereas SAOP and BP-GRAC belong to a class of
shape-corrected potentials, which yield the correct asymptotic behavior. The BP-GRAC
potential sets the HOMO level at the first ionization potential (IP) and therefore requires
the IP as input. The SAOP xc-potential requires no additional input and the energy of
the HOMO corresponds well with the IP.48,364 For this reason the IP needed as input for
the BP-GRAC xc-potential is taken from the SAOP gas-phase calculation, i.e IP = 0.45
a.u.

The parameters needed for the solvent molecules, i.e. point charges and atomic polar-
izabilities, were taken from [Ref. 117, Chap. 8]. The point charges are qH = 0.3345 a.u.
and qO = −0.6690 a.u. which generate a molecular dipole moment of 1.88 Debye. The
atomic polarizabilities are αH = 0.0690 a.u. and αO = 9.3005 a.u. which reproduced the
molecular polarizability tensor with a mean polarizability of 9.62 a.u. and a polarizability
anisotropy of 0.52 a.u. The screening parameter, a = 2.1304, was taken from Ref. 163.

From the analytically calculated frequency-dependent first hyperpolarizability in
Eq. 10.17 we can obtain the second hyperpolarizability by using finite field differentiation.
We have calculated the frequency-dependent second hyperpolarizability associated with
the electric field induced second harmonic generation (EFISH) experiments by finite field
differentiation of the second harmonic generation (SHG) first hyperpolarizability as

γαβγδ(−2ω;ω,ω, 0) =
βFδ

αβγ(−2ω;ω,ω)− β0
αβγ(−2ω;ω,ω)

Fδ
(10.23)
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where the field strength Fδ = 0.001 a.u. was used. We will in this work use atomic units
(a.u.) but the conversion factor to cgs units are15 for β: 1 a.u. = 8.6392 × 10−33 esu and
for γ: 1 a.u. = 5.0367 × 10−40 esu.

10.5 Results
10.5.1 The first hyperpolarizability
In Table 10.1 we present the static and frequency-dependent first hyperpolarizability,
β(−2ω;ω,ω), at frequencies ω = 0.0428, 0.0570, 0.0856 a.u.(λ = 1064, 800, 532 nm, re-
spectively) of water in the gas phase calculated with the different xc potentials. The mean
first hyperpolarizability, β, defined as15

β =
1

5

∑
α

(βzαα + βαzα + βααz) =
3

5
(βzzz + βzyy + βzxx) (10.24)

is also presented in Table 10.1. The last equality is only valid in the static case or when
Kleinman symmetry is adopted as is done in this work. The results are compared with
results obtained from different wave function methods, i.e., HF,360 MC-SCF,360 CCSD,371

and CCSD(T) results.343

From the results in Table 10.1 it is clear that the LDA/GGA ( BLYP and BP)
functionals overestimate the first hyperpolarizability as compared to the accurate CCSD
and CCSD(T) wave function results. The asymptotically correct (AC) xc-potentials ,
LB94, SAOP and BP-GRAC, all produce numbers in good agreement with the CCSD
and CCSD(T) results. The overestimation of the first hyperpolarizability using LDA and
GGA’s (BLYP and BP) and the improvement upon this using AC potentials are well es-
tablished for small molecules.45,48, 129, 378 Comparing the HF and MC-SCF results with
the CCSD/CCSD(T) results we see that the results are underestimated, especially the HF
results are underestimated illustrating the importance of electron correlations. Further-
more, comparing the frequency-dispersion of the mean first hyperpolarizability, we see that
the increase in the hyperpolarizability, ∆βdisp, with increasing frequency is considerably
larger with LDA/GGA than with the AC potentials and the HF and MC-SCF wave func-
tion results. The AC potentials predict a larger frequency-dispersion increase than HF
and MS-SCF. From the results in Table 10.1 it is also seen that the frequency-dispersion
is significant even for the lowest frequencies. It is therefore important to take this into
account.

The static and frequency-dependent first hyperpolarizability of a water molecule in
a cluster of 127 classical water molecules are presented in Table 10.2. The frequencies
used are the same as in the gas phase and the results are compared with results for the
same water cluster obtained using the HF/MM360 and the MC-SCF/MM360 method. Also
presented is the solvation shift, ∆βsolv, i.e. the relative change in the first hyperpolariz-
ability upon solvation. Due to the symmetry of the water cluster components other than
the ones presented in Table 10.2 are also nonzero but these components have not been
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10 A DRF model for the hyperpolarizabilities of molecules in solution

LDA BLYP BP LB94 SAOP GRAC HFa MC-SCFa CCSDb CCSD(T)c

βzzz -19.70 -20.65 -17.79 -13.11 -13.69 -14.98 -7.30 -10.8 -13.97 -13.8
βzyy -9.01 -8.35 -7.51 -4.47 -4.78 -5.96 -1.23 -4.27 -5.66 -5.5
βzxx -11.80 -13.38 -11.59 -10.03 -10.28 -10.41 -9.36 -8.90 -9.92 -9.8
β -24.31 -25.43 -22.13 -16.57 -17.25 -18.81 -10.73 -14.38 -17.73 -17.5

ω = 0.0428
βzzz -21.97 -23.16 -19.71 -14.21 -14.92 -16.38 -7.81 -11.6 -15.12
βzyy -10.08 -9.32 -8.33 -4.82 -5.18 -6.49 -1.25 -4.54 -6.07
βzxx -12.86 -14.69 -12.57 -10.69 -10.94 -11.17 -9.83 -9.41 -10.53
β -26.95 -28.30 -24.37 -17.83 -18.62 -20.42 -11.33 -15.33 -19.03
∆βdisp

d 10.9% 11.3% 10.1% 7.6% 7.9% 8.6% 5.6% 6.6% 7.3%
ω = 0.0570

βzzz -24.02 -25.44 -21.43 -15.16 -15.99 -17.60 -8.25 -12.4
βzyy -11.04 -10.17 -9.04 -5.11 -5.52 -6.95 -1.26 -4.76
βzxx -13.80 -15.83 -13.44 -11.25 -11.55 -11.83 -10.2 -9.84
β -29.32 -30.86 -26.35 -18.91 -19.84 -21.83 -11.83 -16.20
∆βdisp

d 20.6% 21.4% 19.1% 14.1% 15.0% 16.1% 10.3% 12.7%
ω = 0.0856

βzzz -32.01 -34.44 -27.97 -18.55 -19.85 -22.06 -9.73 -15.0
βzyy -14.63 -13.23 -11.62 -6.10 -6.70 -8.54 -1.26 -5.69
βzxx -17.39 -20.28 -16.67 -13.20 -13.70 -14.17 -11.5 -11.3
β -38.42 -40.77 -33.76 -22.71 -24.15 -26.86 -13.49 -19.19
∆βdisp

d 58.0% 60.3% 52.6% 37.1% 40.0% 42.8% 25.7% 33.4%

aResults from Ref. 360
bResults from Ref. 371
cResults from Ref. 343
d∆βdisp =

(
β(−2ω; ω, ω)− β(0; 0, 0)

) /
β(0; 0, 0)

Table 10.1: Static and frequency dependent SHG first hyperpolarizability, β(−2ω;ω,ω),
for water in the gas phase. All results are in a.u.

presented, since these components should tend to zero, by considering more solvent config-
urations, thereby creating a more realistic isotropic solvent environment by averaging over
the different solvent configurations.

First it is noted that all methods predict a sign change for the first hyperpolarizability in
going from the gas phase to the liquid phase. This sign shift is theoretically well established
for methods containing some discrete water molecules in the description.277,356, 360, 373, 379

As in the gas phase, the LDA/GGA results are larger than those from the AC potentials,
but now the MC-SCF/MM results are the largest. The HF/MM results are also larger
than the results from the AC potentials. However, the main difference between the wave
function results and the DFT results is in ∆βsolv. The wave function methods predict
a shift of ∼ 180 − 200% whereas the DFT methods predict a lower solvation shift of
∼ 120 − 150%. Part of this difference is not due to differences between the wave function
methods and DFT, but it is due to the inclusion of the damping of the DRF operator at
short distances. To illustrate this we calculated the mean first hyperpolarizaiblity, using
the BP-GRAC xc-potential without the damping of the DRF operator, which increases
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LDA BLYP BP LB94 SAOP GRAC HF a MC-SCFa

βzzz 10.85 12.83 10.82 4.84 6.51 8.33 9.87 14.9
βzyy 6.68 9.03 7.50 3.57 4.41 5.775 6.45 8.21
βzxx 0.79 0.81 0.14 -2.61 -1.89 -0.78 -1.82 0.56
β 10.99 13.60 11.08 3.48 5.42 7.99 8.70 14.20
∆βsolv

b 145.2% 153.5% 150.1% 121.0% 131.4% 142.5% 181.1% 198.7%
ω = 0.0428
βzzz 11.63 13.85 11.58 5.05 6.87 8.79 10.4 15.8
βzyy 7.30 10.05 8.24 3.81 4.74 6.20 6.90 8.88
βzxx 1.05 1.10 0.33 -2.66 -1.89 -0.71 -1.82 0.72
β 11.99 15.00 12.09 3.72 5.83 8.57 9.29 15.24
∆βsolv

b 144.5% 153.0% 149.6% 120.9% 131.3% 142.0% 182.0% 199.4%
ω = 0.0570
βzzz 12.30 14.74 12.24 5.22 7.17 9.18 10.8 16.5
βzyy 7.84 10.99 8.89 4.02 5.03 6.57 7.27 9.47
βzxx 1.29 1.37 0.50 -2.70 -1.88 -0.69 -1.81 0.86
β 12.86 16.26 12.98 3.92 6.19 9.04 9.76 16.10
∆βsolv

b 143.9% 152.7% 149.3% 120.7% 131.2% 141.4% 182.5% 199.4%
ω = 0.0856
βzzz 14.66 18.00 14.58 5.77 8.16 10.46 12.1 19.2
βzyy 9.90 14.75 11.44 4.72 6.02 7.87 8.56 11.7
βzxx 2.19 2.42 1.16 -2.82 -1.82 -0.36 -1.79 1.41
β 16.05 21.10 16.31 4.60 7.42 10.78 11.32 19.39
∆βsolv

b 141.8% 151.8% 148.3% 120.3% 130.7% 140.1% 183.9% 201.0%

aResults from Ref. 360
b∆βsolv =

(
βliquid − βgas

) /
βgas

Table 10.2: Static and frequency dependent SHG first hyperpolarizability, β(−2ω;ω,ω),
for water in a cluster of 127 classical water molecules. All results are in a.u.

the first hyperpolarizaiblity from β = 7.99 a.u. to β = 11.92 a.u. in closer agreement with
the MC-SCF results. This indicates that the damping, although not optimized to treat
this, mimics the short range repulsion due to the overlapping charge densities of the QM
part and the MM part. The damping is dependent on the width of the gaussian charge
distribution, which in this work was taken to be unit (a.u.). However, both a slightly smaller
width380 and slightly larger width381 have been suggested. Although further investigation
of optimizing this damping to treat the short range repulsion should be carried out, it is
expected to be more realistic to retain it in its present form than to ignore it completely.
Similar approaches of employing screened charge interactions has also been used in other
QM/MM studies.112,335, 380–382

Furthermore, from the results in Table 10.2, we see that ∆βsolv is almost independ-
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10 A DRF model for the hyperpolarizabilities of molecules in solution

ent of the frequency-dispersion, although the DFT methods predict a slight decrease in
the solvation shift with increasing frequency and the wave function methods predict a
slight increase with increasing frequency. This apparent frequency independence of ∆βsolv

could results from the neglect of the frequency-dependence of the classical environment in
Eq. 10.5. Other theoretical models,356,373, 379 where the molecular properties are calculated
at the MP2 level of theory in the presence of a field from effective point charges representing
the discrete solvent environment, in general predict a larger mean first hyperpolarizability
∼ 25 a.u. (in the gas phase ∼ −18 a.u.), but the results are strongly dependent on the
actual representation of the local environment.356,373, 379

10.5.2 The second hyperpolarizability
In Table 10.3 the static and frequency-dependent EFISH second hyperpolarizability,
γ(−2ω;ω,ω, 0), at the frequency ω = 0.0428 a.u. (λ = 1064 nm) of water in the gas
phase calculated using different xc potentials is presented. The mean second hyperpolar-
izability, γ, defined as15

γ =
1

15

∑
αβ

γααββ+γαβαβ+γαββα =
1

5
(γxxxx+γyyyy+γzzzz+2γzzxx+2γxxyy+2γyyzz) (10.25)

is also presented, where again the last equality assumes Kleinman symmetry. The results
are compared with HF343 and CCSD(T)343 wave function results. As was the case for
the first hyperpolarizability, the second hyperpolarizability is overestimated by as much
as a factor of two using LDA/GGA as compared with the results from the AC potentials.
Comparing with the wave function results we see that there is good agreement between the
BP-GRAC results and the CCSD(T) results, and that HF considerably underestimates by
nearly a factor of two. Also, for the second hyperpolarizability the frequency-dispersion,
∆γdisp, is overestimated by a factor of about two using LDA/GGA as compared with the
results from the AC potentials. The static and frequency-dependent EFISH second hyper-
polarizabilities for a water molecule in a cluster of 127 classical water molecules calculated
using different xc-potentials are presented in Table 10.4. The frequency used for the EFISH
second hyperpolarizability is the same as in the gas phase, i.e. ω = 0.0428 a.u. (λ = 1064
nm). Also presented in Table 10.4 is the solvation shift, ∆γsolv. Again, LDA/GGA results
overestimate by a factor of two the results obtained using the AC potentials. In comparison
with the solvation shift for the first hyperpolarizability the solvation shift in the second
hyperpolarizability is much smaller for all xc-potentials. The main reason for this small
difference in ∆γsolv predicted by LDA/GGA and the AC potentials is the different behavior
of the individual tensor components upon solvation. That the xc-potentials predict differ-
ent behavior upon solvation can be illustrated by considering the solvation shift in γyyyy,
which is ∼ 29% for LDA but only ∼ 19% for BP-GRAC. We also see that ∆γsolv is more
sensitive to the frequency-dispersion than was the case for the first hyperpolarizability, and
that an increase in frequency gives a decrease in the solvation shift. The effect of damping
the DRF operator was found to be smaller for the second hyperpolarizability than for the
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LDA BLYP BP LB94 SAOP GRAC HF a CCSD(T)a

γxxxx 1425.2 1586.7 1386.2 706.35 786.47 880.23 569 836
γyyyy 5301.8 6425.7 5163.9 1666.0 2080.6 2793.9 1422 2650
γzzzz 2573 2545 2222 1103 1316 1553 907 1481
γzzxx 1275.4 1511.2 1214.4 435.01 526.33 468.24 287 439
γxxyy 1366.5 1567.2 1268.4 470.51 578.3 683.9 338 633
γyyzz 1361.9 1526.6 1244 473.9 580.1 751.6 389 711
γ 3461.5 3953.5 3245.1 1246.8 1510.5 1806.9 985 1706
ω = 0.0428
γxxxx 1577.2 1768.7 1531.5 752.38 842.05 944.55
γyyyy 6404.7 7897.0 6213.4 1849.9 2342.0 3170.5
γzzzz 2913 2881 2504 1197 1439 1702
γzzxx 1614.6 1954.1 1528.0 495.78 608.61 518.41
γxxyy 1581.2 1827.4 1460.0 514.2 637.8 753.5
γyyzz 1691 1920.6 1533.1 533.4 661.9 872.7
γ 4133.7 4790.2 3858.2 1377.2 1687.9 2021.3
∆γdisp

b 19.4% 21.2% 18.9% 10.5% 11.7% 11.9%

aResults from Ref. 343
b∆γdisp = (γ(−2ω; ω, ω, 0)− γ(0; 0, 0, 0)) /γ(0; 0, 0, 0)

Table 10.3: Static and frequency dependent EFISH second hyperpolarizability,
γ(−2ω;ω,ω, 0) for water in the gas phase. All results are in a.u.

first hyperpolarizability, e.g. the static mean second hyperpolarizability calculated with
BP-GRAC increased from γ = 1908.5 a.u. to γ = 1967.8 a.u. by ignoring the damping.

Previous results calculated at the MP2 level of theory356 for the static mean second
hyperpolarizability of water in the liquid phase gave γ = 2417 a.u. (in the gas phase γ =
1654 a.u.356). This result was obtained by calculating the second hyperpolarizability in the
presence of an average electric field representing the discrete molecular solvent environment.
The solvation shift both for the first and second hyperpolarizabilities predicted in that work
is found to be larger than what we predict in this work.

10.5.3 Comparison with experiment
In the gas phase there have been two EFISH experiments from which the first and second
hyperpolarizability of water have been determined; one at ω = 0.0428 a.u. (λ = 1064
nm)127 and one at ω = 0.0656 a.u. (λ = 694.3 nm).383 In the EFISH experiment the
measured quantity is127

Γ(−2ω;ω,ω, 0) = γ(−2ω;ω,ω, 0) +
µβ(−2ω;ω,ω)

3kT
(10.26)

from which the individual contributions can be extracted if one knows the dipole moment
µ by performing the experiment at different temperatures. As discussed and clearified by
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LDA BLYP BP LB94 SAOP GRAC
γxxxx 1437.1 1693.0 1325.3 679.4 761.0 821.5
γyyyy 6479.9 7742.3 6309.1 2002.3 2509.9 3246.8
γzzzz 2473.0 2827.0 2276.0 1141.2 1345.7 1505.2
γzzxx 757.7 921.8 691.0 353.0 408.9 453.2
γxxyy 1479.8 1744.1 1388.2 487.6 596.4 747.2
γyyzz 1439.0 1704.4 1368.6 525.9 640.1 784.1
γ 3548.6 4200.58 3361.2 1311.2 1581.5 1908.5
∆γsolv

a 2.5% 6.2% 3.6% 5.2% 4.7% 5.6%
0.0428
γxxxx 1592.3 1888.0 1465.0 721.3 812.7 877.3
γyyyy 7821.4 9531.4 7593.9 2226.5 2830.2 3670.2
γzzzz 2762.0 3182.0 2532.0 1229.8 1460.2 1629.4
γzzxx 854.8 1048.5 776.1 382.7 446.6 494.4
γxxyy 1697.3 2023.4 1585.2 528.7 652.0 818.5
γyyzz 1754.0 2129.0 1661.9 586.9 724.4 892.6
γ 4157.6 5000.6 3927.5 1434.8 1749.8 2117.6
∆γsolv

a 5.4% 4.4% 1.8% 4.2% 3.7% 4.8%

a∆γsolv =
(
γliquid − γgas

) /
γgas

Table 10.4: Static and frequency dependent EFISH second hyperpolarizability,
γ(−2ω;ω,ω, 0) for water in a cluster of 127 classical water molecules. All results are
in a.u.

Willetts et al.,27 different conventions are often used in experiments and in calculations.
It is therefore important to bring all results to the same convention before comparing (For
the definition of the different conventions see Ref. 27). In this work the Taylor series (T)
convention is used and all values are converted into this convention (see Ref 27 for details).
For clarity all details of the conversion are reported. The first experiment at ω = 0.0656
a.u.383 reported a value of β = −94 ± 4 × 10−33esu = −11 ± 0.5 a.u. measured in the B
convention. Converting this to the T convention gives β = (−11 ± 0.5) × 2 = −22 ± 1
a.u. For the second hyperpolarizability the reported value383 is γ = 194 ± 10 × 10−39esu
= 385 ± 20 a.u. in the B convention and converting it to the T convention gives γ =
(385 ± 20) × 6 = 2310 ± 120 a.u. The second experiment at ω = 0.0428 a.u.127 reported
β = −19.2 ± 0.9 a.u. and γ = 1800 ± 150 a.u., both values reported in the T convention.
Comparing these results with the calculated results for the first hyperpolarizability in
Tabel 10.1 and the second hyperpolarizability in 10.3, we find good agreement with the
SAOP, BP-GRAC, CCSD and CCSD(T) results, showing the ability of these methods to
describe the first and second hyperpolarizability of water in the gas phase.

For liquid water there has been one EFISH experiment at ω = 0.0428 a.u.384 Reported
was a value of Γ = 1.44 × 10−36esu = 2859 a.u. in the X convention which, converting to
the T convention, gives Γ = 2859 × 4 = 11436 a.u. The value was measured relative to a
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reference standard for which a quartz crystal was used with a value of d11 = 0.8×10−9 esu
= 0.335 pm/V. However, the currently accepted value for quartz is d11 = 0.30 pm/V.385,386

In order to extract the contribution from the first hyperpolarizability they used an estimate
for the second hyperpolarizability of γ = 0.3×10−36 esu = 595.6 a.u. in the X convention.
Converting this to the T convention and correcting for the difference in reference values of
quartz, gives γ = 5.95.6 × 4 × 0.30/0.335 = 2133.6 a.u. This value is in good agreement
with our result obtained with the BP-GRAC potential. Furthermore, an estimate of the
dipole moment in liquid water, µliquid, was made by relating it to the gas phase dipole
moment, µgas, and the Kirkwood correlation parameter, g, as µliquid = g × µgas. Using
this, an estimate for the first hyperpolarizability was reported as β = 0.46 × 10−31 esu
= 5.3 a.u. in the X convention. Converting it to the T convention and correcting for
the reference values, gives β = 5.3 × 4 × 0.30/0.335 = 19.1 a.u. This value for the first
hyperpolarizability of liquid water is considerably larger than the values obtained in this
work, even if the damping of the DRF operator at short distances is ignored, but the
sign change found experimentally is reproduced in the calculations. However, previous
theoretical studies356,373, 379 indicate that especially the first hyperpolarizability of water
in the condensed phase is sensitive to the local environment. An indication of this is also
seen in this work, since the first hyperpolarizability is much more sensitive to the damping
of the DRF operator than the second hyperpolarizability. Therefore, it can be expected
that especially the value for β will change if a more realistic local solvent environment is
used in the calculations. Further investigation of the sensitivity of the first and second
hyperpolarizabilty to changes in the local discrete environment has to be made before
anything conclusive can be said.

10.6 Conclusions
In this work we presented a Discrete Solvent Reaction Field (DRF)model for the calcu-
lation of frequency-dependent hyperpolarizabilities of molecules in solution. The DRF
model combines a Density functional Theory (DFT) description of the solute with a polar-
izable classical description of the discrete solvent molecules. The first hyperpolarizability
is obtained in an efficient way within Time-Dependent DFT by using the (2n+1) rule to
reformulate the quadratic reponse equations into contributions known from a solution of
the linear response equations. The method was tested for a water molecule embedded in
a cluster of 127 classical water molecules. Frequency-dependent first and second hyper-
polarizabilities related to the Electric Field Induced Second Hamonic Generation (EFISH)
experiment were calculated both in the gas phase and in the liquid phase. For water in the
gas phase, results in good agreement with high-level correlated wave function methods and
experiments were obtained by using the so-called shape-corrected xc-potentials (SAOP and
BP-GRAC). In the liquid phase the effect of using asymptotically correct functionals was
discussed. It was shown that the first hyperpolarizability was more sensitive to damping
of the interactions at short range than the second hyperpolarizability. The experimental
change of sign for the first hyperpolarizability in going from gas to liquid was reproduced
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with the model.
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Summary

The subject of this thesis is the modelling of molecular optical response properties and
the application of these models to nanostructures. There is a lot of interest in nonlinear
optical (NLO) properties of materials both from a technological and a scientific point of
view. The technological aspect deals with the construction and application of these new
nonlinear materials in future electronic and photonic devices. These new devices could lead
to a new generation of information technology. The scientific interest lies in, besides that it
is a great challenge to accurately predict NLO effects theoretically, that an understanding
of these NLO effects could give a fundamental insight into how bulk properties of condensed
phase matter emerge from the properties of its individual atoms or molecules.

Sophisticated quantum chemical methods would in principle be ideal tools to investig-
ate these effects, however, these methods can only be applied on rather small molecules.
Therefore, for large molecules and assemblies of molecules, modelling is currently restricted
to less sophisticated methods. In this thesis we have developed methods to calculate the
nonlinear optical properties of nanostructures, i.e., molecules or assemblies of molecules
containing several thousand atoms. As an application of these models we have investigated
the NLO properties of fullerenes, carbon nanotubes, large clusters of C60 molecules and
molecules in solution.

As a general introduction to this thesis we review the basic concepts of nonlinear op-
tics, i.e., the expansion of the total macroscopic polarization in a material in powers of the
macroscopic electric field where the expansion coefficients define the macroscopic (non-
linear) susceptibilities. Similarly, the total microscopic polarization is expanded in terms
of the total microscopic electric field with expansion coefficients defining the microscopic
(nonlinear) polarizabilities. By adopting a local field ansatz we show how to define a set of
effective microscopic properties which can be related to the macroscopic properties. This
ansatz is based on splitting the total system into a macroscopic region containing a large
microscopic virtual cavity, in which the discrete electric field arising from the molecules is
considered in detail. Since the discrete electric field depends strongly on the local config-
uration of the molecules inside the cavity this field should be considered explicitly within
the microscopic model adopted for the calculations of the nonlinear properties. Further-
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more, the discrete electric field is split into two components. The first part arises from the
interactions of the macroscopic electric field with the other molecules in the cavity, i.e. it
accounts for the induced polarization of the surrounding molecules due to the macroscopic
electric field. The second part accounts for the interactions between the molecules when
there is no macroscopic electric field present. However, depending on the theoretical model
used for describing the microscopic region, this spitting of the discrete electric field is not
always possible nor necessary.

Since the discovery of the C60 fullerene there have been numerous investigations of
its linear and nonlinear optical properties. Both experiment and theory have shown that
the third-order nonlinearity of C60 is smaller than first assumed. For this reason the
possibilities of enhancing the nonlinearities of fullerenes by means of either endohedral,
exohedral or substitutional doping is of considerable interest. We have studied the changes
in the second hyperpolarizability (γ) by substituting carbon atoms in C60 with B or/and
N. The second hyperpolarizability of the doubly substitute-doped fullerenes C58NN, C58BB
and C58BN has been calculated using time-dependent density functional theory (TD-DFT)
and compared with C60. Using TD-DFT we only find small changes in the γ when doping
with either 2B or 2N. Although an increase with 50% was found when doping C60 with
both B and N the effect of doping was in general found to be very small.

An alternative approach to quantum chemical methods is based on representing the
molecule as a set of interacting induced point dipoles. In an external field, atomic dipole
moments are induced which interact with each other. An anisotropic molecular polarizab-
ility tensor is thus obtained even though isotropic (atom-type) atomic polarizabilities are
adopted in the model. The molecular γmol is obtained analogously by including also an
atomic γ in the interaction model. It has furthermore been demonstrated that damping
of the interatomic interactions at short distances is crucial. We have developed an point
dipole interaction (PDI) model along these lines based on a parametrization of molecular
polarizabilities (αmol) obtained from quantum chemical calculations. The model includes
the frequency dependence of αmol, an improved damping term, and γmol. By adopting
atomic polarizabilities in addition to atom-type parameters describing the damping and
the frequency-dependence, respectively, the model is found to reproduce the molecular
frequency-dependent polarizability tensor calculated with ab initio methods at the Hartee-
Fock level of theory. It is also demonstrated that the differences for γmol between quantum
chemical calculations and the PDI model are on average around 10% and below 30%.
Although, Hartree-Fock calculations by no means represent the true answer, it is encour-
aging that a simple model like the PDI model can reproduce quantum chemical results
consistently. It should therefore be relatively straightforward to reparametrize the model
when more sophisticated quantum chemical methods become routine for medium-sized
molecules.

The PDI model developed can be used to calculate the properties of large molecules
and cluster of molecules. Therefore, we can use the PDI model to calculate the effective
molecular properties which can be related the measurable macroscopic properties. This
can be done by calculating the molecular properties per molecule and extend the cluster
until no changes are observed in the properties. However, if one is interested in obtaining
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the molecular properties of the individual members of the cluster the total response has
to be distributed over the molecules. We have developed a Localized PDI (LPDI) model
which enables α and γ to be divided into fragment contributions.

An important concept in the design of new NLO materials is the scaling behaviour
of the optical properties with increasing size. In the limit of infinitely long chains, both
αmol and γmol, will scale linearly with the length of the chain. In particular, the so-called
saturation length, i.e. where the property (αmol or γmol) starts to scale linearly with
increasing size of the system, is of interest. We have used the PDI model to calculate γmol

of carbon nanotubes on the length scale up to 75 nm. It is demonstrated that an atomistic
representation of mesoscale systems like nanotubes can be used to obtain a cubic response
property up to the saturation length. It is found that these are comparable to conjugated
polymers with respect to the magnitude of γmol and is therefore promising as a candidate
for future NLO materials.

The dipole-dipole polarizability, α, and the second hyperpolarizability, γ, as well as the
corresponding linear and third-order susceptibilities, χ(1) and χ(3), have been calculated
for C60 fullerene clusters using the PDI model. The size dependences of a linear chain,
a mono-layer film, and a face-centered cubic crystal cluster have been investigated. It is
found that the effects of the surrounding molecules on the molecular α and γ are large, in
particular for the chain and the film because of the anisotropic surroundings, and that large
clusters are required to obtain converged results. Finally, χ(1) and χ(3) have been calculated
using a modified local-field theory including the induced dipole moments of the surrounding
molecules explicitly. The corresponding refractive index and dielectric constant compare
well with experiment. For χ(3) the comparison with experiment is complicated by dispersion
and vibrational contributions. Nonetheless, our value of χ(3) is in good agreement with a
recent quantum chemical calculation adopting a self-consistent reaction-field model.

In order to study the molecular properties of molecules in solution we have developed
a mixed quantum mechanical and classical mechanics (QM/MM) model which we de-
noted the Discrete Solvent Reaction Field model. The model combines TD-DFT (QM)
description of the solute molecule with a classical (MM) description of the discrete solvent
molecules. The latter are represented using distributed atomic charges and polarizabilities.
All the atomic parameters have been chosen so as to describe molecular gas phase proper-
ties of the solvent molecule, i.e. the atomic charges reproduce at least the molecular dipole
moment and the atomic polarizabilities resproduce the molecular polarizability tensor using
a modified dipole interaction model. The QM/MM interactions are introduced into the
(time-dependent) Kohn-Sham equations and all interactions are solved self-consistently,
thereby allowing for the solute to be polarized by the solvent. Furthermore, the inclusion
of polarizabilities in the MM part allows for the solvent molecules to be polarized by the
solute and by interactions with other solvent molecules. Using time-dependent response
theory the linear response properties are caculated by solving a set of linear response equa-
tion iteratively. The first hyperpolarizability is calculated efficiently by taking advantage
of the (2n + 1) rule which allows for the quadratic response properties to be rewritten
in terms of quantities known from the solution of the first order response equations. Fi-
nally, the second hyperpolarizability can be obtained by a combination with a finite field
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differentiation. Initial applications of the model to calculate the dipole and quadrupole
moments, vertical electronic excitation energies and frequency-dependent molecular (hy-
per)polarizabilities of a water molecule in a cluster of 127 classical water molecules are
presented. The effect of using different exchange correlation (xc)-potentials is investigated
and the results are compared with results from wave function methods combined with a
similar solvent model, both at the correlated and uncorrelated level of theory. It is shown
that for all properties investigated accurate results in agreement with correlated wave func-
tion results can be obtained using xc-potentials with a correct asymptotic behavior. The
model reproduces the experimentally observed sign change in the first hyperpolarizaibility
when going from the gas phase to the liquid phase. Furthermore, it is shown that the first
hyperpolarizability is more sensitive to damping of the solvent-solute interactions at short
range than the second hyperpolarizability.

148



Samenvatting

Onderwerp van dit proefschrift is het modelleren van moleculaire optische respons-
eigenschappen en de toepassing van deze modellen op nanostructuren. Er bestaat zowel
wetenschappelijk als technologisch veel belangstelling voor niet-lineaire optische (NLO)
eigenschappen van materialen. Het technologisch aspect ligt in het maken en toepassen
van deze nieuwe materialen in toekomstige elektronische en optische apparatuur, die tot
een nieuw type informatietechnologie zou kunnen leiden. Het wetenschappelijk belang
ligt—nog afgezien van het feit dat het nauwkeurig voorspellen van NLO effecten een grote
uitdaging voor de theorie is—erin dat het begrijpen van NLO effecten fundamenteel inzicht
kan opleveren in hoe bulkeigenschappen van materie in de gecondenseerde fase naar voren
komt uit de eigenschappen van de individuele atomen of moleculen.

Geavanceerde kwantumchemische methoden zouden in principe ideale gereedschappen
kunnen zijn om deze effecten te bestuderen, maar zij zijn alleen toepasbaar op tamelijk
kleine moleculen. Voor grote moleculen en verzamelingen van moleculen is het modelleren
daardoor beperkt tot minder geavanceerde methoden. In dit proefschrift hebben wij me-
thoden ontwikkeld voor het berekenen van NLO eigenschappen van nanostructuren, d.w.z.
moleculen en verzamelingen van moleculen die enkele duizenden atomen bevatten. De me-
thoden werden toegepast op fullerenen, koolstofnanobuizen, grote clusters van moleculen
en moleculen in oplossing.

In de algemene inleiding tot dit proefschrift wordt een overzicht gegeven van de ba-
sisconcepten van de niet-linaire optica, d.w.z. de expansie van de totale macroscopische
polarisatie in materie in termen van machten van het macroscopische elektrisch veld, waar-
bij de expansiecoëfficiënten de macroscopische (niet-lineaire) susceptibiliteiten definiëren.
Op dezelfde wijze wordt de totale microscopische polarisatie geëxpandeerd in termen van
machten van het totale microscopische elektrische veld, hetgeen analoog leidt tot de defi-
nitie van microscopische (niet-lineaire) polariseerbaarheden. Vanuit een lokaal-veldaanpak
laten we zien hoe een stel effectieve microscopische eigenschappen te definiëren zijn die
gerelateerd kunnen worden aan macroscopische eigenschappen. Deze aanpak is gebaseerd
op splitsing van het totale systeem in een macroscopisch gebied waarin zich een grote, vir-
tuele, microscopische holte bevindt, waarbinnen het discrete elektrische veld—afkomstig
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van de zich daarin bevindende moleculen—in detail wordt beschouwd. Omdat het dis-
crete veld sterk afhangt van de lokale moleculaire configuratie, moet dit veld expliciet in
beschouwing worden genomen in het microscopische model bij het berekenen van de niet-
lineaire eigenschappen. Ook het elektrisch veld wordt in twee componenten opgesplitst.
Het eerste deel komt voort uit interacties van het macroscopische veld met moleculen in
de holte, m.a.w. het gevolg van de polarisatie van de moleculen door het macroscopische
veld. Voor het tweede deel zijn interacties tussen de moleculen zonder macroscopische veld
verantwoordelijk. Afhankelijk van het theoretisch model gebruikt voor het microscopische
gebied, is deze opsplitsing van het discrete elektrische veld niet altijd mogelijk of nodig.

Sinds de ontdekking van het C60 fullereen is veel onderzoek gedaan aan de (niet-) li-
neaire optische eigenschappen. Experimenten en theorie hebben laten zien dat de derde
niet-lineaire susceptibiliteit van C60 kleiner is dan eerst aangenomen. Om deze reden zijn
de mogelijkheden tot het vergroten van de niet-lineairiteiten van fullerenen door middel
van endoëdrische, exoëdrische of substituele doping van groot belang. We hebben de ver-
anderingen in de tweede hyperpolariseerbaarheid (γ) door vervanging van C atomen door
B en/of N atomen onderzocht. Met de tijdsafhankelijke dichtheidsfunctionaaltheorie (TD-
DFT) vonden we kleine veranderingen in γ van C60 als gesubstitueerd werd met twee B of
twee N atomen. Hoewel een toename van ca. 50% werd gevonden bij substitutie met één
B en één N atoom, werd het effect van doping in het algemeen klein bevonden.

Een alternatief voor kwantumchemische methoden is gebaseerd op een voorstelling van
moleculen als bestaand uit een stel gëınduceerde, wisselwerkende puntdipolen. In een ex-
tern elektrisch veld worden dipolen gëınduceerd die met elkaar wisselwerken. Een (anistro-
pe) moleculaire polariseerbaarheidstensor (α) kan dan verkregen worden, zelfs als isotrope
(atoom)polariseerbaarheden worden gebruikt in het model. Analoog kan een moleculai-
re γmol verkregen worden als een atomaire γ wordt opgenomen in het model. Verder
wordt aangetoond dat dempen van de interatomaire interacties op korte afstand van groot
belang is. Langs deze weg hebben we een puntdipoolinteractiemodel (PDI) ontwikkeld,
gebaseerd op een parameterisatie van moleculaire eigenschappen verkregen uit kwantum-
chemische berekeningen. Het model omvat de frequentie-afhankelijkheid van αmol, een
verbeterde demping en γmol. Met atomaire polariseerbaarheden en atomaire parameters
voor de demping en de frequentie-afhankelijkheid, reproduceert het model de moleculai-
re frequentie-afhankelijke polariseerbaarheid zoals verkregen uit ab initio berekeningen op
het Hartree-Fock niveau. Ook is aangetoond dat de verschillen in γmol tussen kwantum-
chemische berekeningen en het PDI model gemiddeld ca. 10% zijn en kleiner dan 30%.
Hoewel Hartree-Fock berekeningen geen correct antwoord geven, is het bemoedigend dat
een eenvoudig model als PDI resultaten kan reproduceren die consistent zijn met kwan-
tumchemische berekeningen. Daardoor zal het eenvoudig zijn het model opnieuw te pa-
rameteriseren, zodra meer geavanceerde kwantumchemische berekeningen standaard zijn
voor grotere moleculen.

Het PDI model kan gebruikt worden voor eigenschappen van grote moleculen en clus-
ters en daardoor voor het berekenen van effectieve, meetbare moleculaire macroscopische
eigenschappen. Dat kan gedaan worden door de eigenschap (per molecule) te berekenen
voor steeds grotere clusters, totdat geen verandering meer wordt gevonden. Echter, als
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men gëınteresseerd is in de moleculaire eigenschappen van de individuele moleculen in het
cluster, moet het totale resultaat verdeeld worden over de moleculen. Daarvoor hebben we
een gelokaliseerde PDI (LPDI) model ontwikkeld dat het mogelijk maakt α en γ te splitsen
in fragmentbijdragen.

Een belangrijk concept van het ontwerpen van nieuw NLO materiaal is het schaalgedrag
van optische eigenschappen met toenemende grootte. In de limiet van oneindig lange ketens
zullen zowel αmol als γmol lineair toenemen met de ketenlengte. Van bijzonder belang is de
zgn. verzadigingslengte, d.w.z. de lengte waarbij een eigenschap (αmol of γmol) lineair be-
gint toe te nemen. We hebben het PDI model gebruikt om γmol van koolstofnanobuizen met
een lengte tot 75 nm te berekenen. Aangetoond wordt dat een atomistische representatie
van nanobuizen op mesoschaal gebruikt kan worden om een kubische responseigenschap te
verkrijgen tot de verzadiginglengte, bijvoorbeeld voor koolstofnanobuizen. Gevonden werd
dat die, voor wat betreft γmol, vergelijkbaar zijn met geconjugeerde polymeren en derhalve
veelbelovende kandidaten voor toekomstig NLO materiaal.

Zowel de dipool-dipool polariseerbaarheid en de tweede hyperpolariseerbaarheid (α en
γ) als de corresponderende lineaire en derde orde susceptibiliteiten, χ(1) en χ(3), zijn met
het PDI model berekend voor clusters van C60 fullereen. De grootteafhankelijkheid van
een rechte keten, een monolaag film en een vlakgecentreerd kubisch kristal werden onder-
zocht. Gevonden werd dat het effect van de omringende moleculen op de moleculaire α
en γ groot is, in het bijzonder in de rechte keten en de film, tengevolge van de anisotrope,
en dat grote clusters nodig zijn om convergentie te bereiken. Tenslotte werden χ(1) en
χ(3) berekend met een aangepast LPDI model waarin de dipoolmomenten, gëınduceerd in
omringende moleculen, expliciet worden behandeld. De corresponderende brekingsindex
en diëlectrische constante zijn goed vergelijkbaar met experimentele waarden. Deze verge-
lijking is voor χ(3) bemoeilijkt door dispersie en vibrationele bijdragen. Niettemin is onze
waarde in goede overeenkomst met die van een recente kwantumchemische berekening met
een self-consistent reactieveldmodel.

Om moleculaire eigenschappen in oplossing te bestuderen ontwikkelden wij een
kwantumchemisch-klassiek (QM/MM) model dat Discrete Solvent Reaction Field (DRF)
wordt genoemd. In dit model wordt TD-DFT (QM) gebruikt voor de beschrijving van
het opgeloste molecuul (”solute”) en een klassieke weergave (MM) van de discrete om-
ringende moleculen van het oplosmiddel (”solvent”). De laatste worden weergeven door
gedistribueerde puntladingen en polariseerbaarheden. Alle atomaire parameters worden
zo gekozen dat ze de moleculaire eigenschappen in de gasfase beschrijven, d.w.z. de
puntladingen reconstrueren tenminste het moleculaire dipoolmoment en de atomaire po-
lariseerbaarheden de moleculaire polariseerbaarheidstensor, waarbij een gemodificeerde
dipool-dipoolinteractie wordt gebruikt. De QM/MM interacties worden toegevoegd aan
de Kohn-Sham vergelijkingen en alle interacties worden selfconsistent opgelost, waarbij
de ”solute”gepolariseerd kan worden door de ”solvent”. Bovendien, door het opnemen
van polariseerbaarheden in MM kunnen de moleculen van de solvent gepolariseerd wor-
den door interacties met de solute en met andere solventmoleculen. Onder gebruik van
TD-DFT response theorie worden de lineaire respons eigenschappen berekend door een
stelsel van lineaire vergelijkingen iteratief op te lossen. De eerste hyperpolariseerbaarheid
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wordt efficiënt berekend met de (2n + 1) regel die het toestaat kwadratische responsei-
genschappen te herformuleren in termen van grootheden die bekend zijn uit de oplossing
van de eerste orde responsvergelijkingen. Tenslotte kan de tweede hyperpolariseerbaar-
heid verkregen worden uit een combinatie met eindige velddifferentiaties. Eerste toepas-
singen van dit model zijn berekeningen van het dipool- en kwadrupoolmoment, verticale
excitaties en frequentie-afhankelijke moleculaire (hyper)polariseerhardheden van één wa-
termolecuul in een cluster van 127 klassieke watermoleculen. Het effect van verschillende
exchange-correlatie (xc)potentialen werden onderzocht en de resultaten vergeleken met die
van golffunctiemethoden gecombineerd met een soortgelijk solvatatiemodel, zowel op het
ongecorreleerde als het gecorreleerd niveau van de theorie. Aangetoond wordt dat voor
alle onderzochte eigenschappen goede overeenkomst met resultaten met gecorreleerde golf-
functies verkregen wordt als xc-potentialen worden gebruikt met het juiste asymptotisch
gedrag. Het model reproduceert de experimenteel waargenomen tekenverandering van de
eerste hyperpolariseerbaarheid van water gaande van de gasfase naar de vloeibare fase.
Voorts wordt aangetoond dat de eerste hyperpolariseerbaarheid gevoeliger is voor dempen
van de solute-solvent korte afstand interacties dan de tweede.
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Chem. B 105, 10243 (2001).

[101] M. Schulz, S. Tretiak, V. Chernyak, and S. Mukamel, J. Am. Chem. Soc. 122, 452
(2000).

[102] J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

[103] C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999).

[104] M. Orozco and F. J. Luque, Chem. Rev. 100, 4187 (2000).

[105] A. Warshel and M. Levitt, J. Mol. Bio. 103, 227 (1976).

[106] B. T. Thole and P. T. van Duijnen, Theor. Chim. Acta 55, 307 (1980).

[107] U. C. Singh and P. A. Kollman, J. Comp. Chem. 7, 718 (1986).

[108] P. A. Bash, M. J. Field, and M. Karplus, J. Am. Chem. Soc. 109, 8092 (1987).

[109] M. J. Field, P. A. Bash, and M. Karplus, J. Comp. Chem. 11, 700 (1990).

[110] V. Luzhkov and A. Warshel, J. Comp. Chem. 13, 199 (1992).

[111] R. V. Stanton, D. S. Hartsough, and K. M. Merz, J. Phys. Chem. 97, 11868 (1993).

[112] A. H. de Vries et al., J. Comp. Chem. 16, 37 (1995).
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A dipole interaction model for the molecular second hyperpolarizability
J. Phys. Chem. A, 107, 2270, 2003
Chapter 4, Reference 95

173



List of Publications

7. L. Jensen, P. Th. van Duijnen, J. G. Snijders.
A discrete solvent reaction field model within density functional theory
J. Chem. Phys., 118, 514, 2003
Chapter 8, Reference 117
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