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CHAPTER 1 

       OBJECTIVES 

The present thesis proposes a new method for assessing the influence of 

microstructural scale on the yield strength of composites and polycrystals, by 

allowing certain features of the deformation field to vary discontinuously across 

pre-existing internal surfaces, such as interfaces in metal-metal composites and 

grain or interphase boundaries in polycrystals. The jumps associated with such 

discontinuities are accommodated by an excess interfacial energy-like term 

(interfacial penalty), which is introduced to model the micro/nano scopic 

deformation mechanisms that take place at these surfaces of discontinuity, for 

the plastic strain gradient. 

In particular, the material response is characterized through strain-gradient 

plasticity and the “interfacial energy”, which depends solely on the plastic strain 

at the interface, is admitted in the overall energy functional of the system. The 

physical motivation for this is that interfaces present an obstruction to 

dislocation motion, and hence plastic flow. As a result, during plastic 

deformation dislocation pileups occur at internal surfaces. These pileups 

correspond to gradients in the plastic strain and, as a result, the strain-gradient, 

and corresponding higher-order traction, are taken to suffer a jump across 

interfaces. It is important to emphasize the need to admit strain-gradient 

plasticity as the material response of the system since it is the gradient of the 
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plastic strain (which is not accounted for in conventional plasticity) that permits 

for the jump condition in higher-order stress, and allows interfaces to have their 

own yield behavior and be treated as surfaces of discontinuity. Although 

discontinuities have been a subject of substantial research activity in mechanics 

[1], interfaces have never been modeled through this type of consideration. Two 

classical examples that have been studied extensively within the theory of 

elasticity are dislocations and cracks, where the displacement field is assumed to 

be discontinuous in a mathematical sense. This hypothesis led to the 

development of dislocation and fracture mechanics. Within the theory of 

plasticity Luders bands and shear bands are also often considered as surfaces 

across which the plastic strain is discontinuous. In the present work, the plastic 

strain will be assumed to be continuous across the interface but the plastic strain 

gradient will be allowed to suffer a discontinuity there. This can be done by 

generalizing classical plasticity theory to allow for the effect of plastic strain 

gradients to enter into the constitutive equations. This generalization is 

commonly known as gradient plasticity. Gradient plasticity is therefore intended 

to make allowance, at least qualitatively, for the influence on hardening of the 

long-range stresses produced by “geometrically-necessary“ as opposed to 

“statistically stored“ lattice dislocations. 

Strain-gradient theories gained considerable attention since the first 

gradient plasticity theory developed by Aifantis in 1984 [2] was able to resolve 

certain deficiencies that classical plasticity could not describe, such as obtaining 

widths and spacings of shear bands and dispensing with the mesh-dependence 

of finite element calculations in the material softening regime. Since then, strain-

gradient plasticity has been used extensively to examine the development and 

persistence of dislocation patterns, and the occurrence of size effects (e.g. in 

nano-identation), in addition to the above phenomena. Among the gradient 

theories that have been developed during the past decade one distinguishes the 

works of Fleck-Hutchinson and co-workers [3,4] who developed a Cosserat type 
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strain-gradient plasticity with asymmetric stress and applied it for interpreting 

plasticity at the micron-scale, including size-effects. More recently, Fleck and 

Hutchinson [5] revised their previous theory to remove certain deficiencies 

related to the elasto-plastic coupling within their higher order gradient setting 

and incorporated in it the advantages of the Aifantis formulation [2,6] in order to 

render their theory more efficient computationally. An even more appealing 

formulation of a deformation type gradient plasticity theory was recently 

provided by Fleck and Willis [7] who endowed it with appropriate boundary 

and continuity (across interfaces) conditions and applied it to derive effective 

properties of composites. 

Several other significant contributions have been made including, among 

others, those by Gao and co-workers [8,9], Gurtin and co-workers [10,11] and 

Gudmundson [12]. With the exception of the latter work, however, no theory has 

been developed to consider the occurrence of jump conditions across interfaces. 

But even this latter work does not provide a detailed analysis of the microscopic 

deformation mechanisms that take place along an interface, or their implications 

on the form of the interfacial energy assumed. Moreover, it does not consider the 

effect of interfaces in the overall mechanical response; for example, by deducing 

macroscopic or effective stress-strain relationships. In fact, no theory, which 

considers interfaces, from those developed through various approaches (such as 

continuum elasticity and atomistics [13,14,15,16,17,18] and gradient plasticity 

[6,12]) has been successfully applied to model the effect of interfaces in the 

overall stress-strain response during plastic deformation, even though interfacial 

effects are of great significance and interest, especially in the emerging fields of 

nanomechanics and nanotechnology, in which the volume fraction of the grain 

boundary to grain interior is relatively high. 

All gradient theories have associated with them a characteristic (internal) 

length, and the influence of the gradient term becomes apparent as soon as some 

dimension of the specimen is reduced to some small multiple of this 
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characteristic length. Mathematically speaking, the internal length relates to the 

gradient coefficient (characterizing the corresponding gradient term) and its 

presence is required for dimensional consistency; it is desirable, moreover, to 

keep it fixed in fitting data from different experimental setups. This is to be 

expected when the internal length is the same for different experimental 

configurations and may be viewed as a material property rather than a 

parameter depending on the geometry of deformation.  

An additional, feature which has so far not yielded to precise physical 

interpretation is associated with the fact that introduction of the gradient term 

requires the introduction of an additional boundary condition, together with an 

additional jump or continuity condition across any internal surface. The 

mathematical structure shows what quantity needs to be specified but provision 

of the actual value can only follow from a clear recognition of the physics that the 

strain-gradient theory is supposed to represent. It can therefore be seen that even 

though extensive research is being performed that focuses on developing or 

choosing an effective (yet simple) theory, which will be able to model a large 

amount of tests pertaining to different experimental configurations, there still 

remain several open issues related to the physical interpretation of the internal 

length and the appropriate boundary conditions associated with the gradient 

terms. It, thus, follows that existing strain-gradient theories, which model 

reasonably well experimental data, may not be adopted universally unless the 

respective internal length parameters are clearly interpreted in terms of the 

underlying plastic flow mechanisms and related measurements.  

Qualitatively, several theories may show the right trend, but differences of 

detail (obtained by fixing parameters relative to one experimental setup and then 

predicting outcomes for different experiments) can provide evidence for one 

theory relative to another, but will not definitively identify one theory as 

“correct”. Another approach is to compare predictions made by use of a strain-

gradient theory with corresponding predictions obtained from a simulation 
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which employs discrete dislocations. A drawback here is that the discrete 

dislocation simulation inevitably employs an idealized version of the underlying 

physics, in particular because one may be obliged to treat a 3D dislocation 

problem in a 2D approximation. It is also true that more than one strain-gradient 

theory has shown good compatibility with discrete dislocation simulations 

[19,20,21,22,23,24]. 

Another method that can be used to check the validity of these gradient 

theories is to compare each other in relation to benchmark problems that can be 

unambiguously defined. For example, the formation and evolution of “shear 

bands” in the post-localization deformation regime, the development of 

“boundary layers” during the constrained plastic flow between parallel plates, 

and the interpretation of size effects in polycrystals and composites may be 

considered as such benchmark cases.  

A particular class of problems that can be used for calibrating strain-

gradient theories is that involving interfaces. The relevant question then is to 

decide which quantities may be assumed continuous across the interface and 

which cannot. In addition to the obvious requirement of balancing forces across 

interfaces, one should decide on the amount of detail and the determination of 

the spatial characteristics desired by the analysis. If it is desired, for example, to 

obtain an estimate for the “thickness” of the interfacial region, the strain-

gradients should be taken continuous across internal surfaces, and an 

appropriate constitutive equation for the local stress should be assumed there. 

This is the approach adopted, for example, by Aifantis [25] who described a 

method for treating interfaces within the structure of his earlier developed theory 

of gradient plasticity [2,6]. If, however, one is concerned with many interfaces, as 

in the case of a polycrystal or a metal-metal composite, such a detailed analysis is 

not necessary for characterizing the overall material response. In this case the 

interfaces may be treated as surfaces of discontinuity, for the plastic strain 

gradient, and no detailed constitutive assumption for the local stress in terms of 
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atomistic considerations is explicitly needed. It is required, however, to envision 

the relevant plastic flow mechanism in order to deduce which quantities may be 

viewed as varying continuously across the interface, which may not, and what 

extra assumptions for the interfacial energy should be introduced in order to 

accommodate the aforementioned discontinuities. This approach is introduced in 

the present thesis.   

The gradient theory employed is a re-formulation of a deformation version 

of gradient plasticity, which was recently advanced by Fleck and Willis [7]. These 

authors considered interfaces implicitly and adopted methods [26,27,28,29] for 

calculating the effective response of nonlinear composites whose constituents 

conformed to a deformation-theory version of strain-gradient plasticity, closely 

related to the strain-gradient theory advanced in [5]. A similar study had been 

performed earlier in [30,31] recognizing that strain-gradient plasticity also 

produced a scale effect on the yield behavior of a composite or a polycrystal: the 

macroscopic stress and strain fields could vary smoothly and yet be associated 

with intense microscopic fluctuations whose exact form would depend on the 

scale of the microstructure in comparison with the intrinsic length scale 

associated with the gradient theory.  

Fleck and Willis [7] also demonstrated the occurrence of a scale effect of the 

microstructure on the effective flow stress of a composite which, for very fine 

microstructure however, had a definite upper limit equal to the “Voigt upper 

bound” of classical elasticity. This is because plastic strain gradients were obliged 

to tend to zero as the scale of the microstructure reduced, giving (in the limit) the 

Voigt “uniform plastic strain” approximation. In the chapters to follow it is 

shown that this rather undesirable feature is not intrinsic to the specific gradient 

theory, but resulted from the “natural” mathematical assumption that both the 

plastic strain and plastic strain gradient were continuous across interfaces (and 

thus interfacial effects were not explicitly considered). This need not be so, 

however, if one considers that a dislocation crossing an interface will leave a 



 15

ledge on the interface and therefore add to its energy. Qualitatively, this relates 

to the admission of dislocation pileups near boundaries leading to the classical 

Hall-Petch mechanism [32,33] for grain-refinement strengthening (dislocation 

pileups correspond to local gradients in plastic strain). As it will be shown 

below, the assumption of continuity of plastic strain across interfaces is retained 

but the build-up (accumulation) of plastic strain at internal surfaces is penalized 

through the introduction of an “interfacial energy” term, which depends on the 

plastic strain there. In the context of strain-gradient theory, it induces a relation 

between the jump in higher-order traction and the interfacial plastic strain, and 

hence allows for the development of an “interfacial” yield-like condition.  

It is appropriate here to emphasize that dislocation pileups and dislocation 

transference across interfaces have been observed experimentally with the aid of 

conventional and in-situ transmission electron microscopy (TEM) nano-

indentation. It has been observed, for example, that plastic deformation is 

transmitted to grains adjacent to the indented grain through dislocation motion 

across grain boundaries [34]. Similar pre-dated observations have led the 

mechanics community to treat interfaces solely as obstacles to plastic flow, since 

they emit dislocations to adjacent grains, which have not yielded, only once the 

force exerted on them (by the leading dislocations) reaches a critical value. 

Alternatively, macroscopic yielding can be induced when the stress 

concentration that is produced by dislocation pile-ups is sufficient to activate slip 

in undeformed grains [35]. In this connection, it should be noted that 

consideration of interfaces through continuum lattice considerations provides 

corresponding expressions for the stress and displacement fields which, in turn, 

allow for the determination of the energy difference required to move a 

dislocation as a function of distance from the interface; the force exerted on 

dislocations across interfaces; and the interfacial energy as a function of misfit. It 

is more common, however, to express the interfacial energy as a function of 

interatomic potentials and distances; this is accomplished by examination of 
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interatomic interactions across interfaces (such as bond strength), within an 

atomistic approach [13a]. Finally, it should be noted that internal surfaces have 

been extensively modeled through materials science arguments, which consider 

interfaces within the framework of thermodynamics and hence an interfacial 

energy, which accounts for the excess free energy that arises from the presence of 

interfacial material is deduced. According to this approach internal surfaces are 

taken to be arrays of dislocations, i.e. screw or edge in single phase media, and 

misfit in two phase; while the interfacial energy is a function of internal surface 

orientation. It should be emphasized that in the present study the “interfacial 

energy” is viewed in a different manner since it is induced by plastic 

deformation and is therefore taken to be a function of the plastic strain on the 

interfaces. This form might be rather simple, but for the purposes of the 

proposed formulation it is perhaps the most efficient since it allows internal 

surfaces to follow their own yield behavior and the plastic strain gradient to 

suffer a jump across them. This jump depends on the constitutive response of the 

system, as well as on the ratio of the internal length over the specimen size; 

hence size effects not limited by an upper bound, as in [7], are obtained.  

The subsequent development is organized as follows: Chapter 2 elaborates 

on the underlying physics on which the gradient formulation that will follow is 

based. A physical overview is given for the types of interfaces that are common 

in metallic systems, such as grain boundaries (interfaces between same phases) 

and interphase boundaries (interfaces between different phases). Since grain 

boundaries are simpler, much more is understood about their structure and how 

they interact with dislocations; therefore a brief description on the topic is 

developed, in particular on the formation of grain boundary ledges which is the 

main motivation for the present work. Experimental evidence is also provided, 

concerning interface-dislocation interactions and the existence of dislocation 

pileups. 
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In Chapter 3 the “interfacial energy” penalty is introduced in the overall 

energy functional of the domain under consideration; first within the framework 

of classical plasticity (for comparison purposes), and then for a composite whose 

microstructure conforms to gradient plasticity. After prescribing the 

displacement on the outer boundary and allowing for continuous total and 

plastic strains across interfaces, the overall energy functional is minimized, 

providing thus the equilibrium, boundary and across internal surfaces 

conditions. The presence of the “interfacial energy” term induces a jump in the 

higher order traction. In the sequel, homogenization methods, which account for 

the presence of internal boundaries, are formulated and hence the effective 

response for very fine microstructure is deduced. In particular, a refined upper 

bounding technique is developed based on the “linear comparison method”, first 

introduced in the simpler context of physically-nonlinear elasticity, or classical 

deformation-theory plasticity [29]. This method allows for the effective response 

of nonlinear media to be bounded, by comparison with a medium with the same 

microgeometry, but linear response; it is therefore required to first obtain an 

exact solution or approximation for the linear medium. It should be noted that 

the upper bounds obtained in this chapter are scale independent, due to the 

presence the “interfacial energy” term.  

In Chapter 4 the new features of the previously developed formulation are 

illustrated by considering one dimensional, heterogeneous and homogeneous, 

examples in which interfaces are distributed periodically. These examples are 

chosen such that the constitutive differential equations developed in Chapter 3 

can be solved exactly. The response for the interfaces is first taken to be linear, 

but then a more physical nonlinear model, corresponding to the formation of 

dislocation pileups across interfaces, is developed. The distinctive feature of this 

model is that it allows for the determination of the stress required in order for the 

plastic strain to differ from zero on the interface; in the present study this stress 

is termed “interfacial yield” stress. In particular for the heterogeneous media, the 
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simple form assumed for the gradient dependent plastic potential allows 

analytical solutions to be obtained for the average stress-strain response. For the 

homogeneous material, however, this plastic potential, which corresponds to that 

employed in [7] is highly nonlinear and therefore only numerical solutions can 

be produced. An additional highly nonlinear potential is introduced for 

comparison purposes. All examples exhibit significant scale effects, which 

indicate a Hall-Petch type of behavior since the response of the material stiffens 

as its size is reduced.  

If one considers slightly more complicated problems, such as a random 

interface distribution, exact solutions cannot be obtained, and that is where the 

homogenization techniques of Chapter 3 come into play. In Chapter 5, therefore, 

the linear comparison method is illustrated for the aforementioned highly 

nonlinear homogenous media; it is shown that the approximate solutions that 

result from this technique coincide with the exact solutions that were obtained in 

Chapter 4. This method therefore is proven to be rather accurate, at least for the 

one-dimensional examples at hand, and is applied to find the response for the 

same highly nonlinear material, but for the case where interfaces are distributed 

randomly, according to a Poisson process. For this random case, an exact 

solution does not exist even for the linear comparison medium, whose solution is 

required in order to perform the comparison method. Therefore, two- and three- 

point statistics are used to obtain lower and upper bounds, respectively, for the 

nonlinear material response, which are then used to derive approximations for 

the stress-mean plastic strain curves. Surprisingly, the effective response is 

almost the same for both types of interface distributions. It should be noted that 

again all examples considered show significant size effects of Hall-Petch type, 

and are attributed to the presence of the interfacial energy-like term; in 

particular, these homogeneous examples would exhibit no scale effects 

whatsoever, in the absence of this term.    
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Chapter 6 is concerned with more interesting types of interfaces that are 

present between different phase materials, such as those present in metal-metal 

nanocomposites. Therefore the comparison method is applied to one-

dimensional heterogeneous media in which the interfaces that inhibit plastic flow 

are distributed either periodically or randomly. Again to obtain the solution for 

the random linear comparison medium, statistics taking into account two points 

at a time are considered. Unlike, in the homogeneous examples, the effective 

response for the periodic and random media does not exhibit close numerical 

proximity for all specimen sizes considered. This may be attributed to a greater 

extent to the randomness of the phases, instead of the random interface 

distribution.  

To better examine the effect of interfaces between different materials, in 

particular for the case of metal-fiber/metal-matrix composites, a three-

dimensional axially symmetric configuration, which is strained in tension, under 

generalized plain strain conditions, is modeled in Chapter 7. First, the variational 

principle of Chapter 3 is slightly modified so as to account for complete 

incompressibility and then solutions are obtained when both fiber and matrix 

have a linear gradient plastic response, along with a linear or nonlinear 

interfacial response. The main purpose of this chapter is to illustrate the features 

of the proposed formulation in higher dimensions; a highly nonlinear gradient 

potential is therefore not considered.  

In Chapter 8, finally, the existence of an “interfacial yield” stress is 

demonstrated through nano-indentation experiments on a Fe-14%Si bicrystal. It 

is shown that as the distance of the indenter tip to the grain boundary decreases 

the stress required for dislocation transference is increased. Since this is 

analogous to the Hall-Petch trend observed in the previous chapters, the 

experimental data are fitted to the theoretical expression for the “interfacial 

yield” stress (that was obtained in Chapter 4) and therefore estimates for the 

coefficients that come into play within this continuum formulation, such as the 
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internal length and interfacial energy-like term, are derived. This thesis, 

therefore, illustrates new aspects in both theory and experiment: It presents a 

new theoretical approach for the treatment of internal surfaces, and 

demonstrates the novel features resulting from this formulation through nano-

indentation experiments.  
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CHAPTER 2  

GRAIN-BOUNDARIES AND 
INTERFACES: A PHYSICAL 

DESCRIPTION 

The gradient plasticity theory developed in this thesis is the first continuum 

plasticity model to take explicitly into account the presence of grain boundaries 

and interfaces, their interaction with lattice dislocations and their effect on the 

overall material deformation and plastic flow. This is done by properly 

introducing an excess “interfacial energy” term into an overall energy functional 

and assuming that plastic strain gradients and their conjugate higher-order 

stresses are discontinuous across interfaces, while displacements and plastic 

strains remain continuous throughout the whole domain under consideration. 

The physics behind this mathematical model are dictated by the structure of 

grain boundaries/interfaces and their interaction with the bulk as this is 

determined through the motion and reaction of dislocations. These interaction 

processes may include the formation and destabilization of dislocation pileups in 

front of interfaces, the absorption and production of dislocations by grain 

boundaries, as well as the production/ annihilation of boundary ledges leading, 
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among other things, to discontinuities of plastic deformation gradients across 

interfaces.  

As this is the first time to attempt incorporating into a continuum plasticity 

theory such details of dislocation-interface interactions, only the dominant 

physical mechanisms are considered in the corresponding mathematical 

formulation for the sake of simplicity and effectiveness of the model proposed. 

These physical mechanisms are briefly discussed in this chapter which also 

provides a review of the structure of interfaces and their interactions with 

dislocations. Emphasis is given to grain boundaries as these planar defects are 

among the most common and well-understood internal boundaries and their 

central role in plastic flow is well-documented. Their crystallography is briefly 

reviewed in Section 2.1, while a related structural unit model is presented in 

Section 2.2 for high-angle grain boundaries in terms of a corresponding 

dislocation network which is also used to derive an expression for the grain 

boundary energy. In this connection, interfaces other than grain boundaries, as 

those occurring in multilayer films, superalloys, and metal-metal 

nanocomposites are discussed in Section 2.3. Finally, in Section 2.4 and Section 

2.5 dislocation-boundary interactions, which motivate the gradient development 

of Chapter 3 are examined. The purpose of this chapter, as well as that of 

Chapter 8, is to pave the way for obtaining microscopic expressions for the 

phenomenological coefficients of the continuum theory developed and evaluated 

in Chapters 3-6, design appropriate tests for the experimental determination of 

these coefficients, and provide sufficient physical and experimental background 

for future improvements of the theory.   

 

2.1 CRYSTALLOGRAPHIC DESCRIPTION 
 
Grain boundaries, constituting the boundary between two single crystals of the 

same phase with different orientation, are the most common interfaces present in 
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polycrystalline materials. A grain boundary has 8 degrees of freedom: the 

misorientation axis and angle, the boundary plane normal and the relative 

translation of the two grains with respect to each other. For ordered alloys the 

position of the boundary plane in the direction of its normal, corresponding to 

different chemical compositions of the boundary plane, is an extra degree of 

freedom. Grain boundaries may be of the tilt type (the rotation axis is in the grain 

boundary plane) or of the twist type (the rotation axis is perpendicular to the 

grain boundary plane) (Fig. 2.1).  

 
 

Fig. 2.1: Grain boundary types. (a) Tilt boundary. The misorientation axis lies in the boundary 
plane. (b) Twist boundary. The rotation axis is perpendicular to the boundary plane 

 
A general grain boundary can be of tilt, twist, or mixed tilt and twist 

character. Several models have been proposed to describe the structure of grain 

boundaries. For example low angle grain boundaries (i.e. low misorientation angle) 

can very well be described by means of a dislocation network (Fig.2.2). The 

dislocation spacing d for a simple case like the symmetric tilt grain boundary 

then follows from: 

 
2sin( / 2)

b bd
θ θ

= ≈ , (2.1) 
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where θ  and b are the misorientation angle, and the magnitude of the Burgers 

vector. For misorientation angles higher than about 10o the dislocation spacing 

decreases so much that individual dislocations cannot be discriminated any more 

and the model has less physical meaning. A more general low-angle grain 

boundary procedure for finding the dislocation structure was devised by Frank 

[36], a brief description in given in Appendix 1.  

  

 
Fig. 2.2:   a) symmetric tilt grain boundary; b) antisymetric tilt grain boundary 

 

A model that is not restricted to low misorientation angles is the Coincidence 

Site Lattice (CSL) model [37,38]. This model uses the dichromatic pattern which is 

created by hypothetically allowing the lattices of the two grains to interpenetrate. 

The lattice sites belonging to grain 1 are considered white whereas those of grain 

2 are black. For certain misorientations a new CSL (super) lattice of coincident 

lattice sites of the white and the black lattice exists (Fig. 2.3a). The parameter Σ  is 

defined as the ratio between the volume of the CSL unit cell and the primitive 

unit cell. The density of coincident lattice sites in space equals 1/ Σ . A grain 

boundary is constructed by inserting a plane in the dichromatic pattern and 
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letting the atoms occupy the white sites on one side of the plane and the black 

sites on the other side of the plane. The location of the plane can be chosen such 

that it intersects coincidence points (Fig. 2.3b). 

 

 
Fig. 2.3: (a) The dichromatic pattern of a 5Σ  boundary in a simple cubic structure. Projection 
along the [1 0 0] direction. Coincidence of black and white sites is indicated by black sites 
containing a white circle. The solid lines connecting the coincident sites indicate the 
Coincidence Site Lattice (CSL). The CSL periodicity in the [1 0 0] direction out of the plane of 
the paper is equal to the lattice periodicity.b) Grain boundary constructed on the basis of the 
dirchromatic pattern of (a). The broken line indicates grain boundary plane.  
 

In the early stages of the development of this model, it was reasoned that a 

high density of coincidence sites in the boundary plane would mean a low grain 

boundary energy. Nowadays, it is considered that this relation is not so simple 

[39], but for some low  (and thus high density of coincidence sites) boundaries 

indeed lower energies are found; this is shown in Fig. 2.4, which illistrates the 

cusps in the measured grain-boundary energy as a function of misorientation for 

a symmetric [110] tilt boundary in NiO. It can be seen that there is no cusp at the 

9Σ  misorientation with boundary planes { }114 at 141o despite the low value of 

Σ [46]. 
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Fig.2.4: Cusps in the measured grain-boundary energy as a function of misorientation of a 

symmetric [1 1 0] tilt boundary in NiO 
 

Also it has been established that there may exist a relative translation away 

from exact coincidence for the equilibrium structure of a low  boundary and the 

individual atoms at the grain boundary plane may have been displaced. It has to 

be noted that the CSL is a mathematical model: an infinitesimal rotation or 

translation of one grain with respect to the other destroys the whole CSL. 

Nevertheless, a grain boundary with the same misorientation but translated 

away from coincidence is still regarded as being a boundary of the same special 

coincidence and as having the same  value. The translational symmetry of such a 

boundary is the same as that of the boundary in exact coincidence. 

The Displacement-Shift-Complete (DSC) lattice [38,41] of a bicrystal in CSL 

orientation is the lattice of the displacement vectors of one grain with respect to 

the other that keep the dichromatic pattern (black and white sites) unchanged 
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except for a translation. In other words, if the black lattice is displaced over a 

vector belonging to the DSC lattice, the black atoms that were in coincidence 

with the white atoms may have lost their coincidence, but somewhere else black 

and white atoms will now be in coincidence and the dichromatic pattern (and the 

CSL) will have the same shape as before (see Fig. 2.5). The DSC lattice is the 

coarsest lattice that contains both crystal lattices of the two grains as sublattices. 

It has smaller unit vectors than the unit vectors of perfect lattice. Note that each 

CSL has a specific DSC lattice associated with it. The fact that the dichromatic 

pattern is unchanged for a displacement over a DSC vector of one grain with 

respect to the other has consequences for the types of Burgers vectors that are 

allowed for dislocations in the grain boundary plane. A perfect dislocation must 

have a Burgers vector that is a translation vector of the material in which it exists. 

Now, if we have a grain boundary, we have just seen above that a displacement 

over a vector that belongs to the DSC lattice leaves the dichromatic pattern 

unchanged except for a translation. Thus, in a grain boundary, grain boundary 

dislocations (also called DSC dislocations) with Burgers vectors belonging to the 

DSC lattice can exist. The displacement over a DSC vector may cause a shift in 

the dichromatic pattern, over a vector, called the step vector (Fig. 2.5).  

The dislocation is then associated with a step in the grain boundary plane, 

located at the core of the dislocation [42,43]. The height of the step in the grain 

boundary plane can conveniently be expressed in terms of interplanar spacings, 

i.e. the distance between crystallographic planes parallel to the boundary plane. 

Dislocations in a grain boundary having a Burgers vector that belongs to the DSC 

lattice and that is not a lattice translation vector of either grain can only exist in 

the grain boundary and the movement of these dislocations is constricted to the 

grain boundary plane. As the DSC lattice is specific to a CSL orientation, each 

grain boundary has specific allowed Burgers vectors for grain boundary 

dislocations. 
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Fig. 2.5: Same boundary as Fig. 2.3. The basis vectors b1 and b2 of the DSC-lattice belonging 
to this boundary are indicated. b3 points out of the plane of the paper. The double lines 
indicate the new location of a CSL unit cell if the black lattice is translated with respect to the 
white lattice over b1. The vector connecting the original and the new position of the CSL unit 
cell is called the step vector associated with the b1 DSC vector. 

 
2.2 STRUCTURAL UNIT MODEL 
 
A model for the structure of high angle grain boundaries was proposed in 

[39,44,45]. Periodic boundaries with a low index rotation axis (rotation axis [h k 

l], with h, k, l small) but not having a high degree of coincidence are described in 

terms of boundaries with a high degree of coincidence and the same rotation 

axis. When the misorientation changes, the structure of a high coincidence 

boundary is thought to be preserved as much as possible, with periodic localized 

disturbances in the boundary plane, called “structural units”, which are 

characteristic of the high coincidence boundary that is next in misorientation. 

This model can also be described in terms of dislocations. A high coincidence 

boundary is described as a very evenly and very closely spaced dislocation 

network, called the primary network (as stated before, this network has little 

physical meaning). A low coincidence boundary is considered to be established 
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on the basis of a high coincidence boundary with nearby misorientation. This 

high coincidence boundary is thought to contain, in addition to the primary 

network, a widely spaced dislocation network to accommodate the 

misorientation difference. This dislocation network is termed secondary 

dislocation network and the spacing of this network is of course much larger, as 

it describes the smaller misorientation difference between the low and the high 

coincidence boundary. This model was confirmed by observations of dislocation 

networks in near coincidence twist and tilt boundaries in gold [46,47]. The 

spacing of the dislocations in the networks could be related to the difference 

between the measured misorientation and the exact misorientation of the high 

coincidence boundary. 

Based on the model mentioned above and on computer simulations of grain 

boundaries in fcc metals, a so-called structural unit model has been developed  

[48,49]. In the structural unit model, certain boundaries are found to be the 

constituting elements of other boundaries in the same misorientation range. The 

boundaries that consist of only one element are called favored boundaries. 

Boundaries that are not favored consist of elements (or building blocks), called 

structural units of favored boundaries in the nearby misorientation range. It was 

found that favored boundaries were not always associated with lowest Σ  values. 

An example of the application of the structural unit model from computer 

simulations is given in Appendix 1.  

As an illustration of the physical description of grain-boundaries we take 

{111} twist boundaries in fcc materials. The most important symmetry element 

governing structural features of (111) twist boundaries is the [111] threefold 

screw axis of the cubic lattice, which any dislocation (111) twist grain boundaries 

in f.c.c. metals network present in these boundaries must possess. Such networks 

have either triangular or hexagonal symmetry. In general, such a network 

consists of three different types of dislocations with Burgers vectors ib  (i = 1, 2, 3) 

for which  
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 0i
i

b =∑ . (2.2) 

The average separation, d, of dislocations in each set, is determined by Frank's 

formula [36]. This condition can be expressed most conveniently by introducing 

the vectors [54] 

 ( )i i iN N n ξ= × , (2.3) 

where n  is the unit vector in the direction of the boundary normal and iξ  is the 

unit vector in the direction of the dislocations of type i. Furthermore,  

 
1

2 sin
2i iN d θ −∆⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (2.4) 

where θ∆  is the misorientation across the boundary away from a reference state 

and di the average separation of dislocations of the set i. Owing to the threefold 

symmetry  

 0iN =∑ , (2.5) 

and the magnitudes of all three vectors iN  are the same. Hence all the average 

separations di are also the same and in the following they are marked d. Noting 

that the rotation axis is in this case parallel to the boundary normal, Frank's 

formula reads  

 ( )i
i

V n b N V× = ×∑ , (2.6) 

where V is an arbitrary vector in the boundary plane. Using conditions (2.2) and 

(2.5), (2.6) can be written as  

 1 2 1 1 2 2(2 )( ) ( 2 )( )V n b b N V b b N V× = + × + + × , (2.7) 

and since it has to be satisfied for any vector V  it represents six linear equations 

for the components of the vectors 1N and 2N . In the coordinate system for which 
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the x-axis is parallel to the boundary normal, n , and the y-axis is parallel to the 

projection of the Burgers vector 1b  in the boundary plane; the solution is 

1 1/ [0, 2 / 3,0]N b= −  and 2 1/ [0, 1/ 3,1/ 3]N b= − , where b is the magnitude of the 

projection of the Burgers vectors of the dislocations to the boundary plane 

(owing to the threefold symmetry b is the same for all three types of 

dislocations). The Burgers vectors of these dislocations may have components 

perpendicular to the boundary but it follows from (2.2) and (2.7) that these 

components have to satisfy the conditions 2 3 1 / 2b b b⊥ ⊥ ⊥= = − .  

When the vectors 1N  and 2N  are known the average separation of the 

dislocations of the network can be found using (2.4). In the present case this gives 

[55] 

 3
4sin( / 2)

bd
θ

=
∆

. (2.8) 

In the case of regular triangular networks d is directly the separation of the 

dislocations forming the sides of the triangles. In regular hexagonal networks 

dislocations forming a given set of parallel sides of the hexagons are effectively 

broken into segments, the total length of which is equal to the one third of the 

length these dislocations would have if they were not segmented. Hence the 

separation of the dislocations forming a given set of the sides of the hexagons is 

equal to d/3.  

When well-localized dislocations can be identified in grain boundaries a 

significant elastic energy is associated with such a network. This was first 

recognized by Read and Shockley [56], who evaluated this energy as a function 

of θ∆  for pure tilt boundaries and showed that it is responsible for the existence 

of cusps on a plot of the energy against misorientation dependence for 

misorientations corresponding to certain special boundaries which serve as 

reference structures for other grain boundaries. An exact evaluation of the elastic 

energy of a tilt boundary as the strain energy of a wall of edge dislocations is 
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presented in [54] for the case of isotropic elasticity.  For a small angle tilt 

boundary the energy per unit of area of the boundary becomes 

 0 ( ln )tilt A Bγ γ θ θ≅ + ∆ − ∆ , (2.9) 

where  

 
4 (1 )

bA µ
π ν

=
−

, (2.10) 

and  

 2

4 (1 ) lncEB
b

π ν α
µ
−

= − . (2.11) 

The core-radius of the grain-boundary dislocation is expressed as cr bα= , while 

cE  refers to the core energy per unit length, µ and ν  are the shear modulus and 

Poisson’s ratio, respectively, and 0γ  is the energy of the corresponding reference 

state. 

The calculation of a screw dislocation network representing a twist grain 

boundary is more complicated. Using the same method, the elastic energy of a 

rectangular network of screw dislocations, applicable to (001) twist boundaries, 

has been derived in [57]. A similar calculation is presented in the sequel for a 

network composed of three sets of screw dislocations, which is a good 

approximation for dislocation networks found in (111) twist boundaries.  

To evaluate the elastic energy of a network of screw dislocations, we 

consider in a similar fashion to [54, p.740], a pair of such networks of opposite 

sign in an infinite crystal. The specific energy of formation of such a pair, when 

well separated, is then twice the energy per unit area of the network. The average 

separation of the dislocations in this network given by Frank's formula (2.8), is d, 

and owing to the threefold symmetry the average length of the dislocations 

separated by d is 2 / 3l d= . The zy plane is taken to be the plane of the 

boundary, and one set of dislocations is parallel to the z-axis. The force in the x 
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direction (perpendicular to the boundary) per unit length of a dislocation of 

opposite sign which lies parallel to the z-axis is 23bσ−  , where again b is the 

magnitude of its Burgers vector and 23σ  the corresponding component of the 

stress field associated with the network in the zy plane. The energy per length l  

per dislocation in one boundary can then be calculated as one half of the 

interaction energy of this dislocation with the dislocation network and is equal to 

 
0

23
0

1
2

l

r

W bdxdzσ
∞

= ∫ ∫ ,                                        (2.12) 

where 0r  is the core radius of the dislocation. The elastic energy per unit area of 

the boundary is then  

 
0

232
0

3 13
4

l

el
r

W bdxdz
S d

γ σ
∞

= = ∫ ∫ ,                                  (2.13) 

where 2 2/ 2 3 2 / 3 3S l d= =  is the area per dislocation segment of length l . In 

the framework of linear isotropic elasticity the stress field associated with the 

dislocation network can be evaluated as a sum of the stresses of individual 

dislocations. Following the same procedure as employed in the case of the wall 

of edge dislocations [54, p.731], it is obtained that for the network of three screw 

dislocations related by a threefold axis symmetry operation  
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where µ is the shear modulus. After inserting (2.14)  into (2.12) and (2.13) (for 

y=0) and carrying out the integration it is found that  

 { }
2

2ln cosh cosh 1 ln(cosh 1) ln 2
4el

b
d

µγ α α α
π

⎡ ⎤= + − − − −⎣ ⎦ ,        (2.15) 

where 02 /r dα π= . For small misorientations, i.e. 01, 3 / 2d b rθ θ∆ ≈ ∆  and 

1α , coshα can be written as 2cosh 1 / 2α α≈ + . It thus follows that neglecting 

all the terms of order higher thanα  in (2.15) allows elγ  to be expressed as 

 
2

0 02ln
2el

r rb
d d d

π πµγ
π

⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (2.16) 

Furthermore, using the above relation for d it is concluded that 

 0

0

2 3ln ln
3 3 4el

rb b
b r

πµγ θ θ θ
π π

⎡ ⎤⎛ ⎞
= ∆ + − ∆ ∆⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. (2.17) 

This formula is very similar to that obtained for a square grid of screw 

dislocations. It should be noted that the term ( )02 / 3r bπ θ∆  inside the square 

brackets in (2.17) cannot be neglected with respect to other terms, particularly 

when 0b r  since this is often the case for grain boundary dislocations whose 

Burgers vectors are usually smaller than the spacing of nearest neighbors, which 

is a lower limit for 0r . No such term exist in the same approximation when 

evaluating the energy of a wall of edge dislocations. The energy of the grain 

boundary is then 

 0
twist

elγ γ γ= + , (2.18) 

where 0γ  is the energy of the corresponding reference state. This leads to the 

energy against misorientation dependence, with cusps at 0θ∆ = . Qualitatively 

this dependece is similar to that observed in Fig. 2.4.  
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2.3 OTHER TYPES OF INTERFACES 
 
The mathematical theory to be developed in Chapter 3 is not restricted to 

boundaries in homogeneous media, i.e. grain boundaries, but is also applicable 

to more general situations such as interfaces in metal-metal nanocomposites and 

superalloys, as well as multilayer films. Although less is understood for such 

boundaries, in particular since metal-metal nanocomposites are in an 

experimental stage, it is essential to give a brief overview of types of interfaces 

present in chemically heterogeneous systems. These interphase interfaces are 

classified as coherent , semicoherent or incoherent depending on the mismatch of the 

adjacent lattices at the interphase plane. 

Coherent boundaries are present when the lattices of the two crystals match 

perfectly; an interfacial energy, however, is still present since at the interface 

there is a change in composition and each atom is bonded to the wrong neighbor. 

The relatively small atomic mismatch that may be present is accommodated by 

coherency strains. Since these strains increase the interface free energy, it follows 

that for significant atomic misfit, i.e when the atomic separation is very different 

in the two adjoining phases, it becomes energetically favorable to release the 

coherent strains by misfit dislocations, hence producing semicoherent interfaces.  

The energy of such interfaces is higher than the coherent ones since in addition to 

the energy term that results from the difference in chemical composition across 

them (and is equal to the energy of a fully coherent interface), the lattice misfit δ 

(which determines the dislocation spacing) gives rise to a structural energy term. 

When δ>0.25 the dislocation cores begin to overlap and the interface becomes 

completely incoherent. Incoherent interfaces are therefore present between crystals 

that have very different compositions, and structures at the interface plane, or 

they may be formed by joining two randomly oriented crystals across an 

interface plane. They are characterized by a very high energy, which is not 



 36 

dependent on orientation, but very little is known about them; they are believed 

to behave like high-angle grain boundaries.  

It is interesting to note that coherent interfaces have low energies, which 

range up to 200mJ/m2, in particular it has been estimated that for certain 

boundaries in Cu-Si alloys these energies reach a low value of 1mJ/m2; 

semicoherent interfaces have an energy range between 200-500mJ/m2; while 

incoherent interfacial energies vary within the values 500-1000mJ/m2.  

The aforementioned interfacial energies values, have been determined 

experimentally, and account for the density of the interfacial “free energy” term  

Γ   that arises from the presence of interfacial material, and determines the total 

free energy of the system through the equation 

oG G A= + Γ ,                                                     (2.19)   

where G is the total free energy, Go is the free energy of the bulk material (with 

no interfaces) and A is the interfacial area. It should therefore be emphasized that 

these “classical” interfacial energies are substantially different from the 

interfacial term that is proposed in the subsequent novel formulation. In 

particular, the “interfacial energy” that will be introduced in Chapter 3 is 

induced by plastic deformation, and provides a measure of the resistance of 

interfaces to dislocation motion. It is additional to Γ  and is dissipative in 

character. Non-equilibrium kinetics and dislocation considerations (e.g. misfit or 

threading dislocations) can be considered to model the interaction of adjacent 

phases, and hence the interfacial strength, which in connection with physical 

input can provide estimates for the phenomenological coefficients used in the 

continuum gradient plasticity model developed in Chapter 3.  The most reliable 

way, however, to obtain estimates for these new coefficients is to design and 

perform experiments, which give information about dislocation motion during 

plastic deformation. This will be shown in Chapter 8.       
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2.4 DISLOCATION-BOUNDARY INTERACTIONS 
 
The degree to which grain boundaries hinder the motion of dislocations is crucial 

for the occurrence of failure. Because of the hindrance of dislocation movement, 

stress concentrations develop that eventually may lead to intergranular fracture 

along the grain boundaries. If the grain boundary contains a secondary, widely 

spaced dislocation network (Section 2.2), or if there are already extrinsic grain 

boundary dislocations present in the grain boundary plane, there may be elastic 

interaction with a long range character between the dislocations in the grain 

boundary and the lattice dislocations. After entering the boundary, the 

dislocation will almost always alter the plane on which it propagates and the 

resolved shear stress on this plane, resulting from the externally applied stress, 

will change. It is known from crystallography that the dislocation may be 

absorbed in the grain boundary plane, reducing its elastic energy by dissociating 

into grain boundary dislocations.  

Lattice dislocations will experience different forces when they approach 

interfaces. In particular, the force ( F ) on a dislocation is due to the sum of 

applied stress ( Aτ ), compatibility stress ( Cτ ), intrinsic stress ( Iτ ) and extrinsic 

stresses ( Eτ ) due to other lattice dislocations. The force is therefore given by 

 ( )ˆ; ,i ij j A C I EF t t b or t bξ τ τ τ τ τ τ τ= × = = = + + + , (2.20a) 

where τ  is the total stress tensor, b  denotes the Burgers vector and ξ̂  denotes 

the tangent unit vector along the dislocation line. In addition, because of the 

difference in elastic constants across a heterophase interface, image forces are 

exerted on the lattice dislocation. The image force for a screw dislocation parallel 

to the interface in medium 1 at a distance d  feels an image force that is given by 
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+
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When medium 1 is harder than medium 2 the dislocation is repelled from 

the interface in the positive x̂ direction and vice versa. The situation for edge 

dislocations is somewhat more complicated and solutions have been discussed in  

[13] whereas interface dislocations are treated in more complex situations in 

[14,16,58,59]. It turns out that in a general case, taking into account anisotropy 

effects, the image force on a lattice dislocation can be formulated as 

 ,
1

image i disF E E
d∞= − ,                                         (2.21) 

where ,i disE  is the energy of the dislocation right at the interface and E∞ the 

energy of the same dislocation in an infinite anisotropic crystal [60].  Simple 

calculations show that imageF  can easily reach a value of 310 bµ−  for a lattice 

dislocation at a distance of 10b from the interface.  

The compatibility stress in (2.20a), which is due to the difference between 

plastic strains in the two media having a boundary in-between, is related to the 

difference in strain components in medium 1 and medium 2 

 1,2
C ijτ µ ε∝ ∆ ,                                                (2.22) 

where the strain fields in terms of the slip direction p̂ and slip plane normal q̂ are
  

( )1,2 1
2

n n n n
ij i j j i

n

p q p qε = +∑ .          (2.23) 

Depending on the anisotropy of the system the compatibility stress can be of the 

same order of magnitude as the applied stress. 

Under an applied stress a number of interaction processes between lattice 

dislocations and grain boundaries may be discriminated, as seen in Fig. 2.6.: 

(i)  A dislocation may move into the grain boundary, while another lattice 

dislocation emerges from the grain boundary into the other grain. As the other 

grain has a different orientation, the outgoing dislocation may have a Burgers 

vector that differs from the incoming dislocation. A residual dislocation remains 
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in the boundary plane with a Burgers vector that is equal to the difference of the 

Burgers vector of the incoming and outgoing dislocation. The residual 

dislocation is always a DSC dislocation. This mechanism is referred to as 

transmission. 

(ii)  The incoming lattice dislocation can dissociate into grain boundary 

dislocations or DSC dislocations. In this way the elastic energy of the dislocation 

can be reduced. This mechanism is referred to as absorption. Between the grain 

boundary dislocations, a step (ledge) in the grain boundary plane may be 

created. Certain atoms, which belonged to the lower grain before the lattice 

dislocation was absorbed, end up in the upper grain after absorption and hence 

have to adapt their positions to the lattice of the upper grain. If the step in the 

grain boundary plane is larger than one interplanar spacing, the adaptation 

cannot be achieved by means of a simple rigid-body translation, and a less 

ordered relocation, called shuffling, of the atoms takes place. Analogous to lattice 

dislocations, grain boundary dislocations may dissociate in the grain boundary 

plane into partial grain boundary dislocations, creating a fault in the grain 

boundary plane between them. 

(iii)  In addition there are more complex mechanisms, like absorption and 

re-emission of a lattice dislocation at another site in the boundary. 

  The grain boundary dislocations that stem from an absorbed lattice 

dislocation or that are the residual dislocations after transmission of a lattice 

dislocation are called extrinsic grain boundary dislocations, as opposed to 

intrinsic grain boundary dislocations, which form the secondary dislocation 

network in a grain boundary. Besides these mechanisms describing the 

interaction between lattice dislocations and grain boundaries, dislocations may 

be nucleated at the grain boundary. A grain boundary can act as a source of 

dislocations that can be generated under the influence of a stress field. The 

dislocations can be generated in either grain and in the boundary plane. For the 

case of transmission of a lattice dislocation into the other grain, a number of 
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criteria for the selection of the slip system in the other grain have been proposed. 

Criteria have also been proposed based on post-deformation observations and 

in-situ deformation experiments using Transmission Electron Microscopy [65]. 

 

 (a)   (b) 

(c)  (d) 

    Fig. 2.6: Interaction mechanisms between lattice dislocations and grain boundaries. Conservation of the 
Burgers vector requires: 

( ) ( ) ( )IN OUT GB
i j ki j k

b b b= +∑ ∑ ∑  

 a: direct transmission by cross-slip of screw dislocations. Both slip systems intersect along a common line 
in the boundary and the Burgers vector does not change; b: transmission with the creation of a residual 
dislocation along the boundary. Both slip systems intersect along a common line in the boundary but upon 
crossing the Burgers vector changes; c: absorption: the lattice dislocation dissociates in the grain boundary 
plane into DSC (or grain boundary-) dislocations and a step in the grain boundary plane is created 
between the DSC dislocations. No transmission in the other grain; d: No common line of intersection of 
the  slip systems. Glissile GB dislocations are produced and  pile up in front of a step that acts as an 
obstacle. The pile-up produces high enough stresses to generate outgoing dislocations. A residual 
dislocation is left behind at the grain boundary. 
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In fact, in-situ deformation in a TEM is one of the very few techniques by 

which the development of the interaction between lattice dislocations and 

interfaces can be studied and which at the same time allows one to analyze the 

configuration. By this technique, samples which have not yet been deformed are 

strained inside a TEM in a special straining holder. In practice there are a number 

of complexities. The dislocations may have high velocities and therefore they 

may be difficult to observe when moving. As the strains are usually very small in 

in-situ experiments, the deformation is not homogeneous and therefore it may 

take place in a different part of the sample; e.g. in the region that is not 

transparent for electrons or in a part of the electron transparent region that is not 

in contrast at that moment. In addition, it is always possible that there is a 

substantial influence of the fact that the interaction is studied in a very thin foil, 

while we are interested in bulk properties; since the electron transparent region 

may have a complicated geometry because of the thinning and therefore the 

stresses in the thin region may be different from the bulk stress state. Further, an 

oxide layer on the surfaces may hinder the motion of dislocations. Therefore, care 

must be taken to study the interactions in the thicker regions of the foil. 

Nevertheless, in many cases, the in-situ TEM technique is a promising tool for 

investigations of dislocation-grain boundary interactions [13b]. As the state prior 

to deformation is known, the changes that have been introduced because of the 

deformation can be deduced even if the interaction has not been observed 

directly. Analogous to the slip lines at the surface of a bulk sample, each 

dislocation that moves may leave behind an atomic step in the surfaces of the 

thin foil. Under the right imaging conditions, these atomic steps give rise to a 

diffraction contrast and, therefore, even if a dislocation has not actually been 

seen to move, it may be possible to deduce the motion of a dislocation by the slip 

traces that it has left. Often cracks (some of which were already present before 

the deformation started) are observed during in-situ transmission electron 

microscopy straining experiments that have initiated at the edge of the thin foil, 
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propagating along planes. Dislocations are often seen to be emitted from the 

crack tip, in the plane of the crack and sometimes also on inclined planes. Quite 

frequently, the propagation of the crack occurred in a jerky type of motion and 

then, it is impossible to observe any dislocation motion. The schematics of Fig.2.6 

illustrate what occurs during two in-situ TEM experiments in ordered alloys. In 

many of L12 ordered compounds, e.g. Ni3Al, often coherent twin boundaries ( Σ 3, 

109.47o around [110] with boundary plane), can be found in the electron 

transparent region (see Fig. 2.7). By tilting to an edge-on position, the boundary 

plane has been determined to be (111) , which is equal to (11 1)II  . The index II 

indicates the co-ordinate system of the grain containing the dislocations. The 

plane of the crack that arose during an in-situ straining experiment was 

determined to be close to (1 11)  and the slip plane of the dislocations was 

determined to be (1 1 1)II . By the .g b  invisibility criterion, the Burgers vector of 

the dislocations was determined to be parallel to [1 1 0] II; this is the [1 1 0] 

direction that is common to both grains. The line direction was determined to be 

[2 3 0] II ±13o, which is close to the [1 1 0] II screw direction. As the [1 1 0] 

direction is common to both grains, the Burgers vector could remain the same in 

both grains and no residue is left in the boundary. The line vector is parallel to 

the intersection of crack plane and outgoing slip plane and thus, transmission 

could occur without rotation of the dislocation line in the boundary plane. So, 

this reflects the situation as shown in Fig.2.6(a), but because of the special 

crystallography this surely is a very special case. The large number of 

dislocations in Fig.2.7 indicates that there was a large force on the leading 

dislocation of a pile-up in front of the boundary, necessary to cause transmission 

of the dislocations to the other grain. Grain boundary sources of course cannot be 

ruled out as origin of the observed dislocations. However, very often, if 

operation of grain boundary sources is observed, there is generation of 
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dislocations on many different slip planes, while here, all the dislocations are on 

one single slip plane.  

                       

                      Fig. 2.7: The dislocation configuration attached to the slip lines. 
1: crack, 2: boundary plane, 3: dislocation array [13b][64b,64c] 

 

 

 
 
   Fig. 2.8: In-situ TEM observations. Upon increasing strain (left to right) super lattice 
dislocations arrive at the boundary. Most of the super lattice dislocations are absorbed in the 
boundary. In the picture on the right, one super lattice dislocation is pushed out from the 
boundary into grain M upon increasing deformation [13b][64d]. 
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In another example it can be concluded that most of the super lattice 

dislocations moving in an L12 alloy, i.e. in grain T in Fig. 2.8, were absorbed into 

the boundary plane. Also transmission was observed into grain M leaving slip 

traces in a direction parallel to the slip plane, but not at the same spot upon 

arrival. Upon increasing deformation, dislocations were seen to move slowly into 

grain M. Here the situation as schematically shown in Fig. 2.6(d) is common 

practice. 

For the prediction of the slip plane, a geometrical criterion is used. The 

angle between the intersection line of the incoming slip plane and the grain 

boundary plane   inI and the outgoing slip plane and grain boundary plane outI  

should be as small as possible. Transmission of dislocations through the grain 

boundary requires rotation of the dislocation line over this angle. This motion 

usually will require climb, which is a diffusion limited process, and this hinders 

dislocation transmission. In addition, the angle between the slip direction (i.e. the 

direction of the Burgers vector) of the incoming ( ing ) and outgoing ( outg ) slip 

systems should be minimized. This criterion can be expressed as follows: 

( ) ( )in out in outM I I g g= × × × ,                   (2.24) 

where M  should be maximized. The Burgers vector of the dislocation on the 

outgoing slip plane is calculated as the one with the maximum force from the 

incoming dislocations acting on it. 

A set of criteria were also proposed in [62] which are similar to those in [63]  

based on in-situ TEM observations: 

(i)  The outgoing slip plane is determined by minimizing the angle between 

the intersections of incoming ( inI ) and outgoing ( outI ) slip planes. Expressed 

mathematically: 

in outM I I′ = ×  ,                                              (2.25) 

where ′M should be maximized. 
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 (ii)  The magnitude of the Burgers vector of the residual dislocation left in 

the grain boundary should be a minimum. 

 (iii)  The outgoing slip system should have the maximum resolved  shear 

stress from the piled up dislocations.  

Criteria (ii) and (iii) may be contradictory with respect to the prediction of the 

Burgers vector of the outgoing dislocations. Based on microscopy observations 

criterion (ii) seems to dominate [62].  

         

2.5 PILEUPS AND LEDGES 
 
Physical observations, such as those discussed in the previous section, have 

stimulated the study of dislocation pileups, which along with grain boundary 

ledges, motivated the development of a gradient plasticity theory with an 

interfacial penalty (Chapters 3-7), as well as its experimental confirmation 

through nano-indentation tests (Chapter 8). Both of these features, i.e. pileups 

and ledges, are important for understanding: grain size strengthening and, in 

particular, for substantiating the Hall-Petch relation; the need of an interfacial 

energy-like term; and the assumption of discontinuous plastic gradients across 

interfaces, which are the physical mechanisms underlying the formulation of 

Chapter 3. 

 

2.5.1 Dislocation pileups 
 

The significance of interfaces within a mechanical behavior framework is 

most easily attested from strong experimental evidence showing that in 

polycrystalline bulk materials and multilayer films the strength increases when 

the grain boundary or interlayer spacing decreases, resulting in grain boundary 

and interface strengthening, respectively. This phenomenon is described by the 

celebrated Hall-Petch relationship, which can be written in the form [65] 

1/ 2
i H PK dσ σ −

−= + ,                                          (2.26) 
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where σ is actually the yield stress, iσ is the lattice friction stress resisting 

dislocation motion in the lattice, H PK −  is the Hall-Petch coefficient and d 

represents the grain size or interlayer spacing. Various microscopic expressions 

can be deduced for H PK −  depending on the prevailing lattice-interface interaction 

that is taking place through dislocation motion and production. In fact, it may 

even be possible for H PK −  to formally attain negative values when the grain size 

is reduced down to nanometer dimensions (inverse Hall-Petch relation, [66]). 

A most commonly acceptable strength increasing mechanism results from 

the fact that all internal boundaries are obstacles to dislocation movement, since 

once they come upon a boundary they do not have the correct Burgers vector or 

slip plane to glide into the next crystal, as a result dislocations pileup there. The 

degree to which interfaces hinder the motion of the dislocations could be crucial 

for the occurrence of localized heterogeneous plastic flow, often leading to 

failure, since  stress concentrations will develop that will eventually lead to 

intergranular  fracture along the boundaries.  

The occurence of pileups is shown in Fig. 2.9.  

 

 

Since dislocations are carriers of plastic strain it can be seen that dislocation 

pileups may induce gradients in the plastic strain, which in conjunction with the 

source interface 

      Fig. 2.9: Dislocation pile up 
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formation of boundary ledges may result in plastic strain gradient discontinuities 

across such barriers. In general, dislocations that form near internal surfaces and 

obstacles, where the strain is not compatible, are termed “geometrically 

necessary dislocations” [67], therefore the gradient of the plastic strain may be 

viewed as a measure of the density of such dislocations. In this connection it is 

pointed out that certain gradient plasticity theories [3,8] are directly based on the 

additivity of the densities of usual dislocations distributed in the grain interior 

(commonly termed “forest” or “statistical” dislocations) and the aforementioned 

“geometrically necessary” dislocations that are accumulated near interfaces to 

relax strain incompatibilties. In the sequel the dislocations that form in the grain 

interior will be called lattice dislocations, to distinguish them from those present 

in interfaces (as was done in the previous sub-section). 

More details on dislocation pileups and their interaction with a grain 

boundary is provided in Chapter 8. In particular, the stess at which the 

dislocations cross the interface is computed through nano-indentation 

experiments; this allows for the physical substantiation and experimental 

verification of the model proposed in Chapter 3. 

 

2.5.2 Grain Boundary Ledges 
 

In connection with the assumed discontinuity of plastic strain gradient across 

interfaces (which is a basic premise in the model development of Chapter 3), 

reference is made to the formation of grain boundary ledges as shown in Fig. 2.10 

[68]. Fig. 2.10(a) shows the movement of GBDs along the grain boundary plane in 

the direction of the arrow, while Figure 2.10(b)  shows their coalescence to form a 

grain boundary ledge. Another way of ledge formation is shown in Figs. 2.10(c) 

and (d) where lattice dislocations move from grain A to grain B through the 

grain boundary plane; thus resulting in heterogeneous shear of the boundary, 

forming a ledge.  
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Fig. 2.10: Grain boundary ledge formation 

 

  Grain boundary ledges are an important characteristic of high angle boundaries, 

their density increases with the degree of misorientation and they act as very 

efficient dislocation sources, having an important role in inhomogeneous plastic 

deformation seen in Figure 2.11 [65].      

 

 

(a) (b) 

(c) (d) 

  Fig. 2.11: Grain boundary ledge dislocation lodge 
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CHAPTER 3  

GRADIENT PLASTICITY WITH AN 
INTERFACIAL PENALTY 

The formulation that will be developed in this chapter is based on the physical 

arguments presented in Chapter 2. Gradient plasticity is employed in order to 

account for the gradients in the plastic strain, and dislocation pileups are 

considered by the admittance of an interfacial energy-like term (interfacial 

penalty). It should be emphasized that this interfacial term is substantially 

different from that introduced in Chapter 2, since it is induced by plastic 

deformation, and does not arise only from the structural differences present at 

internal boundaries.  

 

3.1 DEFORMATION THEORY VERSION OF CLASSICAL PLASTICITY 
 
The mathematical structure that is employed throughout this work is first placed 

in context by displaying the corresponding formulation for the deformation 

theory version of “classical” plasticity, with no allowance for strain-gradients. 

Throughout the whole of Chapter 3, the presentation is kept as simple as possible 

by assuming that displacements are prescribed on the boundary ∂Ω of the body, 

which occupies the domain Ω. 
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Within the deformation theory framework of classical plasticity, an energy-

like functional for the domain Ω under consideration can be defined as  

( , ) ( , )p p
ij ij ij ijU dε ε ε ε

Ω
Ψ = Ω∫ ,                                      (3.1) 

where 

                               1( , ) ( )( ) ( )
2

p p p p
ij ij ijkl ij ij kl kl ijU L Vε ε ε ε ε ε ε≡ − − + .                            (3.2) 

The quantities ( P
ijij εε , ) denote the total strain and plastic strain, respectively; Lijkl 

is the elastic stiffness tensor; the first term of the right hand side of (3.2) is the 

elastic strain energy; and the second term, involving )( P
ijV ε , is a “dissipation 

function“, dual to the “plastic potential”. In the present context of deformation 

theory, the distinction between dissipated and recoverable energy is blurred. In 

the sequel, it is convenient to refer to V simply as a “potential”. 

The problem posed then is to find the fields (εij, P
ijε ) that minimize (3.1). It 

should be noted that both displacement and plastic strain are continuous across 

interfaces and the total strain tensor ijε  is related to the displacement vector ui by 

the usual relationship 

                                                       , ,
1 ( )
2ij i j j iu uε = + .                                               (3.3) 

For convenience, the following conjugate variables to the elastic and plastic strain 

are introduced 

( )P
klklijkl

ij
ij LU εε

ε
σ −=

∂
∂

= ,                                         (3.4a)              

P
ij

ijP
ij

P
klklijklP

ij
ij

VVLUs
ε

σ
ε

εε
ε ∂

∂
+−=

∂
∂

+−−=
∂
∂

= )( .                    (3.4b) 

The quantity σij is the usual Cauchy stress tensor and sij may be viewed as a type 

of “back stress”. Now by setting the first variation of (3.1) equal to zero, δΨ=0, we 
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obtain a degenerate form of the principle of virtual work; subsequent integration 

by parts gives  

,0 0
T

P P
ij ij ij ij ij j i ij ij ij j iS

s d u s d n u dSσ δε δε σ δ δε σ δ
Ω Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ Ω = ⇒ − + Ω + =⎣ ⎦⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ,   (3.5) 

which should hold true for all independent variations , .P
i ijuδ δε  As a result, the 

following field equations are obtained  

                                                               , 0ij jσ =   

                                                    P
ij

ijij
Vs
ε

σ
∂
∂

=⇒= 0                                                         

 along with the boundary condition 
o

i iu u= on ∂Ω.                                               (3.7) 

It should be noted that instead of prescribing the displacement, the traction could 

be imposed. This would require the presence of an additional surface integral in 

the variational functional and (3.7) would be replaced by ij j ijn tσ = . 

The second of equations (3.6) shows that the potential V provides a stress-

plastic strain relation, from which plastic strain can be eliminated to yield, in 

conjunction with (3.4a), the conventional stress-total strain relation of 

deformation theory. The use of plastic strain as an intermediate (or internal) 

variable will, however, be essential for the developments to follow. It is perhaps 

worth noting that no requirement of continuity is made for the plastic strain. 

Imposition of such a requirement would compromise the existence of a plastic 

strain field which would minimize Ψ. It would be necessary instead to seek the 

infimum, which would be approached by use of sequences of continuous plastic 

strain fields whose limit would be the solution of (3.6) and (3.7).  

 
3.2 VARIATIONAL FORMULATION WITH ALLOWANCE FOR STRAIN GRADIENTS 
 
As was mentioned in the introduction the main feature of the present work is 

that the form of the potential “energy” functional ( , )P
ij ijε εΨ  is generalized to 

 
in Ω\∂Ω , 

(3.6) 
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consider the effect of internal boundaries, which are collectively denoted by Γ, 

and the associated with them interfacial energy-like term ( )P
ijφ ε . Therefore, in 

this section, the existence of internal boundaries, such as grain and interphase 

boundaries, is explicitly considered within the strain-gradient plasticity 

framework: an interfacial energy-like term is assigned to them and the associated 

jump conditions across them are provided. It is emphasized again that no 

calculations to date employing strain-gradient plasticity theory have 

incorporated in detail, within an appealing mathematical setting, jump 

conditions across interfaces and, hence, treated them as “surfaces of 

discontinuity”.  

This generalised expression for ( , )P
ij ijε εΨ  reads 

,( , ) ( , , ) ( )P P P P
ij ij ij ij ij k ijU d dε ε ε ε ε φ ε

Ω Γ
Ψ = Ω + Γ∫ ∫ ;                (3.8) 

again Ω and ∂Ω denote the composite domain under consideration, and its outer 

boundary respectively. The displacement and plastic strain, which are the 

primary kinematic variables of the system, are taken to be continuous 

throughout the whole domain Ω (even across the internal surfaces Γ) and are 

related through (3.3). The elastoplastic potential ,( , , )P P
ij ij ij kU ε ε ε  is defined 

similarly as in Fleck-Willis [7] 

, ,
1( , , ) ( )( ) ( , )
2

P P P P P P
ij ij ij k ijkl ij ij kl kl ij ij kU L Vε ε ε ε ε ε ε ε ε≡ − − + .                    (3.9) 

It can be seen that the strain-gradient comes in the plastic potential V. Moreover, 

it should be noted that both Lijkl and V vary with position x. Upon plastic 

deformation, the fields within the composite are taken to be those which 

minimize the overall energy functional (3.8) over continuous plastic strain fields, 

and continuous total strain fields that satisfy expression (3.3); since the 

displacement is prescribed it follows that o
i iu u= on ∂Ω. The problem then posed 

is to find the fields ijε  (or iu ) and p
ijε  that yield the infimum value 
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in  Ω\Γ,                                (3.14)

,
inf ( , )

p
ij ij

p
ij ij

ε ε
ε εΞ = Ψ .                                       (3.10) 

As in the classical case, the following conjugate variables, which express the 

Euler-Lagrange equations associated with the infimum problem (3.10) are 

defined: 

           ( )p
ij ijkl kl kl

ij

U Lσ ε ε
ε

∂
= = −

∂
,                                   (3.11a) 

      ( )p
ij ijkl kl kl ijp p p

ij ij ij

U V Vs L ε ε σ
ε ε ε

∂ ∂ ∂
= = − − + = − +

∂ ∂ ∂
,                 (3.11b) 

                 
, ,

ijk p p
ij k ij k

U Vτ
ε ε
∂ ∂

= =
∂ ∂

.                                       (3.11c) 

It should be noted that the two first conjugate variable relations are the 

same as those used in the classical case, but use of the gradient of p
ijε as an 

additional independent variable results in the definition (3.11c) of the higher-

order stress (or hyperstress) ijkτ . The requirement that the functional Ψ  is 

minimized implies the principle of virtual work, that the first variation of (3.8) 

has to be zero for all allowed variations ijδε  and p
ijδε ; hence 

,( ) ( ) 0P P P
ij ij ij ij ijk ij k ijs d dσ δε δε τ δε φ ε

Ω Γ
′+ + Ω + Γ =∫ ∫ .          (3.12) 

It follows that integrating by parts, allowing for admissible discontinuities across 

interfaces gives 
 

{ } { }
{ }

, ,( )

[ ] ( ( ) [ ]) 0,

P P
ij j i ij ijk k ij ij j i ijk k ij

P P
ij j i ij ijk k ij

u s d n u n dS

n u n d

σ δ τ δε σ δ τ δε

σ δ φ ε τ δε

Ω ∂Ω

∂Γ

− + − Ω + +

′+ − + − Γ =

∫ ∫
∫

(3.13) 

 for all allowed variations iuδ  and p
ijδε . This implies the field equations 

                                                                             , 0ij jσ =  

                                                                         , 0ij ijk ks τ− =                                                          

the “natural“ boundary condition 
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across Γ.                              (3.16)

                                                    , 0ijk k knτ =  on  ∂Ω ,                                            (3.15) 

and the jump across interfaces conditions      

                                                               [ ] 0ij jnσ =                                               

                                                           [ ] ( )p
ijk k ijnτ φ ε=  

It can be seen that the jump condition in the hyperstress is solely due to the 

admission of the interfacial energy term in the overall energy functional; the 

usual Cauchy stress on the other hand suffers no discontinuity across internal 

surfaces. In (3.13), (3.16) and equations to follow, [f] denotes the jump f2-f1 across 

a surface Γ, where the normal ni points in the direction from “side 2” to “side 1”. 

If the plastic strain, instead of the displacement was prescribed the higher-order 

stress in (3.15), would be replaced by the usual stress. Imposing other boundary 

conditions on the external surface, such as the nominal stress, would require the 

addition of surface integrals, over ∂Ω, in the overall energy functional Ψ (see [7]). 

Finally, it should be noted that setting φ=0, or simply disregarding its existence, 

results in the original Fleck-Willis [7] formulation, and the second condition in 

(3.16) reduces to the requirement of continuity of higher-order tractions. 

 

3.3 EFFECTIVE RESPONSE 
 
Taking the displacement, which is prescribed on the outer boundary to vary 

smoothly (relative to the macroscale) as the scale of the microstructure reduces, 

allow (3.10) to be asymptotically replaced by the homogenized problem  

,
inf ( , )

P
ij ij

eff P
ij ijU dx

ε ε
ε ε

Ω
Ξ = ∫ ,                                     (3.17) 

where Ueff is a local average defined over a “representative volume element” D, 

the interfaces in which are denoted as ΓD; hence 
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   across ΓD.                        (3.24)

  in  D\Γ,                          (3.22) 

on ∂D,                            (3.23)

,
,

,
,

inf

inf .(3.18)

1( , ) ( , , ) ( )

1 1 ( )( ) ( , ) ( )
2

p
ij ij D

p
ij ij D

eff p p p p
ij ij ij ij ij k ij

D

p p p p p
ijkl ij ij kl kl ij ij k ij

D

U U dx d
D

L V dx d
D

ε ε

ε ε

ε ε ε ε ε φ ε

ε ε ε ε ε ε φ ε

Γ

Γ

⎧ ⎫⎤⎡⎪≡ + Γ⎨ ⎬⎥⎢
⎪ ⎣ ⎦⎭⎩

⎧ ⎫⎤⎡⎪ ⎛ ⎞= − − + + Γ⎨ ⎬⎜ ⎟ ⎥⎢ ⎝ ⎠⎪ ⎣ ⎦⎭⎩

∫ ∫

∫ ∫
     

It should be noted that the displacement is not prescribed on ∂D. Instead it 

is now required to impose conditions on the average total and plastic strain (in 

addition to (3.3)), over which the infimum is computed, the following relations 

are therefore defined 

1
ij ij ij

D
dx

D
ε ε ε≡ =∫ ,                                       (3.19) 

1p p p
ij ij ij

D
dx

D
ε ε ε≡ =∫ .                                     (3.20) 

Working out the infimum of (3.17) results in an expression similar to (3.13), 

which however contains the additional constants ijs∗  and ijσ  that play the role of 

Lagrange multipliers, and result from the fact that the solution now must be 

compatible with the constraints imposed by (3.19) and (3.20); in other words the 

following equation is deduced: 

{ } { }
{ }

, ,( ) ( )

[ ] ( ( ) [ ]) , ( . )

P P
ij j i ij ij ijk k ij ij ij j i ijk k ij

P P
ij j i ij ijk k ij

u s s d n u n dS

n u n d

σ δ τ δε σ σ δ τ δε

σ δ φ ε τ δε

∗

Ω ∂Ω

Γ

− + + − Ω + − +

′+ − + − Γ =

∫ ∫
∫ 0 3 21

 

which provides the conditions 

                                                                               , 0ij jσ =  

                                                                           ,ij ijk k ijs sτ ∗− =                                                             

                                                              ( ) 0ij ij jnσ σ− =  

                                                            , 0ijk k knτ =  on ∂Ω                                              

                                                                   [ ] 0ij jnσ =                                                  

                                                                [ ] ( )p
ijk k ijnτ φ ε=  
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Consideration of the conditions (3.22)1, (3.22)2, and (3.22)3, which contain 

ijσ concludes that the Lagrange multiplier ijσ  is the mean stress over D. Similarly 

ijs∗  can be viewed as a mean “back stress”; the infimum of (3.17) with respect 

to p
ijε  is achieved when 0ijs∗ = . In particular, consideration of the variation of Ueff 

with respect to small changes in ijε and p
ijε gives the effective constitutive 

relations                                           
eff

ij
ij

Uσ
ε

∂
=

∂
,                                                (3.25) 

eff

ij p
ij

Us
ε

∗ ∂
=

∂
.                                                  (3.26) 

 

3.4  BOUNDS 
 
In order to simplify the bounding formulation, all composite constituents are 

taken to have the same elastic tensor; hence Lijkl describes the elastic response of 

the whole system under consideration.  Expression (3.18), can therefore be 

written as 

1( , ) ( )( ) ( )
2

eff P P P eff P
ij ij ijkl ij ij kl kl ijU L Vε ε ε ε ε ε ε≡ − − + .              (3.27) 

Since p
ijε  is a constant, it follows that its gradient is zero and hence (3.27) can also 

be used to describe the effective response of a composite that conforms to 

classical plasticity, such as that in Section 3.1. Since expression (3.27) defines the 

effective plastic potential as a function of the mean plastic strain, it should be 

proven that V is in fact independent of mean total strain. First, a minimization on 

the first term of (3.18), over ijε is performed, with fixed p
ijε to give  

1

1 11 1 1 1
inf inf

2 2
( )( ) ( )( )

ij ij

p p P P
ijkl ij ij kl kl ijkl ij ij ij kl kl kl

D D
L dx L dx

D Dε ε
ε ε ε ε ε ε ε ε ε ε− − = + − + −∫ ∫ , (3.28) 
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where 1
ijε  is any strain field with mean value zero, over D; exploiting this fact 

allows the right hand side of (3.28) to be expanded as  

1

1

1 1

1 1

1 1
inf

2

1 1 1
inf

2 2

[( ) ( )][( ) ( )]

( )( ) ( )( ) .

ij

ij

P P P P P P
ijkl ij ij ij ij ij kl kl kl kl kl

D

P P P P P P
ijkl ij ij kl kl ijkl ij ij ij kl ij kl

D

L dx
D

L L dx
D

ε

ε

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

− + + − − + + −

= − − + + − + −

∫

∫ (3.29) 
 

Combination of (3.29) with (3.27) provides  

1

1 1
,

,

1 1
inf

2
( ) ( )( ) ( , ) ( )

P
ij ij

eff P P P P P P P P
ij ijkl ij ij ij kl kl kl ij ij k ij

D
V L V dx

Dε ε
ε ε ε ε ε ε ε ε ε φ ε

Γ

⎧ ⎫⎡ ⎤⎪ ⎛ ⎞= + − + − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎭⎩
∫ ∫  . (3.30) 

It follows that the infimum over 1
ijε  in (3.30) makes a contribution to Veff, which 

depends on p
ijε , but not on ijε .  

 

3.4.1 Elementary upper and lower bounds 
 
Expression (3.18) can be manipulated into giving an upper bound by allowing 

the admissible fields ijε  and p
ijε  of the right hand side to be defined as ijε and p

ijε . 

Hence, 

1
0( , ) ( , , ) ( )

D

eff P P P
ij ij ij ij ij

D
U U dx d

D
ε ε ε ε φ ε

Γ

⎧ ⎫
≤ + Γ⎨ ⎬

⎩ ⎭
∫ ∫ .         (3.31) 

It follows that the corresponding bound for Veff, when the elastic constants are the 

same everywhere is  

1
0( ) ( ) ( , ) ( )

D

eff P P P P
ij V ij ij ij

D
V V V dx d

D
ε ε ε φ ε

Γ

⎧ ⎫
≤ ≡ + Γ⎨ ⎬

⎩ ⎭
∫ ∫ .      (3. 32) 

 It can be seen that in the absence of the interface term, the aforementioned 

bound is scale independent. Hence, if interfaces are not accounted for explicitly, 

through an energy penalty φ, a definite upper limit, which is independent of the 

scale of the microstructure is obtained [7,30,31]. According to the present 

formulation, however, the upper bound for the plastic response increases 
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linearly with the ratio of surface area to volume, and therefore the resulting size 

effects will not bounded. It should be noted that (3.32) is analogous to the Voigt 

upper bound of classical elasticity. 

 A lower bound, of Reuss type can also be formulated, by considering (3.27) 

in combination with the Fenchel inequality  

. ,( , , ) ( , , )p p P P
ij ij ijk ij ij ij ij ijk ij k ij ij ij kU s s Uσ τ σ ε ε τ ε ε ε ε∗ ≥ + + − ,      (3.33) 

where U ∗  is the convex dual of U. 

       Allowing Lijkl to be constant and setting the stress and “back stress” equal to 

their mean values, in addition to letting the higher-order stress be zero provides 
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∫
 

for any ijσ  and ijs ; V ∗  is the convex dual of V. The infimum in (3.34) is evaluated 

over fields that satisfy p p
ij ijε ε≡ , hence the only thing that needs calculating is the 

interfacial penalty term. Assuming that ( ) (0) 0p
ijφ ε φ≥ = , provides that 

inf ( ) 0
p
ij D

P
ij d

ε
φ ε

Γ
Γ =∫ . Furthermore optimizing (3.34) with respect to ijσ  and 

ijs provides  

1
sup 0( ) ( ) ( , )

ij

eff p p p
ij R ij ij ij ij

s D
V V s V s dx

D
ε ε ε ∗⎧ ⎫⎪≥ ≡ −⎨ ⎬

⎪ ⎭⎩
∫ .         (3.35) 

As it can be seen this lower bound is scale independent; the same result would 

have been obtained if the interfacial penalty was neglected. 

  

3.4.2 Refined upper bound 
 
In this section a more flexible method for obtaining an upper bound for the 

effective response of the composite under consideration is developed. According 

(3.34) 
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to this technique the effective properties of a medium which is characterized by a 

nonlinear response (i.e. its potentials V and φ  are nonlinear) are bounded 

through comparison with a medium whose response is linear, but has the same 

microgeometry and elastic stiffness tensor as the actual composite. This linear 

medium is referred to as “comparison medium”, and its potentials Vc and  φc are 

taken to be simple quadratic functions so that an exact or good approximation of 

its effective response can be computed; it follows that this comparison composite 

need not have direct physical meaning.  

Performing mathematical manipulations on definition (3.27) the upper 

bound for effU is formulated as follows: 
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 where eff
cU is defined by (3.27), but with effV replaced by eff

cV . It should be 

mentioned that the maxima in (3.36) are finite when the arguments of cV and 

cφ grow no faster than quadratically. It follows that the corresponding upper 

bound for the plastic potential is  

1
max max( ) ( ) ( ) ( ) .

D

eff P eff P
ij c ij c c

D
V V V V dx d

D
ε ε φ φ

Γ

⎡ ⎤
≤ + − + − Γ⎢ ⎥

⎣ ⎦
∫ ∫    (3.37) 

To obtain the best possible upper bound, (3.36) and (3.37) are minimized 

with respect to the material parameters that come into play in the comparison 

potentials, for given p
ijε ; hence a bound of the type first introduced by Ponte 

Castaneda [28] is generated. 

(3.36) 
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3.4.3 Specialization to 1 Dimension 
 
Chapters 4 and 5 are concerned with one-dimensional examples, such as a bar 

under tension or compression, or a laminate under simple shear. In either case, 

there is just one relevant component of stress, displacement, total strain, plastic 

strain, and higher-order stress. It is appropriate therefore to drop all suffixes, and 

let x denote the coordinate in which there is variation. The partial differential 

equations of Section 3.2 reduce to ordinary differential equations, derivable from 

the one-dimensional realization of the variational principle (3.10). Likewise, the 

variational characterization (3.18) of Ueff becomes, explicitly, 

2
,

,

1

2
inf ( )

1( , ) ( ) ( , )
D

p

p

x

eff P p P P
ij ij x

D
U L V dx

Dε ε
φ εε ε ε ε ε ε

∈Γ

⎧ ⎫⎪ ⎪⎛ ⎞≡ − + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑∫ . (3.38) 

The infimum with respect to the total strain is obtained 

when constant( )pL ε ε σ− = = 1p Lε ε σ−⇒ − = ; averaging over x provides 

 
1 1

1 11 1;p
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D D
L dx L dx L

D D
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− −

− −⎛ ⎞ ⎛ ⎞
− = ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ,                   (3.39) 

where LR is known as the Reuss average. Hence, the one dimensional counterpart 

of (3.27) is  

21

2
( , ) ( ) ( )eff P p eff P

RU L Vε ε ε ε ε≡ − + ,                        (3.40) 

where ( )eff PV ε is the one-dimensional counterpart of (3.30) and is given by 

,
1

inf( ) ( , ) ( )
P

D

eff P p p p
x

D x
V V dx

Dε
ε ε ε φ ε

∈Γ

⎫⎧ ⎤⎡⎪ ⎪= +⎨ ⎬⎥⎢
⎪ ⎣ ⎪⎦⎩ ⎭

∑∫ .                    (3.41) 

IT is essential to emphasize that (3.41) can be used even if the elastic 

constants differ within the domain under consideration, while (3.30), which is 

valid for higher dimensions can be used only if the elastic constants are the same 

throughout.   
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CHAPTER 4  

EXACT FORMULATION 

The gradient formulation of the previous chapter is first applied to one 

dimensional examples, in which interfaces are distributed in a periodic manner. 

The simplification of the mathematics allows the new features of the proposed 

formulation to be clearly demonstrated, since in addition to the bounds that were 

previously developed, it is possible to obtain exact analytical solutions for some 

one-dimensional problems; something not possible for higher dimensions (as 

will be demonstrated in Chapter 7).    

To fix ideas for the physical interpretation of the one-dimensional situation, a 

uniformly stressed, two-phase, bi-crystal (Fig. 4.1), is considered. The domain Ω is 

divided in two regions; subscripts 1 and 2 shall be used to denote phases 1 and 2 

respectively. According to previous discussions the internal surface Γ, which 

separates the two phases can be thought of as an interphase interface; it is taken to 

be situated at x=0. The lower domain, Ω1, is held fixed such that the displacement 

vanishes there, i.e. u1(-L1)=0. The load is applied on the upper domain, Ω2, which 

is uniformly stressed such that the boundary displacement is given by the relation 

u(L2)=(L1+L2)ε , where ε  denotes the average strain of the system. It should be 

noted that this bicrystal can be thought of as the unit cell of a polycrystal. In 

accordance with the classical-type boundary conditions, the higher-order traction 
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vanishes at both boundaries (x=±L1,2). Finally, as was mentioned in the previous 

chapter both the displacement and plastic strain are assumed to be continuous 

across Γ (i.e. at x=0); the same holds true for the stress σ as suggested by (3.16)1, 

while τ undergoes a jump at x=±0 equal to ( )Pφ ε′ . In summary, we have the 

following boundary and interfacial conditions at x=0  

                               1 1 2 2 1 2 1 1 2 2( ) 0; ( ) ( ) ; ( ) 0; ( ) 0u L u L L L L Lε τ τ− = = + − = =  

1 2 1 2 1 2 2 1 0
(0) (0); (0) (0); (0) (0);[ ] (0 ) (0 )p p

x
u u ε ε σ σ τ τ τ φ+ −

=
′= = = = − = ,   (4.1) 

in combination with the field equations  

                                                              ixixi s== ,, ;0 τσ ,                                    (4.2) 

 the first of which is satisfied by taking == σσ constant. 
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Fig. 4.1: a) physical and b) mathematical representation of the one-
dimensional model under consideration 
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In order to proceed further towards the solution of the problem the 

constitutive relations given in (3.14) need to be employed by specifying a specific 

form for the gradient-dependent plastic potential ),( ,
P
x

PV εε .  

 

4.1 LINEAR GRADIENT-DEPENDENT PLASTIC POTENTIAL 
 
The simplest model is to assume that the material interior has a linear response 

and, thus, V is taken to be a quadratic function of both Pε and P
x,ε  

                                              2 2 2
, ,

1( , ) [( ) ( ) ]
2

P P P P
x i i xV ε ε β ε ε= + .                             (4.3) 

It can be seen that this form of V leads to the classical model of linear hardening 

(with yield stress equal to zero) in the case that the gradient term, which contains 

the internal length , is neglected ( ≡0). Moreover, the strain-gradient 

contribution to hardening is taken to be similar in form with that of usual strain 

hardening. In fact, the coefficient β measures the effect of “statistically 

distributed” or “forest” dislocations, while the internal length parameter 2β  

measures the effect of “geometrically necessary” dislocations. This can easily be 

concluded from the fact that Pε  and P
x,ε  relate directly to the density of the 

“statistically distributed” or “geometrically necessary” dislocations, respectively. 

Thus, (4.3) suggests that both types of dislocation densities contribute in a similar 

fashion to the overall strain hardening.  

Now the interfacial energy term needs to be defined. It should be noted that 

the precise form for φ should be deduced from physical arguments and by 

reference to microscopic models concerning the structure of the interface, and its 

obstacle strength during plastic flow, including the pertinent dislocation 

arrangement there, as suggested in Chapter 2. Below, two different models for 

the interfacial energy term φ are considered and related solutions of the 

corresponding one-dimensional boundary value problems are presented. 
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4.1.1 Linear interfacial response 
 
In the first case considered, the interface is taken to behave similarly as the 

material interior. In other words, it is taken to harden analogously to the plastic 

strain there and, thus, the interfacial energy-like term is taken to be a quadratic 

function of Pε on the interface, i.e. 

           2
0 0 0 0

1( ) ( ) [ ] ( ) ,
2

p p p pφ φ ε α ε τ φ ε αε′≡ = ⇒ = =                   (4.4) 

where )0(0
PP εε =  denotes the plastic strain on the interface and the coefficient α 

is a material constant. Hence the governing differential equation for this material 

is found by substituting (4.3) in (4.2)2 

2
,( )p

i i xx iβ ε ε σ− = − ⇒ / /i ix xp
i i i

i

A e B e σε
β

−= + + ,     where i=1,2. (4.5)      

The constants of integration, Ai and Bi, are found by direct application of the 

conditions (4.1)3,4,6,8.  Averaging the resulting plastic strain response provides the 

mean stress-plastic strain relation 
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σ ε

α β β ββ β β β αβ ββ β αβ

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + − − − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

                                       (4.6)                 

Allowing the material parameters to have the values a=2, 1 20,β = 2 160, 1,β = =  

2 1.5= , the size effects in Fig. 4.2 are obtained. The ratio L2/L1 is kept constant to 

conserve the volume fractions; in this case L2/L1=1.5. It should be noted that 

from a physical point of view the specimen size must be greater than the internal 

length, in order for the gradient term to play a significant role in the overall 

response of the material.  

It can be seen from Fig. 4.2 that as the specimen size decreases the required 

stress for continuous plastic deformation increases, implying thus a Hall-Petch 

type of scale dependence. 

.
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4.1.2 Non-linear interfacial response 
 
For this case, the interface is taken to be stiff and, therefore, it does not deform 

plastically until a critical value of the applied stress ( cσ ) is reached. After this 

critical stress is reached the grain boundary deforms in a “perfectly plastic” 

fashion, independently of both the interfacial plastic strain and the continuing 

hardening of the interior. It can thus be said that, in general, the interface does 

not yield with the rest of the material, but follows its own yield behavior. To 

describe this behavior mathematically, the “interfacial energy” is defined as 

                                   0 0( )P Pφ φ ε γ ε≡ = .                                          (4.7) 

It can be readily seen that this form of φ is not continuously differentiable. In fact, 

insertion of this expression into the jump condition (4.1)8 results in the following 

two cases for the jump [τ] in the higher-order traction  

 

 
Fig. 4.2: Scale effect for linear interfacial response 
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p p
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p p

γ ε ε
τ ε

γ ε ε
⎧ < ≡ =

= Φ ⎨
= ≡ ≠⎩

                 (4.8)   

Physically, this says that as long as the interfaces are impermeable to 

dislocations such that the plastic strain remains zero there, the jump in the 

higher-order traction, 2 1[ ] (0 ) (0 )+ −τ = τ − τ , is undetermined but lower than a 

critical value γ. The constant γ  is a material parameter related to dislocation 

pileups at the interface, and their ability to cross it once a critical stress is applied. 

[In fact, it will be shown below that this critical value of γ  is associated with a 

critical value of the applied stress cσ .] When the jump in τ  reaches the critical 

value of γ the interface begins to deform plastically (i.e. the plastic strain there 

differs from zero). It then continues to deform (as long as cσσ > ) in a “perfectly” 

plastic mode (in the sense that the condition γτ =][  always holds true), such 

that plastic strain accumulates on both the interface and the interior, through 

dislocation motion. Therefore, cσ  can be viewed as the “interfacial yield” stress 

and (4.8) as the interfacial yield condition.  

The relevant calculations to obtain the overall stress-strain response are 

similar to those in the previous subsection, but now the two cases (prior to and 

after interfacial yielding) are considered separately as follows.   

Since V is kept the same the governing differential equation (4.5) is the same 

as before, but now the constants of integration are different for the pre- and post- 

yield cases, due to the interfacial jump condition. Prior to interfacial yield, the 

constants of integration in the plastic strain are solved by consideration of (4.1)3,4, 

in conjunction with the fact that the interface hasn’t yielded, i.e. 

1 2(0) 0, (0) 0p pε ε= = , while after interfacial yield, consideration of (4.1)3,4,6 and 

(4.8)2, along with subsequent averaging provides the stress-plastic strain 

response as  

>
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cosh( cosh( tanh( tanh(
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.  (4.10) 

The critical stress at which the interface allows dislocation motion across it, i.e. 

the “interfacial yield” stress is found by solving the pre- and post- yield 

expressions in (4.9) for plastic strain, and then equating them to find 

1 1 1 2 2 2tanh tanh( / ) ( / )c L L
γσ =
+

.                                 (4.11)  

 Allowing for the same material parameters as in the previous case, and 

letting the interface parameter γ=2 provides Fig. 4.3. 

        Fig. 4.3: Interfacial yield point and size effects nonlinear interfacial energy 
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As in Fig. 4.2, an obvious size effect is observed indicating that for fixed 

internal lengths, the smaller the separation of interfaces is, the stronger the 

average response of the system is. In fact, as shown in the figure, the overall 

stress-strain relation is bilinear. The “knee” observed in these curves indicates 

the “interfacial yield” point. The first portion of each curve is valid for an elastic-

like behavior of the interface implied by the fact that no dislocations are allowed 

to penetrate it since the plastic strain is kept zero there. This portion of the curve 

also indicates that the effect of the impermeability of the interface to dislocations 

is to induce an overall stiffer response for the medium as the interfacial 

separation decreases. The critical stress cσ  at which the interface yields also 

increases with decreasing specimen size, as indicated by the “knee” of the graphs 

depicted in the figure. After “interfacial yielding” occurs ( cσ σ> ), both the 

internal surface and material interior deform plastically in a “perfectly plastic” 

and “linearly hardening” fashion, respectively. Finally, the required applied 

stress for continuous plastic flow is described by the second portion of the 

bilinear curves indicating again that the strength increases with decreasing size.  

 

4.2 ELASTIC-PLASTIC BOUNDARY VALUE PROBLEM 
 
In both the examples considered in the previous section, during deformation 

(even for relatively small loads) plastic strain was always present in the interior 

of the material; as a result there was no pure elastic region in the stress-strain 

curve; to emphasize this, stress was plotted versus mean plastic strain (Figs 

4.2&4.3). In this section, a purely elastic region is considered; this is 

accomplished through consideration of the grain interior yield stress 0σ  in the 

gradient dependent plastic potential as 

2 2
, 0 ,

1( , ) ( )
2

P P i P P
x i i xV ε ε σ ε β ε= + .                              (4.12) 

The interface is again taken to behave nonlinearly, according to (4.7). 



 69

Prior to grain interior yielding there is no plastic strain present in the 

material. Therefore, differentiation of (4.12) according to (3.11b) to obtain σ, when 

0=Pε , yields that σ can take any value up to 0σ . This indeterminacy is settled 

by elasticity since, for 0≡Pε , the constitutive relation (3.11a) for the total stress 

implies a standard elastic relation for the average stress-strain response of the bi-

crystal 

                                          0,PduE E
dx

σ ε σ ε σ σ⎛ ⎞= − ⇒ = <⎜ ⎟
⎝ ⎠

.                      (4.13) 

Accounting for the fact that the material under consideration consists of two 

phases, the purely elastic average stress-strain response is found by use of the 

 the displacement boundary and continuity conditions (4.1)1,2,5 as  

1 2 1 2

1 2 2 1

( )E E L L
E L E L

σ ε+
=

+
, when 0pε = .                     (4.14) 

 The next portion of the stress-strain curve is constructed by assuming that 

phase 2 has a lower yield stress. Once σ 2
0  is reached, 2

Pε  is given by inserting 

(4.12) in  (4.2)2  
22

2 2 202
2 2 0 2 2 22 2

2 22

P
Pd x A x B

dx
σ

σ
σεβ σ ε

β
−

+ = ⇒ = − + + ,            (4.15) 

where the constants of integration are calculated through use of the fourth 

condition in (4.1) and letting 2 (0) 0Pε =  (since it is assumed that the interface yields 

last). Phase 1 remains purely elastic and hence 1 0Pε = . Finally, use of the 

displacement boundary and continuity, across interface, conditions of (4.1) gives 

σ β εσ
β

+ +
=

+ +

3 2 2
1 2 2 0 2 1 2 2 1 2

3 2
1 2 2 2 2 1 2 2 1

3 ( )
3 ( )

E E L E E L L
E E L E L E L

,   when σ σ σ≤≤2 1
0 0 .         (4.16) 

 Once the applied stress reaches 1
0σ , phase 1 yields also, and 1

Pε  is given by 

an expression similar to (4.15) but with the subscripts 2 replaced with 1. The 
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integration constants for 1
Pε  are found through  (4.1)3 and 1 (0) 0Pε = ; while those 

for 2
Pε  remain the same as before. Use of the usual displacement conditions gives 

the pre-interfacial yield average response as 

 
2 3 1 2 3 2 2 2 2

1 2 2 2 1 0 1 1 2 1 0 1 2 1 2 1 2 1 2
3 2 2 3 2

1 2 1 2 2 1 1 1 2 2 2 2 2 1 1 2

( ) 3 ( )
( 3 ( ))

E E L L E E L L
E E L E E L E L E L

σ σβ β β β εσ
β β β

+ + +
=

+ + + +
, when cσ σ≤ . (4.17) 

 Finally, the post-interfacial yield response is found through use of all 

conditions in (4.1) in combination with the jump condition (4.8)2 as  
1 2

1 0 2 0

1 2

L L
L L

γ σ σσ + +
=

+
, when cσ σ= .                           (4.18) 

 Allowing the material parameters to take the values 0.1γ = , 1 1,β =  2 3,β =  

1 1,=  2 1.5,=  E1=40, E2=20, 1
0 0.04σ = , 2

0 0.02σ = , (according to experimental 

evidence E is taken 1000 times greater from σ0) and letting the ratio L2/L1=1.5, 

provides Fig. 4.4.  

Fig. 4.4: Elastoplastic material response and related size effects 
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 It can be seen that four linear segments of the curves in Fig. 4.4, 

corresponding to (4.14), (4.16), (4.17) and (4.17), constitute the overall stress-srain 

response of the material; the first and second “knees” indicate the yielding of 

phases 2 and 1 respectively, while the third “knee” corresponds to yielding of the 

interface.  

 It should be noted that the purely elastic response (first portion of curves in 

Fig. 4.4) is the same for all specimen sizes, since it is independent of the internal 

length, and depends on the overall volume fractions of phases 1 and 2, as seen in 

(4.14). When the material behaves in a purely elastic manner, the interfaces have 

no contribution since no dislocation pile-ups occur across them.  Once phase 2 

yields (second segment in curves of Fig. 4.4), and, hence, the applied stress lies in 

the region 2 1
0 0σ σ σ≤ ≤ , the purely elastic response of phase 1 is competing with 

the perfect plastic response of phase 2; in addition the interface does not permit 

dislocation penetration and hence contributes to the stress-strain curve through a 

stiffening manner.  The third linear segment of this figure indicates the response 

when phase 1 has also yielded, but the interface continues to obstruct dislocation 

motion through its stiffening behavior. This “stiffening” mechanism (which is 

similar to that present in the first segment of the bilinear plots in Fig. 4.3) 

competes with the assumed “perfect” plasticity taking place in the grain 

interiors, resulting into a reduced average stiffening response. After the applied 

stress reaches a critical value ( 1 2
0 0cσ σ σ σ= > > ), causing yielding of the interface 

and allowing dislocations to penetrate it, both the interior and interface deform 

in a perfectly plastic manner, and continuous plastic flow of the material occurs 

at a constant value of the applied stress, as shown in the last linear portion of Fig. 

4.4. 

 Although the gradient-dependent plastic potential in all examples considered 

so far had a relatively simple form, it was very effective in exhibiting the new 

features of the formulation developed in Chapter 3, such as scale effects not 
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limited by an upper bound, as well as the existence of an “interfacial yield” 

stress. In particular, interfacial yield was clearly depicted, as a sharp “knee”, in 

the resulting stress-strain curves.   

 

4.3 THE FLECK-WILLIS GRADIENT-DEPENDENT PLASTIC POTENTIAL  
 
The form of V that is considered in this section and those to follow results in 

highly nonlinear differential equations and hence it is not possible to obtain 

analytical exact solutions if the material has two phases. Therefore the remaining 

two sections of this chapter are concerned with homogeneous media, such as 

polycrystals, in which grain boundaries are distributed periodically with period 

2L. It suffices to consider one periodic cell, occupying the region –L< x < L, with 

an interface at x=0. It is therefore necessary to consider only the half period 0< x 

<L with the conditions 

0
[ ] 2 (0 ) ; ( ) 0

x
Lτ τ φ τ+

=
′= = = .                                    (4.19)   

The nonlinear gradient potential that will be first considered is that employed by 

Fleck and Willis [7]. In one dimension it reads 
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where n is the hardening exponent and 0e the normalizing strain. The interfaces 

behave according to the nonlinear manner defined by (4.7). Substitution of (4.20) 

in (3.14)2 results in the following differential equation  
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σ ε ε ε ε ε ε
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to be solved along with the following conditions (that result by direct 

substitution of φ and V in (4.19)) 
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Due to the highly nonlinear nature of (4.21), only a numerical solution for the 

stress-strain curve can be found. Fig. 4.5 is obtained by letting the material 

parameters assume the values σο=10 eo=0.01, γ=22, 1=  and n=0.1. 

 

 It can be seen that the size effects are similar to those obtained previously 

(Figs. 4.2, 4.3&4.4) i.e. as the specimen size decreases the applied stress required 

for continuous plastic deformation of the material increases. The lower bound 

that is depicted results from (3.35) and is given by 
1

0 0

0

( ) ( )
1

np
p eff p

R
eV V

n e
σ εε ε

+
⎛ ⎞

≡ ≤⎜ ⎟+ ⎝ ⎠
.                              (4.23) 

 Fig. 4.6 is constructed for a material with the same material parameters, but 

a higher hardening exponent, n=0.3.  

      Fig. 4.5: Size effects for F-W potential when n=0.1 
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4.4 A NEW GRADIENT DEPENDENT PLASTIC POTENTIAL 
 
Since there is no physical evidence justifying the existence of materials with a 

response according to that defined by Fleck and Willis [7], another highly 

nonlinear V is introduced here for comparison purposes 
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This V produces a simpler differential equation when substituted in (3.14)2 
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Again the interfaces are taken to be characterized by the nonlinear form of φ so 

the conditions of (4.19) are replaced with 

( )
o

P
x σ

γε
2

0, 〈  when ( ) 00 =Pε ,   or   ( )
o

P
x σ

γε
2

0, =  when ( ) 00 ≠Pε  

and                                                           ( ) 0, =± LP
xε .                                               (4.26) 

      Fig. 4.6: Size effects for F-W potential when n=0.3 
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 Numerical solution of (4.25), along with (4.26) (allowing for the same 

material parameters as in the previous section) provides the scale effects shown 

in Fig. 4.7. The distinct corner, observed when L=1 indicates the “interfacial-

yield” point. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Since the exact material values were used to obtain Figs. 4.5&4.7, it follows 

that they can be compared directly.  

It is observed that the newly introduced gradient-dependent plastic 

potential allows for greater scale-effects.  This can be easily demonstrated by 

combining the curves from both potentials in a new plot; hence Fig. 4.8 is 

constructed. The dotted and smooth curves indicate the F-W and new potential 

respectively. What is of particular interest is the fact that the curves obtained by 

both Vs coincide for the largest specimen considered, since except in a negligible 

boundary layer, the plastic strain is uniform so the gradient term has no effect. In 

this connection, it should be noted that as the specimen size increases, the 

              Fig. 4.7: Size effects for new gradient dependent potential when n=0.1 and γ =22 
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gradient term gradually loses its effect, and hence the solution is given by the 

lower bound.  

 

To better illustrate the effect that the value of the interfacial term has, stress-

strain plots for this new potential are computed, for the same yield stress and 

normalizing strain, as before, but with a greater value of γ; γ=50. 

         Fig. 4.8: Comparison between the two highly nonlinear potentials when n=0.1 

 

 

       Fig. 4.9: Size effects for new gradient dependent potential when γ=50, n=0.1 
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From Figs. 4.9&4.10, it can be seen that a sharp corner, indicating 

“interfacial yield” is rather distinct when / 1L = , and / 5L = ; this feature was 

also observed, but with less clarity in Fig. 4.7, for the lower value of γ, when 

/ 1L = .  

Furthermore, direct comparison of Figs. 4.7&4.9 can give an indication of 

the effect of the interfacial energy-like term in the overall material response, since 

aside from γ the remaining material parameters used for the construction of both 

figures remain the same. It can be easily seen that when γ is increased (Fig. 4.9) 

the overall material response stiffens. This allows us to think of γ as an interfacial 

strength modulus, and demonstrates the strength enhancing role of interfaces 

during plastic flow. The most appropriate way therefore to deduce this physical 

quantity is through dislocation-interface considerations, similar to those 

discussed in Chapter 2. In particular, examining the formation of dislocation 

pileups and ledges across boundaries can provide rather good estimates for the 

interfacial parameter γ ; this is demonstrated in Chapter 8, in which the value of γ 

          Fig. 4.10: Size effects for new gradient dependent potential when γ=50, n=0.3 



 78 

that is deduced from dislocation considerations is shown to be in very good 

agreement with the experimental value, deduced directly from nanoindentation 

experiments.  
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CHAPTER 5  

LINEAR COMPARISON METHOD                
FOR HOMOGENEOUS MEDIA 

For all periodic examples in the previous chapter it was possible to obtain an 

exact solution. Once, however, the one-dimensional material under consideration 

is allowed to have a random microstructure, which in the case of a homogeneous 

medium is accomplished through a random interface distribution, an exact 

solution does not exist even if both the interfacial and gradient-dependent plastic 

potentials assume a simple quadratic form. It is for such media that the 

variational formulation developed in Chapter 3, in particular the “linear 

comparison method”, comes into its own. Before applying this technique to a 

medium with a random interface distribution, it is considered more appropriate 

to apply it to the previously discussed periodic homogeneous media, so that the 

solutions obtained through the comparison approach can be compared with the 

aforementioned exact solutions.     

 

5.1 HOMOGENEOUS PERIODIC MEDIUM 
 
5.1.1 Linear Medium 
 
In Chapter 3 it was explained that the response for a linear medium must be 

obtained, as a first step towards this approach. The gradient-dependent and 
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interfacial potential of this medium are taken to be quadratic and hence are 

defined similarly to (4.3) and (4.4). The governing differential equation is also 

similar to (4.5); the only difference is that since the material is taken to be 

homogeneous, the suffixes i can be ignored. The constants of integration A and B 

are found by considering the conditions 

2
, ,and(0 ) (0) / 2 ( ) 0p p p
x x Lβ ε αε ε+ = = .                          (5.1) 

Expression (5.1) is deduced by inserting the aforementioned V and φ in (4.19). 

Therefore the average stress-strain response is found as 

            ,eff pσ β ε=                                                  (5.2) 

where                            ( ) [ ]
( ) [ ]
1 2 / tanh /

.
1 2 / / tanh /

eff L
L L

β α
β β

β α
⎧ ⎫+⎪ ⎪= ⎨ ⎬+ −⎪ ⎪⎩ ⎭

                          (5.3) 

The effective plastic potential can be found by direct integration of (5.2), 

according to (3.6)2, since the effective relations conform to the pattern for a non-

strain-gradient material, and hence  

21( ) ( )
2

eff p eff p
cV ε β ε= .                                   (5.4) 

 

5.1.2 Linear V, nonlinear φ 
 
Now the solution for the medium with linear plastic response but nonlinear 

interface response can be found by inserting (4.3), (4.4), (4.20) and (4.7) for Vc, φc, 

V, and φ, respectively, in (3.37) and optimizing the resulting inequality with 

respect to the material parameters, α and β, of the linear medium. Performing the 

optimization first with respect to α  is equivalent to solving the problem for a 

linear medium (with constant β), but with the nonlinear interface potential (4.7). 

This generates the potential for this case 0
effV  given by 

0 ( ) infeff p eff
c

EV V
α

ε
α

⎧ ⎫= +⎨ ⎬
⎩ ⎭

,                                      (5.5) 
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where E is defined as 
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ε α εγ α= − =

2
2, so that max ( ) 2

4
/ /p pE
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E .                 (5.6) 

Completion of the infimum calculation, which is approached either as α→∞ or 

for a finite stationary point, provides that the “refined” upper bound for the 

effective potential is 
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It should be noted that relations (5.7-5.8) are reproduced if the exact stress-

mean plastic strain response is integrated; the exact solution is easily obtained by 

solving the differential equation (4.5) along with the conditions   

, ( ) 0; (0) 0p p
x Lε ε= = as long as [ ]τ γ≤ , or  2

, (0 ) / 2p
xβ ε γ+ =  otherwise.  (5.9) 

 
5.1.3 Nonlinear material response 
 
The refined upper bound for the Fleck-Willis potential is found through 

comparison with the linear medium of Section 4.5.1; hence (4.3), (4.4), (4.20) and 

(4.7) are substituted for Vc, φc, V, and φ, respectively, in (3.37) to obtain the 

inequality 

0 0 0

0

1( )
2 1

eff p eff
c

e n EV V
n e

σ σε
β α

⎛ ⎞−⎛ ⎞≤ + +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
.                     (5.10) 

If the first and second terms in (5.10) are optimized with respect to α they can be 

replaced by (5.5); in particular since only these terms contain α optimizing (5.10) 

with respect to this parameter gives 



 82 

0 0 0
0

0

1( )
2 1

eff p eff e nV V
n e

σ σε
β

⎛ ⎞−⎛ ⎞≤ + ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
,                         (5.11) 

where 0
effV  is given by (5.7). The remainder of the minimization, with respect to 

β, has to be performed numerically.  

If the comparison method is applied to the other highly non-linear V (4.24) 

of Section 4.4, the expression of the refined upper bound is given again by (5.11), 

but now the internal length needs to be scaled since it is multiplied with 

additional material parameters in the actual V.  So to obtain an upper bound for 

this case  in (5.11) has to be replaced with a scaled internal length ∗ , which is 

given as  
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Finally, it follows directly from Chapter 3 that the elementary lower and 

upper bounds for these nonlinear Vs are    

1 1
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.        (5.13) 

 In order to compare the exact solutions for Veff, which can be obtained 

through integration of the curves in Figs. 4.5, 4.6, and 4.7 (according to (3.6)2), 

with the “refined” upper bound obtained from the comparison method, Figs. 

5.1a&5.2a are constructed by minimizing (5.11) with respect to β. In addition to 

the effective potential-mean plastic strain curves, the comparison method, as well 

as the upper and lower bounds, which are depicted in Figs. 5.1a&5.2a can 

provide estimates for the mean stress-plastic stain response by performing a 

numerical differentiation to the corresponding curves in Figs. 5.1a and 5.2a. Since 

the derivative is not necessarily a bound, the stress-strain solutions are just 

approximations; again for comparison reasons they are plotted against the exact 

solutions of Sections 4.3 and 4.4. 
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Fig. 5.1a: Comparison between exact solution and bounds for F-W potential when 
σ0=10, e0=0.1, =1,n=0.3 and L/ =5 

V 
ef
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Fig. 5.1b: Comparison between exact solution and approximation from bounds for F-W 
potential when σ0=10, e0=0.1, =1, n=0.3 and L/ =5 
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                     Fig. 5.2a: Comparison between exact solution and bounds for new gradient potential 
when σ0=10, e0=0.1, =1, γ=50, n=0.1 and / 5L =  

 

 
 

                 Fig. 5.2b: Comparison between exact solution and approximations from bounds for    
                  new gradient potential when σ0=10, e0=0.1, =1, γ=50, n=0.3 and L/l=5 
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As it can be seen from the above figures the exact solutions and the 

“refined” upper bounds obtained through the comparison method are in very 

close proximity. This method is thus proven to be very reliable (at least for the 

one-dimensional case at hand) and will be employed in the remainder of this 

work to find the effective response of materials for which an exact solution does 

not exist. 

 

5.2 HOMOGENEOUS RANDOM MEDIUM 
 
Based on the previously proven robustness of the linear comparison method, it is 

employed here to obtain the effective response for a random highly nonlinear 

homogeneous medium, which has the same material and interfacial response as 

that in Section 5.1.1; hence the gradient dependent plastic potential is given by 

(4.20) or (4.24), while the interfacial energy is given by (4.7); the interfaces, 

however, are now distributed randomly, according to a Poisson process of 

intensity λ=1/(2L).  

  Since the linear comparison medium approach will be adopted, the first 

step is to obtain the effective response of a random linear medium with 

potentials given by (4.3) and (4.4). Due the random interface distribution an exact 

effective stress-strain response cannot to be computed and therefore two- and 

three- point statistics are employed for the development of a lower and upper 

bound, respectively. 

 

5.2.1 Approximate solution 
 
Consideration of pairwise statistics of the interfaces through use of the 

“quasicrystalline approximation“ of Lax [69], as shown in Appendix A, provide  

/1
1 (2 / )

eff Lβ β
β α

⎧ ⎫
= +⎨ ⎬+⎩ ⎭

.                                      (5.14) 



 86 

Equality is used for convenience in (5.14) but it is proven in the appendix that 

this is in fact a lower bound. Inserting (5.14) in (5.4) provides 

21 /( ) 1 ( )
2 1 (2 / )

eff p p
c

LV ε β ε
β α

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

.                             (5.15) 

Similarly 0
effV  takes the form indicated in (5.5) but with eff

cV having the form of 

(5.15) (E is defined as in (5.6)), hence 

2
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The infimum is again obtained either as α→∞ or for a finite, stationary point. 

Completion of the details provides 
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γε
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= .                                                  (5.18) 

Now everything is set to compute the effective response of the nonlinear 

medium with nonlinear interfacial response; hence (4.3), (4.4), (4.20)/(4.24) and 

(4.7) are substituted for Vc, φc, V, and φ, respectively, in (3.37). The resulting 

expression is the same as (5.10), but now eff
cV is defined according to (5.15). As in 

Section 5.1.1, the optimization over the material parameters can be done 

sequentially. First optimizing with respect to α  generates the expression (5.11), 

except that now 0
effV is given by (5.17). It should be emphasized that for this case 

(5.17) is not a bound, but an approximation due to the fact that  βeff is a lower 

bound, and hence the inequalities do not rum the same way.  

The minimization with respect to β  is performed numerically, producing 

thus Figs 5.3a&5.4a. The lower bound designated is the same as that for the 

periodic medium. Numerical differentiation of these curves provides 
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corresponding approximations for the effective stress-plastic strain relation, 

shown in Figs 5.3b&5.4b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.3b: Size effects for random interface distribution for F-W potential when σ0=10, 
e0=0.1, =1, γ=22 and n=0.3 
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Fig. 5.3a: Size effects for random interface distribution for F-W potential when σ0=10, 
e0=0.1, =1,γ=22 and n=0.3 
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 Fig. 5.4b: Size effects for random interface distribution for F-W potential when 
σ0=10, e0=0.1, =1,γ=22 and n=0.1 
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Fig. 5.4a: Size effects for random interface distribution for F-W potential when 
γ=22 and n=0.1 
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 In particular, Figs 5.3b&5.4b are directly comparable to Figs 4.6&4.5, 

respectively, the only difference being the distribution of the interfaces. Figs 

4.6&4.5 correspond to “perfectly ordered” interfaces, with exactly uniform 

spacing 2L, while Figs 5.3b&5.4b correspond to “perfectly disordered” interfaces, 

with mean spacing 2L. The figures for both cases not only show similar trends, 

but there exists very close numerical proximity for all specimen sizes considered. 

This is illustrated in Fig. 5.5, for the effective potentials, since they are directly 

computed from the comparison methods. Thus, the scale effects that are shown 

would appear to be robust.  

Moreover, Fig. 5.6 is obtained for the new gradient potential by inserting 

(5.17) and (5.12) in (5.11), optimizing with respect to β and then differentiating; 

comparing Fig. 5.6 with its periodic counterpart (Fig. 4.9), again leads to the 

conclusion that close agreement exists between the two media. 
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Fig. 5.5: Comparison of  random and periodic media for F-W potential, when σ0=10, 
e0=0.01, =1,γ=22 with n=0.3, and L/ =5 
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5.2.2 Upper bound formulation 
 

As was mentioned the formulation of the previous section provides approximate 

solutions. The close correlation of these solutions with the upper bound obtained 

for the periodic medium (Fig. 5.5), is reassuring, but to better understand where 

these approximate solutions lie compared to the true upper bound of a nonlinear 

Poisson medium, βeff  is recomputed as an upper bound. This is possible by 

substituting a suitable “trial field” into the minimum principle (3.41). An upper 

bound which employs the statistics of points taken three at a time is developed in 

Appendix A. For the Poisson linear medium, it is 

2( /(2 )) ( / )1
2 1 /(2 )(1 / )

eff L
L L

α α ββ β
β α β

⎧ ⎫⎛ ⎞
= + −⎨ ⎬⎜ ⎟ + +⎝ ⎠⎩ ⎭

,                       (5.19) 

Fig. 5.6: Size effects for random interface distribution for new gradient potential when  
σ0=10, e0=0.01, =1,γ=50 and n=0.1 
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and therefore the comparison effective plastic potential is rewritten as  

2
21 ( /(2 )) ( / )( ) 1 ( )

2 2 1 /(2 )(1 / )
eff p p

c
LV

L L
α α βε β ε

β α β
⎧ ⎫⎛ ⎞

≤ + −⎨ ⎬⎜ ⎟ + +⎝ ⎠⎩ ⎭
.          (5.20) 

The response for the purely non-linear random medium is obtained by 

substituting (5.20) in (5.10). For this form of βeff the infimum with respect to α is 

obtained only for a finite stationary point. Hence, the resulting form for V is not 

divided in pre- and post- yield formulae, and a distinct plastic strain, p
cε , at 

which the interface yields cannot be obtained. The resulting size effects are 

shown in Fig. 5.7. It can be seen by comparison with the approximate solutions 

depicted in Fig. 5.4 that both solutions obtained for this nonlinear medium with a 

Poisson distribution of the interfaces are very close. Since two- and three- point 

statistics give similar results for the response of the medium under consideration, 

only two-point considerations will be taken in Chapter 6. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7a : Upper bound for random interface distribution for F-W potential 
when σ0=10, e0=0.01, =1,γ=22 and n=0.1 
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In concluding this chapter it should be emphasized that the significant size 

effects, of Hall-Petch type, that are obtained for the homogeneous periodic and 

random media are solely due to the consideration of the “interfacial energy” in 

the overall energy functional of the material and would not be present in its 

absence, i.e. if γ=0, whatsoever.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7b: Upper bound for random interface distribution for F-W potential when  
σ0=10, e0=0.1, =1, γ=22 and n=0.1 
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CHAPTER 6  

LINEAR COMPARISON 
FORMULATION FOR TWO-PHASE 

MEDIA 

Since all of the nonlinear examples considered so far were homogeneous their 

interfaces can be thought of as grain boundaries. The present chapter is 

concerned with slightly more complicated internal surfaces that arise at the 

intersection of phases/materials with different chemical composition, and/or 

significantly different crystallography. Such interfaces are present in the 

emerging field of metal-metal nanocomposites, such as Nb-Cu wires, and hence 

the subsequent modeling is very significant for future applications. The 

mathematics are again simplified by considering only one-dimensional 

examples, and the comparison method is employed to obtain approximations for 

the overall stress-mean plastic response. In the case of a periodic distribution of 

the interfaces an exact solution to the stress-strain curve can be obtained by use 

of numerical methods. This approach, however, is not adopted because aside 

from the fact that it is rather involved, the solutions obtained through it cannot 

be compared with corresponding solutions for a random interface distribution 

since exact solutions do not exist for such media, as has been previously 

mentioned. First, the comparison method is generalized so as to account for the 
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presence of two phases in the domain under consideration, and then it is applied 

to highly nonlinear periodic and random media.    

 

6.1 COMPARISON FORMULATION FOR TWO PHASES 
 
Since the material at hand is heterogeneous the yield stress and internal length 

vary according to position, and therefore take the values 1
0 1,σ  and 2

0 2,σ  in 

phases 1 and 2 respectively. Both phases are taken to have a nonlinear gradient 

dependent plastic response given by (4.20) or (4.24); the corresponding yield 

stress and internal length for each phase should be used.  Just as in the 

homogeneous examples, the interfaces are taken to respond in the nonlinear 

manner defined by potential (4.7). The linear medium employed is the same as 

that in Section 4.1; hence its gradient dependent potential assumes the form (4.3), 

while the interfacial response is given by (4.4). 

In the case of a periodic medium each segment of material 1 is taken to be of 

length 2L1, similarly material 2 is taken to have length 2L2; hence the period is 

2L=2(L1+ L2), and the respective volume fractions of each phase are given as 

1 2
1 2 1

1 2 1 2

and 1L Lp p p
L L L L

= = = −
+ +

.                               (6.1) 

These volume fractions define probabilities in the case of a statistically 

uniform two-phase random medium, by taking the mean length of each segment 

of material 1 to be 2L1 and that of material 2 to be 2L2. The probability then of 

finding phase r at x is pr (i.e. (6.1)). 

 Inserting the actual and linear comparison potentials, in (3.37), accounting 

for the fact that two phases are present generates the formula 

  

1 1
1 21 1

1 20 0
0 1 2 1 0 0 2 0 0

1 0 2 0

1( ) ( ; ; )
2(1 )

n n
n n

eff p eff p nV V p e p e
n e e

σ σε ε β β σ σ
β β

+ +
− −

⎧ ⎫
⎛ ⎞ ⎛ ⎞− ⎪ ⎪≤ + +⎨ ⎬⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

, (6.2) 
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where the minimization over α has been performed in 0
effV , which as in Chapter 

5 denotes the effective potential of a linear medium (4.3), with nonlinear 

interfacial response (4.7). It should be noted that this formula is valid both when 

the internal length is taken to be constant or to vary with position x. For the 

periodic interface distribution, the exact response for a linear two-phase medium 

with either a linear or nonlinear interfacial response was easily obtained for 

different internal lengths in each phase (Section 4.1). For the random interface 

distribution, however, an exact solution cannot be obtained for the comparison 

medium (just as in the homogenous case), and two point statistics are used for 

the development of an approximate solution. Since this procedure is rather 

involved, the internal length in the random medium is taken not to vary 

according to position for simplification reasons. This simplifying approximation 

was also employed by Fleck and Willis [7]. Since it was proven in the previous 

chapter that consideration of both two- and three point statistics results in almost 

the same results, only two point statistics will be considered.  

    

6.2 SOLUTIONS FOR LINEAR MEDIA  
 

As mentioned the average response for linear, heterogeneous periodic medium 

was found in Chapter 4 and is given by (4.6); grouping all the constants in (4.6) 

allows effβ  to be written as 

/
/

eff A B
C D

αβ
α

+
=

+
,                                                   (6.3) 

where  

β β β β
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

1 2
1 2 1 2 1 1 2 2

1 2

( ); tanh tanhL LA L L B A  

β β β β
⎛ ⎞ ⎛ ⎞

= + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 1
1 2 2 1 1 2 2 1

2 1

tanh tanhL LC L L  
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β β β β β β β β
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

22 1 2
2 2 1 2 2 1 1 1 1 2 2 1 1 2 2

2 1 2

( )tanh tanh ( ) ( ) tanh .(6.4)L L LD L L L L

 It should be noted that effβ is written in the form of (6.3) in order to perform 

more conveniently the minimization with respect to α. Since the random 

problem is solved only for the case where the internal length is constant 

everywhere, it is reasonable for comparison purposes to have the solution for a 

periodic interface distribution for which the internal length does not vary within 

the domain under consideration. The solution for such a medium has the form  

/
/

eff p pA B
C D

ασ β ε ε
α

+⎛ ⎞= = ⎜ ⎟+⎝ ⎠
,                                   (6.5) 

where the constants A, B, C and D are found through (6.4) by setting 1 2= =  , 

hence  

/ tanh( / ) / tanh( / ); tanh tanh , ,

( )tanh tanh tanh tanh . ( . )

β β
β β

β ββ β
β β β β

+ ⎛ ⎞ − −⎛ ⎞ ⎛ ⎞= = + = +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎡ ⎤⎡ ⎤ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎣ ⎦

1 2 1 2 1 1 2 2
1 2

1 2

2
1 2 1 2 1 2 1 2

1 2
1 2 1 2

6 6

L L L L L L L LA B A C

L L L L L LD
 

  Now the two phase random medium is considered. As for the one-phase 

Poisson case the exact solution for the average response of the linear material 

cannot be computed. Hence a variational approximation, which is analogous to 

formula (5.39), is obtained by considering the statistics of points taken two at a 

time; details are provided in Appendix B. Remarkably, this approximation has 

the same form as (6.5), except that now the constants A, B, C and D are defined as  

β β β β
β β β β β β

β β β

β β β β

= + + +
= + + +

= + + +

= + + +

1 2 0 1 1 0 2 2

0 1 2 1 2 1 2 0 1 1 2 2
2 2

1 2 1 2 2 1 0 1 2
2

0 0 1 2 1 2 1 2 2 1 (6.7)

( )( )( ),
( )(2 ( )),
( ) ( ),

( ( ) 2 ( )).

A L L L L
B L L L L L L
C L L L L L L
D L L L L L L

 

 

This approximation is a lower bound if 0 1 1min{ , }β β β≤ , the best bound being 

obtained when 0 1 1min{ , }β β β= . Note that choice of any greater value for 0β  
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generates a variational approximation but not an upper bound, on account of the 

inequality (B.3). 

Correspondingly it follows that the effective response of the comparison 

medium, either for periodic or random interface distributions is found to be 

described by  

21( ) ( )
2

eff p eff p
cV ε β ε= ,                                       (6.8) 

where the appropriate effβ , depending on the medium of interest, is used.  

 

6.3 LINEAR MATERIAL RESPONSE, NONLINEAR INTERFACE RESPONSE 
 

Now, according to the comparison approach inserting (4.3), (4.4), (4.20)/(4.24) and 

(4.7) for Vc, φc, V, and φ, respectively, in (3.37) provides the generalized effective 

response for either a periodic or random material with quadratic gradient-

dependent potential and nonlinear interfacial potential, as 

2
0

1 /( ) inf inf ( )
2 /

eff p eff p
c

E A B EV V
C Dα α

αε ε
α α α

⎧ + ⎫⎧ ⎫ ⎛ ⎞= + = +⎨ ⎬ ⎨ ⎬⎜ ⎟+⎩ ⎭ ⎝ ⎠⎩ ⎭
.      (6.9) 

Since the material is heterogeneous, with each phase having a length L1 and L2, E 

takes the form  

               
2

1 22( )
E

L L
γ

=
+

.                                            (6.10) 

As in the previous chapter the infimum of (5.11) is approached either as α→∞ or 

for a finite stationary point. The detailed calculation in Appendix C provides  

2
0

1/ 2 1/ 2
2

when

when

( ) ( ) ,
2

(2 ) ( )( ) , , (6.11)
2

eff p p p p
c

p p p p
c

AV
C
B E AD BC EC
D D D

ε ε ε ε

ε ε ε ε

= ≤

−
= + − ≥

 

1/ 22p
c

E C
AD BC

ε ⎛ ⎞= ⎜ ⎟−⎝ ⎠
.                                        (6.12) 
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Since the form of effβ  for the homogeneous periodic and random 

approximation can be written as (6.3) it follows that (6.11) applies to those 

examples as well. Expression (6.11) can now be substituted in (6.2) to obtain the 

effective response of nonlinear two phase media.  

 

6.4 RESULTS FOR TWO-PHASE MEDIA 
 

In Chapter 4 the exact stress-mean plastic response for a two-phase ( 1 2≠ ) 

periodic linear medium with nonlinear interface potential was obtained and the 

resulting scale effects were shown in Fig. 4.3. To see how the results of the 

comparison method compare with the exact solution, Fig. 6.1 is obtained by 

inserting (6.4) in (6.11) and then differentiating to obtain an approximation for 

the stress-plastic strain response; the material parameters are defined as in 

Section 4.2.    

 Direct comparison of Figs 4.3&6.1 shows that the comparison solution 

Fig. 6.1: Interfacial yield point and size effects nonlinear interfacial energy obtained 
through the comparison method 
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produces the same stress-strain response as the exact solution of the differential 

equations, and its use is hence justified for two-phase media as well.     

All of the results in the remainder of this section are obtained by 

substituting the appropriate realization of the constants of effβ  in (6.11) and then 

in (6.2) and optimizing numerically with respect to the material 

parameters 1 2,β β . The material parameters are defined as 1
0 1σ = , 2

0 2σ = , eo=1, 

γ=2, and 2 1/ 3 / 2L L = .  Ιn particular, inserting (6.4) in (6.11) and then in (6.2) 

allows the determination of the effective response for a highly nonlinear 

heterogeneous periodic medium, with different internal lengths in each phase. It 

should be noted that in the case of the new-gradient dependent potential the 

scaled internal length (5.12) must be used. Letting 1 1=  and 2 3 / 2= provides 

Figs. 6.2 and 6.3. For illustration purposes the results obtained through use of the 

Fleck-Willis potential (smooth curves) and the new gradient dependent plastic 

potential (dotted curves) are plotted together.   

It can be seen from Figs. 6.2 and 6.3 that unlike for the homogeneous 

medium, for this heterogeneous composite the new-gradient potential does not 

exhibit greater size effects from that used by Fleck and Willis. Therefore in the 

sequel only the Fleck-Willis potential will be employed. 

The curve designated as lower bound in the following figures indicates the 

elementary Reuss bound and is given by the expression 
1

0

0

( )
1

σ εε
+

⎛ ⎞
≥ ⎜ ⎟+ ⎝ ⎠

np
eff p ReV

n e
,                                       (6.13) 

where  
1/ 1/

1 1 2 2{ }σ σ σ− − −= +n n n
R p p .                                     (6.14) 

 

It should be noted that (6.13) corresponds physically to the limiting case 

1 / → ∞L .  
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Fig.6.2: Comparison between F-W and new gradient potential, when n=0.1 for a two phase 

periodic medium; smooth curves: F-W, dotted curves: new potential 

 

Fig. 6.3: Comparison between F-W and new gradient potential, when n=0.1 for a two phase 
periodic medium; smooth curves: F-W, dotted curves: new potential 
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To examine how the approximation of having the same internal length in 

both phases relates to the more physical case of having separate internal lengths 

in each phase, (6.6) is inserted in (6.11) and then in (6.2). The material parameters 

are kept the same, except that now there are two limiting cases that can be 

considered. The approximate internal length  can be equal to either the smallest 

or largest of the actual internal lengths, 1 2, . In Fig. 6.4 therefore  2 1.5= = ,  

while in Fig. 6.5 1 1= = . For comparison reasons the solution with different 

internal lengths (dotted curves) is also shown in these figures.  

It is illustrated in Fig. 6.4 that when the approximate internal length is set 

equal to the largest of the actual internal lengths, the response of the material 

becomes stiffer.  

For the case however where  is set equal to the smallest of the actual 

internal lengths in each phase, i.e. 1  in this particular example, the actual 

Fig. 6.4: Comparison of solutions obtained for F-W potential with n=0.1, when 
a) 1 21, 1.5= = : dotted curves b) 2 1.5= = : smooth curves 
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solution (in which 1 2≠ ) and the simplified solution  ( 1constant= = ) are in 

remarkable close proximity, as shown in Fig. 6.5. This argument can be used as a 

valid justification for employing the constant internal length assumption when 

solving the heterogeneous random medium; it should be noted however that the 

approximate internal length must correspond to the smallest actual internal 

length in order for the assumed solution to be robust.  

 

Fig. 6.6 displays the response for the same periodic medium as Fig. 6.5, but 

with a higher hardening exponent; the assumption 1constant= =  is considered 

so a comparison can be made with the random two-phase media solutions that 

are shown in Figs. 6.8&6.9 (i.e. (6.9), is inserted in (6.11), which is in turn inserted 

in (6.2) and minimized); Fig. 6.9, is the counterpart of Fig. 6.6.    

Fig. 6.5: Comparison of solutions obtained for F-W potential with n=0.1, when 
a) 1 21, 1.5= = : dotted curves b) 1 1= = : smooth curves 
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Fig. 6.7:Two-phase random medium, for F-W potential when n=0.1  
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   Fig. 6.6: Size effects for a two-phase periodic medium  with F-W potential when  n=0.3 
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Fig. 6.8: Size effects for a two-phase random medium, for F-W potential, n=0.1  
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   Fig. 6.9: Size effects for a two-phase random medium with F-W potential when n=0.3 
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It is observed in the above figures that the close numerical proximity that 

existed for the periodic and random homogeneous media is now present only for 

the largest specimen size. In particular it is seen in Fig. 6.10 that, in general, the 

disorder increases the strength of the material. This may be due to the 

randomness of the phases and not to the random interface distribution. The 

similarity between both materials for the largest specimen size considered is 

strikingly similar. 

 

 Finally, to illustrate the significant role of the “interfacial energy” in the 

observed size effects, Fig. 6.11 for the random material is obtained by setting γ=0. 

It can be seen that the scale effects are not only very small, but they lie between 

definite upper and lower bounds. This result can also be obtained through direct 

application of the Fleck-Willis [7] theory, and hence illustrates the limitation of 

that formulation, and the need to consider interfaces explicitly.   
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Fig. 6.10: Comparison between periodic and random media with F-W potential,  
when n=0.1;dotted curves: random medium; smooth curves: periodic medium 
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Fig. 6.11: Two-phase random medium with γ=0 (as in Fleck-Willis) and n=03 
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CHAPTER 7  

THREE-DIMENSIONAL 
CONFIGURATION 

The one-dimensional examples considered thus far, have been very effective in 

illustrating the main features of the newly developed variational formulation of 

Chapter 3.  The purpose of the present chapter is to consider a more physical, 

three-dimensional, situation such as a metal fiber embedded in a metal matrix. 

Such material systems are currently in an experimental stage and therefore the 

following formulation is promising for future applications. It will be shown that 

although similar size-effects are observed in higher dimensions, analytical 

expressions for the material response cannot be obtained, even if all potentials 

are linear. Incompressibility is assumed for the elastic and plastic strains; 

therefore the variational principle of Chapter 3, must be slightly modified so as 

account for these constraints.   

      

7.1 VARIATIONAL FORMULATION 

The overall potential Ψ is defined as in Chapter 3, i.e.  

,( , ) ( , , ) ( )P P P P
ij ij ij ij ij k ijU d dε ε ε ε ε φ ε

Ω Γ
Ψ = Ω + Γ∫ ∫ .                (7.1a) 
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For complete incompressibility the elastic stiffness tensor Lijkl which contains 

both Lame constants (λ and µ) is simplified so as to account only for the shear 

component, hence U takes the form  

, ,( , , ) ( )( ) ( , )P P P P P P
ij ij ij k ij ij kl kl ij ij kU Vε ε ε µ ε ε ε ε ε ε≡ − − + .                  (7.1b) 

It follows that since this definition for U differs from that in Chapter 3, the 

conjugate variable expressions must also be different; i.e. since U accounts only 

for the shearing component of Lijkl differentiation of this elastoplastic potential 

with respect to ijε , p
ijε and ,

p
ij kε  provides the deviatoric components of the Cauchy 

stress, “back” stress and  hyperstress. Hence the conjugate variable expressions 

that will be used in the sequel take the form 

,

and, ,ij ij ijkp p
ij ij ij k

U U Usσ τ
ε ε ε

∂ ∂ ∂′ ′ ′= = =
∂ ∂ ∂ .                          (7.2) 

The general variational characterization of Ueff is the same as before 

,
,

inf
1( , ) ( , , ) ( )

p
ij ij D

eff p p p p
ij ij ij ij ij k ij

D
U U dx d

Dε ε
ε ε ε ε ε φ ε

Γ

⎧ ⎫⎤⎡⎪≡ + Γ⎨ ⎬⎥⎢
⎪ ⎣ ⎦⎭⎩

∫ ∫ ,        (7.3) 

and is minimized over fields with mean values 

1
ij ij ij

D
dx

D
ε ε ε≡ =∫ ,                                 (7.4) 

1p p p
ij ij ij

D
dx

D
ε ε ε≡ =∫ .                                (7.5) 

 Now the first variation of (7.1a) is set equal to zero so as to obtain the 

principle of virtual work; allowing for complete incompressibility (i.e. 0iiε =  and 

0p
iiε = ) and using the definitions of (7.2) provides  

{ }σ δ σ δε δ δε τ δ δε

φ ε δ δε

∗

Ω

Γ

′ ′ ′ ′− − + − + + −

+ ∂ ∂ − Γ =

∫
∫

,

(7.6)

( ) ( ) ( )

[ / ] 0,
D

P P
ij ij ij ij ij ij ij ij ijk k ij ij k

P P
ij ij ij

p s q s r dx

t d
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         across ΓD.                   (7.10) 

      on ∂D,                          (7.9) 

     in  D\Γ,                       (7.8) 

where the constant tensors ,ij ijsσ ∗′ , and the fields rk, p, q, t, play the role of Lagrage 

multipliers. It can be seen that subsequent integration by parts gives 
 

{ }
{ }

{ }

, , , ,( ) ( )

(( ) ) ( )

[ ] ( ( ) [ ]) 0. (7.7)
D

P
ij j i i ij ij ij ijk k k k ij ij

P
ij ij j i i ijk k k k ij ijD

P P
ij j i i ij ij ijk k k k ij ij

p u s q s r dx

n pn u n r n dS

n pn u t n r n d

σ δ δ τ δ δε

σ σ δ τ δ δε

σ δ φ ε δ τ δ δε

∗

Ω

∂

Γ

′ ′ ′− + + − − − +

′+ − − + −

′ ′ ′+ − + − − − Γ =

∫
∫

∫
 

Hence, the equilibrium, boundary, and jump across interfaces conditions, for the 

case of complete incompressibility read 

                                                                        , , 0ij j ipσ ′ − =  

                                                         , , 0ij ij ij ijk k k k ijs q s rδ τ δ∗′ ′− − − + =                                                            

 

                                                       ( ) 0ij ij j in pnσ σ′ ′− − =   

                                                    0ijk k k k ijn r nτ δ′ − =  on ∂Ω                                             

 

                                                            [ ] 0ij j in pnσ ′ − =                                                   

                                                 [ ] ( )p
ijk k k k ij ij ijn r n tτ δ φ ε δ′ − = −  

In this connection, it should be noted that according to classical mechanics, the 

total stress, under complete incompressibility is expressed as  

ij ij ijpσ σ δ′= − .                                             (7.11) 

Furthermore for this particular form of U the quantities q, rk and t can be set equal 

to zero, without affecting the general solution, therefore ijs  and ijkτ  are equal to 

their deviatoric part, and hence all of the above equilibrium conditions, with the 

exception of (7.8)1, reduce to (3.22-3.24). 

 

7.2 APPLICATION TO TWO-PHASE AXIALLY SYMMETRIC COMPOSITE 
 
The cylindrical composite under consideration is taken to be under a state of 

uniaxial stress. The load is applied on the axis of symmetry (z-axis), such that the 
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average strain in the z direction is taken to be a constant and is set equal to zzε ; 

therefore the present configuration is under generalized plane strain conditions. 

In particular for axially symmetric generalized plane strain, the stress and 

displacement equilibrium equations, as well as the general strain and 

displacement relations are given by 

  and0, 0 ( )rrrr zz
zz zz

d d r
dr r dr

θθσ σσ σ σ σ+
+ = = ⇒ = ,               (7.12) 

and( ), 0,r r z zzu u r u u zθ ε= = = ,                                  (7.13) 

and, ,r r
r z zz

du u
dr rθε ε ε ε= = = ;                                   (7.14) 

the rest of the components vanish due to symmetry. Inserting now (7.14) in the 

total strain incompressibility condition gives the displacement relation as 

0 0 ( )
2

r r
rr zz zz r zz

du u A ru r
dr r rθθε ε ε ε ε+ + = ⇒ + + = ⇒ = − ,         (7.15) 

where the constant of integration A has to be zero inside the inclusion in order to 

avoid a singularity at 0r = . Moreover, due to continuity of ru  across interfaces, 

A=0 also inside the matrix and hence the displacement expression is the same 

throughout the whole composite.   

 It follows from (7.14) and (7.15) that  

2
zz

r θ
εε ε= = − .                                             (7.16) 

 To proceed further towards the formulation of the problem, V assumes its 

aforementioned quadratic form 

2 2 2
, ,

1( , ) [( ) ( ) ]
2

p p p P
ij ij k i ij i ij kV ε ε β ε ε= + .                        (7.17)  

As a result the conjugate variable expressions give 

2 ( )p
ij i ij ijσ µ ε ε′ = − ,                                            (7.18) 

p
ij i ij ijs β ε σ′ ′= − ,                                                (7.19) 
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2
,

p
ijk i i ij kτ β ε′ = .                                                 (7.20) 

Substituting (7.18) in (7.11) gives the total stress as  

2 ( )p
ij ij i ij ijpσ δ µ ε ε= − + − .                                    (7.21) 

Hence the governing differential equation, (7.8)2, of the system can be re-written 

as 
2

,
p p

ij i i ij kk i ijpσ β ε β ε+ + = .                                     (7.22) 

It should be noted that, due to the axial symmetry present, the only relevant 

components of (7.22) are the rr, θθ, and zz, only two of which are independent. 

Computing the zz-component of (7.21) and (7.22), and combination of the two 

provides the first independent differential equation of the system 

    
2

2
2

12 ( )
p p

p pzz zz
zz zz i i i zz

d d
dr r dr

ε εµ ε ε β β ε
⎛ ⎞

− + + =⎜ ⎟
⎝ ⎠

,                       (7.23) 

where it should be emphasized that the gradient of the plastic strain in (7.22) is 

computed for cylindrical co-ordinates under axial symmetry. Solution of (7.23) 

gives the plastic strain in the z direction as  

1 0 2 0 2where
2 2( ) ( ),

2
p i ii i i
zz zz i i

i i i i

C I kr C K k r kµ β µε ε
β µ β

+
= + + =

+
.      (7.24) 

The subscripts/superscripts i in the constants of (7.24) as well as in the sections 

to follow denote the properties in the inclusion (which is denoted as 1) and the 

matrix (denoted by 2). Now, (7.21) is calculated for the rr and θθ components and 

the resulting expressions are subtracted to give 

2 (2 )p p
rr i rr zzθθσ σ µ ε ε− = − .                                (7.25) 

Similarly by calculating (7.23) for the rr and θθ  components, and subtracting the 

resulting expressions we obtain the second differential equation of the system 

2[( ) ( ) ] ( )p p p p
rr i i r i rrθθ θ θθσ σ β ε ε β ε ε− + ∇ − ∇ = − .                (7.26) 
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It follows that insertion of (7.25) in (7.26) provides 

3 2 4 2 3 2 4 2 1 0 2 0
12 ( ) ( ) ( ( ) ( ) ( ) ( ))
2

. (7.27)

p p pi i i i i i
rr zz i rr i i

p p
rr

C I kr C K k r C I kr C K k r C I kr C K k r

θθ

ε ε ε

ε ε

+ = + ⇒ = + − +

⇒ = −
 

Additionally substitution of (7.25) in (7.12) gives 

( )3 1 4 1
2( ) ( 2 ( )) / 2 ( )i ii

rr i i i i
i

r C k r I k r C K k r j
k r
µσ = − − + + ,                (7.28) 

where the integration constant j2 is found by setting  ( ) 0rr bσ = , while j1 is found 

by requiring  continuity of the stress, i.e. 1 2( ) ( )rr rra aσ σ= ; hence j1= j2=0. 

 Writing the rr-component of (7.21) and combining with (7.28) allows the 

determination of the pressure p 

 1 3 0 3( ) ( ) ( ( ) )
2

i i ii
i i i i i zz

i i

p C C I k r Cµµ µ β β ε
β µ

= − + + −
+

.              (7.29) 

Now the zz-component of the stress (7.22) can be completely defined, in terms of 

the various constants which shall be determined from the boundary conditions, 

and averaged so as to give the average stress-strain response in the z-direction  

2 2
0 0

2 2( ) ( ) ( ) ( ) ( )
b a b

zz zz zz zz zz
a

r r r dr r r r dr r r dr
b b
πσ σ σ σ σ

π
⎡ ⎤

= ⇒ = +⎢ ⎥
⎣ ⎦

∫ ∫ ∫ .  (7.30) 

 

7.3 DETERMINATION OF CONSTANTS IN THE PLASTIC STRAIN RELATIONS 
  
In order for p

zzε  to be nonsingular at r=0 it is required to take 1
2 0C = , similarly 

1
4 0C =  in order for p

rrε  and p
θθε  to be nonsingular. This is because the modified 

Bessel functions of the second kind (i.e. Kn(x)) approach infinity as r→0, and 

hence are undefined at r = 0. As in the previous examples considered, the higher-

order traction is taken to be zero at the outer boundary.  Hence, 

  0; 0
p p
rr zz

r b r b

d d
dr dr
ε ε

= =

= = = ;                                      (7.31) 
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the conditions concerning p
θθε  are not employed since they are dependent on p

rrε . 

The four more equations needed to determine the complete set of constants in 

the plastic strain expressions, are formulated separately for the two interfacial 

energy terms that have been used so far.    

 

7.3.1 Linear interfacial response 
 

The first case considered is that according to which the interface has a linear 

response so  

2

0 0 0 0

1( ) ( ) [ ] ( )
2

p p p p
ij ij ij ijx x x x

φ φ ε α ε τ φ ε αε
= = = =

′≡ = ⇒ = = .      (7.32) 

Therefore the remaining 4 equations are those that ensure continuity of the 

plastic strains across the interfaces, as well those that allow the higher-order 

tractions to suffer a jump equal to that of (7.32), in other words  

,1 ,2p p
rr rrε ε= ; ,1 ,2p p

zz zzε ε= ; 

,2 ,1
2 2

2 2 1 1 (0)
p p

prr rr
rr

a a

d d
dr dr
ε εβ β αε− = ;

,2 ,1
2 2

2 2 1 1 (0)
p p

pzz zz
zz

a a

d d
dr dr
ε εβ β αε− = . (7.33) 

 

 
7.3.2 Non-linear interfacial response 
 
When the nonlinear behavior of the interfaces is considered the interfacial yield 

condition is given by 

τ γ ε

φ φ ε γ ε ε

ε
τ γ ε ε

ε ε

=

= =

≤ =

≡ = ⇒

= ≠

1/2

1/2

[ ] , when 0

( ) ( )

[ ] , when ( ) 0, (7.34)

p
ijk k ij r a

p p p
ij ij ijr a r a

p
ij p p

ijk k kl klp p
kl kl

n

n

 

in particular: 

a) Before the interface yields the plastic strain there is zero so  

,1 ,2( ) 0; ( ) 0p p
rr rra aε ε= = ; ,1 ,2( ) 0; ( ) 0p p

zz zza aε ε= = ;                   (7.35) 
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      b) After the interface yields  
,1 ,2p p

rr rrε ε= ; ,1 ,2p p
zz zzε ε= ; 

,2 ,1
2 2

2 2 1 1 2 2 2

( )

( ) ( ) ( )

p p p
rr rr rr

p p p
a a rr zzr a r a r a

d d a
dr dr

θθ

ε ε εβ β γ
ε ε ε

= = =

− =
+ +

 

,2 ,1
2 2

2 2 1 1 2 2 2

( )

( ) ( ) ( )

p p p
zz zz zz

p p p
a a rr zzr a r a r a

d d a
dr dr

θθ

ε ε εβ β γ
ε ε ε

= = =

− =
+ +

.          (7.36) 

 

7.3.3 General Solution 
 

Solving the above system of equations provides that for both interfacial energies, 

in addition to 1 1
2 40, 0C C= = , which was proven at the beginning of this section, 

1 2 2
3 3 4 0C C C= = = , hence the general average stress-plastic strain response in the z-

direction takes the form  

( )

1
1 1 1 1

12
1 1 1

2 2 2 22
2 2 2 2 1 1 2 1 2 2 1 2 1 2

2 2 2

3 2 ( )( )
2
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b k

b a k C aI ak bI bk C bK bk aK ak
k

β εσ µ
β µ

µ β ε β µ
β µ

⎧ ⎛ ⎞⎪= −⎨ ⎜ ⎟+⎪ ⎝ ⎠⎩
⎫

+ − + + − + − ⎬+ ⎭

 

(7.37) 

where the appropriate set of constants are considered depending on the assumed 

interfacial energy.  

 

7.4 RESULTS FOR AXIALLY SYMMETRIC CONFIGURATION 
  

7.4.1 Linear interfacial response 
 

For the linear interfacial energy the overall stress-strain response of the material 

is linear and the constants in (7.37) can be grouped together as  

3( )
2

eff p
zz zzrσ β ε= .                                                (7.38) 

where again effβ  can be written in the form  
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/
/

eff A B
C D

αβ
α

+
=

+
 ,                                                 (7.39) 

in which  

1 1 1ˆ ˆ( / ); ; / ; 1A A B A B C Dα α α α= = + = = ;                  (7.40) 

the constants A1, B1 and α̂ are given in Appendix E, and are found by solving 

simultaneously the system of equations that consists of (7.31) and (7.33) . It 

should be noted that the factor 3/2 in (7.38) accounts for the incompressible, 

three-dimensional configuration, at hand.  

Allowing for the material parameters to take the values 

1 2 1 2 1 21, 2, 3, 2, 1, 1.5, 1.2β β µ µ α= = = = = = = provides the size effects shown in 

Fig. 7.1. 

 

7.4.2 Non-linear interfacial response 
 
Solving the system of equations prior to interfacial yield (i.e. (7.31) and (7.35)) 

provides that the constants required for defining the average stress-strain 

response (7.37), prior to interfacial yielding are given by  

Fig. 7.1: Size effects for an axially symmetric composite with linear V and φ 
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After the interface yields solution of (7.31)2 and (7.36)2 provides analytical 

expressions for two of the three constants as 

1
2 2 2 2 1 1 1 0 1 1 1 2

1
1 2 0 2 0 2 1 2

[( /( 2 ) /( 2 )) ( ) ] ( )
( ) ( ) ( ) ( )

β β µ β β µ ε+ − + +
=

+
zz I ak C K bkC

I bk K ak I ak K bk
 and 

2
2 1 1 2
2

1 2

( )
( )

=
C I bkC
K bk

. (7.42) 

The remaining constant, 1
1C , is found numerically from the interfacial jump 

condition, (7.36)4. Allowing for the same material parameters as in the previous 

subsection, i.e. 1 2 1 2 1 21, 2, 3, 2, 1, 1.5, 1.2β β µ µ γ= = = = = = = , where α has been 

replaced with γ, provides Fig. 7.2.  

  

It can be seen that the exhibited size effects are similar to those of its one 

dimensional counterpart (Fig. 4.3); it should be noted, however, that now the 

Fig. 7.2: Size effects for an axially symmetric composite with linear V and nonlinear  φ 
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strain at which the interface yields increases as the specimen size decreases, 

whereas the opposite was observed in Fig. 4.3.  A significant drawback for this 

three dimensional, axial configuration is that it does not allow the development 

of an analytical expression for the “interfacial yield” stress, since the constant 1
1C  

needs to be found numerically. This will be true for all configurations in higher 

dimensions.  

 It should be noted that the bound formulations of Chapter 3, including the 

comparison method, were developed based on the assumption that the elastic 

constants Lijkl are the same throughout the whole domain under consideration, 

(see expression (3.27)).  These bounds are valid for a medium which constitutes 

of phases that have different elastic constants, only in the special one-

dimensional case. Therefore, it was possible to apply the comparison method to 

the heterogeneous one-dimensional examples of Chapter 6. For this axial three-

dimensional configuration the comparison method, as displayed in Chapter 3 

can be used only if the inclusion and surrounding matrix have the same shear 

moduli; such a material system, however, does not have much physical relevance 

and therefore is not examined herein. It should be noted, however, that since βeff   

(7.39) for this system is of the same form as that in Chapter 6, the corresponding 

effective response, in the case of constant µ, for a highly nonlinear medium, i.e. 

its gradient dependent plastic potential assumes the form of (4.20) or (4.24) is 

given by inserting (6.11) in (6.2). Due to the three-dimensional incompressibility 

conditions that are present, the constants A and C should be scaled by the factor 

3/2. Additionally the probabilities, for the present case, are given as p1=a2/b2 and 

p2=(b2-a2)/b2. 

 For the more interesting case of different shear moduli, which was solved 

exactly for a quadratic V in the previous subsections, a Veff does not exist and 

therefore the comparison method produces a bound for Ueff, which depends on 

both the total and plastic strain, in addition to the material parameters α, β1 and 

β2. Illustration of this approach is beyond the scope of this chapter, whose main 
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purpose was to demonstrate how a configuration with direct physical 

application should be treated.      
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CHAPTER 8  

EXPERIMENTAL CONFIRMATION 
OF THEORETICAL FORMULATION 

The previous chapters were concerned with the development and applications of 

an appealing mathematical framework, which accounts explicitly for the 

presence of interfaces in composites and polycrystals. The main new features of 

this novel formulation are: interfaces are allowed to follow their own yield 

behavior and hence an “interfacial yield” stress is present, and size effects which 

are in some cases solely due to the presence of the interfacial penalty are 

observed. The purpose of this final chapter is to confirm through experimental 

observations the existence of such an “interfacial yield” stress, as well as the 

occurrence of corresponding size effects. The experiments were performed 

through nano-indentation, hence a brief introduction is first given on this subject. 

Then, after the experimental results are presented and analyzed they are fit to the 

analytical one-dimensional interfacial yield stress expression that was obtained 

in Chapter 4. This allows us to obtain qualitative values for the main physical 

parameters, the internal length and the interfacial energy-like term, that are 

present in the theory. This is of particular interest since these are the first 

estimates of their type, and they are proven to be in good agreement with 

quantities deduced through dislocation mechanics.  
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8.1. NANO-INDENTATION 
 
In the past two decades, significant focus has been given towards the 

development of experimental techniques for characterizing the mechanical 

properties of thin films and small volumes of material. Load and depth sensing 

indentation, commonly referred to as nano-indentation, is a way by which this 

has been achieved [70]. A detailed analysis of the technique of nano-indentation  

can be found in the PhD thesis of Nuno Carvalho [71] on which the present 

summary is based. It should be realized that the material properties that can be 

probed with this technique depend on the indenter tip geometry. The most 

common categories of tip geometries are: spherical, cube triangular, and cube 

corner.  In general, sharp, geometrically-similar indenters such as the 

Berkovich triangular pyramid are useful when one wishes to probe properties at 

the smallest possible scale. This tip is often preferred over the Vicker’s (cube 

corner) for hardness measurements because the apex can be more readily 

fashioned to meet at a point rather than the inevitable line that occurs with the 

Vickers four-sided geometry. Moreover, it has no major flaws and is easier to 

calibrate. Therefore, the force/area relationship can be reliably calculated at very 

low loads.  Spherical indenters are usually employed by ultra-low load 

indentation methods [72].  

The properties routinely measured with the Berkovich indenter are the 

hardness and the elastic modulus [73]; additionally, methods which are still in a 

first stage, are also available for measuring strain rate sensitivity, and internal 

friction [74]. When the specimen temperature can be controlled, it is also possible 

to determine parameters characteristic of thermally-activated plastic flow, such 

as the activation energy and stress exponent for creep [75]. The experiments to be 

presented are based on hardness measurements; hence the techniques followed 

to obtained such data is presented in the sequel.  
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In order to determine the hardness and elastic properties of a material using 

load and depth sensing indentation techniques, several methods have been 

developed [73,76-78]. One of the important advantages of these methods is that it 

is not necessary to measure the area of the hardness impression by imaging, 

thereby facilitating property measurements at the sub-micron scale. The contact 

area and the mechanical properties are determined from the data of one 

complete cycle of loading and unloading. The unloading data is treated 

assuming that the displacement recovered is largely elastic. Then, the hardness 

and Young's modulus can be determined by solving the elastic contact problem 

[79].  

The mathematical foundations for the contact problem of indentation of an 

elastic half-space by a rigid punch were considered more than a century ago by 

Boussinesq [80] and Hertz [81]. Later, Love used elasticity methods to derive 

solutions for cylindrical [82a] and conical [82b] punches. However, a complete 

solution for the contact problem was only derived in 1945 by Sneddon [83], who 

established an analytical procedure based on Fourier transforms for obtaining 

the relationships of load, displacement, and contact area for a punch of arbitrary 

axisymmetric shape. His results show that the load-displacement relationships 

for simple punch geometries can be expressed as  

α= mP h ,                (8.1) 

where P is the indenter load, h is the total elastic displacement of the indenter, m 

is 1, 1.5, and 2 for a flat cylindrical punch, parabola of rotation, and cone, 

respectively, and α is a constant. Stillwell and Tabor [84] performed the earliest 

experiments in which load and displacement sensing indentations by conical 

indenters were used to measure mechanical properties. Their experiments 

revealed that upon unloading the shape of the hardness impression was still 

conical, and only the depth had recovered, resulting in a larger included tip 

angle. Therefore, the elastic contact solutions could be applied and the plasticity 
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accounted, by taking into consideration the shape of the deformed surface. With 

these results, they demonstrated that the elastic modulus and the size of the 

contact impression could be derived accurately from the shape of the unloading 

curve (of the load vs. depth plot) and the total amount of recovered 

displacement.  

Another key development was the definition of the reduced modulus, 

which includes the effects of non-rigid indenters on the load-displacement 

behavior, via the equation* 

ν ν− −
= +

2 2(1 ) (1 )1 i

r iE E E
,    (8.2) 

where E and ν are the Young's modulus and Poisson's ratio, respectively, for the 

specimen while iE  and iν  are the corresponding quantities of the indenter. The 

first experiments to obtain load-displacement data which could be used to 

measure the elastic modulus, were done by Bulychev and co-workers [85] using 

a microhardness testing apparatus. They analyzed the data according to the 

equation 

π
= =

2
r

dPS E A
dh

,     (8.3) 

where S is the stiffness in the contact between the indenter and the specimen, i.e. 

the slope of the upper portion of the unloading data, and A is the projected area 

of the elastic contact area measured from the indentation hardness impression. 

Eq. (8.3) has its origins in the elastic contact theory [86]. Although it was 

originally derived for a conical indenter, Bulychev et al. [85] showed that the 

equation could be applied for spherical and cylindrical indenters. Subsequently, 

Pharr et al [79] showed that (8.3) applies to any indenter that can be described as 

a body of revolution of a smooth function. Moreover, King [87] using a finite 

element method, showed that when (8.3) is rewritten as 

                                                 
* The origin of this equation can be traced back to Hertz’s analysis 
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2
rS E Aβ

π
= ,          (8.4) 

it can be applied to indenter geometries which are not described as bodies of 

revolution, like flat-ended punches with square (Vickers-like) and triangular 

(Berkovich-like) cross sections, providing β is taken to be 1.012 and 1.034, 

respectively. 

In the late 1980's Doerner and Nix [78] presented a method to determine the 

hardness and modulus from load-displacement data using (8.3). They recognized 

that for most metals, during initial unloading the area in contact with the 

indenter remains constant. Accordingly, the elastic behavior could be modeled as 

that of a blunt punch indenting, over the contact area, an elastic solid. To 

evaluate the contact area independently, they proposed to extrapolate the initial 

part of the unloading curve to zero load and determine the extrapolated depth. 

Then, using the indenter shape function, the contact area can be calculated. 

Knowing the contact area, the hardness, H, which is equivalent to the average 

pressure under the indenter, is calculated from 
maxPH
A

= ,     (8.5) 

where maxP  is the maximum load. 

Oliver and Pharr [73] have developed a procedure that accounts for the 

elastic recovery by expanding the assumptions developed by Loubet et al [77] 

and Doerner and Nix [78], without assuming a flat punch geometry. The method 

expresses the load-displacement relation derived by Sneddon [86], for purely 

elastic material the more general form by 

α= −( )m
fP h h ,    (8.6) 

where the total displacement is now modified for the indenter impression; fh  is 

the final displacement after complete unloading, as shown schematically in Fig. 

7.1a, and α, m are constants. A drawback of the analysis proposed by Oliver and 

Pharr [73] is that the suggested power law relationship does not take into 
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account any residual plasticity present in an elastic/plastic material. Their 

analysis procedure begins by rewriting (8.4) as 

1
2r

SE
A

π
β

= ,    (8.7) 

which relates the reduced modulus, rE , to the contact area, A, and the measured 

stiffness, S. Then, the unloading curve is fitted to the power-law relation of (8.6), 

where α, m and fh  are empirically determined fitting parameters. The unloading 

stiffness is subsequently obtained by differentiating the load-displacement 

relation at the maximum depth of indentation, maxh h= , leading to: 

1m
max max f

dPS (h h ) m (h h )
dh

−= = = −α .  (8.8) 

The depth along which contact is made between the indenter and the specimen, 

called contact depth, ch , is also estimated from the load-displacement data 

through the relationship 

max
c max

Ph h
S

= −ε ,    (8.9) 

where the parameter ε  depends on the indenter geometry, being ε = 0.72  for a 

conical indenter, ε = 0.75  for the Berkovich tip and ε = 1  for a flat punch. Fig. 8.1 

depicts the cross section of an indentation and a schematic load-displacement 

curve, where all the parameters used in the analysis are identified. The indenter 

area function, A, is calculated using the unloading curve and based on the 

assumption that the elastic modulus is independent of the indentation depth, 

while the compliance of the specimen, SC , and additional machine compliance, 

fC , can be modeled as a two springs system in series. Taking the specimen 

compliance during elastic contact as the inverse of the contact stiffness, the 

contact area can be described by rewriting (8.3) as 

2 2
1 1

4 ( )r f

A
E C C

π
=

−
 ,   (8.10) 

where C is the total measured compliance, ( )S fC C C= + .  
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The first estimate of the contact area is made for large indentations, by 

applying the indenter shape function for a perfect Berkovich indenter at the 

contact depth, which is given by 

θ=

=

2 2

2

( ) 3 3 tan
24.56 ,

c c

c

A h h
h

    (8.11) 

Fig. 8.1: Schematic representations of: a) a cross section of an indentation and b) the load versus 
indenter displacement curve, showing the quantities in the analysis, as well as a graphical 
interpretation of the contact depth [71] 
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where θ  is the indenter included half-angle of 65.3º. Assuming that the large 

indentations are unaffected by tip rounding, the initial values of the elastic 

modulus and machine compliance are obtained by plotting C vs 1 2A− , where if 

the modulus is constant, the plot is linear and the intercept a direct measure of 

fC . However, for real Berkovich indenters the shape function is far more 

complex due to tip rounding.  

Therefore, the contact area is now calculated for different indentation 

depths in a material with well-known, isotropic elastic properties (usually fused 

quartz), and plotted vs the corresponding contact depths. The resulting graph is 

fitted to a nine-term polynomial, and the new values of the machine compliance 

are then calculated by using the obtained area function and the procedure is 

repeated until convergence occurs and the indenter shape function is deduced. 

Then, the contact area can be determined from the load-displacement data, and 

the hardness and reduced modulus are calculated from (8.5) and (8.7), 

respectively. 

With a state-of-the-art instrument and a careful analysis, the mechanical 

properties (i.e. hardness and elastic modulus) of several materials can be 

measured using this method with accuracies better than 10% [73]. There are, 

however, some materials in which the methodology can lead to a significant 

overestimate of the hardness and modulus due to an underestimate of the true 

contact area when large amount of pile-up forms around the residual impression. 

The underestimate of the contact area occurs because (8.7) and (8.9) were derived 

from a purely elastic contact solution, and thus may not work well for 

elastic/plastic indentation. In the former situation, the material around the 

indenter always sinks-in, while in the latter the material may either sink-in or 

pile-up. Therefore, it is not surprising that the method has been found to work 

well for hard ceramics, in which sink-in predominates [73], but one may expect 

errors when the method is applied to soft metals that exhibit extensive pile-up 

[88]. 
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A method of characterizing materials for pile-up and the types in which it is 

important have been developed in detail by Bolshakov et al. [88-90] by using a 

finite element method. From a purely mechanical viewpoint, the fundamental 

material parameters controlling elastic/plastic deformation during indentation 

are the elastic constants, E  and ν , the yield stress, yσ , and the work-hardening 

rate, η. However, a convenient, experimentally measurable parameter can be 

used to identify the expected indentation behavior of a given material. This 

parameter is the ratio of the final indentation depth to the displacement at peak 

load, f maxh h , which is independent of the indenter penetration due to the self-

similar geometry of the conical indenter.  

The pile-up or sink-in behavior depends on the amount of work hardening, 

as well as on the value of f maxh h . Specifically, the pile-up is large only when 

≈ 1f maxh h  and the amount of work hardening is small. Nevertheless, when 

0 7f maxh h .< , very little pile-up is present, irrespectively of the work hardening 

behavior of the material.  The Oliver and Pharr method is based on an elastic 

analysis, which can account for sink-in only. Therefore, the accuracy of the 

method in estimating the real contact area depends on the amount of pile-up. 

Furthermore, when 0 7f maxh h .> , the accuracy of the method relies strongly on 

the work-hardening characteristic of the material. If the material does not work 

harden, the method underestimates the contact areas by as much as 60%. On the 

other hand, the contact areas for materials with a large amount of work 

hardening are predicted very well by the method. At this point it should be 

noted that from an experimental point of view, it is not possible to predict 

whether a material work-hardens based solely on load-displacement data. 

Conversely, when the pile-up is small i.e., 0 7f maxh h .< , the method gives a good 

estimate of the contact area, independently of the work hardening behavior. As 

hardness values are obtained for a given material using (8.5), inaccuracies in the 

contact area caused by not accounting for pile-up leads to similar inaccuracies in 
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the hardness. The problem of overestimation of the elastic modulus was 

addressed by Hay et. al.[91].  

 

8.2 “INTERFACIAL YIELDING” OBSERVATIONS  
 
Another area in which nano-indentation has been very effective is in observing 

the occurrence of dislocation motion. This is exhibited as a plateau in the load-

depth curve, i.e. since dislocations begin to move, the tip can be displaced deeper 

into the sample at a constant load. Extensive research has been performed for the 

explanation of such displacement bursts, as they are commonly referred to; it has 

been argued that they indicate the initiation of plastic flow in the material and 

hence information for yield stress can be obtained. Recent nano-indentations on a 

Fe-14%Si bicrystal [34], show that indenting near the grain boundary results in a 

second displacement burst in the load-depth curve, and is believed to indicate 

dislocation transference across the boundary. This phenomenon can also be 

thought of as corresponding to the existence of an “interfacial yield” stress which 

the aforementioned theory, developed at the previous chapters, predicts. Before 

relating the experimental observations to the theory some details concerning the 

experimental procedure are given. 

 

8.2.1 Experimental procedure 
 
As previously mentioned, the indentations were carried out near an isolated and 

well-defined edge-on grain boundary of a Fe-14wt%Si alloy bicrystal (courtesy 

Dr. Pavel Lejcek of the Institute of Physics, Czech Republic for providing the Fe-

Si bicrystal). After the surface was polished using a final polishing colloidal silica 

suspension, Electron Backscatter Diffraction (EBSD) was employed to locate the 

grain boundary with respect to a grid of marker indents. Additionally, the EBSD 

analysis provided the boundary misorientation, which is represented by a (-

0.293, 0.120, 0.026) Rodrigues vector and does not correspond to any low-index 
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coincident site lattice (CSL) boundary in body-centered cubic crystallography. 

The indenter tip employed was a pyramidal Berkovich tip and the measurements 

were performed using the continuous stiffness measurement (CSM) technique 

[77].  In order to vary the distance to the grain boundary with the smallest 

possible increments, lines of indentations were drawn across the grain boundary 

at very low angles (<3º). The azimuthal orientation of the indenter was chosen to 

have one side of the triangular impression of the Berkovich tip parallel to the 

boundary. The maximum indentation depth was 200 nm and the spacing 

between indentations was 3 µm. To exclude the possibility of mutual interaction 

between the plastically deformed zones of subsequent indentations, we 

compared lines of indents with spacings ranging from 3 to 10 µm in the matrix of 

the bicrystal; no significant deviations in the load - displacement data and the 

calculated hardness values were found.  

 

8.2.2 Experimental Observations 
 

At relatively small depths all indentations exhibited a displacement burst, 

which indicates material yielding (e.g. Fig. 8.2). The indents that were close to the 

boundary exhibited a second plateau as shown in Fig. 8.3a. In particular, some 

indentations near the boundary exhibited two plateaus, Fig. 8.3b. It may be 

possible for example that part of the first dislocation batch which began moving 

was absorbed by the boundary, then as the load increased a second dislocation 

batch began moving.   

Examining Figs 8.2 with 8.3a, respectively, shows that there is quite an 

amount of extra plasticity stored near the grain-boundary as compared with the 

bulk behavior. This is better demonstrated by plotting the two figures together in 

Fig. 8.4. 
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Fig. 8.2: Indentations in the bulk 

 

Fig. 8.3a: Indentations near the interface 
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Fig.8.4: Experimental observations and elastic solution of the Berkovich indenter (dashed line); 

Solid line: bi-crystal near grain-boundary; dotted line: bulk behavior far away from grain-
boundary 

 

Fig. 8.3b: Indentations near the interface, exhibiting two displacement bursts 
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In particular, it can be seen from Fig.8.4 that by subtracting the (P vs h)bulk   

curve from the (P vs h)GB up to the burst, the excess stored energy is found to be 

WGB= 8 10-12 J.   

It is of interest to investigate whether this amount of energy is related to a 

dislocation based mechanism. It is not meant, of course, to reproduce the value of 

WGB  exactly but to examine the order of magnitude of the various interactions 

involved. Let us assume that a dislocation pile-up experiences an applied shear 

stress as given by the experiment (about 600 MPa); the applied shear stress at the 

plateau is approximately six times less than the recorded hardness. The length of 

a dislocation pile-up under an applied shear stress may be estimated from the 

well-known relationship (e.g. [68])  

 pile up
a

bnl µ
πτ− = , (8.12) 

where n is the number of dislocation loops in the pile-up, ignoring the 

difference between edge and screw parts.  The distance from the indenter to the 

GB at the onset of the burst is of the order of 300 nm, and therefore (8.12) gives 

that n is approximately equal to 25, i.e. there are about 25 dislocations in the 

pileup. The stress fields of a stressed dislocation pileup of 25 dislocations have 

been calculated based on linear elasticity and the shear stress is depicted in Fig. 

8.5 (the interface is at / 0pile upx l − = ). 

 Under an applied shear stress of Aτ  the positions of the edge dislocations in 

the pileup with the first dislocation locked at 0x =  are given by: 

 
1

,

1 0
2 (1 )

N

A
i i j j i

b
x x

µ τ
π ν

−

≠

+ =
− −∑ . (8.13) 

 

 



 133

 
Fig. 8.5: Shear stress due to a dislocation pile-up of 25 dislocations in front of a boundary at 

/ 0pile upx l − = . The shear stress is in units of the applied shear stress of 600 MPa 

 

It can be shown that the positions ix  of the dislocations are given by the zeros of 

the polynomial 

( )
1

1

( )
N

i
i

g x x x
−

=

= −∏ ,                               (8.14) 

and that ( )g x  is given by the first derivative of the N-th Laguerre polynomial 

[93,94] 

 4 (1 )( ) N
xg x L

b
π ν τ

µ
⎛ ⎞−′= ⎜ ⎟
⎝ ⎠

. (8.15) 

The calculations provide the position of each of the 25 dislocations with 

respect to each other, which can be used to compute the total energy of the 

dislocation burst, i.e. the plateau of Fig. 8.3a. Compared to the experimentally 

observed length of the burst (= n times the Burgers vector b ) the theoretical 

prediction is of the same order of magnitude as experimentally observed.  
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Because the positions of the dislocations in the stressed pile-up are known, 

the elastic energy stored in the 25 dislocation loops near the spearhead of the 

pile-up can be predicted from: 

  ( )self I
t i pq

i p q

E E E r= +∑ ∑∑ .                               (8.16) 

It turns out that the self energy of the leading 25 dislocation loops of radius 300 

nm is far less than the interaction energy among the dislocation 

loops ( )I
pq

p q

E r∑∑ , i.e. 5.8 10-14 J and 5.1 10-12 J, respectively.  This was also found 

in [95] for indentations in thin films. Comparison with the experimentally 

determined value for WGB of 8 10-12 J leads to the conclusion that there is a fair 

agreement with tE  and that the plateau observed in the P vs h curves can be 

attributed to the release of dislocations in the pile-up in front of the boundary.  

In the energy calculations so far we have ignored the increase in elastic 

energy (see Chapter 2) of the boundary due to the burst. Since in all experimental 

observations the (P vs h)GB returns after the burst to (P vs h)bulk this contribution 

to the energy change is considered to be small. It is important to realize that the 

grain-boundary in the bicrystal of the FeSi sample is unconstrained. Suppose 25 

dislocations are absorbed in the boundary and relax equidistant over 50 nm. 

Even in that case, using (2.10) or (2.20) the grain-boundary energy increases only 

1.5 10-14 J with respect to the misorientation of 35.20 in the FeSi, i.e. far less than 

tE .   

 

8.3 COMPARISON WITH GRADIENT PLASTICITY THEORY   
 

As was mentioned the dislocation transference phenomenon depicted in Fig.8.2 

is similar to the “interfacial yield” that results from the mathematical formulation 

developed in the previous chapters. It is therefore important to see how the 

experimental data correspond to the theoretical predictions. As was observed in 
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the previous chapters, the newly developed strain-gradient formulation predicts 

that as specimen size decreases, the “interfacial yield” stress increases. It would 

be therefore interesting to examine if the experimental data follow this pattern. 

The experimental data obtained are shown in Table 1.   
 

Table 1 

Tip to boundary distance at 
onset of burst (nm) 

Hardness before burst (GPa) 

106 4.25 

131 3.7 

210 3.2 

335 3.17 

                                                     

It can be seen from this table that as the distance from the grain boundary 

decreases, the hardness of the material before the occurrence of the displacement 

burst increases. Since, according to the previous section, the burst can be 

interpreted as the onset of dislocation transference across the grain boundary this 

hardness can provide the yield stress of the boundary; it has been observed that 

the yield stress is approximately 1/3 of the hardness. To get a better feeling of 

how the experimental data behave, the data points of Table 1 are plotted in 

Figure 8.6. Since the distance between the indenter tip and the grain boundary is 

bounded between the tip and the boundary, it can be considered as being the 

specimen size. Fig. 8.4 is of great importance because it not only depicts “size 

effects” for the “interfacial yield” stress, for the first time, but it is in qualitative 

agreement with the proposed mathematical formulation, since as the specimen 

decreases the “interfacial yield” stress increases. It should be noted that no 

similar dependence was observed for the grain interior yield stress, which 

remained constant for all indentations performed, regardless of the distance to 

the grain boundary.    
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Furthermore, in Section 4.1.2 an analytical expression (4.11) was obtained 

for the “interfacial yield” stress of a two-phase material that never experienced 

pure elastic deformation. Since the purely elastic region that was observed in the 

nano-indentations of the Fe-14%Si bicrystal is almost negligible (see Fig. 8.2 and 

8.3), it is reasonable to fit the aforementioned analytical expression to the data of 

Fig. 8.6. Since the bicrystal at hand is single-phased, (4.11) is modified for a 

homogeneous material by letting 1 2= =  and 1 2L L L= =   

 coth
2c

Lγσ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (8.17) 

Even though (8.17) is derived under one dimensional considerations, without 

explicitly considering the physics and mechanics that come into play during an 

indentation, it fits surprisingly well the experimental data, as Fig. 8.6 shows.  

Fig.8.6:  Compilation of all experimental data for the dependence of “interfacial yield” to 
specimen size. Solid line : fit according to (8.17). Points refer to experimental data 
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In particular, fitting (8.17) into the experimental data provides approximate 

values for the internal length, 103nm,= and for the interfacial energy-like term, 

215N/mγ = of Fe-14%Si. Since these values for  and γ  are the first estimates to 

be obtained for these parameters it is desired to check their validity through 

dislocation mechanics considerations. A length scale of 100 nm is reasonable, 

since this is on the order of the spacing between dislocation sources in the 

material; furthermore, in the dislocation pileup model (discussed above) 80% of 

the dislocations are positioned over this length scale near the boundary, as 

shown in Fig. 8.7.   

 

 
Fig.8.7. Distribution of 25 dislocations under an applied shear stress of 600 MPa in front of an 

interface. 
 

To check the value of γ one may connect the “interfacial yielding”, as put 

forward in the mathematical treatment, to the dislocation- based description by 

writing: 

Gbγτ αµ ρ∝ = .                                       (8.18) 
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where µ  and Gρ  represent the shear modulus around the interface area and 

the geometrically stored dislocations, respectively; α  is a constant depending on 

the dislocation interactions ranging between 0.1-1 [2].  Assuming that the internal 

length  is a multiplier of the distances between the geometrically stored 

dislocations, i.e.  Gnλ=  , (8.18) provides 

bnγ αµ≈ .                                                    (8.19) 

Assuming that 0.5α = , and considering 20 dislocations (i.e. n=20) to be spread 

over a distance of 120 nm in front of the interface, as the present case suggests, 

allows γ  to be evaluated as 200 N/m, which is consistent with the predicted 

value from the fit. In this connection, it could be said that γ can be viewed as an 

effective modulus of the interface depending on the number of geometrically 

stored dislocations n, which are distributed over a certain length scale, , in 

front of the interface. Furthermore, the combination of applied shear stress and 

obstacle strength of the boundary affects the value of n and therefore γ . 

 It can, therefore, be concluded that the newly proposed gradient plasticity 

formulation, which accounts explicitly for the presence of internal boundaries, is 

experimentally confirmed to a certain extent as indicated by nano-indentation 

measurements. These measurements do not only establish the existence of an 

“interfacial yield” stress as the theory suggests, but also provide a qualitative 

verification and corresponding estimates for the key material parameters used in 

the mathematical formulation.  
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APPENDICES 

APPENDIX 1 
 
(i) Details on Frank’s Rule 
 
For a general low-angle grain boundary Frank’s rule can be employed to 

determine the relevant dislocation configuration. If the misorientation axis u , the 

misorientation angle θ  and the grain boundary plane normal n  are known, the 

orientation and spacing of the dislocations in the boundary plane can be 

predicted. In general, more than one possible configuration is found, and the 

correct one can be predicted by considering the elastic energy of each 

configuration. An arbitrary vector V is chosen in the grain boundary plane and a 

vector V  is constructed by performing the relative rotation  r uθ=  of the two 

grains (Fig. a). 

In general, V ′  does not lie in the boundary plane. Next, a circuit is 

constructed from the end point of V ′  through one grain, passing the grain 

boundary at the common origin of V  and V ′  and through the other grain to the 

end point of V . The closure vector of this circuit is S V V′= −  . S is equal to the 

sum of the Burgers vectors of the dislocations enclosed by the circuit: 

 i i
i

S n b= ∑ . (a.1) 

The dislocations enclosed by the circuit are all cut by the vector V . For small θ  

the closure failure S  is given by the vector product : 
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 S r V= × . (a.2) 

By choosing several different vectors V and calculating the corresponding vectors 

S , the dislocation structure can be obtained. For example in a symmetrical tilt 

boundary, 0S =  if V  is chosen parallel to the rotation axis, which means that all 

misfit dislocations are parallel to u . Their spacing can be obtained by choosing a 

second vector V , which is not parallel to u . It is noted that the elastic interaction 

between dislocations that belong to a network and an individual dislocation in 

the lattice is not the same as the elastic interaction between two individual 

dislocations. In good approximation, this elastic interaction is negligible at 

distances greater than the spacing of the dislocations in the network. 

 
 
(ii) Details on the Structural Unit Model 
 
An example is the application of the structural unit model from computer 

simulations found in the 57Σ  [110] symmetric tilt boundary with (227)  boundary 

plane and rotation angle 044θ =  (Fig.a). 

The structure of this boundary can be described very well as a contiguous 

sequence of units from two other symmetric tilt boundaries with the same 

rotation axis, the 011(113)( 50.48 )θΣ =  and the 027(115)( 31.59 )θΣ = . The units from 

the favored boundary that is closest in misorientation to the 57Σ  boundary are 

called majority units and the structure of the low coincidence boundary is 

described as a misorientation with respect to the boundary consisting entirely of 

the majority units. 
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Fig. a:  057( 44 )θΣ = grain boundary. This boundary contains structural units of the 11Σ  and 
the 27Σ  boundaries 

 
The minority units contain the core of the DSC dislocations describing the 

orientation difference. In this example, the units of the 27Σ  boundary are the 

locations of the 1/11[226]  DSC dislocations of the 11Σ  boundary. We can 

reproduce the misorientation difference of 6.5o between the 57Σ and the 11Σ  

boundary with b=0.603 a0 , i.e. the length of the Burgers vector of 1/11[226]  DSC 

dislocationms) and d=5.34 a0 , i.e. the distance between the 27Σ  units. Using Eq. 

(2.1) we obtain 0/ 6.5b dθ ≈ = .  

Another important concept regarding the structure of grain boundaries is 

the structural multiplicity of grain boundaries [50,51], i.e. the occurrence of 

several metastable structures for the same boundary. In the framework of the 

structural unit model, a necessary condition for the description of non-favored 

boundaries as a continuous sequence of structural units of favored boundaries, is 

that the units are compatible in the sense that they may appear in the same 

boundary without severe distortion. It has been shown [48] that when the units 

of the favored boundaries are not compatible, two independent series of 
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boundary structures exist which are composed of units of a favored boundary 

and compatible units of some other boundary. Each series emanates from a 

favored boundary and a discontinuous change of boundary structure exists at 

the misorientation where the two series have the same energy. In the vicinity of 

this misorientation at least two metastable structures exist [52,53]. 

However, a much larger multiplicity of structures exists when a favored 

boundary has several metastable structures which are very similar in energy. The 

boundaries that contain units of such a favored boundary may consist of 

different combinations of the several possible units. The structures with different 

combinations may have very similar energies, thus giving rise to very extensive 

multiplicity. If the condition of periodicity is relaxed, an infinite number of 

combinations is possible. It can be expected that in ordered compounds 

structural multiplicity will be more extensive than in monoatomic materials. 
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APPENDIX 2 
 
A. BOUNDS FOR THE SINGLE-PHASE LINEAR MEDIUM 
 

This appendix develops bounds for βeff, for a single medium with potential (4.3), 

which contains interfaces distributed randomly. The potential associated with 

each interface is given by (4.43). The subscript c (for “comparison”) adds nothing 

to the reasoning and so is omitted throughout this appendix. The starting point is 

the variational definition (3.41). 

 

Two-point lower bound.  

 

First, a lower bound for the potential is obtained by introducing the dual 

interface potential 

( ) sup{ ( )}
p

p pt t
ε

φ ε φ ε∗ = − .                               (A.1) 

When the interfacial energy assumes a quadratic form as in (3.4), its dual (A.1) 

takes the form   
2

( )
2
ttφ
α

∗ =  .                                           (A.2) 

Use now of the definition of (A.1) provides the Fenchel inequality  

( ) ( )p pt tφ ε ε φ∗≥ − ,                                    (A.3) 

for all pε and t. Hence, the effective response of the material (2.41) can be written 

as  

2 2 2
,

1

2

1
inf( ) [( ) ( ) ] [ ( )]

2P

D

R
eff P p p p

ij x
xR

V dx t t
Rε

ε β ε ε ε φ∗

∈Γ−

⎧ ⎫⎪ ⎪≥ + + −⎨ ⎬
⎪⎪ ⎭⎩

∑∫ ,  (A.4) 

for any t; the infimum is attained when the following equations are satisfied 
2

,[ ] ,p p
xx Dxβ ε ε σ− = ∉Γ ,                                (A.5) 

2
,[ ] ( )p
x t xβ ε = , across any interface,                        (A.6) 
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, 0p
x R

ε
±

= .                                             (A.7) 

This purely linear problem is now solved by considering the Green’s function 

( , )G x x′  that satisfies the following differential equation and boundary condition: 
2

,( , ) ( , ) ( )xxG x x G x x x xδ′ ′ ′− = − ,  -R<x<R ,                      (A.8a) 

, ( , ) 0xG R x′± = .                                         (A.8b) 

It follows directly from (A.8) that ( , ) 1
R

R
G x x dx

−
′ =∫ , and standard reasoning gives 

( , ) ( , )G x x G x x′ ′= . Solving therefore the system of equations (A.5-7) through use 

of the Green’s function gives the plastic strain expression as 

1( ) ( , ) ( )
D

p

x
x G x x t xε σ

β ′∉Γ

⎧ ⎫⎪ ⎪′ ′= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ .                           (A.9) 

It can be seen that the specified mean value of pε is obtained by setting the 

Langrage multiplier σ , which is equivalent  to the mean stress, equal to 
p n tσ βε Γ= + , where nΓ is the mean density of interfaces in the interval under 

consideration (-R, R), and t  the mean value of t over these interfaces. Hence 

(A.9) can be re-written as 

1( ) ( , ) ( )
D

p p

x
x G x x t x n tε ε

β Γ
′∉Γ

⎧ ⎫⎪ ⎪′ ′= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ .                   (A.10) 

Now the system if equations (A.5-7) is expressed as  
2

, ,[ ] ( ) ( ), ; ( ) 0
D

p p p
xx x

x
t x x x R x R Rβ ε ε σ δ ε

∉Γ

′ ′− = − − − < < ± =∑ . (A.11) 

As a result the integral in (A.4) is reduced to  

2 2
2 2 2 2

,
1

2

11 ( ) ( )[( ) ( ) ] ( ) ( , )
2 2

D D

R
p p p

x
x xR

n t t x t xdx G x x
R

β ε ε β ε
β β
Γ

′ ′′∈Γ ∈Γ−

⎡ ⎤′ ′′
′ ′′+ = − +⎢ ⎥

⎣ ⎦
∑ ∑∫ . (A.12) 

Substituting therefore (A.12) in (A.4) gives 

2 2
2 11 ( ) ( ) 1( ) ( ) ( , ) ( ( ))

2 2 2
D D D

eff p p p

x x x

n t t x t xV G x x n t t x
R R

ε β ε ε φ
β β

∗Γ
Γ

′ ′′ ′′∈Γ ∈Γ ∈Γ

⎡ ⎤′ ′′
′ ′′≥ + − + −⎢ ⎥

⎣ ⎦
∑ ∑ ∑ .  (A.13) 
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If this inequality is optimized over t(x) the exact Veff is produced. Taking however  

constantt t≡ = gives the lower bound expression 
2

2 21( ) ( ) ( )
2

eff p p p S tV n t n tε β ε ε φ
β

∗
Γ Γ≥ + − −  ,                    (A.14) 

2
2

1 ( , )
2

D Dx x
S G x x n

R Γ
′ ′′∈Γ ∈Γ

′ ′′= −∑ ∑ .                               (A.15) 

Allowing φ to take its quadratic form: 21( ) ( )
2

p pφ ε α ε=  and optimizing (A.14) with 

respect to t gives  

2

2

1( ) ( )
2 /( ) 1/

eff p pnV
S n

ε β ε
β α

Γ

Γ

⎧ ⎫
≥ +⎨ ⎬+⎩ ⎭

 ,                     (A.16) 

from which it follows that the lower bound for effβ  is 

2

1
/ /

eff n
S n

β β
β α

Γ

Γ

⎧ ⎫
≥ +⎨ ⎬+⎩ ⎭

.                               (A.17) 

If R is large in comparison with the correlation length for the interfaces, S2 can be 

evaluated by replacing the special average with an ensemble average; ( , )G x x′ ′′ in 

this case takes its infinite body form  
/

( )
2

x xeG x x
′− −

′− = ,                                    (A.18) 

and  

/ 2
2

1 [ ( ) ]
2

xS e n x n dx′−
ΓΓ Γ′ ′= −∫ ,                           (A.19) 

where ( )n x xΓΓ ′− is the probability of finding interfaces at x and x′ . When the 

interfaces are distributed according to a Poisson process of intensity nΓ  the two 

point density nΓΓ  is  

2( ) ( )n x x n x x nδΓΓ Γ Γ′ ′− = − + .                             (A.20) 
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For this particular medium therefore 2 /(2 )S nΓ=  and formula (3.39) results by 

setting 1/(2 )n LλΓ = = .  

 

Three point upper bound 

An upper bound now is developed by substituting the trial field (A.10) into 

(2.41). The new work that is required is the evaluation of  

21

2

1 ( ( ))
2

D

p

x
x

R
α ε

∈Γ
∑ ,                                  (A.21) 

in which it follows that pε is given by (A.10). In particular 
2 2

2

2

1 1 ( )( ( )) 2 ( , )
2 2

1 ( ) ( )( , ) ( , ) . (A.22)
2

D D D

D D D

p p p

x x x

x x x

n t n t t xx n G x x
R R

t x t xG x x G x x
R

ε ε ε
β β β

β

Γ Γ
Γ

′∈Γ ∈Γ ∈Γ

′ ′′∈Γ ∈Γ ∈Γ

′⎛ ⎞ ⎛ ⎞ ′= + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ ′′
′ ′′+

∑ ∑ ∑

∑ ∑ ∑
 

Optimizing with respect to arbitrary ( )t x  would give Veff exactly, as in the 

previous case, therefore the approximation constantt t≡ = is adopted again. This 

gives  

2 2 2
2 2

2 2 2 32 2

1( ) ( ) ( ) 2 2
2

eff p p p t t t tV n n S S n S n Sε β ε α ε α α α
β β β βΓ Γ Γ Γ

⎧ ⎫
≤ + − + − +⎨ ⎬

⎩ ⎭
(A.23)

 
where the definition (A.15) still holds and S3 is defined through 

3
3

1 ( , ) ( , )
2

D D Dx x x
n S G x x G x x n

RΓ Γ
′ ′′∈Γ ∈Γ ∈Γ

′ ′′= −∑ ∑ ∑ .                 (A.24) 

Now the bound (A.23) is optimized with respect to t to give  

2
3 3 2

2
2 22

3

2

1 1 2
1( ) ( )
2

1 1

eff p p

S Sn n S
S S n

V
Sn n
S

α α
β β

ε β ε
α α

β β

Γ Γ

Γ

Γ Γ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪+ − + − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭≤

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠

.       (A.25) 

 For large R, the restriction for S3 can be simplified (as was for S2) by replacing 

spatial averages with ensemble averages, and Green’s function taking its infinite-
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body form (A.18). For this particular Poisson interface distribution, it is 

advantageous to split 3n SΓ into contributions involving one, two, and three 

distinct points as 

2 2
3

3

,

1 ( ( , )) [2 ( , ) ( , ) ( ( , )) ]
2

( , ) ( , ) . (A.26)

x x x x

x x x x x x

n S G x x G x x G x x G x x
R

G x x G x x n

Γ
′≠

Γ
′ ′′ ′≠ ≠

⎧ ′= + +⎨
⎩

⎫
′ ′′+ −⎬

⎭

∑ ∑∑

∑∑ ∑
 

Since the interfaces are distributed according to a Poisson process the spatial 

average is replaced by the ensemble average to give  
22 3 2

/ 2 / / 3
3 2 2 2 2 2

0 0 0
2

4 4 4 4 4
x x xn n n n nn S e dx e dx e dx n

∞ ∞ ∞− − −Γ Γ Γ Γ Γ
Γ Γ

⎡ ⎤ ⎛ ⎞
= + + + − = +⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
∫ ∫ ∫ .   (A.27) 

Substituting therefore (A.27) and (A.19) in (A.25), along with the fact that 

1/(2 )Ln λΓ = =  produces the upper bound given in (4.44). 



 148 

B. LOWER BOUND AND APPROXIMATIONS FOR THE TWO-PHASE LINEAR MEDIUM 
 

This appendix develops a lower bound for βeff for a two-phase random linear 

medium. Since it was shown in Chapter 5 that the bounds obtained through use 

of two and three point statistics had similar trends, only the two-point statistics 

will be considered here for simplicity. It is analogous to the lower bound for the 

single-phase medium given in Appendix A, in that it makes use of the statistics 

of points taken two at a time. The formalism also delivers variational 

approximations. The potential V for the medium (again the subscript c is 

dropped) is given by (4.3); in particular 

1 1 2 2( ) ( ) ( )x x xβ β χ β χ= + ,                                     (B.1) 

where 1χ  takes the value 1 in material 1, and 0 in material 2; it follows that 

2 1( ) 1 ( )x xχ χ= − . The interfaces are characterized by the quadratic potential (4.4). 

Now to proceed further, a linear comparison medium with uniform properties is 

introduced; its potential is given by 2 2 2
0 , 0 ,

1( , ) [( ) ( ) ]
2

P P P P
x xV ε ε β ε ε= + . Since the 

properties are uniform everywhere, 0β =constant and a lower bound is obtained 

by taking 0 1 2min ,β β β<  and defining 

 
2 2 2

0 0
, 0

ˆ /ˆ ˆ( ) ( , , ) sup{ ( )( , )}
2( ( ) )p

p p s sV V s s x s s V V
xε γ

ε γ ε γ
β β

∗ +
− = + − − =

−
.    (B.2) 

Thus, 

0
2

, , 0
1
2

ˆ ˆ( , , ) ( ) ( ) ( , , )p p p p p
x xV x s s V V s s xβε ε ε ε ε ∗= + + − − .              (B.3) 

Combination of (B.3) with (A.3), and (2.41) gives the lower bound relation 

2 2 2
0 ,

0

2) ˆ[( ) ( ) ]

(B.4)

1( ) inf (( /
2

ˆ( ) ( , , )) ( ( ))

p

D

p p p p
x

eff p

p

x

R

R
s sV

R
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The infimum with respect to pε is attained when  

0
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R x
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⎪ ⎪⎩ ⎭

∑∫ .(B.5)
 

where G is the Green’s function that was introduced in Appendix A. Substituting 

(B.5) into (B.4) produces an expression analogous to (A.13) but more involved, 

due to the presence of s(x) and ˆ( )s x . An intermediate formula, obtained by 

integrating by parts and exploiting the differential equation and boundary 

conditions satisfied by pε , is 
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Combining (B.5) with (B.6) gives ( )eff pV ε as a quadratic function of s(x), ˆ( )s x and 

t(x). As for the homogeneous random media, optimization with respect to these 

variables will provide the exact ( )eff pV ε ; therefore, to obtain a bound we set 

constantt t≡ = , ˆ( ) 0s x =  and 

 1 1 2 2( ) ( ) ( )s x s x s xχ χ= + .                                    (B.7) 

Hence the general form for effV now reads 
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where the volume fraction of material i is given by  

1
2

( )
R

i i
RR

p x dxχ
−

= ∫  ,                                       (B.9) 

and the constants Aij, Bi and C are defined as  
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The previously stated relation 2 1( ) 1 ( )x xχ χ= − implies that  

11 22 12 21 1 2 1 2, 0, 1A A A A B B p p= = − = − + = + = .                (B.13) 

Substituting (B.13) in (B.8) gives the simpler upper bound form 

2
0

1( ) [ ( ) ( )( )]
2

eff p p pV s n tε β ε εΓ≥ + + ,                      (B.14) 

in which the values of is and t that maximize (B.14) are found by solving the 

equations 

1 1
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2 0

( ) ,pp s A s s B t p ε
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1 1 2( ) .pn t B s s n ε
α
Γ

Γ+ − =                                       (B.15) 

The problem that remains is the evaluation of A11, B1  and C. If the medium is a 

stationary random medium and R is large compared to a correlation length, these 

constants can be expressed as ensemble averages: 

( )2
11 11 1( )A G x p p dx= −∫ , 

( )1 1 1( ) ( )B G x q x p n dxΓ Γ= −∫ , 

( )2( ) ( )C G x n x n dxΓΓ Γ= −∫ ,                                       (B.16) 

where G(x) is defined in (A.18) and 
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11 1 1( ) ( ) ( ) ,p x x x xχ χ′ ′− =  

1 1( ) ( ) ( ) ,
Dy

q x x x x yχ δΓ
′∈Γ

′ ′ ′− = −∑  

( ) ( ) ( ) .
D Dy y

n x x x y x yδ δΓΓ
′∈Γ ∈Γ

′ ′ ′− = − −∑ ∑                         (B.17) 

These quantities given in (B.17), are evaluated for a for a particular random 

medium, in Appendix C: see equations (C.5), (C.6) and (C.7). In order for the 

computations in Chapter 4 to give the best lower bound the limiting case 

0 1 2min ,β β β=  was employed. Relaxation of the restriction 0 1 2min ,β β β≤  

generates a stationary approximation but not an upper bound if α>0, in view of 

the inequality (A.3). The choice 0 1 2max ,β β β=  would generate an upper bound 

in the absence of the interface potential, α=0 , but in its presence gives what 

might be termed an “upper approximation”. 
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C. A PARTICULAR TWO-PHASE RANDOM MEDIUM 
 
The purpose of this appendix is to obtain explicit formulae for the two-point 

functions (B.17). The model chosen here is a simple example of the “Miller cell 

material”. Therefore points are placed along the x-axis according to a Poisson 

process of intensity λ. Let the points be{ },nx x n x− < < , where 1n nx x +<  for each n. 

The basic intervals 1{( , )}n nx x +  into which the line is divided are called “cells” and 

different properties are assigned to each phase, i.e. the cells with probability p1 

are taken to have properties denoted by 1, and similarly the cells with probability 

p2 are characterized with properties denoted with 2. If the same properties (and 

hence same orientation) are assigned to adjacent cells, their common boundary 

point is not an interface point and so has no interfacial potential; if adjacent cells 

have different properties, their boundary point is an interface. The intervals 

whose end points are interfaces will be called “material intervals”. The 

elementary probability theory that is required can be obtained from any 

introductory text on stochastic processes, such as that of Karlin and Taylor [3] . It 

is necessary to know the distribution of lengths of basic intervals (cells). For this 

purpose, start at x0 and let x1 = x0+z1; xn = xn-1+zn. Let P1(z) be the probability that 

z1>z. Then P1(z+δz) is the probability that z1>z and there is no Poisson point in 

the interval (x0 + z,  x0 + z + δz). Thus, since points are independently distributed, 

1 1( ) ( )(1 ) ( )P z z P z z o zδ λδ δ+ = − + .                          (C.1a) 

It follows that in the limit 0zδ →  

1 1 1( ) ( ), ( ) zP z P z P z e λλ −′ = − = .                               (C.1b) 

The corresponding function for the first point x1 = x0+z is thus 

1( ) ( / )(1 )zf z d dz e λ−= − = ze λλ − . 

 Now the probability density function ( ) ( / ) ( )k kf z d dz P z= is 

considered; ( )kP z denotes the probability that 0kx x z− < . This can be found by 

noting that f1 has moment generating function 
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it follows that inverting the La Place transform provides 
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Now the density function for the length of a material interval is considered. First 

suppose that x0 has material 2 to its left and material 1 to its right. Then (x0, xk) is 

a material interval if (x0, x1) (x1, x2)…(xk-1, xk) are all assigned to material 1 and (xk, 

xk+1) is assigned to material 2. The probability density for an interval of material 

1, of length z, is 
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Therefore, the expected length of a material interval of material 1 is 

2
2 1
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1 2p zz p e dz L
p

λλ
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∞ − = =∫ . 

Similarly, the expected length of a material interval of material 2 is 

2
1

1 2L
pλ

= . 

It is thus concluded that 

1 2 1 2
1 2

1 2 1 2 1 2

, and =L L L Lp p
L L L L L L

λ +
= =

+ +
.                         (C.4) 

Now to calculate the required two-point functions: 

First, 11( )p x x′− is the probability that x is in material 1 and x′  is in material 1. If x 

and x0 are in the same cell, the contribution to the probability is p1. If they are in 

different cells, the contribution to the probability is p21. The probability that x and 

x0 are in the same cell is the probability that there is no Poisson point in (x; x′ ): 
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x xe λ ′− − . It follows that the probability that they are in different cells is 1- x xe λ ′− − . 

Hence 
2 2

1 1 1 1 1 2( ) (1 )x x x x x xp x x p e p e p p p eλ λ λ′ ′ ′− − − − − −′− = + − = + .            (C.5) 

The probability that x is in material 1 and there is an interface in ( , )x x xδ′ ′ ′+  is 

1 ( ) ( )q x x x o xδ δΓ ′ ′ ′− + . Letting x x′ > and allowing the first Poisson point to be in 

( , )x x xδ′ ′ ′+ , then this is an interface point if there is material 2 to the right. Thus, 

the contribution to the probability is p2. If there is a Poisson point in (x, x′ ), then 

the point in ( , )x x xδ′ ′ ′+  is an interface point if there is material 1 on one side and 

material 2 on the other. The probability for this is 2p1p2. Hence, 

1 1 2 1 1( ) {(1 2 ) 2 }x xq x x p p p e pλλ ′− −
Γ ′− = − + .                       (C.6) 

Finally, the probability that there are interface points in intervals 

( , )x x xδ+ and ( , )x x xδ′ ′ ′+  is ( ) ( )n x x x x o x xδ δ δ δΓΓ ′ ′ ′− + . When x x′= , the 

contribution to the density is 1 22 ( )p p x xλ δ ′− . Now assuming that x and x′  are 

adjacent Poisson points, they are interface points if the pattern of material is 

either “212” or “121” .The probability for this is 2 2
1 2 1 2 1 2p p p p p p+ = , while the 

density for points being adjacent is 2 x xe λλ ′− − . If the points are not adjacent, the 

probability that they are both interface points is 2
1 2(2 )p p , and the density for 

non-adjacent Poisson points is 2 (1 )x xe λλ ′− −− . Hence, altogether, 

2 2 2 2
1 2 1 2 1 2( ) 2 ( ) 4 (1 )x x x xn x x p p x x p p e p p eλ λλ δ λ λ′ ′− − − −

ΓΓ ′ ′− = − + + − .      (C.7) 
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D. OPTIMIZING effV WITH RESPECT TO α  
 
In order to simplify the optimization with respect to a the expression for Veff  is 

factored so that it takes the generic form: 

/
/

eff A B
C D

αβ
α

+
=

+
,                                                 (D.1) 

where A, B, C and D are constants that depend on the material parameters.  

The generic form for Veff  then is  
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,       (D.2) 

where as mentioned in Chapter 5 E accounts for the particular interface 

distribution. For finite positive a this function has only one stationary point; to 

see if it is a minimum or a maximum (D.2) is expanded as a→ ∞: 
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It follows that this stationary point is a maximum if  
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,                                    (D.4) 

from which the critical strain at which the interface yield is deduced as  
1/ 22p

c
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.                                           (D.5) 

From expression (D.3) it can be deduced that prior interfacial yield  

2( )
2

eff pAV
C

ε≤ , if     0p p
cε ε< .                                (D.6) 

To find the effective response after interfacial yield (D.2)  has to be minimized for 

when α is a stationary point. Hence differentiating (D.2), setting the resulting 

expression equal to zero to solve for α and then substituting this expression for 

back in (D.2) and performing some mathematical manipulations provides, 
1/ 2 1/ 2

2
0 when

(2 ) ( )( ) ( ) ,
2

eff p p p p p
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B E AD BC ECV
D D D
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= + − ≥ . (D.7) 



 156 

E. CONSTANTS FOR LINEAR AXIAL PROBLEM 
 
The constants of (7.40) are given by  
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SUMMARY 

 

In the present thesis a continuum gradient plasticity theory is developed which 

takes into account the effect of internal surfaces such as grain boundaries and 

interfaces. This is done by introducing an additional “interfacial” energy-like 

term (interfacial penalty) into the overall potential functional of the domain 

under consideration and assuming that the plastic strain gradients and their 

conjugate higher-order stresses are discontinuous across interfaces, while 

displacements and plastic strains remain continuous. The physical motivation 

behind this mathematical formulation rests on the interaction of dislocations (the 

carriers of plastic deformation) and internal boundaries which may oppose 

dislocation motion, absorb/emit dislocations, or act as stress concentrators. The 

constitutive assumptions for the higher-order stress and the interfacial energy 

term should therefore ideally be deduced from microscopic considerations, 

including the formation and destabilization of dislocation pileups in front of 

grain boundaries, the reaction mechanisms between lattice and grain boundary 

dislocations, as well as the effect of grain boundary ledges resulting from these 

reactions. In addition to such dislocation microplasticity mechanisms, 

appropriate experiments pertaining to the structure, energy and strength of 

interfaces should be equally important in the construction and evaluation of the 

continuum model. In particular, nano-indentation measurements can be made 

near a grain boundary to obtain estimates for the interfacial energy term and the 

corresponding “interfacial yield” stress.  
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In the present work, an attempt is made to address the above three issues 

i.e., - (i) the physics of grain boundaries and interfaces; (ii) the development of a 

gradient plasticity model which contains an interfacial potential and its 

applicability to consider the effective response of polycrystals and composites 

with emphasis on size effects; (iii) the estimation of the new model parameters 

from nano-indentation experiments - , within a unifying and interdisciplinary 

framework, as follows:   

After the introductory Chapter 1, a physical description of grain boundaries 

and interfaces is provided in Chapter 2. Details on crystallography and types of 

most common grain boundaries are given, the grain boundary structural model 

and an expression for the interfacial energy resulting from it is presented, and 

possible mechanisms of dislocation-grain boundary interactions are discussed. 

The main purpose of this chapter is to illustrate the significance of introducing 

the interfacial energy penalty term in the continuum gradient plasticity 

formulation, to motivate the constitutive form of this term, and justify the 

assumption of discontinuous plastic strain gradients across internal boundaries. 

In Chapter 3, the appropriate variational formulation of the aforementioned  

framework is given and the resulting field equations and boundary conditions 

are deduced. The effective response of a general nonlinear strain gradient 

medium with internal boundaries is then obtained through a homogenization 

procedure based on the introduction of average stress and strain fields for the 

overall macroscopic behavior (where gradient effects are smeared out) and a 

minimization of a properly defined effective potential functional is performed. 

Elementary upper (Voigt-type) and lower (Reuss-type) bounds for the effective 

response are obtained, as well as a more refined upper bound, which is based on 

the comparison with a material that has a linear response. The methodology is 

valid for all types of internal surfaces against which dislocation pileups can form; 

it can therefore be used to model structurally homogenous materials such as 

polycrystals (internal boundaries are grain boundaries) or chemically 
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heterogeneous materials such as composites (internal boundaries are interfaces 

between different phases, i.e. heterophase interfaces).  

In Chapter 4, one-dimensional examples, which can be solved exactly, are 

considered in order to illustrate the robustness and new features of the theory, as 

well as its ability to describe effects not captured by previous models. First, a 

two-phase unit cell model is assumed with a simple quadratic gradient plastic 

potential and two different expressions for the interfacial energy term: a 

quadratic, continuously differentiable expression, and a bi-linear non-

continuously differentiable one. The ordinary differential equations that result by 

inserting these potentials in the constitutive relations that were previously 

developed in Chapter 3, are solved exactly and exhibit a Hall-Petch type of 

dependence. In particular, the non-linear interfacial energy term provides a 

distinct “interfacial yield” stress. Next, a more realistic nonlinear gradient-

dependent plastic potential that accounts for material yielding is considered 

along with a nonlinear interface term and the exact solutions obtained show 

again a Hall-Petch type trend. Once, however, conventional nonlinear gradient 

dependent plastic potentials are used, the resulting differential equations are 

highly nonlinear, and can be solved only numerically. This is illustrated for a 

homogeneous periodic medium.  

For random media, in particular, an exact solution cannot be obtained even 

when the material response is fully linear. It is necessary, therefore, to express 

the nonlinear problem in terms of one for a “linear comparison medium” for 

which good approximate solutions can be developed. In Chapter 5, this method is 

first applied to the highly non-linear periodic material that was last examined in 

the previous chapter. It is shown that the “linear comparison” technique 

provides the same results as the exact treatment for the effective macroscopic 

stress-plastic strain response and corresponding size effects. Motivated by this 

very encouraging result, a random homogeneous polycrystal of “Poisson type” is 
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considered as a last example in this chapter. The linear random problem is 

solved approximately by use of two- and three- point statistics.  

Chapter 6 is concerned with two-phase media, e.g. a composite material with 

distributed hard phase particles, in which interfaces are distributed periodically 

or randomly; for simplification purposes the formulation remains one-

dimensional. The exact solutions obtained in Chapter 4 for the linear periodic 

medium are employed to perform the “comparison method” and obtain 

approximate solutions for the stress-strain curve. In the sequel consideration of 

two-point statistics provides an approximate solution for a linear two-phase 

random medium, which is then used to develop the linear comparison 

formulation and obtain approximate solutions for a highly nonlinear random 

medium. It is shown that the effective responses of the nonlinear periodic and 

random two-phase media are strikingly similar to each other for large specimen 

sizes.  

In Chapter 7, the difficulties involved with a three-dimensional 

generalization of the theory are illustrated. Even for the simple case of an axially 

symmetric composite, i.e. a metal fiber embedded in a metal matrix, which is 

deformed in tension under generalized plane strain conditions, the solution 

involves complex Bessel functions and an analytic expression for the “interfacial 

yield” stress cannot be obtained, even for the simple case in which the gradient 

dependent plastic potential is quadratic and the interfacial penalty nonlinear. 

Finally, in Chapter 8 nano-indentation experimental results for an Fe-14%Si 

bi-crystal are presented in support of the model assumptions and results 

obtained in the previous chapters. The experiments show that as the grain 

boundary is approached, in addition to the occurrence of a first plateau in the 

load vs. depth nanoindentation graph, which indicates the grain interior yield, a 

second plateau (in the load vs. depth nanoindentation graph) is observed, which 

indicates the existence of an “interfacial yield” stress as the aforementioned 

formulation proposes. Comparison of the experimental results with the analytic 



 161

expression derived in Chapter 4 for the “interfacial yield” stress of a bi-crystal 

determines the interfacial energy and the internal length parameters of Fe-14%Si 

as 103 nm=  and 215N/mγ = , respectively. Assuming that the length is a 

multiplier of the distances between the geometrically stored dislocations, γ is 

predicted to be about 200 N/m for the present case and it is concluded that γ can 

be viewed as an effective modulus depending on the number of geometrically 

stored dislocations in front of the interface distributed over a certain length . It 

should be noted that similar size effects were observed for the grain interior yield 

stress, which remained constant for all indentations performed, regardless of the 

distance to the grain boundary.  The description obtained this way is consistent 

with related dislocation mechanisms that were explored in Chapter 2. 

In conclusion, the thesis has introduced a new theoretical framework based 

on gradient plasticity considerations with allowance of internal boundaries and 

corresponding interfacial energy (penalty) terms. The results are employed for 

the analysis of “size effects” related to “interfacial yield”, these effects have been 

demonstrated experimentally, and initial estimates of the parameters introduced 

in the theory have been obtained. 
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SAMENVATTING 

In dit proefschrift wordt een gradiënt plasticiteit theorie ontwikkeld waarin de 

bijdragen van korrelgrenzen en andere grensvlakken onder de loep worden 

genomen. Centraal in het proefschrift staat de introductie van een grensvlak 

energie term in de totale potentiaal functie en de aanname dat de plastische rek 

gradiënten en hun geconjugeerde hogere orde spanningen discontinue zijn over 

het grensvlak terwijl verplaatsing en plastische rek continue blijven. De fysische 

beweegredenen achter deze mathematische formulering is gebaseerd op de 

interactie van dislocaties (de dragers van plastische deformatie) en interne 

grensvlakken die de beweging van dislocaties belemmeren, dislocaties 

annihileren of juist creëren. 

De constitutieve aannamen voor de hogere orde spanning en de 

grensvlakenergie term zouden daarom in het ideale geval moeten worden 

afgeleid op microscopische schaal, zoals de formatie en destabilisatie van 

dislocatie pile-ups voor korrelgrenzen, reactie mechanismen tussen rooster en 

korrelgrens dislocaties, als mede het effect van korrelgrens richels die uit deze 

reacties ontstaan. Naast deze dislocatie microplasticiteitsmechanismen zijn ook 

experimenten van belang betreffende structuur, energie en sterkte van het 

grensvlak voor het construeren en evalueren van het continuüm model. In het 

bijzonder kunnen nanoindentatie metingen nabij het grensvlak dienen ter 

bepaling van de grensvlakenergie en sterkte.   

In dit proefschrift worden de bovengenoemde drie onderwerpen behandeld: 

(i) de fysica van korrelgrenzen en grensvlakken 



 164 

(ii) de ontwikkeling van een gradiënt plasticiteit model gebaseerd op de 

grensvlakpotentiaal functie en de toepasbaarheid voor wat betreft de 

effectieve response van polykristallen en composieten  gezien hun 

afmetingen. 

(iii) afschatting van de modelparameters door middel van nano-indentatie 

experimenten.    

Na de introductie in Hoofdstuk 1 volgt in Hoofdstuk 2 een fysische beschrijving 

van korrelgrenzen. Details van de effecten van de kristallografie van 

korrelgrenzen op de transfer van dislocaties worden onderzocht. Het 

belangrijkste doel van dit hoofdstuk is om het begrip grensvlakenergie op 

fysische gronden nader te adstrueren. 

 In Hoofdstuk 3 worden de veldvergelijkingen en grensvoorwaarden 

afgeleid. De effectieve respons van een algemeen niet-lineair medium wordt 

onderzocht, dwz een medium met korrelgrenzen. Voigt-type en Reuss-type 

begrenzingen worden onderzocht en bepaald. De methode is toepasbaar voor 

allerlei type korrelgrenzen waar dislocaties zich tegen ophopen en is daarmee 

ook geschikt voor grensvlakken tussen twee verschillen fasen. In Hoofdstuk 4 

worden 1-D voorbeelden bestudeerd die een exacte oplossing leveren . In het 

bijzonder blijkt dat de niet-lineaire grensvlakenergie een duidelijke 

vloeispanning oplevert van het grensvlak. In Hoofdstuk 5 wordt aangetoond dat 

een ‘lineaire expansie’ methode dezelfde resultaten oplevert als de exacte 

behandeling. Hierdoor aangespoord wordt vervolgens de response van een 

random homogeen polykristal onderzocht en bij benadering opgelost met behulp 

van 2- en 3 puntstatistiek. Hoofdstuk 6 concentreert zich op 2-fase media, 

bijvoorbeeld een composiet materiaal, waarbij de grensvlakken periodiek 

worden verdeeld. De exacte oplossing vanuit Hoofdstuk 4 wordt vervolgens 

gebruikt om een benadering te vinden voor de spanning-rek curve. Aangetoond 

wordt dat de effectieve respons van een niet-lineaire periodiek en van een 

random 2-fase materiaal dezelfde resultaten opleveren. In hoofdstuk 7 worden 



 165

de moeilijkheden aan de orde gesteld met betrekking tot de 3D generalisatie van 

de theorie. Zelfs voor het eenvoudige geval van een axiaal symmetrische 

composiet materiaal, bijvoorbeeld metaal-fibers, leidt dit tot complicaties.  Tot 

slot worden in hoofdstuk 8 de resultaten van de experimenten voor Fe-14% Si 

bikristallen beschreven ter ondersteuning van het model en de resultaten uit de 

vorige hoofdstukken. De experimenten laten zien dat bij het naderen van de 

korrelgrens niet alleen een eerste plateau in de grafiek van de belasting vs 

indrukking plaatsvindt corresponderend met de interne sterkte, maar ook een 

tweede die wijst op het bestaan van een grensvlak sterkte zoals voorgesteld . 

Door de experimentele resultaten te vergelijken met de analytische uitdrukking 

voor de grensvlaksterkte van een bikristal uit hoofdstuk 4 kunnen we zeggen dat 

het model een grensvlakenergie en interne lengte parameter voor Fe-14%Si 

oplevert van respectievelijk 215N/mγ =  and en 103 nm= . Aannemend dat de 

lengte  een veelvoud is van de afstand tussen geometrisch bepaalde dislocaties 

wordt γ  200N/m . De fysische interpretatie van γ  kan dan gezien worden als 

een effectieve waarde voor de modulus afhankelijk van het aantal geometrisch 

bepaalde dislocaties voor het grensvlak over een afstand . Soortgelijke 

afmetingeffecten werden waargenomen voor de sterkte in de korrels zelf welke 

een constante waarde gaf bij alle uitgevoerde indentaties onafhankelijk van de 

afstand tot de korrelgrens.Deze beschrijving is in overeenstemming met 

overeenkomstige dislocatie mechanismen uit Hoofdstuk 2.  

Samenvattend: Dit proefschrift relateert de sterkte van het grensvlak aan de 

afmetingen die daarbij een rol spelen; deze effecten zijn experimenteel 

aangetoond en een eerste afschatting voor de modelparameters kon worden 

gemaakt. 
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