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Abstract

Skin surfaces are used for the modeling and visualiza-
tion of molecules. They form a class of tangent continuous
surfaces defined in terms of a set of balls (the atoms of the
molecule) and a shrink factor. More recently, skin surfaces
have been used to approximate arbitrary surfaces.

We present an algorithm that approximates a skin sur-
face with a topologically correct mesh. The complexity of
the mesh is linear in the size of the Delaunay triangulation
of the balls, which is worst case optimal.

We also adapt two existing refinement algorithms to im-
prove the quality of the mesh and show that the same algo-
rithm can be used for meshing a union of balls.
Keywords: Skin Surfaces, Meshing, Isotopy, Delaunay tri-
angulation.

1. Introduction

Skin surfaces, introduced by Edelsbrunner in [6], have a
rich and simple combinatorial and geometric structure that
makes them suitable for modeling large molecules in bio-
logical computing. Meshing such surfaces is often required
for further processing of their geometry, like in numerical
simulation and visualization. We present an algorithm for
meshing skin surfaces with guaranteed topology.

Large molecules can be modeled using skin surfaces by
representing each atom by a sphere. Atoms that lie close to
each other are connected by smooth patches. A skin surface
is parameterized by a set of weighted points (input balls)
and a shrink factor. If the shrink factor is equal to one, the
surface is just the boundary of the union of the input balls.
If the shrink factor decreases, the skin surface becomes tan-
gent continuous, due to the appearance of patches of spheres
and hyperboloids connecting the shrunken balls.

∗Partially supported by the IST Programme of the EU as a Shared-cost
RTD (FET Open) Project under Contract No IST-006413 (ACS – Algo-
rithms for Complex Shapes)

We present an algorithm in [12] that approximates an ar-
bitrary smooth surface with a skin surface. The approxima-
tion is homeomorphic to the skin surface and the Hausdorff
distance between the two surfaces is arbitrarily small.

Two surfaces embedded in three space are isotopic if
there is a continuous deformation in the ambient space that
transforms one surface into the other one. In particular, iso-
topic surfaces are homeomorphic. The algorithm presented
in this paper constructs a mesh isotopic to the skin surface
in two steps: it constructs a coarse, isotopic mesh which is
subsequently improved. For the second step a broad range
of refinement algorithms can be used. We implemented the
refinement algorithms of Chew [5] and Kobbelt [10]. The√

3-subdivision algorithm by Kobbelt is very fast, and re-
fines the size of the triangles. However, it does not im-
prove the quality of the mesh elements in terms of angle
size. Chew’s algorithm improves the quality of the mesh in
terms of the angles and size of the triangles. The quality
mesh is suitable for numerical computations. Our version
of these algorithms preserve the isotopy property.

For a shrink factor one, the skin surface of a set of balls
is the union of these balls. Hence, the algorithm can also be
used to mesh the union of a set of balls.

Related work. Most existing meshing algorithms for im-
plicit surfaces do not guarantee topological equivalence of
the surface and the mesh constructed. Examples are the
marching cubes algorithm [13] and the marching triangu-
lation method [9] Our paper [11] presents a marching tri-
angulation method for meshing skin surfaces by carefully
choosing the step size during the walk over the mesh. How-
ever, as the shrink factor goes to one or to zero, the size of
the mesh goes to infinity.

General isotopic meshers are proposed in [2, 14]. How-
ever the number of critial points (proportional to the number
of balls) makes them not suitable.

The algorithms in [3, 8] construct a topologically correct
mesh approximating a skin surface in the special case of a
shrink factor 0.5. It is likely that this algorithm can be gen-
eralized to work for arbitrary shrink factors, but this would
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probably result in a denser mesh in order to guarantee the
topology. The algorithm is also rather slow. Another ap-
proach is found in [4]. We could not verify the claim that
the mesh produced by the algorithm in this paper is homeo-
morphic to the skin surface.

Contribution. The main contribution compared to [3] is
that our approach works for any shrink factor. We also es-
tablish isotopy, which is stronger than topological equiva-
lence and our algorithm is much faster. It constructs a mesh
in minutes where the algorithm presented in [3] takes hours.
It is more flexible in the sense that we generate a coarse
mesh that is isotopic to the skin surface and then refine it by
different algorithms, whereas the algorithm in [3] immedi-
ately constructs a homeomorphic quality mesh.

On the theoretical side, we analyze the structure of the
mixed complex and decompose the mixed cells into tetra-
hedra. Within a tetrahedron the intersection with the skin
surface is either empty or a topological disk. It is then fairly
easy to extract an isotopic mesh.

Outline. In Section 2 we extend the theory of skin surfaces
as presented in [6]. We start by introducing a hierarchical
combinatorial structure on the mixed complex. Section 3
describes the construction of the coarse mesh and estab-
lishes the isotopy between this mesh and the skin surface.
Section 3.1 describes two methods to improve the coarse
mesh. Finally, we describe our implementation and give re-
sults in Section 4 and 4.

2. Definitions

This section first briefly reviews skin surfaces introduced
in [6] and then introduces some new concepts specific to the
meshing algorithm.

Skin surfaces. A skin surface is defined in terms of a fi-
nite set of weighted points P and a shrink factor s, with
0 ≤ s ≤ 1. A weighted point p̂ = (p, P) ∈ R

d × R

corresponds to a ball with center p and radius
√

P. A
pseudo-distance between two weighted points is given by:
π(p̂, q̂) = ‖p − q‖2 − P − Q, where p̂ = (p, P), q̂ =
(q, Q) and ‖·‖ denotes the Euclidean distance. The pseudo-
distance π(p̂, x) of a weighted point p̂ to an (unweighted)
point x is the pseudo-distance of p̂ to the weighted point
centered at x with zero weight.

The space of weighted points inherits a vector space
structure from R

d+1 via the bijective map Π : R
d×R →

R
d+1, defined by Π(p̂) = (x1, . . . , xd, ‖p‖2 − P), with

p = (x1, . . . , xd). Addition of two weighted points and the
multiplication of a weighted point by a scalar are defined in
the vector space structure inherited under Π.

Starting from a weighted point p̂ = (p, P), the shrunken
weighted point p̂s is defined as p̂s = (p, s · P). The set Ps

Figure 1. Construction of the skin curve of
two weighted points (the two dashed circles)
for a shrink factor s = 1 and s = 0.5.

is the set obtained by shrinking every weighted point of P
by a factor s.

The skin surface sknsP and its body bdysP associated
with a set of weighted points P , are defined by

bdysP = ∪(conv P)s (1)

sknsP = ∂ bdysP. (2)

Here conv (P) ⊂ R
d ×R is the convex hull – with respect

to the vector space structure inherited under Π – of a set of
weighted points P , whereas ∂ denotes the boundary – in
R

d – of the union of the corresponding set of set of balls.
For circles defined by the vector space Π and shrunk with
the shrink factor s, see Figure 1. The boundary of these
circles is the skin curve.

Delaunay triangulation.The Delaunay triangulation and
Voronoi diagram are used to decompose the skin surface
into patches of spheres and hyperboloids. We briefly give
the definition of these structures and mention some proper-
ties.

The (weighted) Voronoi diagram (or: the power dia-
gram) Vor(P) of a set of weighted points P is the subdi-
vision of R

d into cells νX that have smaller power distance
to the weighted points in X ⊆ P than to any other weighted
point in P : νX =

⋂
p̂∈X ,p̂′∈P{x ∈ R

d|π(p̂, x) ≤ π(p̂′, x)}.
The dual of the Voronoi diagram is the Delaunay trian-

gulation (or: regular triangulation) Del(P). We denote a
Delaunay simplex of a set X ⊆ P , with νX 
= ∅, by δX .
Recall that δX = conv ({p|p̂ ∈ X}).

Since the affine hulls of δX and νX are complementary
and orthogonal, they always intersect in a single point, the
center c(X ) of X .

General position. In the remainder of this paper we assume
general position, by which we mean that no d + 2 weighted
points are equidistant to a point in R

d and no k+2 centers of
weighted points lie on a common k-flat for k = 0, . . . , d−1.
Several methods like [7] exist to symbolically perturb a data
set and ensure these conditions.

The mixed complex. The mixed complex Mixs(P), as-
sociated with a scalar s ∈ [0, 1], is an intermediate com-
plex between the Delaunay triangulation and the Voronoi
diagram. Each mixed cell in the mixed complex is obtained
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p̂1

p̂2
p̂3

μs
{p̂0,p̂1}
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{p̂1},{p̂0,p̂1}
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{p̂0,p̂1,p̂2}
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Figure 2. The skin curve of four weighted
points (the dotted circles). Each mixed cell
contains parts of an hyperbola or a circle.
Some labels of mixed cells are given. Note
that v = μs

{p̂0,p̂2},{p̂1,p̂2} = μs
{p̂2},{p̂0,p̂1,p̂2}.

by taking Minkowski sums of shrunken Delaunay simplices
and their dual Voronoi cells.
Definition 1. For δX ∈ Del(P) the mixed cell μs

X is de-
fined by μs

X = (1 − s) · δX ⊕ s · νX .
Here · denotes the multiplication of a set by a scalar and

⊕ denotes the Minkowski sum. For s = 0 the mixed cell is
the Delaunay cell. When s increases it deforms affinely into
the Voronoi cell for s = 1. A mixed �-cell is constructed
from a Delaunay �-simplex.

Within a mixed �-cell μs
X , the skin surface is a quadratic

surface (sphere or hyperboloid) of the form I−1
X (0), with:

IX (x) = − 1
1−s

�∑

i=1

x2
i +

1
s

3∑

i=�+1

x2
i − R2, (3)

and x = (x1, x2, x3). More precisely, sknsX ∩ μs
X =

I−1
X (0)∩μs

X . The coordinate system is orthonormal with its
origin at the center ofX , and such that the first � coordinates
span the affine hull of δX , see [6].

In the plane, the intersection of a skin curve with a mixed
cell is either part of a circle or hyperbola, cf. Figure 2.

The following observation holds trivially for mixed cells
of type 0 and 3. For mixed cells of type 1 and 2 it follows
from the choice of the coordinate axis and the construction
of the mixed cells.
Observation 2. Each proper face of a mixed cell μs

X is per-
pendicular to a symmetry set of IX

Since the symmetry axis and the symmetry plane of the
hyperboloid are perpendicular, each face of a mixed cell of
type 1 or 2 is parallel to the other symmetry set.

Polyhedral complex. The mixed complex is a polyhedral
complex. The 3-cells of this polyhedral complex are formed
by the mixed cells. We give a more detailed description of
its structure.
Definition 3. For X ,X ′ ∈ P , with νX , νX ′ 
= ∅, a polyhe-
dral cell μs

X ,X ′ is defined as μs
X ,X ′ = μs

X ∩ μs
X ′ .

It is clear that a polyhedral cell μs
X ,X ′ is non-empty,

for 0 < s < 1, if the Delaunay and Voronoi cells of X
and X ′ have a non-empty intersection. Or, equivalently, if
νX∩X ′, νX∪X ′ ∈ Vor(P). For nonempty polyhedral cells,
the following lemma describes the structure of the mixed
complex.
Lemma 4. A mixed cell μs

X ,X ′ is not empty iff νX∩X ′ and
νX∪X ′ are nonempty.

In that case, μs
X ,X ′ = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′.

Proof omitted in this version

The anchor point. For the construction of the coarse mesh
in Section 3, we define a tetrahedral complex that decom-
poses the skin surface into topological disks. We use anchor
points as vertices of this tetrahedral complex.
Definition 5. Let A be a convex set and p a point in R

3.
Then the anchor point ap(A) is the point in A closest to p.

We are interested in the case where A is a polyhedral cell
μs
X ,X ′, and p the center c(X ).

On μs
X ,X ′, IX has two types of critical points: interior

and boundary critical points. All critical points are anchor
points of a face of the mixed cell, viz. Figure 3. However,
not all anchor points are critical points, e.g. the point that is
both the anchor point of a vertex and an edge in Figure 3(a).
Lemma 6. A (boundary or regular) critical point of IX on
a polyhedral cell μs

X ,X ′ is the anchor point of μs
X ,X ′ or the

anchor point of one of its faces with respect to c(X ).

Proof. The center c(X ) is the only critical point of the
quadratic function IX . If c(X ) is contained in μs

X ,X ′ , then
it is the anchor point ac(X )(μs

X ,X ′).
It remains to show that all boundary critical points are

also anchor points. By Observation 2, a face of μs
X ,X ′ is

either parallel or perpendicular to the symmetry sets of IX .
Hence, if c(X ) projects onto the facet, then the facet has
a boundary critical point. By definition, this point is the
anchor point of the facet with respect to c(X ).

3. The meshing algorithm

This section describes the construction of a tetrahedral
complex for which the intersection of a cell with the skin
surface is either empty or a topological disk and constructs
the coarse mesh.

Monotonicity condition. For now, we only give the main
condition imposed on the tetrahedral complex. First, we re-
quire that each tetrahedron is contained in a single mixed
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Figure 3. The anchor points of two-
dimensional polyhedral cells. Each anchor
point is labeled by the type its cell (f for face,
e for edge and v for vertex). The triangulation
constructed in Section 3.1 is also shown.

Figure 4. The three different configurations of
a tetrahedron. White and black vertices lie on
different sides of the skin surface.

cell. Recall that the skin surface restricted to a mixed cell
μs
X is a subset of the quadric I−1

X (0), cf. Equation (3). Ex-
press a point x = (x1, x2, x3) in the local coordinate system
of IX .
Condition 7 (Monotonicity). Let ab be a line segment
contained in a mixed cell μs

X of type �, with IX (a) ≤
IX (b). The segment ab satisfies the monotonicity condition
if x2

1 + . . . + x2
� is non-increasing and x2

�+1 + . . . + x2
3 is

non-decreasing on the segment from a to b.
Note that x2

1 + . . . + x2
� and x2

�+1 + . . . + x2
3 are the dis-

tances to the two symmetry sets. Hence a segment has the
monotonicity condition when the distance to the symmetry
sets is monotone and they are not both increasing or de-
creasing. From Equation (3) we conclude:
Observation 8. If line segment ab satisfies the monotonic-
ity condition, then IX is monotonically increasing on ab.

If all edges satisfy the monotonicity condition, then a
generalized monotonicity condition holds for all cells.
Lemma 9. Let μs

X be a mixed cell of type � and let
v1, . . . , vn be the vertices of a cell of the tetrahedral com-
plex in μs

X , with IX (vi) ≤ IX (vj) if i < j.
If the monotonicity condition holds for all edges then,

each segment ab, with a ∈ conv (v1, . . . , vk) and b ∈
conv (vk+1, . . . , vn), for k ∈ {1, . . . , n}, satisfies the
monotonicity condition.

The lemma follows from the fact that x2
1 + . . . + x2

� is non-
increasing and x2

�+1 + . . . + x2
3 is non-decreasing on the

piecewise linear curve connecting v1, . . . , vn.

Mesh extraction. The coarse mesh is extracted from the
tetrahedral complex by the marching tetrahedra algorithm
[15]. Each edge of the tetrahedral complex intersects the
skin surface at most once by Observation 8. We mesh the
skin surface in a tetrahedron based on the number of vertices
inside the skin surface as depicted in Figure 4.
Theorem 10. A tetrahedral complex for which each edge
satisfies the monotonicity condition has two properties:

1. each cell intersects the skin surface in a topological
disk and

2. the mesh extracted from the tetrahedral complex is iso-
topic to the skin surface.

Proof. Let V − and V + be the vertices of a k-cell of the
tetrahedral complex inside and outside the skin surface,
respectively. Consider the set of line segments ab with
a ∈ conv (V −), b ∈ conv (V +). The set of line seg-
ments is empty if the cell does not intersect the skin sur-
face. If the cell intersects the skin surface, then the set of
line segments spans the cell and the line segments may in-
tersect but only at their endpoints. On faces of the cell, the
line segments are defined consistently because then the con-
struction is based on the labels of vertices of the face.

By Lemma 9, each segment satisfies the monotonicity
condition. Hence IX is monotone on ab. Since a lies inside
and b outside the skin surface, ab intersects the skin surface
in a single point. Because the segments span the tetrahe-
dron, the skin surface within the cell is a topological disk.

Each segment also intersects the coarse mesh transver-
sally in a single point. The isotopy is constructed by pa-
rameterizing the mesh and the skin surface with these seg-
ments and using linear interpolation between the parameter-
izations.

3.1. The tetrahedral complex

In this section we construct the tetrahedral complex.
First, we triangulate the facets and then the polyhedral cells.

All vertices of the tetrahedral complex are anchor points
of polyhedral cells. An anchor point on the boundary of its
polyhedral cell coincides with another anchor point. In that
case we collapse the vertex. For simplicity, we assume that
the anchor point lies in the interior of the mixed cell.

Subdividing facets of polyhedral cells. Based on the shape
of the contour lines of IX , we distinguish two types of
facets: circular and hyperbolic facets. Since the skin sur-
face is tangent continuous, a facet obtains the same type
from both incident cells. Examples of the triangulation of
these facets are given in Figure 3.
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Circular facets are triangulated by adding an edge from
the anchor point of the facet to each anchor point on the
boundary of the facet, i.e., either the anchor point of an edge
or a vertex. Since the anchor point of the facet is the point
closest to the center of the sphere, the distance to the center
increases monotonically on each edge and each edge satis-
fies the monotonicity condition.

Hyperbolic facets are rectangles with edges parallel or
perpendicular to the symmetry axis of the corresponding
hyperboloid, cf. Observation 2. We first triangulate the face
similar to the circular facets and then flip the edges between
the anchor points of the face and a vertex.

Subdividing polyhedral cells of type 0 and 3. These
mixed cells contain spheres. By definition, the anchor point
of the cell is the point closest to the center. Hence, each line
segment from the anchor point of the mixed cell to another
point in the mixed cell satisfies the monotonicity condition.
We already constructed the triangulation of the boundary
of the mixed cell and triangulate the entire cell by adding
edges from the anchor point of the cell to each vertex on the
boundary. The tetrahedra are formed by taking the join of
the anchor point of the mixed cell and a triangle on the the
triangulated boundary of the mixed cell.

Subdividing polyhedral cells of type 1 and 2. The mixed
cell contains a hyperboloid patch of the skin surface and the
mixed cell is a prism with its base parallel to the symmetry
plane of the hyperboloid. The hyperbolic facets of the prism
are the facets that are parallel to the symmetry axis. We split
the prism in the plane parallel to the symmetry plane and
through the anchor point of the mixed cell.

Consider the base of the split prism furthest away from
the symmetry plane. Its anchor point is the point with max-
imal distance to the symmetry plane and minimal distance
to the symmetry axis. Therefore, all line segments start-
ing in this anchor point satisfy the monotonicity condition.
We triangulate the split mixed cell by adding edges from
the anchor point of the base to all vertices on the boundary.
The tetrahedra are the join of a triangle on the triangulated
boundary and the anchor point of the base.

Complexity analysis. In many real world applications is
the size of the Delaunay triangulation linear in the num-
ber of input balls. However, the worst case complexity is
quadratic. The size of the mixed complex is linear in the
size of the Delaunay triangulation. The number of tetra-
hedra within a mixed cell is linear in the complexity of the
mixed cell and within each tetrahedron we construct at most
two triangles.
Lemma 11. The size of the coarse mesh is linear in the size
of the Delaunay triangulation.

Mesh enhancement. The topologically correct mesh ob-
tained with the marching tetrahedra algorithm is rather
coarse and may contain long and skinny triangles. We used

Molecule Our algorithm Dynamic Marching
Coarse Sqrt-3 Chew

pdb7tmn 1s 2s 5s 10m00s 5s
DNA 14s 29s 55s 35m12s 51s
Gramacidin A 8s 31s 1m13s 1h35m23s 3m22s

Table 1. Performance comparison

two existing methods to enhance this mesh. The sqrt-3 sub-
division method [10] splits each triangle into 9 sub-triangles
and then moves the newly created vertices towards the skin
surface along the transversal segments. The refinement by
Chew’s algorithm [5] constructs a triangulation for which
the triangles have angles between 30 and 120 degrees. Dur-
ing the refinement, we test whether the isotopy is main-
tained. Before we apply Chew’s algorithm we remove small
edges. This reduces the size of the final mesh considerably.

4. Implementation

We implemented the meshing and refinement algorithms
described above in C++ using CGAL [1]. First we compute
the Delaunay triangulation of the weighted points. From
this triangulation we extract the mixed complex and trian-
gulate it, as described in Section 3.

Examples and experiments. We compare our algorithm
with the results in [4]. Those tests are run on a Pentium
4 running at 2.54GHZ. To test our algorithm we used an
AMD Athlon 1800+ which is a little slower. We tested our
algorithm on various molecules, computing only the coarse
mesh, the coarse mesh and one additional

√
3-subdivision

step and the coarse mesh and Chew’s algorithm. For timings
see Table 1. Note that both our algorithm and the marching
algorithm [4] are significantly faster than the dynamic skin
algorithm [3]. However, we believe that [4] does not come
with topological guarantees.

Figure 6 shows the molecule pdb7tmn. In Figure 6(d)
we enlarged a part of the coarse mesh and applied the Sqrt-
3 method in Figure 6(e). Note that the triangles remain
skinny. Figure 6(f) shows the result of applying Chew’s
algorithm directly to the coarse mesh. Because of small
edges in the coarse mesh, there are also small edges in parts
with low curvature. When we remove small edges, viz. Fig-
ure 6(g), before we apply Chew’s algorithm, we obtain Fig-
ure 6(h).

5. Conclusion and future work

We presented an algorithm that constructs a mesh that
is isotopic to the skin surface and discuss two methods to
refine this mesh. The algorithm we present is static in the
sense that it generates a mesh for a fixed set of input balls.
The rigid foundation of the tetrahedral complex makes us
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(a) DNA

(b) Gramacidin A

Figure 5. Two larger molecules.

believe that it is also possible to maintain the coarse mesh
while deforming the input set. This is important for deform-
ing molecules.
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