

 University of Groningen

On the applicability of requirements determination methods
Bollen, Petrus Wilhelmus Laurentius

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bollen, P. W. L. (2004). On the applicability of requirements determination methods. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/f1af8ee5-e5f4-49e9-9d22-576a4851e461

On the applicability of requirements determination methods

P.W.L. Bollen

RIJKSUNIVERSITEIT GRONINGEN

On the applicability of requirements determination methods

Proefschrift

ter verkrijging van het doctoraat in de
Bedrijfskunde

aan de Rijksuniversiteit Groningen
op gezag van de

Rector Magnificus, dr. F. Zwarts,
in het openbaar te verdedigen op

donderdag 9 december 2004
om 13.15 uur

door

Petrus Wilhelmus Laurentius Bollen
geboren op 12 juli 1959

te Maastricht

Promotor:

Prof. Dr. Ir. J.L. Simons

Beoordelingscommissie:

Prof. Dr. S. Brinkkemper
Prof. Dr. R. Wieringa
Prof. Dr. Ir. H. Wortmann

ISBN: 90-5681-211-4

Published and distributed by

P.W.L. Bollen
Pergamyndonk 210
6281 GZ Maastricht
the Netherlands

CIP-DATA KONINKLIJKE BIBLIOTHEEK

Bollen, Petrus Wilhelmus Laurentius

On the applicability of requirements determination methods.
Thesis Rijksuniversiteit Groningen
With Summary in Dutch.
ISBN: 90-5681-211-4
NUR 983, 992
Subject headings: Requirements determination, requirements specification, Natural
Language Modeling

© 2004, P.W.L. Bollen, Maastricht

All rights reserved. No part of this publication may be reprinted or utilized in any form
or by any electronic,mechanical or other means, now known or hereafter invented,
including photocopying and recording or in any information storage or retrieval sytem,
without prior written permission from the copyright owner.

To Anjie
and

 Trisha

ACKNOWLEDGMENTS

I would like to thank all the people that have made the finalisation of this thesis
possible. I would especially thank John Simons, for being an inspiring Ph. D.
supervisor. Furthermore, I would like to thank the members of the dissertation
committee: Sjaak Brinkkemper, Roel Wieringa and Hans Wortmann for their
constructive criticism, which has helped to improve the quality of this thesis.

Furthermore, I would like to thank the former members of the former
department of Information Science at the faculty of Economics and Business
Administration at Maastricht University, who inspired me to write this thesis. A special
word of thanks is for Shir Nijssen who showed me, how to be persistent in carrying on
research, even in an unfavourable academic climate.

Another word of thanks is to my former colleague in the department of
Logistics and Strategy at Maastricht University: Geert Duysters. Thanks Geert for your
efforts in helping me find a suitable academic environment for finalizing this thesis.

The research that is contained in this thesis, was started 11 years ago. In this
period many changes have taken place in my personal life. I want to dedicate this thesis
to my wife Anjie, who has helped me in achieving my goals with her love and
understanding and to our daughter Trisha, who has enriched our lives and has
positively effected the conditions under which this thesis has been finalized.

Peter Bollen

October, 2004

 CONTENTS OF THE THESIS

Chapter 1: Introduction 1
1.1 Subject of study: requirements determination 1

1.1.1 Requirements determination: Translating domain requirements into model
 requirements 1
1.1.2 Requirements determination: field of study 2
1.1.3 Organization of chapter 1 3

1.2 History of requirements determination 3
1.3 Requirements determination and information systems development 5

1.3.1 Roles in requirements determination 5
1.3.2 The way of modeling, way of working and way of controlling in
 requirements determination 6
1.3.3 Substeps in requirements determination 7
1.3.4 Eras in requirements determination 9
1.3.5 Conclusions on requirements determination as field of study 10

1.4 Research goal 11
1.5 Research approach and outline of the thesis 11

1.5.1 Research approaches 11
1.5.2 Justification of the ‘design-research’ approach 12

1.6 Structure of thesis and research question(s) 13
1.7 References 16

Chapter 2: Criteria for requirements determination methods 23
2.1 The criteria for RDMs found in the literature 23
2.2 The domain richness criterion 25

2.2.1 Reasons in the literature for systems failure caused by insufficient
 requirements determination 25
2.2.2 Proposed techniques in the literature to overcome insufficient
 requirements determination 27
2.2.3 Characteristics of application domains 29
2.2.4 Definition of the domain richness criterion 30

2.3 The completeness criterion 31
2.4 The efficiency criterion 33
2.5 The formality criterion 35
2.6 Conclusions on the quality criteria for a RDM 36
2.7 References 37

Chapter 3: Evaluation of existing RDM design alternatives 41
3.1 Introduction 41

3.2 A survey of approaches for requirements determination from the
 literature 41

3.2.1 Data oriented approaches in requirements determination 42
3.2.2 Process oriented approaches in requirements determination 44
3.2.3 Object oriented approaches in requirements determination 45
3.2.4 The Business Process Engineering approach: ARIS 46

3.3 The suitability of existing approach families for requirements
 determination 47
3.4 The extended (or enhanced) Entity-Relationship approach 48

3.4.1 Deficiencies in the (E)ER way of modeling 48
3.4.2 Deficiencies in the (E)ER way of working 53

3.5 Object-role Modeling (ORM) 55
3.5.1 Deficiencies in the ORM way of modeling 55
3.5.2 Deficiencies in the ORM way of working 59

3.6 The Unified Modeling Language (UML) 59
3.6.1 Deficiencies in the UML way of modeling 60
3.6.2 Deficiencies in the UML way of working 64

3.7 Conclusions on the way of- modeling, -working, and –controlling for the
 Requirements determination approaches from the literature 64

3.7.1 Overall modeling deficiencies 65
3.7.2 Modeling deficiencies regarding the data model for the way of modeling
 65
3.7.3 Modeling deficiencies regarding the static constraints for the way of
 modeling 67
3.7.4 Modeling deficiencies regarding the dynamic constraints for the way of
 modeling 68
3.7.5 Modeling deficiencies regarding the static derivation (rules) for the way
 of modeling 69
3.7.6 Modeling deficiencies regarding the dynamic rules for the way of
 modeling 69
3.7.7 Modeling deficiencies regarding the way of working and way of
 controlling 70
3.7.8 Summary of Modeling deficiencies in the EER, ORM and UML
 approaches 70

3.8 The suitability of existing approaches for requirements determination
 with respect to the completeness, domain richness, efficiency, and
 formality criteria 71
3.9 References 74

Chapter 4: Operationalized design specification 83
4.1 Introduction 83
4.2 RDM demands for the way of modeling 83

4.2.1 RDM demands for completeness in the way of modeling 83
4.2.2 RDM demands for the domain richness in the way of modeling 85
4.2.3 RDM demands for the efficiency in the way of modeling 85
4.2.4 RDM demands for the formality in the way of modeling 86

4.3 RDM demands for the way of working 88
4.3.1 RDM demands for completeness in the way of working 88
4.3.2 RDM demands for the domain richness in the way of working 88
4.3.3 RDM demands for the efficiency in the way of working 89
4.3.4 RDM demands for formality in the way of working 89

4.4 RDM demands for the way of controlling 90
4.4.1 RDM demands for efficiency in the way of controlling 90
4.4.2 RDM demands for formality in the way of controlling 90

4.5 Conclusions 91
4.6 References 91

Developing an alternative design for a requirements determination method 92

Chapter 5: The way of modeling in Natural Language Modeling 93
5.1 Introduction 93

5.1.1 Organization of chapter 5 93
5.2 Names 94

5.2.1 Example 5.1: University Enrolment part 1 94
5.2.2 The name primitive 95

5.3 The natural language axiom 96
5.4 Roles 96
5.5 Intention and Extension 98
5.6 Fact types 99

5.6.1 Naming convention fact types 100
5.6.2 Example 5.1: university enrolment part2 101
5.6.3 Compound referencing schemes 104

5.7 The Basic Information Model 107
5.8 NLM modeling constructs for the encoding of extensional constraints 109

5.8.1 Definition of Population state constraints 110
5.8.2 Definition of Population state transition constraints 110
5.8.3 Definition of Derivation rule constraints 111
5.8.4 Definition of Event occurrence, Event, Event type and Impulse type
 constraints 112

5.9 The NLM requirements specification for a given UoD 114
5.9.1 The NLM Requirements specification for the University Enrolment UoD
 115
5.9.2 The University Enrollment case study description revisited 118

5.10 Conclusions on the way of modeling in the NLM RDM 120
5.10.1 The added value of the NLM requirements specification language 121

5.11 References 122

Chapter 6: The way of working and the way of controlling in Natural Language
 Modeling 125

6.1 Introduction 125
6.1.1 Organization of chapter 6 126

6.2 The design procedure for a simple basic information model 127
6.2.1 The verbalization transformation 128
6.2.2 The grouping transformation 132
6.2.3 The classification and qualification transformation 135

6.3 The atomization procedure 143
6.4 The procedure for integrating BIMs in NLM 146

6.4.1 Conflicts on naming, synonyms and homonyms 147
6.4.2 Specialization and generalization relationships 148
6.4.3 Identifier, cardinality and domain conflict 149

6.5 The population state constraint modeling procedures 151
6.5.1 The derivation of uniqueness constraints 151
6.5.2 The derivation of set comparison constraints 153

6.6 The population state transition constraint modeling procedure 157
6.7 The derivation rule constraint procedure 159
6.8 The impulse constraint procedure 161
6.9 The way of controlling in NLM 165

6.9.1 The demarcation of the requirements determination project 165
6.9.2 The required precedence of the requirements determination process in
 terms of the way of working 166
6.9.3 Resource planning for a requirements determination project in NLM’s
 way of working 168

6.10 Conclusions on the way of working and the way of controlling in NLM
 169

6.10.1 The added value of the NLM requirements determination method 170
6.11 References 171

Chapter 7: Conclusions, general discussion and recommendations 175
7.1 Introduction 175

7.1.1 Organization of chapter 7 176
7.2 Research findings 176
7.3 Research methodology 186
7.4 Future MIS research proposals 186
7.5 Recommendations for practitioners in the MIS field 187

7.5.1 Application of NLM in practice 188
7.6 Concluding remarks 188

Appendix A: The specification of the constraint types in the NLM requirements
 specification language 191

A.1 Introduction 191
A.2 Population state constraints 191
A.3 Population state transition constraints 192
A.4 Derivation rule constraints 194
A.5 Impulse constraints 199

A.5.1 Impulse and impulse type 201
A.6 References 209

Appendix B: The meta model for the NLM requirements specification: 211
B.1 References 215

Summary (in dutch) 217

Curriculum vitae 219

LIST OF FIGURES AND TABLES

Fig. 1.1 Requirements determination and fields of study ... 3
Fig. 1.2 The roles in the requirements determination process in general........................ 6
Fig. 1.3 The roles in the requirements determination process in the ERP era 10
Fig. 1.4 The design research cycle and the chapters in this thesis 16
Fig. 3.1 Domain semantics and representation in EER model I 49
Fig. 3.2 Domain semantics and representation in EER model II (taken from fgure 3.17
 in McFadden et al., 1999:108) .. 50
Fig. 3.3 (a) ER, (b) XER and (c) EER cardinality constraints (taken from Liddle et al.
 (1993) and McFadden et al. (1999)) ... 51
Fig. 3.4 Domain semantics and representation in EER model III................................. 53
Fig. 3.5 Domain semantics and representation in ORM model I.................................. 56
Fig. 3.6 Domain semantics and representation in ORM model II 57
Fig. 3.7 Domain semantics and representation in ORM model III 57
Fig. 3.8 Domain semantics and representation in ORM model IV............................... 58
Fig. 3.9 Lack of coherence in UML class diagram and UML state chart diagram 60
Fig. 3.10 Two different object instances of the class House Inhabitant....................... 61
Fig. 3.11 Generalization transformation using abstract class construct........................ 62
Fig. 5.1 Example Vandover University Enrollment (example 5.1). 95
Fig. 5.2 Roles and sentence group template for university enrollment example 97
Fig. 5.3 Example legend for sentence groups. .. 97
Fig. 5.4 Naming convention fact type for student at Vandover university 101
Fig. 5.5 Example integrated Ohoadover enrollment system....................................... 102
Fig. 5.6 Fact types and sentence group templates with compound referencing scheme
 for student from the university enrolment example part 2 104
Fig. 5.7 Naming convention fact type for student in the integrated UoD. 105
Fig. 5.8 Extended example legend for fact types.. 106
Fig. 5.9 Basic information model Ohoadover university enrollment.......................... 108
Fig. 5.10 NLM requirements specification (I):BIM and population constraints......... 116
Fig. 5.11 NLM requirements specification (II):derivation rule- and impulse type
 constraints ... 117
Fig. 5.12 NLM requirements specification (III):impulse type constraints.................. 118
Fig. 6.1 The way of working in the NLM requirements determination method 126
Fig. 6.2 The verbalization transformation .. 128
Fig. 6.3 ‘real-life’ ABC invoice document (example 6.1). ... 130
Fig. 6.4 Result of verbalization transformation of example 6.1. 132
Fig. 6.5 Result of grouping transformation of example 6.1. 135
Fig. 6.6 Graphical notation sentence group for (a part of) example 6.1. 136
Fig. 6.7 Initial application concept repository for (a part of) example 6.1. 138
Fig. 6.8 Application of naming convention fact types in NLM.................................. 139
Fig. 6.9 Result of classification/qualification transformation of example 6.1. 142
Fig. 6.10 Result of atomization transformation of example 6.1.................................. 146
Fig. 6.11 Basic information model for example 6.1 with uniqueness constraint(s).... 153
Fig. 6.12 Basic information model for example 6.1 with uniqueness and set-
 comparison constraint(s). .. 156

Fig. 6.13 Basic information model for example 6.1 with uniqueness, set comparison
 and transition constraint(s).. 159
Fig. 6.14 Basic information model for example 6.1 with uniqueness, set comparison,
 transition constraint and derivation rule constraints 161
Fig. 6.15 Complete NLM requirements specification for example 6.1 that contains a
 basic information model with uniqueness, set comparison, transition
 constraint, derivation rule constraints and impulse constraints................... 164
Fig. 6.16 AON network for activities in a NLM requirements determination project (I)

... 168
Fig. 6.17 AON network for activities in a NLM requirements determination project(II)

... 168
Fig. 7.1 Relationship between research (sub) questions).. 184
Fig. A.1 Example legend for uniqueness-, exclusion-, subset- and equality- population
 state constraints.. 192
Fig. A.2 Example legend for population state transition constraints 194
Fig. A.3 Example legend for derivation rule constraint.. 199
Fig. A.4 Two different event types that trigger the same derivation rule 202
Fig. A.5 Two derivation rules that create instances of the same fact type.................. 203
Fig. A.6 Event triggering a derivation rule when a condition is satisfied (impulse)... 204
Fig. A.7 Example legend type constraints .. 206
Fig. A.8 The possible temporal characteristic of impulse(s) (types) 207
Fig. B.1 Information meta model for BIM and population constraints in NLM........ 214

Table 2.1 Criteria for Requirements Specification methods .. 24
Table 2.2 Dimensions that characterize the application domain 30
Table 2.3 The definition of the domain richness criterion .. 31
Table 2.4 Types of rules according to Loucopoulos and Layzell (1989:264) 32
Table 2.5 Types of rules versus perspectives (Olle et al.,1988; Loucopoulos and
 Layzell, 1989) .. 32
Table 2.6 The definition of the completeness criterion .. 33
Table 2.7 The definition of the efficiency criterion ... 34
Table 2.8 The definition of the formality criterion... 35
Table 2.9 Summary of the RDM criteria and definitions ... 36
Table 3.1 Main findings of Peckham and Maryanski survey (Peckham and Maryanski,
 1988:181) .. 42
Table 3.2 Comparison families of approaches found in the literature.......................... 47
Table 3.3 Summary of the comparison of EER, ORM and UML approaches on
 modeling deficiencies, ... 71
Table 3.4 Comparison EER, ORM and UML approaches on completeness, domain
 richness, efficiency and formality criteria for the way of modeling, way of
 working and way of controlling ... 73
Table 7.1 Types of rules within perspectives for completeness criterion................... 178
Table 7.2 Requirements method demands for the way of modeling 181
Table 7.3 Requirements method demands for the way of working............................ 182
Table 7.4 Requirements method demands for the way of controling......................... 183

 1

CHAPTER 1

INTRODUCTION

1.1 SUBJECT OF THE STUDY: REQUIREMENTS
 DETERMINATION

1.1.1 Requirements determination: Translating domain requirements into

model requirements

The London Stock exchange automated trading system Taurus, had to be withdrawn
before it ever was used (Stock exchange kills projects to focus on Taurus, 1989). The
failure of National Insurance Recording System in England lead to tax overpayments
by 800,000 people (System problems leave Inland revenue with £ 20 of taxpayers’
cash, 2002). These are examples of organizations that have become victims of an
unsatisfactory user requirements determination process. Unsatisfactory user
requirements determination is one of the most prevalent reasons for faulty information
systems or information systems that turn out to be overdue and too costly.
Requirements determination is the least well-defined phase in the systems development
process (Flynn, 1992) and: “has been widely recognized as the most difficult activity of
information systems development.” (Browne and Rogich, 2001:224). Failures in the
requirements determination process represent one of the leading causes of system
failure: “Given an appropriate design, most information systems departments can
successfully implement a system. The big problem is correctly determining information
requirements and designing the right system.” (Wetherbe, 1991:52). “Many IS failures
can be attributed to a lack of clear and specific information requirements.” (Byrd et al.,
1992:118). “Often, much of post-delivery maintenance work can be traced to
requirements which had been poorly or falsely described in the system requirements
specification (SRS), or were missed altogether.” (Lang and Duggan, 2001:161). Errors
in the requirements specification caused by a faulty requirements determination process
can remain latent until the later stages in the IS development process (Viller et al.,
1999:666) and will cost a manifold to fix in these later stages (Boehm, 1981, 1989).
The subject of study in this thesis is generally known as requirements determination
(Browne and Ramesh, 2002; Hevner and Mills, 1995), requirements modeling
(Agarwal et al., 1996:138), requirements engineering (Rolland, 1999) or requirements
specification (Sinha and Popken, 1996). “In its simplest form, requirements
determination entails eliciting and encoding into the new system the requirements that
clients verbalize to the analyst” (Alvarez, 2002:86); “Requirements engineering
involves investigating the problems and requirements of the user community and
developing a specification of the desired information system” (Loucopoulos, 1992:1).
“Requirements determination can be defined as the process of gathering and modeling
information about the required functionality of a proposed system by an analyst”

 2

(Browne and Rogich, 2001:224). The requirements determination process, therefore,
can be considered as a ‘bridge’ that embodies the translation of an organizational
context in which (a) user(s) operates(s) in a language the analyst understands (Westrup,
1999:37). In the remainder of this thesis we will use the term requirements
determination

1.1.2 Requirements determination: field of study

Research on requirements determination is found in a number of fields. In the 1960’s
and 70’s it was an important research topic within the field of management information
systems (Ackoff, 1967; Davis and Olson, 1985). One of the important fields that
include much research on requirements determination is the field of information system
development methodologies (ISDM). This field is mainly directed at the comparison of
literally 100’s of methodologies with the aim on how these methodologies can facilitate
the development of computerized information systems. In the late 70’s and eighties this
field of study was in its heyday and many IFIP IS methodology conferences were
organized (Olle et al., 1982, 1983, 1986, 1988b). The aim of the later conferences was
to develop some prescriptive theory on what a good ISDM consists of (Olle et al.,
1988a).

Secondly, there is the field of ‘speech-act theory’ in which information
systems and conclusively the requirements are put in the context of communication and
coordination of activities (Johannesson, 1995; Liu et al., 2003; Medina-Mora et al.,
1992). In this field of study the development of information systems is considered to be
submissive to the ‘communicative action’ it has to support.

 Information
 Systems
 Development
 Methodologies

 Conceptual
 Modeling

 Requirements
 determination

 Management
 Information
 Systems

 Ontology
 Speech-act
 theory

Fig. 1.1 Requirements determination and fields of study

 3

In this study we will not focus on these communicative actions and how they are
embedded in an organizational context. We will only focus on the information systems
that need to be put in place for facilitating organizational communication.

The third field of study that is related to research on requirements
determination is the field on ontological expressiveness in information systems analysis
and design (Green and Rosemann, 2000; Rosemann and Green, 2002; Wand and
Weber, 1993; Weber and Zhang, 1996). The main research question in the field of IS
ontology is to establish a general domain ontology and subsequently measure the extent
in which a given IS methodology has modeling provisions for expressing the elements
in the domain ontology.

Another field that studies the languages that analysts can use to express
domain requirements is the conceptual modeling approach (Brodie et al., 1984; Dietz,
1987; Loucopoulos, 1992). This approach emerged mainly as an answer or a cure
against the fast changing standards for implementation technology, especially database
management models in the 1960’s and 1970’s. Organizations in those days were faced
with large technology transition costs because every time a new (database) technology
was adapted they were forced to reprogram all their applications.

The subject of this thesis: requirements determination has predominantly been
treated from the Information Systems Development Methodology and Conceptual
Modeling points of view (see figure 1.1).

1.1.3 Organization of chapter 1

Now that we have introduced the subject and the fields of study to which it is related,
we will give a historic overview of the main developments regarding the subject of this
thesis in section 1.2. In section 1.3 we give the relationship between requirements
determination and the stages in the information systems development life cycle. In
section 1.4 we will give our research goal. In section 1.5 we will give our research
approach. In section 1.6 we state the research (sub) questions in this thesis.

1.2. HISTORY OF REQUIREMENTS DETERMINATION

In the past 50 years computer scientists and business analysts have been struggling with
the way in which the organizational knowledge and routines could be made explicit in
order to apply information technology that can enable these knowledge workers to be
more productive and be more effective.

The first generation of computer programmers consisted of researchers who
programmed 'their' computer for solving their own information needs. In the very early
days of computer use these information needs were mainly for mathematical
applications and often for military applications. The focus was on algorithms, not on
data (e.g. see for a discussion on programs = algorithms + data structures, Wirth
(1976)). In the late fifties the first large-scale computer applications gradually came
into use in businesses and other organizations. The functionality of these electronic
data processing (EDP) systems, however, was an automated copy of the manual
procedures that until then had been applied by a large number of clerks in these

 4

corporations, e.g. general ledger and payroll applications. Information systems (IS)
were primarily used to replace staff by machines, which resulted in cost savings and
enhanced operational transaction efficiency (Jan and Tsai, 2002:62). The coding of
these applications was completed by IS professionals leaving the end users in many
cases aside (Jan and Tsai, 2002:62).

When the information systems applications that were needed in organizations
during the seventies, eighties and nineties became more strategic (e.g. airline
reservation systems, enterprise resource planning (ERP1)), the developers attitude was
by and large still the same. Information systems that were the result of applying the
craftsmanship of the fifties and sixties, proved to be too costly and often not delivered
on time. This situation has characterized the business information systems field during
the sixties, seventies, eighties and nineties. In the sixties the concept of ‘software crisis’
was coined (Osmundson et al., 2003:1). This ‘software crisis’ emerged because, the
way in which application information systems were developed resulted in cost overruns
and long lead-times. By the time an information systems project was finished, the
initial organizational requirements had already been changed. In many cases, however,
the information systems development methodologies had not been able to capture those
requirements in the right way.

The information systems development market place, however, changed in the
early nineties of the last century when the product software-suppliers, e.g. MFG/PRO,
IFS, SAP, BAAN, Marshal, Peoplesoft (Siriginidi, 2000: 387-389) started to sell their
enterprise solutions on the waves of the Business Process Reengineering (BPR) sea
(Davenport and Short, 1990; Hammer, 1990). These product software solutions,
promised to solve many problems that were caused by the software crisis and were
considered to be an attractive investment option in ICT for the large (Fortune 500)
companies. The implementation of, for example, ERP2 systems in a company,
however, in most cases meant that the business process had to be reengineered or
redesigned to fit one of the ‘reference-model’ that underlies the ERP package. This
reengineering process turned out to be feasible for standard application functionality,
for example, accounting, payroll, human resource management, inventory control.
However, company-specific, functionality remained a problem in the first generation
ERP-solutions. The second generation ERP-solutions, however, tried to redefine the
concept of company-specific functionality, by developing ‘standardized’ software
solutions for specific ‘branches’, for example, health-care, utilities, retail and so forth
(Boudreau, 1999), for example Customer–Relationship Management (CRM) by Siebel
(Molenaar, 2001). The development of tdhe additional functionality in these second
generation ERP systems, implied, in many cases, additional reengineering efforts on
these branche-specific domains before an implementation could take place. In spite of
the availability of the second –generation ERP solutions, many companies needed
customized modules and interfaces that allows them to support the specific parts of
their business (Soffer et al., 2003).

1 ERP stands for Enterprise Resource Planning, that is an automated system in which information
on all important enterprise resources, e.g. Financials, Human resources, Operations and
Logistics, Sales and Marketing (Umble et al., 2003) can be stored and integrated.
2 In the remainder of this dissertation we will use the term ERP as a synonym for product
software, although in some contexts it can be considered to stand for a specific subclass of
product software.

 5

We will make a distinction between development requirements and
implementation requirements in the context of product-software. Within the first type
of requirements Dag et al. make a distinction into customer wishes and product
requirements (Dag et al., 2004). Development requirements are the requirements that
are of interest to the product-software developing organization, since they determine
the functionality that has to be implemented in the product-softwar package. The
implementation requirements reflect the required functionality from the point of view
of the organization that is going to implement the product software. In this thesis we
will focus on the implementation requirements.

1.3 REQUIREMENTS DETERMINATION AND
 INFORMATION SYSTEMS DEVELOPMENT

The improvement of the requirements determination processes for enterprise
applications is still a relevant research subject within the field of management
information systems because improving the state of the art in requirements
determination methods to be applied in these requirements determination processes will
have the following impact on organizations:

- It will enable them to express their (information) requirements
using less (human) resources (more efficient).

- it will enable them to express their (information) requirements in a
more precise, consistent and complete way

We will now give a definition of the intended outcome of such a requirements
determination process: a requirements specification (Hevner and Mills, 1995:224; Pohl,
1994:245).

Definition 1.1. A requirements specification is a specification of what an information
system must do (Wieringa, 1996:16).

1.3.1 Roles in requirements determination

If we now look back at the development in the development of (business)
information systems over the past 50 years we can distinguish a number of roles in the
requirements determination process:

1) The role of user or (business domain expert), these roles involve the

knowledge of the business domain as it exist with the knowledge
workers in the enterprise, for example the knowledge on how to
process an invoice or how to approve a loan.

2) The role of the analyst, this role involves the knowledge on how to
elicitate the knowledge of a knowledge worker in the focal enterprise
in a format that can be used by a developer to develop an application

 6

system. The result of the work of the analyst we will call a
requirements specification.

3) The role of the systems developer, this role involves the knowledge
on how to transform an information systems specification into a
working information system that complies with the functional
requirements as embedded in the requirements specification.

In figure 1.2 we indicate the general relationships between the aforementioned roles.

User or
domain
expert

Information systems
specification in which
Functional
Requirements are
embedded

Analyst

Requirements
Determination
Process

Developer

Fig. 1.2 The roles in the requirements determination process in general

1.3.2 The way of modeling, way of working and way of controlling in
 requirements determination

The extent in which the role of an analyst can be played perfectly in the requirements
determination process depends upon the availability of ‘a way of working’, ‘a way of
modeling’ and ‘a way of controlling’ (Wijers, 1991:14). A way of modeling refers to
the model types that are required: “A way of modeling structures the models which can
be used in information systems development. Several models are usually required for
problem specification and solution in the application area” (Wijers, 1991:15).

Definition 1.2. A way of modeling in requirements determination is a specification of
what can be contained in a requirements specification

A way of working or a prescriptive process model (Nurcan and Rolland, 2003): “is a
description of processes at the type level. It defines how to use the concepts defined
within a product Model……A prescriptive Process Model is used to describe ‘how
things must/should/could be done.” (Nurcan and Rolland, 2003:62) The way of
working refers to the process-oriented view of information system development,
whereas the way of modeling refers to the product-oriented view of information system
development.

 7

Definition 1.3. A way of working in requirements determination is a specification of
how a requirements specification can be created

Finally, a way of controlling is defined according to Verhoef (1993:8) as follows: “A
way of controlling constitutes a management perspective of information systems
development processes. Project management concerns considerations of time, means..,
and quality… A way of controlling, therefore, includes directives and guidelines on
progress control, resource allocation and quality management and control.”

Definition 1.4. A way of controlling in requirements determination constitutes a project
and quality management perspective of the requirements determination process and
concerns considerations of time, means, and quality in the creation of a requirements
specification.

We will apply the distinction into a way of modeling, a way of working and a way of
controlling for those stages in the development life cycle that focus on the requirements
determination process (see figure 1.2). We will call a method that can be used by an
analyst in such a requirements determination process: a requirements determination
method.

Definition 1.5. A requirements determination method (RDM) is the combination of a
specific way of modeling, a specific way of working and a specific way of controlling
for creating requirements specifications, in which the way of working specifies how the
elements in the way of modeling can be instantiated, and in which the way of
controlling constitutes the project- and quality management perspectives for the given
way of modeling and the given way of working.

1.3.3 Sub steps in requirements determination

The general requirements determination process from figure 1.2 is generally viewed as
consisting of three steps (Browne and Rogich, 2001:225; Lalioti and Loucopoulos,
1994):

1) Information gathering (or requirements elicitation), during which an
analyst elicitates requirements from (a) user (s) or domain expert(s),

2) Representation (or requirements specification), in which those
requirements are specified in some modeling language by the analyst,

3) Verification (or requirements validation) in which the analyst verifies the
correctness of these requirements with the user.

If we consider the aforementioned steps in the requirements determination process,
then we can state that the scientific research on these steps has not exclusively taken
place in the fields of figure 1.1. For example, with respect to the step information
gathering or requirements elicitation, substantial research has taken place within the
field of Knowledge Engineering (Barrett and Edwards, 1995) leading to knowledge
acquisition methods like KADS (Breuker and Wielinga, 1987). These approaches are
primarily directed at ‘knowledge’ green fields, i.e. those application domains that were

 8

generally considered to contain predominantly ‘tacit’ knowledge and these approaches
were not developed for business application domains in which available knowledge has
to be categorized and at most be made explicit.

With respect to the second step in the general requirements determination
process: representation or requirements specification we can conclude that the
definition of requirements specification languages has been a major research stream
within the conceptual modeling and IS fields of study that deal with requirements
determination. Major data-oriented ‘language families’ in this respect are the
(extended) ER language (Chen, 1976; Teory et al., 1987) and the fact-oriented
language family (Halpin, 2001; Verheijen and Van Bekkum, 1982). As an example of a
‘process-oriented’ specification language we can consider Data Flow Diagrams
(DFD’s) (Yourdon and Constantine, 1979) or Activity Diagrams (A-schemas) in ISAC
(Lundeberg, 1979).

With respect to the third step: requirements validation (or verification) we
must make a distinction into semantic verification and syntactic verification. Semantic
verification is the type of validation that we are interested in this thesis. It is concerned
with the capturing of the ‘right’ domain requirements in terms of the extent in which
what the analyst records is what the domain user intends to express. Dullea et al.
(2003:171-172) define the concept semantic validity as follows: “An entity-relationship
diagram is semantically valid only when each and every relationship exactly represents
the modeler’s concept of the problem domain”. We will generalize this concept to
every requirements determination method and more importantly, we will extend this
concept beyond the modeler’s interpretation of the application domain to the user’s
interpretation for the application domain, into our definition of a semantic correct
specification.

Definition 1.6. A requirements specification is semantically correct if every element in
the specification is a representation of the user(s)’(s) view of the application domain.

The outcome of a requirements determination process expressed in some specification
language, therefore, should always be a semantically correct specification.

Syntactic verification, merely deals with the compliance of a specific
application specification to the modeling rules that are contained in the meta-model of
the specification language. We must be aware of the possibility that a semantic
incorrect specification can be syntactically correct in any given situation.

The existing research on requirements determination methods for management
information systems has mainly dealt with how to represent the outcome of the
requirements determination process and how one can enforce that the content of a
requirement specification is syntactically correct. The steps in the requirements
determination process that cover the semantic verification are missing in the existing
requirements determination methods for management information systems or business
information systems (Goldin and Berry, 1997:376). It is this niche in the MIS research
field that we will explore in this thesis in order to find a requirements determination
method in which the semantic verification is incorporated in an explicit way.

 9

1.3.4 Eras in requirements determination

If we now apply the roles and the requirements process from figure 1.2 in a historic
perspective we can say that in the early years (1950’s) the roles of user, analyst and
developer coincided. In the 1960’s a distinction was made between the roles of ‘user’
and ‘programmer’. In that era the role of analyst and developer coincided. “ In the
premethodology era [prior to 1970], systems developers used a variety of techniques to
help them develop computer-based information systems….They [techniques] were
typically passed on to other systems developers, often by word of mouth. These rules
or techniques were typically not codified and sometimes not written down…..Systems
development was considered a technical process to be undertaken by technical people.
In this era, systems development was all art and no science.” (Hirschheim and Klein,
1992:296-297)

In the 1970’s a clear separation took place between the functional
requirements and the way in which these functional requirements were coded in a
specific implementation technology (Tsichritzis and Klug, 1978). The distinction
between an information analyst and systems developer emerged. The application of
information systems development methodologies was aimed at the creation of ‘tailor-
made’ information systems in which the needs of the domain users served as input.

In the ERP era (1990 and onwards) the roles of the user (or domain expert),
analyst and developer were becoming more iterative instead of the linear sequence in
which those roles were performed in the 1970’s and 1980’s. Because the
implementation of ERP-systems usually is linked to business process redesign
(Davenport, 1998; Rolland and Prakash, 2000:180) or a business process reengineering
exercise (Skok and Legge, 2002:72), the role of the user or domain expert becomes
more complex. In cooperation with the ERP-analyst the domain expert has to evaluate
a number of proposed ways of working that will be supported by the specific ERP
system in the company (Soffer et al., 2001:183).

The roles that we have depicted in figure 1.2 have deliberately different names
in figure 1.3, because an ERP analyst is not only modeling the user requirement of a
proposed (or ‘to-be’) business process but in addition has to confront the user or
domain expert with the different possible (or ‘to-be’) business logics that are available
in the chosen ERP system. The business, therefore, is expected to select and adapt a
reference model, based on available solutions with minimal changes and leaving no
record of the enterprise’s original requirements (Soffer et al., 2001:183). On the other
hand, even when they decide to implement an ERP system some organizations (for
example Reebok) still choose to customize (Light, 2001:417) and enhance the standard
functionality of the ERP system (Soffer et al., 2003). We remark, that the focus of the
requirements determination in this thesis is on the conceptualization of the information
and decision rules that must be contained in an (ERP) application.

 10

User or
domain
expert

ERP
specification in which
‘to-be’Functional
Requirements are
embedded

Available
functionality

‘to-be’functionality
 propositions

‘to-be’functionality
 discussion

‘as-is’ functionality
 discussion ERP-Analyst

Requirements
Determination
Process

ERP-configurer

Fig. 1.3 The roles in the requirements determination process in the ERP era

Soffer et al. (2003) discuss in the context of ERP requirement-driven alignment the
necessity of the construction of a modeling language that can model the entire scope of
ERP options.

1.3.5 Conclusions on requirements determination as field of study

What we can conclude is that in spite of the trends in information systems development
from ‘tailor-made’ towards ‘commercial-off-the-shelf’ (COTS) software
implementations, the requirement determination process still is a significant process in
the development life cycle of information systems. Moreover, the increase in
complexity of the requirements determination process due to the use of ‘pre-fabricated’
software with its numerous implementation options (see the discussion on
configuration tables in Davenport (1998)) has basically increased the need for
requirements determination methods that have a way of modeling that can capture the
complete set of user requirements and which way of working will guide the analyst in
extracting all relevant business entities and business rules for a specific application
domain.

In this thesis we will focus the content of a requirements specification on the
conceptual aspects, in terms of the information and decision rules that underly an
application (the what aspects). The application requirements that deal with transaction
processing, workflow management, information retrieval and decision support (the
how aspects3) will not be part of the definition of a requirements specification in this
thesis.

3 In a typical ERP implementation 90-95 % of the 10 million lines of program code will be
dedicated to functionality that covers transaction processing, decision support, consistency
checking and data retrieval.

 11

1.4 RESEARCH GOAL

We have found that the concept of requirements determination has been subject of an
ongoing debate in the scientific literature. Over the past 40 years numerous
requirements determination techniques, methodologies and approaches have emerged.
Most of them, however, have proven not to be sufficient to address many of the
problems we have found in the literature. Goldin and Berry (1997:376) give an
overview of requirements engineering methods and tools. They conclude that the
starting point for these tools and methods is a (natural language) statement of the
requirements. However, none of the tools and methods they mention gives much help
in how such a (natural language) requirement statement can be obtained. We have
shown the gaps that exist in the existing research for the process of requirements
determination and we have concluded that filling this gap in the literature is relevant to
the state-of-the-art in the development of business information systems. Therefore, the
goal of the research is to develop a method for requirements determination for which
the way of modeling allows the analyst to capture these business entities and business
rules in the application domain. This to-be developed RDM should have a way of
working that contains modeling provisions that guide an analyst in elicitating the initial
requirements from domain users. Finally, this method’s way of controlling must
contain quality preserving procedure(s) that guarantee(s) that a requirements
specification that is the result of the application of this method has been validated by
the user(s). This will lead to the following (main) research question in this thesis:

Does there exist a requirements determination method that is applicable in a wide
range of business organizations and that can be used for specifying all domain
requirements for a given business application subject area in an efficient, precise and
consistent way ?

1.5 RESEARCH APPROACH AND OUTLINE OF THE

 THESIS

1.5.1 Research approaches

A theory explains how ‘something’ works. If such a theory is available we can
predict how ‘something’ will behave under specific conditions (van der Zwaan and van
Engelen, 1994).

Research in organizational studies (including the topic of this thesis:
requirements determination) shows a continuous interaction between ‘theory-
development’ and ‘theory-application’ (Den Hertog and Van Sluijs, 2000; Van Engelen
and Van der Zwaan, 1994:93). A more detailed framework is given by Van Strien
(1986:19) in which a distinction is made between an ‘empirical’ cycle and a
‘regulative’ cycle. The empirical cycle is characterized by the following stages:
observation, induction, deduction, testing, evaluation. The regulative cycle can be used

 12

as an instrument for the methodological foundation for the ‘theory-application’ in
organizational studies (van Strien, 1986:19; Van Engelen and Van der Zwaan,
1994:93). In the context of this thesis we will follow the ‘design-research’-cycle as
given in Van Engelen and Van der Zwaan (1994: 87-91):

1) Design objective: In this stage of the design research cycle it will be
determined what needs to be designed. The feasibility of the product or
process that needs to be designed must be questioned in this phase.
Furthermore, a ‘falsification’ criterion must be given which will allow the
researchers to determine whether the product or process that needs to be
designed will lead to an actual improvement of the current situation or the
‘state-of-the-art’ (Van Engelen and Van der Zwaan, 1994:90).

2) Design specification: the design process must be guided by the
 availability of an explicit design specification for the product or process
 that is given in the design objective. The design specification must be
 tested on the following variables (Van Engelen and Van der Zwaan,
 1994:90): consistency, realizability, completeness.
3) Generation of alternative designs: here there exist two situations. In the
 first situation, there exist ‘established’ conditions under which most
 likely a number of products or process have been developed that can be
 used as alternative designs for our design objective, we will call this
 situation the evaluation problem (Van Engelen and Van der Zwaan,
 1994:91). In the second situation no alternative designs exist yet. We will
 call this situation a development problem, since the alternative designs
 have to be developed in the research.
4) Selection of desired design from the set of alternative designs: In this
 stage the best alternative will be chosen. A number of methodologies can
 be applied during this stage: optimization techniques, bounded
 rationality and verification method.
5) Evaluation: in this stage the researcher(s) report the findings. This
 evaluation must contain a justification of how the alternative designs
 have been gathered and/or created, which assumptions have been made
 and how the selection of the desired design has taken place (Van Engelen
 and Van der Zwaan, 1994:92).

1.5.2 Justification of the ‘design-research’ approach

In the literature overview on the topic of this thesis: requirements determination, a
relatively large number of fields have been found (see figure 1.1) that comprise (or are
linked to) requirements determination for the semantic aspects of an application. Each
of the fields approaches requirements determination from a specific angle. So the
theory-development surrounding the topic of requirements determination is plentiful.
What we have discovered is that the ‘gap’ in knowledge of requirements determination
at large is not in the ‘theory-development’ but in how these theories can be applied in a
way that will prevent the creation of ‘faulty’ application systems in practice. The
preliminary goal of this research is to develop a method for requirements determination
that can be applied under a range of domain contingencies (or that has a certain
‘domain-richness’). Such a ‘to-be’ designed requirements determination method,

 13

however, must comply with the demands for a requirements determination process that
are given in the scientific literature on requirements determination. The way of
modeling of such a method must at least consist of a requirements specification
language and the way of working of the method must at least contain a set of modeling
procedures that can tell an analyst how to create valid expressions in the modeling
language that reflect some (or preferably all) perspective(s) of the semantics of the
application domain at hand.

Definition 1.7. A requirements specification language is a set of modeling concepts
and an accompanying grammar for the application of the modeling concepts in a
requirements determination project.

Definition 1.8. A requirements determination procedure is a document that tells an
analyst how to create a requirements specification in a given requirements specification
language.

In addition to the derivation of the requirements determination method we will
introduce a notation for expressing a requirements specification. This notation,
however, is one out of many possible notational conventions that can be used in the
requirements specification document(s).

In addition, we remark that we will apply the perfect technology assumption in
the remainder of this thesis. This means that we will assume requirements level
semantics (Eshuis et al., 2002:245) which means that we will not be influenced in our
research by (current) limitations in implementation technology.

The goal of this thesis is to find or develop a requirements determination
method in which the way of modeling is specified by giving the language concepts of
the method’s requirements specification language, the way of working (or prescriptive
process model) is specified by giving the requirements determination (sub)procedure(s)
of this requirements determination method. The way of controlling will be specified by
giving explicit quality preserving steps in the modeling procedures. The way of
controlling, furthermore, will consist of an overarching procedure that will be
contained that exactly specifies the precedence for executing the requirements
determination procedures.

1.6 STRUCTURE OF THESIS AND RESEARCH QUESTION(S)

The structure of this thesis will follow the ‘design-research’-cycle as given in Van
Engelen and Van der Zwaan (1994: 87-91).

In this chapter we have delineated the design objective, the issue of
requirements determination. There exist gaps in the current state-of-the-art in
requirements determination. Therefore, the goal of the research is to develop a
requirements determination method that can be applied under a number of domain- and
process contingencies, that we will discuss in chapter 2 and that will improve the
current state of the practice in requirements determination in terms of ‘falsification
criteria’ or ‘quality criteria’.

 14

In chapter 2 we will analyze and synthesize characteristics of the application
domain into a number of dimensions, while keeping the following question in mind:

What are according to the existing requirements determination literature, the quality
criteria for a requirements determination method that can be used for eliciting,
verifying and specifying the complete domain requirements for a given business
application subject area in a wide range of business organizations, in an efficient and
formal way ? (Research sub question 1).

We will define the quality of a requirements determination method as the
extent in which it is has domain richness, is complete, is efficient, and is formal.
Firstly, we will synthesize a number of contingency variables that can be used to
characterize application UoD’s and that have an effect on the quality of the resulting
requirements specification. Moreover, we will look for variables in the literature that
characterize a requirements determination process itself and that can have an effect on
the quality of the requirements specification that is the outcome of such a process. This
will result in the definition of the domain richness criterion. Secondly, we will
determine what perspectives and what elements within each perspective must be
covered by a requirements determination method. This will lead to the definition of the
completeness criterion. Thirdly, we will define an efficiency criterion, in which the
extent in which the application of a given requirements determination method will use
‘resources’ can be measured. Finally, we will define a measure for the preciseness and
consistency of a requirements specification in terms of the required formality of the
requirements determination method: the formality criterion. We will define the
formality as the extent in which it is precise and consistent in expressing the semantics
of the UoD.

In chapter 3 we will focus the Generation of alternative designs from the
design-research cycle as we will evaluate existing requirements determination
approaches (the evaluation problem in Van Engelen and Van der Zwaan (1994:91)) on
the criteria that we have derived in chapter 2. We will evaluate a number of popular
requirements determination methods for management information systems that we have
encountered in the literature. We will give an answer to the following question in
chapter 3.

Why do the existing requirements determination approaches from the literature not
comply with the quality criteria for assessing requirements determination methods?
(Research sub question 2).

We will conclude in chapter 3 that there is no existing approach documented so far in
the literature that fully complies with the four design criteria for a successful
requirements determination method (RDM). This means that a requirements
determination method(s) that complies with the quality criteria for a successful
requirements determination method still needs to be developed. This leads us to the
development problem according to Van Engelen and Van der Zwaan (1994) since
alternative designs will have to be developed in this research.

In chapter 4 of this thesis we will develop a framework for a requirements
determination method or a(n) (operationalized) design specification that contains the
operationalization of the ‘design specification’ from chapter 2 and that takes into

 15

account the reasons for non-compliance to these criteria by the existing approaches.
This will constitute the design criteria (or operationalized design specification
according) for the requirements determination method. Furthermore, we will phrase the
third research sub-question based upon the results from chapters 2 and 3 here:

What are the necessary elements for the way of modeling, the way of working and the
way of controlling for a requirements determination method so that this method
complies with the quality criteria that we have given for the design specification?
(Research sub question 3)

In chapters 5 and 6 we will define a requirements determination method that fulfills the
quality criteria according to the design specification that was given in chapter 4.

We will now rephrase the main research question of this thesis:

Does there exist a requirements determination method that is applicable in a wide
range of business organizations and that can be used for specifying the complete
domain requirements for a given business application subject area in an efficient and
formal way ?

The main research question, therefore, will lead to an investigation into the general
applicability of requirements determination methods in the context of management
information systems. First we will give an answer to research sub question 1, in which
we will give ‘quality’-criteria. Furthermore, these criteria should provide an answer to
what ‘all domain requirements’ means and what ‘in an efficient, precise and consistent
way’ means in the context of the final research question. Furthermore, we will define
what ‘application in a wide range of business organizations’ means. Once we have
found these criteria, we will be able to search for an existing RDM that complies with
these criteria (research sub question 2). If such a method does not exist, we will have to
specify the elements of a newly to-be defined RDM that complies with these criteria
(research sub question 3).

In figure 1.4 we have summarized the research stages in terms of the ‘design-
research’ cycle and in which chapters of this thesis they will be discussed. The design
objective is demarcated in this chapter. In chapter 2 the initial design specification will
be synthesized from a review of the literature. In chapter 3 we will evaluate the existing
approaches from the literature; this will be the stage evaluation of the existing
alternative designs in the terminology of the design research cycle. In chapter 4 we will
phrase the operationalized design specification for the development of an alternative
design (of a requirements determination method) in terms of the way of modeling, the
way of working and the way of controlling. The kernel of this thesis will consist of the
development of the alternative design for a requirements determination method. This is
given in chapters 5 and 6. In chapter 7 we will give conclusions and give a direction for
future research in this field.

 16

Problem statement and
methodological foundation:
Design Objective

introduction
subject of study
research methodology
research (sub)question(s)
summary
 CHAPTER 1

Concluding part

selection of desired design
conclusions,
evaluation and
research agenda

 CHAPTER 7

Operationalized
design
specification

CHAPTER 4
 Developing alternative design (requirements determination method)

Design
specification

Synthesized from a review
of the scientific literature
on requirements
determination

 CHAPTER 2

Evaluation of
existing alternative designs

Synthesized from a review
of existing requirements
determination approaches in
 the scientific literature

 CHAPTER 3

CHAPTER 5

The way of modeling

 in NLM

The way of working
 and
the way of controlling

 in NLM

CHAPTER 6

Design
Research
 cycle

Fig. 1.4 The design research cycle and the chapters in this thesis

1.7 REFERENCES

Ackoff, R. (1967): Management Misinformation Systems. Management Science 14(4)

Agarwal, R., Sinha, A., Tanniru, M. (1996): Cognitive Fit in Requirements Modeling:
A Study of Object and Process Methodologies. Journal of Management Information
Systems 13(2): 137-162

Alvarez, R. (2002): Confessions of an information worker: a critical analysis of
information requirements discourse. Information and Organization 12:85-107

Barrett, A., Edwards, J. (1995): Knowledge Elicitation and Knowledge Representation
in a Large Domain With Multiple Experts. Exp. Syst. with Applications 8(1): 169-176.

Boehm, B. (1981): Software engineering economics, Prentice-Hall.

Boehm, B. (1989): Software risk management, IEEE computer society press

Boudreau, M. (1999): ERP implementation and Forms of Organizational Change.
Working paper Georgia State University.

 17

Breuker, J., Wielinga, B. (1987): Knowledge acquisition as modeling expertise; The
KADS methodology. Paper presented at the 1st European workshop on Knowledge
acquisition for knowledge based systems. Reading University.

Brodie, M.L., Mylopoulos, J., Schmidt, J. (eds.) (1984): On conceptual modeling,
Springer Verlag, New York.

Browne, G., Ramesh, V. (2002): Improving information requirements determination: a
cognitive perspective. Information & Management 39:625-645

Browne, G., Rogich, M. (2001): An Empirical Investigation of User Requirements
Elicitation: Comparing the Effectiveness of Prompting Techniques. Journal of
Management Information Systems 17(4): 223-249

Byrd, T., Cossick, K., Zmud, R. (1992): A Synthesis of Research on Requirements
Analysis and Knowledge Acquisition Techniques. MIS Quarterly 16(1): 117-138

Chen, P. (1976): The Entity-Relationship model: Towards a unified view of data. ACM
TODS 1 (1) :9-36

Dag, J., Brinkkemper, S., Gervasi, V., Regnell, B. (2004): Speeding up Requirements
Management in a Product Software Company: Linking Customer Wishes to Product
Requirements through Linguistic Engineering. Proceedings of Requirements
Engineering Conference (RE’04). N.A.M. Maiden (ed.). IEEE Comp. science pr. 2004.

Davenport, T. (1998): Putting the enterprise into the enterprise system. Harvard
Business Review 76(4): 121-131

Davenport, T., Short, J. (1990): The new industrial engineering: Information
Technology and Business Process Redesign. Sloan management Review. Summer :
11- 27.

Davis, G., Olson, M. (1985): Management Information Systems, conceptual
foundations, structure and development, 2nd edition, McGraw-Hill.

Den Hertog, F., Van Sluijs, E. (2000): Onderzoek in organisaties: een methodologische
reisgids. Tweede druk. Van Gorcum. Assen (in dutch)

Dietz, J. (1987): Modelleren en specificeren van informatiesystemen. Doctoral thesis
Eindhoven Technical University (in Dutch)

Dullea, J., Song, I-Y., Lamprou, I. (2003): An analysis of structural validity in entity-
relationship modeling. Data & Knowledge Engineering 47: 167-205

Eshuis, R., Jansen, D., Wieringa, R. (2002): Requirements-Level Semantics and Model
Checking of Object-Oriented Statecharts. Requirements Eng 7: 243-263

 18

Flynn, D. (1992): Information Systems Requirements: Determination and Analysis.
McGraw-Hill.

Goldin, L., Berry, D. (1997): Abstfinder, a prototype natural language Text Abstraction
Finder for Use in Requirements Elicitation. Aut. Software Engineering 4: 375-412

Green, P., Rosemann, M. (2000): Integrated process modelling: an ontological
evaluation. Information Systems 25: 73-87

Halpin, T. (2001): Information Modeling and Relational Databases. Morgan Kaufmann
Publishers .

Hammer, M. (1990): Reengineering work: Don't automate, obliterate. Harvard
Business Review. july-august: 104-112.

Hevner, A., Mills, H. (1995): Box-structured requirements determination methods.
Decision Support Systems 13:223-239

Hirschheim, R., Klein, H. (1992): Paradigmatic Influence on IS development
methodology: evolution and conceptual advances. In: Advances in Computers, Yovits,
M. (ed.). JAI press London.

Jan, T-S., Tsai, F-L. (2002): A Systems View of the Evolution in Information Systems
Development. Systems Research and Behavioural Science 19: 61-75

Johannesson, P. (1995): Representation and communication-a speech act based
approach to information systems design. Information Systems 20(4): 291-303

Lalioti, V., Loucopoulos, P. (1994):Visualisation of conceptual specifications.
Information Systems 19(3): 291-309

Lang, M., Duggan, J. (2001): A Tool to Support Collaborative Software Requirements
Management. Requirements Engineering 6:161-172

Light, B. (2001): The maintenance implications of the customization of ERP software.
Journal of software maintenance and evolution: research and practice 13: 415-429

Liu, K., Sun, L., Barijs, J., Dietz, J.(2003): Modelling dynamic behaviour of business
organisations-extension of DEMO from a semiotic perspective. Knowledge-Based
Systems 16: 101-111

Loucopoulos, P. (1992): Introduction of section one. In: Conceptual Modeling,
Databases, and Case (Loucopoulos, P., Zicari, R. (eds.)). Wiley. 1-19

Lundeberg, M. , Goldkuhl, G., Nilsson, G. (1979): A systematic approach to
information systems development, Information Systems 4: 1-12 and 93-118.

 19

Medina-Mora, R., Winograd, T., Flores, R., Flores, F. (1992): The Action Workflow
Approach to Workflow Management Technology. The Information Society 9: 391-404

Molenaar, T. (2001): Siebel zet in op personeelsbeheer. Computable 43: 26 oktober:
p.11 (in dutch)

Nurcan, S., Rolland, C. (2003): A multi-method for defining the organizational change.
Information and Software Technology 45: 61-82

Olle, T., Sol, H., Verrijn-Stuart, A. (1982) : Information Systems Design
Methodologies: a comparative review. North-Holland

Olle, T., Sol, H., Tully, C. (1983) : Information Systems Design Methodologies: a
feature analysis. North-Holland

Olle, T., Sol, H., Verrijn-Stuart, A. (1986) : Information Systems Design
Methodologies: improving the practice. North-Holland

Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol, H., Van Asche, F., Verrijn-
Stuart, A.A. (1988a): Information Systems Methodologies- A Framework for
Understanding, North-Holland .

Olle, T., Verrijn-Stuart, A., Bhabuta, L. (1988b): Computerized assistance during the
information systems life cycle, North-Holland .

Osmundson, J., Michael, J., Machniak, M., Grossman, M. (2003): Quality Management
metrics for software development. Information & Management 40 (8): 799-812

Pohl, K. (1994): The three dimensions of requirements engineering: a framework and
its applications. Information Systems 19(3).

Rolland, C. (1999): Requirements engineering for COTS based systems. Information
and Software Technology 41: 985-990

Rolland, C., Prakash, N. (2000): Bridging the Gap Between Organisational needs and
ERP Functionality. Requirements Engineering 5: 180-193

Rosemann, M., Green, P. (2002): Developing a meta model for the Bunge-Wand-
Weber ontological constructs. Information systems 27: 75-91.

Sinha, A., Popken, D. (1996): Completeness and Consistency Checking of System
Requirements; An Expert Agent Approach. Expert Systems With Applications 11(3):
263-276

Siriginidi, S. (2000): Enterprise resource planning in reengineering business. Business
Process Management 6(5): 376-391

 20

Skok, W., Legge, M. (2002): Evaluating Enterprise Resource Planning (ERP) Systems
using an Interpretive Approach. Knowledge and Process Management 9 (2): 72-82

Soffer, P., Golany, B., Dori, D., Wand, Y. (2001): Modelling Off-the-Shelf Information
Systems Requirements: An Ontological Approach. Requirements Engineering 6: 183-
199

Soffer, P., Golany, B., Dori, D. (2003): ERP modeling: a comprehensive approach.
Information Systems 28 (6): 673-690

Stock exchange kills projects to focus on Taurus. (1989): Editorial. Computing
November; 2

System problems leave Inland revenue with £ 20 of taxpayers’ cash (2002). Computer
Weekly. February 14.

Teory, T., Yang, D., Fry, J. (1986): A logical design methodology for relational
databases using the extended E-R model. ACM Computing Surveys 18(2): 197-222

Tsichritzis, D., Klug, A. (1978): The ANSI/X3/SPARC DBMS framework ,
Information Systems 3: 173-191

Umble, E., Haft, R., Umble, M. (2003): Enterprise resource planning; Implementation
procedures and critical success factors. European Journal of Operational Research 146:
241-257

Van der Zwaan, A., Van Engelen, J. (1994): Bedrijfskundige methodologie 1:
wetenschaps- theoretische context. Bedrijfskunde 66 (1): 27-35 (in dutch)

Van Engelen, J., Van der Zwaan, A. (1994): Bedrijfskundige methodologie 2: een
technisch-methodologische context. Bedrijfskunde 66 (2): 85-94 (in dutch)

Van Strien, P. (1986); Praktijk als Wetenschap. Van Gorcum. Assen/Maastricht (in
dutch)

Verhoef, T. (1993): Effective information modelling support. Doctoral Thesis.
Technical University Delft.

Verheijen, G., van Bekkum J. (1982): NIAM: An Information Analysis Method. In:
Verrijn- Stuart,A., Olle T., Sol H., (eds.): proceedings CRIS- 1, North-Holland
Amsterdam. 537-590

Viller, S., Bowers, J. and Rodden, T. (1999): Human factors in requirements
engineering: A survey of human sciences literature relevant to the improvement of
dependable systems development processes. Interacting with Computers 11 (6): 665-
698.

 21

Wand, Y., Weber, R. (1993): On the ontological expressiveness of information systems
analysis and design grammars. Journal of information systems 3: 217-237

Weber, R., Zhang, Y. (1996): An analytical evaluation of NIAM’s grammar for
conceptual schema diagrams. Information systems journal 6: 147-170

Wetherbe, J. (1991): Executive Information Requirements : getting it right. MIS
Quarterly 15(1): 51-65

Wieringa, R. (1996): Requirements Engineering: frameworks for understanding, John
Wiley & Sons, New York.

Wijers, G. (1991): Modelling support in information systems development. Doctoral
thesis. Technical University Delft.

Wirth, N. (1976): Programs= algorithms + data structures, Prentice-Hall.

Yourdon, E., Constantine, L. (1979): Structured Design. Prentice Hall.

 22

 23

CHAPTER 2

CRITERIA FOR REQUIREMENTS
DETERMINATION METHODS

In this chapter we will define the design criteria for a requirements determination
method (RDM). When studying the literature on criteria for requirements specification
(methods) we have found a number of criteria that have been derived for software
requirement specifications (IEEE Std 830, 1998), software specification techniques
(Khwaja and Urban, 2002), software requirements and design specifications (Boehm,
1984), the quality of data models (Moody and Shank, 2003; Kesh, 1995), system
develoment methodologies (Wysocki and Young, 1990; Essink and Romkema, 1989)
and requirements determination methods (Hevner and Mills, 1995). The former
references differ to a large extent in the level of detail and granularity of the criteria
that are given. A number of authors make a distinction into criteria for the product (i.e.
the requirements specification) and the criteria for the process (i.e. the requirements
determination technique or procedure) (Moody and Shanks, 1995; Khwaja and Urban,
2002). In section 2.1 we will list a number of criteria for software requirements
specifications, information system development methodologies and requirements
determination methods as found in the literature.

2.1 CRITERIA FOR RDMs FOUND IN THE LITERATURE

In this chapter we will ask ourselves the following question:

What are according to the existing requirements determination literature, the quality
criteria for a requirements determination method that can be used for eliciting,
verifying and specifying the complete domain requirements for a given business
application subject area in a wide range of business organizations, in an efficient and
formal way ?

In table 2.1 we have given the criteria for software requirements specification,
information system development methodologies and requirements determination
methods as found in our literature survey.

 24

Table 2.1. Criteria for Requirements Specifiation (Methods)

Author Boehm
(1984)

IEEE-830
(1998)

Wysocki
and Young
(1990)

Essink and
Romkema
(1989)

Hevner and
Mills (1995)

 Software
specifications

requirements Information
Develpm.t

systems
methodol.

Req.Determ.
methods

criteria completeness correct efficiency User
participation

consistency

 consistency unambiguous Communi-
cations4

maintainable5 closure

 feasibility6 complete control Specification
must be an
expression of
the real
domain
requirements

completeness

 testability7 consistent Documen-
tation

IS must be
built
according to
the above
specifications

clarity

 ranked8 Role
definition

Efficient
development
process

 verifiable consistency
 modifiable9
 traceable

In sections 2.3, 2.4 and 2.5 we will synthesize the variables that are given in table 2.1
into a comprehensive set of criteria that we will use to evaluate potential designs for
requirements determination methods. In addition to the variables that are explicitly
listed in the literature on criteria for software requirement specifications, information
systems development methodologies and requirements specification (methods), we will
research the literature that covers requirements at large. This type of literature looks
mainly at the characteristics of the application domain. In section 2.2 we will give a
review of this literature and we will synthesize a number of dimensions into the domain
richness criterion.

4 Refers to milestones in the IS development process at large.
5 Will be covered under domain richness (section 2.2)
6 Is concerned with the economics of an IS development and implementation project, is outside
the scope of a to-be designed RDM in this thesis.
7 Refers to the properties of a software implementation rather than a requirements specification
8 Refers to the selection process of requirements, e.g. what requirement has a higher priority. .
9 Will be covered under domain richness (section 2.2)

 25

2.2 THE DOMAIN RICHNESS CRITERION

The first criterion in our research on requirements determination methods is ‘domain
richness’. This criterion should enable us to express to what extent any given
requirements determination method can be applied in different types of application
domains. The domain richness criterion, therefore, must be able to measure the extent
in which a requirements determination method is applicable, under a range of
contingencies for the type of application domain (section 2.2.3). In order to
operationalize this criterion we will first give a literature survey of causes of systems
failure caused by a faulty requirements determination method in section 2.2.1. and an
overview of proposed techniques to overcome this insufficient requirements
determination in section 2.2.2.

2.2.1 Reasons in the literature for systems failure caused by insufficient
 requirements determination

Davis and Olson (1985:474) give four major reasons why it is difficult to obtain a
correct and complete set of requirements:

1) The constraints on humans as information processors and problem solvers
2) The variety and complexity of information requirements
3) The complex patterns of interaction among users and analysts in defining

requirements
4) Unwillingness of some users to provide requirements (for political or

behavioral reasons)

In line with the fourth reason mentioned by David and Olson, Skok and Legge
(2002:80) state that one of the key findings in the 5 case studies they examined was
that in the implementation of an ERP system, the staff members were often reluctant to
share knowledge and information, because they experienced this as a threat to their
jobs. They further conclude in their study that the language barrier that exists between
users and the (ERP) consultants can be a source of major problems. The employees that
were interviewed in this study felt : “ that consultants and developers do not see the
impact on business processes of their actions, do not pass on their knowledge, try to run
the project, communicate badly and work to their own agenda” (Skok and Legge,
2002:81).

Wetherbe (1991), concludes in the context of ‘executive’ information
requirements that a number of mistakes have been made in the past: viewing systems as
functional instead of cross-functional, interviewing managers individually instead of
jointly, asking the wrong questions during the interview and not allowing trial-and –
error in the design process

Macaulay (1996) identified five possible causes of failure in the requirements
determination process: poor communication between people, lack of appropriate
knowledge (or shared understanding), inappropriate, incomplete or inaccurate
documentation, lack of systematic process and poor management of people or
resources.

 26

According to Land (1998:3) : “Many of the all too frequent IS failures stem
from failures in the mappings somewhere along the chain. The most vulnerable link in
the chain is that which attempts to map the relationship between the real world
requirements-the organizational environment- and the comprehensive list of
requirements which is the intended outcome of the process of systems analysis.”
Land distinguishes four categories of relationships between an information system (as
the result of a systems development process) and its organizational environment:

1) The unchanging environment, in which the information requirements of
the system are not changing during its lifetime.

2) The turbulent environment, in which the requirements over the expected
lifetime of the system are always changing.

3) The uncertain environment, in which the requirements of the system are
unknown or uncertain.

4) The adaptive environment, in which the output of the system has an
influence on the environment.

Land claims that for each contingency a different design methodology should be
chosen.
 Galal and Paul (1999:93) challenge the ‘fixed-point stance’ towards
requirements determination for a number of reasons. First requirements do change
during the development of an information system. Secondly, they state that the
statements in a requirements document are inherently predictive. In case of the ‘wrong’
predictions, the requirements need to be adapted. Thirdly, the requirements are context
specific.
 With respect to the changeability of requirements, Sutton (2000:116)
concludes that: “It is becoming recognized that it is more appropriate to see
requirements definition as a periodic or even continuous process that feeds other
processes of delivery and review that may never end.”
 Galliers and Swan (2000) introduce a two-dimensional framework for
information systems development. The first dimension is the objective (formal) versus
the subjective (informal) dimension. The second dimension is the unitary versus the
pluralist (multiple stakeholders) dimension

Bergman et al. (2002) address the political nature of the requirements
determination process and propose to reconcile the wide array of conflicting problems
into a workable solution by means of heterogeneous engineering. Bergman et al. claim
that requirements engineers must involve themselves in the politics of system design at
the beginning of project design. Bergman et al. give a political requirement engineering
(PRE) process model that explicitly considers the political requirements ecology in the
enterprise.

Castro et al. (2002:365-366) notice a mismatch between the understanding of
the operational (business) environment and the way in which the requirements analysis
is aligned with this operational environment. They argue that this alignment has been
predominantly based upon the programming paradigm of the day. In the 70’s the
structured programming paradigm lead to the development of the structured analysis
methodologies (DeMarco, 1978; Yourdon and Constantine, 1979). The object-oriented
programming paradigm has led to the development of object-oriented development
methodologies (Booch, 1991; Booch et al., 1999). Castro et al. (2002) introduce a
modeling framework based on concepts used during early requirements analysis.

 27

2.2.2 Proposed techniques in the literature to overcome insufficient
 requirements determination

Davis and Olson (1985:480) propose four strategies for determining information
requirements: asking, deriving from an existing information system, synthesizing from
characteristics of the utilizing system and, discovering from experimenting with an
evolving information system.

Flynn (1992:137-139) gives four requirements acquisition methods:
observation, analysis of existing system, analysis of desired system documentation and
interview and questionnaire. Larsen and Naumann (1992) carried out an experiment in
which they compared the analyst’s ability to discover user requirements as a function
of the knowledge representation they used: abstract or concrete. The findings of this
study indicate that the more abstract representation (in this study a ‘logical’ DFD) is
not as effective as the more concrete representation (in this study a ‘physical’ DFD).

Lee and Kim (1992) studied the relationship between formalization of the
stages in the information systems development life cycle and the overall success of the
(management) information system. They empirically demonstrated the relationship
between the formalization of MIS development and MIS success.

Browne and Ramesh (2002) used the reasons that were given by Davis and
Olson (1985:474) and gave some techniques that address these shortcomings. They
derived three general categories for the techniques that addressed the cognitive
problems: pre-elicitation conditioning10, direct prompting techniques11 and indirect
prompting techniques. Browne and Ramesh discuss the following indirect prompting
techniques: Scenario response tasks12, Devil’s advocacy13 and External representation
techniques. They conclude that the devil’s advocacy technique is useful for mitigating
automaticity, recall and faulty reasoning problems. Furthermore they conclude that the
construction of semi-formal diagrams, for example, Entity-relationship (ER)-diagrams
and data-flow diagrams (DFD) while eliciting requirements is very difficult. Browne
and Ramesh conclude that informal (external) representation techniques should
facilitate the interaction between analysts and users and help overcome background
differences among them.

Browne and Rogich (2001:228) divide prompting techniques into context-
dependent techniques and context-independent techniques. They propose that context-
independent techniques are the most suited to be used by analyst in the elicitation of
user knowledge in general, because analysts will often be assigned to analyze the
requirements of business processes for which their substantive knowledge is limited
(Browne and Rogich, 2001:231).

10 “Permits explanation of key terms, and allows analyst to create and/or influence incentive
scheme for decision maker ” (Browne and Ramesh, 2002:633)
11 Browne and Ramesh (2002:633-635) give the following direct-prompting techniques: directed
questions and What-if analysis.
12 “Causes reflection, resulting in knowledge being used rather than simply assumed.”(Browne
and Ramesh, 2002:633)
13 “Causes users to question assumptions and generate counter-arguments, revealing knowledge
that otherwise would not be evoked and improving the accuracy of reasoning and judgments.”
(Browne and Ramesh, 2002:633)

 28

Bubenko and Wangler (1992) distinguish a knowledge acquisition task within
the requirements engineering cycle. This task is traditionally the interviewing of end
users. They, however, propose a number of different techniques for the knowledge
acquisition task: Analyzing example forms and structured documents produced by end
users, reverse modeling of existing databases, accepting application descriptions in
natural language. Bubenko and Wangler (1992) speculate that a natural language
interface to conceptual modeling tools would provide the following benefits: “ All
people can express assertions in natural language; the need to learn a formal modeling
language is not required…………, e.g., for showing the user the conceptualization
effect of stating assertions of the application world in different ways. It is probable the
lexical quality (the names used to denote components of a schema) would improve due
to the need for the NL-system to lexically, syntactically and semantically analyze the
input.” (Bubenko and Wangler, 1992:404).

Wetherbe (1991) gives as a proposed solution to the shortcoming in
(executive) information requirements determination in the past, that the systems
designers must be encouraged :” to use a cross-functional, joint application design that
involves input from all key decision makers in the business process. ………Detail
requirements can then be identified through prototyping .” (Wetherbe, 1991:64-65).
 Lalioti and Loucopoulos (1994:291) state: “…the first step in requirements
engineering namely the knowledge acquisition step has the purpose of abstracting and
conceptualizing relevant parts of the application domain. The knowledge elicited
during the first step is then formally specified by the use of conceptual modeling
formalisms. The third step in requirements engineering is the validation, which is the
process of investigating a model (in this case an IS specification) with respect to its
user perceptions. The purpose of validation in the development of information systems
is to ensure that a specification really reflects the user needs and statements about the
application. Its importance is widely recognized by most developers but still there is a
lack of formal theory for efficiently carrying out validation.”

Flynn and Warhurst (1994) empirically investigated the validation process
within requirements determination and concluded that during validation, analysts
perceive users as being unable to express their requirements adequately, and analysts
have to employ informal realistic examples to explain the specifications to the users
because the users do not feel comfortable with method notations.

Ter Hofstede et al. (1997) claim that for deriving the information from an
application domain, verbalising sample forms, cases etcetera taken from the Universe
of Discourse in close cooperation with a domain expert (or user) will lead to a
sufficient overview of the structure and rules in the UoD can be obtained.

Burg en van de Riet (1997) advocate the idea of using natural language
theories and knowledge in the construction process of a conceptual model.

Ambrosio, Metais and Meunier (1997) state that “ To improve the
conceptualisation of the UoD during the schema design process, the use of linguistics is
necessary ”(Ambrosio et al., 1997:112).

Kim and March (1995) give a four-phase process model for requirements
determination:“ 1.Perception-users perceive the enterprise reality. The same enterprise
reality may be perceived differently by different users (inconsistency). Any one user
may perceive only a part of the reality (incompleteness).2. Discovery-analysts interact
with users to elicit their perceptions. 3. Modeling-based on the information identified in
the discovery phase, analysts build a formal, conceptual model (representation) of the

 29

enterprise reality. This model serves as a communication vehicle between analysts and
users. 4. Validation- Before concluding that the model is correct, consistent and
complete, it must be validated. Validation has two aspects: comprehension and
discrepancy checking. Users must comprehend or understand the meaning of the
model. Then they must identify discrepancies between the model and their knowledge
of reality.” (Kim and March, 1995:103).
 Sutton (2000:116) discusses the aforementioned notion of ‘perception’ in the
sense that ‘meaning’ implies ‘meaning to someone’ and that any meaning is
constructed by an observer and therefore it can not exist objectively.
 Recently, the research field of knowledge management has emerged in which
not only well-structured information creation process are the subject of analysis but
also the concept of ‘tacit-knowledge’ (Coughlan and Macredie, 2002:50). Polanyi
classifies knowledge into tacit knowledge and explicit knowledge: “Tacit knowledge is
personal, context-specific, and therefore hard to formalize and communicate. ‘Explicit’
or ‘codified’ knowledge, on the other hand, refers to knowledge that is transmittable in
formal, systematic language” (Polanyi, 1966). Kim et al. (2003) studied the existing
distinction into ‘tacit’ and ‘explicit’ knowledge in the literature and concluded that a
revised epistemology was necessary in order to make a distinction into the concept of
‘tacit’ knowledge as defined by Polanyi (1966) (in which tacit knowledge cannot be
expressed externally) and the concept of ‘tacit’ knowledge as defined by Nonaka
(1994) (in which tacit knowledge is defined as knowledge that is (currently) not
expressed externally). They revised the existing epistemology by replacing the old
concept of ‘tacit’ knowledge by the revised concepts of tacit knowledge and the new
concept of implicit knowledge: “tacit knowledge is knowledge that cannot be expressed
externally and implicit knowledge is knowledge that can be expressed externally when
needed, but currently exists internally” (Nonaka, 1994:3). The existence of knowledge
processes that have a ‘tacit’ nature in the application domain is a characteristic of an
application domain and has traditionally not been considered as an application area that
can be subject for a requirements determination process.

2.2.3 Characteristics of application domains

The results of the literature review suggest a number of dimensions that determine the
characteristics of the application domain and the scope of the requirements
determination process. The first factor that we must take into account is how we define
the scope of the requirements determination process. The information systems
development paradigm that we will adhere to is the ‘functionalism’ paradigm
(Hirschheim and Klein, 1989:1202-1203) in which systems development and therefore
requirements determination is considered to “proceed from without, by application of
formal concepts through planned intervention with rationalistic tools and methods.”
(Hirschheim and Klein, 1989:1210). Within this metaphysical stance of functionalism
we can characterize the domain requirements basically along at least two dimensions:
perception and turbulence.

The dimension perception refers to the extent in which different domain users
have a different perception of an underlying reality. This means when one considers a
Universe of Discourse, one should always take into account from which user
perspective the Universe of Discourse is considered. We can make the following
dichotomy with respect to the perception dimension. The dimension perception can

 30

also be related to the discussion in Bergman et al. (2002) who address the political
nature of the requirements determination process and propose to reconcile the wide
array of conflicting problems into a workable solution by means of heterogeneous
engineering. This dimension also addresses the unitary versus pluralist dimension in
Galliers and Swan (2000).

With respect to the dimension turbulence we can consider a situation in which
the environment of the application domain is constant (nothing ever changes) and on
the other side of the continuum an environment where there is continuous change. If we
consider the turbulence of the application environment it is clear that in the case of ‘no
change’ (the unchanging environment (Land, 1998)) we will pose less demands on the
requirements determination methodology in terms of its ability to ‘evolve’
synchronously to the changes in the application domain, than in the case of an
application subject area that is subject to a high frequency of changes in application,
rules, information and procedures.

Another dimension regarding the type domain under consideration is
concerned with the extent in which the domain knowledge is ‘tacit’ versus ‘explicit’.
We will call this dimension the ‘tacitness’ dimension of the application subject area.
The tacitness can range form fully ‘tacit’ area in which no single knowledge-creating
process can be made explicit to a fully ‘explicit’ area in which every knowledge
generating process can (potentially) be made explicit.

The fourth domain richness dimension is the way in which the requirements
determination process is anchored. This dimension can range from a fully abstract
anchor in which ‘open questions’ are posed to a tangible anchor in which tangible
example forms and structured documents are used. Examples of requirements
techniques that can be considered to be positioned somewhere on the ‘tangible’ side of
this dichotomy are the analysis of forms and structured documents by end users
(Bubenko and Wangler, 1992), others talk about ‘realistic’ examples (Flynn and
Warhurst, 1994) or ‘verbalizing forms’ (Ter Hofstede et al., 1997). If we look at the
abstract side of this dimension we encounter techniques like direct-prompting
techniques, directed questions and what-if analysis (Browne and Ramesh, 2002).

We can now summarize the four ‘domain richness’ dimensions that
characterize application domains in table 2.4.

Table 2.2 Dimensions that characterize the application domain

Dimension Low extreme High extreme
Perception uniform for all users - Different for all users
Turbulence no change - continuous change
Tacitness fully tacit - fully explicit
Anchoring tangible - abstract

2.2.4 Definition of the domain richness criterion

We will now give a definition of the domain richness criterion for requirements
determination methods. This criterion will reflect the extent in which the four
dimensions can be accommodated by a single requirements determination method at
the same time.

 31

Definition 2.2. The domain richness of a requirements determination method is the
extent in which this method can be applied under the full range of values for the given
dimensions14.

In table 2.3 we have given the detailed definition of the domain richness criterion for
each of the four dimensions given. We thereby consider the dimension turbulence
relevant for the way of modeling, and the dimensions perception, tacitness and
anchoring relevant for the way of working.

Table 2.3 The definition of the domain richness criterion

 Way of Modeling Way of Working
Definition of
domain richness
criterion

The extent in which the
RDM can be applied for
the full range of values
for the dimension
turbulence

The extent in which the RDM can be
applied for the full range of values for
the dimensions perception, tacit-ness
and anchoring

2.3 THE COMPLETENESS CRITERION

If we look at the five sets of criteria that are listed in table 2.1 we can conclude that in 4
sets of criteria the completeness of a specification is contained (Essink and Romkema
call this: ‘Specification must be an expression of the real domain requirements’)
 In order to arrive at a requirements specification that contains all relevant
domain semantics for the specification of an application information system we first
need to establish an idea of what we mean by completeness in the context of the way of
modeling.
 In this section we will operationalize the completeness criterion for a
requirements determination method, e.g. what must be incorporated in a (semantic)
requirements specification for application domains. Olle et al. (1988:41-43) distinguish
three perspectives: the data-oriented perspective, the process-oriented perspective and
the behaviour-oriented perspective. The data-oriented perspective should concentrate
on the business data and must capture the domain concepts, the definition and the
naming conventions for those domain concepts, the semantic relationships between the
domain concepts and other ‘static’ and ‘structural’ knowledge in the enterprise. The
process-oriented perspective should be able to capture the business activity and user
perceivable tasks and describe what procedures exist for the creation of application
facts or instances of semantic relationships. Finally, the behaviour-oriented perspective
(Olle et al., 1988:43) should describe how ‘events’ can be cross-referenced to
‘elements’ in the process- and data-oriented perspectives (Olle et al., 1988:43). This
means that any requirements specification should potentially consist of models that
cover these three (conceptual) perspectives. Loucopoulos and Layzell (1989:264)

14 As defined in table 2.3

 32

consider two perspectives a state perspective and an action perspective and distinguish
as core of their concepts a data model and the types of rules as listed in table 2.4.

Table 2.4 Types of rules according to Loucopoulos and Layzell (1989:264)

 State Action
Constraint Static constraints Dynamic constraints
Derivation Static derivation Dynamic rules

Chakravarthy and Mishra (1994) and Campin et al. (1995a, 1995b) discuss the Event-
Condition-Action (ECA) rules, that conceptually coincide with dynamic rules in the
framework of Loucopoulos and Layzell. Static constraints are sometimes called
population constraints, static derivation is also known as derivation rules and dynamic
constraints are sometimes called state transition constraints (Halpin, 2001:298). From
the requirements specification point of view we can now link the Olle et al. (1988)
three perspectives framework and the constraint typology by Loucopoulos and Layzell
in table 2.4.

Table 2.5 Types of rules versus perspectives (Olle et al.,1988; Loucopoulos and Layzell, 1989)

 state state action
Data-oriented Data model Static constraints Dynamic constraints
Process-oriented Static derivation
Behaviour-
oriented

 Dynamic rules

We can now conclude that a requirements method can be complete on two dimensions:
the number of perspectives that are ‘covered’ by a method and secondly, the types of
rules within every perspective that can be encoded using the requirements method. We
will now give a definition of completeness in the context of a requirements
determination method.

Definition 2.1. The completeness of a requirements determination method is the extent
in which the types of rules in the data-, process- and behaviour oriented perspectives15
of an application can be captured in a requirements specification that is created using
this method.

If we closely look at definition 2.1 we can operationalize this definition for the way of
modeling where the what question is central, e.g. what modeling constructs need to be
contained in a RDM. With respect to the way of working, the how question is relevant,
e.g. how we find instances of these modeling constructs in a specific requirements
determination project. The availability of (modeling) procedures is of great importance
here.
 In table 2.6 we have given the definition of the completeness criterion for the
way of modeling and the way of working.

15 As given in table 2.5

 33

Table 2.6 The definition of the completeness criterion

 Way of modeling Way of working
Definition of
completeness criterion

The availability of modeling
constructs for the data model,
the static constraints, the
static derivation, the dynamic
constraints and dynamic rules

The availability of procedures
for instantiating the data
model, the static constraints,
the static derivation, the
dynamic constraints and
dynamic rules

2.4 THE EFFICIENCY CRITERION

If we look at the five sets of criteria that are listed in table 2.1 we can conclude that in 2
sets of criteria the efficiency of a RDM is contained. Efficiency in these sets of criteria,
however, refers to the process dimension of requirements determination. The
remaining three sets of criteria were derived for evaluating specifications from a
product point of view. This means that the efficiency criterion is mainly concerned with
the requirements (determination) process: ‘..a certain degree of guidance and direction
can definitely improve efficiency.’(Wysocki and Young, 1990:298).

The efficiency criterion that we will use for evaluating requirements
determination methods is concerned with the amount of resources that is needed to
create a requirements specification when such a requirements determination method is
applied in a given requirements determination project. The operationalization of this
criterion for the purpose of evaluating requirements determination methods must be
done for the way of modeling and the way of working as well as the way of controlling.
With respect to the way of modeling in general, and the requirements specification
language in particular we can say that for two specification languages that have the
same expressiveness (X and Y), a language X that has on average fewer modeling
language constructs that serve the same purpose than a Language Y, implies that
language X is more efficient than language Y. The existence of more than one
modeling construct that serves the same purpose has a negative impact on the
efficiency of a requirements determination method. This impact firstly, relates to
cognitive aspects of the resources needed to learn a specification language and
secondly, relates to the resources needed for selecting one modeling construct out of
the set of alternative modeling constructs during the requirements determination
process. Thirdly, the availability of ‘equivalent’ modeling constructs, and the
limitations under which they can be applied might lead to modeling rework in a later
stage of the project when additional information about the requirements specification
becomes available. Rossi and Brinkkemper (1996) have compared 36 techniques and
11 methods on their descriptive capabilities based on the premise that: ‘generally
speaking, the complexity of a method is related to the learnability and ease of use the
method, even though this relationship may be complex.’ (Rossi and Brinkkemper,
1996:210).

 34

With respect to the way of working of a requirements determination method
we can say that the availability of a (set of) procedure(s) that guides an analyst in the
requirements determination project will lead to an improved usage of (human)
resources because it prescribes how an analyst should proceed in the process, given the
knowledge he/she has elicited so far. The availability of such a procedure, therefore,
will minimize the required number of analysis steps and rework that should be
performed in a specific requirements determination project and will determine the
efficiency of the way of modeling of requirements determination method. Such a
procedure, furthermore, should contain a role definition (Wysocki and Young,
1990:300) for the analyst and must clearly make a distinction between the
responsibilities of the analyst and the responsibilities of the user.

In IEEE Std. 830 (1998), a criterion called verifiable is given in the context of
software requirements specifications: ‘ A requirement is verifiable if, and only if, there
exists some finite cost-effective process with which a person or machine can check that
the software product meets the requirement’ (IEEE, Std. 830, 1998).

With respect to the way of controlling we can define efficiency on two areas.
Firstly, the area of quality management. In this philosophy, quality deficiencies must be
prevented from happening, and if they do occur, they have to be ‘repaired’ by the
process that is responsible for creating the deficiency. This means that the way of
working of the method must contain a number of ‘quality-checking’ verification sub-
procedures, in such a way that the process that is responsible for the performance of a
requirements determination activity is responsible for the assurance of its quality.
Secondly, the way of controlling is concerned with the project management of the
requirements determination project. The efficiency for regarding these project
management issues must be measured in terms of the three project management targets:
performance, cost and time (Mantel et al., 2001:5)

Table 2.7 The definition of the efficiency criterion

 Way of Modeling Way of Working Way of Controlling
Definition of
efficiency
criterion

Average number of
modeling constructs
in specification
language that serve
the same purpose

Availability of
procedure

Availability of quality
assurance steps. Extent in
which performance, cost
and time can be optimized

Definition 2.3. The efficiency of a requirements determination method is the extent in
which the efficiency criteria16 defined for the way of modeling, the way of working and
way of controlling are satisfied.

16 As defined in table 2.7

 35

2.5 THE FORMALITY CRITERION

In table 2.1 we can see that 4 out of 5 sets of criteria contain the criterion consistency.
In 2 sets of criteria in table 2.1 some reference to precise requirements are made
(correct and unambiguous). Boehm (1984) defines consistency as internal consistency
(‘items within the specification do not conflict with each other’. (Boehm, 1984:77-78))
and external consistency (‘items in the specification do not conflict with external
specifications or entities.’ (Boehm, 1984:78)). In this thesis we will consider the
internal consistency as a criterion for a requirements specification. External
consistency is concerned with the application domain and lies outside the scope of the
criteria for a RDM. A RDM, therefore, must lead to a consistent and precise
requirements specification. In order to achieve requirements specifications that comply
with these criteria we need a certain amount of formality in the way of modeling of the
RDM. Firstly, the modeling constructs that are used for the specification of
requirements in the different perspectives must be formally defined. Secondly, the way
of working, must be formalized in some sort of algorithm(s) that precisely prescribe(s)
how the consistent modeling constructs that were defined in the way of modeling, must
be instantiated in a requirements determination project in order to obtain semantic (and
syntactic) correct specifications. Such an algorithm must contain facilities to question
user assumptions regarding the domain knowledge. With respect to the way of
controlling we must be able to formalize the planning of activities, for example in a
precedence diagram.

Boehm (1984) defines traceability as a sub-criterion within consistency
(‘items in the specification have clear antecedents in earlier specifications or statement
of system objectives’. (Boehm, 1984:78)). In the IEEE recommended practice for
software requirements specifications (IEEE Std. 830, 1998) tracebality is defined as
backward traceability (‘this depends upon each requirement explicitly referencing its
source in earlier documents.’ (IEEE Std. 830, 1998:8)) and forward traceability (‘this
depends upon each requirement in the SRS having a unique name or reference
number’. (IEEE Std. 830, 1998:8)) . We conclude that quality assurance steps must be
embedded in (a) formal (sub) algorithm(s) including provisions that enable traceability.

Table 2.8 The definition of the formality criterion

 Way of Modeling Way of Working Way of Controlling
Definition
of
formality
criterion

Extent in which
modeling constructs
in language are
formally defined

Extent in which
procedure is
formal

Extent in which activities can
be formally planned.
Extent in which quality
management is contained in
formal (sub)procedure
Extent in which provisions that
enable traceability are
contained in RDM

 36

Definition 2.4. The formality of a requirements determination method is the extent in
which the formality criteria17 defined for the way of modeling, the way of working and
way of controlling are satisfied

2.6 CONCLUSIONS ON THE QUALITY CRITERIA FOR A
 RDM

In this chapter we have synthesized these criteria from the literature on information
system development methodologies, software requirements specifications, and
requirements specification (methods) in order to assess existing requirements
determination methods from the literature in chapter 3 and to assess a newly to-be
designed requirements determination method in chapters 5 and 6.

Table 2.9 Summary of the RDM criteria and definitions

Criterion Way of Modeling Way of Working Way of controlling
Domain
richness

The extent in which
the RDM can be
applied for the full
range of values for
the dimension
turbulence

The extent in which
the RDM can be
applied for the full
range of values for the
dimensions
perception, tacit-ness
and anchoring

Completeness The availability of
modeling constructs
for the data model,
the static constraints,
the static derivation,
the dynamic
constraints and
dynamic rules

The availability of
procedures for
instantiating the data
model, the static
constraints, the static
derivation, the
dynamic constraints
and dynamic rules

Efficiency Average number of
constructs in
specification
language that serve
the same purpose

Availability of
procedure

Availability of quality
assurance steps. Extent
in which performance,
cost and time can be
optimized

Formality Extent in which
modeling constructs
in language are
formally defined

Extent in which
procedure is formal

Extent in which
activities can be
formally planned.
Extent in which quality
management is
contained in formal
(sub)procedure
Extent in which
provisions that enable
traceability are contained
in the RDM

17 As defined in table 2.8

 37

In sections 2.2 through 2.5 we have operationalized these criteria, which a
requirements specification and a requirements determination method have to comply
with. The criteria that we have defined in this chapter for the way of modeling, the way
of working and the way of controlling for a requirements determination method were:
domain richness, completeness, efficiency and formality. In table 2.9 we have
summarized the criteria for a requirements determination method that we have derived
in this chapter.

In chapter 3 we will investigate a number of ‘state-of-the-art’ requirements
determination approaches and we will assess these approaches on the quality criteria
that we have defined in this chapter.

In chapter 4 we will operationalize the four criteria that we have given into
explicit demands for the way of modeling, the way of working and the way of
controlling of a to be designed RDM.

2.7 REFERENCES

Ambrosio, A., Metais, E., Meurier, J-N. (1997): The linguistic level: Contribution for
conceptual design, view integration, reuse and documentation. Data & Knowledge
Engineering 21: 111-129

Bergman, M., King, J., Lyytinen, K. (2002): Large-Scale Requirements Analysis
Revisited; The need for Understanding the Political Ecology of Requirements
Engineering. Requirements Engineering 7: 152-171

Boehm, B. (1984): Verifying and validating software requirements and design
specifications. IEEE software 1(1): 75-84

Booch, G. (1991): Object-Oriented Analysis and design with applications. Benjamin
Cummings, Redwood California.

Booch, G., Rumbaugh, J., Jacobson, I. (1999): The Unified Modeling Language User
Guide. Addison-Wesley

Browne, G., Ramesh, V. (2002): Improving information requirements determination: a
cognitive perspective. Information & Management 39: 625-645

Browne, G., Rogich, M. (2001): An Empirical Investigation of User Requirements
Elicitation; Comparing the Effectiveness of Prompting Techniques. Journal of
Management Information Systems 17(4): 223-249

Bubenko, A., Wangler, B. (1992): Research Direction in Conceptual Specification
Development. In: Conceptual Modeling, Databases, and Case (Loucopoulos, P., Zicari,
R. (eds.)). Wiley. 389-412

 38

Burg, J., Riet, R. van der (1997): The impact of linguistics on conceptual models:
consistency and understandability. Data & Knowledge Engineering 21: 131-146

Campin, J., Paton, N., Williams, H. (1995a): A structured specification of an active
database system .Information and Software Technology 37(1): 47-61

Campin, J., Paton, N., Williams, H. (1995b): Specifying Active Database Systems in an
Object-Oriented Framework. International Journal of Software Engineering and
Knowledge Engineering

Castro, J., Kolp, M., Mylopoulos, J. (2002): Towards requirements-driven information
systems engineering; the Tropos project. Information Systems 27: 365-389

Chakravarthy, S., Mishra, D. (1994): Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering 14: 1-26

Coughlan, J., Macredie, R. (2002): Effective Communication in Requirements
Elicitation; A Comparison of Methodologies. Requirements Engineering 7: 46-60

Davis, G., Olson, M. (1985): Management Information Systems, conceptual
foundations, structure and development, 2nd edition, McGraw-Hill.

DeMarco, T. (1978): Structured Analysis and System Specification, Yourdon Press.

Essink, L., Romkema, H. (1989): Ontwerpen van informatiesystemen. Academic-
service. (in dutch)

Flynn, D., Warhurst, R. (1994): An empirical study of the validation process within
requirements determination. Information Systems Journal 4: 185-212

Galal, G., Paul, R. (1999): A qualitative Scenario Approach to Managing Evolving
Requirements. Requirements Engineering 4: 82-102.

Galliers, R., Swan, J. (2000): There’s more to information systems development than
structured approaches: information requirements analysis as a socially mediated
process. Requirements Engineering 5(2): 74-82

Halpin, T. (2001): Information Modeling and Relational Databases, Morgan Kaufmann
Publishers

Hevner, A., Mills, H. (1995): Box-structured requirements determination methods.
Decision Support Systems 13: 223-239

Hirschheim, R., Klein, H. (1992): Paradigmatic Influence on IS development
methodology: evolution and conceptual advances. In: Advances in Computers, Yovits,
M. (ed.). JAI press London.

 39

IEEE Std 830 (1998): IEEE Recommended practice for softare requirements
specifications. IEEE New-York

Kesh, S. (1995): Evaluating the quality of entity relationship models. Information and
Software Technology 37(12): 681-689.

Khwaja, A., Urban, J. (2002): A synthesis of evaluation criteria for software
specifications and specification techniques. Journal of Software Engineering and
Knowledge Engineering 12(5): 581-599

Kim, Y-G., March, S. (1995): Comparing Data Modeling Formalisms.
Communications of the ACM 38(6): 103-115.

Kim, T-G., Yu, S-H., Lee, J-W. (2003): Knowledge strategy planning: methodology
and case. Expert Systems with Applications 24(3): 295-307

Lalioti, V., Loucopoulos, P. (1994): Visualisation of conceptual specifications.
Information Systems 19(3): 291-309

Land, F. (1998): A Contingency Based Approach to Requirements Elicitation and
Systems Development. Journal of Systems and Software 40: 3-6

Larsen ,T, Naumann, J. (1992): An experimental comparison of abstract and concrete
representations in systems analysis, Information and Management, 22 (1): 29-40

Lee, J., Kim, S-H. (1992): The relationship between procedural formalization in MIS
development and MIS success. Information & Management 22: 89-111

Loucopoulos, P., Layzell, P. (1989) : Improving information system development and
evolution using a rule-based paradigm. Software Engineering Journal, BCS/IEE. 4(5):
259-267.

Macaulay, L. (1996): Requirements Engineering. Springer. London.

Mantel, S., Meredith, J., Shafer, S., Sutton, M. (2001): Project management in practice.
Wiley & Son.

Moody, D., Shanks, G. (2003): Improving the quality of data models: empirical
validation of a quality management framework. Information Systems 28: 619-650

Nonaka, I. (1994): A dynamic theory of organizational knowledge creation.
Organization Science 5 (1): 14-37

Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol, H., Van Asche, F., Verrijn-
Stuart, A.A. (1988): Information Systems Methodologies- A Framework for
Understanding, North-Holland .

Polanyi, M. (1966): The tacit dimension, Routledge & Kegan Paul ltd. London

 40

Rossi, M., Brinkkemper, S. (1996): Complexity metrics for systems development
methods and techniques. Information Systems 21(2): 209-227

Skok, W., Legge, M. (2002): Evaluating Enterprise Resource Planning (ERP) Systems
using an Interpretive Approach. Knowledge and Process Management 9 (2): 72-82

Sutton, D. (2000): Linguistic Problems with Requirements and Knowledge Elicitation.
Requirements Engineering 5: 114-124

Ter Hofstede, A., Proper, H., Weide, T. van der (1997): Exploiting fact verbalisation in
conceptual information modelling. Information Systems 22: 349-385

Wetherbe, J. (1991): Executive Information Requirements : getting it right. MIS
Quarterly 15(1): 51-65

Wysocki, R., Young, J. (1990): Information systems management principles in action.
John Wiley and Sons.

Yourdon, E., Constantine, L. (1979): Structured Design. Prentice Hall.

 41

CHAPTER 3

EVALUATION OF EXISTING RDM DESIGN
ALTERNATIVES

3.1 INTRODUCTION

In this chapter of this thesis we will give an answer to the following research sub
question that was stated in chapter 1:

Why do the existing requirements determination approaches from the literature not
comply with the quality criteria for assessing requirements determination methods?

In order to answer this question we will first provide an overview of a number of
(families) of approaches that are used in the process of requirements determination and
that are documented in the information systems body of literature. Secondly, we will
further discuss those approaches that at least contain a modeling language to express
the data-oriented perspective of a requirements specification. After we have discussed
these ‘families’ of requirements determination approaches we will compare them on
the criteria that we have derived in chapter 2. We will analyze a member of each family
of approaches and we will discuss the deficiencies of these approaches that need
improvement in order to obtain requirements specifications that are precise and
consistent, and that fulfill the completeness, domain richness, efficiency and formality
criteria. The requirements modeling problems that we will encounter while discussing
these approaches will be used when we are going to formulate the operationalized
design specification of this thesis in chapter 4.

3.2 A SURVEY OF APPROACHES FOR REQUIREMENTS
 DETERMINATION FROM THE LITERATURE

Traditionally two ‘families’ of approaches can be distinguished in the field of
requirements determination: the data-oriented approaches and the process-oriented
approaches (Bubenko and Wangler, 1992:393). In addition to these two groups of
approaches, hybrid approaches have emerged that are both data-oriented and process-
oriented (Vessey and Conger, 1994:102). In the mid-eighties the object-oriented
approach emerged in which static and dynamic features of an enterprise area should be
considered together in objects (Parsons and Wand, 1997:109). In the nineties a business
process engineering approach was introduced that provides facilities for the creation of
a requirements definition (Scheer, 1998).

 42

3.2.1 Data oriented approaches in requirements determination

The data-oriented approaches to requirements determination can be divided into the
following families of semantic data modeling: the ER or Extended ER (Entity-
Relationship) approach and the Fact Oriented Modeling approach (NIAM, ORM) (Kim
and March, 1995:103). Peckham and Maryanski (1988) reported on a survey of a
number of semantic data models. A summary of their findings is given in table 3.1.

Table 3.1 Main findings of Peckham and Maryanski survey (Peckham and Maryanski, 1988:181)

Data model Relationship
representation

Derivation/inheritance Relationship
semantics

Dynamic
modeling

E-R Independent
and tables

No User selectable No

TAXIS Entity (classes) Inheritance Predefined Transaction
modeling,
object
oriented

SDM Independent
and entity
(classes)

Elaborate and varied User defined No

Functional Functions Functional User defined No
RM/T Independent Inheritance Predefined No
SAM Independent Summation over

classes/ inheritance
Predefined Object

oriented
Event Attributes No Predefined Transaction

modeling
SHM+ Attributes,

entities,
separate

Inheritance over
Generalization and
Association hierarchies

Predefined Transaction
modeling

In addition to the E-R and fact-oriented approaches, the Semantic Data Model (SDM)
by Hammer and McLeod (1981) has had an influence the evolution of the dialects
within the ER and Fact-oriented approaches and it has had an influence on the design
of object-oriented modeling languages. However, in the survey that we will present in
this thesis we will limit ourselves to the ER and Fact-Oriented families of approaches
in data modeling.

The Entity-Relationship family of approaches

In 1976 Chen published the first article on Entity Relationship Modeling (Chen, 1976).
The basic modeling constructs for capturing the data structure in the ER model are
entitie(s)(sets), attributes and relationship(s) (sets). The entities are the objects in an
application domain about which information is collected; attributes represent intrinsic
properties of entities whose value does not depend upon other entities in the model.
Relationships represent interconnections among entities (Pitrik, 1996:115). In addition
Chen introduced (maximum) cardinalities that can express some of an application
area’s business rules. In the course of time Chen’s original Entity-Relationship model
has been extended EER (Teorey et al., 1986); ERT (Theodoulidis et al., 1991); EDM

 43

(Scheer and Hars, 1992); NER (Silva and Carlson, 1995); ER+ (Kolp and Zimanyi,
2000); MEER (Balaban and Shoval, 2002)) in which additional conceptual abstractions
have been incorporated (Chan et al., 1998:117): optional relationships (Teorey et al.,
1986), subtyping (Teorey et al., 1986), aggregation, generalization/specialization
(Gogolla and Hohenstein, 1991; Teorey et al, 1986), time and complex objects
(Theodoulidis, 1991), update methods (Balaban and Shoval, 2002). A main
characteristic according to Akoka and Comyn-Wattiau of ER models is that these
models are mainly oriented towards the data-oriented perspective and leave the
process- and behaviour-oriented perspectives undefined (Akoka and Comyn-Wattiau,
1996:88). At the beginning of the 21st century the family of (E)ER approaches remains
the most popular approach used in practice (Rauh and Stickel, 1996:135; Shoval and
Shiran, 1997:298) and in curricula of universities (in case we consider the static aspects
of UML class diagrams as a flavour of the (E)ER family of approaches (Balaban and
Shoval, 2002:245; Steimann, 2000:88)). Saiedian surveyed a number of (E)ER models
in the literature (Saiedian, 1997) and concluded that in the course of time, the
expressiveness of these models has increased and that the recent extensions incorporate
object-oriented features, e.g. methods, messages and operations. We will make a
distinction into ‘conventional’ EER approaches and ‘object-oriented’ EER approaches.
The latter group will be considered object-oriented approaches and is analyzed in
section 3.2.3.

The fact oriented family of approaches

From the pioneering work of Abrial (1974) on the Semantic Binary Relationship Model
(SBRM), followed by the object-role model (Falkenberg, 1976a, 1976b) the fact-
oriented approach became a relatively popular requirements specification approach
when the object-role models were expressed in a ‘circle-box’ notation and
accompanied by a modeling methodology (ENALIM) (Nijssen, 1977). The ENALIM
methodology provided the foundation for (binary) NIAM (Verheijen and van Bekkum,
1982) and the Binary Relationship Model (Van Griethuysen, 1982). In the late 1980’s
binary NIAM evolved into N-ary fact oriented information modeling (Halpin and
Orlowska, 1992; Leung and Nijssen, 1988; Nijssen and Halpin, 1989) and the acronym
NIAM became a shortcut for natural language information analysis method (Halpin,
1996). The data model in the fact-oriented approaches basically consists of a set of fact
types and entity types that are connected through roles. A fact type is a semantic
relationship consisting of N roles between (at most) N (different) entity types and or
label types. Every entity type can be involved in a number of roles within any number
of fact types. The content of the fact base at any time is subject to the set of population
state and state transition constraints that can be defined on the information structure
diagram (ISD, see Verheijen and van Bekkum, (1982)). Prabhakaran and Falkenberg
(1988:98) give an overview of other fact oriented modeling approaches, amongst them:
CSL (Breutmann et al., 1979); CIAM (Gustafsson et al., 1982); DADES/RM/RA
(Olive, 1982), REMORA (Rolland and Richard, 1982).

 44

Conclusions for the data oriented approaches in requirements determination

The data oriented approaches in requirements determination are numerous. The two
families of approaches that appear to be the most influential are the entity-relationship
family of approaches and the fact-oriented family of approaches (Kim and March,
1995). The commonality of all members of these two families of approaches lies in the
perspective of a subject area that they intend to model: the data-oriented perspective,
this implies that these approaches have hardly any facilities for modeling the process-
oriented and behaviour-oriented perspectives of an application domain.

3.2.2 Process oriented approaches in requirements determination

The process-oriented approaches that we will discuss in this thesis have their origins in
the mid-seventies and have in common that they all are based on the notion that
application systems can be modeled as a set of functions that interact and that some
form of (functional) decomposition is required. We will discuss three (sub) approaches
within the process-oriented family: SADT, the structured analysis and structured design
(SA/SD) school and ISAC.

SADT

SADT was developed by Douglas T.Ross (Maarssen and McGowan, 1986). A SADT
model is a series of data flow diagrams that consists of activities that transform input
data onto output data. Control governs the way in which the transformation takes place
and mechanisms show the means by which an activity is performed (Maarssen and
McGowan, 1986). A transformation can be decomposed into a sub transformation on a
lower level of abstraction.

Structured analysis and structured design (SA/SD) school

The structured analysis and structured design school is based upon work of Yourdon
and Constantine (1979), Gane and Sarson (1979) and DeMarco (1978). SA/SD looks
upon enterprises as functions that process data. The main diagramming technique in
SA/SD is the data flow diagram. Data Flow diagrams are designed to show the
functionality of an application. A data flow diagram (DFD) consists of a collection of
processes, flows, stores, terminators. The processes in a DFD constitute the activities of
the application that is being represented. Each process is considered to transform the
incoming flows of data and material into outgoing flows of data (and material). Stores
are containers for data or material that is carried in the flow. Terminators represent
actors or processes external to the system that is under consideration. A transformation
can be decomposed into a sub transformation on a lower level of abstraction. Opdahl
and Sindre (1994:231-234) point at the omissions in the application of DFD’s for real-
world modeling. They conclude that decomposition of DFD’s is problematic with
respect to flows. They specifically critique the real world meaning of high-level flows.

Ward (1986) extended the data-flow diagram by concepts that represent
control and timing.

 45

ISAC

ISAC (Lundeberg et al., 1979; Lundeberg, 1982) was developed in the 1970’s at
Stockholm University and the methodology was created for a much broader coverage
of stages in the information systems development life cycle than the requirements
determination stage. The ISAC methodology consists of the following stages: change
analysis, activity study, information analysis, data system design (Ruys, 1983).
Falkenberg et al. (1983:188)) concluded that ISAC is very strong in the earliest phases
of systems design i.c. change analysis and activity analysis, however the data-model
that is the outcome of ISAC is cumbersome and cannot guarantee integrity. Hanani and
Shoval (1986:249) conclude that a major gap exists between the products of
information analysis and the design of the data system. Furthermore, ISAC does not
have facilities for specifying static and dynamic constraints.

Conclusions for the Process oriented approaches in requirements determination

Floyd (1986) compared SADT, the SA/SD school and ISAC and concluded that only
SADT and ISAC seemed suitable for requirements determination. Deng and Fuhr
(1995:107) claim that structured analysis and design techniques cannot allow a simple
modification to a module without a complete redesign of the system.

Henderson-Sellers and Edwards (1990:145) summarize the findings of Meyer
regarding the flaws in top-down system design as is implemented in all process-
oriented approaches that we have discussed in this chapter:

1. top down systems design does not take account of evolutionary changes,
2. in top down systems design a system is characterized by a single function,
3. top down design neglects the data structure aspect very often,
4. top down design does not encourage reuse.

3.2.3 Object oriented approaches in requirements determination

The object-oriented analysis concepts have their roots in object-oriented programming
(Cox, 1986) and object-oriented software construction (Meyer, 1988) blended with
ideas from semantic data modeling and knowledge representation (Mylopoulos et al.,
1999).

Classic OO approaches in requirements determination

The OO-paradigm has been applied in corporations during the last decade (Johnson and
Hardgrave, 1999:5) in methodologies for requirements determination and information
systems analysis and design: object-oriented modeling and design (OMT) (Rumbaugh
et al., 1991), object-oriented systems design (OOD) (Yourdon, 1994), object-oriented
information engineering; analysis, design and implementation (Montgomery, 1994).
Misic and Graf (2004) empirically studied the use of different system analysis
approaches by systems analysts and concluded that the percentage of respondents that
are using object-oriented approaches for analysis and design grew from 0 % in 1994 to
35 % in 2001. Davis (1995) gives a critical view on the application of OO
programming concepts for requirements specification and information systems design.

 46

The OO paradigm considers an object as:” an identifiable thing that
remembers its own state [1, 6], and that can respond to requests for operations with
respect to this state [5].” (Parsons and Wand, 1997:106). Furthermore the OO-
paradigm considers an object to have an unchangeable identity (Brown, 1991:20)), it
encapsulates data and behaviour and it is persistent (Parsons and Wand, 1997:106).
One of the first OO approaches that were specifically designed for requirements
determination was OMT (Rumbaugh et al., 1991).

The Unified Modeling Language (UML)

In 1997 a standard emerged (OMG, 2002) to streamline the multitude of OO-
approaches: The Unified Modeling Language (UML). An application’s data model can
be expressed in an object-oriented class diagram. The static constraints and the static
derivation rules can be defined in the static structure part of a class diagram, for
example in a UML class diagram this can be done by using association end and
attribute multiplicities and the Object Constraint Language (OCL). Furthermore, the
dynamic constraints and dynamic rules of a domain application can partly be encoded
as methods from object classes and in miscellaneous models that have come into
existence like for example use cases and state charts.

Conclusions for the Object oriented approaches in requirements determination

We can conclude that the object-oriented approaches have evolved from the application
of the OO-paradigm in programming languages in the seventies and eighties towards
OO approaches that are considered suitable for requirements determination. The object-
oriented approaches provide facilities for the specification of the data- as well as the
process- and behaviour-oriented perspectives in requirements determination.

3.2.4 The Business Process Engineering approach: ARIS

From the late eighties until the mid-nineties the Businss Process (Re)engineering was
at its peak. Around that time product-software suppliers started to implement their IT
solutions on a wide scale in (mainly) large organizations. Scheer has developed an
Architectural framework for integrated information systems (ARIS), that can analyze,
model and navigate business processes (Scheer, 1994:607). ARIS acknowledges the
existence of a semantic requirements definition (Scheer, 1998:14). To express the data
view of such a semantic requirements definition, ARIS uses an (E)ER model18. For
representing the functional and control view, ARIS uses a number of modeling
techniques, like for example flow-chart techniques, Petri-nets, activity-diagrams and
OMT object-diagrams, object-flow diagrams.

18 ARIS consists of a number of requirements models that are basically covered by the modeling
facilities in the other three families of approaches.

 47

3.3 THE SUITABILITY OF EXISTING APPROACH FAMILIES
 FOR REQUIREMENTS DETERMINATION

In this paragraph we will evaluate the family of approaches that we have introduced in
paragraph 3.2 on the first criterion that we have derived in chapter 2. In table 3.2 we
have compared these three ‘families’ of approaches with respect to the underlying way
of thinking , the way of modeling and their way of working (Wijers, 1991: 17-23).

Table 3.2 Comparison families of approaches found in the literature

 Data-oriented Process-
oriented

Object-
oriented

Business
Process
Engineering

Way of
thinking

Business data Functions that
interact

Objects that
encapsulate data
and behaviour

Businss
processes

Way of
modeling

Information
models

DFd’s, A-schemes Class diagrams,
use cases,
activity
diagrams, State
charts

Process chains,
OMT class
diagrams, ER
models, Petri-
nets

Way of
working

Analysis of
textual
description of
application
domain

Top-down
functional
decomposition

Identifying
objects in
application
domain

Translating
business
application
knowledge into
DP -suitable
structures

The completeness criterion that was given in chapter 2, implies the capability of a
requirements determination approach to specify at least the data model from the data-
oriented perspective. The data model is necessary in order to be able to describe the
content of the process- and behaviour-oriented perspectives in a meaningful way. The
literature study has revealed that the process-oriented approaches do not provide
sufficient modeling constructs that would allow an analyst to create a requirements
specification that contains a data model. We will now analyze three families of
approaches for requirements determination that have facilities for a data model: The
Entity-Relationship approach, the fact-oriented approach and the object-oriented
approach (OO). In sections 3.4 through 3.6 we will evaluate a specific member of each
of these families (of approaches) on the modeling deficiencies that exist for these
approach instances and the remaining criteria that we have given in chapter 2.

 48

 3.4 THE EXTENDED (OR ENHANCED) ENTITY-
 RELATIONSHIP APPROACH

The entity-relationship approach was introduced in a seminal article of Peter Chen
(1976). We will consider an ER extension as it can be found in McFadden et al.
(1999:85-159) that is a main stream contemporary text book on database management.
In addition we will reference those approaches from the ER literature that provide
solutions for some of the modeling deficiencies that we will encounter in the
McFadden approach.

3.4.1 Deficiencies in the (E)ER way of modeling

In this section we will discuss a number of problems that are related to requirements
specifications that use EER as a specification language. These problems are rooted in
the definition of the EER modeling constructs and in the ways in which these modeling
constructs can be applied in a requirements determination process.

Ambiguities regarding the modeling of N-ary relationships

In most of the examples that are used in the articles, books or instruction manuals that
give the definitions of the (E)ER modeling constructs and examples of how these
modelling constructs can be applied, no explicit coverage of how to model n-ary (N>2)
relationships is provided: ‘Higher degree relationships are possible, but they are rarely
encountered in practice, …’ (McFadden et al., 1999:101). Although in some versions
of the EER dialect (Connolly et al., 1996: 174-175) a number of examples of N-ary
(N>2) relationships are shown, McFadden et al. (1999) do not give illustrative
examples of ‘pure’ N-ary relationships, they adapt the ‘pure’ N-ary relationship into
either: an associative entity or gerund (McFadden et al., 1999:99-100)19 having one or
more relationship attribute or a (N-1) ary relationship having a relationship attribute
(McFadden et al., 1999:102). Furthermore, they give the conditions under which a
semantic relationship can be encoded as a gerund. However, these conditions, presume
knowledge on the cardinality constraints and the properties of the integrated EER
schema, and therefore can not be applied to model the initial requirements.

The application of the N-1 relation/attribute modeling construct leads to
severe problems whenever the participating ‘concept type’ that must be modeled as an
attribute is also involved in other semantic relationships (see the discussion on the
instability of EER models further on). Teorey et al. (1986:201) claim that certain
relationships of a degree higher than 2 might exist in a UoD and are ‘awkward’ (or
incorrect) when represented in a binary form and they explicitly state that: ‘a ternary
relationship cannot be reduced to equivalent binary relationships if the relation used to
represent it is in 4NF.’ (Teorey et al., 1986:202).

19 “An associative entity (or gerund) is an entity type that associates the instances of one or more
entity types and contains attributes that are peculiar to the relationship between those entity
instances .”(McFadden et al., 1999:99-100)

 49

No facility for naming conventions of attributes

In the (E)ER dialect in McFadden et al. (1999) there does not exist a modeling
provision for the naming convention of some attributes. In figure 3.1a and figure 3.1b it
is illustrated how the same piece of domain semantics must either be modeled as the
ER diagram in figure 3.1a or as the ER diagram in figure 3.1b. This means that
whatever option is chosen, essential domain semantics will be lost.

After analyzing a number of examples in McFadden et al. (1999:105-110) that
illustrate the application of the attribute construct. This analysis reveals that a key
attribute stands in all cases for a name class; other attributes can actually stand for
name classes or concept types. Furthermore, it is not possible to record both the
concept type and the name class in the same attribute if that is required (see for
example figure 3.1 in which address is a concept type and address_ID is a name class).
Most (E)ER dialects do not have guidelines on when to interpret the attribute as a name
class or a concept name. A noteworthy exception is the Extended-Entity-Relationship
model as defined by Engels et al. (1992) in which data types (that are user-definable)
for attributes can be incorporated into the model.

EMPLOYEE

EMPLOYEE

EMPLOYEE

(A)

(B)

(C)

Address

Address_ID

Address

An employee lives on an address
An adress is identified by an address ID

An employee lives on an address
An adress is identified by an address ID

An employee lives on an address
An adress is identified by an address ID
At any time an employee should live on at
least 2 adresses

Fig. 3.1 Domain semantics and representation in EER model I

 50

Ambiguous definition of relationship cardinalities for a ternary or higher order
relationships

In the EER specification language only a small number of business rules can be
modeled as static constraints. Only those business rules that can be expressed as
minimum or maximum cardinalities or that can be expressed as the multi-valued
qualification of an attribute (see figure 3.1c) can be modeled. The EER approach
contains the concepts of minimum cardinality and maximum cardinality. In McFadden
et al. (1999:106) the ‘look across, look across’ type of cardinality constraints is used
(Dullea et al., 2003) at least for binary relationships. The application of these minimal
cardinalities in ‘pure’ N-ary relationships remains unclear. A number of interpretations
exist for the cardinalities that refer to a ‘pure’ ternary or higher order relationships
(Halpin, 2001a). To avoid this ambiguity all ternary or higher order relationships must
be converted into associative entities or gerunds (McFadden et al., 1999: 105) or binary
relationships with relationship attributes.

 SUPPLY
SCHEDULEVENDOR WAREHOUSE

PART

Unit_costShipping_mode

Each vendor can supply many parts to any number of warehouses, but
need not supply any parts.

Each part can be supplied by any number of vendors to more than one
warehouse, but each part must be supplied by at least one vendor to a
warehouse

Each warehouse can be supplied with any number of parts from more
than one vendor, but each warehouse must be supplied with at least one part

Fig. 3.2 Domain semantics and representation in EER model II (taken from fgure 3.17 in
McFadden et al., 1999:108)

 51

We can see from figure 3.2 (taken from McFadden et al., 1999;108) that the
relationship cardinalities in these situations represent very complicated combinations of
business rules. It is not possible to represent the following simple atomic business rules
as (straightforward combination) of relationship cardinalities:

 A part must be supplied to at least one warehouse
 A warehouse must be shipped from at least one vendor

McAllister (1998) gives an approach to check consistency of cardinalities in N-ary ER
relationships by using cardinality tables. However, the number of cardinality
constraints that should be analyzed as a function of the arity (N) of the relationship will
increase exponentially (e.g. from 2 when N=2 to 180 for n=5).

(B)

(A) (C)

RR

R

R

RR

A A

A

A A

A

A A

A

BB

B

M

N

N

1

1

BB

B

Fig. 3.3 (a) ER, (b) XER and (c) EER cardinality constraints (taken from Liddle et al. (1993) and

McFadden et al. (1999))

In an overview article on cardinality constraints in semantic data models, Liddle et al.
(1993) give formal definitions for relationship cardinalities in a number of ER dialects
(amongst other data models) in which they show that the definition of maximum
cardinality in the original Chen’s ER dialect and the Extended ER (EER) by Teorey et
al. (1986) are the same (see figure 3.3a and b) and in which the minimum cardinality

 52

that is added to the original ER model by Teorey et al. denotes the participation status
of an entity (instance) from an entity set. In this notational convention a circle that is
placed on the connecting line indicates an ‘optional’ participation for the connected
entities in this relationship set. For mandatory participation the line that connects the
entity type to the relationship set has no special marking. We can conclude that in EER
the ‘look here, look across’ type of cardinality constraints is used (Dullea et al., 2003).
In the EER dialect that we have analysed in McFadden et al. (1999), the ‘look across,
look across’ application of cardinality can only be found in binary relationships, no
instances of N-ary (N>2) relationships are given that illustrate the applicability of the
minimum cardinality. We refer to Liddle et al. (1993: 239, 246) for the formal
semantics of Chen’s ER and Teorey et al.’s XER cardinality constraints.

Instability of EER models because of the existence of the attribute and relationships as
information bearing constructs.

The (E)ER approach shows some problems in terms of capturing evolving
requirements when a binary relationship is modeled initially as an attribute of an entity
type (see figure 3.4). When this modeling decision has been made in the initial stage of
a project, this can lead to remodeling when additional domain semantics need to be
incorporated into the application’s (E)ER-model (Bots et al., 1990; Halpin, 1996;
Storey, 1991:52). In figure 3.1 we have modeled address as an attribute of the entity
type EMPLOYEE. If we now want to model the relationship between an address and a
zip code we will have a problem because simply adding a relationship will make it
impossible to use the relationship cardinalities for modeling the domain semantics that
every address needs to have a zip code (see figure 3.4a). In order to be able to model
the domain semantics explicitly in the EER model by using cardinalities we need to
remodel the original entity/attribute diagram from figure 3.1a into the relationship in
the upper part of figure 3.4b. A noteworthy exception in the family of EER dialects is
ERT (Theodoulidis et al., 1991) in which it is not possible to model domain knowledge
as attributes. In ERT all domain semantics must be encoded as entities and/or as
relationships between entities. Lim and Chiang (2000) give an overview on schema-
level relationships in (E)ER diagrams.

Incomplete recording of domain semantics when encoded as relationship or attribute.

We remark that in EER it is not possible to exactly denote the sequence in which the
name(s) of entity types and the name of the relationship must be read (Halpin,
2001b:315) in order to derive the correct phrasing of the semantic relationship (e.g.
address lives at employee or employee lives at address). In case domain semantics are
modeled as an attribute of an entity type (see for example figure 3.4 a), the ER
approach does not enforce an analyst to record the verbs or predicate of such a
semantic relationship. Let us assume that the upper diagram from figure 3.4a represents
the following domain semantics:

 Employee lives at address

 53

We will now extend our example by a new requirement:

 Employee was born at address

EMPLOYEE

EMPLOYEE

ZIPCODE

ADDRESS

ADDRESS

(A)

(B)

Address

Zipcode

Has

Lives_at

An employee lives on an address
An adress has a zipcode

An employee lives on an address
An adress has a zipcode
Every adress has exactly one zipcode

Fig. 3.4 Domain semantics and representation in EER model III

In the best situation we need to remodel the old requirements either by adding the verb
on the attribute name or by creating two binary relationships in the adapted model in
which the verbs can be explicitly recorded. However, in the latter situation the model
will be subject to the ‘verbalization’ problems in ER diagrams that we have discussed
earlier. The main problem, however, with the lacking of a verb that is recorded in an
ER model, is in the interpretation of the relationship when time has passed, e.g. for
application maintenance purposes.

3.4.2 Deficiencies in the (E)ER way of working

Most (E)ER family members lack a procedure that exactly specifies how an analyst can
derive a semantically correct ER-model in the requirements determination process. The
guidelines that Chen (1976) proposes to support the design of an ER schema are not
accurate enough to be able to explain how an ER model must be created (Rolland et al.,
1995:338). With respect to the static constraints we remark that apart from some
participation and cardinality constraints and disjoint constraints associated with super
types and subtypes (McFadden et al., 1999:145) the (E)ER approach does not provide

 54

us with modeling facilities to do so. The same holds for the dynamic constraints and
the dynamic rules.

In the EER dialect that we have analyzed (McFadden et al., 1999) no explicit
procedure is given on how to apply the EER modeling concepts in a requirements
determination process. Especially, the condition under which a N-ary semantic
relationship must be modeled either as a ‘gerund’ or a ‘pure’ N-ary relationship are
missing in the (E)ER dialects that we have studied in our survey. However, there exist
some EER dialects in which modeling steps are given. We will now give a summary of
three EER modeling procedures: MOODD (Silva and Carlson, 1995), EER (Teorey et
al., 1986) and Storey’s EER dialect (Storey, 1991).

Modeling steps in MOODD

In MOODD a rudimentary outline of a requirements determination procedure is given
(RSL) that specifies how sentences from a user requirements specification can be
translated onto a Nested Entity-Relationship (NER) diagram (Silva and Carlson,
1995:163):
 Step (i) Check for synonyms and homonyms
 Step (ii) Use a glossary to ensure uniform use of words
 Step (iii) Group sentences describing the static properties of the

same subjects into O-paragraphs
 Step (iv) Group sentences describing the dynamic properties of the
 same subject into BR (business rules) paragraphs
 Step (v) For each O-paragraph, analyze each sentence converting it

to the corresponding NER object.
 Step (vi) For each BR-paragraph, analyze each sentence converting

into the corresponding UPM expression

Teorey’s modeling steps

Teorey et al. (1986) give a logical design methodology for the creation of relational
database schemas. The first step of this methodology, however, is directed towards the
EER modeling of requirements and consists of the following sub steps:

 Step 1.1 Classify entities and attributes
 Step 1.2 Identify the generalization hierarchies and subset Hierarchies
 Step 1.3 Define Relationships
 Step 1.4 Integrate multiple views of entities, attributes, and

Relationships

Teorey et al. give guidelines for classifying entities and (multi-valued) attributes but
these guidelines assume knowledge of the final schema: “For example, in the above
store and city example, if there is some descriptive information such as STATE and
POPULATION for cities, then CITY should be classified as an entity. If only CITY-
NAME is needed to identify a city, the CITY should be classified as an attribute”
(Teorey et al., 1986:204). This means that such a procedure can never be applied in
capturing the initial requirements of a domain user because in that stage global
knowledge of the schema is not known (see also Bollen, 2002b).

 55

Storey’s modeling steps

In another EER dialect, Storey (1991) gives a procedure that covers not only the
creation of a requirements specification in EER but also provides steps that result in the
definition of normalized relational tables, that can serve as an input to a DDL of a
database implementation. We will summarize the steps from Storey’s procedure that
refer to the requirements specification stage in the analysis and design process:

 Step 1: Identify entities
 Step 2: Identify relationships
 Step 3: Check for design problems and eventually go back to step 1

Storey only specifies what potentially must be done in a requirements determination
process, e.g. during the first step she advices to make the distinction among entity
types, attributes and relationships. However, no explicit rules are given that can guide
an analyst in making those modeling decisions in a specific requirements determination
process.

3.5 OBJECT-ROLE MODELING (ORM)

3.5.1 Deficiencies in the ORM way of modeling

In section 3.4.1. we have illustrated some of the modeling deficiencies that exist in the
EER-approach. A number of these deficiencies have been addressed in the definition of
the modeling constructs in Object Role Modeling. The ‘state-of-the-art’ in fact
oriented modeling (Halpin, 2001b); however, still has a number of modeling
deficiencies that deserve attention.

Semantics of naming conventions in ORM

If we consider the example from figure 3.4 in which we have given a natural language
statement of the domain requirements, the naming convention for an address in ORM is
the address name (simple reference scheme) or a compound reference scheme that
consists of three values: street name, house number and city name (e.g. see the
discussion on signification in (Falkenberg, 1976a)). However, we have assumed that in
this UoD, the addresses are restricted to one country. In case a postal service
organization decides to expand its activities by taking over a foreign postal service it
becomes clear that what used to be a valid signification within the country of origin
now has become an invalid or incomplete signification. To avoid these problems from
happening when requirements evolve it is a good practice to model these explicit
semantics of naming conventions in the requirements specification at all times. An
example of an explicit naming convention for an address within the Netherlands would
be:

 56

An address within the Netherlands can be identified among the union of addresses
within the Netherlands by the combination of street name, house number and city
name.

The existence of different referencing modes

In ORM three different ways of modeling naming conventions or reference schemes
exist (Bollen, 2002b). The 1-1 referencing mode is depicted graphically by adding the
name of the reference mode in parentheses to the name of the entity type that has to be
referenced (Halpin, 2001b:81). We have given the ORM model for the following
domain requirements in figure 3.5:

An employee works for a department within the ABC company
An employee can be identified by an employee ID

A department can be identified by a department name
An employee can work for one department at most

Department
(department name)

...works for... within the ABC company

Employee
(employee ID)

Fig. 3.5 Domain semantics and representation in ORM model I

The second way of modeling naming conventions is the case of a compound
referencing scheme in which an entity of a given entity type can only be identified
when using 2 or more values. In figure 3.6 we have illustrated such a compound
referencing scheme (Halpin, 2001b: 192-195) for our (running) example from figures
3.2 and 3.5 in which we have changed domain semantics that allow us to identify an
employee by the combination of first name and last name.

An employee works for a department within the ABC company
An employee has exactly one first name
An employee has exactly one last name

An employee can be identified by a combination of first name and last name
A department can be identified by a department name

An employee can work for one department at most

If we compare the ORM models from figures 3.5 and 3.6 we can see that the distinction
between a simple and a compound reference scheme has a big impact on the resulting
Object-Role Model. All other domain semantics in the example of figures 3.5 and 3.6
are identical, however, in the example from figure 3.6 we have a model that contains 3
fact types in comparison with the model from figure 3.5 in which we have only one fact
type.

 57

Department
(department name)

...works for... within the ABC company

Employee

first name

has /is of

last name

has /is of

U

Fig. 3.6 Domain semantics and representation in ORM model II

The third way of modeling naming conventions is called objectification
(Halpin, 2001b:85) in which a nested object type is modeled as a fact type in which the
constituting entity types and/or name types of the objectification are given (see figure
3.7).

An employee works for a department within the ABC company
An employee can be identified by a combination of first name and last name

A department can be identified by a department name
An employee can work for one department at most

The resulting ORM diagram is given in figure 3.7.

"Employee"

Department
(department name)

...works for... within the ABC company

first name last name
P

There exists an employee identified by
a combination of.... and

Fig. 3.7 Domain semantics and representation in ORM model III

Missing naming convention(s) for roles and/or fact types in ORM

In ORM we are not required to specify a role name every time a fact type is defined.
This can lead to confusing situations in case the same entity type plays two or more

 58

roles within a single fact type. Consider, for example, the following application domain
semantics.

A Person introduces a person to a person
A person can be identified by a person name

A person can only be introduced once to another person

The resulting ORM diagram is given in figure 3.8.

...introduces...to

Person
(person name)

Fig. 3.8 Domain semantics and representation in ORM model IV

As we already discussed in chapter 1 of this thesis, we consider the notation legend of a
requirements specification of minor importance in comparison with the modeling
language concepts. If we now consider the ORM example in figure 3.8 we miss the
naming conventions for the major modeling concepts in ORM: fact types and roles that
would allow us to communicate the modeling results without having to use a specific
notational convention, e.g. we must be able to record the modeling results in figure 3.8
in the following way:

There is a fact type that contains roles person1, person2 and person3.
Fact type template of this fact type reads as follows: <Person1>

introduces <person2> to <person3>.
Role ‘person1’ is played by the entity type ‘Person’.
Role ‘person2’ is played by the entity type ‘Person’.
Role ‘person3’ is played by the entity type ‘Person’.

The name class ‘Person name’ is a reference type for the entity type ‘Person’
There is a uniqueness constraint defined on roles ‘Person2’and ‘Person3’.

This means that ORM at least a simple naming convention should exist that will allow
an analyst to uniquely identify a role among the union of roles or a compound reference
scheme in which a role can be identified by a combination of a fact type name and the
(locally unique) role name.

 59

3.5.2 Deficiencies in the ORM way of working

With respect to the availability of a modeling procedure that guides an analyst in
creating semantically correct ORM models we remark that ORM has a conceptual
schema design procedure (Halpin, 2001b; Halpin and Orlowska, 1992).

Halpin’s conceptual schema design procedure

In ORM a conceptual schema design procedure is defined (Halpin and Orlowska, 1992;
Halpin, 2001b). This procedure consists of 7 steps:

 Step 1: From examples to elementary facts
 Step 2: Draw fact types and populate
 Step 3: Trim schema; Note basic derivations
 Step 4: Uniqueness constraints, arity check
 Step 5: Mandatory roles and logical derivation check
 Step 6: Value, Set and Subtype Constraints
 Step 7: Other constraints; Final checks

However, a close examination of this procedure in Halpin (2001b) and Halpin and
Orlowska (1992) reveals that the procedure basically tells an analyst what to do next
but does not exactly specify how such an activity must be carried out in a requirements
determination process. With respect to steps 4, 5, 6 and 7 we must remark that ORM
does not give a precise algorithm or procedure the application of which guarantees that
the instances of those static and dynamic constraint types will be found in the
requirements determination process.

 3.6 THE UNIFIED MODELING LANGUAGE (UML)

The Unified Modeling language has its ancestors in a number of object-oriented
modeling approaches (OMT (Rumbaugh et al.,1991); OOAD (Booch, 1994); OOSE
(Jacobson et al., 1992)). The UML started out as a collaboration between the designers
of the latter OO-methods (Kobryn, 1999:30). The UML is “a general-purpose visual
modeling language that is used to specify, visualize, construct, and document the
artifacts of a software system…it is intended for use with all development methods,
lifecycle stages, application domains, and media.” (Rumbaugh et al., 1999:3). In UML
the class diagram represents the data-oriented perspective of an application domain
(Otero and Dolado, 2004). Bollen (2002c) has analyzed the diagrams types within
UML that jointly cover the description of the information requirements as given in the
criteria from chapter 2, and has found modeling problems that occur in the application
of UML. He concludes that out of the 9 diagram types that are currently defined in
UML (class diagrams, object diagrams, use-case diagrams, sequence diagrams,
collaboration diagrams, state charts, activity diagrams, component diagrams and
deployment diagrams) only the use-case diagram, class diagram, activity diagram and
(advanced) state chart diagram are necessary to fulfill the completeness criterion in

 60

section 2.1 of this thesis. Otero and Dolado (2004) conclude that 4 types of diagrams
are needed to specify the behaviour-oriented aspects of systems: sequence,
collaboration, state and activity diagrams. Dori (2002:83) claims that “The tight
interdependence of structure and behavior mandates that these two major system
aspects be addressed concurrently. This task is, however, counter-intuitive and
extremely difficult if structure and behavior are forced into two (let alone nine)
separate diagram types.”

Related to the problem of too many diagram types is the lack of consistency
when it comes to modeling for example a state transition constraint as a state chart that
constrains the states of the object that are specified in an object class diagram.

Person
SSN: number {P}
Marital Status: Single

Married

Divorced

Widow/er

Fig. 3.9 Lack of coherence in UML class diagram and UML state chart diagram

From figure 3.9 we see that the right-hand diagram is intended to serve as a way to
encode a transition rule or dynamic constraint on the subsequent values of the attribute
marital status of the object class Person. UML does not give guidelines how to
consistently model that the state in the state chart refer to a particular attribute of the
accompanying class diagram.

 In section 3.6.1 we will focus on the deficiencies in the UML specification
language that are connected to the modeling constructs for the UML class diagrams

3.6.1 Deficiencies in the UML way of modeling

Although the static aspects of class diagrams share most of the modeling problems that
were encountered when we analyzed the (E)ER modeling approach, UML has
addressed some of them. For example, the naming conventions for attributes are
implemented in the UML class diagrams as attribute types. However, there are
additional modeling complications that must be taken into account when evaluating the
modeling constructs in UML class diagrams and that can be fully contributed to the
properties of the object-oriented paradigm, most notably the object ID and the
interaction between the concepts of generalization/specialization and class inheritance.

The object ID in the Unified Modeling Language

In addition to the declaration of the object’s class, the declaration of the attributes and
methods that an object inherits, the OO paradigm states that each object instance has a

 61

‘unique’ identity: “Each object has its own unique identity. Most object-oriented
languages automatically generate implicit identifiers with which to reference objects”
(Rumbaugh et al., 1991:24). “Object identifiers must uniquely identify as many objects
as may ever coexist in the system at any one time” (Cox, 1986:54).

D1:house inhabitant D2:house inhabitant

Name=’Tommy’

ID 234 ID 235

Name=’Tommy’

Fig. 3.10 Two different object instances of the class House Inhabitant

In UML the following definition for the object ID is given: “Each object has its own
unique identity and may be referenced by a unique handle that identifies it and provides
access to it.”(Rumbaugh at al., 1999:360). This concept of ‘globally’ unique object
ID’s to identify objects within a specific application system allows us to make a precise
distinction between two different objects that have the same state and behaviour
(Dittrich, 1990:16). The existence of these object IDs allows us to refer to a house
inhabitant with object ID 234 having the name Tommy and a house inhabitant with
object ID 235 having the name Tommy as two different objects (see figure 3.10). It is
impossible to empower users in the application domain to use ‘abstract’ object IDs as
naming conventions (Halpin, 2001b:353). The best way to encode a domain-based
naming convention for the concepts that are modeled as object classes is as a
(combination of) class attributes. UML, however, does not provide a standard graphic
notation for such a constraint. Halpin and Bloesch (1999:12) define a primary identifier
constraint (‘{P}’) on the combination of attributes that can be used to identify an
instance of an object class using application-based naming conventions. This means
that in UML state constraints need to be applied in order to facilitate the
implementation of domain-based naming conventions.

The interaction between the concepts of generalization/specialization and class
inheritance.

The OO paradigm uses the same ‘is-a’ relationship for denoting specialization and
generalization. In the OO-paradigm: “Generalization and specialization are two
different viewpoints of the same relationship, viewed from the super class or from the
subclasses. The word generalization derives from the fact that the super class
generalizes the subclasses. Specialization refers to the fact that the subclasses refine or
specialize the super class.” (Rumbaugh et al., 1991:42). The concept that is used in the
OO paradigm for modeling generalizations is the abstract class concept in combination
with the ‘is-a’ relationship.

 62

 Tennis
 Player

 Tennis
 Player

Person

Employee

Employee

Generalization

Person name

Person name
Person name

Person name

Fig. 3.11 Generalization transformation using abstract class constructs

The abstract class can be extensionally defined as the union of extensions of
the subclasses at any point in time.

Person:= Tennis player ∪ Employee

 One of the significant concepts in the object-oriented paradigm is the concept
of inheritance. Rumbaugh et al. (1991:42) give the following description of inheritance:
“…inheritance refers to the mechanism of sharing attributes and operations using the
generalization relationship.” Other definitions found in the literature are: “Inheritance
is a code-sharing mechanism. It allows reuse of behaviour of a class in the definition of
new classes. Subclasses of a class inherit the data structure and the operations of their
parent class (also called a super class) and may add new operations and new instance
variables.” (Tkach and Puttick, 1994:21). “Inheritance is a tool for organizing, building
and using reusable classes” (Cox, 1986:69). For an in-depth discussion on different
types of inheritance see Rahayu et al. (2000).
 In this case the class hierarchy is determined by clustering characteristics of
the class attributes and methods. “Although many of the classes do not represent
physical objects, they are conceptual entities which can be stated in the terminology of
the problem domain.” (Korson and McGregor, 1990:46). “The availability of an
inheritance relation enables the designer to “push higher” and to identify commonality
among abstractions and to produce higher level abstractions, from this commonality.”
(Korson and McGregor, 1990:53). Bollen (2002d) gives an example of how the
aforementioned ‘pushing higher’ process interferes with the
specialization/generalization concepts in the data perspective.

The application of the OO concept of inheritance can lead to the creation of
abstractions in an object class hierarchy that do not represent things, entities or
concepts in a Universe of Discourse. This type of abstraction should be modeled as an
abstract object class or the conditions under which it can be modeled as a non-abstract
object class should be explicitly given in a methodology for the OO-modeler. Snoeck
and Dedene (1996:179-180) offer some guidelines for specializations/generalizations in
object-oriented conceptual modeling.

 63

Association end multiplicities in N-ary relationships in UML class diagrams

As we indicated earlier the static aspects of the UML class diagrams are based to a
large extent on the (Extended) Entity-Relationship model. However, when the
association (end) cardinalities for ternary (or N-ary in general) relationships are
discussed, the defining UML literature gives specific definitions. On page 61 of the
UML notation guide (Rumbaugh et al., 1999) we find the following definition of
association end multiplicity: “Multiplicity for N-ary associations may be specified but
is less obvious than binary multiplicity. The multiplicity on a role represents the
potential number of instance tuples in the association when the other N-1 values are
fixed.” On page 348 of the UML language reference manual (Booch et al., 1999) we
find the following definition of association end multiplicity: “In a n-ary association, the
multiplicity is defined with respect to the other n-1 ends. For example, given a ternary
association among classes (A, B ,C) then the multiplicity of the C end states how many
C objects may appear in association with a particular pair of A and B objects. If the
multiplicity of this association is (many, many, one), then for each possible (A,B) pair,
there is a unique value of C. For a given (B,C) pair, there may be many A values,
however, and many values of A,B and C may participate in the association.” “If the
multiplicity of this association is (many, many, one)………. For a given (B,C) pair,
there may be many A values, however.” This means that the upper multiplicity of many
(*) defined on the association end that is connected to object class A implies there can
exist many links in the object diagram for every possible (B,C) pair. It is not clear
whether a lower or implied lower multiplicity for 0 in a n-ary association in UML
specifies whether an object in the object class that is connected to the association end
can exist independently of the association or not. In Bollen (2002a) an example is
given of the ambiguity for the definition of the lower association end multiplicity in
UML. Because of this ambiguity or ‘fuzziness’ in the definition of the lower
association end multiplicity the expressiveness of this type of graphical constraint type
in UML is rendered insignificant.

Verbalization of sentences for N-ary associations

The precise verbalization of the semantics of a n-ary association in UML is not
possible (Halpin and Bloesch, 1998).

Default existence of object classes

In UML the modeling of semantic relationships as associations between object classes
implies that instances of these object classes can exist on their own (Bollen 2002b),
UML does not give guidance on how to suppress these non-existing domain semantics.

Association class and qualifier as naming conventions

Next to the identification attribute(s) that can be used to model the domain naming
conventions in UML, there exist a number of alternative referencing modes: the
association class and the association qualifier (Bollen, 2002b). However, the choice of
a specific referencing mode can only be justified if additional domain semantics have
been analyzed.

 64

3.6.2 Deficiencies in the UML way of working

UML is a modeling language without a modeling process or procedure (Liang,
2003:83). Liang (2003) gives a procedure for mapping use cases into classes of a class
diagram. In UML a requirements determination procedure is lacking (Bollen, 2002c)
that specifies how the UML can be used to model the domain requirements in terms of
the data model, static constraints, dynamic constraints, static derivation rules and
dynamic rules. Bollen (2002c:24) proposes an outline of a modeling procedure that can
be used for applying the necessary UML modeling concepts in order to model those
domain semantics that are necessary for the requirements determination (see section
2.1). In the defining UML literature (Booch et al., 1999; OMG, 2002; Rumbaugh et al.,
1999), however, such a rudimentary procedure outline is missing and therefore, the
consistent application of UML modeling constructs can never be guaranteed.
 Juristo et al. (1999:140) give an overview of research that indicates that there
are no rigorous criteria for identifying the components of OO conceptual models other
than procedures that contain steps that tell an analyst what to do, instead of how. See
for an example Nanduri and Rugaber (1996) who took one of the predecessors to UML
as their OO methodology: OMT (see Rumbaugh et al., 1991).

Rumbaugh’s modeling steps

The modeling procedure that is recommended by Rumbaugh et al. (1991) and
summarized in Nanduri and Rugaber (1996:10) contains the following steps:

 Step 1: Identify objects and classes (nouns)
 Step 2: Identify associations between objects (verb phrases)
 Step 3: Identify attributes of objects and associations (adjectives)
 Step 4: Identify operations (verbs and adjectives)
 Step 5: Organize and simplify object classes using inheritance
 Step 6: Iterate and refine the model

3.7 CONCLUSIONS ON THE WAY OF -MODELING,

 -WORKING AND - CONTROLLING FOR THE
 REQUIREMENTS DETERMINATION
 APPROACHES FROM THE LITERATURE

We now have analyzed three members of the three most prominent families (ER, fact
orientation, object orientation) of requirements approaches from the literature. While
analyzing specific instances of these three approaches (McFadden’s EER, ORM and
UML) we have discovered modeling deficiencies in each of them. Although a number
of deficiencies that we, for example, have found in approach A might have been
addressed in approach B, the conclusion so far is that each of these three approaches
contains some deficiencies. In this chapter we will therefore summarize the extent to
which any deficiency that is found in a single approach is addressed or is not addressed
in at least one of the other methodologies. In addition we will indicate the extent in

 65

which the three specific modeling approaches comply with the other criteria for
requirements determination methods that we have given in chapter 2 of this thesis.

3.7.1 Overall modeling deficiencies

The (E)ER and ORM approaches basically allow an analyst to incorporate all
application semantics (static and dynamic if applicable) that can be modeled by the
approach into one diagram type e.g. an ER-schema or an ORM information model or
information grammar. In UML there exist a multitude of diagram types in which it
remains unclear what diagram types must be used for the modeling of the application
system’s dynamic features (Dori, 2002). However, for the main purpose of the research
in this thesis we have already stated that the notations that are used by the different
RDM’s are of secondary importance.

3.7.2 Modeling deficiencies regarding the data model for the way of modeling

In this section we will compare the deficiencies as we have found them in the three
approaches which mainly are concerned with the data model, e.g. the definition and
naming of domain concepts and their semantic relationships.

Modeling facilities for n-ary relationships

ORM provides modeling support for N-ary and binary relationships. In ORM a binary
relationship is a special case of a N-ary. The definitions of uniqueness and mandatory
role constraints are orthogonal to the arity of the fact type(s) in the information
structure diagram in ORM (this means that ‘look here, look here’ variant is applied for
all arities).

It is possible, however, to model N-ary relationships in the EER approach and
the UML class diagrams. However, only a few EER dialects, explicitly point at the
necessity of a N-ary relationship concept (e.g. Teorey et al., 1986: 202; Thalheim,
2000:40). The main difference between the modeling facilities for N-ary relationship in
EER and UML on one side and ORM on the other is in the dependency that exist
between the application of cardinality constraints (or association end multiplicities) and
the modeling of relationships/associations because some common business rules can
not be expressed easily at all times in EER and UML because of ambiguities in the
definition of participation cardinalities.

The existence of multiple information bearing constructs

In (E)ER and UML at least two information bearing constructs are available, in EER
these are the attribute and relationship, in UML this is the class attribute and
association.

In ORM the fact type is the only information bearing construct. An exception
within the plethora of EER/OO approaches for requirements determination approaches
in terms of the number of information bearing constructs, is Embley’s et al. OSA
(Object oriented Systems Analysis) approach (Embley et al., 1992) in which the

 66

declarative information is represented in the Object Relationship Model. In this model
the single information bearing construct is the relationship.

Facilities to capture precise domain semantics of naming conventions

UML and ORM provide facilities for capturing (at least) the names of the name classes.

Most (E)ER dialects lack a facility for recording name classes for concepts
that are modeled as attributes at all times. All three approaches lack a way of explicitly
recording the context in which the names of a name class are valid for referencing
entities or concepts of a given type.

The co-existence of different referencing modes including object ID’s

In ORM three ways of referencing entities exist and in UML entities can be referenced
using a combination of attribute (names)20 or as an association qualifier or as an
association class.

In EER entities that need to be referenced by names for a name class can only
be modeled as entity types in which attributes or composite attributes can be applied
(McFadden et al., 1999: 219). In most EER dialects gerunds can be defined which is
similar to association class construct in UML.

Facilities for specification of how to communicate semantic relationships in data
models

In EER and UML there’s no facility for verbalizing the relationships that are modeled
as N-ary relationships in a precise and unambiguous way. In UML verbalization into
sentences is only possible for binaries associations that use an optional marker (Halpin
and Bloesch, 1999:8). In ORM these facilities exist for all semantic relationships in an
application domain.

Naming conventions for elements/concepts in data models

If we want to communicate the content of the data model in a way that is ‘diagram-
free’ we miss naming conventions for the roles and/or fact types in ORM. Furthermore,
the optionality of the role concept in EER and UML can lead to additional application
model verbalization problems. This severly impacts the traceability of the requirements
documents in ORM, EER and UML.

The facility to capture the precise generalization/specialization semantics.

In most extended ER approaches (Balaban and Shoval, 2002; Kolp and Zimanyi, 2000;
Scheer and Hars, 1992; Silva and Carlson, 1995; Teorey et al. 1986; Theodoulidis et
al., 1991) and ORM (Halpin, 2001b) modeling constructs are defined that enable the

20 Such a combination of attribute names, however, needs a static constraint that specifies that
thi(e)s(e) attribute(s) can serve as a reference type. This means that in UML, domain based
naming conventions are encoded as static constraints.

 67

analyst to model the specialization/generalizations relationships that exist in the
application domain.

In UML, however, it is possible to create ‘inheritance’ trees in which the
generalizability of methods determines a specialization/generalization hierarchy other
than is justified by the domain ontology.

3.7.3 Modeling deficiencies regarding the static constraints for the way of

modeling

Extent in which business rules can be modeled as static constraints

The business rules that can be modeled as static constraints in EER reflect those
domain semantics that can be encoded as cardinalities in binary relationships. The ER+
dialect in addition contains a subset constraint (Kolp and Zimanyi, 2000), Rochfeld and
Negros (1992) define a range of inter-relationship constraints in their ER dialect;
inclusive FIC, exclusive FIC, simultaneity constraint.

In UML this is extended to include attribute multiplicities. Furthermore UML
has the facility to model some types of exclusion and subset constraints. Furthermore
UML has the object constraint language (OCL) that enables it to model a wide range of
domain semantics.

ORM offers the most pre-defined graphical static constraint types for
encoding business rules.

Interpretation of cardinality constraints/association end multiplicities

The mimimum relationship cardinalities and/or association end multiplicities in many
EER dialects and in UML, especially for N>2 are not or at best ill-defined. In EER a
number of interpretations exist for cardinality constraints. Dullae et al. (2003) give two
archetypes of interpretations (‘look here, look across’(LELA) and ‘look across, look
across (LALA)). In the EER flavor that we have analyzed in this thesis (McFadden et
al, 1999: 85-165) we have the LALA variety for binary relationships. However for N-
ary relationships the cardinality semantics totally change. McFadden et al. use two
ways for encoding N-ary domain semantics: a N-ary relationship as an associative
entity of arity (<= N) having 1 or more relationship attributes or as a binary having at
least 1 relationship attribute. However, for those application areas in which it is not
possible to identify a concept in the application domain as gerund and in which it is not
possible to use relationship attributes, the interpretation of the minimum cardinalities
for such a ‘pure’ N-ary (EER) relationship remains ambiguous and the fact that the ER
approach is used for the creation of requirements specifications, does not give any
guidance in how to interpret cardinalities (see figure 3.3).

The multiplicity constraints on association ends defined in UML specify any
range of occurrence frequencies applied to a single role for binaries (for N-aries, such a
range indicates what occurrence numbers are possible when the other n-1 classes have
a fixed value). ORM partitions this multiplicity concept into the orthogonal constraint
types: mandatory role constraints and frequency constraints (Halpin and Bloesch,
1999:11).

 68

Default existence constraints

In UML entities or objects are allowed to ‘exist’ independently of the relationships they
are involved in (Bollen, 2002b:133).

In EER entity types are strong by default (McFadden et al., 1999: 92-93)
which means that they are allowed to exist independently of the relationships they are
involved in.

In ORM entity types are not allowed to exist independently by default. Bollen
(2002b) concludes that in UML and for the same reason in EER when a (binary or
higher order) semantic relationship is modeled, unary relationships that declare the
existence of entities or objects are modeled at the same time. This means in practice
that to be able to model such a (binary or higher order) relationship (on its own) the
analyst has to declare in EER that the entity type that is not allowed to exist
independently is assigned the status weak (Kolp and Zimani, 2000: 1059; Tsichritzis
and Lochovsky, 1982:182) and in UML a textual constraint must be attached that states
that each instance should at least participate in one of the relationships (Bollen,
2002b:133). We note that in an evolving requirements specification this implies that
such a constraint must again be specified whenever a new relationship in which the
object class participates is added to the EER diagram or UML class diagram.

3.7.4 Modeling deficiencies regarding the dynamic constraints for the way of

modeling

In this paragraph we will compare the EER model, the UML and ORM on the facilities
that they provide for modeling dynamic constraints. We will use a number of
subclasses of dynamic constraints that can be found in De Brock (2000). De Brock
makes a distinction into subclasses of dynamic constraints. Prabhakaran and
Falkenberg (1988) give modelling constructs for transition oriented constraints (TOC)
in NIAM.

Cumulativity of tuples, key attribute value combinations, attribute value combinations

In the terminology of the application information base this cumulativity requirement
expresses that every fact that has been entered into the application’s information base
should stay in the application’s information base. In EER no provision for such a
domain rule exist, in UML the changeability qualification can be defined on an
attribute or association end of binary associations (Halpin, 2001b:393) and be assigned
the value add Only (Rumbaugh et al., 1999: 166, 184). In ORM changeability
constraints are not supported (Halpin, 2001b:395).

Non-decreasing attribute values and non-decreasing number of tuples

These constraint types can not be specified in EER and ORM.

Integrity constraints on initial values

UML may assign initial values to attributes, EER and ORM (Halpin, 2001b:390) do not
support this.

 69

Life cycles

UML supports this in the form of state charts and ORM uses a state transition fact type
in which the graphs in the life cycle can be captured as data (Halpin, 2001b:299). EER
does not support this type of constraint.

Changing Life cycles

UML supports this in the form of state charts, but a change in life cycle implies
remodeling. ORM uses a state transition fact type in which the graphs in the life cycle
can be captured as data (Halpin, 2001b:299) and therefore changes in the life cycle can
be implemented on an information base level. EER does not support this type of
constraint.

3.7.5 Modeling deficiencies regarding the static derivation (rules) for the way of
 modeling

In the specific EER dialect that we have studied (McFadden et al., 1999) only
provisions are given for static derivation (rules) that refer to derived attributes.
Furthermore these derived attributes are restricted to those that can be derived from
other attributes (McFadden et al., 1999:95). It remains unclear whether derived
attributes that partly need relationships instances as an input should be signified. In
most cases, however, no modeling constructs in EER are given that allow us to model a
precise specification of a derivation rule. Rauh and Stickel (1996) give an extension to
the ER approach called ERMded, which contains modeling, constructs for derivation
rules.

In ORM, derivation rules are written as text below the diagram (Halpin,
2001b, 97). We note that derivation rules should contain explicit references to roles in
the information structure diagram. We note however that the data structure of a derived
fact type is not required to be contained in the diagram (Halpin, 2001b:99) but if it is, it
must be distinguished from the base diagram by an asterix (Halpin, 2001b:100).

In UML a static derivation (rule) is modeled as a derived element (i.c. a
derived attribute or a derived association) (Rumbaugh et al., 1999:254-255). We note
that in UML, the derived attribute or association is included in the class diagram and
the derivation rule is specified and included in the class diagram. Furthermore, UML
allows us to specify (the more complicated) derivation rules (in terms of the number of
classes and relationships involved in an activity diagram (Bollen, 2002c:23))

3.7.6 Modeling deficiencies regarding the dynamic rules for the way of modeling

The EER dialect in McFadden et al. (1999) does not provide facilities for the modeling
of dynamic rules. Gorman and Choobineh (1991) and Silva and Carlson (1995) do
provide an object-oriented extension to ER that facilitates the modeling of dynamic
rules.
 In ORM (Halpin, 2001b; Halpin and Orlowska, 1992) no facilities are given
for modeling dynamic rules. Prabhakaran and Falkenberg (1988:100) introduce trigger-
precedent-consequent triplets in combination with a NIAM conceptual schema.

 70

 UML provides modeling facilities for the encoding of event-condition action
constraints. Bollen (2002c) states that an advanced state chart in UML can be used to
model the event-condition action constraints (Rumbaugh et al., 1999: 447-448).

3.7.7 Modeling deficiencies regarding the way of working and way of
 controlling

In the EER and OO families of requirements modeling languages, some authors have
tried to define a modeling procedure; however these procedures basically specify what
an analyst should do rather than prescribing how these steps must be performed. In
combination with the choices that are inherent to the multitude of information bearing
constructs in EER and UML, these procedures are prone to a ‘deadly embrace’ in terms
of the knowledge on the end result that must be available before the initial
requirements can be modeled.
 Another deficiency in many EER dialects is that the requirements specification
that is expressed in such an EER diagram is not complete in terms of domain
semantics. In some approaches subsequent steps are given that should transform the
requirements specification into an implementation schema, e.g. a relational schema.
This, however, means that in this transformational stage from a requirement
specification into a design specification domain, still domain knowledge needs to be
‘injected’ to determine the appropriate functional dependencies (see Teorey et al.
(1986) and Ram (1995)).

In ORM all semantics regarding functional dependencies are incorporated in
the information model or conceptual schema. In the fact-oriented approach, the
conceptual schema design procedures in Halpin and Orlowska (1992) and Halpin
(2001b), however, do not specify how the instances of the pre-defined constraint types
can be instantantiated at all times.

3.7.8 Summary of Modeling deficiencies in the EER, ORM and UML
 approaches

In table 3.3 we have summarized the deficiencies from the three approaches studied. A
‘+’ denotes that an approach does not have this language or procedure deficiency. A ‘0’
means that an approach has this deficiency to some extent. A ‘- ‘means that an
approach has this deficiency to the highest extent.

 71

Table 3.3 Summary of the comparison of EER, ORM and UML approaches on modeling
 deficiencies.

Modeling
deficiencies

 EER ORM UML

REQUIREMENTS LANGUAGE/PROC. Deficiency
Data Model Facilities for n-ary relationships 0 + 0
 Facilities for sem. of naming

conventions
- 0 0

 Existence of multiple information
bearing constructs

0 + -

 Facilities for naming conventions of
modeling concepts

- - 0

 Co-existence of different reference
modes

0 - -

 Facilities for capturing verbs in data
models

- + 0

 The facility to capture the precise
generalization/specialization semantics

 + + 0

Static constraints Extent in which static constraints can
be modeled

0 + +

 Interpretation of cardinalities/aem’s - + -
 Default existence constraints - + -
Dynamic
constraints

Cumulative of value combinations - - +

 Non-decreasing values - - -
 Integrity constraints on initial values - - +
 Life cycles - + +
 Changing life cycles - + 0
Static Derivation 0 + +
Dynamic Rules - - +

3.8 THE SUITABILITY OF EXISTING APPROACHES FOR
 REQUIREMENTS DETERMINATION WITH RESPECT
 TO THE COMPLETENESS-, DOMAIN RICHNESS,
 EFFICIENCY AND FORMALITY CRITERIA

In chapter 2 we have defined four criteria that can be considered relevant in the context
of requirements determination. In this section we will summarize the findings from the
literature survey on existing requirements determination approaches with respect to
these four criteria: domain richness, completeness, efficiency, and formality.

With respect to the domain richness criterion we remark that this criterion
contains a number of dimensions. The dimension perception refers to the extent in
which different domain users have a different perception of an underlying reality. This
means that the application of a requirements determination method must lead to a
requirements specification that reflects the (possibly) different perceptions of an
underlying reality by different user groups. It is possible to reflect these difference
perceptions by using the EER, UML and ORM approaches, whenever they are
embedded in a procedure that enables an analyst to integrate the different views from

 72

different user groups on the ‘underlying reality’ by integrating the sub-schemas of
these users into a final ‘overall’ requirements specification in which the different
perceptions are made explicit. So far, the EER, UML an ORM approaches that we have
discussed in this chapter do not give provisions for this, however, Hayne and Ram
(1995:100-101) report on a design checking tools (EasyER, GAMBIT and DDEW) for
(E)ER models.

The dimension turbulence characterizes the extent in which an application
domain is subject to changes in the business data and business rules. While discussing
the characteristics of the data model and the static constraints in the EER, UML and
ORM approaches we have remarked that there is an interaction between the definition
of set of modeling constructs and the extent in which a specification has to be
remodeled when requirements are added to the model or change in general. We
concluded that the EER and UML approaches are most prone to remodeling because of
the multitude of information bearing constructs (Halpin and Bloesch, 1999:8). ORM
addresses those issues mentioned but has a problem with a multitude of naming
conventions which might lead to unstable models.

With respect to the dimension tacitness, we can say that the EER, UML and
ORM approaches basically have the assumption that users will be able to express their
initial requirements in natural language, e.g. in a way that the data model, (static and
dynamic) constraints and static derivation and dynamic rules can be written down in a
requirements document. This restricts the applicability of these approaches to those
domains that exclusively contain explicit knowledge. However, we think that a
requirements determination methodology must be able to capture (at least some of)
those tacit business rules that are implicit but that can be made explicit in the
terminology of Kim et al. (2003).

With respect to the dimension anchoring we can say that the requirements
determination process in which we use EER and UML models for our specification
language are in principle not limited to any specific range on the anchoring scale. ORM
is anchored in familiar examples or data use cases (Halpin, 2001b:60) and it requires
the domain expert to come up with these real examples and therefore is applicable for
those domains that are on the ‘tangible’ side of the anchoring scale (see chapter 2).

A brief conclusion regarding the suitability of the three approaches that we
have studied in this chapter of this thesis is that the EER and ORM approach do not
comply to the completeness criterion for the way of modeling that was defined in
chapter 2 and that contains a description of what type of ‘domain knowledge’ in
essence must be incorporated in a requirements specification. Furthermore, there exists
a large difference between the families of approaches and even between members
within a given family in terms of the extent in which the application domain semantics
can be expressed in the data model, and as static or dynamic constraints, static
derivation rules or dynamic constraints. With respect to the completeness criterion for
the way of working we can conclude that ORM is the only approach that provides some
assurance that all relevant semantic relationships in the data model and some types of
static constraints will be detected in the application UoD. This means that there still is
an opportunity to improve the requirements determination approaches we have
surveyed in this chapter in terms of the completeness aspects that were given in section
2.1.

With respect to the efficiency criterion for the way of modeling we must
remark that in EER and UML in a number of cases remodeling is necessary not

 73

because domain semantics have changed, but because the attribute modeling construct
has been applied in the initial requirements specification. With respect to the efficiency
in the way of working we concluded that in some species of the family of EER
approaches modeling procedures do exist. However, they rather tell an analyst what to
do next than to specify how he/she must do it. In ORM a CSDP (conceptual schema
design procedure) is given that gives more guidance on how an analyst must apply the
modeling concepts than in the EER counterparts. However, with respect to the
derivation of static constraints ORM does not give a procedure that specifies how an
analyst can find all instances of such a constraint type in a given UoD. In the defining
literature of UML no (rudimentary) procedure is provided that tells an analyst how to
detect instances of constraints (in a dialogue with a domain expert). With respect to the
efficiency in the way of controlling we must conclude that none of the approaches
(EER, ORM and UML) provides quality assurance steps and the EER and UML
approaches do not provide an activity structure that gives handles for optimizing
performance, cost and time.
 With respect to the formality criterion for the way of modeling we can
conclude that in many (E)ER approaches and in the UML, it is not possible to apply a
consistent definition for minimum cardinalities or multiplicities across all types of
semantic relationships. In UML it is not clear how the modelling concepts that are used
in the 9 different diagram types are related on the level of an application requirements
specification. In ORM an inconsistency is found with respect to naming conventions.
Furthermore, we remark that the optionality or non-existence of some modeling
constructs in all three approaches that we’ve studied might lead to imprecise and
inconsistent requirements specifications. The non-required naming conventions for
model elements in EER, UML and ORM can lead to traceability problems.

With respect to the formality criterion for the way of working we can conclude
that for EER and UML the formality of the procedure is not relevant because there
hardly exists any procedure. With respect to the CSDP in ORM we remark that those
segments of the CSDP that can be considered prescriptive documents are at most semi-
formal. In EER, UML and ORM no procedure exists that allows an analyst to question
the assumptions on which the utterance of the domain semantics is based.

Table 3.4 Comparison EER, ORM and UML approaches on completeness, domain richness,
 efficiency and formality criteria for the way of modeling, way of working and way of
 controlling

 EER ORM UML
 W

o
M

W
O
W

W
o
C

 W
o
M

W
o
W

W
o
C

 W
o
M

W
o
W

W
o
C

Completeness - - n.
a.

 0 0 n.a. + - n.a

Domain
Richness

- + n.
a.

 0 - n.a. - 0 n.a.

Efficiency - 0 - 0 0 - - - -
Formality - - - - - + - - -

 74

The position of these approaches is basically that the domain requirements that are
uttered by the user are encoded in the model 1-on-1. ORM claims in steps 3, 4 and 7 to
perform checks on sample populations; however, it does not give guidelines on how to
perform these checks in a dialogue with the responsible domain user.

With respect to the formality criterion for the way of controlling we must
conclude that there exist no formal quality assurance algorithms in EER, UML and
ORM. Finally we can conclude that ORM is the only approach that has facilities for
formally planning a requirements determination project in terms of the stages in the
conceptual schema design procedure (CSDP).

In table 3.4 we have summarized the deficiencies from the three approaches
studied. A ‘+’ denotes that an approach does fully comply with this criterion for the
given aspect of the RDM. A ‘0’ means that an approach complies to some extent. A ‘- ‘
means that an approach does not comply at all.

After studying the existing literature on RDM’s we can conclude that no
single approach fulfills the criteria that were given in chapter 2. To put it even stronger:
even a compilation of approaches in which the best features of a number of approaches
will be combined, will not comply with the four quality criteria from chapter 2. In
chapter 4 we will use the flaws, inconsistencies and omissions that we have diagnosed
in the state-of the-art in RDM’s when we operationalize the quality criteria from
chapter 2 into an operationalized design specification for a to-be designed RDM.

3.9 REFERENCES

Abrial, J. (1974): Data Semantics. In: Klimbie, J., Koffeman, K. (eds.): Data Base
Management, North Holland, Amsterdam. 1-59

Akoka, J., Comyn-Wattiau, I. (1996): Entity-relationship and object-oriented model
automatic clustering. Data & Knowledge Engineering 20: 87-117

Balaban, M., Shoval, P. (2002): MEER-An EER model enhanced with structure
methods. Information Systems 27: 245-275

Bollen, P. (2002a): Using Object-Role modeling for capturing user requirements
expressed as UML class diagrams., In: Callaos, N., Hernandez-Encinas, L., Yetim, F.
(eds.) Proceedings 6th world conference on Systemics, Cybernetics and Informatics,
Orlando, Florida, volume I, Information systems development I, p. 305-310.

Bollen, P. (2002b): A formal Transformation from Object Role Models to UML class
Diagrams. In : Halpin, T., Siau, K., Krogstie, J. (eds.) Proceedings of the 7th
CAISE/IFIP-WG8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design. Toronto, Canada p. 132-143.

 75

Bollen, P. (2002c): De totale samenhang tussen de diagramsoorten in UML. Meteor
research memo RM 02/048. Faculty of Economics and Business Administration.
University of Maastricht.(in Dutch)

Bollen, P. (2002d): Using the OO paradigm for conceptual modeling: the need for a
methodology’, In: M. Hunter and K. Dhanda (Eds.) proceedings ISoneworld 2002, Las
Vegas, U.S.A.

Booch, G., (1994): Object-oriented analysis and design with applications, 2nd edition,
Benjamin-Cummings.

Booch, G., Rumbaugh, J., Jacobson, I. (1999): The unified modeling language user
guide, Addison-Wesley

Bots, J., van Heck, E., van Swede, V., Simons, J. (1990): Bestuurlijke Informatiekunde;
Een praktisch studie- en handboek voor de mondige gebruiker van informatiesystemen.
Cap Gemini publishing/Pandata b.v. (in dutch)

Breutmann, B., Falkenberg, E., Mauer, R. (1979): CSL- A language for Defining
Conceptual Schemas. In: Database Architecture. Bracchi, G. et al. (eds.). North-
Holland

Brown, A.W. (1991), Object-oriented databases: their applications to software
engineering, McGraw-Hill.

Bubenko, J., Wangler, B. (1992): Research Directions in conceptual specification
developments. In: Conceptual Modeling, Databases, and Case (Loucopoulos, P., Zicari,
R. (eds.)). Wiley. 389-412

Chan, H., Poo, D., Woon, C. (1998): An object-oriented implementation of an entity
relationship model. Journal of Systems and Software 41: 117-225

Chen, P. (1976): The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database systems 1 (1): 9-36

Connolly, T., Begg, C., Strachan, A. (1996): Database Systems: a practical approach to
design, implementation and management. Addison-Wesley

Cox, B.J., (1986): Object-oriented programming. Addison-Wesley.

Davis, A. (1995): Object-Oriented Requirements to Object-Oriented design: An Easy
Transition ?. Journal of Systems and Software 30: 151-159.

De Brock, B. (2000): A General Treatment of Dynamic Integrity Constraints. Data &
Knowledge Engineering 32: 223-246

DeMarco, T. (1978): Structured analysis and System Specification. Prenice-Hall.

 76

Deng, P-S., Fuhr, C. (1995): Using an object-oriented approach to the development of a
relational database application system. Information & Management 26: 107-121

Dittrich, K. (1990): Object-oriented database systems: the next miles of the marathon.
Information Systems 15(1): 161-167

Dori, D. (2002): Why significant UML change is unlikely. Communications of the
ACM 45(11): 82-85

Dullea, J., Song, I-Y., Lamprou, I. (2003): An analysis of structural validity in entity-
relationship modelling. Data & Knowledge Engineering 47: 167-205.

Embley, D., Kurtz, B., Woodfield, S. (1992): Object-Oriented Systems Analysis: A
Model Driven Approach. Prentice-Hall

Engels, G., Gogolla, M., Hohenstein, U., Hulsmann, K., Lohr-Richter, P., Saake, G.,
Ehrich, H-D. (1992): Conceptual modelling of database applications using an extended
ER model. Data & Knowledge Engineering 9: 157-204

Falkenberg, E. (1976a): Concepts for Modelling Information. In: Nijssen, G. (ed.),
Modelling in Database Management Systems, North-Holland, Amsterdam ,pp.95-109

Falkenberg, E. (1976b): Significations: the key to unify data base management.
Information Systems 2: 19-28

Falkenberg, E., Nijssen, G., Adams, A., Bradley, L., Bugeia, P., Campbell, A., Carkeet,
M. Lehmann, G., Shoesmith, A. (1983): Feature Analysis of ACM/PCM,CIAM, ISAC
and NIAM. In: Olle, T., Sol, H. and Tully, C. (eds.) Information systems design
methodologies: a feature analysis. IFIP. North-Holland. 169-190.

Floyd, C. (1986): A comparative evaluation of system development methods. In: Olle,
T., Sol, H., Verrijn-Stuart, A. Information Systems Design Methodologies: improving
the practice. North-Holland

Gane, C., Sarson, T. (1979) : Structured systems-analysis: tools and techniques.
Englewood Cliffs, NJ, Prentice-Hall.

Gogolla, M., Hohenstein, U. (1991): Towards a semantic view of an Extended Entity-
Relationship Model. ACM transactions on database systems 16 (3): 369-416

Griethuysen,J. van, (ed.). (1982): Concepts and terminology for the Conceptual
Schema and the Information Base, Report of ISO TC97/SC5/WG3.

Gustafsson, M., Karlsson, T., Bubenko, J. (1982): A declarative approach to conceptual
information modeling. In: Verrijn-Stuart,A., Olle T., Sol H., (eds.): Proceedings of IFIP
TC-8 Conference on Comparative Review of Information Systems Methodologie
(CRIS-1), North- Holland Amsterdam.

 77

Halpin, T. (1996): Business Rule and Object Role modeling. Database Programming &
Design. October.

Halpin, T. (2001a): Augmenting UML with Fact-orientation , in:workshop
proceedings: UML: a critical evaluation and suggested future, HICCS-34 conference.

Halpin, T. (2001b): Information Modeling and Relational Databases, Morgan
Kaufmann Publishers

Halpin, T., Bloesch, A. (1998): A comparison of UML and ORM for data modelling. In
Proceedings of the 3th CAISE/IFIP-WG8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design. Pisa. Italy.

Halpin, T., Bloesch, A. (1999): Data modeling in UML and ORM: a comparison.
Journal of Database Management 10(4): 4-13

Halpin, T., Orlowska, M.(1992): Fact-oriented Modelling for Data Analysis. Journal
of Information Systems 2: 97-118

Hammer, M., McLeod, D. (1981): Database Description with SDM: A Semantic
Database Model, ACM Transactions on Database Systems 6(3): 351-386

Hanani, M., Shoval, P. (1986): A combined methodology for information systems
analysis and design based on ISAC and NIAM. Information Systems 11(3): 245-253.

Hayne, S., Ram, S. (1995): Group Data Base Design: Addressing the View Modeling
Problem. Journal of Systems and Software 28: 97-116

Henderson-Sellers, B., Edwards, J.M. (1990): The object-oriented system's life cycle.
Communications of the ACM 33(9):143-159

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992): Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley.

Juristo, N., Morant, J., Moreno, A. (1999): A formal approach for generating OO
specifications from natural language. Journal of systems and software 48: 139-153.

Kim, Y-G., March, S. (1995): Comparing Data Modeling Formalisms.
Communications of the ACM 38(6): 103-115

Kim, T-G., Yu, S-H., Lee, J-W. (2003): Knowledge strategy planning: methodology
and case. Expert Systems with Applications 24(3): 295-307

Kobryn, C. (1999): UML 2001: A standardization odyssey. Communications of the
ACM 42(10): 29-37

 78

Kolp, M., Zimanyi, E. (2000): Enhanced ER to relational mapping and interrelational
normalization. Information and Software Technology 42: 1057-1073

Korson, T., McGregor, J., (1990): Understanding object-oriented: a unifying paradigm.
Communications of the ACM 33(9): 41-60.

Leung, C., Nijssen, G. (1988): Relational Database design using the NIAM conceptual
schema. Information Systems 13: 219-227

Liang,Y. (2003): From uses cases to classes: a way of building object model with
UML. Information and Software Technology 45: 83-93

Liddle, S., Embley , D., Woodfield, S. (1993): Cardinality constraints in semantic data
models. Data & Knowledge Engineering 11: 235-270.

Lim, E-P., Chiang, R. (2000): The integration of relationship instances from
heterogeneous databases. Decision Support Systems 29: 153-167

Lundeberg, M. , Goldkuhl, G., Nilsson, G. (1979): A systematic approach to
information systems development, Information Systems 4: 1-12 , 93-118.

Lundeberg, M. (1982): The ISAC Approach to Specification of Information Systems
and its Application to the Organization of an IFIP Working Conference. In: Olle et al.
(eds.), Information System Design Methodologies- a comparative review,North-
Holland, pp 173-234.

Maarssen, L., McGowan, G. (1986): Structured Analysis and Design Technique
(SADT). Methodieken voor informatiesysteemontwikkeling, 1983.NGI (in dutch)

McAllister, A. (1998): Complete rules for n-ary relationship cardinality
constraints.Data & Knowledge Engineering 27: 255-288

McFadden, F., Hoffer, J., Prescott, M. (1999): Modern Database management, 5th
edition, Addison-Wesley.

Meyer, B. (1988): Object-oriented Software Construction. Prentice Hall

Misic, M., Graf, D. (2004): Systems analyst activities and skills in the new millennium.
Journal of systems and software 71: 31-36.

Montgomery, S. (1994): Object-oriented information engineering: analysis, design
and implementation, Academic press limited

Mylopoulos, J., Chung, L., Yu, E. (1999): From object-oriented to goal-oriented
requirements analysis. Communications of the ACM 42(1): 31-37

Nanduri, S., Rugaber, S. (1996): Requirements Validation via Automated Natural
Language Parsing. Journal of Management Information Systems 12 (3): 9-19

 79

Nijssen, G. (1977): On the Gross management for the next generation database
management systems. In: Gilchrist,B. (ed.): Information Processing 77 IFIP, North-
Holland, Amsterdam, pp.327-335

Nijssen, G., Halpin, T. (1989): Conceptual schema and relational database design: A
fact based approach, Prentice-Hall, Englewood Cliffs.

Olive, A. (1982): DADES- a methodology for specification and design of information
systems. In: Verrijn-Stuart,A., Olle T., Sol H., (eds.): Proceedings of IFIP TC-8
Conference on Comparative Review of Information Systems Methodologie (CRIS-1),
North- Holland Amsterdam.

OMG, (2002). UML Specification v. 2.0.

Opdahl,A., Sindre, G. (1994): A taxonomy for real world modelling concepts.
Information Systems 19: 229-241.

Otero, M., Dolado, J. (2004): Evaluation of the comprehension of the dynamic
modeling in UML. Information and Software Technology 46(1): 35-53.

Parsons, J., Wand, Y. (1997): Using Objects for Systems Analysis. Communications of
the ACM 40(12):104-110

Peckham, J., Maryanski, F. (1988): Semantic Data Models. ACM Computing Surveys
20(3):153-182

Pitrik, R. (1996): Analyzing the Notions of Attribute, Aggregate, Part and member in
Data/Knowledge Modeling. Journal of Systems and Software 33: 113-122

Prabhakaran,N., Falkenberg, E. (1988): Representation of Dynamic Features in a
Conceptual Schema. Australian Computer Journal 20(3): 98-104

Rahayu, J., Chang, E., Dillon, T., Taniar, D. (2000): A methodology for transforming
inheritance relationships in an object-oriented conceptual model to relational tables.
Information and Software Technology 42: 571-592

Ram, S. (1995): Deriving functional dependencies from the entity-relationship model.
Communications of the ACM 38(9): 95-106

Rauh, O., Stickel, E. (1996): Modeling deductive information systems using ERMded.
Decision Support Systems 18: 135-143

Rochfeld, A., Negros, P. (1992): Relationship of relationships and other inter-
relationship links in E-R model. Data & Knowledge Engineering 9: 205-221

 80

Rolland, C., Richard, C. (1982): The Remora methodology for information systems
design and management. In: Verrijn-Stuart,A., Olle T., Sol H., (eds.): Proceedings of
IFIP TC-8 Conference on Comparative Review of Information Systems Methodologie
(CRIS-1), North- Holland Amsterdam.

Rolland, C., Souveyet, C., Moreno, M. (1995): An approach for defining ways-of-
working. Information Systems 20(4): 337-355

Rumbaugh, J. ,Jacobson,I., Booch,G. (1999): The Unified Modeling Language
reference manual, Addison-Wesley.

Rumbaugh, J., Blaha, M., Premeriani, W., Eddy, F. & Lorensen, W. (1991): Object-
oriented modeling and design, Prentice-Hall.

Ruys, H. (1983): De ISAC-methodiek. Methodieken voor
informatiesysteemontwikkeling, NGI (in dutch)

Saiedian, H. (1997): An evaluation of extended entity-relationship models. Information
and Software Technology 39: 449-462.

Scheer, A-W., Hars. A. (1992): Extending Data Modeling to cover the whole
Enterprise. Communications of the ACM 35(9): 166-172

Scheer, A-W. (1994): ARIS toolset: A software product is born. Information Systems
19(8): 607-624

Scheer A-W. (1998): Business Process Engineering: reference models for industrial
enterprises. Springer, Berlin.

Shoval, P., Shiran, S. (1997): Entity-relationship and object-oriented data modeling- an
experimental comparison of design quality. Data & Knowledge Engineering 21: 297-
315

Silva, M., Carlson, G. (1995): MOODD, a method for object-oriented database design.
Data & Knowledge Engineering 17: 159-181

Snoeck, M., Dedene, G. (1996): Generalization/specialization and role in object
oriented conceptual modelling. Data & Knowledge Engineering 19: 171-195

Steimann, F. (2000): On the representation of roles in object-oriented and conceptual
modeling. Data & Knowledge Engineering 35: 83-106

Storey, V. (1991): Relational database design based on the Entity-Relationship model.
Data & Knowledge Engineering 7: 47-83

Teorey, T., Yang, D., Fry, J. (1986): A logical design methodology for relational
databases using the extended E-R model. ACM Computing Surveys 18(2): 197-222

 81

Thalheim, B. (2000): Entity-Relationship Modeling: Foundations of database
technology. Springer verlag.

Theodoulidis, C., Loucopoulos, P., Wangler, B. (1991): A conceptual modelling
formalism for temporal database applications. Information Systems 16(4): 401-416

Tkach D. & Puttick, R., (1994), Object technology in application development, The
Benjamin-Cummings publishing company.

Tsichritzis, D., Lochovsky, F. (1982): Data Models. Prentice-Hall.

Verheijen,G., van Bekkum J. (1982). NIAM: An Information Analysis Method. In:
Verrijn-Stuart,A., Olle T., Sol H., (eds.): Proceedings of IFIP TC-8 Conference on
Comparative Review of Information Systems Methodologie (CRIS-1), North- Holland
Amsterdam, 537-590

Vessey, I., Conger, S. (1994): Requirements Specification: Learning Object, Process,
and Data methodologies. Communications of the ACM 37(5): 102-113

Ward, P. (1986): The transformation schema: An Extension of the Data Flow Diagram
to Represent Control and Timing. IEEE Transactions on Software Engineering 12(2) :
198-210

Wijers, G. (1991): Modelling support in information systems development. Ph.D thesis,
Technical University Delft.

Yourdon, E., (1994), Object-oriented systems design: an integrated approach, Prentice-
Hall.

Yourdon, E. , Constantine, L. (1979): Structured Design. Prentice-Hall.

 82

 83

CHAPTER 4

OPERATIONALIZED DESIGN SPECIFICATION

4.1 INTRODUCTION

The evaluation of existing design alternatives in chapter 3 has lead to the conclusion
that no existing requirements determination method complies with the quality criteria
for a requirements determination method that were given in chapter 2. This leads us to
the development problem according to Van Engelen and Van der Zwaan (1994) since
alternative designs will have to be developed in this research. In this chapter we will
give an answer to the third research-(sub) question that we have given in chapter 1:

What are the necessary elements for the way of modeling, the way of working and the
way of controlling for a requirements determination method so that this method
complies with the quality criteria that we have given for the design specification?

In this chapter we will develop a specification for the to-be designed RDM in chapters
5 and 6 that takes into account the reasons for non-compliance with the criteria from
chapter 2 for many of the existing approaches. This will constitute the design criteria
(or design specification according to Van Engelen and Van der Zwaan (1994)).

We will draw conclusions from the derived criteria in chapter 2 and the
literature survey on the state of the art in requirements determination approaches from
chapter 3 and determine the explicit demands or requirements for the way of modeling,
the way of working and the way of controlling for a ’to-be designed’ RDM according
to the domain richness, completeness, efficiency, and formality criteria. These
operationalized ‘design criteria’ will be used to evaluate the way of modeling of the ‘to
be designed RDM chapter 5 and the way of working and the way of controlling of this
to-be designed RDM in chapter 6.

4.2 RDM DEMANDS FOR THE WAY OF MODELING

4.2.1 RDM demands for completeness in the way of modeling

In chapter 2 we have given a general definition of the completeness criterion for the
way of modeling of a RDM. In this chapter we will refine this definition to cater for
modeling deficiencies that we have encountered while studying a number of existing
approaches.

An information bearing construct must be applicable for all possible types of
semantic relationships that can exist in an application domain. This means that such an
information bearing construct in principle must facilitate the encoding of N-ary

 84

relationships (N>=1). The encoding of binary relationships in such a situation will be a
special case for which N equals 2. The literature survey from chapter 3 reveals that in
most of the requirements specification languages that we have analyzed it is not
possible to capture the abstracted natural language phrasing of a N-ary semantic
relationships in a complete, precise and consistent way (preliminary RMD 1’).

RMD 1’: The information bearing modeling construct in the to be designed RDM must
be able to express the complete, precise and consistent communication semantics of
any N-ary semantic relationship.

Furthermore, the existence of non-domain based naming conventions, for example, a
‘global’ unique object ID in UML is in general not suitable as a naming convention to
be used in application requirements specifications. Furthermore, there must exist one
modeling construct for naming conventions that must be able to capture all domain
semantics regarding the context in which the naming convention is valid. This leads us
to the definition of RMD 2:

RMD 2: The modeling construct(s) for naming conventions must allow for one domain-
based naming convention and must be able to capture the semantics regarding the
context in which the naming convention is valid.

In the literature survey from chapter 3 we have found that in the (E)ER and
OO approaches there is generally no compulsory role modeling construct defined. This
can lead to severe problems when the contents of a requirement specification document
must be communicated in a different way than in the diagrammatic or symbolic format.
To denote a specific involvement of a given object type in a semantic relationship,
especially when such an object or entity type plays more than one role in a semantic
relationship, a compulsory role construct and an appropriate naming convention for
roles must be contained in the requirements specification language.

RMD 3: The to be designed requirements method must contain a role construct and an
explicit naming convention for roles.

From our literature survey in chapter 3 we can conclude that in the state-of-the-art in
requirements specification languages, a difference exist between the modeling
capabilities for business rules between on the one hand EER languages and on the other
hand UML and ORM. The common denominator in terms of the types of business rules
that can be encoded as constraints in each of those approaches can be considered those
types that can be modeled as minimum or maximum cardinalities of relationships. This
means that a to be designed requirements determination method must provide at least
modeling facilities to express those business rules that are encoded as relationships
cardinalities in traditional EER and OO approaches to be complete in terms of the
‘state-of-the-art’ in the way of modeling of existing approaches.

RMD 4: The static constraint types in the to-be designed requirements method must at
least contain those types that enable us to encode those business rules that can be
encoded by relationship cardinalities in EER and UML.

 85

We, finally, note that the operationalization of the completeness criteria should lead to
demands regarding the static derivation (rules), the dynamic constraints and dynamic
rules. These demands, however, will be implied by ‘stronger’ RMD’s in section 4.2.4.

4.2.2 RDM demands for the domain richness in the way of modeling

With respect to the dimension turbulence of the domain richness criterion we can say
that the to-be designed requirements RDM must accommodate the whole range of
values that potentially can characterize an application domain. In case an application
domain is stable, the requirements determination method will not need facilities to cope
with changing requirements, however, if these facilities are available it does not mean
that the method should not be applicable in stable environments. In case of turbulent
application domains, the requirements determination method must have facilities that
allow an analyst to easily adapt the requirements specification document to the
evolving requirements. Ideally a 1-on-1 relation between a domain requirement and a
requirements specification segment should exist. This means that the way of modeling
of the to-be designed RMD must facilitate this 1-on-1 addition or deletion of a specific
domain requirement and would imply that no unnecessary remodeling efforts need to
be undertaken when the application business logic evolves.

RMD 5: A requirements specification that is the result of the application of the to-be
designed requirements determination method must be able to adapt to an evolving
application logic without unnecessary remodeling.

4.2.3 RDM demands for the efficiency in the way of modeling

In this section we will refine the efficiency criterion for the way of modeling from
chapter 2 into design criteria for the number of modeling constructs for the data model
and the robustness of constraint definitions that will be defined in the way of modeling
of the RDM.

In the survey on the existing requirements determination approaches in chapter
3 we have shown how the availability of more than 1 information bearing construct in a
requirements specification language can lead to rework in the requirements
determination process, either in the ‘short-run’ when the initial requirements
specification needs to be adapted or in the ‘long-run’ when an evolving requirement
leads to an adaptation of the requirements specification that has a bigger impact than is
implied by the evolving requirement. The existence of multiple information bearing
constructs can lead to unstable models. This leads us to the requirement (RMD) that a
to-be designed requirements method must contain 1 information bearing modeling
construct. We will, accordingly, redefine RDM 1’ into RDM 1 to cater for this:

RMD 1: A to be designed RDM must contain 1 information bearing modeling
construct. This construct must be able to express the complete, precise and consistent
communication semantics of any N21-ary semantic relationship.

21 N ≥ 1

 86

Another requirement for the to-be designed requirements determination method is the
status of the default existence of application objects or entities. We will require that the
domain semantics that declare the existence of entities or objects on their own (e.g.
without participating in a semantic relationship) should be encoded explicitly and
therefore in the default situation the existence of objects or entities on their own must
not be implied, thereby preventing the modeling rework. Hence, this will have a
positive effect on the efficiency of the to be designed requirements determination
method.

RMD 6: The definition of an application object or entity in the to be designed
requirements method must not imply that it can exist on its own by default.

In the literature survey we encountered inconsistencies in some requirements
specification languages with respect to (some types of) state constraints. Especially, the
minimum cardinalities in some (E)ER approaches and minimum multiplicities in the
UML are not defined in a consistent way. Their definition changes when the arity of
the semantic relationship changes from 2 to N (N>2) or the definition is only valid for
N=2. In the specification language of the to be designed requirements method,
therefore, we demand that a constraint of a constraint type X that is defined on a
semantic relationship of arity N must have the same generic definition as a constraint
of a constraint type X that is defined on a semantic relationship having arity M (where
N≠M). This leads to the following RMD:

RMD 7: The definition of the static constraint types in the to-be designed requirements
method must be the same for all arities of the semantic relationships in the data model
and must contain an explicit reference to the elements in the data model.

4.2.4 RDM demands for the formality in the way of modeling

In this section we will refine the formality criterion from section 2.4 for the way of
modeling into the preciseness of the specifications that can be created using the to-be
designed RDM. Subsequently we will refine the formality criterion for the way of
modeling into a number of consistency requirements between the definition of the
different modeling constructs for the different elements in a requirements specification,
Furthermore, the to be designed requirements determination method needs to allow the
different dynamic constraint types to be encoded. This means that modeling constructs
must be defined that allow us to specify operations on the application’s data base in
terms of evaluating the current data base, but also in terms of evaluating a projected
‘to-be’ state.

RMD 8: The definition of the dynamic constraint types in the to-be designed
requirements method must enable us to explicitly refer to the (actual and projected
states of the) application’s data base.

From the literature survey in we concluded that not all requirements specification
languages have facilities to express derivation rules in a precise way. Not only should

 87

the to be designed RDM specify what semantic relationships are derivable, but the
specification language of the to be designed RDM should also contain modeling
constructs that allow an analyst to precisely denote, how a static derivation takes place
in terms of the knowledge that is contained in (other parts) of the data model. This
requirement (RMD 9) therefore assumes that an effective naming convention is in
place to reference the elements in the data model (see RMD 3 for the naming
convention for roles)

RMD 9: The definition of static derivation (rule) in the to be designed requirements
method must contain an explicit reference to the elements in the data model that serve
as an input for the static derivation (rule) and it must contain a precise specification on
how these input elements lead to the result of the static derivation (rule).

The literature survey in chapter 3 revealed that most requirements determination
approaches that we have studied do not provide facilities to model dynamic constraint
types. In the Unified Modeling Language (UML) a (number of) diagram type(s) exist
that intentionally express these types of constraints. In the UML, the coherence
between the different diagram types is unclear and the consistency between the model
elements that are featured within one or more diagram types must be seriously
questioned. For the to-be designed RDM, therefore we need to be able to define the
dynamic constraints in a consistent way in which the elements in the data structure and
the derivation rules that are involved in a dynamic constraint must be specified
precisely. In an event-condition-action triplet (ECA), an event is something that
‘happens’ within the application subject area. Such an event can be caused by a change
in state of the application information base (internal event) or by something that
happens in the application area outside the information base (external event). This
means that the following demands must be met in terms of the definition of internal
and external events (RMD 10).

RMD 10: An internal event in the to-be designed RDM must be defined as the insertion
or deletion of a specific piece of domain knowledge into or from the application’s data
base. An external event in the to-be designed RDM must be defined as something that
happens in the application domain and that can lead to the insertion or deletion of a
specific piece of domain knowledge into or from the application’s data base or the
execution of a static derivation rule (eventually) under some condition on the content of
the application’s data base.

Furthermore, if we want to enforce the condition under which an event will lead to the
execution of a derivation rule (action alternative 1) and or the insertion/deletion of
information into or from the application’s data base (action alternative 2) we must be
able to express such a condition within the event-condition-action rule as a proposition
on the application data base that any point in time must evaluate to true or false.

RMD 11: A condition in the to-be designed requirements method must be defined as a
proposition on the application’s information base that must yield the value true or false
when evaluated at any point in time.

 88

4.3 RDM DEMANDS FOR THE WAY OF WORKING

4.3.1 RDM demands for completeness in the way of working

From the literature survey of the EER, UML and ORM approaches we concluded that a
mere definition of a fact or constraint type modeling construct, does not guarantee that
all fact types, naming conventions or all instances of such a constraint type will be
‘found’ or ‘expressed’ by domain experts all by themselves at all times. The to-be
designed requirements determination method, therefore, must give guidance to an
analyst in deriving (the verbs of) semantic relationships, naming conventions,
specializations/generalizations and all instances of a specific constraint type that exist
in the application area, for example, in a dialogue with the domain user(s). On the other
hand we will focus the general completeness criterion for the way of working to an
ambition level that is equal to the maximum level of completeness that we can achieve
by applying the existing modeling requirements specification alternatives. This means
that with respect to the way of working for the constraint types that we must
incorporate into a to be designed RDM we will limit ourselves to those constraint types
that can be modeled in (E)ER and UML. This leads to requirement RMD 12.

RMD 12: The definition of the modeling constructs for the data model in the to-be
designed requirements method must be accompanied by some kind of guidance on how
all instances of these modelling constructs can be found in an application subject area.
The definition of the state constraint types in the to-be designed requirements method
must be accompanied by some kind of guidance on how such instances of a constraint
type can be found in an application subject area.

4.3.2 RDM demands for the domain richness in the way of working

With respect to the dimension perception we have concluded that a to be designed
requirements determination method must provide facilities to incorporate the different
views or perceptions of different user (groups) into one requirements specification
document. This means that the to-be designed requirements determination method
needs facilities for the integration of multiple views (of the underlying reality).

RMD 13: A view integration sub-procedure must be defined in the to-be designed
requirements method in which it is specified how an analyst must carry out the
integration of views on the application domain by user (groups) that have a different
perception on the ‘underlying’ reality.

The requirements determination method that will be designed also needs to facilitate
the elicitation of tacit knowledge that is held by the domain user (dimension tacitness).
It is the implicit knowledge that can be made explicit but that can not be uttered ‘out of
the blue’ by the application domain users. It is this knowledge that can be potentially
encoded as a (part of a) data model and the accompanying constraints by eliciting it
from domain users by using one or more ‘knowledge’ elicitation procedures.

 89

RMD 14: The to-be designed requirements determination method must provide
facilities for transforming implicit tacit knowledge into explicit knowledge.

With respect to the dimension anchoring we note that the to be designed
requirements determination method must be able to accommodate the whole spectrum
of starting situations on the anchoring scale ranging from an abstract starting point on
one side to a tangible anchor on the other side.

RMD 15: The to be designed requirements determination method must accommodate
every possible starting point in the requirements determination process ranging from
abstract to tangible; ranging from natural language description to documents that can
only be understood by domain users.

4.3.3 RDM demands for the efficiency in the way of working

We have concluded in chapter 3 that the requirements modeling facilities that exist in
the approaches that we have found in the literature merely tell an analyst what to do
next instead of specifying how these ‘steps’ must be performed in the requirements
determination process itself. The necessity of (a) precise modeling procedure(s) for
instantiating static constraints was already shown. In addition, preceding modeling
steps are needed that specify how to derive the application’s data structure. In addition
to the existing ‘modeling’ procedures in the (E)ER, ORM and UML approaches that
we discovered in chapter 3, we need (a) modeling procedure(s) that not only specifies
what must be done, but also how it must be done in the most efficient way, thereby
minimizing the required number of analysis steps. The way of working for the to be
designed RDM must also be adaptable in the sense that dependent upon context in
which a requirements determination project is carried out, the most efficient way can
be implemented for that project.

RMD 16’: A modeling procedure must be defined in the to-be designed requirements
method in which it is specified how an analyst must carry out the modeling steps in the
most efficient way.

4.3.4 RDM demands for formality in the way of working

As we already discovered in chapter 3, most of the ‘modeling procedures’ that exist in
the ‘state-of-the art’ in requirements determination methods, only tell an analyst what
to do. However, in order to guarantee that different analyst will arrive at the same (or
equivalent) requirements specification in any given project we need not only a
procedure that tells an analyst how to create a requirement specification, but this
procedure must be formally defined, for example as an algorithm. This means that we
will replace the implied RDM 16’with the following RDM:

RMD 16: Formal modeling procedure(s) must be defined in the to-be designed
requirements method in which it is precisely specified how an analyst must carry out a
modeling step in the most efficient way.

 90

4.4 RDM DEMANDS FOR THE WAY OF CONTROLLING

4.4.1 RDM demands for efficiency in the way of controlling

The way of controlling criterion is concerned with issues like project- and quality
management and therefore must be built-in in the requirements determination method.
In each relevant requirements determination step the user must be confronted with the
in-between results (or milestone document) in the terminology that he/she understands
so he/she can question his/her assumptions and validate the interpretation of the
information that he/she supplied to the analyst

RMD 17’: The way of working in the to-be designed RDM must have explicit quality
assuring sub-procedures for the activities of the work breakdown structure and checks
that enables an analyst to validate the information that is supplied by the user and that
confronts a domain user with his/her assumptions and enables a user to validate the
information that is supplied to the analyst.

4.4.2 RDM demands for formality in the way of controlling

This formality in the way of controlling concerned with the extent in which the
activities that are defined within the RDM’s way of working can be formally planned.
This means that we need a work-breakdown structure (Mantel et al., 2001) in the
definition of the way of working in the to-be designed RDM that will allow us to
formally plan the activities in a requirements determination project.

RMD 18: The way of working in the to-be designed requirements determination method
must have a work breakdown structure that allows to formally plan the activities in a
requirements determination project.

The formality in the way of controlling, furthermore, is concerned with the quality
assurance steps in the RDM’s way of working, it means that these quality assurance
sub-procedures must be an integral part of the processes that create the intermediate
RDM ‘products’ and hence we can replace RDM 17’ by RDM 17 :

RMD 17: The way of working in the to-be designed RDM must have explicit formal
quality assuring sub-procedures for the activities of the work breakdown structure and
formal checks that enables an analyst to validate the information that is supplied by the
user and that confronts a domain user with his/her assumptions and enables a user to
validate the information that is supplied to the analyst.

Finally, the RDM must provide facilities in the way of modeling and in the way of
working that enable traceability.

RMD 19: The way of modeling and the way of working in the to-be designed RDM
must have provisions that enable traceability.

 91

4.5 CONCLUSIONS

We have derived in this chapter 19 demands that must be fulfilled by a requirements
determination method that needs to be designed. These demands can be considered to
be operationalizations of the four (groups of) criteria that were given in chapter 2 in
which remedies for the major flaws regarding these criteria, from the existing
approaches that we have studied in chapter 3, are incorporated. Analyzing the research
literature on this topic shows many times that scholars also postulate criteria like: must
be able to timestamp domain data or must contain a modeling construct for modelling
time. We note that the latter examples of criteria in our view belong to the domain
characteristics, and, therefore will end up in a specific requirements specification as
part of a data model and/or one or more constraint instances.

We will use these requirements method demands (RMD’s) to evaluate the to
be designed RDM in chapters 5 and 6 of this thesis.

4.6 REFERENCES

Mantel, S., Meredith, J., Shafer, S., Sutton, M. (2001): Project management in
practice. Wiley and Sons

 92

Developing an alternative design for a requirements
determination method

In the second part of this thesis (chapters 5 and 6) we will develop an alternative design
for a requirements determination method. In chapter 5 we will focus on the way of
modeling by describing what should be contained in a requirements determination
method. In chapter 6 we will focus on the way of working and way of controlling by
precisely describing how the model elements in the requirements specification
language can be instantiated in a specific application subject area and how the overall
requirements determination process must be controlled when using this method.

 93

CHAPTER 522

THE WAY OF MODELING IN NATURAL LANGUAGE
MODELING

5.1 INTRODUCTION

In this chapter we will define the way of modeling of a requirements determination
method that we will call Natural Language Modeling (NLM). The information
modeling constructs in NLM are based upon the axiom that all verbalizable
information (computer screens, reports, note-books, traffic signs and so forth) can be
translated into declarative natural language sentences (Nijssen, 1989:158). It means
that it is not a ‘real’ or ‘constructed’ world that is subject to modeling, but that it is the
communication about such a ‘real’ or ‘constructed’ world (van der Lek et al., 1992). In
this chapter we will show that such a communication oriented way of requirements
modeling will lead to a smaller number of necessary modeling constructs than in
requirements determination methods that we have found in the literature.

The applicability of NLM is not limited to requirements determination but it
can also be applied for the semantic analysis of ‘static’ knowledge domains (Nijssen
and Bollen, 1995). Another area in which NLM can be applied is meta data semantics
for the world wide web (Grönbaek et al. 2000; Broekstra et al. 2002; Resource
Description Framework 2004) and ontologies for the world wide web (Davies, Duke
and Stonkus, 2002; Davies, Weeks and Krohn, 2004). NLM, furthermore provides
facilities for implementing natural language processing for querying large data bases
(Conlon et al., 2004)

The modeling constructs of Natural Language Modeling (NLM) are an
evolution of the modeling primitives that are rooted in the semantic binary model
(Abrial, 1974), the object-role model (Falkenberg, 1976a, 1976b), NIAM (Verheijen
and van Bekkum, 1982) and Fact Oriented Information Modeling (Halpin, 1995;
Halpin and Orlowska, 1992). Amongst other semantic modeling approaches that have
gained popularity, are Sowa’s conceptual graphs (Sowa, 1984).

5.1.1 Organization of chapter 5

In this section we will provide some guidelines for the reader of this thesis on how to
read this chapter. In sections 5.2 through 5.6 we will introduce two primitives and the
basic modeling constructs (roles, intentions, extensions, fact types, naming conventions
and compound referencing schemes) for our to be designed requirements specification
language. The application of these primitives and the modeling constructs based
hereupon, in a requirements determination process will lead to an instance of a basic

22 An earlier version of this chapter was published as ‘Natural Language Modeling and
Application Ontologies.’, Bollen, P., Proceedings ISoneworld 2003, Las Vegas, U.S.A. (2003).

 94

information model that is defined in section 5.7. The discussion of these basic
modeling constructs is illustrated by a ‘running’ example of a university enrolment
UoD. The domain semantics for the UoD of this example are paraphrased in two
locations in this chapter. The first part of our running example is given in section 5.2.
In this first part of the running example the university enrolment of a single (Vandover)
University is considered. The second part of our running example in section 5.6.2
paraphrases the domain semantics of an integrated university enrolment UoD in which
two universities have merged and have streamlined their enrolment activities. This
second part of our example description also includes the dynamic aspects of this UoD.
In section 5.8 we will give the NLM constraint modeling constructs. We advice the
readers that are not familiar with constraints to read appendix A, before reading section
5.8. Readers who are familiar with the constraint modeling construct can skip appendix
A, when reading this thesis. We will illustrate in sections 5.6 through 5.9 how we can
formalize the paraphrased domain semantics from the UoD of the (integrated)
University enrolment example into an instance of NLM requirements specification in
section 5.9. In addition we will explicitly show in section 5.9 how the textual
description of our example maps onto the instances of the modeling constructs from
this chapter and appendix A. In section 5.10 conclusions will be drawn regarding the
extent in which the way of modeling in NLM fulfills the operationalized design criteria
for a requirements determination method that were derived in chapter 4 of this thesis.

5.2 NAMES

We will first introduce the running example for this chapter. In section 5.6.2. we will
give a further description of this running example in which Vandover University has
merged with Ohoa University and in which the dynamic aspects of this (integrated)
UoD will be given.

5.2.1 Example 5.1: University Enrolment part 1

The University Enrolment example will be used to illustrate the modeling concepts
throughout this chapter of the thesis. The first part of the University Enrolment
example will consist of the old situation that deals with the Vandover University. In the
second part of this chapter we will introduce the new situation for the University
Enrolment example in which a merger has taken place between the Vandover and Ohoa
universities. The University of Vandover offers a number of majors in education.
Students can choose between majors in Science, History and Economics.

 95

Vandover University Enrollment
Student id last name major

 1234 Thorpe Science
 5678 Jones Economics
 9123 Thorpe History

Fig. 5.1 Example Vandover University Enrolment (example 5.1).

In figure 5.1 an example is given of a university enrolment document (example 5.1). In
this example the Vandover University wants to record information about the major for
each of its students. It is assumed that the student ID can be used to identify a specific
student among the union of students that are (and have been) enrolled in the Vandover
University and that a major name can be used as identifier for a specific major among
the set of majors that are offered by the Vandover University.

5.2.2 The name primitive

A name in human communication is used to refer to a concept or a thing in a real or
constructed world (Senko, 1976).

Primitive 1. A name is a sequence of words in a given language that is agreed upon to
refer to at least one concept or thing in a real or constructed world.

Examples of names: Jake Jones, 567893AB, General electric,
We will now define the archetype.

Definition 5.1. The archetype is the union of all names.

Let A be the archetype.
Let ni be a name.
A = ∪i ni

The choice of names used in communication is constrained by the reference
requirement for effective communication. For example, the university registration
office will use a student ID, for referring to an individual student. The use of names
from the name class last name in the university registration subject area for referring to
individual students, however, will not lead to effective communication because in some
cases two or more students may be referenced by one name instance from this name
class. This is one of the reasons why not all names (or name classes) can be used for
referencing entities, things or concepts in a specific part of a real or constructed world.

On the other hand ‘knowledge workers’ that are involved in activities in an
application subject area have knowledge on the reference characteristic of the potential
name classes for the different groups of 'things' and concepts in their real or

 96

constructed world. This means that they should be able to tell an analyst whether a
name from a specific name class can be used to identify a thing or concept among the
union of things or concepts (in a specific part of a real or constructed world).

5.3 THE NATURAL LANGUAGE AXIOM

In every (business) organization examples of communication can be found. These
examples can be materialized as a computer screen, a world wide web page, a
computer report or even a formatted telephone conversation. Although the outward
appearance of these examples might be of a different nature every time, their content
can be expressed using natural language. We will refer to this class of examples of
communication23 as verbalizable information (Nijssen, 1989).

Primitive 2 (Natural language axiom). All verbalizable information can be expressed as
declarative natural language sentences.

The application of the natural language axiom on the example of
communication from figure 5.1 will result in declarative sentence instances 1.1 through
1.6.

The student 1234 majors in Science……………….........…….…….….……..(sentence 1.1)
The student 5678 majors in Economics....……………………………….…....(sentence 1.2)
The student 9123 majors in History……………………..…………...…….…..(sentence 1.3)
The student 1234 has last name Thorpe………………………………..….…..(sentence 1.4)
The student 5678 has last name Jones………………………………….…..….(sentence 1.5)
The student 9123 has last name Thorpe………………………………...……..(sentence 1.6)

We can conclude from the literature that for the initial stage in the requirements
determination process, the use of natural language (Bubenko and Wangler, 1992) is
recommended (Ambrosio et al., 1997). Henderson-Sellers and Edwards (1990:194)
state that a requirements definition must be expressed in the language of the user, so
the analyst and user can agree upon the content.

5.4 ROLES

If we analyze sentences 1.1 through 1.6 that have resulted from verbalizing the
university enrolment example in figure 5.1 we can divide them into two groups
according to the type of sentence predicate (..majors…, respectively..has last name..).
If we focus on the first group we can derive two sentence group templates in which we
have denoted the predicate as text and the variable parts as text between ‘< >’ brackets:

23 Sometimes the concept of ‘form’ is used to refer to any structured document (e.g. See
Choobineh and Venkatraman (1992: 270).

 97

Student <enrolled student> majors in major <chosen major>.
Student <enrolled student> has chosen the major <chosen major>.

We will refer to these variable parts as roles.

Definition 5.2. A role is a variable part in one or more sentence group templates.

Let nm be a name slot in a sentence group SG
Let s1, s2 be sentence instances of sentence group SG
R={ nm|∃ s1, s2 [nm s1 ≠ nm s2]}
A role r∈ R

Enrolled
 Student

Registered
 Student

1: Student <enrolled student> majors in major <chosen major>
2: Student <enrolled student> has chosen the major <chosen major>

3: Student <registered student> has <last name>

Chosen
major

Sg1

Sg2 Last
name

Fig. 5.2 Roles and sentence group template for university enrolment example.

Figure 5.2 shows a graphical representation of the two sentence groups in the
University Enrolment example. Each role is graphically represented by a ‘box’, e.g.
enrolled student. Each sentence group is represented by a combination of role boxes.
Sentence group SG1 is represented by the combination of role boxes enrolled student
and chosen major. Sentence group SG2 is represented by the combination of role boxes
registered student and last name. For each sentence group one or more sentence group
templates are positioned underneath the combination of role boxes that belong to the
sentence group. In the diagram of figure 5.2 sentence group templates 1 and 2 belong to
sentence group SG1. Sentence group template 3 belongs to sentence group SG2. The
remaining parts of a sentence group template we will call verb-parts.

R1
SgX

The sentence group template x of sentence
group SgX is ‘A1< R1>AN< Rn> ’
The sentence group template y of sentence
group SgX is ‘B1< R1>BN< Rn> ’

RN

Fig. 5.3 Example legend for sentence groups24.

24 We note that a similar legend applies for fact types. In section 6.3 we will define the
difference between sentence groups and fact types.

 98

In figure 5.3 we have given the legend for the verbalization of the graphical
representations of the modeling results as for example given in figure 5.2.

5.5 INTENTION AND EXTENSION

If we inspect figure 5.2 we see that a sentence group template can reveal additional
information about the type of things that can be ‘inserted’ into a role variable. For
example, the word ‘student’ specifies what type of thing (or concept) is allowed to play
the role ‘enrolled student’ but also what type of thing (or concept) is allowed to play
the role ‘registered student’ We will call the ‘student’ part in the sentence groups in
figure 5.2 the intention of the roles ‘enrolled student’ and ‘registered student’.

Definition 5.3. An intention is the meaning or the definition of a concept in a real or
abstract world.

Let X be a concept.
Let DX be the definition of the concept X
Let Int(X) be an intention
Int(X)= DX

We can for example give the definition of the concept Student:

A student is a person that studies at a University.

The set of names of things or concepts to which such a definition of an intention
applies within a specific application subject area at a specific point in time is called the
extension of the intention.

Definition 5.4. The extension of an intention is the set of names of the things or
concepts to which the definition of the intention applies25.

Let X be a concept. Let DX be the definition of the concept X
Let A be the set of names of things or concepts to which definition DX applies
Let Ext(X) be an extension
Ext(X)= A

We can now give an example extension for the intention Student: {1234, 5678, 9123}.
In the remainder of this paper we will use the intention concept to denote the type of
thing or concept to which a specific thing or concept belongs. For every application
area we should document the intentions, their definitions and synonyms in a list. We

25 We will call a specific concept or a ‘thing’ that is referenced by one element of the intention’s
extension, an instance of the intention.

 99

will call this list the application concept repository (ACR). In the following we have
given the ACR for part 1 of our Vandover University Enrollment example.

 Concept Synonym Definition
 Student a person that studies at Vandover University
 Student ID a name class
 Major Specialization course program offered to students by

Vandover University
 Major name a name class
 Last name a name class

Such a list of concepts and their definitions should contain a definition for each
intention in the UoD. The definition of an intention should specify how the knowledge
forming the intention (definiendum) is to be constructed from the knowledge given in
the definition itself and in the defining concepts (definiens). A defining concept
(definien) should either be an intention (from the list) or it should be defined in
common business ontology (in our example course program and university) or it must
be a trivial and generally known concept (in our example person).

5.6 FACT TYPES

In this section we will take the meaning of a sentence as opposed to its format as a
starting point. The construct for modeling the meaning of a sentence is a fact instance.
A fact instance is expressed as a declarative natural language sentence instance of a one
of its corresponding sentence group template(s). It is possible that the extensions of two
different sentence group templates refer to the same fact. For example we can say that
there exists a fact that a student is enrolled in a major (at the University of Vandover).
Two sentence instances (from different sentence group templates) for communicating
this fact instance can be:

Student 1234 has chosen the major Science.
Student 1234 majors in major Science.

We need to make a distinction into the concept of fact and the concepts that we use to
represent a fact. A specific fact instance can be represented as one or more sentence
instances from one or more sentence group templates. The sets of roles that are referred
to in these sentence group templates should be identical. We can now conclude that a
fact type is a set of roles that can be represented by one or more sentence group
template(s) in which these roles are contained.

Definition 5.5. A fact type is a set of roles belonging to a sentence group.

Let ri be a role that belongs to a given group of sentence templates SG
Let FTj be a fact type.
FTj={ ri | ri is a variable part of SGj ∈ SG }

 100

Example 5.2: STUDENTMAJOR:={enrolled student, chosen major}
 STUDENTNAME:={registered student, last name}

Because every fact type has at least one accompanying sentence group (template) that
contains the precise domain semantics as verbalized by the domain users it is not
required to use ‘semantic’ role names at all times. The only requirement for a role
name is that it is unique within a fact type (provided that we use unique names for a
fact type).
 A second distinction between sentence groups is fact type lies in the notion of
atomization. In chapter 6 we will discuss this issue in greater detail. For now it is
sufficient to say that a fact type must be elementary, atomic or irreducible in the
context of a given UoD. A sentence group on the other hand might be non-atomic or
(still) reducible.

5.6.1 Naming convention fact types

In this section we will further formalize the outcome of the process of the selection of a
name class for referring to things in a real or abstract world. The outcome of such a
naming process will result in the utterance of sentences, examples of which are given
below:

1234 is a name from the student ID name class that can be used to identify a student
within the set of students at Vandover University…………………….......(sentence 2.1)

5678 is a name from the student ID name class that can be used to identify a student
within the set of students at Vandover University………………………...(sentence 2.2)

Science is a name from the major name name class that can be used to identify a major
within the set of majors at Vandover University……………………..…...(sentence 2.3)

Economics is a name from the major name name class that can be used to identify a
major within the set of majors at vandover University ……………...…..(sentence 2.4)

Sentences 2.1 through 2.4 express that a certain name belongs to a certain name class
and that instances of the name classes student ID, respectively major name, can be used
to identify an instance of a student, respectively an instance of a major. We can give
for example the definition of the concept Student ID:

Student ID is a name class.

The ‘intention’ of the names in the extension of a naming convention fact type is a
name class and NOT a type of thing, entity or concept in the real world. We will,
therefore, refer to facts 2.1, 2.2, 2.3 and 2.4 as naming convention facts and to the
corresponding abstracted fact type as naming convention fact type.

 101

Student ID
1: < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students at Vandover University

Ft1

Fig. 5.4 Naming convention fact type for student at Vandover University

Definition 5.6. Facts of a naming convention fact type declare that a name from a name
class can be used to identify a thing or a concept in a selected portion of a real or
abstract world.

Let nc be a name class.
Let A be the archetype: nc ⊂ A
Let DOM(T) be the concepts in the selected portion of the real world.
It now holds: ∀ c,d ∈ T; t,v ∈ nc [t is a name for c ∧ v is a name for d]:
c=d ⇔ t=v

In business domains, however, not all things or concepts can be identified by using a
single name from a given name class or a simple domain. In general, a name can have
an internal structure of itself, therefore, we need to generalize the concept of a (simple)
naming convention fact type to a referencing scheme in which names are composed of
values from multiple domains. We will call those referencing schemes, compound
referencing schemes and they will be discussed in section 5.6.3. First we will give an
extension of the university enrolment example in section 5.6.2.

5.6.2 Example 5.1: university enrolment part2

We assume that Vandover university has merged with Ohao university. In order to
streamline the enrolment operations of the two universities in the new situation it is
decided to centralize them.

A student within the merged Ohoadover university federation can no longer be
identified by the existing student ID, because a given student ID can refer to a student
in the former Ohoa university and to a different student in the (former) Vandover
university. However, to capitalize on the existing naming conventions, management
has decided to add the qualification O (for Ohao) or V (for Vandover) to the existing
student ID. We will call this qualification: university code.

Furthermore, there is a possibility that a student is registered as freshmen at
the Ohao University and at the Vandover University at the time of the merger. In this
case it is decided that the student is considered to study only at the Ohao University for
naming purposes.

In the new situation the Ohoa and Vandover universities still offer their own
freshmen year and the majors that existed before the merger. This means that after the
merger students that apply for enrolment will be assigned student ID’s within the
university that enrols them for their freshmen year. For our application it suffices to

 102

know that student can be identified by the combination of a University code and a
locally unique student ID.

Furthermore, we assume that the assignment of a student’s university ID,
which takes place outside our example UoD, will always lead to the recording of a
student’s last name.

In this example we assume that the University system is closed in the sense
that a major can only be selected by students that are currently doing (or have been
doing) a freshmen year at Ohoa University and/or Vandover University. A student can
apply for at most one major at a time. The majors that are offered after the merger are a
simple union of the existing majors at the ‘old’ universities: science, history and
economics at Vandover University and medicine and law at Ohao university.

In the integrated Ohoa and Vandover enrolment system it is decided to record
all courses and the credits that have been obtained by them during their student’s
freshmen year at Ohoa or Vandover.

Ohoadover University Enrollment

University Student ID Last Name Major

Total number of students enrolled 156

 V 1234 Thorpe Science
 Accounting 5
 Finance 5
 Marketing 8
 Mathematics
 26
 O 5678 Smith Law
 Macro econ. 8
 Micro econ. 8
 Finance
 24
 V 5678 Jones
 Accounting
 5

 8

 8

5

Fig. 5.5 Example integrated Ohoadover enrolment system

The definite enrolment in the major of their choice depends upon the number
of credits that a student has earned in his/her freshman year. If the total number of
(approved) credits for these freshmen courses is 24 or more and the specific required
freshmen courses for the major of their choice are contained in their credited freshmen
courses than a definite enrolment, for the student will always be recorded.

 103

In the following the specific required freshmen courses for each major are
given:

Major Required course Required minimum # of credits
Science Mathematics 8
History Language and culture 5
Economics Macro economics 8
Medicine Biology 5
Law Finance 5

A ‘real-life’ user example of the integrated Ohoadover enrolment system is

given in figure 5.5.
The example of figure 5.5 contains Majors that can be identified by a major

name among the union of majors at Vandover and Ohoa University. We also have
Courses that can be identified by a course name among the union of courses at
Vandover and Ohoa University. Course credits or the total number of course credits
for a student or the total number of enrolled students is expressed by a natural number.
At any point in time a student can have at most one total number of credits. The total
number of credits for a student is the arithmetic total of all individual credits for
credited courses. If a student does not have any credits assigned for at least one course
the total number of course credits will not be shown.

We will now give a description of additional semantics from the Ohoadover
enrolment UoD. First of all, the responsibilities for exams, grading and the assignment
of study credits is not considered to be part of this UoD. We will therefore consider this
to take place outside the UoD.

There will be some kind of message coming from another part of the
university system that acknowledges at a certain point in time that student X has been
credited Y credits for course Z. As soon as such a message is received by the enrolment
clerk the information is entered into the enrolment system.

After the new course credits have been entered into the enrolment system the
total number of credits for that student will be recalculated. Furthermore, students are
allowed to switch majors before graduation. In that case the requirements regarding the
content of their freshmen course and credits needed for this new major will be checked
again. In addition the management of Ohoadover has decided that not all enrolment
switches are allowed. At this time the following restriction is applied: A student can
not major in Economics after he/she has majored in Science.

After a student has successfully finished his/her current major (this is decided
outside the scope of our example UoD) he/she will be removed from the University
Enrollment system.

Every time a student is enrolled or graduated the enrolment system will
recalculate the total number enrolled students. The total number of enrolled student at
any point in time is calculated by inspecting which of the registered students are
currently enrolled for a major.

 104

5.6.3 Compound referencing schemes

In the first part of the (Vandover) university enrolment example the intention ‘student’
has a ‘simple’ referencing scheme, namely the single role ‘enrolled student’ or the
single role ‘registered student’. In many cases, however, a simple referencing scheme
will not be sufficient for referencing instances of a given intention within a specific
portion of a ‘real’ or ‘constructed’ world. In those cases we need compound referencing
schemes.

In NLM we will apply compound referencing scheme in the same way as the
simple referencing schemes. To illustrate this we will first adapt our example UoD and
give additional domain knowledge that also covers the dynamic aspects of the UoD.

Student ID

Student ID

Ft10

Ft12

Ft11

Ft13

Ft14

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <student ID>]
 majors in major <chosen major>

<university code> and

1:Student [identified by the combination of]
 gained a number of credits <course credits> for the course <credited course>

<university code> and <student ID>

1:Student [identified by the combination of]
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

2:Student [identified by the combination of]
has chosen major <chosen major>

1:Student [identified by the combination of]
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
Course

Course
Credits

Last name

 Total
Credits

 Total
Enrolled students

Fig. 5.6 Fact types and sentence group templates with compound referencing scheme for student

from the university enrolment example part 2

The sentence group templates and the corresponding fact types in which such
a compound referencing scheme is implemented are given in figure 5.626. We have

26 See for an earlier discussion on aggregation: Smith and Smith (1977).

 105

introduced the [] (‘square brackets’) symbol for capturing the definition of the
compound referencing scheme (see figure 5.6). The case of a simple referencing
scheme in NLM is a special case of the compound reference scheme in which the
brackets and description within (except for the role name used in the reference) are left
out. In addition we need to adapt the naming convention fact types for the constituting
intentions of the compound reference scheme. For example the naming convention fact
type for student should be adapted to reflect the application subject area in which it can
be used to identify a specific student. In this case a student can be identified by his/her
student ID within a specific University (Ohao or Vandover).

Student ID
1: < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students of a specific University (Ohao or Vandover)

Ft1

Fig. 5.7 Naming convention fact type for student in the integrated UoD.

 In the University Enrollment example we have shown how the evolvement of
a Universe of Discourse can lead to the existence of compound referencing schemes. In
other situations a reference scheme that is a concatenation of multiple value domains
can be considered a simple referencing scheme. An example of the latter is the postal
code in the Netherlands that consist of two groups of values: 4 numerical characters (0-
9) and 2 non-numerical (a-z) characters. In most UoD’s the postal code is considered to
be a simple referencing scheme for a postal area. However, in the UoD of the national
Dutch postal code administration the first 2 characters refer to a municipality in the
Netherlands, the last two digits refer to a neighbourhood within that municipality.
Finally, the non-numerical characters refer to a specific ‘side’ of the street within that
neighbourhood (within that municipality). In this example we can consider the
intention postal area as an aggregation (Smith and Smith, 1977) in which the
‘aggregated intention’ postal area is composed of the ‘basic intentions’ city,
neighbourhood in that city and part of the street in this neighbourhood of that city. In
the fact type template of this example we therefore can incorporate the ‘basic
intentions’ as follows:

Postal Area [identified by the combination of City <city code>, the neighbourhood
<neighbourhood code> in the city and the part of the street <part of street code> in
that neighbourhood] contains the number of addresses <natural number>.

Furthermore, the naming convention fact types for the basic intentions in this
compound referencing scheme are necessary, in order to precisely understand the
difference between the ‘global’ and ‘local’ concepts of neighbourhood, respectively
part of street:

 106

<city code> is a name from the city code name class that can be used to identify a city
among the union of cities within the Netherlands. <neighbourhood code> is a name
from the neighbourhood code name class that can be used to identify a
neighbourhood among the union of neighbourhoods within city in which it resides.
<part of the street code> is a name from the part of the street code name class that
can be used to identify a specific part of the street among the union of part of the
streets cities within a given neighbourhood in a given city.

 We can conclude that the compound referencing scheme that we have
introduced in this chapter of this thesis is applicable for all possible ‘aggregations’
ranging from value-domain aggregations to aggregations that involve exclusively basic
intentions to aggregations that contain a combination of value domains and basic
intentions. The incorporation of the explicit UoD in which the ‘intention’ is defined
and can be identified by the names of the name class is essential for interpreting the
meaning of the ‘basic intentions’ either as global or local concepts.

R1

R1

SgX

SgY

SgZ

The sentence group template x of sentence
group SgX is ‘A1 c1< R1>AN cN< Rn> ’

The intention c1 for fact type SgX has an
identification structure that contains role R1
The intention cN for fact type SgX has an

identification structure that contains role Rn

The sentence group template x of sentence
group SgX is ‘< Rn> y’

The sentence group template y of sentence
group SgY is ‘A1 c1[a1< R1>am< Rk>].

..AN cN< Rn> ’
The intention c1 for fact type SgY has an

identification structure that contains role R1.
...

The intention ck for fact type SgY has an
identification structure that contains role Rn.

Rn

Rn

Rn

Fig. 5.8 Extended example legend for fact types.

In figure 5.8 we have given the extended legend for the (naming convention) fact types
in which the referencing modes are verbalized. This legend contains the complete
semantics of the graphical representations for the analyst and how these representations
must be verbalized as declarative natural language sentences.

 107

5.7 THE BASIC INFORMATION MODEL

In this paragraph we will give the definition of a basic information model.

Definition 5.7. A Basic Information Model (BIM) for a Universe of Discourse U is
defined by
- a list of intentions and their definitions {(xi,dxi)} applicable to the UoD U.
- a set of roles R(U) in which each role is played by an intention from {xi} for which
 CARD (EXT(x∈{xi})) ≥ 2.
- a set of fact types F(U) that consist of roles from R(U) under the condition that the
 roles in {f|f ∈F(U)} are a partition of R(U)27,
- a set of sentence group templates S(f) for every fact type f ∈F(U) that contain(s)
 (alternate) descriptions of the fact type semantics and in which exactly one reference
 to each role contained in f is given.

An example of a basic information model of the university Enrollment example is
given in figure 5.9.

B={Bi|Bi⊂A} is a partition if Bi ⊄ ∅ and Bi∩ Bj = ∅ and ∪ Bi=A

 108

Student ID

Student ID

Ft10

Ft12

Ft11

Ft13

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <student ID>]
 majors in major <chosen major>

<university code> and

1:Student [identified by the combination of]
 gained a number of credits <course credits> for <credited course>

<university code> and <student ID>

1:Student [identified by the combination of]
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

2:Student [identified by the combination of]
has chosen major <chosen major>

<university code> and <student ID>

1:Student [identified by the combination of]
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
 Course

Course
Credits

Last name

 Total
Credits

Student ID Major name
1: < student ID> is a name from the student ID

name class that can be used to identify a student
among the union of students at Vandover University

 or Ohoa University

1: < student ID> is a name from the major name
name class that can be used to identify a major

among the union of majors at Vandover University

Ft1 Ft2

Course name Natural number
1: < course name> is a name from the course name

name class that can be used to identify a course
among the union of courses at Vandover University

 and Ohoa University

1: < Natural number> is a name from theNatural number
name class that can be used to identify an amount of credits

among the union of amount of credits

Ft3 Ft4

Ft14

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

 Total
Enrolled students

Fig. 5.9 Basic information model Ohoadover university enrolment.

In real life business settings we will always experience a specific extension of
such a basic information model. We will now give the definition of the extension of a
fact type and of the extension of a Basic Information Model for a given Universe of
Discourse.

 109

Definition 5.8. The extension of a fact type is a set of sentence instances for that fact
type.

EXT(FTk) = {sij|sij is an instance of sentence group SGk}

Definition 5.9. The extension of a basic information model is the union of the
extensions of the fact types that are contained in that basic information model.

EXT(FTk) is an extension of fact type FTk
EXT(BIM)= ∪k EXT(FTk)

We now have defined all the constructs necessary for analyzing natural

language sentences. It was determined what parts were fixed and what parts were
variable. For the variable parts or roles it was determined to what intention the variable
instances refer. For each intention, a definition is contained in the basic information
model of the UoD. Furthermore, the naming conventions for an intention in a role were
determined. The application of these modeling constructs will lead to an abstraction of
a UoD as a basic information model as for example, depicted in figure 5.9.

We will introduce in section 5.8, the modeling constructs that will enable us to
express that some extensions of a basic information model are not allowed to exist. We
will use part 2 of the university enrolment example 5.1 to illustrate that domain rules or
business rules may exist in the UoD that do not allow some extensions of the basic
information model to occur in real-life situations.

5.8 NLM MODELING CONSTRUCTS FOR THE ENCODING
 OF EXTENSIONAL CONSTRAINTS

If we look at part two of the University Enrollment example, we can conclude that not
every extension of a BIM is an extension that is an allowed extension according to the
business rules in the UoD. If we for example consider the extensions of fact types FT12
and FT13 then it becomes clear that the following example extension is not allowed
according to the ‘business’ logic of the university enrolment although it is a possible
extension of the BIM: {student v 5677 gained 5 credits for the course accounting,
student v 5677 gained a total number of 4 credits in his/her freshman year}. In order to
make a distinction into an extension of a basic information model regardless of the fact
whether it is allowed to exist and an extension of a basic information model that is
allowed to exist, according to the business rules in the application domain, we will
introduce the concept of population state.

 110

Definition 5.10. A population state is an extension of a basic information model that is
allowed to exist according to the business rules in the application domain.

Let BR be a set of business rules
Let ps be a population state
ps ∈ {EXT(BIM)j | EXT(BIM)j complies to the rules in BR}

It becomes clear now that in addition to the modeling constructs that are needed for
abstracting a UoD we need modeling constructs that enable us to specify additional
limitations on the possible extensions of a basic information model. These modeling
constructs we will call constraints. We will now give the definitions of the four
constraint groups that we want to introduce in this thesis and the instances of these
constraint groups that reflect (parts of) the business rules in our university enrolment
example.

5.8.1 Definition of Population state constraints

This first group of constraints specify the limitations on the extensions of a basic
information model that exist at any point in time.

Definition 5.11. A population state constraint p in a basic information model BIM is a
proposition that limits the allowed extensions of the basic information model BIM to
those extensions for which the proposition of p is true.

A population state constraint is a set valued function into the set of extensions
of a basic information model of a universe of discourse.

PC: { EXTj(BIM)} -----> { EXTj(BIM)}

The type of constraints in this category are the uniqueness constraints and set
comparison constraints that must apply in every possible state of the UoD (see section
A.2 in appendix A). In the university enrolment example, we have derived four
uniqueness constraints: C1, C2, C3 and C4 and nine set-comparison constraints: C5,
C6, C7, C8, C9, C10, C10, C11, C12, C13. In figure 5.10 we have illustrated these
constraints by adding them to the basic information model of our University
Enrollment example from figure 5.9. See section A.2 in appendix A, for a formal
definition and verbalization legends for this constraint type.

5.8.2 Definition of Population state transition constraints

The population state transition constraints specify the limitations on subsequent
extensions of a basic information model.

 111

Definition 5.12. A population state transition constraint q in a basic information model
BIM is a proposition that limits the before-after extension combinations of the basic
information model BIM to those combinations for which the proposition of q is true.

A population state transition constraint is a set valued function into the set of
before-after extensions of a basic information model of a universe of
discourse.

PTC: { EXTj(BIM)} × { EXTj(BIM)} { EXTj(BIM)} × { EXTj(BIM)}

The transition constraints constrain the possible state sequences of the extension of the
basic information model. Even if an extension of the BIM complies to the population
state constraints, the allowed before/after combinations are further constrained by these
state transition constraints. Constraint C14 in figure 5.10 is an example of a state
transition constraint that reflects some business rule from our university enrolment
example. See also section A.3 in appendix A for a formal definition and a verbalization
legend of this constraint type.

5.8.3 Definition of Derivation rule constraints

In addition to the population state- and population state transition constraints that limit
the possible extensions of a basic information model in terms of for example
uniqueness and set-comparison restrictions, a different group of constraints is needed
that is able to specify limitations on the fact values of roles from the basic information
model. We will call this type of constraint: a derivation rule constraint.

Definition 5.13. A derivation rule (constraint) is a function defined on instances of the
ingredient fact types. The function range is a set of resulting fact instance(s) from the
derived fact type.

 Let FT1 through FTN be ingredient fact types for the derivation rule CP
 Let FTM be the resulting fact type for the derivation rule CP

 CP: EXT(FT1) ×…× EXT(FTN) ------------> EXT(FTM)

The derivation rule constraints, specify that instances of a given fact type can not be
inserted or updated freely, but their value is restricted to the pre-conditions and
derivation formula of a derivation rule constraint. In the university enrolment example,
we have derived two derivation rule constraints: C15 and C16 (see figure 5.11). In
section A.4 in appendix A a formal definition and a verbalization legend for this
constraint type are given.

 112

5.8.4 Definition of Event occurrence, Event, Event type and Impulse type
 constraints

In this section we will give a definition of the event, event type and event occurrence
concepts and the group of constraints that constrain the behaviour within a UoD: the
impulse type constraints.
 In order to define the impulse type of constraints we need to define the
concept of event occurrence first.

Definition 5.14. An event occurence is a happening at a certain point in time in the
application subject area that can lead to the execution of one or more derivation rules
and/or the insertion or deletion of fact instances into/from the application’s information
base.

 Let PH be the set of potential happenings
 Let eo be an event occurrence

 eo∈ PH

From definition 5.14 it follows that an event occurrence is a ‘one-time’ only thing. For
example the event occurrence: student ‘V 2345’ wants to enroll for major ‘science at
12:45:56 on 01/12/2004. A different event occurrence is: student ‘V 2345’ wants to
enroll for major ‘science at 18:45:56 on 03/06/04. We can group the former two event
occurrences into the following event: student ‘V 2345’ wants to enroll for major
‘science’.

Definition 5.15. An event is one or a number of potential happenings in the application
subject area that can lead to the execution of one or more derivation rules and/or the
insertion or deletion of fact instances into/from the application’s information base.

 Let e be an event
 e⊂ PH

Definition 5.16. An event type is a class of events in the application subject area, each
of these events can lead to the execution of one or more derivation rules (of the same
type) and/or the insertion or deletion of fact instances (of the same fact types(s))
into/from the application’s information base.

Let ET be an event type
Let E={ei } be the set of events
ET ⊂ E

 113

Definition 5.17. An impulse type (constraint) is an ordered triplet that contains an event
type, a condition type28 under which the occurence of an event of an event type can
lead to the execution, of a specified derivation rule constraint or inserte/delete
operation.

Let IT be an impulse type
Let SET be the set of event types
Let SCT be the set of condition types
Let SDR be the union of the set of derivation rule constraints and the set of
insert/delete operations
IT= (A,B,C) | A∈SΕΤ, B∈SCΤ, C∈SDR}

The impulse type constraints explicitly model the temporal relationships between
‘happenings’ or events in the UoD and information system events and enforces them
upon the derivation rules and information base update operations. In figure 5.11 we
have given the instances of the impulse type constraint C17, C18, C19, C20, C21 and
C22 for our University Enrollment example part 2.

In appendix A we will give a detailed specification and illustration of the
constraint types from this section that we consider relevant for a deeper understanding
of the NLM requirements specification language. These constraint types cover the
required static and dynamic constraints from chapter 2. In addition to the concepts of
extension of the BIM, population we need to define a third state concept that reflects
the extent in which the constraint types are enforced in the extension of the BIM.

Definition 5.18. An information base state is an extension of a basic information model
that complies with those business rules in the application domain that can be encoded
using the population state-, population state transition-, derivation rule- and impulse
type constraints.

 Let SEXT(BIM) be the set of extensions of a basic information model BIM

Let IBS be an information base state of a basic information model BIM
Let SPS be the set of population states for BIM
Let PS be the set of population state constraints defined on BIM

 Let PST be the set of population state transition constraints defined on BIM
 Let DR be the set of derivation rule constraints defined on BIM
 Let IT be the set of impulse type constraints defined on BIM

Let BR be a set of business rules
Let ps be a population state (ps ∈ PS)
ps ∈ {EXT(BIM)j | EXT(BIM)j complies to the rules in BR}
IBS⊂ (SEXT(BIM)={EXT(BIM)j | EXT(BIM)j complies to the constraints in
(PS U PST U DR U DT }
SPS ⊆ IBS ⊆ SEXT(BIM)

28 Including the ‘empty’ condition type, which means that the occurrence of an event will
unconditionally lead to the excution of a derivation rule and or/insert delete operation(s)

 114

5.9 THE NLM REQUIREMENTS SPECIFICATION FOR A
 GIVEN UOD

We will now give a definition of a NLM requirements specification for a given UoD.

Definition 5.19. A NLM requirements specification referring to a UoD is a basic
information model (BIM) for that UoD together with all population constraints for
which a legend is defined, derivation rule constrains and impulse type constraints, that
reflect the business rules in that UoD and which fulfill the following conditions:
- The intentions that are contained in a derivation rule argument should be

contained in the Basic Information Model (BIM)
- A post-condition in a derivation rule constraint should be a proposition on the

Basic Information Model, e.g. it should only reference role and fact types that
are contained in the BIM.

- A pre-condition in a derivation rule constraint should be a proposition on the
Basic Information Model, e.g. it should only reference roles and fact types that
are contained in the BIM.

 - A formula in a derivation rule constraint should be a function on the Basic
Information Model, e.g. it should only reference role and fact types that are
contained in the BIM and (possibly) values in the derivation rule argument.

- A condition in an impulse type constraint should be a proposition on the Basic
Information Model, e.g. it should only reference roles and fact types that are
contained in the BIM and/or values in the event argument.

- A derivation rule that is triggered in an impulse type constraint should be a
derivation rule constraint for that UoD

- An insert or delete operation that is triggered in an impulse type constraint
should only refer to a fact type in the BIM of that UoD.

Let RS be an requirements specification for the UoD U
Let BIM be a basic information model for the UoD U

Let {psc} be the set of population state constraints for the UoD U.
Let {ptc} be the set of population state transition constraints for the UoD U.

Let {drc}be the set of derivation rules constraints for the UoD U.
Let {itc} be the set of impulse type constraints for the UoD U.

RS= { BIM ∪ {psc} ∪ {ptc}∪ {drc} ∪ {itc} |

∀r∈psc [r ∈ BIM]; ∀r∈ptc [r ∈ BIM]; ∀r∈drc [r ∈ BIM] ∧
∀prc, poc∈drc [prc •29 BIM ∧ poc • BIM] ∧ ∀ic∈itc [ic • BIM]

∧ ∀ dr∈itc [dr∈ {drc}∨ dr • BIM]}

The consistency of the NLM modeling elements that are applied in the Basic
Information Model and the model elements that are used in the different constraint
types can be enforced by constraints in the NLM requirements specification of the

29 The x•y operator means that x references an element in y.

 115

NLM requirements specification (or the NLM meta model) in figure B.1 of appendix
B.

5.9.1 The NLM Requirements specification for the University Enrolment UoD

We will give the NLM requirements specification for our integrated university
Enrollment example in figures 5.10, 5.11 and 5.12. In figure 5.10 the basic information
model for the University Enrollment example is shown plus the population state- and
population state transition constraints. In figures 5.11 and 5.12, the derivation rule-
and impulse type constraints for this UoD are given.

 116

Student ID

Student ID

Ft10
C1 C11

C14

C2
C6

C5

C10

C7

C3

C4

C13

C9

C8
C12

Ft12

Ft11

Ft13

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <university code> and]
 majors in major <chosen major>

<student ID>

1:Student [identified by the combination of]
 gained a number of credits <course credits> for the course <credited course>

<university code> and <student ID>

1:Student [identified by the combination of]
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

2:Student [identified by the combination of]
has chosen major <chosen major>

<university code> and <student ID>

1:Student [identified by the combination of]
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
 Course

Course
Credits

Last name

 Total
Credits

Student ID

Major name

1: < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students at Vandover University
 or Ohoa University

1: < student ID> is a name from the major name
name class that can be used to identify a major

among the union of majors at Vandover University
and Ohoa university

Ft1

Ft2

Course name

Natural number

Natural number

1: < course name> is a name
 from the course name

name class that can
be used to identify a course
among the union of courses

 at Vandover University
 and Ohoa University

1: < Natural number> is a name from the
Natural number name class that can be used to identify

a total of enrolled
 students among the

 union of totals of enrolled students

1: < Natural number> is a name from theNatural number
name class that can be used to identify an amount of credits

among the union of amount of credits

Ft3

Ft5

Ft4

Ft14

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

 Total
Enrolled students

C14: state
 before after science economics history law med

 science - + + +
 economics + + + +
 history + + + +
 law + + + +
 medicine + + + +

Fig. 5.10 NLM requirements specification (I):BIM and population constraints

 117

C15: Create total number of credits<{(arg ,student)}>
IF there exist an instance of FT12
SUCH THAT FT12.<university code>.<student ID>=arg1
THEN create an instance of fact type FT13
 SUCH THAT
 FT13.<university code>.<student ID>:= arg1
 FT13.<total credits>:=DF1
 DF1:= FT12.<credits> [where FT12.<university code>. <Student ID>='arg1']
ENDIF

1

C16: Create total number of enrolled students
IF there exist an instance of FT10
THEN create an instance of fact type FT14
 SUCH THAT FT14.<total enrolled students>:=DF2
 DF2:= COUNT(Ext(FT10))
ENDIF

C17
ON E T2: Insert(Student'x' wants to enroll in Major 'y') into application data base has
 succeeded (arg1:'x'; arg 2: 'y')
DO Create total number of enrolled students

C19
ON ET1: student requests enrollment in major(arg1: student, arg2:major)
IF[FT13.<total credits>
 (Where FT13.<university code>.<Student.ID>='ET1.arg1')] > 24
AND [IF ET1.arg2='science' THEN(mathematics EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='mathematics']>8)
 OR
 [IF ET1.arg2='history' THEN(language and culture EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='language and culture']>5)
OR
 [IF ET1.arg2='economics' THEN(macro econ. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='macro econ.']>8)
OR
 [IF ET1.arg2='medicine' THEN(biology. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='biology']>5)
OR
 [IF ET1.arg2='law' THEN(biology. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='finance']>5)]
DO Insert (student'Et1.arg1' has chosen major 'ET1.arg2').

C18

Create total number of enrolled students
ON ET3: Delete(Student'x' wants to enroll in Major 'y') from application data base has succeeded (arg1:'x'; arg 2: 'y')
DO

Fig. 5.11 NLM requirements specification (II): derivation rule- and impulse type constraints

 118

C23
ON ET1: student requests enrollment in major(arg1: student, arg2:major)
IF[FT13.<total credits>
 (Where FT13.<university code>.<Student.ID>='ET1.arg1')] > 24
AND [IF ET1.arg2='science' THEN(mathematics EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='mathematics']>8)
 OR
 [IF ET1.arg2='history' THEN(language and culture EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='language and culture']>5)
OR
 [IF ET1.arg2='economics' THEN(macro econ. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='macro econ.']>8)
OR
 [IF ET1.arg2='medicine' THEN(biology. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='biology']>5)
OR
 [IF ET1.arg2='law' THEN(biology. EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> ='ET1.arg1' AND where FT12.<credited course >
 ='finance']>5)

DO Delete
 Insert (student'Et1.arg1' has chosen major 'ET1.arg2').

]
AND IF EXT (FT10.<chosen major>|where Ft10.<university cod>.
 <student ID>='ET1.arg1'')]

 (student'Et1.arg1' has chosen major 'z').

C20

 Create total number of credits(arg :='Et4.arg1')

ON ET4: Insert(Student 'x' has gained the number of 'y' course credits for course'z') into application data
 base has succeeded (arg1:'x'; arg 2: 'y'; arg3: 'z')
DO 1

C21

Insert (Student 'Et5.arg1' has gained the number of 'Et5.arg2' credits for course' Et5.arg3')

ON Et5: Credits granted to student(arg1:student; arg2:course;arg3:credits)
IF ET5.arg1 EXT(FT11.<Universitycode>.<student ID>)
DO

C22
ON Et6: Student graduates(arg1:studen)
IF ET6.arg1 EXT(FT11.<Universitycode>.<student ID>)
DODelete(Student'Et6.arg1' wants to enroll in Major 'y')

Fig. 5.12 NLM requirements specification (III): impulse type constraints

5.9.2 The University Enrollment case study description revisited

In the following we have summarized part 2 of the University Enrollment example text
from section 5.6.2 in which we have references to the relevant fact types, event types
and constraints that encode a specific business rule from the text.

 119

For our application it suffices to know that student can be identified by the
combination of a University code and a locally unique student ID (Ft1, c10).
Furthermore, we assume that the assignment of a student’s university ID, which takes
place outside our example UoD, will always lead to the recording of a student’s last
name (Ft11, c5). In this example we assume that the University system is closed in the
sense that a major can only be selected by students that are currently doing a freshmen
year at Ohoa and/or Vandover (et1). A student can apply for at most one major at a
time (c1). The majors that are offered after the merger are a simple union of the
existing majors at the ‘old’ universities: science, history and economics at Vandover
University and medicine and law at Ohao University (c14).

In the integrated Ohoa and Vandover enrolment system it is decided to record
all courses (Ft12) and the credits (Ft13) that have been obtained by them during their
student’s freshmen year at Ohoa or Vandover (c7). The definite enrolment in the major
of their choice depends upon the number of credits that a student has earned in his/her
freshman year (Ft10, c6). If the total number of (approved) credits for these freshmen
courses is 24 or more and the specific required freshmen courses for the major of their
choice are contained in their credited freshmen courses than a definite enrolment, for
the student will always be recorded (c19).

A ‘real-life’ user example of the integrated Ohoadover enrolment system is
given in figure 5.5. (Fact types Ft10, Ft11, Ft12, Ft13, Ft14 and constraints c2, c3, c4
are abstracted respectively derived from this example)
 In the example of figure 5.5 we furthermore have Majors that can be
identified by a major name among the union of majors at Vandover and Ohoa
University (Ft2). We also have courses that can be identified by a course name among
the union of courses at Vandover and Ohoa University (Ft3, c12).

A course credit (Ft4) or a total number of course credits (Ft4) for a student or
the total number of enrolled students (Ft5) are expressed by a natural number (c8, c9,
c13). At any point in time a student can have at most one total number of credits (c4).
The total number of credits for a student is the arithmetic total of all individual credits
for credited courses (c15). If a student does not have any credits assigned for at least
one course the total number of course credits will not be shown (c5, c7)

There will be some kind of message coming from another part of the
university system that acknowledges at a certain point in time that student X has been
credited Y credits for course Z. (c21). As soon as such a message is received by the
enrolment clerk the information is entered into the enrolment system (et5). After the
new course credits have been entered into the enrolment system (et4) the total number
of credits for that student will be recalculated (c20).

Furthermore, students are allowed to switch majors before graduation (et7). In
that case the requirements regarding the content of their freshmen course and credits
needed for this new major will be checked again (c23). In addition the management of
Ohoadover has decided that not all enrolment switches are allowed. At this time the
following restriction is applied: A student can not major in Economics after he has
majored in Science (c14).

After a student has successfully finished his/her current major (this is decided
outside the scope of our example UoD) (et6) he/she will be removed from the
University Enrollment system (c22). Every time a student is enrolled (et2) or graduated
(et3) the enrolment system will recalculate the total number enrolled students (c17,

 120

c18). The total number of enrolled student at any point in time is calculated by
inspecting which of the registered students have already enrolled for a major (c16).

5.10 CONCLUSIONS ON THE WAY OF MODELING IN THE
NLM RDM

In this chapter of this thesis we have given the definitions of the modeling concepts for
the requirements specification language of the NLM requirements determination
method. In appendix B we have given the accompanying (meta) grammar for the
application of these concepts in a requirements determination project. The way of
modeling in NLM caters for the modeling of static as well as the dynamic rules of a
business organization or an enterprise.

We have introduced the fact type as single information bearing construct. The
fact type construct that we have defined in this chapter allows us to model any naming
convention and semantic connection. The introduction of the sentence group template
construct and the application concept repository allows us to capture the complete
domain semantics of a UoD. We conclude that NLM fulfills RMD 1 from chapter 4.

The introduction of naming convention fact types and compound referencing
schemes share the same general structure and provide in combination with an
accompanying sentence group template the context in which the naming convention is
valid. The existence of this unified naming convention/referencing concept in NLM
fulfills requirement RMD 2 from chapter 4.

The definition of the role construct as a mandatory modeling construct in
NLM and the mandatory naming convention for such a construct within the UoD of an
analyst in the NLM specification language fulfills RMD3 from chapter 4.

Furthermore we have given modeling provisions that allows us to define any
type of static constraint that currently exists within the approaches that we have
investigated: uniqueness and set-comparison constraints in chapter 3, this results in a
compliance with RMD 4.

With respect to the definition of the modeling constructs in this chapter we
have defined them in a way that the modeling constructs for the basic information
model and the modeling constructs for constraining the possible extensions of the basic
information model allow us to model ‘atomic’ chunks of business knowledge. This
means that a NLM requirements specification complies with requirement RMD 5 from
chapter 4 because the basic information model can evolve with the changing UoD by
adding or deleting ‘atomic’ fact types and population, derivation rule and impulse
constraints.

The definition of an intention from the ACR (that has at least an extension of
two elements) implies that such an intention plays at least one role in the basic
information model. If instances of such an intention can only exist on their own, this
must be explicitly modeled as a unary ‘existence postulating’ fact type (ter Hofstede et
al., 1997:352). This means that the NLM modeling constructs comply with requirement
RMD 6 from chapter 4.

Business rules that can be phrased as propositions on the state of the
application information base (static constraints) we have coined population state

 121

constraints. We have given a legend and a definition of two groups of population state
constraints: uniqueness constraints and set-comparison constraints. From their
definition it follows that these constraint types do not intersect in terms of the
implications for the allowed extensions of the intentional model, they exist
independently and their definition is not dependent upon the arity of the underlying
modeling construct from the basic information model, e.g. the definition of the
uniqueness- and set-comparison constraints is fully scalable as a function of the arity
(N). The definition of these constraint types caters for an explicit reference to the roles
of the data model on which the constraint(s) is (are) defined. This means that we have
complied with requirement RMD 7 from chapter 4.

With respect to the dynamic constraints we have introduced language concepts
for business rules that can be phrased as propositions on two subsequent states of the
application information base. We have called these types of constraints: population
state transition constraints. With respect to the transition constraints we remark that in
our legend we have explicitly incorporated the relationship that the constraint has in
terms of the values of the roles that are involved. The definition of a state transition
constraint in NLM contains explicit references to before- and after- states of the
application information base, therefore, NLM complies with RMD 8 from chapter 4.

Business rules that can be phrased as transformations of ingredient fact
instances into (an) derived fact instance(s) we have coined derivation rules that can
reference some kind of passive constraint, e.g. a proposition on the information base
that might be true or false at any point in time. Such a proposition we have called a pre-
condition. Furthermore, the derivation rule constraints contain a reference to the roles
from the Basic Information Model of the UoD and we have given a legend of how
derivation rule constraints can be created in which the derivation logic can be encoded
using some formalism that is known to the analyst. This means that NLM complies
with RDM 9

An impulse models those dynamic business rules in which the occurrence of
an event can lead to the execution of a derivation rule or the insertion and/or deletion of
fact instances into/from the application’s data base. We have made a distinction into
internal and external events in NLM. This leads to the compliance to RMD 10. In the
impulse, an information base condition can be contained. Such an information base
condition (IBC) is evaluated at some point in time. If the application information base
at that point in time in combination with the information base condition yields the
value true than the derivation rule and/or insert/delete operation will be executed. If it
yields the value false nothing will happen. This means that requirement RMD 11 from
chapter 4 has been fulfilled by the NLM way of modeling.

5.10.1 The added value of the NLM requirements specification language

In this chapter we have introduced the modeling constructs in Natural Language
Modeling (sections 5.1 through 5.9). The added value in terms of understanding the
requirements determination process of NLM, in addition to fulfilling the
operationalized design criteria that were mentioned in the former section, is in the
consistent application of the modeling primitives onto the UoD of the requirements
analyst itself. We also have provided a notation legend that enables us to use any
graphical convention for denoting the language concepts in the NLM requirements
specification language.

 122

 We conclude by stating that the way of modeling in NLM is complete because
it contains all the necessary modelling constructs for the conceptual specification of
requirements in the static and dynamic perspectives of an enterprise. Furthermore, the
way of modeling in NLM is efficient, because the average number of modeling
constructs that serve the same purpose is very small if compared to the UML, (E)ER
and ORM requirements specification languages. This means that a prospective NLM
analyst can learn and apply these modeling constructs with less effort than learning for
example UML. In appendix B this is illustrated by a significant part of the NLM meta
model. The consistency of the modeling constructs for the data model and the
constraints defined on its extension in NLM is guaranteed, because the definition of
these modeling constructs was based upon the same set of primitives.

5.11 REFERENCES

Abrial, J. (1974): Data Semantics. In: Klimbie, J. , Koffeman, K. (eds.): Data Base
Management, North Holland, Amsterdam: 1-59

Ambrosio, A., Metais, E., Meurier, J-N. (1997): The linguistic level: Contribution for
conceptual design, view integration, reuse and documentation. Data & Knowledge
Engineering 21: 111-129

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., Horrocks, I. (2002):
Enabling knowledge representation on the web by extending RDF schema. Computer
Networks 39: 609-634

Bubenko, A., Wangler, B. (1992): Research Direction in Conceptual Specification
Development. In: Conceptual Modeling, Databases, and Case (Loucopoulos, P., Zicari,
R. (eds.)). Wiley. 389-412

Chakravarthy, S., Mishra, D. (1994): Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering 14: 1-26

Choobineh, J., Venkatraman, S. (1992): A methodology and tool for derivation of
functional dependencies from business forms. Information Systems 17(30): 269-282

Conlon, S., Conlon, J., James, T. (2004) : The economics of natural language
interfaces : natural language processing technology as a scarce resource. Decision
Support Systems 38: 141-159

Davies,J., Duke, A., Stonkus, A. (2002) : Ontoshare: Using ontologies for Knowledge
Sharing. In Proceedings of the WWW2002 Semantic Web workshop, 11th
International WWW Conference WWW2002, Hawaii, USA

 123

Davies, J., Weeks, R., Krohn, U. (2004): QuizRDF: Search Technology for the
Semantic Web. Proceedings of the 37th annual Hawaii international conference on
system sciences (HICSS’04)

Dayal, U., Hsu, M., Ladin, R. (1990): Organizing Long-Running Activities with
Triggers and Transactions. ACM-SIGMOD international conference on management of
data 1990: p. 204-214.

De, P., Sen, A. (1984): A new methodology for database requirements analysis. MIS
quarterly, september: 179-193.

Falkenberg, E. (1976a): Concepts for Modelling Information. In: Nijssen, G. (ed.),
Modelling in Database Management Systems, North-Holland, Amsterdam : 95-109

Falkenberg, E. (1976b): Significations: the key to unify data base management.
Information Systems 2:19-28

Grönbaek, K., Sloth, L., Bouvin, N.O. (2000): Open hypermedia as user controlled
meta data for the web. Computer Networks 33: 553-566.

Halpin, T. (1995): Conceptual schema and relational database design: a fact based
approach. 2nd ed. Prentice-Hall, Englewood Cliffs

Halpin, T., Orlowska, M.(1992): Fact-oriented Modelling for Data Analysis. Journal of
Information Systems 2: 97-118

Henderson-Sellers, B., Edwards, J. (1990): The object-oriented systems life-cycle.
Communications of the ACM 33(9): 143-159.

Ter Hofstede, A., Proper, H., van der Weide, T. (1997): Exploiting fact verbalisation in
conceptual modelling. Information Systems 22(6/7): 349-385.

van der Lek, H., Bakema, G., Zwart, J. (1992): De unificatie van objecttypen en
feittypen. Informatie 34(5): 279-295 (in dutch)

Leung, C. , Nijssen, G. (1988): Relational Database design using the NIAM
conceptual schema. Information Systems 13 :219-227.

McFadden, F., Hoffer, J. (1994): Modern database management, 4th edition,
Benjamin/Cummings.

Nijssen, G. (1989): An Axiom and Architecture for Information Systems. In:
Falkenberg, E., Lindgreen,P. (eds.): Information System Concepts : An In-depth
analysis, Elsevier Science publishers North-Holland, Amsterdam: 157-175

Nijssen, G., Bollen, P. (1995): Universal Learning: A science and methodology for
education and training, in: W,Gijselaers, D. Tempelaar, P. Keizer, J. Blommaert, E.

 124

Bernard & H. Kasper (eds.), Educational innovation in economics and business
administration: the case of problem-based learning, pp. 428- 435.

Prabhakaran, N., Falkenberg, E. (1988): Representation of Dynamic Features in a
Conceptual Schema. Australian Computer Journal 20 (3): 98-104

Resource Description Framework (RDF), model and syntax specification, W3C
recommendation, 10 february 2004, http://www.w3.org/TR/REC-rdf-syntax/

Rolland , C. (1983): Database dynamics. Data base, spring 1983: 32-43.

Senko, M. (1976): DIAM as a detailed example of the ANSI/SPARC architecture. In:
Nijssen, G. (ed.): Modelling in Database Management Systems, North-Holland,
Amsterdam.

Smith, J., Smith, D. (1977): Database abstractions: Aggregation. Communication of the
ACM 20(6): 405-413

Sowa, J. (1984): Conceptual structures: information processing in mind and machines.
Addison-Wesley, Reading, Ma.

Verheijen, G., van Bekkum J. (1982): NIAM: An Information Analysis Method. In:
Verrijn-Stuart,A., Olle T., Sol H., (eds.): Proceedings of IFIP TC-8 Conference on
Comparative Review of Information Systems Methodologie (CRIS-1), North-Holland
Amsterdam 537-590

 125

CHAPTER 630

THE WAY OF WORKING AND THE WAY OF
CONTROLLING IN NATURAL LANGUAGE

MODELING

6.1 INTRODUCTION

A requirements determination method is a combination of a set of modeling constructs
(in general referred to as the requirements specification language) and an
accompanying (set of) procedure(s) that ‘prescribe’ how this language must be applied
in practice. In this chapter a way of working and a way of controlling for natural
language modeling (NLM) will be provided. The modeling constructs in the NLM
requirements specification language are based upon the axiom that all verbalizable
information (reports, web-pages, note-books, traffic signs and so forth) can be
translated into declarative natural language sentences (natural language axiom) (see
chapter 5). Taking this axiom as a starting point in requirements modeling will
constrain the feasible requirements specification constructs to those constructs that
enable analysts to model declarative natural language sentences. It also means that it
is not a real or abstract world that is subject to modeling, but that it is the
communication about such a real or abstract world (Hoppenbrouwers et al., 1997:79;
van der Lek et al., 1992:279). In chapter 5 we have introduced the NLM requirements
specification language or the way of modeling. In the first part of this chapter we will
focus on the NLM modeling procedures or way of working. In the last part of this
chapter we will discuss the way of controlling when NLM is used as a requirements
determination method.
 Earlier work on natural language descriptions in the context of requirements
determination include Wrycza (1990), Choobineh and Venkatraman (1992) and Silva
and Carlson (1995). Although these approaches all recognize the importance of natural
language specifications, they lack the explicit incorporation of domain knowledge to be
provided by the domain user into the way of working of a requirements determination
method. Hoppenbrouwers et al. (1997) acknowledge the importance of natural
language in the communication between user and analyst. Capuchino et al. (2000) give
a linguistics based conceptual modeling approach in which they need the output of a
requirements elicitation process as a starting point for the derivation of conceptual OO-
specifications. Tseng and Mannino (1989:53-54) give a survey of earlier work on the
field of user view modeling based upon forms or examples.

30 An earlier version of this chapter has been published as ‘The Natural Language Modeling
Procedure’, P.Bollen, in: A. Halevy and A. Gal (eds.). proceedings Fifth Workshop on Next
Generation Information Technologies and Systems (NGITS’2002). Lecture Notes in Computer
Science 2382. Springer-Verlag Berlin, Heidelberg (2002) 123-146.

 126

NLM
way of

working

NLM
Requirem.

Spec.

‘Real-life
example

documents

Algorithms
or

Procedures

Prescriptive
document

Declarative
document

Legend

Fig. 6.1 The way of working in the NLM requirements determination method

The way of working in NLM is laid down in a prescriptive document (see
figure 6.1). Such a prescriptive document not only tells the NLM analyst what to do but
more importantly it must contain precise guidelines on how to do it and moreover it
should explicitly state when what type of user input is needed in order to arrive at a
complete, precise and consistent requirements specification for a given application
subject area. We will define this completeness, preciseness and consistency within the
context of an agreed upon set of explicit informational documents (or formal
organization) of the application UoD that is the subject of analysis. The extent in which
an informal organization exists and the extent in which the existence of such an
informal organization is acknowledged by the management and the requirements
determination analysts severely effects the quality of a requirements specification
(Land, 1980; Oonincx, 1982:73-76).

In this chapter of this thesis we will exactly specify when a specific type of user
input is required. These user inputs can be considered semantic bridges between the
‘real-world’ that is subject to modeling and the ‘model-world’ that consists of
projections of such a real-world in terms of the requirements specification language in
the methodology that is used.

6.1.1 Organization of chapter 6

In section 6.2 through 6.8 we will specify the way of working in Natural Language
Modeling. In section 6.2 we will specify how a NLM analyst can create a basic
information model for a UoD. The specification of the way of working will be done by
introducing three algorithms that capture the domain semantics from the examples in
the UoD and result in a set of naming conventions and a set of sentence groups. In
section 6.3 an algorithm is provided that enables an analyst to derive an atomized basic
information model for an individual analyst/user interaction for a given (set of)
example(s). In section 6.4, we will introduce the way of working for those cases in

 127

which a requirements determination project is divided into sub-projects in which
different domain users interact with different analysts most of the time over different
‘real-life’ examples. The integration algorithm specifies how the basic information
models from the sub-projects can be integrated in a way that preserves the overall
domain semantics. In sections 6.5 through 6.8, respectively we will provide the
modeling procedures for the derivation of population state-, population state transition-,
derivation rule- and impulse constraints. In section 6.9 we will discuss the way of
controlling in NLM.

6.2 THE DESIGN PROCEDURE FOR A SIMPLE BASIC
INFORMATION MODEL

In the remainder of this chapter we will define the procedures that specify how a NLM
requirements specification for a given Universe of Discourse (UoD) can be created.
The starting point for every requirements determination process will be a (set of) real-
life user example(s) that represent(s) a specific ‘external’ user view on the subject area.
We note that the application of ‘real-life’ user examples is not restricted to ‘as-is’
situations but also applies to projected ‘real-life’ examples of a ‘to-be’ or
‘reengineered’ application domain. The only requirement is that a user example must
contain verbalizable information. Wu et al. (2002) give an overview of previous
research in which ‘forms’ are used for information system design31.
 The real-life user examples, however, can only be used in the requirements
determination process when the people that use these examples are involved in this
requirements determination process. The assumption that we will use in this chapter of
this thesis is that users will be available that have the discretion within the organization
to ‘verbalize’ these user documents in a knowledgeable way and that will be able to
accept and or reject (combinations) of real-life example documents further on in the
requirements determination process, based upon the knowledge of the application UoD
that they possess. Finding these domain users in some UoD’s is not a trivial task, in
some organizational forms, e.g. professional bureaucracies, political issues might have
a big impact on the availability and selection of the users that may/can participate in the
requirements determination process because it is not always evident from the ‘formal’
organizational structure who has the discretion to act on behalf of ‘the organization’ in
this organizational type (Mintzberg, 1991: 207-211).
 Legacy systems may contain hidden logic which cannot be verbalized by
present or past users. In such cases we assume that reverse engineering leads to
artificial-life user examples.

31 Sometimes the concept of ‘form’ is used to refer to any structured document (e.g. See
Choobineh and Venkatraman (1992:p.270).

 128

Definition 6.1. A user example is an informational document. An informational
document can have several manifestations. It can be paper-based, it can be a web-page,
a computer screen, a note-book, and it can even be a formatted conversation. An
informational document should contain verbalizable information.

An example of a document that is not an informational document and therefore not
verbalizable is for example an ‘art’ painting by Rembrandt or van Gogh or a satellite
picture of a city (you can see things but no single individual can name all of the things
he/she sees on the picture).

6.2.1 The verbalization transformation

Fig. 6.2 The verbalization transformation.

In NLM the requirements specification language constructs are applied in the analysis
of the structure of declarative natural language sentences (as laid down in the natural
language axiom). This means that we must translate ‘real-life’ examples that are not in
the format of ‘declarative natural language sentences’ into declarative natural
language sentences. The first step in this modeling procedure, therefore is the 'visual-
to-auditory' transformation (Nijssen, 1986) that will ‘standardize’ each verbalizable
example into declarative natural language sentences.

Verbalized
sentences

Real life
example
document

Algorithm 1:

Verbalizing
1

2 7
4

3

5

6

Information
Analyst User(s)

 129

During this transformation the user is asked to verbalize the content of a
verbalizable 'real-life' user document that not necessarily should contain written natural
language sentences. The result of this verbalization is a set of (verbalized) sentence
instances. In figure 6.2 the information flow diagram is given for the verbalization
transformation. When the verbalization transformation is executed the following
sequence of actions should take place. Firstly, a knowledgeable user is asked to read
aloud the content of a representative part of a document, sentence by sentence, as if
he/she were talking to a colleague (information flow 3 in figure 6.2) via the telephone
(the ‘Aunt Annie in Reykjavik way of verbalizing’, see Nijssen and Halpin (1989:3);
Nijssen and Twine (1989:971)). While the knowledgeable user is reading (information
flow 6 in figure 6.2) the analyst is listening to the user (information flow 4 in figure
6.2), subsequently the analyst will shade the verbalized parts in the original example
(information flows 2 and 7 in figure 6.2) and add every new sentence onto the output
document (information flow 5 in figure 6.2).

After all the representative information is read aloud, it is checked with the
user that each sentence on the output document can be traced back to a shaded pattern
on the input document by reconstructing (the representative part of) the original
example. If it is not possible to reconstruct the original example then these steps have
to be performed again until the reconstruction of the original example(s) is possible.

Initial check on naming conventions. In the verbalization transformation, the user is
asked to verbalize the content of a real-life example. Whilst verbalizing, the user will
reference the relevant concepts and entities in his/her UoD by using names. In the NLM
methodology the concept of naming convention is crucial for bridging the gap between
the business domain (or knowledge domain) and the formal structure with respect to
the requirements specification. In the NLM requirements determination method we will
exactly determine what name classes are of interest. We will enforce the domain users
to select those ‘candidate’ name class(es) for the naming convention for a specific
intention within the application subject area that can be considered a reference type.

Definition 6.2. A naming convention is called a reference type for a selected portion of
the real world if every element in the selected portion of the real world can be
referenced by exactly one name from the name class used in the naming convention
and that one name from such a name class references at most one element in that
selected portion of the real world.

 Let IS be an naming convention
T: elements or concepts in a selected portion of the real world
N: All names from a given name class

() },{ NaTtatIS ∈∧∈=

 () ()
[]()⇔=⇔=∀

∈
vtdc

ISvdtc ,,, (IS is a reference type)

The analyst must check whether all names that are uttered by the user for
referencing elements in that selected portion of the real world belong to a name class
that is of the reference type. If this is not the case then a different name class must be
selected. Finding an appropriate naming convention for a given intention in

 130

cooperation with a user can be considered a semantic bridge that is embodied in the
choice of the proper name class by the user for a specific intention.

Example 6.1:

Consider the ‘real-life’ example in figure 6.3.

 ABC COMPANY INVOICE 345 Client: 123145

 Item Description price quantity subtotal

 Ab102 Hose $ 12,-- 2 $ 24,--
 Cd879 Pipe $210,50 1 $210,50

 Invoice total: $ 234,50

Fig. 6.3 ‘real-life’ ABC invoice document (example 6.1).

The ABC company creates an invoice for each client order. A client is identified by a
client code among the union of clients of the ABC company. An item is identified by
an item code among the union of items that are contained in the assortment of the ABC
company. A description and a unit price exist for each item. An amount (of money) is
identified by a decimal number.

Furthermore, it is explicitly recorded how many units of a specific item are
ordered by a client. Such a product quantity is identified by a natural number. A
subtotal is derived for each item in the invoice by multiplying the (unit) price for that
item by the quantity that is ordered. A specific invoice is identified by a combination of
a client and a rank number.

Finally, the total invoice amount is given on the example. The analyst has to
check that every verbalized sentence is self-contained. For example: The two
sentences: There exists an invoice 345 for client 123145 and on that invoice the total
amount is $ 234,50 must be replaced by the following sentence: The invoice 345 for
client 123145 totals $ 234,50. Furthermore, if the user has verbalized the following
sentence: The item hose has a unit price of $ 12,--, the analyst should ask the user
following questions: Does the name "Hose" refer to exactly one item among the union
of items in ABC’s assortment ? and Does the name $12,--refer to exactly one price
among the union of prices ? It should be noted that in many cases the initial
verbalization is very compact. In these cases a formal check on the naming convention
will take place during the classification and qualification transformation.

Definition 6.3. Verbalization is the process of transforming user examples into natural
language sentences.

We will now give the algorithm for the transformation verbalization.

 131

Algorithm 1. Verbalization {UoDi is the universe of
discourse that contains 1 or more ‘real-life’ user
examples. G is the group of users of the‘real life’
examples in UoDi}
BEGIN VERBALIZATION (UoDi, G)
WHILE still significant parts of user examples are not
 shaded
DO let knowledgeable user (g∈G) verbalize the next
 unshaded part from the significant32 part of the
 real-life example in the UoD33.
 The analyst will shade this part on the real-
 life example and he/she will add the verbalized
 sentences on the document verbalized sentences.
ENDWHILE
Replace dependent sentences by self-contained sentences.
{Reconstruction check}
Let the analyst recreate the original example documents by
translating the verbalized sentences document onto the
corresponding parts on the original document.
IF the recreated document is identical with the shaded
 part of the verbalized document
THEN {no information loss has occurred}
ELSE{information loss has occurred,
 VERBALIZATION(UoDi,G)
 {Have the user verbalize the example again, thereby
 using a different naming convention and/or
 verbalizations that refer to bigger parts on the
 example document}
ENDIF
END

Algorithm 1, basically specifies how (a) ‘real-life’ example document(s) can be
transformed into a verbalization and how the quality check for this transformation is
implemented (the reconstruction check).
The document verbalized sentences exclusively contains natural language sentences.
(A part of) the result of the verbalization transformation applied on the invoice example
in figure 6.3 is given in figure 6.4.

32 A significant part of a Universe of Discourse in this stage of the way of working of the NLM
requirements determination method should be considered a set of example ‘instances’ that
contain all possible variation in the sentence groups.
33 The bold fonded parts of this and the other algorithms in this chapter denote that this
information must be supplied by the user and therefore constitute (parts of a) semantic bridge(s).

 132

 The item Ab102 has the description hose and a unit price of $ 12,--
 The subtotal for item Ab102 on the invoice 345 by client 123145 is $ 24,--
 The item Cd879 has the description pipe and a unit price of $ 210,50
 The subtotal for item Cd879 on the invoice 345 by client 123145 is $ 210,50
The item Ab102 is ordered in the quantity of 2 on the invoice 345 by client 123145
The item Cd879 is ordered in the quantity of 1 on the invoice 345 by client 123145
 The invoice 345 of client 123145 has a total of $ 234,50

Fig. 6.4 Result of verbalization transformation of example 6.1.

The verbalization transformation is essential for the implementation of the modeling
foundation of NLM (the natural language axiom in section 5.3). The verbalization
transformation is the unification transformation that uses all appearances of declarative
verbalizable information as an input and will converge it into declarative natural
language sentences as an output.

6.2.2 The grouping transformation

The transformation grouping is the process of sorting sentences from the document
verbalized sentences according to what they have in common into a number of
(sentence) groups. The document verbalized sentences should contain a significant set
of sentences. If a resulting sentence group only has one sentence instance on the
significant part of the example document the user should verbalize a second sentence of
the same type (eventually from a different ‘positive’34 example for the same UoD) until
all possible variability is reflected within the sentence groups.

Definition 6.4. Grouping is the process that divides verbalized sentences into groups of
the same type.

The result of grouping is a partition of a set of sentences.
Let B be a partition of A
B={Bi|Bi⊂A} is a partition if Bi ⊄ ∅
and Bi∩ Bj = ∅ and ∪ Bi=A

34 A positive example is an example accepted by the user, otherwise it is negative (Tseng and
Mannino, 1989:55)

 133

Grouping is the mapping of N sentences into M (≤ N) groups of sentences by some
similarity criterion. The grouping transformation will lead to a partition of the
sentence groups (out of the 2n that are theoretically possible). We note that in principle
a set of N sentences can be grouped in different ways. The resulting information
models for these groupings are (semantically) equivalent, in the sense of entity type -
fact type conversions (Nijssen and Halpin, 1989: 222-223). In general the algorithms
that are used in modeling processes have an impact on the outcome of the modeling
process (Kaufman and Rousseuw, 1990:37). The grouping algorithm can lead to
different (semantic equivalent) outcomes when applied in cooperation with two
different users that have the same knowledge of the same UoD. However, in order, to
be able to create ‘semantic equivalent’ models, the existence of some population state
constraints must be enforced. To cater for this semantic equivalence transformation that
is induced by the grouping algorithm, the lexical constraint type must be defined
(Nijssen and Halpin, 1989:159).

Example 6.3:

Verbalized sentences:

The ABC company had a turnover for item ab 102 of $ 345 in week 34 of year 1997.
The ABC company had a profit for item ab 102 of $ 45 in week 34 of year 1997.
The ABC company had a turnover for item ab 103 of $ 745 in week 35 of year 1996.
The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996.

Result of transformation grouping by user 1:

Group 1:

The ABC company had a turnover for item ab 102 of $ 345 in week 34 of year 1997.
The ABC company had a turnover for item ab 103 of $ 745 in week 35 of year 1996.

Group 2:

The ABC company had a profit for the item ab 102 of $ 45 in week 34 of year 1997.
The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996.

Result of transformation grouping by user 2:

Group 1:

The ABC company had a turnover for item ab 102 of $ 345 in week 34 of year 1997.
The ABC company had a profit for the item ab 102 of $ 45 in week 34 of year 1997.
The ABC company had a turnover for item ab 103 of $ 745 in week 35 of year 1996.

The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996.

We will now give the grouping transformation algorithm for a given UoD and user
group G.

 134

Algorithm 2. Grouping {VS is the document verbalized
sentences which contains the results of the verbalization
transformation applied on UoDi}
BEGIN GROUPING(UoDi,G,VS)
Divide the sentences into groups of the same type (SG)
WHILE still groups in SG
DO take next sentence group {gr∈SG}
 IF the number of Sentences in gr= 1 {s1}
 THEN let knowledgeable user (g∈G) verbalize a
 second piece of information belonging to that
 sentence group from a second example document
 instance of the same type. This second piece
 of information together with the first
 sentence from this sentence group should
 contain all variability within the sentence
 group. The analyst will shade this part on the
 real-life example and he/she will add the
 verbalized sentences on the document
 verbalized sentences.
 IF such a second piece of information can not
 be found
 THEN Add the verbalized sentence s1 to the
 ACR.
 Remove this sentence group from the
 document VS.
 ENDIF
 ELSE assign a unique code to the sentence group35
 ENDIF

ENDWHILE
{completeness check} Each sentence in the verbalized
sentences document should belong to a sentence group in
the grouped sentences document or must be contained in the
ACR.
END

In figure 6.5 the result of the grouping transformation for example 6.1 is given.

35 Preferably for each individual analyst/user interaction, a set of sentences group codes must
be reserved. Those codes must not be overlapping among the different analyst/user interactions
that are carried out within one requirements determination project

 135

Sentence group Sg1

The item Ab102 has the description hose and a unit price of $ 12,--
The item Cd879 has the description pipe and a unit price of $ 210,50

Sentence group Sg5

The subtotal for item Ab102 on the invoice 345 by client 123145 is $ 24,--
The subtotal for item Cd879 on the invoice 345 by client 123145 is $ 210,50

Sentence group Sg6

The item Ab102 is ordered in the quantity of 2 on the invoice 345 by client 123145
The item Cd879 is ordered in the quantity of 1 on the invoice 345 by client 123145

Sentence group Sg7

The invoice 345 of client 123145 has a total of $ 234,50
The invoice 346 of client 123567 has a total of $ 4,20

Fig. 6.5 Result of grouping transformation of example 6.1.

6.2.3 The classification and qualification transformation

Colleagues know the background of their co-workers and the language they use refers
to a shared world. An example of such an implicit communication between colleagues
is: 35467 is due for 23-97 (example 6.2). Suppose another sentence is communicated
between two colleagues in this subject area: 35469 is due for 25-97. We can now group
these sentences as follows:

Group 1: 35467 is due for 23-97
 35469 is due for 25-97

For the colleagues in the logistics and supply department of a company these sentences
have a definite meaning but it can be very hard for an outside person (who works for
the same company) to find out what the communication is about. Because a
requirements specification should reflect the ‘organizational’ semantics of the complete
application subject area we have to ask the user that has verbalized the sentences to
inject ‘additional semantics’ in such a way that the resulting sentences can be
understood by a colleague from another department within the same company. The
result of this ‘semantic injection’ would yield sentences like:

The supply order with order number 35467 is due for week 23 of the year 1997 and
The supply order with order number 35469 is due for week 25 of the year 1997.

 136

This is the reason that we need a transformation that transforms of the sentence groups
on the document grouped sentences into a semantic rich format that specifies exactly
what the communication is about (e.g. what concepts are involved and how these
concepts are defined) and what naming conventions are used to identify instances of
these concepts. We will call this transformation the classification and qualification
transformation. Firstly the variable and fixed parts for each sentence group will be
determined (the classification sub transformation). Secondly the intention of the
concepts that play the roles will be determined and a naming convention will be
established, e.g. it will be made explicit to what name class the individual names,
which reference those concepts, belong (the qualification sub transformation).

The classification sub-transformation. In the classification transformation we will
investigate each sentence group at a time. We will depict those parts of a sentence
group from example 6.1 that are fixed and the parts that are variable :

Example 6.1(ctd.): Sentence Group1=:{ The item Ab102 has a unit price of $ 12,--,
 The item Cd879 has a unit price of $ 210,50}

Variable parts sentence Group1=:{ The item Ab102 has a unit price
of $ 12,--, The item Cd879 has a
unit price of $ 210,50}

Fixed parts sentence Group1=:{ The item Ab102 has a unit price of
$ 12,--, The item Cd879 has a
unit price of $ 210,50}

We will call the names in the sentences that are variable within a significant set of
sentences of the sentence group: individual names. The remaining positions in the
sentence groups contain text parts that are fixed for every sentence (instance) of the
sentence group. In the remainder of this paper we will call the variable parts in a
sentence group roles and we will call the fixed parts in a sentence group verb parts in
the accompanying fact type template. We will now be able to specify a sentence group
by replacing the sentence positions for the roles by a role name. This leads to the
following sentence group template for sentence group 1: The item <r1>has the
description <R2>and a unit price of <R2b>. An equivalent graphical notation for a
sentence group for this example is shown in figure 6.6 (see also chapter 5).

R1 R2 R2b Sg1

Fig. 6.6 Graphical notation sentence group for (a part of) example 6.1.

 137

In the graphical notation we will denote each role by a box that contains the role name.
The sentence group template(s) will be placed under the ‘role-boxes’ and each template
will contain at least one reference to each ‘role box’ (see chapter 5). We must remark
that the focus in this thesis is not on the notational convention (chapter 1), we will use
the box notation to facilitate the expression of a number of constraint types that will be
later on in this chapter, however, any suitable notational legend could be used for this
purpose.

The qualification sub-transformation. Now we have classified the sentence group
elements into variable and fixed parts we can start deriving the additional semantics
for the Universe of Discourse by establishing additional semantic bridges with the user.
Firstly, the type of concept or thing (defined as intention) and its definition to which the
individual names in a role of the sentence group refer, will be recorded. For every role
in a sentence group we will determine its intention from a sample extension of that
concept by posing the what question

To what type of thing or concept refer the individual names in this role ?

For each intention that is distinguished by the user in the answers to the what question,
a definition should be recorded in the application concept repository (ACR). Every
definition of an intention should be expressed in terms of general known concepts
and/or intentions that are already defined in the application concept repository (see
section 5.5). Dependent upon the way in which the initial user verbalization has taken
place, a specific intention might not be contained in the sentence group (e.g. the
example in the grouping transformation in which an ‘inter-colleague’ level of
verbalization exists).

In those cases we will add the intention to the sentence group by putting the intention
in front of the role names in the sentence group template.

Example 6.2(ctd.):

Sentence group:The item ab102 has a unit price of the amount $ 12,--
 The item cd879 has a unit price of the amount $ 210,50

Sentence group template: The item <R1> has a unit price of the amount <R2>

Intention(ab102, cd879):= Item;
Intention ($12,--, $ 210,50):= Amount

Asking the user to define the intention in terms of other ‘known’ intentions leads to the
application concept repository (ACR) in figure 6.6. We remark that the ACR should be
based upon the ontology of the integrated application subject area, and it is therefore,
defined on a business level. Furthermore, the specialization and generalization
relationships that exist between intentions within a UoD must be incorporated into the
ACR. In very large requirements determination projects we recommend to add the
name of the department (or organizational unit) and the names of the knowledgeable
users that have defined the concepts to the ACR, in case of definition and interpretation
conflicts that might in the course of the requirements determination project.

 138

Intention Synonym definition
Item a product that is contained in ABC’s assortment
Client Customer a person that has ordered or that is about to order an item at
 ABC
Invoice a document that specifies the payments for an order
Amount a specific quantity of money in dollars
Product quantity a specific quantity of items

Fig. 6.7 Initial application concept repository for (a part of) example 6.1.

Secondly, we will formally establish the naming convention for the intentions
that have been defined in the UoD in this sub-transformation. We will ask the user the
how question one time for every intention that has been distinguished. In some
situations this question serves as a quality check on the initial naming convention that
has been performed during the verbalization transformation in which the user initially
has verbalized the ‘real-life’ example.

How ? (or by what names) are instances of a given intention in the
application repository within this UoD identified ?

This question determines if a name class can be specified that configures a reference
type naming convention for the selected portion of the real world that consists of the
union of instances of the intention.

In the example of The item <R1> has a unit price of the amount <R2> sentence group
the following two how questions can be posed:

Question 1: How ? (or by what names) are instances of an item in the ABC invoice
UoD identified ?

Question 2: How ? (or by what names) are instances of an amount in the ABC invoice
UoD identified ?

The answer to question 1 is that an item is identified by a name from the item code
name class and the answer to question 2 is that an amount is identified by a name from
the decimal number name class. The answer to these ‘how’ questions is another
‘semantic injection’ to the existing sentence groups. We will model these additional
semantics as a sentence group that is ‘connected’ to the appropriate intention. In this
example the naming convention sentence group for the intention Item is :<R3> is a
name from the item code name class that can be used to identify an item within the
union of items in ABC’s assortment and for the intention Amount it is: <R7> is a name
from the decimal number name class that can be used to identify a specific amount of
money in dollars within the union of money amounts. It should be noted that the
selected portion of the real world in which the names from the name class can be
considered to be of the reference type should be explicitly mentioned in the naming
convention fact type template. In figure 6.8 we have illustrated how all extensions of
the role R1 that are played by the intention item at any time must be a subset of the
instances of the name class item code (subset constraint C1) and how all extensions of
role R2 played by the intention amount at any time must be a subset of the instances of

 139

the name class decimal number (subset constraint C6) (see section 5.8 for the definition
of a subset constraint).

R1 R2 R2b Sg1

Sg2 Sg3 R3 R7

C1 C6

 1: The item<R1> has the description <R2>and a unit price of an amount<R2b>
 2: The unit price for the item <R1> is the amount <R2b> and it has as description <R2>

3:<R3> is a name from the item code name class
 that can be used to identify an item within the
 union of items in ABC’s assortment

6:<R7> is a name from the decimal number name class
 that can be used to identify an amount in dollars within
 the union of money amounts

Fig. 6.8 Application of naming convention fact types in NLM.

We have now shown that in principle we can pose two questions for every role in a
sentence group. The answer to the what question will lead to the identification of a
specific application intention for that role. The answer to the how question leads to the
detection of a specific name class and is encoded as a naming convention sentence
group plus the appropriate referencing constraint. Until now we have assumed that the
name of the name class that can be used to identify instances of the intention is
different than the name of the intention. However, it is possible that an intention of an
individual name coincides with the name class. Consider the following verbalized
sentences from example 6.1 (that constitute one sentence group):

The invoice 345 for client 123145 totals $ 234,50
The invoice 345 for client 578995 totals $ 125,00
The invoice 348 for client 578995 totals $ 25,75

The latter sentence group has three variable parts (denoted by an underscore):

The invoice 345 for client 123145 totals $ 234.50
The invoice 345 for client 578995 totals $ 125.00
The invoice 348 for client 578995 totals $ 25.75

The intentions for the respective role extensions are the following:

Intention(345,348):= number
Intention(123145, 578995):= client

Intention ($ 234.50, $125.00, $ 25.75):= amount in dollars

If we would now ask the how question for every intention that was discovered, we
yield:

Name class (number):=number
Name class (client):=person name

Name class (amount in dollars):=number

 140

In this example we see that for the ‘first’ role in the sentence group the name class that
can be used to identify instances of the intention is identical to the intention itself. This
means that there does not exist an intention for this role other than the name class itself.
In this case we do not define a naming convention fact type. Instead we will record the
name class in the position of the intention name in the sentence group. We can now
conclude that for each role in a sentence group we must record the intention of the
individual names that play that role in the sentence group and the naming convention
sentence group for that intention or we must record the name class to which the
individual names that play that role in the sentence group belong.

Compound referencing schemes. In some subject areas users have introduced
naming conventions that are complex, e.g. that consist of names that have an internal
structure. The qualification of every role in such a sentence group, therefore, will not
necessarily lead to the detection of all intentions that have extensions that consists of
value combination of two or more roles in a sentence group. Thus, in some sentence
groups the intentions are not linked to exactly one role. We will illustrate this once
again in example 6.1.

Example 6.1(ctd.):

Sentence group: The invoice 345 for client 123145 totals $ 234,50
 The invoice 345 for client 578995 totals $ 125,00
 The invoice 348 for client 578995 totals $ 25,75
Sentence group template: The invoice <R4> for client <R5> totals <R6>
Qualified Sentence group
template: The invoice having rank number <R4> for client <R5>

totals the amount in dollars <R6>

We have discovered a fourth intention or name class in this qualified sentence group:
invoice. If we once again ask the question : by what naming convention is an instance
of an invoice depicted ?, it will turn out that this is a complex identification structure,
consisting of combinations of individual names in roles <R4> and <R5>.

The invoice [identified by rank number <R4> for client <R5>] totals the amount in
dollars of <R6>

This means that in those sentence groups that contain at least one intention with a
compound referencing scheme we will have to incorporate the naming convention
sentence group, in the communicated sentence group itself. In case such a ‘compound’
intention (or aggregation (Smith and Smith, 1977)) is not contained in the initial
verbalization by the user we will have to trace the existence of such a ‘compound’
intention by systematically confronting the user with all possible role combinations (of
a sentence group) and ask the user whether such a role combination can be considered
as a referencing scheme for a potential ‘compound’ intention. The classification and
qualification transformation should enforce the analyst and the user(s) to specify all
intentions that have a compound referencing scheme. Consequently, the naming
convention template for these ‘compound’ intentions will be incorporated into the ‘flat’
sentence group in which they appear. We will now give the algorithm for the
classification and qualification transformation for a specific sentence group.

 141

Algorithm 3. Classification and Qualification {SG is the
set sentence groups on the document grouped sentences that
is the result of the transformation grouping}
BEGIN CLASSIFICATION and QUALIFICATION(UoDj ,G, SG)
WHILE Still sentence groups
DO Take next sentence group {sg∈SG}
 List all sentences in the sentence group sg.
 Mark the common parts throughout all the sentence

 instances in the group sg.
 Insert a role code36 for
 every variable part.

 WHILE still roles in the sentence group sg
 Take next role in sg {rg}
 DO Determine the intention that plays the role rg
 in the sentence group sg by posing the what
 question (answer: Ix).
 Pose the How question for Ix: (answer Nx)
 IF Nx=Ix THEN Ix is a name class.

 Let the user record the name
 class definition in the ACR

 ELSE Ix is an intention.
 Let the user define the intention
 and record this definition in the
 ACR. Determine the naming
 convention fact type37 that
 connects name class Nx to
 intention Ix. Add a subset
 constraint between the role and
 the role of the naming convention
 fact type
 ENDIF
 ENDWHILE
 IF arity of sg >=2
 THEN Check on compound intentions with the users38

36 Such a role code must be a reference type naming convention within a requirements
determination project or a group of projects.
37 In the template of the naming convention fact type the ‘selected portion of the real world’ in
which the naming convention is of the reference type should be included.
38 Consider a fact type consisting of roles R1,, RN. For each combination of j (2≤ j≤ N) roles
try to determine an intention, that has a compound referencing scheme. As soon as all roles are
contained in a (compound) referencing scheme, we can stop this algorithm. We will now replace
this compound referencing scheme by creating one role for each intention having such a complex
identification structure. The resulting sentence group will be called the compound sentence
group as opposed to the flat sentence group. For example, the flat sentence group Sg5 contains 4
roles, the compound sentence group Sg5 will contain 3 roles (in this cases role R16 and R17 are
joined into one compound role). See for an earlier discussion on this issue Biller (1979:280-282).

 142

 WHILE still compound intentions in sg
 DO take next compound intention {CI}.

 Determine identification structure for
 CI in terms of the roles of the 'flat'
 structure.

 Add the naming convention sentence group
 for the complex intention CI in brackets
 into the sentence group sg

 ENDWHILE
 ENDIF
ENDWHILE
{consistency check} For each sentence group on the final
version of the document ‘grouped sentences’, exactly one
(non-naming convention) sentence group must exist in the
document ‘classified and qualified sentence groups’

END

C10 C5
C9

C2

C8

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1 R2bR2

R3

C1

Sg1

Sg5

Sg6 Sg7

Sg9

Sg4

Sg2

Sg3
C4 C18

C7

C6

1: The item<R1> has the description <R2> and unit price of an amount<R2b>
 2: The unit price for the item <R1> is the amount <R2b> and it has a description <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

Fig. 6.9 Result of classification/qualification transformation of example 6.1.

 143

6.3 THE ATOMIZATION PROCEDURE

In NLM we use ‘real-life’ examples of communication or ‘knowledgeable user’ views
as a starting point for the requirements determination sub process that involves the
requirements elicitation on an individual user (or eventually user group) level. In the
ANSI/SPARC three-schema architecture (Tsichritzis and Klug, 1978) different of these
external user schemata on the same conceptual schema can be defined. A conceptual
schema according to the ANSI/SPARC three-schema architecture should enable all
workers in the enterprise to access all corporate facts. The definitions in a requirements
specification, therefore, should not favour one external schema over another.
Furthermore, a requirements specification must contain all domain semantics that are
needed to eventually implement an automated information system to support the
business management and operations. For example, a relational data base
implementation, requires that the tables in the logical database design are in 5th Normal
Form (5NF). If the application requirements specification does not explicitly contain
the semantics with respect to functional dependencies, this would imply that during the
database normalization process, a database designer once again has to consult the users
in the application domain to help him/her in determining the functional dependencies.
For these reasons, the sentence groups in the conceptual schema or requirements
specification in this architecture need to be atomic elements of which the compounds in
the external schemata are created and that contain all required semantics for the
implementers.

Definition 6.5. An elementary or atomic sentence group is a sentence group of which
the sentence instances can not be split up into two or more sentences without losing
information and can not be contained in another atomic sentence group referring to the
same Universe of Discourse. An elementary sentence group is also called semantic
irreducible (Falkenberg, 1976).

Let {FFTij} be the set of sentence group templates defined on UoDk and a
user group G. Where FFTij refers to sentence group template i for sentence
group j .Let the sentence α be an instance of a sentence group template FFTim
for sentence group FTM (⊂ {FFTij}) referring to the universe of discourse
UoDk. .The sentence α is atomic ⇔

 m(G)
39

 (¬∃ β1,.. βN ♦
40

 {FFTij} \ FFTim [α ⇒ β1,.. βN]) ∨
 m(G) m(G)

(∃ β1,.. βN ♦ {FFTij} \ FFTm [α ⇒ β1,.. βN ∧ β1,.. βN ¬ ⇒ α])

39 m(G)
where α ⇒ β1,.. ,βN is defined as : The existence of sentences β1,.. βN is implied by
sentence α according to user group G in the given universe of discourse. See also Biller (1979).
40 Where [a ♦ A] is defined as: a is an instance of A.

 144

We will now give the algorithm for the atomization transformation for a given UoD
and a user group G.

Algorithm 4. Atomization (Sg) {Sg is the set of sentence
groups that results from the application of algorithm 3:
classification and qualification}
BEGIN ATOMIZATION({SGi},G)
Consider exclusively the compound sentence group formats
as defined in algorithm 3 for every sentence group

 WHILE not last sentence group from SG AND
 arity(sg) > 2
 DO Take a sentence group template (sgt) from sentence
 group sg (∈ SG)
 Take following sentence as a first sentence
 instance of this sentence group template {Let the
 arity of sgt= N): a1 b1 .. N1
 { Comment: we define the set of different role
 combinations consisting of j roles within the
 sentence group template sgt as follows:

() },...,...{: 1 ccc j

NjjkjjRCOMBSI
⎟
⎠
⎞⎜

⎝
⎛=

 }
 j:=1

 WHILE j ≠ N-2
 DO k:=1

 WHILE k ≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
j
N

 DO Create a new sentence instance of the
 sentence group template sgt: si2
 si2 should have different names in all
 roles except the roles in cjk.
 Check with the user in user group G

 whether a combination of sentences si1 and
 si2 is allowed

 IF such a combination is not allowed
 THEN the sentence group sg of sentence
 group template sgt is not atomic. Ask
 the user to split the sentence group
 sg into 2 or more fact types sg1,

 sg2 sgp
41 such that the

41 We assume that the extensions of the name classes that will be used for referring to atomic
fact types will be disjunct in the different user/analyst interactions. A naming convention for the
fact types would be the following: For each sentence group that is atomic keep the same name. If

 145

 shading of instances of these new
 sentence groups on the original
 examples used in the verbalization are
 equal to the shaded part for the
 corresponding instances of the non-
 atomic sentence group sgi
 {SG}:= {SG}/sg ∪ {sg1, .. sgp}
 ELSE k:=k+1
 j:=j+1
 ENDIF
 J:=N-2
 ENDWHILE
 ENDWHILE
take next sentence group from SG
ENDWHILE
{reference check}
Check that each sentence group on the (input) document
‘classified and qualified sentence group’ refers to at
least one fact type on the output document ‘atomized
sentence groups’.
END

We remark that even in the case in which there exists exactly one external view on the
application information base we still need to atomize the sentence groups that are
contained in the document sentence group templates simply because an elementary fact
should be stored at most one time in the application information base in order to avoid
update anomalies. The atomization process results in a conceptual schema or
requirements specification for which algorithms can be defined that group these atomic
fact types into relation types in an optimal normal form (ONF) (Leung and Nijssen,
1987). The mapping in (Nijssen and Halpin, 1989:254-260) typically generates tables
in fifth normal form (5NF). For an elaboration on atomization we refer to Kent (1978)
and Nijssen and Halpin (1989). We note hat we will use the term fact type to refer to
those sentence groups that are atomic within the UoD. In figure 6.10 we have given the
result of the application of this transformation for example 6.1.

a sentence group has to be split up use the original name plus one or more new names from the
designated name class to denote these atomized sentence groups or fact types.

 146

C10 C5
C9

C2

C8

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

R10

R3

C1
Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C4 C18

C7

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

Fig. 6.10 Result of atomization transformation of example 6.1.

We note from the example in figure 6.10 that if compared with the results of the
classification and qualification transformation in figure 6.9 only sentence group Sg1
has been split up into the new and atomized fact types Sg1 and Sg8.

6.4 THE PROCEDURE FOR INTEGRATING BIMs IN NLM

We will now give a number of equivalence transformations that are required in order to
be able to integrate information models that are created in a number of different
analyst/user interactions in different requirements determination sub processes. This is
generally known as schema integration (Beynon-Davis et al., 1997). Many schema
integration approaches are based on the (E)E-R approach for conceptual modeling
(Beynon-Davis et al., 1997; Johannesson, 1997; Kwan and Fong, 1999; Lim and
Chiang, 2000; McBrien and Poulosvassilis, 1998; Navathe et al., 1984). An approach
that is based upon a (binary) fact oriented approach can be found in Shoval and Zohn
(1991). In Johannesson (1997) the schema integration process is divided into schema
comparison, schema conforming and schema merging. In Lim and Chiang (2000)
schema-level conflicts are classified into (relationship) naming, structural, identifier,
cardinality and domain conflicts. Kwan and Fong (1999) in addition, propose to

 147

resolve conflicts on synonyms and homonyms, merge entities by generalization and
merge entities by subtype relationships.

6.4.1 Conflicts on naming, synonyms and homonyms

In NLM schemas we can encounter naming conflicts on two levels: names for
intentions and names for the verbs in the fact types. To resolve the first conflict we
need primary naming convention postulation. In principle it is possible that more than
one reference type naming convention is used for a specific intention in the different
sub-schemas. In an integrated UoD however it is essential to have exactly one primary
naming convention for each intention.

Definition 6.6. Primary naming convention postulation is the process of selecting one
naming convention for every intention for (a) given integrated UoD (s).

After this negotiation process (Meersman, 1994; Shoval and Zohn, 1991:237), the
primary naming conventions for the intentions in the application subject42 area must be
known together with their synonyms that can be incorporated into the conceptual
information model, by means of synonym fact types, e.g. The employee with employee
ID <r1> has social security number <r2>. Furthermore, for all intentions that are
contained in the first UoD and the second UoD and that have identical naming
convention fact types, it should be checked whether these naming conventions still can
be considered having a reference type naming convention in the integrated UoD.

Example 6.3:

 UoD 1: affiliate A: Employee with employee id43 <R1> lives on Address <R2>

UoD 2: affiliate B: Employee with employee id <R1> lives on Address <R2>.

In example 6.3 the conceptualization into an enterprise wide requirements specification
forces users in the integrated UoD to determine a new naming convention for
employees. In such a case it is likely to create a compound naming convention in which
the extension of the first role consists of names from the name class employee ID and
the extension of the second role of the names from the name class affiliate code (e.g. A
or B). An alternative naming convention that is of the reference type for the integrated
UoD in example 6.3 is an employee ID that identifies employees within the integrated
application subject area. The advantage of selecting the former naming convention is
that the company can capitalize on the existing naming conventions.

42 We note that synonyms for intentions or concepts (Mirbel, 1997:184) are directly
incorporated into the Application Concept Repository (ACR) (Shoval and Zohn, 1991:227).
43 We assume that the instances of the name class employee ID are (potentially) overlapping
within the union of UoD1 and UoD2: The name class employee ID is of the reference type
within UoD1 and within UoD2, but it is not of the reference type within the integrated UoD.

 148

Concerning the possibility of homonyms (Mirbel, 1997:184) for application
intentions, provisions have been made in the application concept repository in which
the same definition for different intentions are prohibited, but if they do occur,
investigations can take place by involving the relevant user groups. With regard to the
names in the verbs we remark that when we integrate two fact types from two sub-
UoD’s having different fact type templates in which the same intentions are involved
(in the same roles) we need to determine whether they belong to the same group of fact
type templates (for a given fact type) or whether they can be considered to represent
two different fact types. In order to facilitate such a comparison we suggest that the
main concepts that are contained in the verb-parts of the fact type templates should be
defined and added to the Application Concept Repository (ACR). In such a way a
common business ontology is preserved.

6.4.2 Specialization and generalization relationships

The second integration transformation is the generalization/specialization
transformation. The reason for applying this transformation is that it can not be
expected that all users have complete domain knowledge on the integrated enterprise
subject area. For some user groups the intentions person and student can be considered
synonyms because the extensions of both intentions will always contain the same
instances. Whenever the subject area is extended (which is the case when UoD's are
integrated) there will be a possibility that the extensions of some intentions in the
integrated model are overlapping or are contained in one another. For example the
following intentions person, student, traveller, customer, dutch citizen can refer to
overlapping or inclusive classes of "physical persons" depending upon the scope of
analysis (Kung, 1990). In case the extension of an intention is an inclusive class of the
extension of another intention we will call the former a subtype of the latter.
Furthermore, it is possible that the extensions of two intentions that always exclude
each other or that partially overlap can be generalized into an ‘overlapping’ intention in
an integrated UoD whose extension is defined as the union of the extensions of the
intentions in the different UoD’s. We will call such an intention in the integrated UoD
a super type.

Definition 6.7. Generalization/specialization is the process of determining super types
and subtypes for the intentions in the integrated basic information model44.

44 We thereby assume that specialization/generalizations that exist in a single user/analyst UoD
will be modeled explicitly in the BIM by defining the appropriate subset constraints between the
fact types in which the super/subclass intentions participate or between the appropriate ‘existing-
postulating’ fact types (ter Hofstede et al., 1997:352). Furthermore, specializations and their
definitions and/or generalizations need to be explicitly stored in the application concept
repository (ACR).

 149

Example 6.5:

UoD 1: Tennis player <R1> lives on address <R2>
UoD 2: Employee <R3> lives on address <R4>

Integrated UoD: Person <R5> lives on address <R6>
 Tennis player <R7>is a person.
 Employee <R8>is a person

This transformation is called: generalization

In example 6.5 we have defined the intention Person as a super type of the intentions
Tennis player and Employee. It should be noted that the generalization transformation
can only be applied when there exists a naming convention for the derived super type
that is of the reference type (Bollen, 2002) in the UoD. See also Navathe et al. (1984:84
case 1)

Example 6.6:

UoD 1: Person <R1> lives on address <R2>
UoD 2: Student <R3> lives on address <R4>

Integrated UoD: Person <R5> lives on address <R6>
 Person <R7> is a student

This transformation is called: specialization

We will define the intention Student as a subtype of the intention Person in the
integrated UoD of example 6.6.

6.4.3 Identifier, cardinality and domain conflict

The integration of sub-schemas in NLM is defined on a basic information model level.
This means that identifier (or key) conflicts and cardinality conflicts (Lim and Chiang,
2000:158) will not occur. It is assumed that in a ‘first-pass’ requirements analysis the
population constraints will be derived directly in the integrated UoD45. Furthermore,
the attribute domain conflicts are not relevant in NLM because the only fact encoding
construct is the fact type. Algorithm 5 specifies the integration algorithm for 2 basic
information models. For the general case in which N basic information models need to
be integrated we will apply the algorithm on the two first BIMs and subsequently re-
apply algorithm 5 on the (cumulative) integrated model and the next BIM and so forth
(see for the ‘integration-plan’-tree: Shoval and Zohn (1991:242-243))

45 In section 6.9 where we will discuss the way of controlling in NLM we will elaborate on the
precedence requirements and the specific users (or user groups) that need to be involved in those
stages of the requirements determination process.

 150

Algorithm 5. Integration of basic information models {BIM1
and BIM2 are two basic information models that refer to
sub-UoD’s of UoD, G1and G2 are the respective user groups
from these sub-UoD’s}
BEGIN Basic information model integration
(BIM1,BIM2,G1,G2.)
 Determine the set of intentions that are contained in
 BIM1 and BIM2 {OVERLAPINT}
 WHILE still intentions in OVERLAPINT
 DO take next intention {int}

 check the naming convention fact types
 for int in BIM1 and BIM2.
IF naming conventions for int is not equal in BIM1
 and BIM2

 THEN IF the name class for intention int within
 the sub-models BIM1 and BIM2 is not of the
 reference type in the integrated UoD

 THEN create a new naming convention for that
 intention for the integrated UoD that is a
 reference type in the integrated UoD.
 ENDIF

 ENDIF
 ENDWHILE
 WHILE still intentions left in the (integrated)ACR

 DO take next intention {int}
 IF int is a generalization of two or more
 Different intentions in the ACR
 THEN Create a generalization hierarchy by adding
 subset constraints between the specialized
 intentions in the ACR and the generalized
 intention
 ENDIF
 ENDWHILE
 WHILE still fact types in the integrated BIM in

 which the same set of intentions play a role
 {SIFT}
DO take next group of these fact types {sgi,
 sgj,..∈SIFT}
WHILE still pairs [{sgk,sgl}∈SIFT |k<>l]
 DO Take next pair {sgk,sgl}
 IF the semantics of a pair wise comparison
 sgk, sgl in SIFT reveals no semantic
 difference
 THEN replace all but one fact type and
 add the sentence group template of the
 other to the sentence group templates

 151

 of this fact type
 ENDIF

 ENDWHILE
 ENDWHILE
{ontological equivalence check}
Every fact type that can be expressed in each sub-model
should be expressed in the integrated model. Every fact
type that can be expressed in the integrated model
should be expressed in at least one sub model.
END

6.5 THE POPULATION STATE CONSTRAINT MODELING
 PROCEDURES

After a basic information model is created for a specific UoD, the analyst can elicit
additional business rules from the domain user(s) by systematically confronting
him/her (them) with new (combinations of) ‘real-life’ examples from the domain. The
domain user(s) only needs to confirm or reject the possibility that such a (combination
of) examples can exist. In this section we will give an illustration of such an algorithm
for the uniqueness constraints and set comparison constraints

6.5.1 The derivation of uniqueness constraints

Uniqueness constraints will constrain the occurence of two or more fact instances in
which a subset of the roles have identical value combinations.

Lemma 6.1. For each elementary (or atomic) fact type f with arity N assuming a ‘one to
one’ naming convention46, one of the following rules apply47:

1) No uniqueness constraint exists.
2) There is at least one uniqueness constraint defined on exactly N-1 roles of

fact type f.

46 We will use the compound fact types for the derivation of uniqueness constraints according
to the definition given in algorithm 3.
47 According to the definition in Tehrani and Nijssen (1985), every elementary fact type has at
least one uniqueness constraint that involves at least N-1 roles. In NLM we do not consider a
uniqueness constraint that spans N roles to be a ‘real’ uniqueness constraint, because an
extension of a fact type is a ‘set’ of ordered instance value combinations and therefore such a
constraint would always be implied.

 152

It is assumed that the basic information model consists of atomic fact types. This
assumption underlies algorithm 6. It is however, possible to, create an algorithm in
which the possibility of uniqueness constraints that cover less than N-1 roles is
considered. Such an extended algorithm can serve as a quality check on the outcome of
(the atomization) algorithm 4.

Algorithm 6. Uniqueness constraint derivation
BEGIN UNIQUENESS((I)BIM ,UoD ,G {(I)BIM is basic
information model that refers to an (integrated UoD)}
WHILE not last fact type of arity >1
DO48 take a random sentence instance from a complex fact
 type template for this fact type from the example
 UoD: (a1,...., aN): ft∈ (I)BIM
 Take the first role from this fact type (m:=1)
 WHILE not last role in fact type
 DO Create an example sentence where the instance
 of role m is altered. Determine whether the
 combination of this sentence with the first
 sentence is allowed
 IF the existence of such a sentence is allowed
 together with (a1,.... aN)
 THEN add this sentence to the uniqueness
 significant population
 ELSE define a uniqueness constraint UC49 on
 roles {1,...,N}\m of fact type ft
 ENDIF
 Go to the next role in fact type (m:=m+1)
 ENDWHILE
 Take next fact type
 ENDWHILE
 {N-1 law check}.Apply the N-1 law in Lemma 6.1 on each
fact type
END

After the uniqueness constraint derivation procedure has been applied on the BIM of
our example the analyst can add the uniqueness constraints C11, C12, C13, C16, C17
to the application’s basic information model (see figure 6.11).

48 When the fact type is contained in more than one BIM then this confrontation with the real-
life examples must be performed with every example document/user group combination that has
verbalized sentence instances for this fact type (see also section 6.9 on the way of controlling). If
this process leads to multiple uniqueness constraint configurations on the focal fact type then the
least constraining set of uniqueness constraints will be chosen.
49 We need to assign a unique name to every instantiated constraint in the requirements
specification to distinguish this constraint among the union of constraints in the integrated
requirements specification for the project.

 153

C10 C5
C9

C2

C8

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

R10

R3

C1

C11

Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C4 C18

C16 C17

C7

C12

C13

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

Fig. 6.11 Basic information model50 for example 6.1 with uniqueness constraint(s).

6.5.2 The derivation of set comparison constraints

The next group of constraints that will be derived is the group of set comparison
constraints. A set comparison constraint will be defined on role(s) (combinations) that
are played by identical combinations of intentions in a basic information model. In
contrary to the uniqueness constraints, set comparison constraints may be defined on
roles from different fact types.

A general legend of set comparison constraints can be found in appendix A of
this thesis (see also Leung and Nijssen, 1988:35). It should be noted, however, that in
the process of classification and qualification, some subset constraints are already
instantiated as naming convention constraints. The roles in the basic information
model, therefore, that are contained in the naming convention fact types can be
excluded from the set of roles under consideration for the derivation of set-comparison
constraints. Set comparison constraints limit the extensions of two (ordered)
combinations of roles to the following types (see for the analyst’s legend chapter 5):

50 Excluding the application concept repository (ACR).

 154

The value combinations in the sets of extensions of each combination are equal:
equality

The value combinations in the sets of extensions of each combination are exclusive:
exclusion

The value combinations in the sets of the extensions of one combination are always
contained in the set of extensions of the other: subset

We will now provide the algorithm that can be used for the instantiation of set
comparison constraints for a given basic information model and universe of discourse.
The outcome of the algorithm will always lead to one of the following outcomes in
terms of the existence of a proposed set-comparison constraint: such a constraint does
not exist, such a constraint exists as a subset constraints, such a constraint exists as an
equality constraint or such a constraint exists as an exclusion constraint.

Algorithm 7. set comparison constraint derivation.

BEGIN SETCOMPARISON(IM ,UoD , G1 ..Gk)

Let ROLCOMB be the set of all possible role Combi- nations51
that refer to the same set of intentions in IM.
WHILE still role combinations left
DO take next role combination ∈ ROLCOMB
 Let (R1,RN) and (RN+1,R2n)

52 be the

 role(s)combination on which the set comparison should
 be performed.
 Let (a1,.. aM) be a sentence instances of the fact
 type (FT1) that contains roles (R1,RN) (M≥N)

 Let bN+1,.. b2N+L and gN+1,.. g2N+L be sentence
 instances of the fact type (FT2) that contains roles
 (RN+1,R2n) (L≥0).
Let IM:={FT1,FT2}. Create three user examples that re-
flect the following extensions of fact type FT1 and FT2:
EXT1(IM): { (a1,.. aM)}
EXT2(IM): { (a1,.. aM),(bN+1,.. b2N+L) | a1=bN+1 ,. aN=b2N}
EXT3(IM): { (a1,.. aM),(bN+1,.. b2N+L), (gN+1,.. g2N+L)
 | a1=bN+1..,.. aN= b2N}

51 The roles of the naming convention fact types are excluded from this analysis
52 {R1,RN} ≠ {RN+1,R2n}

 155

Let the user53 determine which of these extensions refer to
an allowed population state for the universe of discourse
by showing (sets of) real-life examples that match these
three extensions one at a time.
IF (∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧

 ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧

 ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)])
THEN
(There is a subset constraint54 defined from role
combination (RN+1, .R2n) to role combination (R1,.R..N))

ELSE IF(¬∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧

 ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧

 ∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)])
THEN

 (There is a subset constraint defined from role
 combination (R1,RN) to role combination
 (RN+1,R2n))

 ELSE IF
 (¬∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧

 ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧

 ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)])
 THEN
 (There is an equality constraint defined from
 role combination (R1,RN) to role
 combination (RN+1,R2n))

 ELSE
 IF(∃ Popstate1(UoD)[Popstate1(UoD)= EXT1(IM)] ∧

 ¬∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧

 ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)])

53 If the role combinations are contained in more than one BIM then this confrontation with the
real-life examples must be performed with every example document/user group combination that
has verbalized sentence instances for this fact type. If this process leads to multiple set
comparison constraint configurations on the focal role combinations then the following decision
table must be used to determine the constraint configuration for the integrated requirements
specification: no–no no, excl-subset no, excl-eq no, no-excl no, eq-subset subset, no-
subset no, no-eq no.
54 We need to assign a unique name to every instantiated constraint in the requirements
specification to distinguish this constraint among the union of constraints in the integrated
requirements specification for the project.

 156

 THEN (There is an exclusion constraint defined
from role combination (R1,RN) to
role combination(RN+1,R2n))

 ENDIF
 ENDIF
 ENDIF
 ENDIF
ENDWHILE
END

C10

C19

C20

C5
C9 C2

C8

C22

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

R10

R3

C1

C11

Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C21
C4 C18

C16 C17

C7

C12

C13

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

Fig. 6.12 Basic information model for example 6.155 with uniqueness and set-comparison
constraint(s).

We note that population constraints c19, c20, c21, c22 are set comparison constraints
that are derived in interaction with user by applying algorithm 7.

55 Excluding the application concept repository (ACR).

 157

6.6 THE POPULATION STATE TRANSITION CONSTRAINT
MODELING PROCEDURE

The formal definition of a state transition constraint (see definition 5.11) includes all
population state constraints. In this section, however, we will limit ourselves to those
population constraints that can not be expressed as population state constraints.
Furthermore, we will, consider the state transitions as pairs of population states. This
means that we restrict the applicability of the transition constraints to an application
information base that has a ‘history’ of 1 state. If we consider the invoicing example
from this chapter, we can see that there exists a "business rule" stating that an item can
not have a description other than its initial description.:

An item can not have a description other than its initial description.

In Twisk (1994), Twisk and van Montfoort (1994) and Spijkers (1994), the state
transition constraints are derived in a user-analyst interaction wherein pairs of real-life
examples are presented (representing a before and after state respectively).

The listing of all allowed (or the complement: the non-allowed) before and
after combinations can be considered as a state transition constraint defined as a set of
allowed before/after extensions. However, all possible future fact instances must be
available in order to create those before/after collections. This is only possible in those
cases where there exist enumerable value elements (Twisk, 1994) for the names in
those roles.

Algorithm 8: Derivation of transition constraints
BEGIN TRANSITION ((I)BIM, UoDj, Gj)
 WHILE still fact types in (I)BIM
 DO take next fact type {ft}
 determine state equivalence classes for the
 functional role56 of ft

 WHILE not last state equivalence class
 before/after combination

 DO take next combination of state equivalence
 Classes.
 Let the user determine if this before/after
 combination is allowed in the UoD.
 IF combination not allowed
 THEN IF no state transition constraint is
 defined on the fact type yet

 THEN create a state transition
 constraint57 defined on the values

56 The functional role of a fact type on which exactly one uniqueness constraint is defined is the
role that is not covered by a uniqueness constraint.
57 We need to assign a unique name to every instantiated constraint in the requirements

specification to distinguish this constraint among the union of constraints in the integrated
requirements specification for the project.

 158

 for the functional role in the fact
 type.

 ENDIF
 add this combination to the non-

 allowed transition value
 combinations of the transition
 constraint
 ELSE
 add this combination to the

 allowed transition value
 combinations of the transition
 constraint
 ENDIF
 ENDWHILE
 ENDWHILE
END

We will try in most practical applications to give a state transition constraint by means
of (decision) tables, formulas which serve as a legend for the analyst (see chapter 5 and
appendix A) and that can subsequently be verbalized into declarative natural language
sentences in which equivalent value-elements are grouped into state equivalence
classes, for example:

The constraint ‘c14’ implies that there can not exist a [before extension of the basic
information model] in combination with an [after extension of the basic information
model] in which the extension for the role <R10> for a given item is different.

We see from this verbalization that we have introduced facilities in the constraint
legend for denoting the type of extension (after or before) and the constraint(s) defined
on one ore more role(s) in either the after and/or before state into the analyst legend for
the state transition constraints.

In figure 6.13 the resulting information model for the order invoicing
application area is shown. We have added the business rule that states that the initial
item description that is assigned to an item in ABC’s assortment can never be changed.
The legend for the interpretation of the population state transition constraint symbol
(for constraint C14) that is used in figure 6.13 is given in figure A.2.

 159

C10

C19

C20

C5
C9

C2

C8

C22

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

A

- + A

State after
before

A

R10

R3

C1

C11

Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C21
C4 C18

C16 C17

C7

C12

C13

C14

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

Fig. 6.13 Basic information model58 for example 6.1 with uniqueness.-, set comp and transition
constraint(s).

6.7 THE DERIVATION RULE CONSTRAINT PROCEDURE

In this section we will give the way of working for the detection of derivation rules in
an application subject area. We deliberately use the term application subject area,
because the term Universe of Discourse until now has been used to demarcate the
examples that we consider to be relevant for the process of requirements determination.
The ‘knowledgeable’ users from the user groups in our (sub) UoD’(s) need to be able
to verbalize these examples and be able to accept or reject example combinations in
order to detect population state- and population state transition constraints. However,
the responsibility for creating, inserting, deleting or deriving facts does not necessarily
coincide with the responsibilities of the users from these user groups at all times. In
order to make a distinction between users that have discretion with respect to the latter

58 Excluding the application concept repository (ACR).

 160

operations and users who do not have this discretion within the application subject
area, we will introduce the concept of Sphere of Influence (SoI).

Definition 6.8. The Sphere of Influence (SoI) is a set of users that are considered
relevant for the application subject area and that have responsibility for creating,
inserting, deleting or deriving facts.

 Let U be the set of users in the application subject area.
 Let SoI be the sphere of influence
 SoI ⊆ U

Algorithm 9: derivation rule creation
 BEGIN derivation rule creation(IM, UoD, SoI)
 WHILE still user groups left in UoD
 DO take the next user group from SoI {g}
 WHILE still fact types left in UoD to be considered
 for user (group) g
 DO take next fact type {ft∈ IM}
 IF FT is derived under the responsibility of a
 User (group) g
 THEN
 IF (a pre-condition can be phrased in terms
 of the extension of IM
 AND a derivation formula can be specified in
 terms of the extension of IM)
 THEN create a derivation rule
 constraint59.
 Define a derivation rule argument
 ENDIF
 ENDIF
 ENDWHILE
 ENDWHILE
 END

Although it is possible to specify derivation rules whenever a basic information model
(BIM) of the UoD is known, we recommend performing this procedure after the
population constraints have been derived. Performing the procedures in this order will
enable us to capitalize on the knowledge that is contained in the population constraints
when the derivation rules will be specified. We could extend algorithm 9 with quality
control checks, e.g. the pre- and post-conditions and the possible outcomes of the
derivation formula must be compatible with the population constraints.

59 We need to assign a unique name to every instantiated constraint in the requirements
specification to distinguish this constraint among the union of constraints in the integrated
requirements specification for the project.

 161

C10

C19

C20

C5
C9

C2

C8

C22

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

A

- + A

State after
before

A

R10

R3

C1

C11

Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C21
C4 C18

C16 C17

C7

C12

C13

C14

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

C10: Create orderline subtotal <{(arg : invoice, arg2:item)}>1

IF there exist an instance of Sg6
SUCH THAT Sg6.{<R13>, <R14>}='arg1' AND
 Sg6.<R11>='arg2' AND
 x EXT(Sg1.<r2>) | Sg1.<r1>='arg2')
THEN create an instance of fact type Sg5
SUCH THAT
 Sg5.{<r16>,<r17>}:='arg1'
 Sg5.<r15>:='arg2'
Sg5.<r18>:=DR1

DR1:= Sg6.<r12>*[Sg1.<r2>| [where Sg1.<r1>='arg2'])
ENDIF

(

C15: Create invoice total<{(arg : invoice)}>1

IF there exist an instance of Sg5
SUCH THAT Sg5.{<r16>, <r17>}=arg1
THEN create an instance of fact type Sg7
SUCH THAT
 Sg7.{<r4>,<r5>}:=' arg1'
 Sg7.<r6>:=DR2

DR2:= Sg5.<r18> [where Sg5.{<r16>,<r17>}='arg1']
 j=1
ENDIF

Fig. 6.14 Basic information model60 for example 6.1 with uniqueness, set comparison, transition

constraint and derivation rule constraints

6.8 THE IMPULSE CONSTRAINT PROCEDURE

The last type of constraints that must be instantiated in the NLM requirements
determination way of working are the impulses in the application subject area in which
the relevant events are derived together with the event arguments and where it is

60 Excluding the application concept repository (ACR).

 162

specified under what condition(s), the event occurrences of such an event will lead to
the instantiation of (a) derivation rule(s) or the insertion and/or deletion of one or more
fact instances to/from the application information base.

Algorithm 10:Impulse constraint derivation((I)BIM,SoI)
BEGIN
 WHILE still user groups left in SoI
 DO take next user from user group in SoI {g}

WHILE still derivation rules left
 DO Take the next derivation rule constraint

 {drc∈(I)BIM}.Ask the users in {SoI}
 what event type(s) invoke such a
 derivation Rule61

 IF event type not listed
THEN name the event and determine
 the event type argument

 ENDIF
 Determine the condition on the
 information base and event
 argument(s)under which the
 derivation rule is instantiated

 IF the condition is different from
 an existing condition on the
 same event type and derivation
 rule
 THEN Make a new (combined)
 Condition which contains the
 old and new condition type
 ELSE the impulse is already
 defined.
 ENDIF
 Create and name62 an impulse and
 determine the impulse mapper63 and
 name the impulse
 ENDWHILE
 WHILE still fact types left in (I)BIM64

61 It should be investigated whether a user defined event type coincides with an information
base or internal event (see Prabhakaran and Falkenberg, 1988), e.g. fact instance of fact type FT2
inserted (arg1:date).
62 We need to assign a unique name to every instantiated constraint in the requirements
specification to distinguish this constraint among the union of constraints in the integrated
requirements specification for the project.
63 The impulse mapper is a specification of how the values of the event argument determine the
instantiation values for the arguments of the derivation rule(s) that is (are) instantiated in an
impulse.
64 Although impulse type constraints are constraints in the event perspective, we must also
specify the unconstrained behaviour or the ‘discretion’ that users within the SoI have to add

 163

 DO Take next fact type {f}
 IF fact instance of this fact type can be
 inserted into the application base on
 the discretion of user g without

invoking a derivation rule and without
any specific information base condition
other than the business logic that is
enforced by the population constraints

 THEN add an impulse type constraint with
 name insert {f} having an empty impulse
 condition and invoking the operation
 insert {f}

 ELSE IF fact instance of this fact type
can be deleted from the
application base on the
discretion of user g without

 invoking a derivation rule and
 without any specific information
 base condition other than the
 business logic that is enforced
 by the population constraints
 THEN add an impulse type
 constraint with name
 delete{f} having an empty
 impulse condition and
 invoking the operation
 delete{f}
 ENDIF

 ENDIF
 ENDWHILE
 ENDWHILE
 END

and/or remove fact instances into/from the information base, as an impulse type to show that
these insertion/deletion operations are allowed on their own. See for example impulse constraints
c25 and c26 that tell us that it is allowed that the users in this UoD add and remove orderlines
onto/from an invoice document (see figure 6.15).

 164

C10

C19

C20

C5
C9 C2

C8

C22

R5R12

R16

R4R11

R15

R6R13

R17

R14

R18

R8

R19

R7

 8: The invoice [identified by ranknumber <R4> for client <R5>]
 totals the amount <R6> in dollars

 7: The item <R11> is ordered in a quantity of <R12> units
 on the invoice [identified by ranknumber <R13> for client <R14>]

 9: The subtotal for the item <R15> on the invoice [identified by
 ranknumber <R16> for client <R17>] is the amount <R18>

 5: <R8> is a name from the client code name
 class that can be used to identify a client
 within the union of clients

 10: <R19> is a name from the natural number
 name class that can be used to identify a
 quantity within the union of quantities

 6: <R7> is a name from the
 decimal number name
 class that can be used to

 identify an amount of
 money in dollars within
 the union of money amounts

R1

R9

R2

A

- + A

State after
before

A

R10

R3

C1

C11

Sg1

Sg5

Sg6 Sg7

Sg8

Sg9

Sg4

Sg2

Sg3

C3

C21
C4 C18

C16 C17

C7

C12

C13

C14

C6

1: The item<R1> has a unit price of an amount<R2>

 4: The item<R9> has the description <R10>

2: The unit price for the item <R1> is the amount <R2>

3:<R3> is a name from the item code name class that can
 be used to identify an item within the union of items in
 ABC’s assortment

C10: Create orderline subtotal <{(arg : invoice, arg2:item)}>1

IF there exist an instance of Sg6
SUCH THAT Sg6.{<R13>, <R14>}='arg1' AND
 Sg6.<R11>='arg2' AND
 There exists an x EXT(Sg1.<r2>) | Sg1.<r1>='arg2')
THEN create an instance of fact type Sg5
SUCH THAT
 Sg5.{<r16>,<r17>}:='arg1'
 Sg5.<r15>:='arg2'
Sg5.<r18>:=DR1

DR1:= Sg6.<r12>*[Sg1.<r2>| [where Sg1.<r1>='arg2'])
ENDIF

(

C15: Create invoice total<{(arg : invoice)}>1

IF there exist an instance of Sg5
SUCH THAT Sg5.{<r16>, <r17>}=arg1
THEN create an instance of fact type Sg7
SUCH THAT
 Sg7.{<r4>,<r5>}:=' arg1'
 Sg7.<r6>:=DR2

DR2:= Sg5.<r18> [where Sg5.{<r16>,<r17>}='arg1']
 j=1
ENDIF

C24:
ON Order complete<{(Earg1 : invoice)}>1

IF There exists an instance of Sg5
 such that
DO create invoice total <{arg=’Earg1’}>

EXT(Sg5.{<r16>,<r17>}=’Earg1’

C25:
ON Insert (arg1;sg6)
DO Insert (arg1)

C26:
ON Delete(arg1;sg6)
DO Delete(arg1)

Intention Synonym definition

Item a product that is contained in ABC's assortment
Client Customer a person that has ordered or that is about to order an item at ABC
Invoice a document that specifies the payments for an order
Amount a specific quantity of money in dollars
Product quantity a specific quantity of items
Item code a name class
Natural number a name class
Decimal number a name class
Description a name class
Ranknumber a name class

Fig. 6.15 Complete NLM requirements specification for example 6.1 that contains a basic
information model with uniqueness, set comparison, transition constraint, derivation rule

constraints and impulse constraints

 165

Example 6.1 (ctd)

We assume that in the process of order intake for the ABC company at any time the
invoice total only appears on the order clerk’s computer screen when the clerk pushes a
button named “order complete”.

In figure 6.15 the complete requirements specification for the invoice example 6.1 is
given. This requirements specification contains an atomic basic information model
together with all instantiated constraints of all constraint types that we have defined in
NLM.

6.9 THE WAY OF CONTROLLING IN NLM

In chapter 5 we have given the way of modeling in NLM and in sections 6.1 through
6.8 we have given an accompanying way of working for NLM. In this section we will
give the way of controlling in NLM. The way of controlling deals with issues regarding
the organization and (project) management of the requirements determination process.
The NLM requirements determination method uses ‘real-life’ examples of business
communication as a starting point for the requirements determination process. The first
question that must be addressed in the way of controlling is how to arrive at these
relevant examples in the requirements determination process. Secondly, we will discuss
the project management restrictions in terms of precedence relationships that exist
regarding the applications of the different stages that were defined in the way of
working. Although the focus of this dissertation is on the conceptual analysis of the
requirements we will touch upon a number issues that are relevant for requirements
management at large, for example, scoping and requirements prioritizing .

6.9.1 The demarcation of the requirements determination project

In most information systems development projects, some type of information strategy
planning has been taken place, that normally results in a lists of IS development
projects that contain the priorities and in many times a business case in financial terms
as to what the expected pay-offs of each IS implementation will be for the host
organization (Jessup and Valacich, 1999: chapter 13). The demarcation of an IS project
in such a business case is mostly laid down in a rather vague description, for example,
a billing system, a HRM system and so forth. These information planning methods in
general result at best in a list of business processes (activities) and business entities (or
data classes). An example of such a planning method is Business Systems Planning
(Sebus, 1981). These information planning methods result in ‘models’ on such a level
of abstraction that it is not possible to specify the precise data model and the constraints
defined on the data model. The first activity that must be carried out when an
information systems development project must be carried out then is to establish clear
borders regarding what functionality will be contained in the final information system
and what functionality will be left out. In NLM this distinction between what must be
incorporated into the system and what not is clearly demarcated in the types of user

 166

examples that will be considered in the requirements determination process and the
ones that will be left out (‘scoping’). Also the issue of requirements prioritization can
be dealt with in the stage of ‘example’ selection.

A second pass of prioritization can be implemented between the stages
‘verbalization’ and ‘grouping’, in which sentences that do not have priority for the
application that has to be developed can be left-out. We strongly suggest that the
information analyst will make explicit notes that state that these facts are contained on
the example but for the current development ’time-box’ (Jalote et al., 2004) are
considered non-relevant. In a later development stage or ‘time-box’, such a requirement
might, however, be a candidate for further analysis.

We note that the phenomenon of ‘informal’ organization must be dealt with
during this stage in the requirements determination process, because it means that
decisions have to be made regarding the incorporation of the ‘informal’ view(s) on the
UoD with already selected ’formal’ real-life informational documents (see also
Oonincx, 1982:74).

For a newly designed information system or an information system that must
operate in a reengineered environment, the availability of existing ‘real-life’ examples
is not always guaranteed. In these situations, the requirements determination process
must be preceded by a reengineering and/or prototyping stage in which the (to be)
involved user(s) of the application domain will have to create ‘mock-ups’ or
‘prototypes’ of the examples that they are going to use in their future (reengineered)
activities (algorithm 0).

It must be emphasized that the NLM requirements determination method
assumes a strict distinction into domain knowledge that is possessed by the users in the
application domain and the knowledge of the requirements determination process that
is possessed by the NLM analyst. In NLM there is a clear ‘separation-of-concerns’
between the responsibility for the content of the requirements specification and the
responsibility for the way in which this desired specification is created in a
requirements determination process.

6.9.2 The required precedence of the requirements determination process in

terms of the way of working

We will now derive the precedence relationships that we must respect when performing
a requirements determination project using NLM. We assume that the ‘real-life’ types
of examples that demarcate the functionality of the project have been selected. In
principle the first stage in the requirements determination process can begin: create a
basic information model. This stage means that for every example we will perform the
basic information modeling procedure (algorithms 1 through 4) in combination with a
domain user. The basic information model can then be added to the existing basic
information models using the model integration procedure (algorithm 5). We note that
the phenomenon of ‘informal’ organization must be dealt with again, during this stage
in the requirements determination process, because decisions have to be made
regarding the integration of the ‘informal’ view on the UoD with the ’formal’ view. In
many cases this will lead to the ‘relaxation’ of the constraints from the ‘formal’ view to
be able to accommodate the requirements from the ‘informal’ view.

 167

We remark that the application concept repository (ACR) ideally must be a
shared document in which all concepts definitions of all sub-projects within the
requirements determination process at large are defined piecemeal. Subsequently we
will perform the uniqueness constraint, set-comparison and transition constraint
derivation (algorithms 6, 7 and 8) that can be performed with those user(s) that use the
individual or pairs of examples. After the integrated basic information model is
finished it is already possible to determine the derivation rules (algorithm 9) and
consecutively the impulses (algorithm 10).
 Alternatively, it is possible to perform most activities (algorithms 1 through
10, except for algorithm 5), consecutively with the individual users. However, this
comes with an expense, namely the additional derivation of set-comparison constraints
in which multiple user (groups) are involved and the addition of derivation rules and
impulse types that were initially left out because of demarcation issues. In this
situation, additional impulses also need to be identified that cross the spheres of
influences of individual users.

We can conclude that a NLM requirements determination process that is
performed in an organizational context contains a large number of variables that can be
set according to operational constraints, for example, analyst capacity, required
delivery dates, desired completeness and preciseness regarding uniqueness and set-
comparison constraints (and eventually other state constraint types) and domain user
availability. A further degree of flexibility can be achieved when an organization for
example, only needs a requirements specification that contains a basic information
model, uniqueness constraints and derivation rules because the target implementation
software does no support other constraint types. From a software development point of
view NLM can be applied under different software development models: waterfall
development, iterative and iterative time boxing (Jalote et al., 2004).

The semantic bridges from the natural language modeling methodology in the
information perspective can be summarized as follows:

semantic bridge 1): Capturing the general domain knowledge (or sentence groups)
 (algorithm 1: verbalization and algorithm 2: grouping).

semantic bridge 2): Capturing the intention of the individual names (algorithm 3:
 classification and qualification)
semantic bridge 3): Capturing the naming conventions (algorithm 1: verbalization and

 algorithm 3: classification and qualification))
semantic bridge 4): Capturing the right level of atomization (algorithm 1:

 verbalization and algorithm 4:atomization)
semantic bridge 5): Arbitrating on the primary naming conventions for the integrated

 UoD (algorithm 5: integration of (sub)-models)
semantic bridge 6): Capturing domain generalizations and specializations for the

 integrated UoD (algorithm 5: integration of (sub)-models).
semantic bridge 7): Capturing additional business rules that can be encoded as
 population constraints, derivation rule constraints and impulse

 constraints (algorithm 6:uniqueness constraint derivation,
 algorithm 7: set comparison constraint derivation,
 algorithm 8: transition constraint derivation, algorithm 9:
 derivation rule constraint creation and algorithm 10:impulse
 constraint derivation).

 168

These semantic bridges constitute the foundation for a semantically correct
requirements specification and therefore the approach for the way of working in the to-
be designed requirements determination method fills a niche in the MIS research field
that we discussed in chapter 1.

 Create or
find user examples Verbalization Grouping Classification

 and Qualification Atomization

S
T
A
R
T

Fig. 6.16 AON network for activities in a NLM requirements determination project (I)

 Atomization integration of
 (sub)-models

 uniqueness
 constraint derivation

 set comparison
constraint derivation

 transition
constraint derivation

 derivation rule
constraint creation

 impulse
constraint derivation F

i
n
i
s
h

Fig. 6.17 AON network for activities in a NLM requirements determination project (II)

In figures 6.16 and 6.17 we have given a project plan for a requirements
determination process in which all the minimal set of precedence relationships are
extended with additional precedences that should facilitate the definition of derivation
rules. In figures 6.16 and 6.17 an Activity-on-Node (AON) network (Mantel et al.,
2001:113) for this way of controlling is given.

6.9.3 Resource planning for a requirements determination project in NLM’s
 way of working

The application of NLM will allow us to establish metrics for the requirements
determination process. It is easy to estimate the number of ‘analysis steps’ that are
needed for the derivation of uniqueness and set comparison constraints when a basic
information model is available. The number of analysis steps for determining the
population, derivation and impulse constraints is in principle deterministic. The

 169

resource planning in terms of ‘analysis steps’, therefore can be made relatively easy
when a basic information model is available. It is also possible to base a capacity
planning upon ‘experience’ data regarding the number of communication examples and
the average number of fact types that can be traced to an example. With respect to the
management of human resources, metrics can be determined for the level of experience
of analysts.

6.10 CONCLUSIONS ON THE WAY OF WORKING AND THE
WAY OF CONTROLLING IN NLM

In order to arrive at the basic information model (BIM) of an application UoD, in
which the modeling constructs from the data model can be instantiated for the
application UoD, we have specified algorithms 1 through 4. A significant extension to
the ‘state-of-the-art’ in requirements modeling is the definition of the application
concept repository (ACR) in which generalizations and specializations can be
incorporated and in which the intentions, their semantic definitions and their name
classes are incorporated. In order to derive all instances of the static constraint types
for which we have supplied a constraint legend, we have specified state constraint
derivation algorithms 6 and 7. NLM has the provisions to accommodate other
constraint types whenever a notational legend is provided and an accompanying
instantiation algorithm can be given. In order to derive all instances of the transition
constraints we have specified transition constraint derivation algorithm 8 as sub-
procedure in NLM’s way of working . In order to derive all instances of the derivation
rule constraints we have specified the derivation rule constraint algorithm 9 as sub-
procedure in NLM’s way of working in which the precise specification (or derivation
formula) can be established. In algorithm 10 we have incorporated the question in
which an internal event can lead to the execution of a derivation rule or another
information base event. Furthermore, the algorithm systematically confronts the users
in the SoI with derivation rules and tries to elicit the potential ‘external’ events that
might invoke such a derivation rule . We can conclude that the way of working in NLM
fully complies to RDM 12 from chapter 4.
 Furthermore, the explicit incorporation of an integration algorithm (algorithm
5) into the way of working is fully in line with requirement RMD 13 (view integration
sub-procedure).

The application of the natural language axiom in an organizational setting in
which domain users are held responsible for the ‘knowledge content’ and in which
users are confronted with combination of real-life examples can be considered a
transformation from implicit tacit knowledge held by these users into explicit
knowledge in the requirements specification. This fulfills requirement RMD 14.

The application of the natural language axiom in NLM also allows us to apply
NLM in many organizational settings, ranging from abstract to tangible UoD’s and
from natural language descriptions to other descriptions that can only be understood by
users. This leads to compliance to RMD 15.

The sub-division of the modeling procedures in NLM’s way of working into
formal algorithms has been done in such a way that the amount of modeling steps that

 170

have to be performed by (an) analyst(s) is minimized and therefore NLM is in line with
RDM 16 from chapter 4.

The reconstruction check in algorithm 1, the completeness check in algorithm
2, the consistency check in algorithm 3, the reference check in algorithm 4, the
ontological equivalence check in algorithm 5, and the N-1 law check in algorithm 6 are
explicit quality-assuring verification sub-procedures that are built-into NLM’s way of
working. Every algorithm within NLM’s way of working contains (bold-fonded) parts
that confronts users with his/her assumptions. We can conclude that this precise
specification of the NLM modeling procedure in a number of algorithms fulfills
requirement RMD 17 as given in chapter 4.

The elements that constitute the way of controlling in chapter 1 are all covered
in the NLM requirements determination method. NLM enables the management of
analyst resources, to plan and control their efforts using project management
techniques, e.g. precedence analysis and capacity requirements and quality
management. NLM is fully scalable in terms of project size and complexity. It’s natural
language features and the mandatory referencing schemes that are imposed upon the
way of working of the analyst, will enable the analysts to record and maintain all
project information and analysis results (RMD 18). The existence of a mandatory
naming conventions for the elements (projects, user examples, sentence groups, fact
types, constraints) in the subsequent results in the requirements determination process
in NLM fulfills the traceability requirement (RMD 19).

6.10.1 The added value of the NLM requirements determination method

We can conclude that the NLM requirements determination procedure explicitly shows
the separation of concerns between the analyst and the user in the process of
requirements modeling by providing the semantic bridges for this analyst-user
dialogue. In addition to the creation of a NLM requirements specification that is an
allowed extension of the NLM meta model from appendix B that is a syntactically
correct specification (see chapter 1), we need guidance on what specific extension of
this meta model reflects the domain semantics in a precise and a consistent way. We
have shown that such a semantic correct specification will be achieved when the
algorithms that we have introduced in this chapter will be applied in a requirements
determination project in which the sequence of their application is performed under the
precedence requirements that were given in figures 6.16 and 6.17.

Although a number of procedures in the NLM requirements determination
method at first sight have a ‘trivial’ appearance, the consistent application of the
procedures in the ‘way-of-working’ in this chapter in practice has proven to improve
the ‘quality’ levels of the resulting requirements specification, because even the
experienced analyst can always ‘fall back’ on the procedure in those situations in which
the application subject area becomes too complex. The biggest advantage, however, is
that inexperienced analysts will be able to create requirements specifications that have
the same quality level as the specifications that are created by experienced analysts. In
a project in which the NLM requirements determination method is applied for the
creation of a requirements specification, the division into sub-projects and the order in
which these sub-projects are executed does not have an impact on the final
specification. The NLM requirements determination method, therefore is fully scalable
in terms of the complexity of the subject area, analyst capacity and user availability.

 171

Another advantage of the application of the NLM requirements determination method
is in the full accountability of the modeling results in which the user inputs and the
analyst modeling transformations are precisely defined.

An interesting practical application of NLM for integrating business processes
in the implementation process of a SAP R/3 module at multi-divisional pharmaceutical
company, was carry out by Natasja Enter as her graduation project in international
business studies (Enter, 1999)65. In this project NLM was used to reduce the problems
around the complexity of the system by defining the core concepts and their
relationships within the integrated system in a precise way.

An application of (an earlier version of) NLM on a static business knowledge
domain, e.g. general ledger accounting was performed by Marjan Wolthuis (Wolthuis,
1997), which the business process redesign of the accounting function was illustrated.
In this master’s thesis, the basic information model for the accounting application
domain together with uniquenss, set comparison and lexical constraints were derived.
Subsequently, the derivation rule constraints in the accounting application domain were
derived. She concluded in this thesis that a number of ‘manual’ verification steps in
this domain can be considered redundant in the IT-era.

6.11 REFERENCES

Beynon-Davies, P., Bonde, L., McPhee, D., Jones, C. (1997): A Collaborative Schema
Integration System. The journal of collaborative computing 6: 1-18

Biller, H. (1979): On the notion of irreducible relations. In: Bracchi, G., Nijssen, G.
(eds.): Data base architecture, North-Holland, Amsterdam : 277-295

Bollen, P. (2002): Using the OO paradigm for conceptual modeling: the need for a
methodology’, In: M. Hunter and K. Dhanda (Eds.) proceedings ISoneworld 2002, Las
Vegas, U.S.A.

Capuchino, A., Juristo, N., van de Riet, R. (2000): Formal justification in object-
oriented modelling: A linguistic approach. Data & Knowledge Engineering 33: 25-47

Choobineh, J., Venkatraman, S. (1992): A methodology and tool for derivation of
functional dependencies from business forms. Information Systems 17(30): 269-282

Enter, N. (1999). The semantics of the CIC SAP R/3 core. Final thesis. International
business studies. University of Maastricht.

Falkenberg, E. (1976): Significations: the key to unify data base management.
Information Systems 2: 19-28

65 For confidentiality reasons CIC is not the real name of this company.

 172

Ter Hofstede, A., Proper, H., van der Weide, T. (1997): Exploiting fact verbalisation in
conceptual modelling. Information Systems 22(6/7): 349-385.

Hoppenbrouwers, J., van der Vos, B., Hoppenbrouwers, S. (1997): NL structures and
conceptual modeling: Grammalizing for KISS. Data & Knowledge Engineering 23: 79-
92.

Jalote, P., Palit, A., Kurien, P., Peethamber, V. (2004) : Timeboxing : a process model
for iterative software development. The journal of systems and software 70: 117-127

Jessup, L., Valacich, J. (1999): Information systems foundations. Que education and
training.

Johannesson, P. (1997): Supporting schema integration by linguistic instruments. Data
& Knowledge Engineering 21: 165-182.

Kaufman, L., Rousseeuw, P. (1990): Finding groups in Data: an introduction to cluster
analysis. Wiley & Sons.

Kent, W. (1978): Data and reality, North-Holland,Amsterdam

Kung, C. (1990): Object subclass hierarchy in SQL: a simple approach.
Communications of the ACM 33 (7): 117-125.

Kwan, I., Fong, J. (1999): Schema integration methodology and its verification by use
of information capacity. Information Systems 24 :355-376

Land, F. (1980): A critical view of some recent assertions about MIS and DBMS.
Information & Management 3 : 129-131.

van der Lek, H., Bakema, G., Zwart, J. (1992): De unificatie van objecttypen en
feittypen. Informatie 34 (5): 279-295 (in dutch)

Leung, C. , Nijssen, G. (1987): From a NIAM Conceptual Schema onto the Optimal
SQL Relational Database Schema. Australian Computer Journal 19(2):69-75.

Leung, C. , Nijssen, G. (1988): Relational Database Database design using the NIAM
conceptual schema. Information Systems 13:219-227.

Lim, E., Chiang, R. (2000): The integration of relationship instances from
heterogeneous databases. Decision Support Systems 29: 153-167

Mantel, S., Meredith, J., Shafer, S., Sutton, M. (2001): Project management in
practice. Wiley and Sons

McBrien, P., Poulovassilis, A. (1998): A formalisation of semantic schema integration.
Information Systems 23 (5): 307-334

 173

Meersman, R. (1994): Some methodology and representation problems for the
semantics of prosaic application domains. In Z. Reis and M. Zemanskosal (eds.):
Methodologies for intelligent systems. 39-45.

Mirbel, I. (1997): Semantic integration of conceptual schemas. Data & Knowledge
Engineering 21: 183-195

Mintzberg, H. (1991): Organisatie structuren. Prentice-Hall/ Academic Service (in
dutch)

Navathe, S., Sashidar, T., Elmasri, R. (1984): Relationship merging in schema
integration. Proceedings of the 10th international conference on very large data bases
78-90

Nijssen , G. (1986): On experience with Large-Scale Teaching and Use of fact-based
Conceptual Schema's in Industry and University. In R. Meersman and T.B. Steel Jr.
(eds.): Proceedings of IFIP conference on Data Semantics (DS-1), Elsevier North-
Holland.189-204.

Nijssen, G., Halpin, T. (1989): Conceptual schema and relational database design: A
fact based approach, Prentice-Hall, Englewood Cliffs.

Nijssen, G., Twine, S. (1989): De rol van formele methoden bij het effectief ontwerpen
van een relationele database. Informatie 31(12): 966-976 (in dutch)

Oonincx, J. (1982): Waarom falen informatiesystemen nog steeds ? Samsom. Alphen
aan den Rijn. (in dutch)

Prabhakaran, N., Falkenberg, E. (1988): Representation of Dynamic Features in a
Conceptual Schema. Australian Computer Journal 20 (3): 98-104

Sebus, G. (1981): BSP: ‘Business Systems Planning’. Informatie 23: 142-152 (in
dutch)

Silva, M., Carlson, C.R. (1995): MOODD, a method for object-oriented database
design. Data & Knowledge Engineering 17: 159-181

Shoval, P., Zohn, S. (1991): Binary-relationship integration methodology. Data &
Knowledge Engineering 6 : 225-250

Smith, J., Smith, D. (1977): Database abstractions: Aggregation. Communications of
the ACM 20(6): 405-413

Spijkers, P. (1994): A manager's experience with NIAM-ISDM in a large scale critical
project, in G.M. Nijssen and J.Sharp (eds.), Proceedings second NIAM- ISDM working
conference. pp.A1-A27.

 174

Tehrani, S., Nijssen, G. (1985): UCL: A User-friendly Conceptual Language.
Australian Computer Journal 17(4): 174-178

Tseng, V., Mannino, M. (1989): A Method for Database Requirements Collection.
Journal of Management Information Systems 6(2): 51-75

Tsichritzis, D. , Klug, A. (1978): The ANSI/X3/SPARC DBMS framework.
Information Systems 3: 173-191.

Twisk, F.(1994): Effektieve InformatieSysteemOntwikkeling met NIAM-ISDM, ,
Kluwer Bedrijfswetenschappen, Deventer (in dutch).

Twisk, F. and van Montfoort, R. (1994): UI en NIAM-ISDM: een concreet alternatief
(1). Informatie 36 (7/8): 438-446 (in dutch).

Wolthuis, M. (1997): Afstudeerscriptie: Boekhouden op basis van Universele
Informatiekunde. University of Limburg. (in dutch)

Wrycza, S. (1990): The ISAC-driven transition between requirements analysis and ER
conceptual modeling. Information Systems 15(6): 603-614

Wu, J-H., Doong, H-S., Lee, C-C., Hsia, T-S, Liang, T-P. (2002): A methodology for
designing form-based decision support systems. Decision Support Systems 32 : 1-23

 175

CHAPTER 7

CONCLUSIONS, GENERAL DISCUSSION AND
RECOMMENDATIONS

7.1 INTRODUCTION

In this final chapter of this thesis we will evaluate our main research question that we
have stated in chapter 1:

“Does there exist a requirements determination method that is applicable in a wide
range of business organizations and that can be used for specifying the complete
domain requirements for a given business application subject area in an efficient, and
formal way ?”

In chapter 1 we illustrated the relevance of the field of requirements
determination. We have concluded that the theory development on the field of our
research topic: requirements determination, has taken place in a number of fields of
study. Among those fields of study are: management information systems, information
systems development methodologies, speech-act theory, ontology and conceptual
modeling. Furthermore, we concluded that the theory development on the field of
requirements determination has been plentiful but a sound methodology for the
specification of application requirements is missing. In chapter 1 we have also pointed
at a MIS research niche that we want to exploit. This research niche is concerned with
the semantic verification of (initial) requirements (Dullea et al., 2003). This has lead us
to formulate the design object of the research in this study as: the development of a
method for requirements determination that has modeling provisions that guide an
analyst in elicitating the initial requirements from domain users and that contains a
semantic verification or validation procedure that guarantees user validation of the
requirements.

We have sketched a research approach that is suitable for our research
purposes: the ‘design-research’ approach. In this approach we have applied the ‘design-
research’-cycle (Van Engelen and Van der Zwaan, 1994) in which we first have to
establish a design objective and subsequently a design specification in order to be able
to evaluate existing designs for a requirements determination method.

The design specification for a requirements determination method was given
in chapter 2 in which we have synthesized from the literature, four (groups of) criteria
that a requirements determination method must comply to: domain richness,
completeness, efficiency and formality.

In chapter 3 we have covered the first group of ‘alternative’ designs, namely
an evaluation of the existing alternative designs for requirements determination
methods by surveying the existing literature on requirements determination, e.g. DFD’s
ISAC, EER, UML, ARIS and ORM. In the research methodology literature this is
called the ‘evaluation problem’. In chapter 3 we have concluded that no single

 176

approach fulfills the design specification that was given in chapter 2. In case no single
existing design can be found that conforms to our design specification we need to
develop an alternative design that must fulfill the requirements that we have postulated
in the final research question (the development problem).

In chapter 4 of this thesis we subsequently have derived a detailed design
specification that resulted in 19 requirements method demands (RMDs) for a ‘to-be’
designed RDM.

In chapter 5 we have documented the way of modeling for a proposed
requirements determination method: Natural Language Modeling (NLM) and in
chapter 6 we have documented the way of working and the way of controlling for
NLM. Chapters 5 and 6, therefore, constitute the results of the generation of an
alternative design as is given in the ‘generation of alternative designs’ stage from the
‘design-research’-cycle (Van Engelen and Van der Zwaan, 1994).

We concluded in sections 5.10 and 6.10 that the NLM requirements
specification language, its set of accompanying modeling algorithms and it’s project
management precedence logic jointly fulfill all 18 design requirements that were
derived in chapter 4 for a to be designed RDM. Hence, we can conclude that Natural
Language Modeling (NLM) is a requirements determination method (RDM) that
complies to the design objective in this thesis. Natural Language Modeling, therefore,
provides the answer to our main research question from chapter 1.

7.1.1 Organization of chapter 7

 This chapter is organized as follows. In section 7.2 we will summarize the
research findings for the research sub-questions that were derived in chapter 1.
Furthermore, we will, show in section 7.2 how the answers to the sub-questions of our
research lead to the answer to our definite research question. In section 7.3 we will
defend our research methodology from a retrospective point of view. In section 7.4 we
will give recommendations for future research areas in the field of Management
Information Systems. In section 7.5 we will give recommendations for practitioners in
the MIS field. Finally, in section 7.6 we will reflect upon the research questions for this
thesis, our research approach, the research outcome and the research process.

7.2 RESEARCH FINDINGS

In chapter 1 we have introduced the subject of this study: requirements determination.
We have also sketched the application of computerized information systems in the past
50 years and we have shown that in recent history the emphasis within the application
of information systems in businesses has been on ERP systems. We concluded that a
complete and consistent requirements specification is still needed as a starting point for
the customisation and implementation of an ERP system. Existing approaches for
requirements determination often use a natural language statement of the initial
requirements as a starting point for the creation of a requirements specification (Goldin
and Berry, 1997). However, none of the tools that were mentioned in this study give
much help on how such an (initial) language statement can be obtained.

 177

 The application of the ‘design-research’-cycle to carry out the research that
will enable us to achieve the (preliminary) goal of our research will lead to a number of
research sub-questions.

Research sub question 1 :

What are according to the existing requirements determination literature, the
quality criteria for a requirements determination method that can be used for
eliciting, verifying and specifying the complete domain requirements for a
given business application subject area in a wide range of business
organizations in an efficient and formal way ?

Research findings for sub question 1 :

We have synthesized (four groups of) criteria for a requirements determination method:
domain richness, completeness, efficiency and formality.

Domain richness criterion

A literature review of the requirements determination literature has lead to four
dimensions for the domain richness criterion.

The first dimension that characterizes a domain is what we have labelled the
dimension perception. The actual ‘value’ on this dimension for any given domain can
range from “uniform for all users” (similar perception) to “different for all users”
(every user has a different perception of a underlying reality) (Galliers and Swan,
2000).

The second dimension that characterizes a domain is labelled the dimension
turbulence. This dimension actually represents the extent (or frequency) in which the
rules, information and procedures in an application domain are subject to change
(Land, 1998).

The third domain dimension that we have derived from our literature study in
chapter 2 is the dimension tacitness. The tacitness can range from a fully ‘tacit’
application domain in which no single knowledge creating process is explicit to a fully
‘explicit’ UoD in which every knowledge or information generating process can be
made explicit.

The fourth dimension for domain richness, is the dimension anchoring
(Bubenko and Wangler, 1992; Flynn and Warhurst, 1994), ranging from a ‘tangible’
starting point for the requirements determination process to an ‘abstract’ starting point.

Completeness criterion

The completeness criterion for a requirements determination method has been
operationalized along two dimensions that define what must be incorporated in a
requirements specification for application domains. The first dimension is the
perspective dimension: the data-oriented perspective, the process-oriented perspective
and the behaviour-oriented perspective. The conceptual data-oriented perspective
should concentrate on the business data and must capture the domain concepts, the
definition and the naming conventions for those domain concepts, the semantic

 178

relationships between the domain concepts and other ‘static’ and ‘structural’
knowledge in the enterprise. The process-oriented perspective should be able to capture
the business activity and user perceivable tasks and describe the ‘cross-reference’ on
how the ‘elements’ in the static structure are created, or what procedures exist for the
creation of instances of semantic relationships. Finally, the behaviour-oriented
perspective describes how ‘events’ can be cross-referenced to ‘elements’ in the
process- and data-oriented perspectives. This means that any requirements specification
should potentially consist of models that covers these three (conceptual) perspectives.
The second dimension is concerned with the question what elements must be contained
in every perspective (see table 7.1)

Table 7.1 Types of rules within perspectives for completeness criterion

 state state action
Data-oriented Data model Static constraints Dynamic constraints
Process-oriented Static derivation
Behaviour-oriented Dynamic rules

Efficiency criterion

Another criterion that we can use for evaluating requirements determination methods is
concerned with the amount of resources that are needed to create a requirements
specification when such a requirements determination method is applied in a given
application UoD. This criterion is generally known as efficiency. The operationalization
of this criterion for the purpose of evaluating requirements determination methods has
taken place for the way of modeling and the way of working as well as the way of
controlling.

With respect to the way of modeling the number of equivalent modeling
constructs in the specification language determines the value on this criterion,

With respect to the way of working of a requirements determination method
we can say that the availability of a (set of) procedure(s) that guides an analyst in the
requirements determination project will determine the efficiency of the way of
modeling of requirements determination method.

With respect to the way of controlling we can define efficiency on two areas.
Firstly, the area of quality management. In this philosophy, quality deficiencies must be
prevented by having a number of ‘quality-checking’ sub-procedures. Secondly, the way
of controlling is concerned with the project management of the requirements
determination project. The efficiency regarding these project management issues must
be measured in terms of three project targets: performance, cost and time (Mantel et al.,
2001)

Formality criterion

The relevant formality dimension to which a requirements specification must
comply are the following: consistency and preciseness. This means that the modeling
constructs that are used for creating requirements specifications in the different
perspectives must be formally defined, in order to prove their consistency. Secondly,

 179

the way of working, must be formal: a formal modeling procedure(s) must exist that
precisely specifies how the consistent modeling constructs that were defined in the way
of modeling, must be instantiated in a requirements determination project in order to
obtain semantic correctness in complicated application subject areas.

With respect to the way of controlling we must be able to formalize the
planning of activities that have to be carried out in a requirements determination
project, for example in a precedence diagram and we must be able to give provisions
that enable traceability.

Research sub question 2 :

Why do the existing requirements determination approaches from the
literature not comply with the quality criteria for assessing requirements
determination methods ?

Research findings for sub question 2 :

Research findings for the domain richness criterion

The application of a requirements determination method must lead to a requirements
specification that reflects the (possibly) different perceptions of an underlying reality
by different user groups. It is possible to reflect these different perceptions by using the
EER, UML and ORM approaches, whenever they are embedded in a procedure that
enables an analyst to integrate the different views from different user groups on the
‘underlying reality’ by integrating the sub-schemas of these users into a final ‘overall’
requirements specification in which the different perceptions are made explicit. The
EER, UML and ORM approaches that we have discussed in chapter 3 do not give
provisions for this.

The ‘turbulence’ dimension characterizes the extent in which an application
domain is subject to changes in the business data and business rules. We concluded that
the EER and UML approaches are most prone to remodeling because of the multitude
of information bearing constructs. ORM has a problem with a multitude of naming
conventions which might lead to unstable models.

With respect to the ‘tacitness’ dimension, the EER, UML and ORM
approaches basically have the assumption that users will be able to express their initial
requirements in natural language. This restricts the applicability of these approaches to
those domains that exclusively contain explicit knowledge

With respect to the ‘anchoring’ dimension, the requirements determination
processes in which we use EER and UML models for our specification language are in
principle not limited to any specific range on the anchoring scale. ORM is anchored in
familiar examples and it requires the domain expert to come up with these real
examples and therefore is applicable for those domains that are on the ‘tangible’ side of
the anchoring scale. The initial language in ORM is the language of verbalizable
familiar examples and it requires the domain expert to verbalize these examples in (a
subset of) natural language. The initial language in EER and UML is not specified but
it can be anything because no procedure is given how to get from an initial
requirements statement to the EER diagram or UML model(s).

 180

Research findings for the completeness criterion

With respect to the encoding capabilities of a given approach for the data model, the
static constraints, the dynamic constraints, static derivation rules and dynamic rules, the
main conclusion is that no single approach is able to comply fully with the
completeness criterion. There exists a large difference between the families of
approaches and even between members within a given family in terms of the extent in
which the application domain semantics can be expressed in the data model, and as
static or dynamic constraints, static derivation (rules) and dynamic rules. Furthermore,
the existing approaches, generally, lack a formalized way of working that will assure
completeness, in the sense that all existing relationships and constraints in an
application subject area, will be ‘detected’ by the analyst in the requirements
determination project. This means that there still is an opportunity to improve the
requirements determination approaches we have surveyed in chapter 3 in terms of
completeness.

Research findings for the efficiency criterion

With respect to the efficiency criterion we must remark that in EER and UML in a
number of cases remodelling is necessary because of the application of the attribute
modeling construct in the initial requirements specification. The main finding of this
literature survey is that 2 out of these 3 approaches use more than 2 information
bearing constructs which can lead to instable requirements specifications. Furthermore,
the non-existence of a precise modeling procedure in all approaches might lead to
unnecessary rework in the requirements determination process, because verification is
not enforced. Furthermore, with respect to the way of controlling, the existing
approaches do not cover the project management and quality assurance steps.

Research findings for the formality criterion

With respect to the consistency dimension we can conclude that in many (E)ER
approaches and in the UML it is not possible to use a single definition for minimum
cardinalities or multiplicities across all types of semantic relationships. In UML it is
not clear how the modeling concepts that are used in the 9 different diagram types are
related on the level of an application requirements specification. In ORM an
inconsistency is found with respect to the treatment of derived fact types, sometimes
they will be contained in the application information grammar sometimes they will not.

With respect to the preciseness dimension we remark that the optionality of
some modelling constructs in all three approaches that we’ve studied might lead to
imprecise requirements specifications. With respect to the questioning of assumptions
we can conclude that in EER, UML and ORM no procedure exists that allows an
analyst to question the assumptions on which the utterance of the domain semantics is
based. The position of these approaches is basically that the domain requirements that
are uttered by the user are encoded in the model 1-on-1. ORM claims to perform
checks on sample populations, however, it does not give guidelines on how to formally
perform these checks in a dialogue with the responsible domain user.

 181

Table 7.2 Requirements method demands for the way of modeling

RMD Requirements method demands for the way of modeling
1 A to-be designed RDM must contain 1 information bearing modeling

construct. This construct must be able to express the complete, precise
and consistent communication semantics of any N-ary relationship

2 The modeling construct(s) for naming conventions must allow for one
domain-based naming convention and must be able to capture the
semantics regarding the context in which the naming convention is valid.

3 The to be designed requirements method must contain a role construct
and an explicit naming convention for roles

4 The static constraint types in the to-be designed requirements method
must at least contain those types that enable us to encode those business
rules that can be encoded by relationship cardinalities in EER and UML

5 A requirements specification that is the result of the application of the to-
be designed requirements determination method must be able to adapt to
an evolving application logic without unnecessary remodeling

6 The definition of an application object or entity in the to be designed
requirements method must not imply that it can exist on its own by
default

7 The definition of the static constraint types in the to-be designed
requirements method must be the same for all arities of the semantic
relationships in the data model and must contain an explicit reference to
the elements in the data model.

8 The definition of the dynamic constraint types in the to-be designed
requirements method must enable us to explicitly refer to the (actual and
projected states of the) application’s data base

9 The definition of static derivation (rules) in the to-be designed
requirements method must contain an explicit reference to the elements in
the data model that serve as an input for the static derivation (rule) and it
must contain a precise specification on how these elements lead to the
result of the static derivation (rule)

10 An internal event in the to-be designed requirements method must be
defined as the insertion or deletion of a specific piece of domain
knowledge into or from the application’s data base An external event in
the to-be designed requirements method must be defined as something
that happens in the application domain and that can lead to the insertion
or deletion of a specific piece of domain knowledge into or from the
application’s data base or the execution of a static derivation rule
(eventually) under some condition on the content of the application’s data
base

11 A condition in the to-be designed requirements method must be defined
as a proposition on the application’s information base that must yield the
value true or false when evaluated at any point in time

 182

In chapter 3 of this thesis it was concluded that for the three requirements
determination approaches that were studied in detail in this chapter (E)ER, UML and
ORM no single approach fulfills all the quality criteria for a RDM that were derived in
chapter 2.

Research sub question 3 :

What are the necessary elements for the way of modeling, the way of working
and the way of controlling for a requirements determination method so that
this method complies with the quality criteria that we have given for the
design specification ?

Research findings for sub question 3 :

The diagnosis of these modeling deficiencies in the state-of-the-art in requirements
determination has lead to the formulation of 18 requirement method demands (RMD’s)
for the specification of a to-be designed requirements method in chapter 4. We have
divided the 19 RMD’s into RMD’s for the way of modeling (table 7.2), RMD’s for the
way of working (table 7.3) and RMD’s for the way of controlling (table 7.4).

Table 7.3 Requirements method demands for the way of working

RMD Requirements method demands for the way of working
12 The definition of the modeling constructs for the data model in the to-be

designed requirements method must be accompanied by some kind of
guidance on how all instances of these modelling constructs can be found
in an application subject area. The definition of the constraint types in the
to-be designed requirements method must be accompanied by some kind of
guidance on how such instances of a constraint type can be found in an
application subject area.

13 A view integration sub-procedure must be defined in the to-be designed
RDM in which it is specified how an analyst must carry out the integration
of views on the application domain by user (groups) that have a different
perception on the ‘underlying’ reality

14 The to-be designed requirements determination method must provide
facilities for transforming implicit tacit knowledge into explicit knowledge

15 The to be designed requirements determination method must accommodate
every possible starting point in the requirements determination process
ranging from abstract to tangible; ranging from natural language
description to documents that can only be understood by domain users.

16 Formal modeling procedure(s) must be defined in the to-be designed
requirements method in which it is precisely specified how an analyst must
carry out a modeling step in the most efficient way.

 183

Table 7.4 Requirements method demands for the way of controling

RMD Requirements method demands for the way of controlling
17 The way of working in the to-be designed RDM must have explicit formal

quality assuring sub-procedures for the activities in the work breakdown
structure and formal checks that enables an analyst to validate the
information that is supplied by the user and that confronts a domain user
with his/her assumptions and enables a user to validate the information that
is supplied to the analyst

18 The way of working in the to-be designed requirements determination
method must have a work breakdown structure that allows to formally plan
the activites in a requirements determination project.

19 The way of modeling and the way of working in the to-be designed RDM
must have provisions that enable traceability.

We now go back to our main research question

Main research question :

Does there exist a requirements determination method that is applicable in a
wide range of business organizations and that can be used for specifying the
complete domain requirements for a given business application subject area in
an efficient and formal way ?

Research findings for main research question :

In chapter 5 NLM’s way of modeling was defined. The modeling constructs for the
specification of an application requirement in a basic information model and the
accompanying constraints and their naming conventions were given. Furthermore, their
applicability and generalizability in business UoD’s was illustrated. In the first part of
chapter 6, the elements for the way of working in NLM were defined, consisting of
procedures or algorithms that specify how an analyst must carry out the requirements
elicitation process in a dialogue with a knowledgeable domain user. Every procedure or
algorithm contains built-in quality preserving and verification step(s) that verifies the
recorded requirements segment (generally) in a dialogue with the domain user. In the
second part of chapter 6 the elements in the way of controlling for NLM, were given in
which the (project) management of the requirements determination process using the
NLM method was illustrated.

In chapters 5 and 6 we have defined a requirements determination method that
contains the necessary elements as they were laid down in 19 RMD’s from chapter 4
and which therefore gives an answer to our main research question from chapter 1. The
Natural Language Modeling (NLM) requirements determination method turns out to
fulfill all necessary requirements for a to-be requirements determination method as was
defined in chapter 1. In figure 7.1 we have shown how the research (sub)-questions are
related.

 184

 Main Research Question :

Does there exist a requirements determination
 method that is applicable in a wide range of
business organizations and that can be used for
specifying the complete domain requirements for
 a given business application subject area in an
efficient and formal way ?”

 Research sub question 1:

What are according to the existing requirements
determination literature, the quality criteria for
a requirements determination method that

 ?

can
be used for eliciting, verifying and specifying
the complete domain requirements for a given
business application subject area in a wide range
of business organizations in an efficient and
formal way

 Research sub question 2:

Why do the existing requirements determination
approaches from the literature not comply with
the quality criteria for assessing requirements
determination methods

 Research sub question 3:

What are the necessary elements for the way of
modeling, the way of working and the way of
controlling for a requirements determination
method so that this method complies with the
quality criteria that we have given for the design
 specification ?

Chapter 2

Chapter 3Chapter 2

Chapter 4

Fig. 7.1 Relationship between research (sub) questions)

The main findings regarding the extent in which NLM satisfices the 19
demands that we have derived are summarized here.

Findings for the way of modeling

The NLM requirements specification language contains only one information bearing
construct: the fact type and it allows us to model any naming convention and semantic
connection. The introduction of the sentence group template construct and the
application concept repository allows us to capture the complete domain semantics of
the UoD and therefore fulfills requirement RMD 1. The introduction of naming
convention fact types and compound referencing schemes in combination with an
accompanying sentence group template that enables us to capture the context in which
the naming convention is valid fulfills requirement RMD 2. The definition and
consistent application of the role construct and the mandatory naming convention from
such a construct within the UoD of an analyst in the NLM specification language
fulfills requirement RMD 3. Furthermore we have given modeling provisions that
allows us to define any type of static constraint that currently exists within the EER and
UML (compliance to RMD 4). It was also shown that NLM leads to requirements
specifications that can easily evolve with changing application requirements (RMD 5).
If instances of an intention can only exist on their own, this can be modeled as a unary
fact type. This means that the NLM modeling constructs comply with requirement
RMD 6. The definition of the uniqueness- and set-comparison constraints is fully

 185

scalable as a function of the arity (N). This means that we have complied with
requirement RMD 7. With respect to the transition constraints we remark that in our
legend we have explicitly incorporated the relationship that the constraint has in terms
of the values of the roles that are involved and it contains explicit references to before-
and after- states of the application information base and therefore, NLM complies to
RMD 8. The derivation rule constraints contain a reference to the roles from the Basic
information Model of the UoD. This means that the derivation rule constraint that we
have defined in the NLM’s way of modeling complies with RMD 9. We have made a
distinction into internal and external events in NLM. This leads to the compliance to
RMD 10. In the impulse, an information base condition can be contained. Such an
information base condition (IBC) is evaluated at some point in time. If the application
information base at that point in time in combination with the information base
condition yields the value true than the derivation rule and/or insert/delete operation
will be executed. If it yields the value false nothing will happen. This means that
requirement RMD 11 has been fulfilled.

Findings for the way of working

The application of algorithms 1 through 4 will lead to the detection of all semantic
relationships and naming conventions in the application subject area. We have
specified static constraint derivation algorithms 6 and 7 to detect all uniqueness and set
comparison constraints. In order to derive all instances of the dynamics constraints we
have specified transition constraint derivation algorithm 8 as sub-procedure in NLM’s
way of working. In order to derive all instances of the derivation rule constraints we
have specified the derivation rule constraint algorithm 9 in which the precise
specification (or derivation formula) can be established. In algorithm 10 we have
incorporated the question in which an internal event can lead to the execution of a
derivation rule or another information base event. Furthermore, the algorithm
systematically confronts the users in the SoI with derivation rules and tries to elicit the
potential ‘external’ events that might invoke such a derivation rule. We can conclude
that RMD 12 has been fulfilled. In algorithm 5 a view integration algorithm has been
defined. This fulfills RMD 13. The application of the natural language axiom in an
organizational setting in which domain users are enabled to make implicit knowledge,
explicit fulfills requirements RMD 14. The application of the natural language axiom in
NLM also allows us to apply NLM in many organizational settings, ranging from
abstract to tangible UoD’s and from natural language descriptions to other descriptions
that can only be understood by users. This leads to compliance to RMD 15. The sub-
division of the modeling procedures in NLM’s way of working into a number of formal
algorithms has been done in such a way that the amount of analysis steps that have to
be performed by (an) analyst(s) is minimized and therefore NLM fulfills RMD 16.
The precise specification of the NLM modeling procedure in a number of algorithms
with built-informal quality assurance checks fulfills requirements RMD 17.

Findings for the way of controlling

The way of working in NLM has a work breakdown structure that consists of 10
activities or transformations that are laid down as formal algorithms and therefore can
be formally planned as activities in a requirements determination project according to

 186

RMD 18. Furthermore, NLM contains provisions that enable traceability in the
requirements determination processes, by forcing an analyst to use naming conventions
for the concept that he/she uses in the process of requirements determination and
therefore NLM fulfills requirement RMD 19.

7.3 RESEARCH METHODOLOGY

In sections 5.10 and 6.10 we have already concluded that the NLM requirements
determination method complied with all 19 requirements method demands RMD’s that
were specified in chapter 4. In this concluding chapter of this thesis we will reflect on
the final stage from the ‘design-research’-cycle: selection of the desired design from
the set of alternative designs.
 We can now conclude that NLM is a ‘satisficing’ solution to our main
problem statement from chapter 1, since it ‘satisfices’ all 19 demands for a
requirements determination method that were derived, based upon the literature
research on the state-of-the-art in requirements determination methods. The research
goal that was phrased in chapter 1: “to develop a method for requirements
determination for which the way of modeling allows the analyst to capture all business
entities and all business rules. This to-be developed RDM should have a way of
working that contains modeling provisions that guide an analyst in elicitating the initial
requirements from domain users. Finally, this method’s way of controlling must
contain quality preserving procedures that guarantees that a requirements specification
that is the result of the application of this method have been validated by the user(s)” ..,
therefore, is achieved, by developing an alternative design that complies to the
requirements that were derived in chapter 4.

7.4 FUTURE MIS RESEARCH PROPOSALS

We will conclude this chapter with a number of topics for future research.
 We have documented the NLM requirements determination method in
chapters 5 and 6 of this thesis. The NLM requirements determination method clearly,
provides a number of advantages over the ‘state-of-the-art’ in requirements
determination methods. One of the most distinguishing features of NLM compared to
for example, (E)ER, ORM or UML is the way in which the application of modeling
constructs, for example, constraint types, is made explicit in a ‘constraint’-legend and
an accompanying ‘instantiation algorithm’. In the appendix A to this thesis, we have
provided the readers with some example constraint legends and in chapter 6 we have
shown the accompanying instantiation algorithms for these constraint types. An agenda
for future research, is to define more (in the sense of ‘orthogonal’ to the existing
constraint types in this thesis) constraint types, that prove to be significant for business
application subject areas, but above all, to develop accompanying instantiation

 187

algorithms that can be used in an analyst-domain user dialogue, and that are based upon
the acceptance and/or rejection of ‘real-life’ examples by knowledgeable domain users.

7.5 RECOMMENDATIONS FOR PRACTITIONERS IN THE
 MIS FIELD

We can conclude that the NLM requirements determination procedure explicitly shows
the separation of concerns between the analyst and the user in the process of
requirements modeling by providing the semantic bridges for this analyst-user
dialogue. In addition to the creation of a NLM requirements specification that is an
allowed extension of the NLM meta model we need guidance on what specific
extension of this meta model reflects the domain semantics in a precise and a complete
way. We have shown that such a semantic correct specification will be achieved when
the algorithms that we have introduced in this thesis will be applied in a requirements
determination project in which the sequence of their application is performed under the
precedence requirements that were given in chapter 6. Furthermore, this will result in
the most efficient way of working. Although a number of procedures in the NLM
requirements determination method at first sight have a ‘trivial’ appearance, the
consistent application of the procedures in the ‘way-of-working’ in this thesis in
practice has proven to improve the ‘quality’ levels of the resulting information models,
because even the experienced analyst can always ‘fall back’ on the procedure in those
situations in which the application subject area becomes too complex. Another
advantage is that inexperienced analysts will be able to create requirements
specifications that have the same quality level as the specifications that are created by
experienced analysts. In a project in which the NLM requirements determination
method is applied for the creation of a requirements specification, the division into sub-
projects and the order in which these sub-projects are executed does not have an impact
on the final specification.

As we pointed out earlier, the objective of this thesis research was to develop a
requirements modeling language and a modeling procedure, rather than to specify an
‘optimal’ notation legend for such a language. Practitioners, however, need to be able
to communicate, with domain users, management and peers in many cases using a pre-
defined diagramming technique or notational legend. The conclusions from this
research in terms of giving a preference to a modeling language that has one
information bearing construct, that has uniform modeling facility for naming
conventions and that has a number of orthogonal constraint types. The definition of
these constraint types in combination with an instantiation procedure has a built-in
guarantee that these constraint instances can always be derived in any application UoD,
whenever the appropriate instantiation procedure is applied in combination with a
knowledgeable domain user. The practitioner should evaluate the requirements
specification/determination approach that he/she is currently using. After this
evaluation the practitioners can decide to limit or redefine the modeling constructs that
they want to keep and define new modeling constructs if one more necessary constructs
are missing. In a second stage a ‘notational’ legend must be (re)defined that preferably

 188

is ‘backwards compatible’ with the old way of modeling and the old way of working.
In the third stage of the evaluation of the current approach, practitioners must decide on
what types of constraints are relevant for the specific type(s) of application domain(s)
in which the requirements determination method is going to be applied. We emphasize
that for these constraint types, accompanying procedures must be specified on such a
level of concreteness that an analyst can apply these procedures in a dialogue with a
knowledgeable user.

7.5.1 Application of NLM in practice

The NLM requirements determination that we have documented in chapters 5 and 6 has
been applied by master students in MIS a number of times in large and small
enterprises, see for example Bogget (1994) and Enter (1999). Other students have
applied this approach on object-oriented models (Clayes, 1996) and on the accounting
knowledge domain (Wolthuis, 1997).

7.6 CONCLUDING REMARKS

In this thesis we have studied the field of requirements determination for enterprise
information systems. We discovered that in the ERP era that characterizes the
information systems in many (large) enterprises at the beginning of the 21st century, the
issue of requirements determination is still relevant. We also discovered that the ‘state-
of-the-art’ of this field still shows a number of omissions in the definition of
requirements specifications modeling constructs and methodology. We have chosen to
specify ‘the requirements’ or demands for a requirements method itself using four
(groups of) criteria. These criteria were operationalized by studying the three most
dominant requirements determination approaches that exist today. These criteria were
subsequently translated into 19 specific demands (RMD’s) for a to be designed
requirements determination method. In the second part of this thesis (chapters 5 and 6)
we have introduced the Natural Language Modeling (NLM) approach for requirements
determination. It turns out that NLM satisfices all 19 requirements and therefore can be
considered an appropriate design alternative, as is specified in the design research cycle
(Van Engelen and Van der Zwaan, 1994). Hence the choice of Natural Language
Modeling as answer for our research objective is justified.

 189

7.7 REFERENCES

Bogget, M. (1994): Implementation of a Management Reporting System &
Preparation of MRP model at PTZ Nelahiozeves Unilever. Final Thesis Business
Economics. University of Maastricht

Bubenko, J., Wangler, B. (1992): Research Directions in conceptual specification
developments. In: Conceptual Modeling, Databases, and Case (Loucopoulos, P., Zicari,
R. (eds.)). Wiley. 389-412

Clayes, C. (1996): Final thesis. International business studies. University of Maastricht.

Dullea, J., Song, I-Y., Lamprou, I. (2003): An analysis of structural validity in entity-
relationship modeling. Data & Knowledge Engineering 47: 167-205

Enter, N. (1999): The semantics of the CIC SAP R/3 core. Final thesis. International
business studies. University of Maastricht.

Flynn, D., Warhurst, R. (1994): An empirical study of the validation process within
requirements determination. Information Systems Journal 4: 185-212

Galliers, R., Swan, J. (2000): There’s more to information systems development than
structured approaches: information requirements analysis as a socially mediated
process. Requirements Engineering 5(2): 74-82

Goldin, L., Berry, D. (1997): Abstfinder, a prototype natural language Text Abstraction
Finder for Use in Requirements Elicitation. Automated Software Engineering 4: 375-
412

Land, F. (1998): A Contingency Based Approach to Requirements Elicitation and
Systems Development. Journal of Systems and Software 40: 3-6

Mantel, S., Meredith, J., Shafer, S., Sutton, M. (2001): Project management in
practice. Wiley and Sons

Van Engelen, J., Van der Zwaan, A. (1994): Bedrijfskundige methodologie 2: een
technisch-methodologische context. Bedrijfskunde 66 (2): 85-94 (in Dutch)

Wolthuis, M. (1997): Afstudeerscriptie: Boekhouden op basis van Universele
Informatiekunde. University of Limburg. (in dutch)

 190

 191

APPENDIX A:

THE SPECIFICATION OF THE CONSTRAINT TYPES
IN THE NLM REQUIREMENTS SPECIFICATION

LANGUAGE

A.1 INTRODUCTION

In this appendix we will zoom in on the modeling constructs that will enable us to
express that some extensions of a basic information model are not allowed to exist. We
will use part 2 of the university enrollment example in chapter 5 to illustrate the
different constraint types.

A.2 POPULATION STATE CONSTRAINTS

We can consider a population state as a further reduction of the extensions in the set of
possible extensions of a basic information model. After the restriction of the names to
the name classes, that can be used to identify a specific thing, entity or concept in the
application UoD, we will further restrict the extensions that are allowed to exist by
incorporating specific domain knowledge or those domain rules (or business rules) that
can be expressed as propositions on the basic information model and that must be true
in every population state. We will call such a proposition a population state constraint.

Definition A.1 (=5.11). A population state constraint p in a basic information model
BIM is a proposition that limits the allowed extensions of the basic information model
BIM to those extensions for which the proposition of p is true.

A population state constraint is a set valued function into the set of extensions
of a basic information model of a universe of discourse.

PC: { EXTj(BIM)} -----> { EXTj(BIM)}

Example 5.1: University Enrollment part 1 (ctd.)

BIM:={FT1, FT2, STUDENTNAME, STUDENTMAJOR}

Business rule: a student must be enrolled in at most one major at a time.

 192

Domain extensions Range extensions

{student V1234 majors in major science}; {student V1234 majors in major science}
{ student V1234 majors in major science,
 student V1234 majors in major economics}

R1

R1

R1

RN+1

RN+1

RN+1

R1

RN

RN

RN

Cy

Cx

Cz

Cu

R2N

R2N

R2N

RNRN-1

The constraint Cy implies that there can not exist an
extension of the basic information model in which the set of
value combinations in the roles R1 through RN is not a
subset of the set of the value combinations in the roles
RN+1 through R2N

The constraint Cx implies that there can not exist an
extension of the basic information model in which the set of
value combinations in the roles R1 through RN is not
equal too the set of value combinations in the roles
RN+1 through R2N

The constraint Cz implies that there can not exist an
extension of the basic information model in which the set of
value combinations in the roles R1 through RN is overlapping
with the set of value combinations in the roles
RN+1 through R2N

The constraint Cu implies that there can not exist an
 extension of the basic information model in which the same
 name combination in the roles R1 through RN-1 appears more
 than one time

Fig. A.1 Example legend for uniqueness-, exclusion-, subset- and equality-66 population state
constraints.

A.3 POPULATION STATE TRANSITION CONSTRAINTS

The business rule: a student can be enrolled in at most one major at a time, can be
expressed as the following constraint instance from the constraint legend in figure
A.167:

66 Exclusion constraints, equality constraints and subset constraints together are referred to as
set comparison constraints (Leung and Nijssen, 1988:35)

67 We note that this sentence refers to the Universe of Discourse of an information analyst, who
has knowledge of NLM and has access to an accompanying constraint legend.

 193

The constraint c1 implies that there can not exist an extension of the basic information
model in which the same name in the role enrolled student appears more than one time.

If we inspect this example we can conclude that the addition of a population state
constraint onto a (basic) information model actually eliminates those extensions from
the set of extensions that do not comply with the proposition. In this example we have
shown that the example extension: {student V1234 majors in major science, student
V1234 majors in major economics} does not comply with the proposition of population
constraint c1.

The population state of a basic information model (BIM) will change over
time because fact instances can be added or removed from the application’s
information base at any time. We will define the addition or deletion of fact instances
to or from the application’s information base a state transition from a population before
(the addition or deletion has taken place) to a population after (the addition or deletion
has taken place)

Definition A.2 (=5.12). A population state transition constraint q in a basic
information model BIM is a proposition that limits the before-after extension
combinations of the basic information model BIM to those combinations for which the
proposition of q is true.

A population state transition constraint is a set valued function into the set of
before-after extensions of a basic information model of a universe of
discourse.

PTC: { EXTj(BIM)} × { EXTj(BIM)} { EXTj(BIM)} × { EXTj(BIM)}

In the student enrollment example we have illustrated how population state constraint
c1 will guarantee that only those extensions of the BIM can potentially exist as
population states that are allowed with respect to the business rule that a student can be
enrolled in at most one major. In some UoD’s business rules might exist that can not
exclusively be modelled as (a combination of) population state constraints. Consider
the following business rule in the university enrollment UoD: A student can not major
in Economics after he/she has majored in Science. This business rule prohibits for
example the following before-after combination of fact type extensions: {student
V1234 majors in major science, student V1234 majors in major economics} although
this before/after extension combination is allowed according to constraint c1 and ,
therefore, must be encoded as a population transition constraint c14:

The population constraint c14 implies that there can not exist a before/after
combination of extensions of the basic information model in which the extension for the
role chosen major for a given student in the before state is equal to ‘ science’ and in
the after state is equal to ‘ economics’.

 194

The addition of the population state transition constraints to the basic information
model reduces the set of allowed before-after extensions in the UoD. We have provided
a legend for the state transition constraints in figure A.2.

Cx: RN
 before after ax ay am

 ax + - +
 ay + + +
 ..
 am + + +

R1

Y: a <R1> B...... N <RN>

RNR(N-1)

The population constraint Cx implies that there
can not exist a before/after combination of
extensions of the basic information model in
which the extension for the role RN for a given
value combination {R1,..,R(N-1)} in the before
state is equal to ' ax’ and in theafter state is equal
 to ‘ay’

Fig. A.2 Example legend for population state transition constraints.

A.4 DERIVATION RULE CONSTRAINTS

In addition to the population constraints, constraints can exist between the values that
particular fact instances must hold when other fact instances are given. For example, in
part 2 of our University Enrollment, if we want to record the total number of credits for
a person in his/her freshmen year (fact type FT13) in addition to the number of credits
for every individual course (fact type FT12) we know that whenever instances of FT12
are known, the instances of FT13 can be ‘computed’. If instances of fact type FT13 are
known, however we can not infer or ‘compute’ the instances of FT12. This means that
there exists a type of constraint that determines a specific fact instance when instances
of other fact types are known to exist. This type of constraint we will call a derivation
rule.

In this section we will define the modeling constructs that will allow us to
precisely specify derivation rules on fact types in the basic information model (defined
in section 5.7). Derivation rules specify how fact instances of a given fact type in the
BIM are composed of fact instances of other fact types in the application ‘s basic
information model.

Example 5.1 part 2 (ctd):

Consider the following fact instance on the example form from figure 5.5:

Fact 1:
The total numbers of credits for the student O 5678 in his/her freshmen year was 24

It may be created in the following way:

 195

The total number of credits for student O 5678 is created by adding all
 the credits for the courses for student 0 5678.

using the following ingredient facts:

Fact 2: Student O 5678 earned 8 credits for the course macro economics.
Fact 3: Student O 5678 earned 8 credits for the course micro economics.
Fact 4: Student O 5678 earned 8 credits for the course finance.

The creation of fact instance fact 1 is a function defined on the ingredient fact
instances fact 2, fact 3 and fact 4. The fact type(s) of the fact instances created in (an)
instance(s) a derivation rule will be referred to as the resulting fact type(s) for the
derivation rule. An (the) ingredient fact type(s) of a derivation rule specifies what the
fact instances serve as an input for the derivation of a fact in a derivation rule.

Definition A.3 (=5.13). A derivation rule (constraint) is a function defined on instances
of the ingredient fact types. The function range is a set of resulting fact instance(s)
from the resulting fact typesof the derivation rule.

 Let FT1 through FTN be ingredient fact types for the derivation rule CP
 Let FTM be the resulting fact type for the derivation rule CP

 CP: EXT(FT1) ×…× EXT(FTN) ------------> EXT(FTM)

Example 5.1 part 2 (continued):

Ingredient fact type FT12: Student [identified by the combination of <university code>
and <student ID>] gained a number of credits <course credits>for the course
<credited course>.

Resulting fact type FT 13: Student [identified by the combination of <university code>
and <student ID>] gained a total number of credits <total credits>in his/her freshman
year

Function DF1: FT13.<total credits>(FT13.<university code>.<student ID>):=

 M
 Σ FT12. <course credits> [FT12.<university code>.
 j68=1 <student ID>=FT13.<university code>.<student ID>]

 The specification of a derivation rule can be considered another semantic
bridge in the natural language modeling requirements determination method. In this
process the variables in the function formula are assigned specific semantics in terms
of roles of the basic information model (BIM) of the UoD. The parameters that tell us

68 Where j is the index on the instances of courses.

 196

what fact instances will be the 'tangible' end results of the execution of a derivation rule
and what other factors constrain the possible outcomes of such a derivation. We will
call such a set of parameters: the derivation rule argument69.

Definition A.4. A derivation rule argument specifies the types of values that must be
specified for the creation of a derived fact instance.

 Let CP be a derivation rule
 Let FTM be the resulting fact type for the derivation rule CP
 Let dfi be a derived fact instance for CP: dfi∈ EXT(FTM)
 Let drarg be a derivation rule argument.

 CP: EXT(FT1) ×…× EXT(FTN) × DOM (drarg) ------------> EXT(FTM)

Example 5.1 part 2 (ctd.):

Derivation rule constraint c15: create total number of course credits
The instances of this derivation rule create instances of fact type FT13
Derivation rule argument: {(arg1, student)}

We note that derivation rules can exist in which a derivation rule argument does not
exist (see the next example).

Example 5.1 part 2 (ctd.):

Derivation rule constraint c16: create total number of enrolled students at vandover
and Ohoa university combined
The instances of this derivation rule create instances of fact type FT14 and for this
derivation rule no derivation rule argument exists.

69 In some application UoD’s, the derivation rule arguments and derived fact types can change
depending upon the specific set of argument instances that are given. For example in a project
management UoD three fact types might exist: FT1: <activity> starts on <time>, FT2: <activity>
ends on <time>, FT3: <activity> has <duration>. Sometimes FT3 will be derived based upon
FT1 and FT2 as (given) arguments. In other instances FT2 will be derived based upon FT1 and
FT3 as arguments and in other instances FT1 will be derived based upon FT2 and FT3 as
arguments. In this example, therefore, it is not known in advance precisely which 2 fact instances
of the three are known. In this example, therefore, three derivation rules must be created. The
modeling provision that allows us to specifiy when which derivation rule will be executed is the
specific event that initiates the triggering of the derivation rule. If the event argument contains
instances of FT1 and FT2 then the derivation rule that derives an instance of FT3 will be
triggered. This will be modeled in three impulses. See the remainder of this Appendix.

 197

Definition A.5. An information base condition (IBC) is a proposition on the
information base.

 Let EXT(BIM) be an information base
 Let IBC be an information base condition
 IBC= prop (EXT(BIM))

Example 5.1 part 2 (ctd):

ibc1: ∃ f∈ EXT(FT12)[f.<student ID>.<University code>>= ‘O 5678’]

Definition A.6. An information base condition type (IBCT) is a set of propositions
defined on the information base. An instance of an information base condition type is
an information base condition.

 Let EXT(BIM) be an information base
 Let IBC be an information base condition
 Let IBCT be an information base condition type
 EXT(IBCT)= {IBC}

An information base condition type in a derivation rule can be instantiated into an
information base condition whenever the instantiation values of the derivation rule
argument are known.

DR1: Create total number of credits (arg: student)
CT: ∃ x∈EXT(R2) [x=DR1.arg]

If we consider the derivation rule: create total number of credits it will only then create
(a) fact instance(s) of fact type FT13 when at least one fact instance of fact type FT12
exists in the application information base. If we inspect the derivation rule and the
instantiation values for the derivation rule argument it should be clear whether the
execution of the process will lead to a result before the derivation rule is actually
executed. The pre-condition serves as this checking mechanism for the instantiation of
a derivation rule. If the pre-condition is violated by the actual content of the application
information base, (a) derived fact instance(s) will not be created.

Definition A.7. A precondition in a derivation rule is an information base condition
(type) that checks whether the required input fact instances and derivation rule
argument values for the derivation rule exist in the application information base.

Let EXT(BIM) be an information base
 Let IBC be an information base condition
 Let PC be a precondition
 PC∈ {IBC| IBC= prop (EXT(BIM))}

 198

Example 5.1 part 2 (ctd):

DR1<{(arg1,student)}>
IF there exist an instance of FT12
SUCH THAT FT12.<university code>.<student ID>=arg1 {pre-condition}

The post-condition specifies what the fact argument is for the facts that will be created
as a result of the execution of the derivation rule. Furthermore, a reference is given on
how the fact values for the roles in the facts that will be created in the derivation rule
will be obtained. This post-condition should, furthermore, specify what fact instances
(in terms of the derivation rule) argument should be instantiated for the resulting fact
type(s) when the derivation rule is executed.

Definition A.8. A post-condition specifies (parts of) the fact argument for the instances
of the resulting fact type(s) that must be created in the derivation rule.

Let EXT(BIM) be an information base
 Let IBC be an information base condition
 Let PO be a postcondition
 PO∈ {IBC| IBC= prop (EXT(BIM))}

Example 5.1 part 2 (continued):

C15: Create total number of credits<{(arg1,student)}>
IF there exist an instance of FT12
SUCH THAT FT12.<university code>.<student ID>=arg1 {pre-condition}
THEN create an instance of fact type FT13
 SUCH THAT
 FT13.<university code>.<student ID>:= arg1 {this is the fact argument}

 FT13.<total credits>:=DF1 {post condition}

 DF1:= Σ FT12.<credits> [where FT12.<university code>. <student ID>=’arg1’]

ENDIF {derivation formula}

C16: Create total number of enrolled students
IF there exist an instance of FT10
THEN create an instance of fact type FT14
 SUCH THAT
 FT14.<total enrolled students>:=DF2 {post condition}
DF2:= COUNT(Ext(FT10)) {derivation formula}
ENDIF

In figure A.3 an example of a (verbalization) legend for the derivation rule constraint is
given.

 199

 DRX<{derivation rule argument argDRX}>
 IF {pre-condition Prx1}
 AND ….
 AND {pre-condition PrxN}
 THEN create an instance of resulting fact type FTX
 SUCH THAT
 {post condition Pox}
 {derivation formula Dx}
 ENDIF

The constraint DRX implies that whenever the values for the derivation rule argument
argDRX are known and fulfill the pre-condition ‘Prx1’ and……and ‘PrxN’ then (an)
instance(s) of fact type Ftx will be created in which the fact type argument complies to
the post condition ‘Pox’ and the formula ‘Dx’ will be used to derive the fact value

Fig. A.3 Example legend for derivation rule constraint.

A.5 IMPULSE CONSTRAINTS

In the information systems literature numerous definitions of the event concept can be
found: “An event is an occurrence or happening of something in the environment
under consideration.” (De and Sen, 1984:182). “An event is a noteworthy change of
state; all the changes of state of objects are not events.”(Rolland, 1983:34). We will
give the following definitions of event occurence and event :

Definition A.9(=5.14). An event occurence is a happening at a certain point in time in
the application subject area that can lead to the execution of one or more derivation
rules and/or the insertion or deletion of fact instances into/from the application’s
information base.

Let PH be the set of potential happenings
 Let eo be an event occurrence

 eo∈ PH

From definition A.9 it follows that an event occurrence is a ‘one-time’ only thing. For
example the event occurrence: student ‘V 2345’ wants to enroll for major ‘science at
12:45:56 on 01/12/2004. A different event occurrence is: student ‘V 2345’ wants to
enroll for major ‘science at 18:45:56 on 03/06/04. We can group the former two event
occurrences into the following event: student ‘V 2345’ wants to enroll for major
‘science’.

 200

Definition A.10 (=5.15). An event is one or a number of potential happenings in the
application subject area that can lead to the execution of one or more derivation rules
and/or the insertion or deletion of fact instances into/from the application’s information
base.

Let PH be the set of potential happenings
Let e be an event

 e⊂ PH

Examples:

Student requests enrollment for major
Student has earned credits for a course

If we take the University Enrollment example, we can qualify the example event from
the University Enrollment example: Student requests enrollment for major into the
following event: Student V 5463 requests enrollment for Major economics. If we
observe this Universe of Discourse over a certain period of time we can encounter also
the following event instances Student O7564 requests enrollment for major Economics,
Student with V 4467 requests enrollment for major law. We can conclude that the
former verbalization of events can be further grouped and qualified into the event type
having an event argument:

Student wants to enroll in major(arg1: student, arg2:major)

Definition A.11(=5.16.) An event type is a class of events in the application subject
area, each of these events can lead to the execution of one or more derivation rules (of
the same type) and/or the insertion or deletion of fact instances (of the same fact
types(s)) into/from the application’s information base.

Let ET be an event type
Let E={ei } be the set of events
ET ⊂ E

Example 5.1 part 2 (ctd.):

Consider following event set E1.
E1={ Student O7564 requests enrollment for major Economics, Student with V 4467
requests enrollment for major law, Student V 3456 has earned 7 credits for the course
behavioral finance}
The event type ET1= { Student O7564 requests enrollment for major Economics,
Student with V 4467 requests enrollment for major law } .

All events of an event type, therefore, in addition must have the same intentions in the
event argument for a universe of discourse U.

 201

Once we have found an event type argument we can add the definition of the
concepts that underlies this argument in the list of definitions or application concept
repository in case it is not yet contained in the ACR.

Definition A.12. An event type argument of a given event type specifies all intentions,
instances of which must be known at the occurence of an event instance of the event
type.

Let ET be an event type and b be an event type argument then ET is the
event type ET with event type argument set b.

Example 5.1 part 2 ctd.):

Consider the following event type: ET1: Student wants to enroll in Major (arg1:
student; arg2: major)

An instance of this event type is: Student wants to enroll in major (arg1:’issn 5678,
arg2: ‘Science’)

The derivation rule or insert/delete operation that must be instantiated as a result of this
event is the insertion of an instance of fact type Ft11. The instances of the intentions in
the argument for the event type can be used for instantiating the derivation rule or
insert/delete operation (in an impulse). The modeling construct of event refers to an
action that can occur, for example: student graduates or it can refer to a more ‘static’
action, for example the start of a new day when the clock strikes 12:00 P.M. We can
conclude that events can have different appearances and therefore we will use the basic
information model and the derivation rules in combination as a starting point for
‘detecting’ events that are relevant for the application subject area. A significant source
for potential events is the state change in the application information base (Prabhakaran
and Falkenberg, 1988) or database events (Chakravarthy and Mishra, 1994:2).

The derivation and the specification of the event type out of a significant set
of event instances (or event sentences) follows the same procedure as the grouping,
qualification and classification of the user verbalized sentences in the information
perspective. The significant difference between the event types in the event perspective
and the fact types in the information perspective lies in the Universe of Discourse to
which they refer. In the information perspective this UoD consist of user examples of
declarative information. Subsequently these examples are verbalized by the user. The
‘UoD’ in the event perspective is less tangible and in general can not be traced back as
user-example that contains declarative information (see the discussion regarding status
data versus event data in (McFadden et. al, 1994:539)).

A.5.1 Impulse and impulse type

An event can start the execution of a derivation rule (in some cases) under (a)
condition(s) on the information base (Dayal et al., 1990:106). In the population
constraints from the application requirements specification we have modeled the
business rules in terms of the state and state transition of the application information
base. In the pre-conditions of the derivation rules, the business rules are modeled that

 202

specify what ingredient fact instances should be available in order to ‘compose’ or
‘derive’ the derived fact instance(s). In the event perspective we will model the
business rules that contain the knowledge under what condition (on the state of the
application information base (Chakravarthy and Mishra, 1994:5)) an event of an event
type will trigger a derivation rule or an information base insertion and/or deletion.

Example 5.1 part 2 (ctd.):
Suppose that in the (integrated) University Enrollment UoD the total number of
enrolled students must always be up-to-date and be available on the example document
from figure 5.5. This means that there exist two event types, that must lead to the
(re)calculation of the total number of enrolled students: the event type that designates
that a new student is enrolled and an event type that designates that a student has
graduated. The impulse type constraints for this example will be the following:

C17
ON ET2: Insert (Student’x’ wants to enroll in Major ‘y’) into application data
 base has succeeded (arg1:’x’; arg 2: ‘y’)
DO Create total number of enrolled students

C18
ON ET3: Delete (Student’x’ wants to enroll in Major ‘y’) from application data
 base has succeeded (arg1:’x’; arg 2: ‘y’)
DO Create total number of enrolled students

We can see that there exist two different types of events that can lead to the execution
of (different) instances of the same derivation rules (in this case create total number of
enrolled students). In this example events of two different event types will lead to the
triggering of the same derivation rule (see figure A.4).

Dr1

Et1 Et2

Dr1

Fig. A.4 Two different event types that trigger the same derivation rule.

On the other hand it is possible that two or more different derivation rules exist in the
application subject area that derive (different) instances of the same fact type.

 203

Dr1

Et1 Et2

Et3

OPTION A OPTION B

Et3

Ct1 NOT
 Ct1

Dr2

Dr1 Dr2

Fig. A.5 Two derivation rules that create instances of the same fact type.

In order to be able to decide which derivation rule will be used for the creation of a
specific fact instance we either need two different event types that unconditionally
instantiate and trigger these two process types on the discretion of the domain user
(option A in figure A.5) or we need one event type and a condition that tells us under
what condition on the information base the derivation rule DR1 will be used or
derivation rule DR2 will be used (option B in figure A.5). The reason for the existence
of these two sets of impulse types is that each user group within the application area
exclusively has knowledge of the fact creation processes that are executed by that user
group. If all user groups would have knowledge of all business rules in the integrated
application subject area then the condition CT1 most likely would be incorporated into
the description of one single derivation rule.

An impulse condition is an information base condition for the execution of a
derivation rule or information base insertion/deletion that is ‘triggered’ by a specific
event. In option B from the application event description in figure A.5 we see that
when an event instance of event type ET3 occurs and the proposition in condition CT1
evaluates to true then derivation rule DR1 will be instantiated. If the proposition in
condition CT1 evaluates to false then a derivation rule DR2 will be instantiated. In
addition to the conditions that are given in the pre-condition of the derivation rule or a
condition that is enforced by the population constraints in the application information
grammar, the information base condition that is specified in the impulse is defined in
terms of a proposition on the information base state at that moment in relative time in
which the information base condition is checked (see figure A.6).

Definition A.13. An impulse is the occurrence of an event leading to the instantiation of
a derivation rule and or insert/delete process, eventually under some condition on the
application’s information base.

 204

The abstraction of a set of impulses that have events of the same event type, have
conditions of the same condition types and trigger the same derivation rule
(constraints) we will call an impulse type (constraint).

Definition A.14 (=5.17). An impulse type (constraint) is an ordered triplet that contains
an event type, a condition type under which an event occurence of an event of a given
event type can lead to the execution, of a specified derivation rule constraint or
insert/delete operation.70,71

Let IT be an impulse type
Let SET be the set of event types
Let SCT be the set of condition types
Let SDR be the union of the set of derivation rule constraints and the set of
insert/delete operations

IT= (A,B,C) | A∈SΕΤ, B∈SCΤ, C∈SDR}

Application
Information
base

Event
type
et 1

(arg1:customer)

Derivation rule
Dr1

(arg1:order)

impulse
type
it 1

Condition
type
ct 1

Fig. A.6 Event triggering a derivation rule when a condition is satisfied (impulse).

70 In this thesis we have defined an impulse type as a triplet. We thereby assume that there exist
some form of ‘event-processor’ that is able to process the occurrence of two events
simultaneously and also is able to invoke two different derivation rules and/or insert/delete
operations that must be excuted in parallel in which the sequence in which derivation rules
and/or impulse/delete operations are executed is determined by a prioritizer that checks the pre-
conditions of these derivation rules. An additional complicating factor is the situation in which
the joint occurence of two events of different event types will lead to execution of a possibly
different derivation rule and/or insert/delete operation under a possibly different condition (type)
than the condition types that are given in the two ‘individual’ impulse types. This complication
can be circumvented by labelling the joint occurrence of these two events as a different event and
subsequently consider it as a different impulse type.
71 In this thesis we will only consider elementary updates: adding or deleting a fact (we have
called this insert and delete operations) in line with Nijssen and Halpin (1989:17). This means
that for these operations we will allow a ‘compound transaction’ in the impulse in which an ‘old’
fact will be deleted and a ‘new’ fact will be inserted.

 205

Example 5.1 part 2 (ctd.):

 Event type ET1 student requests enrollment in major (arg1: student, arg2: major)
Event instance student requests enrollment in major (arg1: “O 7689”;
 arg2: Economics)

Under the condition that the number of credits that the student has gained in his/her
freshmen year is greater or equal than 24 and the student has at least 8 credits for the
course macro economics this event should lead to the instantiation of the following fact
insertion rule: Insert (student<university code><student ID> has chosen major
<chosen major>). The occurrence of this event instance will lead to the following
instantiation of this fact insertion rule: Insert (student ‘O 7689’ has chosen major
‘economics’). A different event occurence of the same type is student requests
enrollment in major (arg1: “O 7689”; arg2: “Psychology”). Given the fact that this
student requests to be enrolled in a major that does not exist within the Ohoadover
University, the event occurence will not lead to the instantiation of an insertion rule.

C19
ON ET1: student requests enrollment in major (arg1: student, arg2: major)
IF [FT13.<total credits>
 (Where FT13.<university code>.<Student.ID>=’ET1.arg1’)] > 24
AND [IF ET1.arg2=’science’ THEN(mathematics∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’mathematics’]>8)
 OR72
 [IF ET1.arg2=’history’ THEN (language and culture∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .<Student.ID>
 =’ET1.arg1’ AND where FT12.<credited course>=’language &culture’]>5)
 OR
 [IF ET1.arg2=’economics’ THEN(macro economics∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’macro econ.’]>8)
 OR
 [IF ET1.arg2=’medicine’ THEN (biology∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’biology’]>5)
 OR

72 In the sense of an exclusive OR

 206

 [IF ET1.arg2=’law’ THEN (finance ∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’finance’]>5)]
DO Insert (student’Et1.arg1’ has chosen major ‘ET1.arg2’).

An example legend for the impulse constraint is given in figure A.7.

 Imx
 ON occurrence of event E (<Earg>)
 IF {impulse-condition Cx1}
 AND….
 AND{impulse-condition CxN}
 DO instantiate derivation rule Drx

The constraint Imx implies that whenever the values for the event argument ‘Earg’ of
event E are known and fulfill the impulse-conditions ‘Cxi’ and… and ‘cxN’ then (an)
instance(s) of derivation rule Dr1 will be instantiated in which the event type argument
‘Earg’ will be used to determine the derivation rule argument of Drx

Fig. A.7 Example legend type constraints.

So far, we have assumed that the occurrence of the event, the check of the impulse-
condition and the execution of a (the) derivation rule(s) will take place instantenously.
In many real-life business UoD’s some form of delay or date-constraint exists that puts
a temporal constraint on the event-occurrence, the check of the impulse condition and
the execution of the derivation rules (and/or insertion/deletion rules). Consider the
diagram in figure A.8.

 207

Fig. A.8 The possible temporal characteristic of impulse(s) (types)

In the University enrollment example it could be decided to perform the check on the
major availability not on a first come, first served basis but to accumulate the requests
on a monthly or bi-monthly base to make up for time-preferences but to evaluate the
requests on additional student criteria (for example average grades for freshman
courses) if the aggregate demand for enrollments exceeds the capacity at that point in
time. In this case we need to qualify the existence of an impulse with a construct that
controls the moment in which a condition is checked whenever an event takes place.
We also need to define the moment in relative time in which a conceptual process is
executed whenever the impulse condition evaluates to true. We will have to introduce
the concept of (relative) time. In figure A.8 we have illustrated all the situations that
can exist for the moments in relative time in which an event can occur, subsequently a
condition can be checked and finally a derivation rule or insert/delete operation can be
executed. In situation A in figure A.8 the occurrence of an event, the condition check
and the (potential) execution of the conceptual process will take place at the same
moment t0 in relative time. In situation B we see that an event occurs at relative time t1
where the condition check in the impulse and the potential execution of the conceptual
process in the impulse will take place a t2 (>t1). In situation C the occurrence of the
event and the condition check in the impulse will take place at the same moment in
relative time t3. The (potential) execution of the conceptual process will take place at t4
(>t3). Finally in situation D we have the general case where we see the event
occurrence at relative time t5. The condition in the impulse will be checked in t6 (>t5)
and the (potential) execution of the conceptual process will take place at relative time
t7 (>t6). We can conclude now that in addition to the concepts of event (type),
information base condition (type) and impulse (type) we need two time variables that
can encode the potential time delays between on the one hand the occurrence of an
event and the check on the condition in the impulse and on the other hand the check on

Relative time

Situation A Situation C Situation DSituation B

T0 T1 T2 T3 T4 T7T6T5

 208

the condition and the execution (if any) of the conceptual process in the impulse. If
these time variables are necessary in order to be able to model the dynamic constraints
that exist in an application UoD, the impulse type legend in figure A.7 can be adapted
accordingly.

Example 5.1 University Enrollment part 2 (ctd.):

We will now give the remaining impulse types for our University Enrollment example

C20
ON ET4: Insert (Student ’x’ has gained the number of ‘y’ course credits for
 course’z’) into application data base has succeeded (arg1:’x’;
 arg 2: ‘y’; arg3: ‘z’)
DO Create total number of credits (arg1:=’Et4.arg1’)

C21
ON ET5: Credits granted to student (arg1: student; arg2:course; arg3:credits)
IF ET5.arg1∈ EXT (FT11.<Universitycode>.<student ID>)
DO Insert (Student ’Et5.arg1’ has gained the number of ‘Et5.arg2’ course
 credits for course’ Et5.arg3’)

C22
ON ET6: Student graduates (arg1:student)
IF ET6.arg1∈ EXT (FT11.<Universitycode>.<student ID>)
DO Delete (Student’Et6.arg1’ wants to enroll in Major ‘y’)

C23
ON ET1: student requests enrollment in major (arg1: student, arg2:major)
IF [FT13.<total credits>
 (Where FT13.<university code>.<Student.ID>=’ET1.arg1’)] > 24
AND [IF ET1.arg2=’science’ THEN (mathematics∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’mathematics’]>8)
 OR73
 [IF ET1.arg2=’history’ THEN (language and culture∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .<Student.ID>
 =’ET1.arg1’ AND where FT12.<credited course>=’language &culture’]>5)
 OR
 [IF ET1.arg2=’economics’ THEN(macro economics∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .

73 In the sense of an exclusive OR

 209

 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’macro econ.’]>8)
 OR
 [IF ET1.arg2=’medicine’ THEN(biology∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’biology’]>5)
 OR
 [IF ET1.arg2=’law’ THEN(finance ∈ EXT (FT12.<credited
 course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND
 FT12.<course credits>[where FT12.<university code> .
 <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >
 =’finance’]>5)
AND IF EXT (FT10.<chosen major>|where Ft10.<university cod>.
 <student ID>=’ET1.arg1’’) ≠ ∅]
DO Delete (student’Et1.arg1’ has chosen major ‘z’)
 Insert (student’Et1.arg1’ has chosen major ‘ET1.arg2’).

A.6 REFERENCES

Chakravarthy, S., Mishra, D. (1994): Snoop: An expressive event specification
language for active databases. Data & Knowledge Engineering 14:1-26

Dayal, U., Hsu, M., Ladin, R. (1990): Organizing Long-Running Activities with
Triggers and Transactions. ACM-SIGMOD international conference on management
of data 1990: p. 204-214.

De, P., Sen, A. (1984): A new methodology for database requirements analysis. MIS
quarterly, september:179-193.

Leung, C. , Nijssen, G. (1988): Relational Database design using the NIAM
conceptual schema. Information Systems 13 : 219-227.

McFadden, F., Hoffer, J. (1994): Modern database management, 4th edition,
Benjamin/Cummings.

Nijssen, G., Halpin, T. (1989): Conceptual schema and relational database design: A
fact based approach, Prentice-Hall, Englewood Cliffs.

Prabhakaran, N., Falkenberg, E. (1988): Representation of Dynamic Features in a
Conceptual Schema. Australian Computer Journal 20 (3): 98-104

Rolland , C. (1983): Database dynamics. Data base, spring 1983: 32-43.

 210

 211

APPENDIX B:

THE META MODEL FOR THE NLM
REQUIREMENTS SPECIFICATION

LANGUAGE

In this appendix we will narrow down the 'real' or 'constructed' world of interest
(Universe of Discourse) to the UoD of a Natural Language Modeling analyst. The
result of applying the NLM way of working from chapter 6 on a significant set of
examples from this UoD will be called the NLM information meta model (Dedourek et
al., 1989). Firstly, the list of concepts and their definitions for the complete NLM UoD
are summarized.

Concept Definition

Sentence group template The ordering of fixed and variable parts of a

group of sentences that reflect domain semantics
Role a variable part in one or more sentence group

template (def. 5.2)
Role code a name class
Intention the meaning or the definition of a concept in a real or

abstract world (def. 5.3)
Intention name a name class
Verb the parts of a sentence group template that are not variable
Fact type a set of roles (def. 5.5)
Fact type code a name class
Basic information model the union of intentions and their definitions of a

UoD, a set of roles, a set of fact types, a set of sentence
group templates for every fact type… (def. 5.7)

Population state constraint a proposition that limits the allowed extensions
of a basic information model to those extensions that comply
to the proposition in the population state constraint. (def.
5.11)

Population state transition
constraint a proposition that limits the combinations of before-after

extensions of a basic information model to those
before/after extension combinations for which the
proposition is true(def. 5. 12)

Population constraint a population state constraint or a population state transition
constraint
Derivation Rule a function defined on instances of the ingredient
constraint fact types resulting in instances of the derived fact type (def.
 5.13)

 212

Concept Definition (ctd.)

Derivation Rule specifies the types of values that must be specified for the
argument creation of a derived fact instances (def. A.4)
Information base A proposition on the information base (def. A.5)

condition
Information base A set of propositions defined on the information
condition type base (def. A.6)
Pre-condition is an information base condition (type) that checks whether

the required input fact instances and derivation rule
argument values for the derivation rule exist in the
application information base (def A.7)

Post-condition specifies (parts of) the fact argument for the instances of the
resulting fact type(s) that must be created in the derivation
rule. (def A.8)

Event occurrence a happening at a certain point in time in the application
subject area that can lead to the execution of one or more
derivation rules and/or the insertion or deletion of fact
instances into/from the application’s information base (def
5.14)

Event is one or a number of potential happenings in the
application subject area that can lead to the execution of one
or more derivation rules and/or the insertion or deletion of
fact instances into/from the application’s information base.
(def. 5.15)

Event type a class of events in the application subject area, each of
which lead to the execution of one or more derivation rules
(of the same type) and/or the insertion or deletion of fact
instances into/from the application’s information base (def
5.16)

Event type argument specification of the intentions, instances of which must be
known at the occurrence of an event instance of the event
type (def. A.12)

Impulse The occurrence of event leading to the instantiation of a
derivation rule and or insert/delete process eventually when
an information base condition evaluates to true (def. A.13)

Impulse type(constraint) An ordered triplet that contains an event type, an
Information base condition type under which the occurence
of an event of an event type can lead to the execution, of a
derivation rule constraint or inserte/delete operation (def.
A.14).

Constraint A population constraint, derivation rule constraint or
impulse constraint

 213

Concept Definition (ctd.)

Constraint code a name class
Requirements specification a basic information model for that UoD together

with all population constraints for which a legend is defined,
derivation rule constraints and impulse type constraints, that
reflect the business rules in that UoD(def. 5.19)

Secondly, we will apply the way of working of the NLM requirements determination
method on the ‘real-life’ examples for the NLM analyst, those real life examples can be
verbalized in a number of ways. In chapter 5 we have provided a verbalization legend
for the graphical or diagrammatic NLM format. In that legend we considered the fact
type template as a ’string’ which contains no internal structure. However, in the
analyst’s UoD that we will focus on in this appendix the ‘analyst’ (in the sense of an
information systems developer) is a meta-analyst (in the sense of an information
systems development process developer74) and this ‘meta-analyst’ wants to make a
distinction into the intentions, roles and naming conventions that are embedded in the
NLM fact type or sentence group templates. This means that the following ‘pseudo’
example verbalization by the analyst:

The sentence group template x of fact type FtX is ‘A1 c1<R1>......AN cN<Rn>’

Will be translated into real declarative natural language sentences by the ‘meta-
analyst’. We will now show the results of the meta-analysis applied on a simple
example when the verbalization, grouping, classification and qualification and
atomization transformations have been applied:

The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘1’ the verb ‘A1’
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘2’ the verb ‘c1’
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K-2’ the verb ‘aN’
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K-1’ the verb ‘cN’

The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘3’ the role ‘R1’
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K’ the role ‘RN’

The intention ‘c1’ for fact type ‘FtX’ has an identification structure that contains the
role ‘R1’
The intention ‘cN’ for fact type ‘FtX’ has an identification structure that contains the
role ‘RN’

The information meta model for the partial model in natural language modeling that
refers to the basic information model and the population constraints contains the
following NLM specific intentions: Fact type, fact type code, role, role code sentence
group template, verb-part, intention, intention name, together with following fact types
in which these intentions play roles: VERB IN TEMPLATE , ROLE IN TEMPLATE

74 See the Universal framework for information activities in Auramäki et al. (1987).

 214

and REFERENCE SCHEME and the corresponding naming convention fact types
FACT TYPE ID, ROLE ID, INTENTION ID. Furthermore, the concept of population
constraint is encoded using the intentions of: constraint, role and verb.
The fact types in which the intentions for the encoding of the constraint concept are
involved are the following: VERB IN CONSTRAINT and ROLE IN CONSTRAINT
and the accompanying naming convention fact type CONSTRAINT ID. In addition we
are able to explicitly record reference schemes using the REFERENCE SCHEME fact
type.

R23

R1

R24 R16 R19

R17

R18

R2 R10

R6

R20

R13

R4 R12

R8

R22

R15

c9

C26

C27

C25

c1 c4c2 c3

c11

R3 R11

R7

R21

R14

c6 C10

c5

c12 c13

C7

C24

C23

c14
c15

C17

C19

C8

C18

c20 C22

c21

C16

R5

R9

ROLE IN
TEMPLATE

ROLE IN
CONSTRAINT

VERB IN
CONSTRAINT

VERB IN
TEMPLATE

REFERENCE
SCHEME

FACT TYPE ID
SENTENCE
GROUP ID

INTENSION
 ID

ROLE ID CONSTRAINT ID

ORDINAL

NOMINAL

Archetype

<R24> is a name from the
fact type code name class that

can be used to identify a fact type
within the NLM application model

<R23> is a name from the
sentence group name name class that

can be used to identify a sentence group
within the union of sentence groups

that belong to a specific fact type

<R1> is a name from the
intension ID name class that

can be used to identify an intension
within the union of intensions groups
that belong to a specific application

model

<R16> is a name from the
role code name class that

can be used to identify a role
within the union of roles
that belong to a specific

fact type

<R19> is a name from the
constraint code name class that

can be used to identify a population
constraint within the union of constraints

that belong to a specific NLM
application model

<R17> is an ordinal that can be
used to identify a position within the union

of positions within a specific sentence
group template of a fact type

<R18> is a nominal

The sentence group template <R2> of fact type <R3>
 has in position <r4> the role <R5>

The constraint <R10> has in position <R11>
 the role <R12>

The sentence group template <R6> of fact type <R7>
has in position <R8> the verb <R9>

The intension <r21> for fact type <r20> has an
identification structure that contains the role <r22>

The constraint <R13> has in position <R14>
 the verb <R15>

Fig. B.1 Information meta model for BIM and population constraints in NLM.

We will describe a small part of domain knowledge from NLM that underlies the
propositions in the NLM information meta model reflected in constraints c1 through

 215

C27 to illustrate the applicability of NLM on itself. Constraint c1 expresses that a
sentence group template can not have a role and a verb-part in the same position at the
same time. Constraint C2 expresses that every sentence group template of every fact
type has at least one verb-part and at least one role or no verb and no role at all.
Constraint C3 expresses that a constraint predicate can not have a reference to a role
and a verb part in the same position. Constraint c4 expresses that a constraint has at
least one reference to a role and at least one verb part or no verb part and no role at all.
Constraint C5 expresses that every role that is referenced in a constraint predicate has
to be defined as a role in a fact type template of the basic information model.
Constraint C6 expresses that in a specific sentence group template of a specific fact
type in a specific position there can exist at most one reference to a role. In figure B.1 a
part of the information meta model for NLM is shown. We note that we have chosen an
atomic reference scheme for roles. Furthermore, we have specialized the names from
the archetype into nominal names and ordinal names. In the latter group or scale type
the names have an ordering.

B.1 REFERENCES

Auramäki, E., Leppänen, M., Savolainen, V. (1987): Universal framework for
information activities. Data Base. Fall/Winter 87/88: 11-20

Dedourek, J., Sorenson, P., Tremblay, J. (1989): Meta systems for information
processing system specification environments. INFOR 27(3): 311-337

 216

 217

SUMMARY (in dutch)

Dit proefschrift handelt over informatiebehoeftebepalingsmethoden ten behoeve van
het ontwikkelen van informatiesystemen. In de afgelopen 35 jaar hebben deze
methoden zich ontwikkeld via structured analysis and design tot de object-
georienteerde methoden zoals de Unified Modeling Language (UML). Het
toepassingsdomein van deze methoden is echter ook veranderd in die 35 jaar. De
belangrijkste ontwikkeling in dit toepassingsgebied is de verschuiving van ‘maatwerk’
naar implementaties van ‘standaard’ product-software, zoals ERP. Voorbeelden van
ERP pakketten die geparameteriseerd, kunnen worden voor een specifieke
implementatie zijn SAP/R3 en BAAN. In dit proefschrift tonen we aan dat een goede
informatiebehoeftebepaling nog steeds maatgevend is voor de kwaliteit van het
uiteindelijke informatiesysteem. We laten eveneens zien dat de belangrijkste bestaande
informatiebehoeftebepalingsmethoden niet aan alle kwaliteitseisen die men aan deze
methoden dient te stellen, voldoen. Dit derhalve leidt tot de hoofdvraagstelling in dit
proefschrift in hoofdstuk 1:

Bestaat er een informatiebehoeftebepalingsmethode die kan worden toegepast in een
breed scala van organisaties voor het specificeren van de volledige informatiebehoefte
voor een bepaald deelgebied van zo’n organisatie, in het kader van het ontwikkelen en
implementeren van informatiesysteem voor (een deel van) zo’n organisatie.

In hoofdstuk 2 van dit proefschrift worden een aantal criteria gegeven waaraan een
informatiebehoeftebepalings methode dient te voldoen.
 In hoofdstuk 3 van dit proefschrift worden de belangrijkste
informatiebehoeftebepalingsmethoden geanalyseerd en worden een aantal
tekortkomingen van deze methodieken blootgelegd.
 In hoofdstuk 4 worden de criteria die in hoofdstuk 2 zijn gegeven verwerkt
met de tekortkomingen van de bestaanden methodieken. Dit resulteert in een 19-tal
ontwerp-eisen waaraan een te ontwikkelen methodiek dient te voldoen.
In hoofdstukken 5 en 6 van dit proefschrift wordt een nieuwe
informatiebehoeftebepalingsmethodiek beschreven: Natuurlijke taaL Modellering
(NLM). Deze methodiek kenmerkt zich doordat er een volledig gespecificeerd
stappenplan wordt gegeven dat precies aangeeft hoe een informatie-analist in
samenspraak met een domeingebruiker kan komen tot een specificatie voor een
applicatie. De NLM methodiek neemt gebruikersvoorbeelden als een startpunt en
kenmerkt zich doordat op het gehele informatiebehoeftebepalingstraject, in het jargon
van de gebruiker wordt gecommuniceerd. De NLM methodiek voldoet tevens aan de
19 ontwerpeisen, die we in hoofdstuk 4 aan een dergelijke methodiek hebben gesteld.

In hoofdstuk 7 wordt geconcludeerd dat NLM (onder meer) een
informatiebehoeftebepalingsmethode is die een aantal tekortkomingen van bestaande
methodieken heeft verbeterd en voldoet aan de door ons verkregen 19 ontwerpeisen.

 218

 219

CURRICULUM VITAE

Peter Bollen werd op 12 Juli 1959 te Maastricht geboren. Hij doorliep van 1971 tot
1977 het VWO aan het Stedelijk Lyceum aldaar, waarna hij tot 1978 Wiskunde
studeerde aan de Techniche Universiteit Eindhoven. Van 1978 tot 1984 studeerde hij
Bedrijfskunde eveneens aan de Technische Universiteit Eindhoven. Van 1984 tot 1986
was hij werkzaam bij Mars chocoladefabriek b.v. te Veghel waar hij binnen een aantal
functies op het gebied van logistiek, productie en operations research werkzaam is
geweest. Vanaf 1986 is hij werkzaam als universitair docent bedrijfsinformatiekunde
binnen de vakgroep Managementwetenschappen van de faculteit Economie en
Bedrijfskunde aan de Universiteit Maastricht, waar hij vanaf 1994 heeft gewerkt aan
het onderzoek dat in dit proefschrift beschreven wordt.

