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CHAPTER 1 
 

INTRODUCTION  
 
 
 
 
1.1    SUBJECT OF THE STUDY: REQUIREMENTS    
         DETERMINATION  
 
1.1.1 Requirements determination: Translating domain requirements into 

model requirements 
 

The London Stock exchange automated trading system Taurus, had to be withdrawn 
before it ever was used (Stock exchange kills projects to focus on Taurus, 1989). The 
failure of National Insurance Recording System in England lead to tax overpayments 
by 800,000 people (System problems leave Inland revenue with £ 20 of taxpayers’ 
cash, 2002).  These are examples of organizations that have become victims of an 
unsatisfactory user requirements determination process. Unsatisfactory user 
requirements determination is one of the most prevalent reasons for faulty information 
systems or information systems that turn out to be overdue and too costly. 
Requirements determination is the least well-defined phase in the systems development 
process (Flynn, 1992) and: “has been widely recognized as the most difficult activity of 
information systems development.” (Browne and Rogich, 2001:224). Failures in the 
requirements determination process represent one of the leading causes of system 
failure: “Given an appropriate design, most information systems departments can 
successfully implement a system. The big problem is correctly determining information 
requirements and designing the right system.” (Wetherbe, 1991:52). “Many IS failures 
can be attributed to a lack of clear and specific information requirements.” (Byrd et al., 
1992:118). “Often, much of post-delivery maintenance work can be traced to 
requirements which had been poorly or falsely described in the system requirements 
specification (SRS), or were missed altogether.” (Lang and Duggan, 2001:161). Errors 
in the requirements specification caused by a faulty requirements determination process 
can remain latent until the later stages in the IS development process (Viller et al., 
1999:666) and will cost a manifold to fix in these later stages (Boehm, 1981, 1989). 
The subject of study in this thesis is generally known as requirements determination 
(Browne and Ramesh, 2002; Hevner and Mills, 1995), requirements modeling 
(Agarwal et al., 1996:138), requirements engineering (Rolland, 1999) or requirements 
specification (Sinha and Popken, 1996). “In its simplest form, requirements 
determination entails eliciting and encoding into the new system the requirements that 
clients verbalize to the analyst” (Alvarez, 2002:86); “Requirements engineering 
involves investigating the problems and requirements of the user community and 
developing a specification of the desired information system” (Loucopoulos, 1992:1). 
“Requirements determination can be defined as the process of gathering and modeling 
information about the required functionality of a proposed system by an analyst” 
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(Browne and Rogich, 2001:224). The requirements determination process, therefore, 
can be considered as a ‘bridge’ that embodies the translation of an organizational 
context in which (a) user(s) operates(s) in a language the analyst understands (Westrup, 
1999:37). In the remainder of this thesis we will use the term requirements 
determination 
 
1.1.2    Requirements determination: field of study 
 
Research on requirements determination is found in a number of fields. In the 1960’s 
and 70’s it was an important research topic within the field of management information 
systems (Ackoff, 1967; Davis and Olson, 1985). One of the important fields that 
include much research on requirements determination is the field of information system 
development methodologies (ISDM). This field is mainly directed at the comparison of 
literally 100’s of methodologies with the aim on how these methodologies can facilitate 
the development of computerized information systems. In the late 70’s and eighties this 
field of study was in its heyday and many IFIP IS methodology conferences were 
organized (Olle et al., 1982, 1983, 1986, 1988b). The aim of the later conferences was 
to develop some prescriptive theory on what a good ISDM consists of (Olle et al., 
1988a).   

Secondly, there is the field of ‘speech-act theory’ in which information 
systems and conclusively the requirements are put in the context of communication and 
coordination of activities (Johannesson, 1995; Liu et al., 2003; Medina-Mora et al., 
1992). In this field of study the development of information systems is considered to be 
submissive to the ‘communicative action’ it has to support.  

 

    Information
      Systems
  Development
 Methodologies

    Conceptual
     Modeling

    Requirements
    determination

    Management
     Information
       Systems

    Ontology
    Speech-act
      theory

 
 

Fig. 1.1  Requirements determination and fields of study 
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In this study we will not focus on these communicative actions and how they are 
embedded in an organizational context. We will only focus on the information systems 
that need to be put in place for facilitating organizational communication. 

The third field of study that is related to research on requirements 
determination is the field on ontological expressiveness in information systems analysis 
and design (Green and Rosemann, 2000; Rosemann and Green, 2002; Wand and 
Weber, 1993; Weber and Zhang, 1996). The main research question in the field of IS 
ontology is to establish a general domain ontology and subsequently measure the extent 
in which a given IS methodology has modeling provisions for expressing the elements 
in the domain ontology.  

Another field that studies the languages that analysts can use to express 
domain requirements is the conceptual modeling approach (Brodie et al., 1984; Dietz, 
1987; Loucopoulos, 1992). This approach emerged mainly as an answer or a cure 
against the fast changing standards for implementation technology, especially database 
management models in the 1960’s and 1970’s. Organizations in those days were faced 
with large technology transition costs because every time a new (database) technology 
was adapted they were forced to reprogram all their applications.  

The subject of this thesis: requirements determination has predominantly been 
treated from the Information Systems Development Methodology and Conceptual 
Modeling points of view (see figure 1.1). 
 
1.1.3 Organization of chapter 1 
 
Now that we have introduced the subject and the fields of study to which it is related, 
we will give a historic overview of the main developments regarding the subject of this 
thesis in section 1.2. In section 1.3 we give the relationship between requirements 
determination and the stages in the information systems development life cycle. In 
section 1.4 we will give our research goal. In section 1.5 we will give our research 
approach. In section 1.6 we state the research (sub) questions in this thesis.  
 
 
 
1.2. HISTORY OF REQUIREMENTS DETERMINATION 
 
In the past 50 years computer scientists and business analysts have been struggling with 
the way in which the organizational knowledge and routines could be made explicit in 
order to apply information technology that can enable these knowledge workers to be 
more productive and be more effective.  

The first generation of computer programmers consisted of researchers who 
programmed 'their' computer for solving their own information needs. In the very early 
days of computer use these information needs were mainly for mathematical 
applications and often for military applications. The focus was on algorithms, not on 
data (e.g. see for a discussion on programs = algorithms + data structures, Wirth   
(1976)). In the late fifties the first large-scale computer applications gradually came 
into use in businesses and other organizations. The functionality of these electronic 
data processing (EDP) systems, however, was an automated copy of the manual 
procedures that until then had been applied by a large number of clerks in these 
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corporations, e.g. general ledger and payroll applications. Information systems (IS) 
were primarily used to replace staff by machines, which resulted in cost savings and 
enhanced operational transaction efficiency (Jan and Tsai, 2002:62). The coding of 
these applications was completed by IS professionals leaving the end users in many 
cases aside (Jan and Tsai, 2002:62).  

When the information systems applications that were needed in organizations 
during the seventies, eighties and nineties became more strategic (e.g. airline 
reservation systems, enterprise resource planning (ERP1)), the developers attitude was 
by and large still the same. Information systems that were the result of applying the 
craftsmanship of the fifties and sixties, proved to be too costly and often not delivered 
on time. This situation has characterized the business information systems field during 
the sixties, seventies, eighties and nineties. In the sixties the concept of ‘software crisis’ 
was coined (Osmundson et al., 2003:1). This ‘software crisis’ emerged because, the 
way in which application information systems were developed resulted in cost overruns 
and long lead-times. By the time an information systems project was finished, the 
initial organizational requirements had already been changed. In many cases, however, 
the information systems development methodologies had not been able to capture those 
requirements in the right way.  

The information systems development market place, however, changed in the 
early nineties of the last century when the product software-suppliers, e.g. MFG/PRO, 
IFS, SAP, BAAN, Marshal, Peoplesoft (Siriginidi, 2000: 387-389) started to sell their 
enterprise solutions on the waves of the Business Process Reengineering (BPR) sea 
(Davenport and Short, 1990; Hammer, 1990). These product software solutions, 
promised to solve many problems that were caused by the software crisis and were 
considered to be an attractive investment option in ICT for the large (Fortune 500) 
companies. The implementation of, for example, ERP2  systems in a company, 
however, in most cases meant that the business process had to be reengineered or 
redesigned to fit one of the ‘reference-model’ that underlies the ERP package. This 
reengineering process turned out to be feasible for standard application functionality, 
for example, accounting, payroll, human resource management, inventory control. 
However, company-specific, functionality remained a problem in the first generation 
ERP-solutions. The second generation ERP-solutions, however, tried to redefine the 
concept of company-specific functionality, by developing ‘standardized’ software 
solutions for specific ‘branches’, for example, health-care, utilities, retail and so forth 
(Boudreau, 1999),  for example Customer–Relationship Management (CRM) by Siebel 
(Molenaar, 2001). The development of tdhe additional functionality in these second 
generation ERP systems, implied, in many cases, additional reengineering efforts on 
these branche-specific domains before an implementation could take place. In spite of 
the availability of the second –generation ERP solutions, many companies needed 
customized modules and interfaces that allows them to support the specific parts of 
their business (Soffer et al., 2003).  
                                                 
1 ERP stands for Enterprise Resource Planning, that is an automated system in which information 
on all important enterprise resources, e.g. Financials, Human resources, Operations and 
Logistics, Sales and Marketing (Umble et al., 2003) can be stored and integrated. 
2 In the remainder of this dissertation we will use the term ERP as a synonym for product 
software, although in some contexts it can be considered to stand for a specific subclass of 
product software. 
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We will make a distinction between development requirements and 
implementation requirements in the context  of product-software. Within the first type 
of requirements Dag et al. make a distinction into customer wishes and product 
requirements (Dag et al., 2004). Development requirements are the requirements that  
are of interest to the product-software developing organization, since they determine 
the functionality that has to be implemented in the product-softwar package. The 
implementation requirements reflect the required functionality from the point of view 
of the organization that is going to implement the product software. In this thesis we 
will focus on the implementation requirements. 
 
 
 
1.3     REQUIREMENTS DETERMINATION AND   
          INFORMATION SYSTEMS DEVELOPMENT 
 
The improvement of the requirements determination processes for enterprise 
applications is still a relevant research subject within the field of management 
information systems because improving the state of the art in requirements 
determination methods to be applied in these requirements determination processes will 
have the following impact on organizations: 

- It will enable them to express their (information) requirements 
using less (human) resources (more efficient). 

- it will enable them to express their (information) requirements in a 
more precise, consistent and complete way 

 
We will now give a definition of the intended outcome of such a requirements 
determination process: a requirements specification (Hevner and Mills, 1995:224; Pohl, 
1994:245). 
 
Definition 1.1. A requirements specification is a specification of what an information 
system must do (Wieringa, 1996:16). 
 
 
1.3.1    Roles in requirements determination 
 

If we now look back at the development in the development of (business) 
information systems over the past 50 years we can distinguish a number of roles in the 
requirements determination process:  

 
1) The role of user or (business domain expert), these roles involve the 

knowledge of the business domain as it exist with the knowledge 
workers in the enterprise, for example the knowledge on how to 
process an invoice or how to approve a loan. 

2) The role of the analyst, this role involves the knowledge on how to 
elicitate the knowledge of a knowledge worker in the focal enterprise 
in a format that can be used by a developer to develop an application 



 6

system. The result of the work of the analyst we will call a 
requirements specification. 

3) The role of the systems developer, this role involves the knowledge 
on how to transform an information systems specification into a 
working information system that complies with the functional 
requirements as embedded in the requirements specification. 

 
In figure 1.2 we indicate the general relationships between the aforementioned roles. 
 

User or
domain 
expert

  
Information systems
specification in which
Functional
Requirements are
embedded

Analyst 

Requirements
Determination
Process

Developer

 
 

Fig. 1.2 The roles in the requirements determination process in general 
 
 
1.3.2    The way of modeling, way of working and way of controlling in   
            requirements determination 
 
The extent in which the role of an analyst can be played perfectly in the requirements 
determination process depends upon the availability of ‘a way of working’, ‘a way of 
modeling’ and ‘a way of controlling’ (Wijers, 1991:14). A way of modeling refers to 
the model types that are required: “A way of modeling structures the models which can 
be used in information systems development. Several models are usually required for 
problem specification and solution in the application area” (Wijers, 1991:15). 
 
Definition 1.2. A way of modeling in requirements determination is a specification of 
what can be contained in a requirements specification 
 
A way of working or a prescriptive process model (Nurcan and Rolland, 2003): “is a 
description of processes at the type level. It defines how to use the concepts defined 
within a product Model……A prescriptive Process Model is used to describe ‘how 
things must/should/could be done.” (Nurcan and Rolland, 2003:62)  The way of 
working refers to the process-oriented view of information system development, 
whereas the way of modeling refers to the product-oriented view of information system 
development. 
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Definition 1.3. A way of working in requirements determination is a specification of 
how a requirements specification can be created 
 
Finally, a way of controlling is defined according to Verhoef (1993:8) as follows: “A 
way of controlling constitutes a management perspective of information systems 
development processes. Project management concerns considerations of time, means.., 
and quality… A way of controlling, therefore, includes directives and guidelines on 
progress control, resource allocation and quality management and control.”  
 
Definition 1.4. A way of controlling in requirements determination constitutes a project 
and quality management perspective of the requirements determination process and 
concerns considerations of time, means, and quality in the creation of a requirements 
specification. 
 
We will apply the distinction into a way of modeling, a way of working and a way of 
controlling for those stages in the development life cycle that focus on the requirements 
determination process (see figure 1.2). We will call a method that can be used by an 
analyst in such a requirements determination process: a requirements determination 
method. 
 
Definition 1.5. A requirements determination method (RDM) is the combination of a 
specific way of modeling, a specific way of working and a specific way of controlling 
for creating requirements specifications, in which the way of working specifies how the 
elements in the way of modeling can be instantiated, and in which the way of 
controlling constitutes the project- and quality management perspectives for the given 
way of modeling and the given way of working. 
 
1.3.3    Sub steps in requirements determination 
 
The general requirements determination process from figure 1.2 is generally viewed as 
consisting of three steps (Browne and Rogich, 2001:225; Lalioti and Loucopoulos, 
1994):  

1) Information gathering (or requirements elicitation), during which an 
analyst elicitates requirements from (a) user (s) or domain expert(s), 

2) Representation (or requirements specification), in which those 
requirements are specified in some modeling language by the analyst, 

3) Verification (or requirements validation) in which the analyst verifies the 
correctness of these requirements with the user. 

 
If we consider the aforementioned steps in the requirements determination process, 
then we can state that the scientific research on these steps has not exclusively taken 
place in the fields of figure 1.1. For example, with respect to the step information 
gathering or requirements elicitation, substantial research has taken place within the 
field of Knowledge Engineering (Barrett and Edwards, 1995) leading to knowledge 
acquisition methods like KADS (Breuker and Wielinga, 1987). These approaches are 
primarily directed at ‘knowledge’ green fields, i.e. those application domains that were 
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generally considered to contain predominantly ‘tacit’ knowledge and these approaches 
were not developed for business application domains in which available knowledge has 
to be categorized and at most be made explicit. 

With respect to the second step in the general requirements determination 
process: representation or requirements specification we can conclude that the 
definition of requirements specification languages has been a major research stream 
within the conceptual modeling and IS fields of study that deal with requirements 
determination. Major data-oriented ‘language families’ in this respect are the 
(extended) ER language (Chen, 1976; Teory et al., 1987) and the fact-oriented 
language family (Halpin, 2001; Verheijen and Van Bekkum, 1982). As an example of a 
‘process-oriented’ specification language we can consider Data Flow Diagrams 
(DFD’s) (Yourdon and Constantine, 1979) or Activity Diagrams (A-schemas) in ISAC 
(Lundeberg, 1979).  

With respect to the third step: requirements validation (or verification) we 
must make a distinction into semantic verification and syntactic verification. Semantic 
verification is the type of validation that we are interested in this thesis. It is concerned 
with the capturing of the ‘right’ domain requirements in terms of the extent in which 
what the analyst records is what the domain user intends to express. Dullea et al. 
(2003:171-172) define the concept semantic validity as follows: “An entity-relationship 
diagram is semantically valid only when each and every relationship exactly represents 
the modeler’s concept of the problem domain”. We will generalize this concept to 
every requirements determination method and more importantly, we will extend this 
concept beyond the modeler’s interpretation of the application domain to the user’s 
interpretation for the application domain, into our definition of a semantic correct 
specification. 

 
Definition 1.6. A requirements specification is semantically correct if every element in 
the specification is a representation of the user(s)’(s) view of the application domain. 
 
The outcome of a requirements determination process expressed in some specification 
language, therefore, should always be a semantically correct specification. 

Syntactic verification, merely deals with the compliance of a specific 
application specification to the modeling rules that are contained in the meta-model of 
the specification language. We must be aware of the possibility that a semantic 
incorrect specification can be syntactically correct in any given situation.  

The existing research on requirements determination methods for management 
information systems has mainly dealt with how to represent the outcome of the 
requirements determination process and how one can enforce that the content of a 
requirement specification is syntactically correct. The steps in the requirements 
determination process that cover the semantic verification are missing in the existing 
requirements determination methods for management information systems or business 
information systems (Goldin and Berry, 1997:376). It is this niche in the MIS research 
field that we will explore in this thesis in order to find a requirements determination 
method in which the semantic verification is incorporated in an explicit way. 
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1.3.4 Eras in requirements determination 
 
If we now apply the roles and the requirements process from figure 1.2 in a historic 
perspective we can say that in the early years (1950’s ) the roles of user, analyst and 
developer coincided. In the 1960’s a distinction was made between the roles of ‘user’ 
and ‘programmer’. In that era the role of analyst and developer coincided. “ In the 
premethodology era [prior to 1970], systems developers used a variety of techniques to 
help them develop computer-based information systems….They [techniques] were 
typically passed on to other systems developers, often by word of mouth. These rules 
or techniques were typically not codified and sometimes not written down…..Systems 
development was considered a technical process to be undertaken by technical people. 
In this era, systems development was all art and no science.” (Hirschheim and Klein, 
1992:296-297) 

In the 1970’s a clear separation took place between the functional 
requirements and the way in which these functional requirements were coded in a 
specific implementation technology (Tsichritzis and Klug, 1978). The distinction 
between an information analyst and systems developer emerged. The application of 
information systems development methodologies was aimed at the creation of ‘tailor-
made’ information systems in which the needs of the domain users served as input.  

In the ERP era (1990 and onwards) the roles of the user (or domain expert), 
analyst and developer were becoming more iterative instead of the linear sequence in 
which those roles were performed in the 1970’s and 1980’s. Because the 
implementation of ERP-systems usually is linked to business process redesign  
(Davenport, 1998; Rolland and Prakash, 2000:180) or a business process reengineering 
exercise (Skok and Legge, 2002:72), the role of the user or domain expert becomes 
more complex. In cooperation with the ERP-analyst the domain expert has to evaluate 
a number of proposed ways of working that will be supported by the specific ERP 
system in the company (Soffer et al., 2001:183).   

The roles that we have depicted in figure 1.2 have deliberately different names 
in figure 1.3, because an ERP analyst is not only modeling the user requirement of a 
proposed (or ‘to-be’) business process but in addition has to confront the user or 
domain expert with the different possible (or ‘to-be’) business logics that are available 
in the chosen ERP system. The business, therefore, is expected to select and adapt a 
reference model, based on available solutions with minimal changes and leaving no 
record of the enterprise’s original requirements (Soffer et al., 2001:183). On the other 
hand, even when they decide to implement an ERP system some organizations (for 
example Reebok) still choose to customize (Light, 2001:417) and enhance the standard 
functionality of the ERP system (Soffer et al., 2003). We remark, that the focus of the 
requirements determination in this thesis is on the conceptualization of the information 
and decision rules that must be contained in an  (ERP) application. 
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Fig. 1.3 The roles in the requirements determination process in the ERP era 

 
Soffer et al. (2003) discuss in the context of ERP requirement-driven alignment the 
necessity of the construction of a modeling language that can model the entire scope of  
ERP options. 
 
1.3.5 Conclusions on requirements determination as field of study  
 
What we can conclude is that in spite of the trends in information systems development 
from ‘tailor-made’ towards ‘commercial-off-the-shelf’ (COTS) software 
implementations, the requirement determination process still is a significant process in 
the development life cycle of information systems. Moreover, the increase in 
complexity of the requirements determination process due to the use of ‘pre-fabricated’ 
software with its numerous implementation options (see the discussion on 
configuration tables in Davenport (1998)) has basically increased the need for 
requirements determination methods that have a way of modeling that can capture the 
complete set of user requirements and which way of working will guide the analyst in 
extracting all relevant business entities and business rules for a specific application 
domain. 

In this thesis we will focus the content of a requirements specification on the 
conceptual aspects, in terms of the information and decision rules that underly an 
application (the what aspects).  The application requirements that deal with transaction 
processing, workflow management, information retrieval and decision support  (the 
how aspects3) will not be part of  the definition of a requirements specification in this 
thesis. 
 
 
 

                                                 
3 In a typical ERP implementation 90-95 % of the 10 million lines of program code will be 
dedicated to functionality that covers transaction processing, decision support, consistency 
checking and data retrieval.  
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1.4 RESEARCH GOAL 
 
We have found that the concept of requirements determination has been subject of an 
ongoing debate in the scientific literature. Over the past 40 years numerous 
requirements determination techniques, methodologies and approaches have emerged. 
Most of them, however, have proven not to be sufficient to address many of the 
problems we have found in the literature. Goldin and Berry (1997:376) give an 
overview of requirements engineering methods and tools. They conclude that the 
starting point for these tools and methods is a (natural language) statement of the 
requirements. However, none of the tools and methods they mention gives much help 
in how such a (natural language) requirement statement can be obtained. We have 
shown the gaps that exist in the existing research for the process of requirements 
determination and we have concluded that filling this gap in the literature is relevant to 
the state-of-the-art in the development of business information systems. Therefore, the 
goal of the research is to develop a method for requirements determination for which 
the way of modeling allows the analyst to capture these business entities and  business 
rules in the application domain. This to-be developed RDM should have a way of 
working that contains modeling provisions that guide an analyst in elicitating the initial 
requirements from domain users. Finally, this method’s way of controlling must 
contain quality preserving procedure(s) that guarantee(s) that a requirements 
specification that is the result of the application of this method has been validated by 
the user(s). This will lead to the following (main) research question in this thesis: 
 
Does there exist a requirements determination method that is applicable in a wide 
range of business organizations and that can be used for specifying all domain 
requirements for a given business application subject area in an efficient, precise and 
consistent way ?  
 
 
 
1.5       RESEARCH APPROACH AND OUTLINE OF THE  

    THESIS 
 
 
1.5.1    Research approaches 
 

A theory explains how ‘something’ works. If such a theory is available we can 
predict how ‘something’ will behave under specific conditions (van der Zwaan and van 
Engelen, 1994).  

Research in organizational studies (including the topic of this thesis: 
requirements determination) shows a continuous interaction between ‘theory-
development’ and ‘theory-application’ (Den Hertog and Van Sluijs, 2000; Van Engelen 
and Van der Zwaan, 1994:93). A more detailed framework is given by Van Strien 
(1986:19) in which a distinction is made between an ‘empirical’ cycle and  a 
‘regulative’ cycle. The empirical cycle is characterized by the following stages: 
observation, induction, deduction, testing, evaluation. The regulative cycle can be used 
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as an instrument for the methodological foundation for the ‘theory-application’ in 
organizational studies (van Strien, 1986:19; Van Engelen and Van der Zwaan, 
1994:93). In the context of this thesis we will follow the ‘design-research’-cycle as 
given in  Van Engelen and Van der Zwaan (1994: 87-91): 
 

1) Design objective: In this stage of the design research cycle it will be     
determined what needs to be designed. The feasibility of the product or 
process that needs to be designed must be questioned in this phase. 
Furthermore, a ‘falsification’ criterion must be given which will allow the 
researchers to determine whether the product or process that needs to be 
designed will lead to an actual improvement of the current situation or the 
‘state-of-the-art’ (Van Engelen and Van der Zwaan, 1994:90). 

2) Design specification: the design process must be guided by the  
    availability of an explicit design specification for the product or process   
    that is given in the design objective. The design specification must be   
    tested on the following variables (Van Engelen and Van der Zwaan,      
    1994:90): consistency, realizability, completeness. 
3) Generation of alternative designs: here there exist two situations. In the    
    first situation, there exist ‘established’ conditions under which most  
    likely a number of products or process have been developed that can be  
    used as alternative designs for our design objective, we will call this  
    situation the evaluation problem (Van Engelen and Van der Zwaan,  
    1994:91). In the second situation no alternative designs exist yet. We will  
     call this situation a development problem, since the alternative designs  
     have to be developed in the research. 
4) Selection of desired design from the set of alternative designs: In   this      
     stage the best alternative will be chosen. A number of methodologies can  
     be applied during this stage: optimization techniques, bounded  
     rationality and verification method. 
5) Evaluation: in this stage the researcher(s) report the findings. This   
     evaluation must contain a justification of how the alternative designs   
     have been gathered and/or created, which assumptions have been made   
     and how the selection of the desired design has taken place (Van Engelen  
     and Van der Zwaan, 1994:92). 

 
1.5.2    Justification of the ‘design-research’ approach  
 
In the literature overview on the topic of this thesis: requirements determination, a 
relatively large number of fields have been found (see figure 1.1) that comprise (or are 
linked to) requirements determination for the semantic aspects of an application. Each 
of the fields approaches requirements determination from a specific angle. So the 
theory-development surrounding the topic of requirements determination is plentiful. 
What we have discovered is that the ‘gap’ in knowledge of requirements determination 
at large is not in the ‘theory-development’ but in how these theories can be applied in a 
way that will prevent the creation of ‘faulty’ application systems in practice. The 
preliminary goal of this research is to develop a method for requirements determination 
that can be applied under a range of domain contingencies (or that has a certain 
‘domain-richness’). Such a ‘to-be’ designed requirements determination method, 
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however, must comply with the demands for a requirements determination process that 
are given in the scientific literature on requirements determination. The way of 
modeling of such a method must at least consist of a requirements specification 
language and the way of working of the method must at least contain a set of modeling 
procedures that can tell an analyst how to create valid expressions in the modeling 
language that reflect some (or preferably all) perspective(s) of the semantics of the 
application domain at hand. 
 
Definition 1.7. A requirements specification language is a set of modeling concepts 
and an accompanying grammar for the application of the modeling concepts in a 
requirements determination project. 
 
Definition 1.8. A requirements determination procedure is a document that tells an 
analyst how to create a requirements specification in a given requirements specification 
language.  
 
In addition to the derivation of the requirements determination method we will 
introduce a notation for expressing a requirements specification. This notation, 
however, is one out of many possible notational conventions that can be used in the 
requirements specification document(s). 

In addition, we remark that we will apply the perfect technology assumption in 
the remainder of this thesis. This means that we will assume requirements level 
semantics (Eshuis et al., 2002:245) which means that we will not be influenced in our 
research by (current) limitations in implementation technology. 

The goal of this thesis is to find or develop a requirements determination 
method in which the way of modeling is specified by giving the language concepts of 
the method’s requirements specification language, the way of working (or prescriptive 
process model) is specified by giving the requirements determination (sub)procedure(s) 
of this requirements determination method. The way of controlling will be specified by 
giving explicit quality preserving steps in the modeling procedures. The way of 
controlling, furthermore, will consist of an overarching procedure that will be 
contained that exactly specifies the precedence for executing the requirements 
determination procedures.  
 
 
 
1.6    STRUCTURE OF THESIS AND RESEARCH QUESTION(S) 
 
The structure of this thesis will follow the ‘design-research’-cycle as given in Van 
Engelen and Van der Zwaan (1994: 87-91). 

In this chapter we have delineated the design objective, the issue of 
requirements determination. There exist gaps in the current state-of-the-art in 
requirements determination. Therefore, the goal of the research is to develop a 
requirements determination method that can be applied under a number of domain- and 
process contingencies, that we will discuss in chapter 2 and that will improve the 
current state of the practice in requirements determination in terms of ‘falsification 
criteria’ or ‘quality criteria’.  
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In chapter 2 we will analyze and synthesize characteristics of the application 
domain into a number of dimensions, while keeping the following question in mind: 

 
What are according to the existing requirements determination literature, the quality 
criteria for a requirements determination method that can be used for eliciting, 
verifying and specifying the complete domain requirements for a given business 
application subject area in a wide range of business organizations, in an efficient and 
formal way  ? (Research sub question 1). 
 

We will define the quality of a requirements determination method as the 
extent in which it is has domain richness, is complete, is efficient, and is formal.  
Firstly, we will synthesize a number of contingency variables that can be used to 
characterize application UoD’s and that have an effect on the quality of the resulting 
requirements specification. Moreover, we will look for variables in the literature that 
characterize a requirements determination process itself and that can have an effect on 
the quality of the requirements specification that is the outcome of such a process. This 
will result in the definition of the domain richness criterion. Secondly, we will 
determine what perspectives and what elements within each perspective must be 
covered by a requirements determination method. This will lead to the definition of the 
completeness criterion. Thirdly, we will define an efficiency criterion, in which the 
extent in which the application of a given requirements determination method will use 
‘resources’ can be measured. Finally, we will define a measure for the preciseness and 
consistency of a requirements specification in terms of the required formality of the 
requirements determination method: the formality criterion. We will define the 
formality as the extent in which it is precise and consistent in expressing the semantics 
of the UoD. 

In chapter 3 we will focus the Generation of alternative designs from the 
design-research cycle as we will evaluate existing requirements determination 
approaches (the evaluation problem in Van Engelen and Van der Zwaan (1994:91)) on 
the criteria that we have derived in chapter 2. We will evaluate a number of popular 
requirements determination methods for management information systems that we have 
encountered in the literature. We will give an answer to the following question in 
chapter 3.  
 
Why do the existing requirements determination approaches from the literature not 
comply with the quality criteria for assessing requirements determination methods? 
(Research sub question 2). 
 
We will conclude in chapter 3 that there is no existing approach documented so far in 
the literature that fully complies with the four design criteria for a successful 
requirements determination method (RDM). This means that a requirements 
determination method(s) that complies with the quality criteria for a successful 
requirements determination method still needs to be developed. This leads us to the 
development problem according to Van Engelen and Van der Zwaan (1994) since 
alternative designs will have to be developed in this research.  

In chapter 4 of this thesis we will develop a framework for a requirements 
determination method or a(n) (operationalized) design specification that contains the 
operationalization of the ‘design specification’ from chapter 2 and that takes into 
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account the reasons for non-compliance to these criteria by the existing approaches. 
This will constitute the design criteria (or operationalized design specification 
according) for the requirements determination method. Furthermore, we will phrase the 
third research sub-question based upon the results from chapters 2 and 3  here: 

 
What are the necessary elements for the way of modeling, the way of working and the 
way of controlling for a requirements determination method so that this method 
complies with the quality criteria that we have given for the design specification? 
(Research sub question 3) 
 
In chapters 5 and 6 we will define a requirements determination method that fulfills the 
quality criteria according to the design specification that was given in chapter 4.  

We will now rephrase the main research question of this thesis: 
 
Does there exist a requirements determination method that is applicable in a wide 
range of business organizations and that can be used for specifying the complete 
domain requirements for a given business application subject area in an efficient and 
formal way ? 
 
The main research question, therefore, will lead to an investigation into the general 
applicability of requirements determination methods in the context of management 
information systems. First we will give an answer to research sub question 1, in which 
we will give ‘quality’-criteria. Furthermore, these criteria should provide an answer to 
what ‘all domain requirements’ means and what ‘in an efficient, precise and consistent 
way’ means in the context of the final research question. Furthermore, we will define 
what ‘application in a wide range of business organizations’ means. Once we have 
found these criteria, we will be able to search for an existing RDM that complies with 
these criteria (research sub question 2). If such a method does not exist, we will have to 
specify the elements of a newly to-be defined RDM that complies with these criteria 
(research sub question 3). 

In figure 1.4 we have summarized the research stages in terms of the ‘design-
research’ cycle and in which chapters of this thesis they will be discussed. The design 
objective is demarcated in this chapter. In chapter 2 the initial design specification will 
be synthesized from a review of the literature. In chapter 3 we will evaluate the existing 
approaches from the literature; this will be the stage evaluation of the existing 
alternative designs in the terminology of the design research cycle. In chapter 4 we will 
phrase the operationalized design specification for the development of an alternative 
design (of a requirements determination method) in terms of the way of modeling, the 
way of working and the way of controlling. The kernel of this thesis will consist of the 
development of the alternative design for a requirements determination method. This is 
given in chapters 5 and 6. In chapter 7 we will give conclusions and give a direction for 
future research in this field.  
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Fig. 1.4 The design research cycle and the chapters in this thesis 
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CHAPTER 2 
 

CRITERIA FOR  REQUIREMENTS  
DETERMINATION   METHODS 

 
  
In this chapter we will define the design criteria for a requirements determination 
method (RDM).  When studying the literature on criteria for requirements specification 
(methods) we have found a number of criteria that have been derived for software 
requirement specifications (IEEE Std 830, 1998), software specification techniques 
(Khwaja and Urban, 2002), software requirements and design specifications (Boehm, 
1984), the quality of data models (Moody and Shank, 2003; Kesh, 1995), system 
develoment methodologies (Wysocki and Young, 1990; Essink and Romkema, 1989) 
and requirements determination methods (Hevner and Mills, 1995). The former 
references differ to a large extent in the level of detail and granularity of  the criteria 
that are given. A number of authors make a distinction into criteria for the product (i.e. 
the requirements specification) and the criteria for the process (i.e. the requirements 
determination technique or procedure) (Moody and Shanks, 1995; Khwaja and Urban, 
2002).  In section 2.1 we will list a number of criteria for software requirements 
specifications, information system development methodologies and requirements 
determination methods as found in the literature. 
 
 
 
2.1 CRITERIA FOR RDMs FOUND IN THE LITERATURE  
 
In this chapter we will ask ourselves the following question: 
 
What are according to the existing requirements determination literature, the quality 
criteria for a requirements determination method that can be used for eliciting, 
verifying and specifying the complete domain requirements for a given business 
application subject area in a wide range of business organizations, in an efficient and 
formal way  ? 
 
In table 2.1 we have given the criteria for software requirements specification, 
information system development methodologies and requirements determination 
methods as found in our literature survey. 
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Table 2.1. Criteria for Requirements Specifiation (Methods)  
 

Author Boehm 
(1984) 

IEEE-830 
(1998) 

Wysocki 
and Young 
(1990) 

Essink and 
Romkema 
(1989) 

Hevner and 
Mills (1995) 

 Software 
specifications  

requirements Information 
Develpm.t 

systems 
methodol. 

Req.Determ. 
methods 

criteria completeness correct efficiency User 
participation 

consistency 

 consistency unambiguous Communi-
cations4 

maintainable5 closure 

 feasibility6 complete control Specification 
must be an 
expression of 
the real 
domain 
requirements 

completeness 

 testability7 consistent Documen-
tation 

IS must be 
built 
according to 
the above 
specifications 

clarity 

  ranked8 Role 
definition 

Efficient 
development 
process 

 

  verifiable consistency   
  modifiable9    
  traceable    

 
 
In sections 2.3, 2.4 and 2.5 we will synthesize the variables that are given in table 2.1 
into a comprehensive set of criteria that we will use to evaluate potential designs for 
requirements determination methods. In addition to the variables that are explicitly 
listed in the literature on criteria for software requirement specifications, information 
systems development methodologies and requirements specification (methods), we will 
research the literature that covers requirements at large. This type of literature looks 
mainly at the characteristics of the application domain. In section 2.2 we will give a 
review of this literature and we will synthesize a number of dimensions into the domain 
richness criterion.  

                                                 
4 Refers to milestones in the IS development process at large. 
5 Will be covered under domain richness (section 2.2) 
6 Is concerned with the economics of an IS development and implementation project, is outside 
the scope of a to-be designed RDM in this thesis. 
7 Refers to the properties of a software implementation rather than a requirements specification 
8 Refers to the selection process of requirements, e.g. what requirement has a higher priority.   . 
9 Will be covered under domain richness (section 2.2) 
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2.2 THE DOMAIN RICHNESS CRITERION 
 
The first criterion in our research on requirements determination methods is ‘domain 
richness’. This criterion should enable us to express to what extent any given 
requirements determination method can be applied in different types of application 
domains. The domain richness criterion, therefore, must be able to measure the extent 
in which a requirements determination method is applicable, under a range of 
contingencies for the type of application domain (section 2.2.3). In order to 
operationalize this criterion we will first give a literature survey of causes of systems 
failure caused by a faulty requirements determination method in section 2.2.1. and an 
overview of proposed techniques to overcome this insufficient requirements 
determination in section 2.2.2. 
 
2.2.1    Reasons in the literature for systems failure caused by insufficient     
            requirements determination 
 
Davis and Olson (1985:474) give four major reasons why it is difficult to obtain a 
correct and complete set of requirements: 
 

1) The constraints on humans as information processors and problem solvers 
2) The variety and complexity of information requirements 
3) The complex patterns of interaction among users and analysts in defining 

requirements 
4) Unwillingness of some users to provide requirements (for political or 

behavioral reasons) 
 

In line with the fourth reason mentioned by David and Olson, Skok and Legge 
(2002:80) state that one of the key findings in the 5 case studies they examined was 
that in the implementation of an ERP system, the staff members were often reluctant to 
share knowledge and information, because they experienced this as a threat to their 
jobs. They further conclude in their study that the language barrier that exists between 
users and the (ERP) consultants can be a source of major problems. The employees that 
were interviewed in this study felt : “ that consultants and developers do not see the 
impact on business processes of their actions, do not pass on their knowledge, try to run 
the project, communicate badly and work to their own agenda” (Skok and Legge, 
2002:81). 

Wetherbe (1991), concludes in the context of ‘executive’ information 
requirements that a number of mistakes have been made in the past: viewing systems as 
functional instead of cross-functional, interviewing managers individually instead of 
jointly, asking the wrong questions during the interview and not allowing trial-and –
error in the design process 

Macaulay (1996) identified five possible causes of failure in the requirements 
determination process: poor communication between people, lack of appropriate 
knowledge (or shared understanding), inappropriate, incomplete or inaccurate 
documentation, lack of systematic process and poor management of people or 
resources. 
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According to Land (1998:3) : “Many of the all too frequent IS failures stem 
from failures in the mappings somewhere along the chain. The most vulnerable link in 
the chain is that which attempts to map the relationship between the real world 
requirements-the organizational environment- and the comprehensive list of 
requirements which is the intended outcome of the process of systems analysis.” 
Land distinguishes four categories of relationships between an information system (as 
the result of a systems development process) and its organizational environment: 

1) The unchanging environment, in which the information requirements of 
the system are not changing during its lifetime.  

2) The turbulent environment, in which the requirements over the expected 
lifetime of the system are always changing. 

3) The uncertain environment, in which the requirements of the system are 
unknown or uncertain. 

4) The adaptive environment, in which the output of the system has an 
influence on the environment. 

Land claims that for each contingency a different design methodology should be 
chosen. 
 Galal and Paul (1999:93) challenge the ‘fixed-point stance’ towards 
requirements determination for a number of reasons. First requirements do change 
during the development of an information system. Secondly, they state that the 
statements in a requirements document are inherently predictive. In case of the ‘wrong’ 
predictions, the requirements need to be adapted. Thirdly, the requirements are context 
specific.  
 With respect to the changeability of requirements, Sutton (2000:116) 
concludes that: “It is becoming recognized that it is more appropriate to see 
requirements definition as a periodic or even continuous process that feeds other 
processes of delivery and review that may never end.” 
 Galliers and Swan (2000) introduce a two-dimensional framework for 
information systems development. The first dimension is the objective (formal) versus 
the subjective (informal) dimension. The second dimension is the unitary versus the 
pluralist (multiple stakeholders) dimension 

Bergman et al. (2002) address the political nature of the requirements 
determination process and propose to reconcile the wide array of conflicting problems 
into a workable solution by means of heterogeneous engineering. Bergman et al. claim 
that requirements engineers must involve themselves in the politics of system design at 
the beginning of project design. Bergman et al. give a political requirement engineering 
(PRE) process model that explicitly considers the political requirements ecology in the 
enterprise. 

Castro et al. (2002:365-366) notice a mismatch between the understanding of 
the operational (business) environment and the way in which the requirements analysis 
is aligned with this operational environment. They argue that this alignment has been 
predominantly based upon the programming paradigm of the day. In the 70’s the 
structured programming paradigm lead to the development of the structured analysis 
methodologies (DeMarco, 1978; Yourdon and Constantine, 1979). The object-oriented 
programming paradigm has led to the development of object-oriented development 
methodologies (Booch, 1991; Booch et al., 1999). Castro et al. (2002) introduce a 
modeling framework based on concepts used during early requirements analysis. 
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2.2.2 Proposed techniques in the literature to overcome insufficient    
               requirements determination 
 
Davis and Olson (1985:480) propose four strategies for determining information 
requirements: asking, deriving from an existing information system, synthesizing from 
characteristics of the utilizing system and, discovering from experimenting with an 
evolving information system.  

Flynn (1992:137-139) gives four requirements acquisition methods: 
observation, analysis of existing system, analysis of desired system documentation and 
interview and questionnaire. Larsen and Naumann (1992) carried out an experiment in 
which they compared the analyst’s ability to discover user requirements as a function 
of the knowledge representation they used: abstract or concrete. The findings of this 
study indicate that the more abstract representation (in this study a ‘logical’ DFD) is 
not as effective as the more concrete representation (in this study a ‘physical’ DFD). 

Lee and Kim (1992) studied the relationship between formalization of the 
stages in the information systems development life cycle and the overall success of the 
(management) information system. They empirically demonstrated the relationship 
between the formalization of MIS development and MIS success. 

Browne and Ramesh (2002) used the reasons that were given by Davis and 
Olson (1985:474) and gave some techniques that address these shortcomings. They 
derived three general categories for the techniques that addressed the cognitive 
problems: pre-elicitation conditioning10, direct prompting techniques11 and indirect 
prompting techniques. Browne and Ramesh discuss the following indirect prompting 
techniques: Scenario response tasks12, Devil’s advocacy13 and External representation 
techniques. They conclude that the devil’s advocacy technique is useful for mitigating 
automaticity, recall and faulty reasoning problems. Furthermore they conclude that the 
construction of semi-formal diagrams, for example, Entity-relationship (ER)-diagrams 
and data-flow diagrams (DFD) while eliciting requirements is very difficult. Browne 
and Ramesh conclude that informal (external) representation techniques should 
facilitate the interaction between analysts and users and help overcome background 
differences among them. 

Browne and Rogich (2001:228) divide prompting techniques into context-
dependent techniques and context-independent techniques. They propose that context-
independent techniques are the most suited to be used by analyst in the elicitation of 
user knowledge in general, because analysts will often be assigned to analyze the 
requirements of business processes for which their substantive knowledge is limited 
(Browne and Rogich, 2001:231). 

                                                 
10 “Permits explanation of key terms, and allows analyst to create and/or influence incentive 
scheme for decision maker ” (Browne and Ramesh, 2002:633) 
11 Browne and Ramesh (2002:633-635) give the following direct-prompting techniques: directed 
questions and What-if analysis. 
12 “Causes reflection, resulting in knowledge being used rather than simply assumed.”(Browne 
and Ramesh, 2002:633) 
13 “Causes users to question assumptions and generate counter-arguments, revealing knowledge 
that otherwise would not be evoked and improving the accuracy of reasoning and judgments.” 
(Browne and Ramesh, 2002:633) 
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Bubenko and Wangler (1992) distinguish a knowledge acquisition task within 
the requirements engineering cycle. This task is traditionally the interviewing of end 
users. They, however, propose a number of different techniques for the knowledge 
acquisition task: Analyzing example forms and structured documents produced by end 
users, reverse modeling of existing databases, accepting application descriptions in 
natural language. Bubenko and Wangler (1992) speculate that a natural language 
interface to conceptual modeling tools would provide the following benefits: “ All 
people can express assertions in natural language; the need to learn a formal modeling 
language  is not required…………, e.g., for showing the user the conceptualization 
effect of stating assertions of the application world in different ways. It is probable the 
lexical quality (the names used to denote components of a schema) would improve due 
to the need for the NL-system to lexically, syntactically and semantically analyze the 
input.” (Bubenko and Wangler, 1992:404). 

Wetherbe (1991) gives as a proposed solution to the shortcoming in 
(executive) information requirements determination in the past, that the systems 
designers must be encouraged :” to use a cross-functional, joint application design that 
involves input from all key decision makers in the business process. ………Detail 
requirements can then be identified through prototyping .” (Wetherbe, 1991:64-65). 
 Lalioti and Loucopoulos (1994:291) state: “…the first step in requirements 
engineering namely the knowledge acquisition step has the purpose of abstracting and 
conceptualizing relevant parts of the application domain. The knowledge elicited 
during the first step is then formally specified by the use of conceptual modeling 
formalisms. The third step in requirements engineering is the validation, which is the 
process of investigating a model (in this case an IS specification) with respect to its 
user perceptions. The purpose of validation in the development of information systems 
is to ensure that a specification really reflects the user needs and statements about the 
application. Its importance is widely recognized by most developers but still there is a 
lack of formal theory for efficiently carrying out validation.” 

Flynn and Warhurst (1994) empirically investigated the validation process 
within requirements determination and concluded that during validation, analysts 
perceive users as being unable to express their requirements adequately, and analysts 
have to employ informal realistic examples to explain the specifications to the users 
because the users do not feel comfortable with method notations. 

Ter Hofstede et al. (1997) claim that for deriving the information from an 
application domain, verbalising sample forms, cases etcetera taken from the Universe 
of Discourse in close cooperation with a domain expert (or user) will lead to a 
sufficient overview of the structure and rules in the UoD can be obtained. 

Burg en van de Riet (1997) advocate the idea of using natural language 
theories and knowledge in the construction process of a conceptual model. 

Ambrosio, Metais and Meunier (1997) state that “ To improve the 
conceptualisation of the UoD during the schema design process, the use of linguistics is 
necessary ”(Ambrosio et al., 1997:112). 

Kim and March (1995) give a four-phase process model for requirements 
determination:“ 1.Perception-users perceive the enterprise reality. The same enterprise 
reality may be perceived differently by different users (inconsistency). Any one user 
may perceive only a part of the reality (incompleteness).2. Discovery-analysts interact 
with users to elicit their perceptions. 3. Modeling-based on the information identified in 
the discovery phase, analysts build a formal, conceptual model (representation) of the 
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enterprise reality. This model serves as a communication vehicle between analysts and 
users. 4. Validation- Before concluding that the model is correct, consistent and 
complete, it must be validated. Validation has two aspects: comprehension and 
discrepancy checking. Users must comprehend or understand the meaning of the 
model. Then they must identify discrepancies between the model and their knowledge 
of reality.” (Kim and March, 1995:103). 
 Sutton (2000:116) discusses the aforementioned notion of ‘perception’ in the 
sense that ‘meaning’ implies ‘meaning to someone’ and that any meaning is 
constructed by an observer and therefore it can not exist objectively. 
 Recently, the research field of knowledge management has emerged in which 
not only well-structured information creation process are the subject of analysis but 
also the concept of ‘tacit-knowledge’ (Coughlan and Macredie, 2002:50). Polanyi 
classifies knowledge into tacit knowledge and explicit knowledge: “Tacit knowledge is 
personal, context-specific, and therefore hard to formalize and communicate. ‘Explicit’ 
or ‘codified’ knowledge, on the other hand, refers to knowledge that is transmittable in 
formal, systematic language” (Polanyi, 1966). Kim et al. (2003) studied the existing 
distinction into ‘tacit’ and ‘explicit’ knowledge in the literature and concluded that a 
revised epistemology was necessary in order to make a distinction into the concept of 
‘tacit’ knowledge as defined by Polanyi (1966) (in which tacit knowledge cannot be 
expressed externally) and the concept of ‘tacit’ knowledge as defined by Nonaka 
(1994) (in which tacit knowledge is defined as knowledge that is (currently) not 
expressed externally). They revised the existing epistemology by replacing the old 
concept of ‘tacit’ knowledge by the revised concepts of tacit knowledge and the new 
concept of implicit knowledge: “tacit knowledge is knowledge that cannot be expressed 
externally and implicit knowledge is knowledge that can be expressed externally when 
needed, but currently exists internally” (Nonaka, 1994:3). The existence of knowledge 
processes that have a ‘tacit’ nature in the application domain is a characteristic of an 
application domain and has traditionally not been considered as an application area that 
can be subject for a requirements determination process. 
  
2.2.3 Characteristics of application domains 
 
The results of the literature review suggest a number of dimensions that determine the 
characteristics of the application domain and the scope of the requirements 
determination process. The first factor that we must take into account is how we define 
the scope of the requirements determination process. The information systems 
development paradigm that we will adhere to is the ‘functionalism’ paradigm 
(Hirschheim and Klein, 1989:1202-1203) in which systems development and therefore 
requirements determination is considered to “proceed from without, by application of 
formal concepts through planned intervention with rationalistic tools and methods.” 
(Hirschheim and Klein, 1989:1210). Within this metaphysical stance of functionalism 
we can characterize the domain requirements basically along at least two dimensions: 
perception and turbulence. 

The dimension perception refers to the extent in which different domain users 
have a different perception of an underlying reality. This means when one considers a 
Universe of Discourse, one should always take into account from which user 
perspective the Universe of Discourse is considered. We can make the following 
dichotomy with respect to the perception dimension. The dimension perception can 
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also be related to the discussion in Bergman et al. (2002) who address the political 
nature of the requirements determination process and propose to reconcile the wide 
array of conflicting problems into a workable solution by means of heterogeneous 
engineering. This dimension also addresses the unitary versus pluralist dimension in 
Galliers and Swan (2000). 

With respect to the dimension turbulence we can consider a situation in which 
the environment of the application domain is constant (nothing ever changes) and on 
the other side of the continuum an environment where there is continuous change. If we 
consider the turbulence of the application environment it is clear that in the case of ‘no 
change’ (the unchanging environment (Land, 1998)) we will pose less demands on the 
requirements determination methodology in terms of its ability to ‘evolve’ 
synchronously to the changes in the   application domain, than in the case of an 
application subject area that is subject to a high frequency of changes in application, 
rules, information and procedures. 

Another dimension regarding the type domain under consideration is 
concerned with the extent in which the domain knowledge is ‘tacit’ versus ‘explicit’. 
We will call this dimension the ‘tacitness’ dimension of the application subject area. 
The tacitness can range form fully ‘tacit’ area in which no single knowledge-creating 
process can be made explicit to a fully ‘explicit’ area in which every knowledge 
generating process can (potentially) be made explicit.  

The fourth domain richness dimension is the way in which the requirements 
determination process is anchored. This dimension can range from a fully abstract 
anchor in which ‘open questions’ are posed to a tangible anchor in which tangible 
example forms and structured documents are used. Examples of requirements 
techniques that can be considered to be positioned somewhere on the ‘tangible’ side of 
this dichotomy are the analysis of forms and structured documents by end users 
(Bubenko and Wangler, 1992), others talk about ‘realistic’ examples (Flynn and 
Warhurst, 1994) or ‘verbalizing forms’ (Ter Hofstede et al., 1997). If we look at the 
abstract side of this dimension we encounter techniques like direct-prompting 
techniques, directed questions and what-if analysis (Browne and Ramesh, 2002). 

We can now summarize the four ‘domain richness’ dimensions that 
characterize application domains in table 2.4. 
 
Table 2.2 Dimensions that characterize the application domain 
 

Dimension Low extreme  High extreme 
Perception uniform for all users - Different for all users 
Turbulence no change - continuous change 
Tacitness fully tacit - fully explicit 
Anchoring tangible - abstract 

  
2.2.4    Definition of the domain richness criterion 
 
We will now give a definition of the domain richness criterion for requirements 
determination methods. This criterion will reflect the extent in which the four 
dimensions can be accommodated by a single requirements determination method at 
the same time. 
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Definition 2.2. The domain richness of a requirements determination method is the 
extent in which this method can be applied under the full range of values for the given 
dimensions14. 
 
In table 2.3 we have given the detailed definition of the domain richness criterion for 
each of the four dimensions given. We thereby consider the dimension turbulence 
relevant for the way of modeling, and the dimensions perception, tacitness and 
anchoring relevant for the way of working. 
 
Table 2.3 The definition of the domain richness criterion 
 

 Way of Modeling Way of Working 
Definition of 
domain richness 
criterion 

The extent in which the 
RDM can be applied for 
the full range of  values 
for the dimension 
turbulence 

The extent in which the RDM can be 
applied for the full range of values for 
the dimensions perception, tacit-ness 
and anchoring  

 
 
 
2.3 THE COMPLETENESS CRITERION 
 
If we look at the five sets of criteria that are listed in table 2.1 we can conclude that in 4 
sets of criteria the completeness of a specification is contained (Essink and Romkema 
call this: ‘Specification must be an expression of the real domain requirements’ ) 
                In order to arrive at a requirements specification that contains all relevant 
domain semantics for the specification of an application information system we first 
need to establish an idea of what we mean by completeness in the context of the way of 
modeling.  
                In this section we will operationalize the completeness criterion for a 
requirements determination method, e.g. what must be incorporated in a (semantic) 
requirements specification for application domains. Olle et al. (1988:41-43) distinguish 
three perspectives: the data-oriented perspective, the process-oriented perspective and 
the behaviour-oriented perspective. The data-oriented perspective should  concentrate 
on the business data and must capture the domain concepts, the definition and the 
naming conventions for those domain concepts,  the semantic relationships between the 
domain concepts and other ‘static’ and ‘structural’ knowledge in the enterprise. The 
process-oriented perspective should be able to capture the business activity and user 
perceivable tasks and describe what procedures exist for the creation of application 
facts or instances of semantic relationships. Finally, the behaviour-oriented perspective 
(Olle et al., 1988:43) should describe how ‘events’ can be cross-referenced to 
‘elements’ in the process- and data-oriented perspectives (Olle et al., 1988:43). This 
means that any requirements specification should potentially consist of models that 
cover these three (conceptual) perspectives. Loucopoulos and Layzell (1989:264) 

                                                 
14  As defined in table 2.3 
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consider two perspectives a state perspective and an action perspective and distinguish 
as core of their concepts a data model and the types of rules as listed in table 2.4. 
 
Table 2.4 Types of rules according to Loucopoulos and Layzell (1989:264) 
 

 State Action 
Constraint Static constraints Dynamic constraints 
Derivation Static derivation Dynamic rules 

 
Chakravarthy and Mishra (1994) and Campin et al. (1995a, 1995b) discuss the Event-
Condition-Action (ECA) rules, that conceptually coincide with dynamic rules in the 
framework of Loucopoulos and Layzell. Static constraints are sometimes called 
population constraints, static derivation is also known as derivation rules and dynamic 
constraints are sometimes called state transition constraints (Halpin, 2001:298). From 
the requirements specification point of view we can now link the Olle et al. (1988) 
three perspectives framework and the constraint typology by Loucopoulos and Layzell 
in table 2.4. 
 
Table 2.5 Types of rules versus perspectives (Olle et al.,1988; Loucopoulos and Layzell, 1989) 
 

 state state action 
Data-oriented Data model Static constraints  Dynamic constraints 
Process-oriented  Static derivation  
Behaviour-
oriented 

  Dynamic rules 

 
We can now conclude that a requirements method can be complete on two dimensions: 
the number of perspectives that are ‘covered’ by a method and secondly, the types of 
rules within every perspective that can be encoded using the requirements method. We 
will now give a definition of completeness in the context of a requirements 
determination method. 
 
Definition 2.1. The completeness of a requirements determination method is the extent 
in which the types of rules in the data-, process- and behaviour oriented perspectives15 
of an application can be captured in a requirements specification that is created using 
this method. 
 
If we closely look at definition 2.1 we can operationalize this definition for the way of 
modeling where the what question is central, e.g. what modeling constructs need to be 
contained in a RDM. With respect to the way of working, the how question is relevant, 
e.g. how we find instances of these modeling constructs in a specific requirements 
determination project. The availability of (modeling) procedures is of great importance 
here. 
 In table 2.6 we have given the definition of the completeness criterion for the 
way of modeling and the way of working. 

                                                 
15 As given in table 2.5 
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Table 2.6 The definition of the completeness criterion 
 

 Way of modeling Way of working 
Definition of 
completeness criterion 

The availability of modeling 
constructs for the data model, 
the static constraints, the 
static derivation, the dynamic 
constraints and dynamic rules 

The availability of procedures 
for instantiating the data 
model, the static constraints, 
the static derivation, the 
dynamic constraints and 
dynamic rules 

 
 
 
 
2.4    THE EFFICIENCY CRITERION 
 
If we look at the five sets of criteria that are listed in table 2.1 we can conclude that in 2 
sets of criteria the efficiency of a RDM is contained. Efficiency in these sets of criteria, 
however, refers to the process dimension of requirements determination. The 
remaining three sets of criteria were derived for evaluating specifications from a 
product point of view. This means that the efficiency criterion is mainly concerned with 
the requirements (determination) process: ‘..a certain degree of guidance and direction 
can definitely improve efficiency.’(Wysocki and Young, 1990:298). 

The efficiency criterion that we will use for evaluating requirements 
determination methods is concerned with the amount of resources that is needed to 
create a requirements specification when such a requirements determination method is 
applied in a given requirements determination project. The operationalization of this 
criterion for the purpose of evaluating requirements determination methods must be 
done for the way of modeling and the way of working as well as the way of controlling. 
With respect to the way of modeling in general, and the requirements specification 
language in particular we can say that for two specification languages that have the 
same expressiveness (X and Y), a language X that has on average fewer modeling 
language constructs that serve the same purpose than a Language Y, implies that 
language X  is more efficient than language Y.  The existence of more than one 
modeling construct that serves the same purpose has a negative impact on the 
efficiency of a requirements determination method. This impact firstly, relates to 
cognitive aspects of the resources needed to learn a specification language and 
secondly, relates to the resources needed for selecting one modeling construct out of 
the set of alternative modeling constructs during the requirements determination 
process. Thirdly, the availability of ‘equivalent’ modeling constructs, and the 
limitations under which they can be applied might lead to modeling rework in a later 
stage of the project when additional information about the requirements specification 
becomes available. Rossi and Brinkkemper (1996) have compared 36 techniques and 
11 methods on their descriptive capabilities based on the premise that: ‘generally 
speaking, the complexity of a method is related to the learnability and ease of use the 
method, even though this relationship may be complex.’ (Rossi and Brinkkemper, 
1996:210). 
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With respect to the way of working of a requirements determination method 
we can say that the availability of a (set of) procedure(s) that guides an analyst in the 
requirements determination project will lead to an improved usage of (human) 
resources because it prescribes how an analyst should proceed in the process, given the 
knowledge he/she has elicited so far. The availability of such a procedure, therefore, 
will minimize the required number of analysis steps and rework that should be 
performed in a specific requirements determination project and will determine the 
efficiency of the way of modeling of requirements determination method. Such a 
procedure, furthermore, should contain a role definition (Wysocki and Young, 
1990:300) for the analyst and must clearly make a distinction between the 
responsibilities of the analyst and the responsibilities of the user. 

In IEEE Std. 830 (1998), a criterion called verifiable is given in the context of 
software requirements specifications: ‘ A requirement is verifiable if, and only if, there 
exists some finite cost-effective process with which a person or machine can check that 
the software product meets the requirement’  (IEEE, Std. 830, 1998). 

With respect to the way of controlling we can define efficiency on two areas. 
Firstly, the area of quality management. In this philosophy, quality deficiencies must be 
prevented from happening, and if they do occur, they have to be ‘repaired’ by the 
process that is responsible for creating the deficiency. This means that the way of 
working of the method must contain a number of ‘quality-checking’ verification sub-
procedures, in such a way that the process that is responsible for the performance of a 
requirements determination activity is responsible for the assurance of its quality. 
Secondly, the way of controlling is concerned with the project management of the 
requirements determination project. The efficiency for regarding these project 
management issues must be measured in terms of the three project management targets: 
performance, cost and time (Mantel et al., 2001:5) 
 
Table 2.7 The definition of the efficiency criterion 
 

 Way of Modeling Way of Working Way of Controlling 
Definition of 
efficiency 
criterion 

Average number of 
modeling constructs 
in specification 
language that serve 
the same purpose 

Availability of 
procedure 

Availability of quality 
assurance steps.  Extent in 
which performance, cost 
and time can be optimized 

 
Definition 2.3. The efficiency of a requirements determination method is the extent in 
which the efficiency criteria16 defined for the way of modeling, the way of working and 
way of controlling are satisfied. 
 
 

                                                 
16 As defined in table 2.7 
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2.5    THE FORMALITY CRITERION 
 
In table 2.1 we can see that 4 out of 5 sets of criteria contain the criterion consistency. 
In 2 sets of criteria in table 2.1 some reference to precise requirements are made 
(correct and unambiguous).  Boehm (1984) defines consistency as internal consistency 
(‘items within the specification do not conflict with each other’. (Boehm, 1984:77-78)) 
and external consistency (‘items in the specification do not conflict with external 
specifications or entities.’ (Boehm, 1984:78)). In this thesis we will consider the 
internal consistency as a criterion for a requirements specification. External 
consistency is concerned with the application domain and lies outside the scope of the 
criteria for a RDM. A RDM, therefore, must lead to a consistent and precise 
requirements specification. In order to achieve requirements specifications that comply 
with these criteria we need a certain amount of formality in the way of modeling of the 
RDM. Firstly, the modeling constructs that are used for the specification of 
requirements in the different perspectives must be formally defined. Secondly, the way 
of working, must be formalized in some sort of algorithm(s) that precisely prescribe(s) 
how the consistent modeling constructs that were defined in the way of modeling, must 
be instantiated in a requirements determination project in order to obtain semantic (and 
syntactic) correct specifications. Such an algorithm must contain facilities to question 
user assumptions regarding the domain knowledge. With respect to the way of 
controlling we must be able to formalize the planning of activities, for example in a 
precedence diagram.  

Boehm (1984) defines traceability as a sub-criterion within consistency 
(‘items in the specification have clear antecedents in earlier specifications or statement 
of system objectives’. (Boehm, 1984:78)). In the IEEE recommended practice for 
software requirements specifications (IEEE Std. 830, 1998) tracebality is defined as 
backward traceability (‘this depends upon each requirement explicitly referencing its 
source in earlier documents.’ (IEEE Std. 830, 1998:8)) and forward traceability (‘this 
depends upon each requirement in the SRS having a unique name or reference 
number’. (IEEE Std. 830, 1998:8)) . We conclude that quality assurance steps must be 
embedded in (a) formal (sub) algorithm(s) including provisions that enable traceability. 
  
Table 2.8 The definition of the formality criterion 
 

 Way of Modeling Way of Working Way of Controlling 
Definition 
of 
formality 
criterion 

Extent in which 
modeling constructs 
in language are 
formally defined 

Extent in which 
procedure is 
formal 

Extent in which activities can 
be formally planned. 
Extent in which quality 
management is contained in 
formal (sub)procedure 
Extent in which provisions that 
enable traceability are 
contained in  RDM 
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Definition 2.4. The formality of a requirements determination method is the extent in 
which the formality criteria17 defined for the way of modeling, the way of working and 
way of controlling are satisfied 
 
 
2.6    CONCLUSIONS ON THE QUALITY CRITERIA FOR A 
         RDM 
 
In this chapter we have synthesized these criteria from the literature on information 
system development methodologies, software requirements specifications, and 
requirements specification (methods) in order to assess existing requirements 
determination methods from the literature in chapter 3 and to assess a newly to-be 
designed requirements determination method in chapters 5 and 6. 
 
Table 2.9 Summary of the RDM criteria and definitions 
 

Criterion Way of Modeling Way of Working Way of controlling 
Domain 
richness 

The extent in which 
the RDM can be 
applied for the full 
range of  values for 
the dimension 
turbulence 

The extent in which 
the RDM can be 
applied for the full 
range of values for the 
dimensions 
perception, tacit-ness 
and anchoring  

 

Completeness The availability of 
modeling constructs 
for the data model, 
the static constraints, 
the static derivation, 
the dynamic 
constraints and 
dynamic rules 

The availability of 
procedures for 
instantiating the data 
model, the static 
constraints, the static 
derivation, the 
dynamic constraints 
and dynamic rules 

 

Efficiency Average number of 
constructs in 
specification 
language that serve 
the same purpose 

Availability of 
procedure 

Availability of quality 
assurance steps.  Extent 
in which performance, 
cost and time can be 
optimized 

Formality Extent in which 
modeling constructs 
in language are 
formally defined 

Extent in which 
procedure is formal 

Extent in which 
activities can be 
formally planned. 
Extent in which quality 
management is 
contained in formal 
(sub)procedure 
Extent in which 
provisions that enable 
traceability are contained 
in the RDM 

                                                 
17 As defined in table 2.8 
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In sections 2.2 through 2.5 we have operationalized these criteria, which a 
requirements specification and a requirements determination method have to comply 
with. The criteria that we have defined in this chapter for the way of modeling, the way 
of working and the way of controlling for a requirements determination method were: 
domain richness, completeness, efficiency and formality.  In table 2.9 we have 
summarized the criteria for a requirements determination method that we have derived 
in this chapter. 

In chapter 3 we will investigate a number of ‘state-of-the-art’ requirements 
determination approaches and we will assess these approaches on the quality criteria 
that we have defined in this chapter. 

In chapter 4 we will operationalize the four criteria that we have given into 
explicit demands for the way of modeling, the way of working and the way of 
controlling  of a to be designed RDM. 
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CHAPTER  3  
 

EVALUATION OF EXISTING RDM DESIGN 
ALTERNATIVES   

 
 
3.1 INTRODUCTION 
 
In this chapter of this thesis we will give an answer to the following research sub 
question that was stated in chapter 1: 
 
Why do the existing requirements determination approaches from the literature not 
comply with the quality criteria for assessing requirements determination methods?  
 
In order to answer this question we will first provide an overview of a number of 
(families) of approaches that are used in the process of requirements determination and 
that are documented in the information systems body of literature. Secondly, we will 
further discuss those approaches that at least contain a modeling language to express 
the data-oriented perspective of a requirements specification. After we have discussed 
these ‘families’ of requirements determination approaches we will compare them on 
the criteria that we have derived in chapter 2. We will analyze a member of each family 
of approaches and we will discuss the deficiencies of these approaches that need 
improvement in order to obtain requirements specifications that are precise and 
consistent, and that fulfill the completeness, domain richness, efficiency and formality 
criteria. The requirements modeling problems that we will encounter while discussing 
these approaches will be used when we are going to formulate the operationalized 
design specification of this thesis in chapter 4. 
 
 
 
 
3.2    A SURVEY OF APPROACHES FOR REQUIREMENTS  
         DETERMINATION FROM THE LITERATURE 
 
Traditionally two ‘families’ of approaches can be distinguished in the field of 
requirements determination: the data-oriented approaches and the process-oriented 
approaches (Bubenko and Wangler, 1992:393). In addition to these two groups of 
approaches, hybrid approaches have emerged that are both data-oriented and process-
oriented (Vessey and Conger, 1994:102). In the mid-eighties the object-oriented 
approach emerged in which static and dynamic features of an enterprise area should be 
considered together in objects (Parsons and Wand, 1997:109). In the nineties a business 
process engineering approach was introduced that provides facilities for the creation of 
a requirements definition (Scheer, 1998). 
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3.2.1    Data oriented approaches in requirements determination 
 
The data-oriented approaches to requirements determination can be divided into the 
following families of semantic data modeling: the ER or Extended ER (Entity-
Relationship) approach and the Fact Oriented Modeling approach (NIAM, ORM) (Kim 
and March, 1995:103). Peckham and Maryanski (1988) reported on a survey of a 
number of semantic data models. A summary of their findings is given in table 3.1. 
 
Table 3.1 Main findings of Peckham and Maryanski survey (Peckham and Maryanski, 1988:181) 
 

Data model Relationship 
representation 

Derivation/inheritance Relationship 
semantics 

Dynamic 
modeling 

E-R Independent 
and tables 

No User selectable No 

TAXIS Entity (classes) Inheritance Predefined Transaction 
modeling, 
object 
oriented 

SDM Independent 
and entity 
(classes) 

Elaborate and varied User defined No 

Functional Functions Functional User defined No 
RM/T Independent Inheritance Predefined No 
SAM Independent Summation over 

classes/ inheritance 
Predefined Object 

oriented 
Event Attributes No Predefined Transaction 

modeling 
SHM+ Attributes, 

entities, 
separate 

Inheritance over 
Generalization and 
Association hierarchies 

Predefined Transaction 
modeling 

 
In addition to the E-R and fact-oriented approaches, the Semantic Data Model (SDM) 
by Hammer and McLeod (1981) has had an influence the evolution of the dialects 
within the ER and Fact-oriented approaches and it has had an influence on the design 
of object-oriented modeling languages. However, in the survey that we will present in 
this thesis we will limit ourselves to the ER and Fact-Oriented families of approaches 
in data modeling. 
 
The Entity-Relationship family of approaches 
 
In 1976 Chen published the first article on Entity Relationship Modeling (Chen, 1976). 
The basic modeling constructs for capturing the data structure in the ER model are 
entitie(s)(sets), attributes and relationship(s) (sets). The entities are the objects in an 
application domain about which information is collected; attributes represent intrinsic 
properties of entities whose value does not depend upon other entities in the model. 
Relationships represent interconnections among entities (Pitrik, 1996:115). In addition 
Chen introduced (maximum) cardinalities that can express some of an application 
area’s business rules. In the course of time Chen’s original Entity-Relationship model 
has been extended EER (Teorey et al., 1986); ERT (Theodoulidis et al., 1991); EDM 
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(Scheer and Hars, 1992); NER (Silva and Carlson, 1995); ER+ (Kolp and Zimanyi, 
2000); MEER (Balaban and Shoval, 2002)) in which additional conceptual abstractions 
have been incorporated (Chan et al., 1998:117):  optional relationships (Teorey et al., 
1986),  subtyping (Teorey et al., 1986), aggregation, generalization/specialization  
(Gogolla and Hohenstein, 1991; Teorey et al, 1986), time and complex objects 
(Theodoulidis, 1991), update methods (Balaban and Shoval, 2002). A main 
characteristic according to Akoka and Comyn-Wattiau of ER models is that these 
models are mainly oriented towards the data-oriented perspective and leave the 
process- and behaviour-oriented perspectives undefined (Akoka and Comyn-Wattiau, 
1996:88).  At the beginning of the 21st century the family of (E)ER approaches remains 
the most popular approach used in practice (Rauh and Stickel, 1996:135; Shoval and 
Shiran, 1997:298) and in curricula of universities (in case we consider the static aspects 
of UML class diagrams as a flavour of the (E)ER family of approaches (Balaban and 
Shoval, 2002:245; Steimann, 2000:88)). Saiedian surveyed a number of (E)ER models 
in the literature (Saiedian, 1997) and concluded that in the course of time, the 
expressiveness of these models has increased and that the recent extensions incorporate 
object-oriented features, e.g. methods, messages and operations. We will make a 
distinction into ‘conventional’ EER approaches and ‘object-oriented’ EER approaches. 
The latter group will be considered object-oriented approaches and is analyzed in 
section 3.2.3. 
 
The fact oriented family of approaches 
 
From the pioneering work of Abrial (1974) on the Semantic Binary Relationship Model 
(SBRM), followed by the object-role model (Falkenberg, 1976a, 1976b) the fact-
oriented approach became a relatively popular requirements specification approach 
when the object-role models were expressed in a ‘circle-box’ notation and 
accompanied by a modeling methodology (ENALIM) (Nijssen, 1977). The ENALIM 
methodology provided the foundation for (binary) NIAM (Verheijen and van Bekkum, 
1982) and the Binary Relationship Model (Van Griethuysen, 1982). In the late 1980’s 
binary NIAM evolved into N-ary fact oriented information modeling (Halpin and 
Orlowska, 1992; Leung and Nijssen, 1988; Nijssen and Halpin, 1989) and the acronym 
NIAM became a shortcut for natural language information analysis method (Halpin, 
1996). The data model in the fact-oriented approaches basically consists of a set of fact 
types and entity types that are connected through roles. A fact type is a semantic 
relationship consisting of N roles between (at most) N (different) entity types and or 
label types. Every entity type can be involved in a number of roles within any number 
of fact types. The content of the fact base at any time is subject to the set of population 
state and state transition constraints that can be defined on the information structure 
diagram (ISD, see Verheijen and van Bekkum, (1982)). Prabhakaran and Falkenberg 
(1988:98) give an overview of other fact oriented modeling approaches, amongst them: 
CSL (Breutmann et al., 1979); CIAM (Gustafsson et al., 1982); DADES/RM/RA 
(Olive, 1982), REMORA (Rolland and Richard, 1982). 
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Conclusions for the data oriented approaches in requirements  determination  
 
The data oriented approaches in requirements determination are numerous. The two 
families of approaches that appear to be the most influential are the entity-relationship 
family of approaches and the fact-oriented family of approaches (Kim and March, 
1995). The commonality of all members of these two families of approaches lies in the 
perspective of a subject area that they intend to model: the data-oriented perspective, 
this implies that these approaches have hardly any facilities for modeling the process-
oriented and behaviour-oriented perspectives of an application domain. 
 
3.2.2    Process oriented approaches in requirements determination 
 
The process-oriented approaches that we will discuss in this thesis have their origins in 
the mid-seventies and have in common that they all are based on the notion that 
application systems can be modeled as a set of functions that interact and that some 
form of (functional) decomposition is required. We will discuss three (sub) approaches 
within the process-oriented family: SADT, the structured analysis and structured design 
(SA/SD) school and ISAC. 
 
SADT 
 
SADT was developed by Douglas T.Ross (Maarssen and McGowan, 1986). A SADT 
model is a series of data flow diagrams that consists of activities that transform input 
data onto output data. Control governs the way in which the transformation takes place 
and mechanisms show the means by which an activity is performed (Maarssen and 
McGowan, 1986). A transformation can be decomposed into a sub transformation on a 
lower level of abstraction. 
 
Structured analysis and structured design (SA/SD) school 
 
The structured analysis and structured design school is based upon work of Yourdon 
and Constantine (1979), Gane and Sarson (1979) and DeMarco (1978). SA/SD looks 
upon enterprises as functions that process data. The main diagramming technique in 
SA/SD is the data flow diagram. Data Flow diagrams are designed to show the 
functionality of an application. A data flow diagram (DFD) consists of a collection of 
processes, flows, stores, terminators. The processes in a DFD constitute the activities of 
the application that is being represented. Each process is considered to transform the 
incoming flows of data and material into outgoing flows of data (and material). Stores 
are containers for data or material that is carried in the flow. Terminators represent 
actors or processes external to the system that is under consideration. A transformation 
can be decomposed into a sub transformation on a lower level of abstraction. Opdahl 
and Sindre (1994:231-234) point at the omissions in the application of DFD’s for real-
world modeling. They conclude that decomposition of DFD’s is problematic with 
respect to flows. They specifically critique the real world meaning of high-level flows. 

Ward (1986) extended the data-flow diagram by concepts that represent 
control and timing.  
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ISAC 
 
ISAC (Lundeberg et al., 1979; Lundeberg, 1982) was developed in the 1970’s at 
Stockholm University and the methodology was created for a much broader coverage 
of stages in the information systems development life cycle than the requirements 
determination stage. The ISAC methodology consists of the following stages: change 
analysis, activity study, information analysis, data system design (Ruys, 1983).   
Falkenberg et al. (1983:188)) concluded that ISAC is very strong in the earliest phases 
of systems design i.c. change analysis and activity analysis, however the data-model 
that is the outcome of ISAC is cumbersome and cannot guarantee integrity. Hanani and 
Shoval (1986:249) conclude that a major gap exists between the products of 
information analysis and the design of the data system. Furthermore, ISAC does not 
have facilities for specifying static and dynamic constraints. 
 
Conclusions for the Process oriented approaches in requirements determination 
 
Floyd (1986) compared SADT, the SA/SD school and ISAC and concluded that only 
SADT and ISAC seemed suitable for requirements determination. Deng and Fuhr 
(1995:107) claim that structured analysis and design techniques cannot allow a simple 
modification to a module without a complete redesign of the system. 

Henderson-Sellers and Edwards (1990:145) summarize the findings of Meyer 
regarding the flaws in top-down system design as is implemented in all process-
oriented approaches that we have discussed in this chapter: 
 

1. top down systems design does not take account of evolutionary changes, 
2. in top down systems design a system is characterized by a single function, 
3. top down design neglects the data structure aspect very often, 
4. top down design does not encourage reuse. 
 

3.2.3    Object oriented approaches in requirements determination 
 
The object-oriented analysis concepts have their roots in object-oriented programming 
(Cox, 1986) and object-oriented software construction (Meyer, 1988) blended with 
ideas from semantic data modeling and knowledge representation (Mylopoulos et al., 
1999).  
 
Classic OO approaches in requirements determination 
 
The OO-paradigm has been applied in corporations during the last decade (Johnson and 
Hardgrave, 1999:5) in methodologies for requirements determination and information 
systems analysis and design: object-oriented modeling and design (OMT)  (Rumbaugh 
et al., 1991), object-oriented systems design (OOD) (Yourdon, 1994), object-oriented 
information engineering; analysis, design and implementation (Montgomery, 1994). 
Misic and Graf (2004) empirically studied the use of different system analysis 
approaches by systems analysts and concluded that the percentage of respondents that 
are using object-oriented approaches for analysis and design grew from 0 % in 1994 to 
35 % in 2001. Davis (1995) gives a critical view on the application of OO 
programming concepts for requirements specification and information systems design. 
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The OO paradigm considers an object as:” an identifiable thing that 
remembers its own state [1, 6], and that can respond to requests for operations with 
respect to this state [5].” (Parsons and Wand, 1997:106). Furthermore the OO-
paradigm considers an object to have an unchangeable identity (Brown, 1991:20)), it 
encapsulates data and behaviour and it is persistent (Parsons and Wand, 1997:106). 
One of the first OO approaches that were specifically designed for requirements 
determination was OMT (Rumbaugh et al., 1991). 
 
The Unified Modeling Language (UML) 
 
In 1997 a standard emerged (OMG, 2002) to streamline the multitude of OO-
approaches: The Unified Modeling Language (UML). An application’s data model can 
be expressed in an object-oriented class diagram. The static constraints and the static 
derivation rules can be defined in the static structure part of a class diagram, for 
example in a UML class diagram this can be done by using association end and 
attribute multiplicities and the Object Constraint Language (OCL). Furthermore, the 
dynamic constraints and dynamic rules of a domain application can partly be encoded 
as methods from object classes and in miscellaneous models that have come into 
existence like for example use cases and state charts. 

 
Conclusions for the Object oriented approaches in requirements determination 
 
We can conclude that the object-oriented approaches have evolved from the application 
of the OO-paradigm in programming languages in the seventies and eighties towards 
OO approaches that are considered suitable for requirements determination. The object-
oriented approaches provide facilities for the specification of the data- as well as the 
process- and behaviour-oriented perspectives in requirements determination. 
 
3.2.4    The Business Process Engineering approach: ARIS 
 
From the late eighties until the mid-nineties the Businss Process (Re)engineering was 
at its peak. Around that time product-software suppliers started to implement their IT 
solutions on a wide scale in (mainly) large organizations. Scheer has developed an 
Architectural framework for integrated information systems (ARIS), that can analyze, 
model and navigate business processes (Scheer, 1994:607). ARIS acknowledges the 
existence of a semantic requirements definition (Scheer, 1998:14). To express the data 
view of such a semantic requirements definition, ARIS uses an (E)ER model18. For 
representing the functional and control view, ARIS uses a number of modeling 
techniques, like for example flow-chart techniques, Petri-nets, activity-diagrams and 
OMT object-diagrams, object-flow diagrams. 
 

                                                 
18 ARIS consists of a number of requirements models that are basically covered by the modeling 
facilities in the other three families of approaches. 
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3.3  THE SUITABILITY OF EXISTING APPROACH FAMILIES  
       FOR REQUIREMENTS DETERMINATION 
 
In this paragraph we will evaluate the family of approaches that we have introduced in 
paragraph 3.2 on the first criterion that we have derived in chapter 2. In table 3.2 we 
have compared these three ‘families’ of approaches with respect to the underlying way 
of thinking , the way of modeling and their way of working (Wijers, 1991: 17-23).  
 
Table 3.2 Comparison families of approaches found in the literature 
 

 Data-oriented Process-
oriented 

Object-
oriented 

Business 
Process 
Engineering 

Way of 
thinking 

Business data Functions that 
interact 

Objects that 
encapsulate data 
and behaviour 

Businss 
processes 

Way of 
modeling  

Information 
models 

DFd’s, A-schemes Class diagrams, 
use cases, 
activity 
diagrams, State 
charts 

Process chains, 
OMT class 
diagrams, ER 
models, Petri-
nets 

Way of 
working 

Analysis of 
textual 
description of 
application 
domain 

Top-down 
functional 
decomposition 

Identifying 
objects in 
application 
domain 

Translating 
business 
application 
knowledge into 
DP -suitable 
structures 

 
The completeness criterion that was given in chapter 2, implies the capability of a 
requirements determination approach to specify at least the data model from the data-
oriented perspective. The data model is necessary in order to be able to describe the 
content of the process- and behaviour-oriented perspectives in a meaningful way. The 
literature study has revealed that the process-oriented approaches do not provide 
sufficient modeling constructs that would allow an analyst to create a requirements 
specification that contains a data model. We will now analyze three families of 
approaches for requirements determination that have facilities for a data model: The 
Entity-Relationship approach, the fact-oriented approach and the object-oriented 
approach (OO). In sections 3.4 through 3.6 we will evaluate a specific member of each 
of these families (of approaches) on the modeling deficiencies that exist for these 
approach instances and the remaining criteria that we have given in chapter 2. 
 
 



 48

 3.4    THE EXTENDED (OR ENHANCED) ENTITY- 
         RELATIONSHIP APPROACH 
 
The entity-relationship approach was introduced in a seminal article of Peter Chen 
(1976). We will consider an ER extension as it can be found in McFadden et al. 
(1999:85-159) that is a main stream contemporary text book on database management. 
In addition we will reference those approaches from the ER literature that provide 
solutions for some of the modeling deficiencies that we will encounter in the 
McFadden approach. 
  
3.4.1    Deficiencies in the (E)ER way of modeling 
 
In this section we will discuss a number of problems that are related to requirements 
specifications that use EER as a specification language. These problems are rooted in 
the definition of the EER modeling constructs and in the ways in which these modeling 
constructs can be applied in a requirements determination process. 
 
Ambiguities regarding the modeling of N-ary relationships 
 
In most of the examples that are used in the articles, books or instruction manuals that 
give the definitions of the (E)ER modeling constructs and examples of how these 
modelling constructs can be applied, no explicit coverage of how to model n-ary (N>2) 
relationships is provided: ‘Higher degree relationships are possible, but they are rarely 
encountered in practice, …’ (McFadden et al., 1999:101). Although in some versions 
of the EER dialect (Connolly et al., 1996: 174-175) a number of examples of N-ary 
(N>2) relationships are shown, McFadden et al. (1999) do not give illustrative 
examples of ‘pure’ N-ary relationships, they adapt the ‘pure’ N-ary relationship into 
either: an associative entity or gerund (McFadden et al., 1999:99-100)19 having one or 
more relationship attribute or a (N-1) ary relationship having a relationship attribute 
(McFadden et al., 1999:102). Furthermore, they give the conditions under which a 
semantic relationship can be encoded as a gerund. However, these conditions, presume 
knowledge on the cardinality constraints and the properties of the integrated EER 
schema, and therefore can not be applied to model the initial requirements.  

The application of the N-1 relation/attribute modeling construct leads to 
severe problems whenever the participating ‘concept type’ that must be modeled as an 
attribute is also involved in other semantic relationships (see the discussion on the 
instability of EER models further on). Teorey et al. (1986:201) claim that certain 
relationships of a degree higher than 2 might exist in a UoD and are ‘awkward’ (or 
incorrect) when represented in a binary form and they explicitly state that: ‘a ternary 
relationship cannot be reduced to equivalent binary relationships if the relation used to 
represent it is in 4NF.’ (Teorey et al., 1986:202). 
 

                                                 
19 “An associative entity (or gerund) is an entity type that associates the instances of one or more 
entity types and contains attributes that are peculiar to the relationship between those entity 
instances .”(McFadden et al., 1999:99-100) 
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No facility for naming conventions of attributes 
 
In the (E)ER dialect in McFadden et al. (1999) there does not exist a modeling 
provision for the naming convention of some attributes. In figure 3.1a and figure 3.1b it 
is illustrated how the same piece of domain semantics must either be modeled as the 
ER diagram in figure 3.1a or as the ER diagram in figure 3.1b. This means that 
whatever option is chosen, essential domain semantics will be lost. 

After analyzing a number of examples in McFadden et al. (1999:105-110) that 
illustrate the application of the attribute construct. This analysis reveals that a key 
attribute stands in all cases for a name class; other attributes can actually stand for 
name classes or concept types. Furthermore, it is not possible to record both the 
concept type and the name class in the same attribute if that is required (see for 
example figure 3.1 in which address is a concept type and address_ID is a name class). 
Most (E)ER dialects do not have guidelines on when to interpret the attribute as a name 
class or a concept name. A noteworthy exception is the Extended-Entity-Relationship 
model as defined by Engels et al. (1992) in which data types (that are user-definable) 
for attributes can be incorporated into the model. 
  

EMPLOYEE

EMPLOYEE

EMPLOYEE

(A)

(B)

( C)

Address

Address_ID

Address

An employee lives on an address
An adress is identified by an address ID

An employee lives on an address
An adress is identified by an address ID

An employee lives on an address
An adress is identified by an address ID
At any time an employee should  live on at
least 2 adresses

 
 

Fig. 3.1 Domain semantics and representation in EER model I 
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Ambiguous definition of relationship cardinalities for a ternary or higher order 
relationships 
 
In the EER specification language only a small number of business rules can be 
modeled as static constraints. Only those business rules that can be expressed as 
minimum or maximum cardinalities or that can be expressed as the multi-valued 
qualification of an attribute (see figure 3.1c) can be modeled. The EER approach 
contains the concepts of minimum cardinality and maximum cardinality. In McFadden 
et al. (1999:106) the ‘look across, look across’ type of cardinality constraints is used 
(Dullea et al., 2003) at least for binary relationships. The application of these minimal 
cardinalities in ‘pure’ N-ary relationships remains unclear. A number of interpretations 
exist for the cardinalities that refer to a ‘pure’ ternary or higher order relationships 
(Halpin, 2001a). To avoid this ambiguity all ternary or higher order relationships must 
be converted into associative entities or gerunds (McFadden et al., 1999: 105) or binary 
relationships with relationship attributes.   

 

   SUPPLY
SCHEDULEVENDOR WAREHOUSE

PART

Unit_costShipping_mode

Each vendor can supply many parts to any number of warehouses, but
need not supply any parts.

Each part can be supplied by any number of vendors to more than one
warehouse, but each part must be supplied by at least one vendor to a 
warehouse

Each warehouse can be supplied with any number of parts from more
than one vendor, but each warehouse must be supplied with at least one part

 
 

Fig. 3.2 Domain semantics and representation in EER model II (taken from fgure 3.17 in 
McFadden et al., 1999:108) 
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We can see from figure 3.2 (taken from McFadden et al., 1999;108) that the 
relationship cardinalities in these situations represent very complicated combinations of 
business rules. It is not possible to represent the following simple atomic business rules 
as (straightforward combination) of relationship cardinalities: 

 
         A part must be supplied to at least one warehouse 
       A warehouse must be shipped from at least one vendor 

 
McAllister (1998) gives an approach to check consistency of cardinalities in N-ary ER 
relationships by using cardinality tables. However, the number of cardinality 
constraints that should be analyzed as a function of the arity (N) of the relationship will 
increase exponentially (e.g. from 2 when N=2 to 180 for n=5).  

 

(B)                    

(A)                                                                         (C)

RR

R

R

RR

A A 

A 

A A 

A 

A A 

A 

BB

B

M

N

N

1  

1  

BB

B

 
    
Fig. 3.3 (a) ER, (b) XER and (c) EER cardinality constraints (taken from Liddle et al. (1993) and 

McFadden et al. (1999)) 
  

In an overview article on cardinality constraints in semantic data models, Liddle et al. 
(1993) give formal definitions for relationship cardinalities in a number of ER dialects 
(amongst other data models) in which they show that the definition of maximum 
cardinality in the original Chen’s ER dialect and the Extended ER (EER) by Teorey et 
al. (1986) are the same (see figure 3.3a and b) and in which the minimum cardinality 
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that is added to the original ER model by Teorey et al. denotes the participation status 
of an entity (instance) from an entity set. In this notational convention a circle that is 
placed on the connecting line indicates an ‘optional’ participation for the connected 
entities in this relationship set. For mandatory participation the line that connects the 
entity type to the relationship set has no special marking. We can conclude that in EER 
the ‘look here, look across’ type of cardinality constraints is used (Dullea et al., 2003). 
In the EER dialect that we have analysed in McFadden et al. (1999), the ‘look across, 
look across’ application of cardinality can only be found in binary relationships, no 
instances of N-ary (N>2) relationships are given that illustrate the applicability of the 
minimum cardinality. We refer to Liddle et al. (1993: 239, 246) for the formal 
semantics of Chen’s ER and Teorey et al.’s XER cardinality constraints. 
 
Instability of EER models because of the existence of the attribute and relationships as 
information bearing constructs.  
 
The (E)ER approach shows some problems in terms of capturing evolving 
requirements when a binary relationship is modeled initially as an attribute of an entity 
type (see figure 3.4). When this modeling decision has been made in the initial stage of 
a project, this can lead to remodeling when additional domain semantics need to be 
incorporated into the application’s (E)ER-model (Bots et al., 1990; Halpin, 1996; 
Storey, 1991:52). In figure 3.1 we have modeled address as an attribute of the entity 
type EMPLOYEE. If we now want to model the relationship between an address and a 
zip code we will have a problem because simply adding a relationship will make it 
impossible to use the relationship cardinalities for modeling the domain semantics that 
every address needs to have a zip code (see figure 3.4a). In order to be able to model 
the domain semantics explicitly in the EER model by using cardinalities we need to 
remodel the original entity/attribute diagram from figure 3.1a into the relationship in 
the upper part of figure 3.4b. A noteworthy exception in the family of EER dialects is 
ERT (Theodoulidis et al., 1991) in which it is not possible to model domain knowledge 
as attributes. In ERT all domain semantics must be encoded as entities and/or as 
relationships between entities. Lim and Chiang (2000) give an overview on schema-
level relationships in (E)ER diagrams.  
 
Incomplete recording of domain semantics when encoded as relationship or attribute. 
 
We remark that in EER it is not possible to exactly denote the sequence in which the 
name(s) of entity types and the name of the relationship must be read (Halpin, 
2001b:315) in order to derive the correct phrasing of the semantic relationship (e.g. 
address lives at employee or employee lives at address). In case domain semantics are 
modeled as an attribute of an entity type (see for example figure 3.4 a), the ER 
approach does not enforce an analyst to record the verbs or predicate of such a 
semantic relationship. Let us assume that the upper diagram from figure 3.4a represents 
the following domain semantics: 
 
     Employee lives at address 
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We will now extend our  example by a new requirement: 
  
   Employee was born at address 
 

EMPLOYEE

EMPLOYEE

ZIPCODE

ADDRESS

ADDRESS

(A)

(B)

Address

Zipcode

Has

Lives_at

An employee lives on an address
An adress has a zipcode

An employee lives on an address
An adress has a zipcode
Every adress has exactly one zipcode

 
    

Fig. 3.4 Domain semantics and representation in EER model III 
 
In the best situation we need to remodel the old requirements either by adding the verb 
on the attribute name or by creating two binary relationships in the adapted model in 
which the verbs can be explicitly recorded. However, in the latter situation the model 
will be subject to the ‘verbalization’ problems in ER diagrams that we have discussed 
earlier. The main problem, however, with the lacking of a verb that is recorded in an 
ER model, is in the interpretation of the relationship when time has passed, e.g. for 
application maintenance purposes. 
 
3.4.2    Deficiencies in the  (E)ER way of working 
 
Most (E)ER family members lack a procedure that exactly specifies how an analyst can 
derive a semantically correct ER-model in the requirements determination process. The 
guidelines that Chen (1976) proposes to support the design of an ER schema are not 
accurate enough to be able to explain how an ER model must be created (Rolland et al., 
1995:338). With respect to the static constraints we remark that apart from some 
participation and cardinality constraints and disjoint constraints associated with super 
types and subtypes  (McFadden et al., 1999:145) the (E)ER approach does not provide 
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us with modeling facilities to do so. The same holds for the dynamic constraints and 
the dynamic rules.  

In the EER dialect that we have analyzed (McFadden et al., 1999) no explicit 
procedure is given on how to apply the EER modeling concepts in a requirements 
determination process. Especially, the condition under which a N-ary semantic 
relationship must be modeled either as a ‘gerund’ or a ‘pure’ N-ary relationship are 
missing in the (E)ER dialects that we have studied in our survey. However, there exist 
some EER dialects in which modeling steps are given. We will now give a summary of 
three EER modeling procedures: MOODD (Silva and Carlson, 1995), EER (Teorey et 
al., 1986) and Storey’s EER dialect (Storey, 1991).  
 
Modeling steps in MOODD 
 
In MOODD a rudimentary outline of a requirements determination procedure is given 
(RSL) that specifies how sentences from a user requirements specification can be 
translated onto a Nested Entity-Relationship (NER) diagram (Silva and Carlson, 
1995:163): 
  Step (i)   Check for synonyms and homonyms 
  Step (ii)  Use a glossary to ensure uniform use of words 
  Step (iii) Group sentences describing the static properties of the  

same subjects into O-paragraphs  
  Step (iv) Group sentences describing the dynamic properties of the  
                                       same subject into BR (business rules) paragraphs 
  Step (v)  For each O-paragraph, analyze each sentence converting it  

to the corresponding NER object. 
  Step (vi) For each BR-paragraph, analyze each sentence converting  

into the corresponding UPM expression 
 
Teorey’s modeling steps 
 
Teorey et al. (1986) give a logical design methodology for the creation of relational 
database schemas. The first step of this methodology, however, is directed towards the 
EER modeling of requirements and consists of the following sub steps: 
 
  Step 1.1 Classify entities and attributes 
  Step 1.2 Identify the generalization hierarchies and subset Hierarchies 
  Step 1.3 Define Relationships 
  Step 1.4 Integrate multiple views of entities, attributes, and   

Relationships 
 
Teorey et al. give guidelines for classifying entities and (multi-valued) attributes but 
these guidelines assume knowledge of the final schema: “For example, in the above 
store and city example, if there is some descriptive information such as STATE and 
POPULATION for cities, then CITY should be classified as an entity. If only CITY-
NAME is needed to identify a city, the CITY should be classified as an attribute” 
(Teorey et al., 1986:204). This means that such a procedure can never be applied in 
capturing the initial requirements of a domain user because in that stage global 
knowledge of the schema is not known (see also Bollen, 2002b). 
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Storey’s modeling steps 
 
In another EER dialect, Storey (1991) gives a procedure that covers not only the 
creation of a requirements specification in EER but also provides steps that result in the 
definition of normalized relational tables, that can serve as an input to a DDL of a 
database implementation. We will summarize the steps from Storey’s procedure that 
refer to the requirements specification stage in the analysis and design process: 

 
  Step 1: Identify entities 
  Step 2: Identify relationships 
  Step 3: Check for design problems and eventually go back to step 1 
 
Storey only specifies what potentially must be done in a requirements determination 
process, e.g. during the first step she advices to make the distinction among entity 
types, attributes and relationships. However, no explicit rules are given that can guide 
an analyst in making those modeling decisions in a specific requirements determination 
process. 
 
 
 
 
3.5     OBJECT-ROLE MODELING (ORM) 
 
3.5.1 Deficiencies in the ORM way of modeling 
 
In section 3.4.1. we have illustrated some of the modeling deficiencies that exist in the 
EER-approach. A number of these deficiencies have been addressed in the definition of 
the modeling constructs in Object Role Modeling.  The ‘state-of-the-art’ in fact 
oriented modeling (Halpin, 2001b); however, still has a number of modeling 
deficiencies that deserve attention. 
 
Semantics of naming conventions in ORM 
 
If we consider the example from figure 3.4 in which we have given a natural language 
statement of the domain requirements, the naming convention for an address in ORM is 
the address name (simple reference scheme) or a compound reference scheme that 
consists of three values: street name, house number and city name (e.g. see the 
discussion on signification in (Falkenberg, 1976a)). However, we have assumed that in 
this UoD, the addresses are restricted to one country. In case a postal service 
organization decides to expand its activities by taking over a foreign postal service it 
becomes clear that what used to be a valid signification within the country of origin 
now has become an invalid or incomplete signification. To avoid these problems from 
happening when requirements evolve it is a good practice to model these explicit 
semantics of naming conventions in the requirements specification at all times. An 
example of an explicit naming convention for an address within the Netherlands would 
be:  
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An address within the Netherlands can be identified among the union of addresses 
within the Netherlands by the combination of street name, house number and city 
name. 
 
The existence of different referencing modes 
 
In ORM three different ways of modeling naming conventions or reference schemes 
exist (Bollen, 2002b). The 1-1 referencing mode is depicted graphically by adding the 
name of the reference mode in parentheses to the name of the entity type that has to be 
referenced (Halpin, 2001b:81). We have given the ORM model for the following 
domain requirements in figure 3.5:  
 

An employee works for a department within the ABC company 
An employee can be identified by an employee ID 

A department can be identified by a department name 
An employee can work for one department at most 

 
 

           

Department
(department name)

...works for... within the ABC company

Employee
(employee ID)

 
      

 
Fig. 3.5 Domain semantics and representation in ORM model I 

 
The second way of modeling naming conventions is the case of a compound 
referencing scheme in which an entity of a given entity type can only be identified 
when using 2 or more values. In figure 3.6 we have illustrated such a compound 
referencing scheme (Halpin, 2001b: 192-195) for our (running) example from figures 
3.2 and 3.5 in which we have changed domain semantics that allow us to identify an 
employee by the combination of first name and last name. 
 

An employee works for a department within the ABC company 
An employee has exactly one first name 
An employee has exactly one last name 

An employee can be identified by a combination of first name and last name 
A department can be identified by a department name 

An employee can work for one department at most 
 
If we compare the ORM models from figures 3.5 and 3.6 we can see that the distinction 
between a simple and a compound reference scheme has a big impact on the resulting 
Object-Role Model. All other domain semantics in the example of figures 3.5 and 3.6 
are identical, however, in the example from figure 3.6 we have a model that contains 3 
fact types in comparison with the model from figure 3.5 in which we have only one fact 
type. 
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Department
(department name)

...works for... within the ABC company

Employee

first name

has /is of

last name

has /is of

U

      
           

Fig. 3.6 Domain semantics and representation in ORM model II 
 

The third way of modeling naming conventions is called objectification 
(Halpin, 2001b:85) in which a nested object type is modeled as a fact type in which the 
constituting entity types and/or name types of the objectification are given (see figure 
3.7). 
 

An employee works for a department within the ABC company 
An employee can be identified by a combination of first name and last name 

A department can be identified by a department name 
An employee can work for one department at most 

 
The resulting ORM diagram is given in figure 3.7. 
 

       

"Employee"

Department
(department name)

...works for... within the ABC company

first name last name
P

There exists an employee identified by 
a combination of.... and ....

 
 

       
Fig. 3.7 Domain semantics and representation in ORM model III 

 
Missing naming convention(s) for roles and/or fact types in ORM 
 
In ORM we are not required to specify a role name every time a fact type is defined. 
This can lead to confusing situations in case the same entity type plays two or more 
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roles within a single fact type. Consider, for example, the following application domain 
semantics. 
 

A Person introduces a person to a person 
A person can be identified by a person name 

A person can only be introduced once to another person 
 
The resulting ORM diagram is given in figure 3.8. 
 

                                     
...introduces...to

Person
(person name)

 
 

Fig. 3.8 Domain semantics and representation in ORM model IV 
 

As we already discussed in chapter 1 of this thesis, we consider the notation legend of a 
requirements specification of minor importance in comparison with the modeling 
language concepts. If we now consider the ORM example in figure 3.8 we miss the 
naming conventions for the major modeling concepts in ORM: fact types and roles that 
would allow us to communicate the modeling results without having to use a specific 
notational convention, e.g. we must be able to record the modeling results in figure 3.8 
in the following way: 
 

There is a fact type that contains roles person1, person2 and person3. 
Fact type template of this fact type reads as follows: <Person1> 

introduces   <person2> to <person3>. 
Role ‘person1’ is played by the entity type ‘Person’. 
Role ‘person2’ is played by the entity type ‘Person’. 
Role ‘person3’ is played by the entity type ‘Person’. 

The name class ‘Person name’ is a reference type for the entity type ‘Person’ 
There is a uniqueness constraint defined on roles ‘Person2’and ‘Person3’. 

 
This means that ORM at least a simple naming convention should exist that will allow 
an analyst to uniquely identify a role among the union of roles or a compound reference 
scheme in which a role can be identified by a combination of a fact type name and the 
(locally unique) role name. 
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3.5.2    Deficiencies in the ORM way of working 
 
With respect to the availability of a modeling procedure that guides an analyst in 
creating semantically correct ORM models we remark that ORM has a conceptual 
schema design procedure (Halpin, 2001b; Halpin and Orlowska, 1992). 
 
Halpin’s conceptual schema design procedure 
 
In ORM a conceptual schema design procedure is defined (Halpin and Orlowska, 1992; 
Halpin, 2001b). This procedure consists of 7 steps: 
 
 Step 1: From examples to elementary facts 
 Step 2: Draw fact types and populate 
 Step 3: Trim schema; Note basic derivations 
 Step 4: Uniqueness constraints, arity check 
 Step 5: Mandatory roles and logical derivation check 
 Step 6: Value, Set and Subtype Constraints 
 Step 7: Other constraints; Final checks 
 
However, a close examination of this procedure in Halpin (2001b) and Halpin and 
Orlowska (1992) reveals that the procedure basically tells an analyst what to do next 
but does not exactly specify how such an activity must be carried out in a requirements 
determination process. With respect to steps 4, 5, 6 and 7 we must remark that ORM 
does not give a precise algorithm or procedure the application of which guarantees that 
the instances of those static and dynamic constraint types will be found in the 
requirements determination process. 
 
 
 
 3.6    THE UNIFIED MODELING LANGUAGE (UML) 
 
The Unified Modeling language has its ancestors in a number of object-oriented 
modeling approaches (OMT (Rumbaugh et al.,1991); OOAD (Booch, 1994); OOSE 
(Jacobson et al., 1992)). The UML started out as a collaboration between the designers 
of the latter OO-methods (Kobryn, 1999:30). The UML is “a general-purpose visual 
modeling language that is used to specify, visualize, construct, and document the 
artifacts of a software system…it is intended for use with all development methods, 
lifecycle stages, application domains, and media.”  (Rumbaugh et al., 1999:3). In UML 
the class diagram represents the data-oriented perspective of an application domain 
(Otero and Dolado, 2004). Bollen (2002c) has analyzed the diagrams types within 
UML that jointly cover the description of the information requirements as given in the 
criteria from chapter 2, and has found modeling problems that occur in the application 
of UML. He concludes that out of the 9 diagram types that are currently defined in 
UML (class diagrams, object diagrams, use-case diagrams, sequence diagrams, 
collaboration diagrams, state charts, activity diagrams, component diagrams and 
deployment diagrams) only the use-case diagram, class diagram, activity diagram and 
(advanced) state chart diagram are necessary to fulfill the completeness criterion in 
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section 2.1 of this thesis. Otero and Dolado (2004) conclude that 4 types of diagrams 
are needed to specify the behaviour-oriented aspects of systems: sequence, 
collaboration, state and activity diagrams. Dori (2002:83) claims that “The tight 
interdependence of structure and behavior mandates that these two major system 
aspects be addressed concurrently. This task is, however, counter-intuitive and 
extremely difficult if structure and behavior are forced into two (let alone nine) 
separate diagram types.”  

Related to the problem of too many diagram types is the lack of consistency 
when it comes to modeling for example a state transition constraint as a state chart that 
constrains the states of the object that are specified in an object class diagram. 

 

Person
SSN: number {P}
Marital Status: Single

Married

Divorced

Widow/er

           
         

Fig. 3.9 Lack of coherence in UML class diagram and UML state chart diagram 
 
From figure 3.9 we see that the right-hand diagram is intended to serve as a way to 
encode a transition rule or dynamic constraint on the subsequent values of the attribute 
marital status of the object class Person. UML does not give guidelines how to 
consistently model that the state in the state chart refer to a particular attribute of the 
accompanying class diagram. 

 In section 3.6.1 we will focus on the deficiencies in the UML specification 
language that are connected to the modeling constructs for the UML class diagrams 
 
3.6.1 Deficiencies in the UML way of modeling 
 
Although the static aspects of class diagrams share most of the modeling problems that 
were encountered when we analyzed the (E)ER modeling approach, UML has 
addressed some of them. For example, the naming conventions for attributes are 
implemented in the UML class diagrams as attribute types. However, there are 
additional modeling complications that must be taken into account when evaluating the 
modeling constructs in UML class diagrams and that can be fully contributed to the 
properties of the object-oriented paradigm, most notably the object ID and the 
interaction between the concepts of generalization/specialization and class inheritance. 
 
The object ID in the Unified Modeling Language  
 
In addition to the declaration of the object’s class, the declaration of the attributes and 
methods that an object inherits, the OO paradigm states that each object instance has a 
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‘unique’ identity: “Each object has its own unique identity. Most object-oriented 
languages automatically generate implicit identifiers with which to reference objects” 
(Rumbaugh et al., 1991:24). “Object identifiers must uniquely identify as many objects 
as may ever coexist in the system at any one time”  (Cox, 1986:54).  
  

D1:house inhabitant D2:house inhabitant

Name=’Tommy’

ID  234 ID  235

Name=’Tommy’

          
       

Fig. 3.10 Two different object instances of the class House  Inhabitant 
 
In UML the following definition for the object ID is given: “Each object has its own 
unique identity and may be referenced by a unique handle that identifies it and provides 
access to it.”(Rumbaugh at al., 1999:360). This concept of ‘globally’ unique object 
ID’s to identify objects within a specific application system allows us to make a precise 
distinction between two different objects that have the same state and behaviour 
(Dittrich, 1990:16). The existence of these object IDs allows us to refer to a house 
inhabitant with object ID 234 having the name Tommy and a house inhabitant with 
object ID 235 having the name Tommy as   two different objects (see figure 3.10). It is 
impossible to empower users in the application domain to use ‘abstract’ object IDs as 
naming conventions (Halpin, 2001b:353). The best way to encode a domain-based 
naming convention for the concepts that are modeled as object classes is as a 
(combination of) class attributes. UML, however, does not provide a standard graphic 
notation for such a constraint. Halpin and Bloesch (1999:12) define a primary identifier 
constraint (‘{P}’) on the combination of attributes that can be used to identify an 
instance of an object class using application-based naming conventions. This means 
that in UML state constraints need to be applied in order to facilitate the 
implementation of domain-based naming conventions. 
 
The interaction between the concepts of generalization/specialization and class 
inheritance. 

 
The OO paradigm uses the same ‘is-a’ relationship for denoting specialization and 
generalization. In the OO-paradigm: “Generalization and specialization are two 
different viewpoints of the same relationship, viewed from the super class or from the 
subclasses. The word generalization derives from the fact that the super class 
generalizes the subclasses. Specialization refers to the fact that the subclasses refine or 
specialize the super class.” (Rumbaugh et al., 1991:42). The concept that is used in the 
OO paradigm for modeling generalizations is the abstract class concept in combination 
with the ‘is-a’ relationship.  
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 Tennis
 Player

 Tennis   
 Player   

Person  

Employee  

Employee  

Generalization 

Person name  

Person name  
Person name  

Person name  

     
             

Fig. 3.11 Generalization transformation using abstract class constructs 
 

The abstract class can be extensionally defined as the union of extensions of 
the subclasses at any point in time.  
 

Person:= Tennis player ∪ Employee 
 
 One of the significant concepts in the object-oriented paradigm is the concept 
of inheritance. Rumbaugh et al. (1991:42) give the following description of inheritance: 
“…inheritance refers to the mechanism of sharing attributes and operations using the 
generalization relationship.” Other definitions found in the literature are: “Inheritance 
is a code-sharing mechanism. It allows reuse of behaviour of a class in the definition of 
new classes. Subclasses of a class inherit the data structure and the operations of their 
parent class (also called a super class) and may add new operations and new instance 
variables.” (Tkach and Puttick, 1994:21). “Inheritance is a tool for organizing, building 
and using reusable classes” (Cox, 1986:69). For an in-depth discussion on different 
types of inheritance see Rahayu et al. (2000). 
 In this case the class hierarchy is determined by clustering characteristics of 
the class attributes and methods. “Although many of the classes do not represent 
physical objects, they are conceptual entities which can be stated in the terminology of 
the problem domain.” (Korson and McGregor, 1990:46). “The availability of an 
inheritance relation enables the designer to “push higher” and to identify commonality 
among abstractions and to produce higher level abstractions, from this commonality.” 
(Korson and McGregor, 1990:53). Bollen (2002d) gives an example of how the 
aforementioned ‘pushing higher’ process interferes with the 
specialization/generalization concepts in the data perspective. 

The application of the OO concept of inheritance can lead to the creation of 
abstractions in an object class hierarchy that do not represent things, entities or 
concepts in a Universe of Discourse. This type of abstraction should be modeled as an 
abstract object class or the conditions under which it can be modeled as a non-abstract 
object class should be explicitly given in a methodology for the OO-modeler. Snoeck 
and Dedene (1996:179-180) offer some guidelines for specializations/generalizations in 
object-oriented conceptual modeling. 
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Association end multiplicities in N-ary relationships in UML class diagrams 
 
As we indicated earlier the static aspects of the UML class diagrams are based to a 
large extent on the (Extended) Entity-Relationship model. However, when the 
association (end) cardinalities for ternary (or N-ary in general) relationships are 
discussed, the defining UML literature gives specific definitions. On page 61 of the 
UML notation guide (Rumbaugh et al., 1999) we find the following definition of 
association end multiplicity: “Multiplicity for N-ary associations may be specified but 
is less obvious than binary multiplicity. The multiplicity on a role represents the 
potential number of instance tuples in the association when the other N-1 values are 
fixed.” On page 348 of the UML language reference manual (Booch et al., 1999) we 
find the following definition of association end multiplicity: “In a n-ary association, the 
multiplicity is defined with respect to the other n-1 ends. For example, given a ternary 
association among classes (A, B ,C) then the multiplicity of the C end states how many 
C objects may appear in association with a particular pair of A and B objects. If the 
multiplicity of this association is (many, many, one), then for each possible (A,B) pair, 
there is a unique value of C. For a given (B,C) pair, there may be many A values, 
however, and many values of A,B and C may participate in the association.” “If the 
multiplicity of this association is (many, many, one)………. For a given (B,C) pair, 
there may be many A values, however.” This means that the upper multiplicity of many 
(*) defined on the association end that is connected to object class A implies there can 
exist many links in the object diagram for every possible (B,C) pair. It is not clear 
whether a lower or implied lower multiplicity for 0 in a n-ary association in UML 
specifies whether an object in the object class that is connected to the association end 
can exist independently of the association or  not. In Bollen (2002a) an example is 
given of the ambiguity for the definition of the lower association end multiplicity in 
UML. Because of this ambiguity or ‘fuzziness’ in the definition  of the lower 
association end multiplicity  the expressiveness of this type of graphical constraint type 
in UML is rendered insignificant.      
      
Verbalization of sentences for N-ary associations 
 
The precise verbalization of the semantics of a n-ary association in UML is not 
possible (Halpin and Bloesch, 1998). 
 
Default existence of object classes 
 
In UML the modeling of semantic relationships as associations between object classes 
implies that instances of these object classes can exist on their own (Bollen 2002b), 
UML does not give guidance on how to suppress these non-existing domain semantics.  
 
Association class and qualifier as naming conventions  
 
Next to the identification attribute(s) that can be used to model the domain naming 
conventions in UML, there exist a number of alternative referencing modes: the 
association class and the association qualifier (Bollen, 2002b). However, the choice of 
a specific referencing mode can only be justified if additional domain semantics have 
been analyzed. 
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3.6.2    Deficiencies in the UML way of working 
 
UML is a modeling language without a modeling process or procedure (Liang, 
2003:83). Liang (2003) gives a procedure for mapping use cases into classes of a class 
diagram. In UML a requirements determination procedure is lacking (Bollen, 2002c) 
that specifies how the UML can be used to model the domain requirements in terms of 
the data model, static constraints, dynamic constraints, static derivation rules and 
dynamic rules. Bollen (2002c:24) proposes an outline of a modeling procedure that can 
be used for applying the necessary UML modeling concepts in order to model those 
domain semantics that are necessary for the requirements determination (see section 
2.1). In the defining UML literature (Booch et al., 1999; OMG, 2002; Rumbaugh et al., 
1999), however, such a rudimentary procedure outline is missing and therefore, the 
consistent application of UML modeling constructs can never be guaranteed.  
 Juristo et al. (1999:140) give an overview of research that indicates that there 
are no rigorous criteria for identifying the components of OO conceptual models other 
than procedures that contain steps that tell an analyst what to do, instead of how. See 
for an example Nanduri and Rugaber (1996) who took one of the predecessors to UML 
as their OO methodology: OMT (see Rumbaugh et al., 1991).  
 
Rumbaugh’s modeling steps 
 
The modeling procedure that is recommended by Rumbaugh et al. (1991) and 
summarized in Nanduri and Rugaber (1996:10) contains the following steps: 
 
 Step 1: Identify objects and classes (nouns) 
 Step 2: Identify associations between objects (verb phrases) 
 Step 3: Identify attributes of objects and associations (adjectives) 
 Step 4: Identify operations (verbs and adjectives) 
 Step 5: Organize and simplify object classes using inheritance 
 Step 6: Iterate and refine the model 
 
 
 
3.7    CONCLUSIONS ON THE WAY OF -MODELING,  

  -WORKING AND - CONTROLLING FOR THE   
  REQUIREMENTS DETERMINATION 
  APPROACHES FROM THE LITERATURE  

 
We now have analyzed three members of the three most prominent families (ER, fact 
orientation, object orientation) of requirements approaches from the literature. While 
analyzing specific instances of these three approaches (McFadden’s EER, ORM and 
UML) we have discovered modeling deficiencies in each of them. Although a number 
of deficiencies that we, for example, have found in approach A might have been 
addressed in approach B, the conclusion so far is that each of these three approaches 
contains some deficiencies. In this chapter we will therefore summarize the extent to 
which any deficiency that is found in a single approach is addressed or is not addressed 
in at least one of the other methodologies. In addition we will indicate the extent in 
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which the three specific modeling approaches comply with the other criteria for 
requirements determination methods that we have given in chapter 2 of this thesis. 
 
3.7.1    Overall modeling deficiencies 
 
The (E)ER and ORM approaches basically allow an analyst to incorporate all 
application semantics (static and dynamic if applicable) that can be modeled by the 
approach into one diagram type e.g. an ER-schema or an ORM information model or 
information grammar. In UML there exist a multitude of diagram types in which it 
remains unclear what diagram types must be used for the modeling of the application 
system’s dynamic features (Dori, 2002). However, for the main purpose of the research 
in this thesis we have already stated that the notations that are used by the different 
RDM’s are of secondary importance. 
 
3.7.2    Modeling deficiencies regarding the data model for the way of modeling 
 
In this section we will compare the deficiencies as we have found them in the three 
approaches which mainly are concerned with the data model, e.g. the definition and 
naming of domain concepts and their semantic relationships. 
 
Modeling facilities for n-ary relationships 
 
ORM provides modeling support for N-ary and binary relationships. In ORM a binary 
relationship is a special case of a N-ary. The definitions of uniqueness and mandatory 
role constraints are orthogonal to the arity of the fact type(s) in the information 
structure diagram in ORM (this means that ‘look here, look here’ variant is applied for 
all arities).   

It is possible, however, to model N-ary relationships in the EER approach and 
the UML class diagrams. However, only a few EER dialects, explicitly point at the 
necessity of a N-ary relationship concept (e.g. Teorey et al., 1986: 202; Thalheim, 
2000:40). The main difference between the modeling facilities for N-ary relationship in 
EER and UML on one side and ORM on the other is in the dependency that exist 
between the application of cardinality constraints (or association end multiplicities) and 
the modeling of relationships/associations because some common business rules can 
not be expressed easily at all times in EER and UML because of ambiguities in the 
definition of participation cardinalities. 
 
The existence of multiple information bearing constructs 
 
In (E)ER and UML at least two information bearing constructs are available, in EER 
these are the attribute and relationship, in UML this is the class attribute and 
association.  

In ORM the fact type is the only information bearing construct. An exception 
within the plethora of EER/OO approaches for requirements determination approaches 
in terms of the number of information bearing constructs, is Embley’s et al. OSA 
(Object oriented Systems Analysis) approach (Embley et al., 1992) in which the 
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declarative information is represented in the Object Relationship Model. In this model 
the single information bearing construct is the relationship. 
 
Facilities to capture precise domain semantics of naming conventions 
 
UML and ORM provide facilities for capturing (at least) the names of the name classes.  

Most (E)ER dialects lack a facility for recording name classes for concepts 
that are modeled as attributes at all times. All three approaches lack a way of explicitly 
recording the context in which the names of a name class are valid for referencing 
entities or concepts of a given type. 
 
The co-existence of different referencing modes including object ID’s 
 
In ORM three ways of referencing entities exist and in UML entities can be referenced 
using a combination of attribute (names)20 or as an association qualifier or as an 
association class.  

In EER entities that need to be referenced by names for a name class can only 
be modeled as entity types in which attributes or composite attributes can be applied 
(McFadden et al., 1999: 219). In most EER dialects gerunds can be defined which is 
similar to association class construct in UML. 
  
Facilities for specification of how to communicate semantic relationships in data 
models  
 
In EER and UML there’s no facility for verbalizing the relationships that are modeled 
as N-ary relationships in a precise and unambiguous way. In UML verbalization into 
sentences is only possible for binaries associations that use an optional marker (Halpin 
and Bloesch, 1999:8). In ORM these facilities exist for all semantic relationships in an 
application domain. 
 
Naming conventions for elements/concepts in data models 
 
If we want to communicate the content of the data model in a way that is ‘diagram-
free’ we miss naming conventions for the roles and/or fact types in ORM. Furthermore, 
the optionality of the role concept in EER and UML can lead to additional application 
model verbalization problems. This severly impacts the traceability of the requirements 
documents in ORM, EER and UML. 
 
The facility to capture the precise generalization/specialization semantics. 
 
In most extended ER approaches (Balaban and Shoval, 2002; Kolp and Zimanyi, 2000; 
Scheer and Hars, 1992; Silva and Carlson, 1995; Teorey et al. 1986; Theodoulidis et 
al., 1991) and ORM (Halpin, 2001b) modeling constructs are defined that enable the 

                                                 
20 Such a combination of attribute names, however, needs a static constraint that specifies that 
thi(e)s(e) attribute(s) can serve as a reference type. This means that in UML, domain based 
naming conventions are encoded as static constraints. 
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analyst to model the specialization/generalizations relationships that exist in the 
application domain.  

In UML, however, it is possible to create ‘inheritance’ trees in which the 
generalizability of methods determines a specialization/generalization hierarchy other 
than is justified by the domain ontology.  
 
3.7.3 Modeling deficiencies regarding the static constraints for the way of  

modeling  
 
Extent in which business rules can be modeled as static constraints 
 
The business rules that can be modeled as static constraints in EER reflect those 
domain semantics that can be encoded as cardinalities in binary relationships. The ER+ 
dialect in addition contains a subset constraint (Kolp and Zimanyi, 2000), Rochfeld and 
Negros (1992) define a range of inter-relationship constraints in their ER dialect; 
inclusive FIC, exclusive FIC, simultaneity constraint.  

In UML this is extended to include attribute multiplicities. Furthermore UML 
has the facility to model some types of exclusion and subset constraints. Furthermore 
UML has the object constraint language (OCL) that enables it to model a wide range of 
domain semantics.  

ORM offers the most pre-defined graphical static constraint types for 
encoding business rules.  
 
Interpretation of cardinality constraints/association end multiplicities 
 
The mimimum relationship cardinalities and/or association end multiplicities in many 
EER dialects and in UML, especially for N>2 are not or at best ill-defined. In EER a 
number of interpretations exist for cardinality constraints. Dullae et al. (2003) give two 
archetypes of interpretations (‘look here, look across’(LELA) and ‘look across, look 
across (LALA)). In the EER flavor that we have analyzed in this thesis (McFadden et 
al, 1999: 85-165) we have the LALA variety for binary relationships. However for N-
ary relationships the cardinality semantics totally change. McFadden et al. use two 
ways for encoding N-ary domain semantics: a N-ary relationship as an associative 
entity of arity (<= N) having 1 or more relationship attributes or as a binary having at 
least 1 relationship attribute. However, for those application areas in which it is not 
possible to identify a concept in the application domain as gerund and in which it is not 
possible to use relationship attributes, the interpretation of the minimum cardinalities 
for such a ‘pure’ N-ary (EER) relationship remains ambiguous and the fact that the ER 
approach is used for the creation of requirements specifications, does not give any 
guidance in how to interpret cardinalities (see figure 3.3).  

The multiplicity constraints on association ends defined in UML specify any 
range of occurrence frequencies applied to a single role for binaries (for N-aries, such a 
range indicates what occurrence numbers are possible when the other n-1 classes have 
a fixed value). ORM partitions this multiplicity concept into the orthogonal constraint 
types: mandatory role constraints and frequency constraints (Halpin and Bloesch, 
1999:11). 
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Default existence constraints 
 
In UML entities or objects are allowed to ‘exist’ independently of the relationships they 
are involved in (Bollen, 2002b:133).  

In EER entity types are strong by default (McFadden et al., 1999: 92-93) 
which means that they are allowed to exist independently of the relationships they are 
involved in.  

In ORM entity types are not allowed to exist independently by default. Bollen 
(2002b) concludes that in UML and for the same reason in EER when a (binary or 
higher order) semantic relationship is modeled, unary relationships that declare the 
existence of entities or objects are modeled at the same time. This means in practice 
that to be able to model such a (binary or higher order) relationship (on its own) the 
analyst has to declare in EER that the entity type that is not allowed to exist 
independently is assigned the status weak (Kolp and Zimani, 2000: 1059; Tsichritzis 
and Lochovsky, 1982:182) and in UML a textual constraint must be attached that states 
that each instance should at least participate in one of the relationships (Bollen, 
2002b:133). We note that in an evolving requirements specification this implies that 
such a constraint must again be specified whenever a new relationship in which the 
object class participates is added to the EER diagram or UML class diagram. 
 
3.7.4    Modeling deficiencies regarding the dynamic constraints for the way of 

modeling  
 
In this paragraph we will compare the EER model, the UML and ORM on the facilities 
that they provide for modeling dynamic constraints. We will use a number of 
subclasses of dynamic constraints that can be found in De Brock (2000). De Brock 
makes a distinction into subclasses of dynamic constraints. Prabhakaran and 
Falkenberg (1988) give modelling constructs for transition oriented constraints (TOC) 
in NIAM. 
 
Cumulativity of tuples, key attribute value combinations, attribute value combinations 
 
In the terminology of the application information base this cumulativity requirement 
expresses that every fact that has been entered into the application’s information base 
should stay in the application’s information base. In EER no provision for such a 
domain rule exist, in UML the changeability qualification can be defined on an 
attribute or association end of binary associations (Halpin, 2001b:393) and be assigned 
the value add Only (Rumbaugh et al., 1999: 166, 184). In ORM changeability 
constraints are not supported (Halpin, 2001b:395). 
 
Non-decreasing attribute values and non-decreasing number of tuples 
 
These constraint types can not be specified in EER and ORM. 
 
Integrity constraints on initial values 
 
UML may assign initial values to attributes, EER and ORM (Halpin, 2001b:390) do not 
support this. 
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Life cycles 
 
UML supports this in the form of state charts and ORM uses a state transition fact type 
in which the graphs in the life cycle can be captured as data (Halpin, 2001b:299). EER 
does not support this type of constraint. 
 
Changing Life cycles 
 
UML supports this in the form of state charts, but a change in life cycle implies 
remodeling. ORM uses a state transition fact type in which the graphs in the life cycle 
can be captured as data (Halpin, 2001b:299) and therefore changes in the life cycle can 
be implemented on an information base level. EER does not support this type of 
constraint. 
 
3.7.5    Modeling deficiencies regarding the static derivation (rules) for the way of    
            modeling  
 
In the specific EER dialect that we have studied (McFadden et al., 1999) only 
provisions are given for static derivation (rules) that refer to derived attributes. 
Furthermore these derived attributes are restricted to those that can be derived from 
other attributes (McFadden et al., 1999:95). It remains unclear whether derived 
attributes that partly need relationships instances as an input should be signified. In 
most cases, however, no modeling constructs in EER are given that allow us to model a 
precise specification of a derivation rule. Rauh and Stickel (1996) give an extension to 
the ER approach called ERMded, which contains modeling, constructs for derivation 
rules. 

In ORM, derivation rules are written as text below the diagram (Halpin, 
2001b, 97). We note that derivation rules should contain explicit references to roles in 
the information structure diagram. We note however that the data structure of a derived 
fact type is not required to be contained in the diagram (Halpin, 2001b:99) but if it is, it 
must be distinguished from the base diagram by an asterix (Halpin, 2001b:100).  

In UML a static derivation (rule) is modeled as a derived element (i.c. a 
derived attribute or a derived association) (Rumbaugh et al., 1999:254-255). We note 
that in UML, the derived attribute or association is included in the class diagram and 
the derivation rule is specified and included in the class diagram. Furthermore, UML 
allows us to specify (the more complicated) derivation rules (in terms of the number of 
classes and relationships involved in an activity diagram (Bollen, 2002c:23)) 

 
3.7.6    Modeling deficiencies regarding the dynamic rules for the way of modeling  
 
The EER dialect in McFadden et al. (1999) does not provide facilities for the modeling 
of dynamic rules.  Gorman and Choobineh (1991) and Silva and Carlson (1995) do 
provide an object-oriented extension to ER that facilitates the modeling of dynamic 
rules. 
 In ORM  (Halpin, 2001b; Halpin and Orlowska, 1992) no facilities are given 
for modeling dynamic rules. Prabhakaran and Falkenberg (1988:100) introduce trigger-
precedent-consequent triplets in combination with a NIAM conceptual schema. 
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 UML provides modeling facilities for the encoding of event-condition action 
constraints. Bollen (2002c) states that an advanced state chart in UML can be used to 
model the event-condition action constraints (Rumbaugh et al., 1999: 447-448). 
 
3.7.7    Modeling deficiencies regarding the way of working and way of    
             controlling 
 
In the EER and OO families of requirements modeling languages, some authors have 
tried to define a modeling procedure; however these procedures basically specify what 
an analyst should do rather than prescribing how these steps must be performed. In 
combination with the choices that are inherent to the multitude of information bearing 
constructs in EER and UML, these procedures are prone to a ‘deadly embrace’ in terms 
of the knowledge on the end result that must be available before the initial 
requirements can be modeled. 
 Another deficiency in many EER dialects is that the requirements specification 
that is expressed in such an EER diagram is not complete in terms of domain 
semantics. In some approaches subsequent steps are given that should transform the 
requirements specification into an implementation schema, e.g. a relational schema. 
This, however, means that in this transformational stage from a requirement 
specification into a design specification domain, still domain knowledge needs to be 
‘injected’ to determine the appropriate functional dependencies (see Teorey et al. 
(1986) and Ram (1995)).  

In ORM all semantics regarding functional dependencies are incorporated in 
the information model or conceptual schema. In the fact-oriented approach, the 
conceptual schema design procedures in Halpin and Orlowska (1992) and Halpin 
(2001b), however, do not specify how the instances of the pre-defined constraint types 
can be instantantiated at all times. 
 
3.7.8 Summary of Modeling deficiencies in the EER, ORM and UML   
               approaches 
 
 
In table 3.3 we have summarized the deficiencies from the three approaches studied. A 
‘+’ denotes that an approach does not have this language or procedure deficiency. A ‘0’ 
means that an approach has this deficiency to some extent. A ‘- ‘means that an 
approach has this deficiency to the highest extent. 
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Table 3.3 Summary of the comparison of EER, ORM and UML approaches on modeling   
                  deficiencies. 
 

Modeling 
deficiencies 

 EER ORM UML 

REQUIREMENTS LANGUAGE/PROC. Deficiency    
Data Model Facilities for n-ary relationships 0 + 0 
 Facilities for sem. of naming 

conventions 
- 0 0 

 Existence of multiple information 
bearing constructs 

0 + - 

 Facilities for naming conventions of 
modeling concepts 

- - 0 

 Co-existence of different reference 
modes 

0 - - 

 Facilities for capturing verbs in data 
models 

- + 0 

 The facility to capture the precise 
generalization/specialization semantics 

 + + 0 

Static constraints Extent in which static constraints can 
be modeled 

0 + + 

 Interpretation of cardinalities/aem’s - + - 
 Default existence constraints - + - 
Dynamic 
constraints 

Cumulative of value combinations - - + 

 Non-decreasing values - - - 
 Integrity constraints on initial values - - + 
 Life cycles - + + 
 Changing life cycles - + 0 
Static Derivation   0 + + 
Dynamic Rules  - - + 

 
 
 

 
3.8 THE SUITABILITY OF EXISTING APPROACHES FOR  
          REQUIREMENTS DETERMINATION WITH RESPECT   
          TO THE COMPLETENESS-, DOMAIN RICHNESS,  
          EFFICIENCY AND FORMALITY CRITERIA   
 
In chapter 2 we have defined four criteria that can be considered relevant in the context 
of requirements determination.  In this section we will summarize the findings from the 
literature survey on existing requirements determination approaches with respect to 
these four criteria:  domain richness, completeness, efficiency, and formality.  

With respect to the domain richness criterion we remark that this criterion 
contains a number of dimensions. The dimension perception refers to the extent in 
which different domain users have a different perception of an underlying reality. This 
means that the application of a requirements determination method must lead to a 
requirements specification that reflects the (possibly) different perceptions of an 
underlying reality by different user groups. It is possible to reflect these difference 
perceptions by using the EER, UML and ORM approaches, whenever they are 
embedded in a procedure that enables an analyst to integrate the different views from 
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different user groups on the ‘underlying reality’ by integrating the sub-schemas of 
these users into a final ‘overall’ requirements specification in which the different 
perceptions are made explicit. So far, the EER, UML an ORM approaches that we have 
discussed in this chapter do not give provisions for this, however, Hayne and Ram 
(1995:100-101) report on a design checking tools (EasyER, GAMBIT and DDEW) for 
(E)ER models. 

The dimension turbulence characterizes the extent in which an application 
domain is subject to changes in the business data and business rules. While discussing 
the characteristics of the data model and the static constraints in the EER, UML and 
ORM approaches we have remarked that there is an interaction between the definition 
of set of modeling constructs and the extent in which a specification has to be 
remodeled when requirements are added to the model or change in general. We 
concluded that the EER and UML approaches are most prone to remodeling because of 
the multitude of information bearing constructs (Halpin and Bloesch, 1999:8). ORM 
addresses those issues mentioned but has a problem with a multitude of naming 
conventions which might lead to unstable models. 

With respect to the dimension tacitness, we can say that the EER, UML and 
ORM approaches basically have the assumption that users will be able to express their 
initial requirements in natural language, e.g. in a way that the data model, (static and 
dynamic) constraints and static derivation and dynamic rules can be written down in a 
requirements document. This restricts the applicability of these approaches to those 
domains that exclusively contain explicit knowledge. However, we think that a 
requirements determination methodology must be able to capture (at least some of) 
those tacit business rules that are implicit but that can be made explicit in the 
terminology of Kim et al. (2003). 

With respect to the dimension anchoring we can say that the requirements 
determination process in which we use EER and UML models for our specification 
language are in principle not limited to any specific range on the anchoring scale. ORM 
is anchored in familiar examples or data use cases (Halpin, 2001b:60) and it requires 
the domain expert to come up with these real examples and therefore is applicable for 
those domains that are on the ‘tangible’ side of the anchoring scale (see chapter 2). 

A brief conclusion regarding the suitability of the three approaches that we 
have studied in this chapter of this thesis is that the EER and ORM approach do not 
comply to the completeness criterion for the way of modeling that was defined in 
chapter 2 and that contains a description of what type of ‘domain knowledge’ in 
essence must be incorporated in a requirements specification. Furthermore, there exists 
a large difference between the families of approaches and even between members 
within a given family in terms of the extent in which the application domain semantics 
can be expressed in the data model, and as static or dynamic constraints, static 
derivation rules or dynamic constraints. With respect to the completeness criterion for 
the way of working we can conclude that ORM is the only approach that provides some 
assurance that all relevant semantic relationships in the data model and some types of 
static constraints will be detected in the application UoD. This means that there still is 
an opportunity to improve the requirements determination approaches we have 
surveyed in this chapter in terms of the completeness aspects that were given in section 
2.1.  

With respect to the efficiency criterion for the way of modeling we must 
remark that in EER and UML in a number of cases remodeling is necessary not 
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because domain semantics have changed, but because the attribute modeling construct  
has been applied in the initial requirements specification. With respect to the efficiency 
in the way of working we concluded that in some species of the family of EER 
approaches modeling procedures do exist. However, they rather tell an analyst what to 
do next than to specify how he/she must do it. In ORM a CSDP (conceptual schema 
design procedure) is given that gives more guidance on how an analyst must apply the 
modeling concepts than in the EER counterparts. However, with respect to the 
derivation of static constraints ORM does not give a procedure that specifies how an 
analyst can find all instances of such a constraint type in a given UoD. In the defining 
literature of UML no (rudimentary) procedure is provided that tells an analyst how to 
detect instances of constraints (in a dialogue with a domain expert). With respect to the 
efficiency in the way of controlling we must conclude that none of the approaches 
(EER, ORM and UML) provides quality assurance steps and the EER and UML 
approaches do not provide an activity structure that gives handles for optimizing 
performance, cost and time. 
 With respect to the formality criterion for the way of modeling we can 
conclude that in many (E)ER approaches and in the UML, it is not possible to apply a 
consistent definition for minimum cardinalities or multiplicities across all types of 
semantic relationships. In UML it is not clear how the modelling concepts that are used 
in the 9 different diagram types are related on the level of an application requirements 
specification. In ORM an inconsistency is found with respect to naming conventions. 
Furthermore, we remark that the optionality or non-existence of some modeling 
constructs in all three approaches that we’ve studied might lead to imprecise and 
inconsistent requirements specifications. The non-required naming conventions for 
model elements in EER, UML and ORM can lead to traceability problems. 

With respect to the formality criterion for the way of working we can conclude 
that for EER and UML the formality of the procedure is not relevant because there 
hardly exists any procedure.  With respect to the CSDP in ORM we remark that those 
segments of the CSDP that can be considered prescriptive documents are at most semi-
formal. In EER, UML and ORM no procedure exists that allows an analyst to question 
the assumptions on which the utterance of the domain semantics is based.  
 
Table 3.4 Comparison EER, ORM and UML approaches on completeness, domain richness,   
                 efficiency and formality criteria for the way of modeling, way of working and way of  
                 controlling 
 

  EER    ORM    UML  
 W 

o 
M 

W 
O 
W 

W
o
C 

 W 
o 
M 
 

W 
o 
W 

W 
o 
C 

 W 
o 
M 
 

W 
o 
W 

W 
o 
C 

Completeness - - n.
a. 

 0 0 n.a.  + - n.a 

Domain 
Richness 

- + n. 
a. 

 0 - n.a.  - 0 n.a. 

Efficiency - 0 -  0 0 -  - - - 
Formality - - -  - - +  - - - 
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The position of these approaches is basically that the domain requirements that are 
uttered by the user are encoded in the model 1-on-1. ORM claims in steps 3, 4 and 7 to 
perform checks on sample populations; however, it does not give guidelines on how to 
perform these checks in a dialogue with the responsible domain user.  

With respect to the formality criterion for the way of controlling we must 
conclude that there exist no formal quality assurance algorithms in EER, UML and 
ORM. Finally we can conclude that ORM is the only approach that has facilities for 
formally planning a requirements determination project in terms of the stages in the 
conceptual schema design procedure (CSDP). 

In table 3.4 we have summarized the deficiencies from the three approaches 
studied. A ‘+’ denotes that an approach does fully comply with this criterion for the 
given aspect of the RDM. A ‘0’ means that an approach complies to some extent. A ‘- ‘ 
means that an approach does not comply at all. 

After studying the existing literature on RDM’s we can conclude that no 
single approach fulfills the criteria that were given in chapter 2. To put it even stronger: 
even a compilation of approaches in which the best features of a number of approaches 
will be combined, will not comply with the four quality criteria from chapter 2. In 
chapter 4 we will use the flaws, inconsistencies and omissions that we have diagnosed 
in the state-of the-art in RDM’s when we operationalize the quality criteria from 
chapter 2 into an operationalized design specification for a to-be designed RDM. 
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CHAPTER  4 
 

OPERATIONALIZED DESIGN SPECIFICATION 
 
 
4.1  INTRODUCTION 
 
The evaluation of existing design alternatives in chapter 3 has lead to the conclusion 
that no existing requirements determination method complies with the quality criteria 
for a requirements determination method that were given  in chapter 2. This leads us to 
the development problem according to Van Engelen and Van der Zwaan (1994) since 
alternative designs will have to be developed in this research. In this chapter we will 
give an answer to the third research-(sub) question that we have given in chapter 1:  
 
What are the necessary elements for the way of modeling, the way of working and the 
way of controlling for a requirements determination method so that this method 
complies with the quality criteria that we have given for the design specification? 
 
In this chapter we will develop a specification for the to-be designed RDM in chapters 
5 and 6 that takes into account the reasons for non-compliance with the criteria from 
chapter 2 for many of the existing approaches. This will constitute the design criteria 
(or design specification according to Van Engelen and Van der Zwaan (1994)).  

We will draw conclusions from the derived criteria in chapter 2 and the 
literature survey on the state of the art in requirements determination approaches from 
chapter 3 and determine the explicit demands or requirements for the way of modeling, 
the way of working and the way of controlling for a ’to-be designed’ RDM according 
to the domain richness, completeness, efficiency, and formality criteria. These 
operationalized ‘design criteria’ will be used to evaluate the way of modeling of the ‘to 
be designed RDM chapter 5 and the way of working and the way of controlling of this 
to-be designed RDM in chapter 6. 
 
 
 
 
4.2    RDM DEMANDS FOR THE WAY OF MODELING 
 
4.2.1    RDM demands for completeness in the way of modeling 
 
In chapter 2 we have given a general definition of the completeness criterion for the 
way of modeling of a RDM. In this chapter we will refine this definition to cater for 
modeling deficiencies that we have encountered while studying a number of existing 
approaches.  

An information bearing construct must be applicable for all possible types of 
semantic relationships that can exist in an application domain. This means that such an 
information bearing construct in principle must facilitate the encoding of N-ary 
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relationships (N>=1). The encoding of binary relationships in such a situation will be a 
special case for which N equals 2. The literature survey from chapter 3 reveals that in 
most of the requirements specification languages that we have analyzed it is not 
possible to capture the abstracted natural language phrasing of a N-ary semantic 
relationships in a complete, precise and consistent way (preliminary RMD 1’). 
 
RMD 1’: The information bearing modeling construct in the to be designed RDM must 
be able to express the complete, precise and consistent communication semantics of 
any N-ary semantic relationship. 
 
Furthermore, the existence of non-domain based naming conventions, for example, a 
‘global’ unique object ID in UML is in general not suitable as a naming convention to 
be used in application requirements specifications. Furthermore, there must exist one 
modeling construct for naming conventions that must be able to capture all domain 
semantics regarding the context in which the naming convention is valid. This leads us 
to the definition of RMD 2: 
 
RMD 2: The modeling construct(s) for naming conventions must allow for one domain-
based naming convention and must be able to capture the semantics regarding the 
context in which the naming convention is valid. 
 

In the literature survey from chapter 3 we have found that in the (E)ER and 
OO approaches there is generally no compulsory role modeling construct defined. This 
can lead to severe problems when the contents of a requirement specification document 
must be communicated in a different way than in the diagrammatic or symbolic format. 
To denote a specific involvement of a given object type in a semantic relationship, 
especially when such an object or entity type plays more than one role in a semantic 
relationship, a compulsory role construct and an appropriate naming convention for 
roles must be contained in the requirements specification language.  
 
RMD 3: The to be designed requirements method must contain a role construct and an 
explicit naming convention for roles. 
 
From our literature survey in chapter 3 we can conclude that in the state-of-the-art in 
requirements specification languages, a difference exist between the modeling 
capabilities for business rules between on the one hand EER languages and on the other 
hand UML and ORM. The common denominator in terms of the types of business rules 
that can be encoded as constraints in each of those approaches can be considered those 
types that can be modeled as minimum or maximum cardinalities of relationships. This 
means that a to be designed requirements determination method must provide at least 
modeling facilities to express those business rules that are encoded as relationships 
cardinalities in traditional EER and OO approaches to be complete in terms of the 
‘state-of-the-art’ in the way of modeling of existing approaches.  
 
RMD 4: The static constraint types in the to-be designed requirements method must at 
least contain those types that enable us to encode those business rules that can be 
encoded by relationship cardinalities in EER and UML. 
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We, finally, note that the operationalization of the completeness criteria should lead to 
demands regarding the static derivation (rules), the dynamic constraints and dynamic 
rules. These demands, however, will be implied by ‘stronger’ RMD’s in section 4.2.4. 

 

4.2.2    RDM demands for the domain richness in the way of  modeling 
 
With respect to the dimension turbulence of the domain richness criterion we can say 
that the to-be designed requirements RDM must accommodate the whole range of 
values that potentially can characterize an application domain. In case an application 
domain is stable, the requirements determination method will not need facilities to cope 
with changing requirements, however, if these facilities are available it does not mean 
that the method should not be applicable in stable environments. In case of turbulent 
application domains, the requirements determination method must have facilities that 
allow an analyst to easily adapt the requirements specification document to the 
evolving requirements. Ideally a 1-on-1 relation between a domain requirement and a 
requirements specification segment should exist. This means that the way of modeling 
of the to-be designed RMD must facilitate this 1-on-1 addition or deletion of a specific 
domain requirement and would imply that no unnecessary remodeling efforts need to 
be undertaken when the application business logic evolves. 
 
RMD 5: A requirements specification that is the result of the application of the to-be 
designed requirements determination method must be able to adapt to an evolving 
application logic without unnecessary remodeling. 
 
4.2.3    RDM demands for the efficiency in the way of modeling 
 
In this section we will refine the efficiency criterion for the way of modeling from 
chapter 2 into design criteria for the number of modeling constructs for the data model 
and the robustness of constraint definitions that will be defined in the way of modeling 
of the RDM. 

In the survey on the existing requirements determination approaches in chapter 
3 we have shown how the availability of more than 1 information bearing construct in a 
requirements specification language can lead to rework in the requirements 
determination process, either in the ‘short-run’ when the initial requirements 
specification needs to be adapted or in the ‘long-run’ when an evolving requirement 
leads to an adaptation of the requirements specification that has a bigger impact than is 
implied by the evolving requirement. The existence of multiple information bearing 
constructs can lead to unstable models.  This leads us to the requirement (RMD) that a 
to-be designed requirements method must contain 1 information bearing modeling 
construct. We will, accordingly, redefine RDM 1’ into RDM 1 to cater for this: 
 
RMD 1: A to be designed RDM must contain 1 information bearing modeling 
construct. This construct must be able to express the complete, precise and consistent 
communication semantics of any N21-ary semantic relationship. 

                                                 
21 N ≥ 1 
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Another requirement for the to-be designed requirements determination method is the 
status of the default existence of application objects or entities. We will require that the 
domain semantics that declare the existence of entities or objects on their own (e.g. 
without participating in a semantic relationship) should be encoded explicitly and 
therefore in the default situation the existence of objects or entities on their own must 
not be implied, thereby preventing the modeling rework. Hence, this will have a 
positive effect on the efficiency of the to be designed requirements determination 
method. 
 
RMD 6: The definition of an application object or entity in the to be designed 
requirements method must not imply that it can exist on its own by default. 
 
In the literature survey we encountered inconsistencies in some requirements 
specification languages with respect to (some types of) state constraints. Especially, the 
minimum cardinalities in some (E)ER approaches and minimum multiplicities in the 
UML are not defined in a consistent way. Their definition changes when the arity of 
the semantic relationship changes from 2 to N (N>2) or the definition is only valid for 
N=2. In the specification language of the to be designed requirements method, 
therefore, we demand that a constraint of a constraint type X that is defined on a 
semantic relationship of arity N must have the same generic definition as a constraint 
of a constraint type X that is defined on a semantic relationship having arity M (where 
N≠M). This leads to the following RMD: 
 
RMD 7: The definition of the static constraint types in the to-be designed requirements 
method must be the same for all arities of the semantic relationships in the data model 
and must contain an explicit reference to the elements in the data model. 
 
 
4.2.4    RDM demands for the formality in the way of modeling 
 
In this section we will refine the formality criterion from section 2.4 for the way of 
modeling into the preciseness of the specifications that can be created using the to-be 
designed RDM. Subsequently we will refine the formality criterion for the way of 
modeling into a number of consistency requirements between the definition of the 
different modeling constructs for the different elements in a requirements specification, 
Furthermore, the to be designed requirements determination method needs to allow the 
different dynamic constraint types to be encoded. This means that modeling constructs 
must be defined that allow us to specify operations on the application’s data base in 
terms of evaluating the current data base, but also in terms of evaluating a projected 
‘to-be’ state. 
 
RMD 8: The definition of the dynamic constraint types in the to-be designed 
requirements method must enable us to explicitly refer to the (actual and projected 
states of the) application’s data base. 
 
From the literature survey in we concluded that not all requirements specification 
languages have facilities to express derivation rules in a precise way. Not only should 
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the to be designed RDM specify what semantic relationships are derivable, but the 
specification language of the to be designed RDM should also contain modeling 
constructs that allow an analyst to precisely denote, how a static derivation takes place 
in terms of the knowledge that is contained in (other parts) of the data model. This 
requirement (RMD 9) therefore assumes that an effective naming convention is in 
place to reference the elements in the data model (see RMD 3 for the naming 
convention for roles)  
 
RMD 9: The definition of static derivation (rule) in the to be designed requirements 
method must contain an explicit reference to the elements in the data model that serve 
as an input for the static derivation (rule) and it must contain a precise specification on 
how these input elements lead to the result of the static derivation (rule). 
 
The literature survey in chapter 3 revealed that most requirements determination 
approaches that we have studied do not provide facilities to model dynamic constraint 
types. In the Unified Modeling Language (UML) a (number of) diagram type(s) exist 
that intentionally express these types of constraints. In the UML, the coherence 
between the different diagram types is unclear and the consistency between the model 
elements that are featured within one or more diagram types must be seriously 
questioned. For the to-be designed RDM, therefore we need to be able to define the 
dynamic constraints in a consistent way in which the elements in the data structure and 
the derivation rules that are involved in a dynamic constraint must be specified 
precisely. In an event-condition-action triplet (ECA), an event is something that 
‘happens’ within the application subject area. Such an event can be caused by a change 
in state of the application information base (internal event) or by something that 
happens in the application area outside the information base (external event). This 
means that the following demands must be met in terms of the definition of internal 
and external events (RMD 10). 
 
RMD 10: An internal event in the to-be designed RDM must be defined as the insertion 
or deletion of a specific piece of domain knowledge into or from the application’s data 
base. An external event in the to-be designed RDM must be defined as something that 
happens in the application domain and that can lead to the insertion or deletion of a 
specific piece of domain knowledge into or from the application’s data base or the 
execution of a static derivation rule (eventually) under some condition on the content of 
the application’s data base. 
 
Furthermore, if we want to enforce the condition under which an event will lead to the 
execution of a derivation rule (action alternative 1) and or the insertion/deletion of 
information into or from the application’s data base (action alternative 2) we must be 
able to express such a condition within the event-condition-action rule as a proposition 
on the application data base that any point in time must evaluate to true or false. 
 
RMD 11: A condition in the to-be designed requirements method must be defined as a 
proposition on the application’s information base that must yield the value true or false 
when evaluated at any point in time. 
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4.3    RDM DEMANDS FOR THE WAY OF WORKING 
 
4.3.1    RDM demands for completeness in the way of working 
 
From the literature survey of the EER, UML and ORM approaches we concluded that a 
mere definition of a fact or constraint type modeling construct, does not guarantee that 
all fact types, naming conventions or all instances of such a constraint type will be 
‘found’ or ‘expressed’ by domain experts all by themselves at all times. The to-be 
designed requirements determination method, therefore, must give guidance to an 
analyst in deriving (the verbs of) semantic relationships, naming conventions, 
specializations/generalizations and all instances of a specific constraint type that exist 
in the application area, for example, in a dialogue with the domain user(s). On the other 
hand we will focus the general completeness criterion for the way of working to an 
ambition level that is equal to the maximum level of completeness that we can achieve 
by applying the existing modeling requirements specification alternatives. This means 
that with respect to the way of working for the constraint types that we must 
incorporate into a to be designed RDM we will limit ourselves to those constraint types 
that can be modeled in (E)ER and UML. This leads to requirement RMD 12. 
 
RMD 12: The definition of the modeling constructs for the data model in the to-be 
designed requirements method must be accompanied by some kind of guidance on how 
all instances of these modelling constructs can be found in an application subject area. 
The definition of the state constraint types in the to-be designed requirements method 
must be accompanied by some kind of guidance on how such instances of a constraint 
type can be found in an application subject area. 
 
4.3.2    RDM demands for the domain richness in the way of working  
 
With respect to the dimension perception we have concluded that a to be designed 
requirements determination method must provide facilities to incorporate the different 
views or perceptions of different user (groups) into one requirements specification 
document. This means that the to-be designed requirements determination method 
needs facilities for the integration of multiple views (of the underlying reality). 
 
RMD 13: A view integration sub-procedure must be defined in the to-be designed 
requirements method in which it is specified how an analyst must carry out the 
integration of views on the application domain by user (groups) that have a different 
perception on the ‘underlying’ reality. 
 
The requirements determination method that will be designed also needs to facilitate 
the elicitation of tacit knowledge that is held by the domain user (dimension tacitness). 
It is the implicit knowledge that can be made explicit but that can not be uttered ‘out of 
the blue’ by the application domain users. It is this knowledge that can be potentially 
encoded as a (part of a) data model and the accompanying constraints by eliciting it 
from domain users by using one or more ‘knowledge’ elicitation procedures. 
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RMD 14: The to-be designed requirements determination method must provide 
facilities for transforming implicit tacit knowledge into explicit knowledge. 
  

With respect to the dimension anchoring we note that the to be designed 
requirements determination method must be able to accommodate the whole spectrum 
of starting situations on the anchoring scale ranging from an abstract starting point on 
one side to a tangible anchor on the other side.  

 
RMD 15: The to be designed requirements determination method must accommodate 
every possible starting point in the requirements determination process ranging from 
abstract to tangible; ranging from  natural language description to documents that can 
only be understood by domain users. 
 
 
4.3.3    RDM demands for the efficiency in the way of working 
 
We have concluded in chapter 3 that the requirements modeling facilities that exist in 
the approaches that we have found in the literature merely tell an analyst what to do 
next instead of specifying how these ‘steps’ must be performed in the requirements 
determination process itself. The necessity of (a) precise modeling procedure(s) for 
instantiating static constraints was already shown. In addition, preceding modeling 
steps are needed that specify how to derive the application’s data structure. In addition 
to the existing ‘modeling’ procedures in the (E)ER, ORM and UML approaches that 
we discovered in chapter 3, we need (a) modeling procedure(s) that not only specifies 
what must be done, but also how it must be done in the most efficient way, thereby 
minimizing the required number of analysis steps. The way of working for the to be 
designed RDM must also be adaptable in the sense that dependent upon context in 
which a requirements determination project is carried out, the most efficient way can 
be implemented for that project. 
 
RMD 16’: A modeling procedure must be defined in the to-be designed requirements 
method in which it is specified how an analyst must carry out the modeling steps in the 
most efficient way. 
 
4.3.4    RDM demands for formality in the way of working 
 
As we already discovered in chapter 3, most of the ‘modeling procedures’ that exist in 
the ‘state-of-the art’ in requirements determination methods, only tell an analyst what 
to do. However, in order to guarantee that different analyst will arrive at the same (or 
equivalent) requirements specification in any given project we need not only a 
procedure that tells an analyst how to create a requirement specification, but this 
procedure must be formally defined, for example as an algorithm. This means that we 
will replace the implied RDM 16’with the following RDM: 
 
RMD 16: Formal modeling procedure(s) must be defined in the to-be designed 
requirements method in which it is precisely specified how an analyst must carry out a 
modeling step in the most efficient way. 
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4.4    RDM DEMANDS FOR THE WAY OF CONTROLLING  
 
4.4.1    RDM demands for efficiency in the way of controlling  
 
The way of controlling criterion is concerned with issues like project- and quality 
management and therefore must be built-in in the requirements determination method. 
In each relevant requirements determination step the user must be confronted with the 
in-between results (or milestone document) in the terminology that he/she understands 
so he/she can question his/her assumptions and validate the interpretation of the 
information that he/she supplied to the analyst 
 
RMD 17’: The way of working in the to-be designed RDM must have explicit quality 
assuring sub-procedures for the activities of the work breakdown structure and checks 
that enables an analyst to validate the information that is supplied by the user and that 
confronts a domain user with his/her assumptions and enables a user to validate the 
information that is supplied to the analyst.  
 
4.4.2    RDM demands for formality in the way of controlling  
 
This formality in the way of controlling concerned with the extent in which the 
activities that are defined within the RDM’s way of working can be formally planned. 
This means that we need a work-breakdown structure (Mantel et al., 2001) in the 
definition of the way of working in the to-be designed RDM that will allow us to 
formally plan the activities in a requirements determination project.  
 
RMD 18: The way of working in the to-be designed requirements determination method 
must have a work breakdown structure that allows to formally plan the activities in a 
requirements determination project. 
 
The formality in the way of controlling, furthermore, is concerned with the quality 
assurance steps in the RDM’s way of working, it means that these quality assurance 
sub-procedures must be an integral part of the processes that create the intermediate 
RDM ‘products’  and hence we can replace RDM 17’ by RDM 17 : 
 
RMD 17: The way of working in the to-be designed RDM must have explicit formal 
quality assuring sub-procedures for the activities of the work breakdown structure and 
formal checks that enables an analyst to validate the information that is supplied by the 
user and that confronts a domain user with his/her assumptions and enables a user to 
validate the information that is supplied to the analyst.  
 
Finally, the RDM must provide facilities in the way of modeling and in the way of 
working that enable traceability. 
 
RMD 19: The way of modeling and the way of working  in the to-be designed RDM 
must have provisions that enable traceability. 
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4.5    CONCLUSIONS 
 
We have derived in this chapter 19 demands that must be fulfilled by a requirements 
determination method that needs to be designed. These demands can be considered to 
be operationalizations of the four (groups of) criteria that were given in chapter 2 in 
which remedies for the major flaws regarding these criteria, from the existing 
approaches that we have studied in chapter 3, are incorporated. Analyzing the research 
literature on this topic shows many times that scholars also postulate criteria like: must 
be able to timestamp domain data or must contain a modeling construct for modelling 
time. We note that the latter examples of criteria in our view belong to the domain 
characteristics, and, therefore will end up in a specific requirements specification as 
part of a data model and/or one or more constraint instances. 

We will use these requirements method demands (RMD’s) to evaluate the to 
be designed RDM in chapters 5 and 6 of this thesis.  
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Developing an alternative design for a requirements 
determination method   
 
In the second part of this thesis (chapters 5 and 6) we will develop an alternative design 
for a requirements determination method. In chapter 5 we will focus on the way of 
modeling by describing what should be contained in a requirements determination 
method. In chapter 6 we will focus on the way of working and way of controlling by 
precisely describing how the model elements in the requirements specification 
language can be instantiated in a specific application subject area and how the overall 
requirements determination process must be controlled when using this method. 
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CHAPTER 522 
 

THE WAY OF MODELING IN NATURAL LANGUAGE 
MODELING 

         
 
 
5.1    INTRODUCTION 
 
In this chapter we will define the way of modeling of a requirements determination 
method that we will call Natural Language Modeling (NLM). The information 
modeling constructs in NLM are based upon the axiom that all verbalizable 
information (computer screens, reports, note-books, traffic signs and so forth) can be 
translated into declarative natural language sentences (Nijssen, 1989:158). It means 
that it is not a ‘real’ or ‘constructed’ world that is subject to modeling, but that it is the 
communication about such a ‘real’ or ‘constructed’ world (van der Lek et al., 1992). In 
this chapter we will show that such a communication oriented way of requirements 
modeling will lead to a smaller number of necessary modeling constructs than in 
requirements determination methods that we have found in the literature.  

The applicability of NLM is not limited to requirements determination but it 
can also be applied for the semantic analysis of ‘static’ knowledge domains (Nijssen 
and Bollen, 1995). Another area in which NLM can be applied is meta data semantics 
for the world wide web (Grönbaek et al.  2000; Broekstra et al. 2002; Resource 
Description Framework 2004) and ontologies for the world wide web (Davies, Duke 
and Stonkus, 2002; Davies, Weeks and Krohn, 2004). NLM, furthermore provides 
facilities for implementing natural language processing for querying large data bases 
(Conlon et al., 2004) 

The modeling constructs of Natural Language Modeling (NLM) are an 
evolution of the modeling primitives that are rooted in the semantic binary model 
(Abrial, 1974), the object-role model (Falkenberg, 1976a, 1976b), NIAM (Verheijen 
and van Bekkum, 1982) and Fact Oriented Information Modeling (Halpin, 1995; 
Halpin and Orlowska, 1992). Amongst other semantic modeling approaches that have 
gained popularity, are Sowa’s conceptual graphs (Sowa, 1984). 
 
5.1.1    Organization of chapter 5 
 
In this section we will provide some guidelines for the reader of this thesis on how to 
read this chapter. In sections 5.2 through 5.6 we will introduce two primitives and the 
basic modeling constructs (roles, intentions, extensions, fact types, naming conventions 
and compound referencing schemes) for our to be designed requirements specification 
language. The application of these primitives and the modeling constructs based 
hereupon, in a requirements determination process will lead to an instance of a basic 
                                                 
22  An earlier version of this chapter was published as ‘Natural Language Modeling and 
Application Ontologies.’, Bollen, P., Proceedings ISoneworld 2003, Las Vegas, U.S.A. (2003). 
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information model that is defined in section 5.7. The discussion of these basic 
modeling constructs is illustrated by a ‘running’ example of a university enrolment 
UoD. The domain semantics for the UoD of this example are paraphrased in two 
locations in this chapter. The first part of our running example is given in section 5.2. 
In this first part of the running example the university enrolment of a single (Vandover) 
University is considered. The second part of our running example in section 5.6.2 
paraphrases the domain semantics of an integrated university enrolment UoD in which 
two universities have merged and have streamlined their enrolment activities. This 
second part of our example description also includes the dynamic aspects of this UoD. 
In section 5.8 we will give the NLM constraint modeling constructs. We advice the 
readers that are not familiar with constraints to read appendix A, before reading section 
5.8. Readers who are familiar with the constraint modeling construct can skip appendix 
A, when reading this thesis. We will illustrate in sections 5.6 through 5.9 how we can 
formalize the paraphrased domain semantics from the UoD of the (integrated) 
University enrolment example into an instance of NLM requirements specification in 
section 5.9. In addition we will explicitly show in section 5.9 how the textual 
description of our example maps onto the instances of the modeling constructs from 
this chapter and appendix A. In section 5.10 conclusions will be drawn regarding the 
extent in which the way of modeling in NLM fulfills the operationalized design criteria 
for a requirements determination method that were derived in chapter 4 of this thesis. 
  
 
 
 
5.2    NAMES 
 
We will first introduce the running example for this chapter. In section 5.6.2. we will 
give a further description of this running example in which Vandover University has 
merged with Ohoa University and in which the dynamic aspects of this (integrated) 
UoD will be given. 
 
5.2.1     Example 5.1: University Enrolment part 1 
 
The University Enrolment example will be used to illustrate the modeling concepts 
throughout this chapter of the thesis. The first part of the University Enrolment 
example will consist of the old situation that deals with the Vandover University. In the 
second part of this chapter we will introduce the new situation for the University 
Enrolment example in which a merger has taken place between the Vandover and Ohoa 
universities. The University of Vandover offers a number of majors in education. 
Students can choose between majors in Science, History and Economics.    
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Vandover University Enrollment
Student id    last name       major

   1234     Thorpe          Science   
   5678      Jones           Economics   
   9123     Thorpe          History  

               
Fig. 5.1 Example Vandover University Enrolment (example 5.1). 

 
In figure 5.1 an example is given of a university enrolment document (example 5.1). In 
this example the Vandover University wants to record information about the major for 
each of its students. It is assumed that the student ID can be used to identify a specific 
student among the union of students that are (and have been) enrolled in the Vandover 
University and that a major name can be used as identifier for a specific major among 
the set of majors that are offered  by the Vandover University. 
 
5.2.2    The name primitive 
 
A name in human communication is used to refer to a concept or a thing in a real or 
constructed world (Senko, 1976).  
 
Primitive 1. A name is a sequence of words in a given language that is agreed upon to  
refer to at least one concept or thing in a real or constructed world. 
 
Examples of names:  Jake Jones, 567893AB, General electric, 
We will now define the archetype. 
 
Definition 5.1. The archetype is the union of all names.          
 

Let A be the archetype.  
Let ni be a name.  
A = ∪i ni 

 
The choice of names used in communication is constrained by the reference 
requirement for effective communication. For example, the university registration 
office will use a student ID, for referring to an individual student. The use of names 
from the name class last name in the university registration subject area for referring to 
individual students, however, will not lead to effective communication because in some 
cases two or more students may be referenced by one name instance from this name 
class. This is one of the reasons why not all names (or name classes) can be used for 
referencing entities, things or concepts in a specific part of a real or constructed world. 

On the other hand ‘knowledge workers’ that are involved in activities in an 
application subject area have knowledge on the reference characteristic of the potential 
name classes for the different groups of  'things' and concepts in their real or 
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constructed world. This means that they should be able to tell an analyst whether a 
name from a specific name class can be used to identify a thing or concept among the 
union of things or concepts (in a specific part of a real or constructed world). 
 
 
 
5.3    THE NATURAL LANGUAGE AXIOM 
 
In every (business) organization examples of communication can be found. These 
examples can be materialized as a computer screen, a world wide web page, a 
computer report or even a formatted telephone conversation. Although the outward 
appearance of these examples might be of a different nature every time, their content 
can be expressed using natural language. We will refer to this class of examples of 
communication23 as verbalizable information (Nijssen, 1989). 
 
Primitive 2 (Natural language axiom). All verbalizable information can be expressed as 
declarative natural language sentences. 
 

The application of the natural language axiom on the example of 
communication from figure 5.1 will result in declarative sentence instances 1.1 through 
1.6. 
 
The student 1234 majors in Science……………….........…….…….….……..(sentence 1.1) 
The student 5678 majors in Economics....……………………………….…....(sentence 1.2) 
The student 9123 majors in History……………………..…………...…….…..(sentence 1.3) 
The student 1234 has last name Thorpe………………………………..….…..(sentence 1.4) 
The student 5678 has last name Jones………………………………….…..….(sentence 1.5) 
The student 9123 has last name Thorpe………………………………...……..(sentence 1.6) 
 
We can conclude from the literature that for the initial stage in the requirements 
determination process, the use of natural language (Bubenko and Wangler, 1992) is 
recommended (Ambrosio et al., 1997). Henderson-Sellers and Edwards (1990:194) 
state that a requirements definition must be expressed in the language of the user, so 
the analyst and user can agree upon the content. 
 
 
5.4    ROLES 
 
If we analyze sentences 1.1 through 1.6 that have resulted from verbalizing the 
university enrolment example in figure 5.1 we can divide them into two groups 
according to the type of sentence predicate (..majors…, respectively..has last name..). 
If we focus on the first group we can derive two sentence group templates in which we 
have denoted the predicate as text and the variable parts as text between ‘< >’ brackets:  

                                                 
23  Sometimes the concept of ‘form’ is used to refer to any structured document (e.g. See 
Choobineh and Venkatraman (1992: 270). 
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Student <enrolled student> majors in major <chosen major>. 
Student <enrolled student> has chosen the major <chosen major>. 

 
We will refer to these variable parts as roles.  
 
Definition 5.2. A role is a variable part in one or more sentence group templates. 
  

Let nm be a name slot in a sentence group SG 
Let s1, s2 be sentence instances of sentence group SG 
R={ nm|∃ s1, s2  [ nm s1 ≠  nm s2 ]} 
A  role r∈ R   

 

  

Enrolled
 Student

Registered
 Student

1: Student <enrolled student> majors in major <chosen major> 
2: Student <enrolled student> has chosen the major <chosen major> 

3: Student <registered  student> has <last name>

Chosen
major

Sg1  

Sg2    Last
name

 
 

Fig. 5.2 Roles and sentence group template for university enrolment example. 
 
Figure 5.2 shows a graphical representation of the two sentence groups in the 
University Enrolment example. Each role is graphically represented by a ‘box’, e.g. 
enrolled student. Each sentence group is represented by a combination of role boxes. 
Sentence group SG1 is represented by the combination of role boxes enrolled student 
and chosen major. Sentence group SG2 is represented by the combination of role boxes 
registered student and last name. For each sentence group one or more sentence group 
templates are positioned underneath the combination of role boxes that belong to the 
sentence group. In the diagram of figure 5.2 sentence group templates 1 and 2 belong to 
sentence group SG1. Sentence group template 3 belongs to sentence group SG2. The 
remaining parts of a sentence group template we will call verb-parts. 
 

    

R1
SgX

The sentence group template x of sentence 
group SgX is ‘A1< R1> ......AN< Rn> ’
The sentence group template y of sentence 
group SgX is ‘B1< R1> ......BN< Rn> ’

RN

            
 

Fig. 5.3 Example legend for sentence groups24. 

                                                 
24  We note that a similar legend applies for fact types. In section 6.3 we will define the 
difference between sentence groups and fact types. 
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In figure 5.3 we have given the legend for the verbalization of the graphical 
representations of the modeling results as for example given in figure 5.2. 
 
 
5.5    INTENTION AND EXTENSION 
 
If we inspect figure 5.2 we see that a sentence group template can reveal additional 
information about the type of things that can be ‘inserted’ into a role variable. For 
example, the word ‘student’ specifies what type of thing (or concept) is allowed to play 
the role ‘enrolled student’ but also what type of thing (or concept) is allowed to play 
the role ‘registered student’ We will call the ‘student’ part in the sentence groups in 
figure 5.2 the intention of the roles ‘enrolled student’ and ‘registered student’.  
 
Definition 5.3. An intention is the meaning or the definition of a concept in a real or 
abstract world. 
 

Let X be a concept.  
Let DX be the definition of the concept X 
Let Int(X) be an intention 
Int(X)= DX 

 
We can for example give the definition of the concept Student: 
 

A student is a person that studies at a University. 
 
The set of names of things or concepts to which such a definition of an intention 
applies within a specific application subject area at a specific point in time is called the 
extension of the intention. 
 
Definition 5.4. The extension of an intention is the set of names of the things or 
concepts to which the definition of the intention applies25. 
 

Let X be a concept. Let DX be the definition of the concept X 
Let A be the set of names of things or concepts to which definition DX applies 
Let Ext(X) be an extension 
Ext(X)= A 

 
We can now give an example extension for the intention Student: {1234, 5678, 9123}. 
In the remainder of this paper we will use the intention concept to denote the type of 
thing or concept to which a specific thing or concept belongs. For every application 
area we should document the intentions, their definitions and synonyms in a list. We 

                                                                                                                       
 

25  We will call a specific concept or a ‘thing’ that is referenced by one element of the intention’s 
extension, an instance of the intention. 
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will call this list the application concept repository (ACR). In the following we have 
given the ACR for part 1 of our Vandover University Enrollment example. 
 
 Concept      Synonym  Definition 
 Student   a person that studies at Vandover University 
 Student ID  a name class 
 Major     Specialization course program offered to students by   

Vandover University 
 Major name  a name class 
 Last name  a name class 
 
Such a list of concepts and their definitions should contain a definition for each 
intention in the UoD. The definition of an intention should specify how the knowledge 
forming the intention (definiendum) is to be constructed from the knowledge given in 
the definition itself and in the defining concepts (definiens). A defining concept 
(definien) should either be an intention (from the list) or it should be defined in 
common business ontology (in our example course program and university) or it must 
be a trivial and generally known concept (in our example person). 
 
 
5.6    FACT TYPES 
  
In this section we will take the meaning of a sentence as opposed to its format as a 
starting point. The construct for modeling the meaning of a sentence is a fact instance. 
A fact instance is expressed as a declarative natural language sentence instance of a one 
of its corresponding sentence group template(s). It is possible that the extensions of two 
different sentence group templates refer to the same fact. For example we can say that 
there exists a fact that a student is enrolled in a major (at the University of Vandover). 
Two sentence instances (from different sentence group templates) for communicating 
this fact instance can be: 
 

Student 1234 has chosen the major Science. 
Student 1234  majors in major Science. 

 
We need to make a distinction into the concept of fact and the concepts that we use to 
represent a fact. A specific fact instance can be represented as one or more sentence 
instances from one or more sentence group templates. The sets of roles that are referred 
to in these sentence group templates should be identical. We can now conclude that a 
fact type is a set of roles that can be represented by one or more sentence group 
template(s) in which these roles are contained. 
 
Definition 5.5. A fact type is a set of roles belonging to a sentence group. 
 

Let ri be a role that belongs to a given group of sentence templates SG 
Let FTj be a fact type. 
FTj={ ri | ri is a variable part of SGj ∈ SG } 
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Example 5.2:   STUDENTMAJOR:={enrolled student, chosen major} 
           STUDENTNAME:={registered student, last name} 
 
Because every fact type has at least one accompanying sentence group (template) that 
contains the precise domain semantics as verbalized by the domain users it is not 
required to use ‘semantic’ role names at all times. The only requirement for a role 
name is that it is unique within a fact type (provided that we use unique names for a 
fact type).  
 A second distinction between sentence groups is fact type lies in the notion of 
atomization. In chapter 6 we will discuss this issue in greater detail. For now it is 
sufficient to say that a fact type must be elementary, atomic or irreducible in the 
context of a given UoD. A sentence group on the other hand might be non-atomic or 
(still) reducible. 
 
5.6.1    Naming convention fact types 
 
In this section we will further formalize the outcome of the process of the selection of a 
name class for referring to things in a real or abstract world. The outcome of such a 
naming process will result in the utterance of sentences, examples of which are given 
below: 
 
1234 is a name from the  student ID name class that can be used to identify a student 
within the set of students at Vandover University…………………….......(sentence 2.1) 
 
5678 is a name from the  student ID name class that can be used to identify a student 
within the set of students at Vandover University………………………...(sentence 2.2) 
 
Science is a name from the major name name class that can be used to identify a major 
within the set of majors at Vandover University……………………..…...(sentence 2.3) 
 
Economics is a name from the major name name class that can be used to identify a 
major within the set of majors at vandover University ……………...…..(sentence 2.4) 
 
Sentences 2.1 through 2.4 express that a certain name belongs to a certain name class 
and that instances of the name classes student ID, respectively major name, can be used 
to identify an instance of a student, respectively an instance of a major.  We can give 
for example the definition of the concept Student ID: 
 
Student ID is a name class. 
 
The ‘intention’ of the names in the extension of a naming convention fact type is a 
name class and NOT a type of thing, entity or concept in the real world. We will, 
therefore, refer to facts 2.1, 2.2, 2.3 and 2.4 as naming convention facts and to the 
corresponding abstracted fact type as naming convention fact type. 
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Student ID
1: < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students at Vandover University

Ft1

 
 

Fig. 5.4 Naming convention fact type for student at Vandover University 
 
Definition 5.6. Facts of a naming convention fact type declare that a name from a name 
class can be used to identify a thing or a concept in a selected portion of a real or 
abstract world.  
 

Let nc be a name class.  
Let A be the archetype: nc ⊂ A 
Let DOM(T) be the concepts in the selected portion of the real world. 
It now holds: ∀ c,d ∈ T; t,v ∈ nc  [ t is a name for c ∧ v is a name for d]:  
c=d ⇔ t=v 

 
In business domains, however, not all things or concepts can be identified by using a 
single name from a given name class or a simple domain. In general, a name can have 
an internal structure of itself, therefore, we need to generalize the concept of a (simple) 
naming convention fact type to a referencing scheme in which names are composed of 
values from multiple domains. We will call those referencing schemes,  compound 
referencing schemes and they will be discussed in section 5.6.3. First we will give an 
extension of the university enrolment example in section 5.6.2. 
 
5.6.2    Example 5.1: university enrolment  part2 
 
We assume that Vandover university has merged with Ohao university. In order to 
streamline the enrolment operations of the two universities in the new situation it is 
decided to centralize them.  

A student within the merged Ohoadover university federation can no longer be 
identified by the existing student ID, because a given  student ID can refer to a student 
in the former Ohoa university and to a different student in the (former) Vandover 
university. However, to capitalize on the existing naming conventions, management 
has decided to add the qualification O (for Ohao) or V (for Vandover) to the existing 
student ID. We will call this qualification: university code.  

Furthermore, there is a possibility that a student is registered as freshmen at 
the Ohao University and at the Vandover University at the time of the merger. In this 
case it is decided that the student is considered to study only at the Ohao University for 
naming purposes.   

In the new situation the Ohoa and Vandover universities still offer their own 
freshmen year and the majors that existed before the merger. This means that after the 
merger students that apply for enrolment will be assigned student ID’s within the 
university that enrols them for their freshmen year. For our application it suffices to 
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know that student can be identified by the combination of a University code and a 
locally unique student ID.  

Furthermore, we assume that the assignment of a student’s university ID, 
which takes place outside our example UoD, will always lead to the recording of a 
student’s last name.  

In this example we assume that the University system is closed in the sense 
that a major can only be selected by students that are currently doing (or have been 
doing) a freshmen year at Ohoa University and/or Vandover University. A student can 
apply for at most one major at a time. The majors that are offered after the merger are a 
simple union of the existing majors at the ‘old’ universities: science, history and 
economics at Vandover University and medicine and law at Ohao university.  

In the integrated Ohoa and Vandover enrolment system it is decided to record 
all courses and the credits that have been obtained by them during their student’s 
freshmen year at Ohoa or Vandover.  
    

Ohoadover University Enrollment

University Student ID  Last Name  Major

Total number of students enrolled          156

   V            1234         Thorpe          Science
                                                                    Accounting       5
                                                                    Finance            5
                                                                    Marketing         8
                                                                    Mathematics    
                                                                                          26   
   O            5678          Smith            Law
                                                                    Macro econ.     8
                                                                    Micro econ.      8
                                                                    Finance           
                                                                                         24 
  V            5678          Jones                      
                                                                   Accounting        
                                                                                           5
                                                                                            

  8

 8

5

 
 

Fig. 5.5 Example integrated Ohoadover enrolment system 
 

The definite enrolment in the major of their choice depends upon the number 
of credits that a student has earned in his/her freshman year. If the total number of 
(approved) credits for these freshmen courses is 24 or more and the specific required 
freshmen courses for the major of their choice are contained in their credited freshmen 
courses than a definite enrolment, for the student will always be recorded.  
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In the following the specific required freshmen courses for each major are 
given: 

Major  Required course  Required minimum # of credits 
Science  Mathematics   8 
History   Language and culture  5 
Economics  Macro economics  8 
Medicine  Biology    5 
Law   Finance    5 
 
A ‘real-life’ user example of the integrated Ohoadover enrolment system is 

given in figure 5.5. 
The example of figure 5.5 contains Majors that can be identified by a major 

name among the union of majors at Vandover and Ohoa University. We also have 
Courses that can be identified by a course name among the union of courses at 
Vandover and Ohoa University. Course credits or the total number of course credits 
for a student or the total number of enrolled students is expressed by a natural number. 
At any point in time a student can have at most one total number of credits. The total 
number of credits for a student is the arithmetic total of all individual credits for 
credited courses. If a student does not have any credits assigned for at least one course 
the total number of course credits will not be shown. 

We will now give a description of additional semantics from the Ohoadover 
enrolment UoD. First of all, the responsibilities for exams, grading and the assignment 
of study credits is not considered to be part of this UoD. We will therefore consider this 
to take place outside the UoD.  

There will be some kind of message coming from another part of the 
university system that acknowledges at a certain point in time that student X has been 
credited Y credits for course Z. As soon as such a message is received by the enrolment 
clerk the information is entered into the enrolment system.  

After the new course credits have been entered into the enrolment system the 
total number of credits for that student will be recalculated. Furthermore, students are 
allowed to switch majors before graduation. In that case the requirements regarding the 
content of their freshmen course and credits needed for this new major will be checked 
again. In addition the management of Ohoadover has decided that not all enrolment 
switches are allowed. At this time the following restriction is applied:  A student can 
not major in Economics after he/she has majored in Science.  

After a student has successfully finished his/her current major (this is decided 
outside the scope of our example UoD) he/she will be removed from the University 
Enrollment system.  

Every time a student is enrolled or graduated the enrolment system will 
recalculate the total number enrolled students. The total number of enrolled student at 
any point in time is calculated by inspecting which of the registered students are 
currently enrolled for a major. 
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5.6.3    Compound referencing schemes 
 
In the first part of the (Vandover) university enrolment example the intention ‘student’ 
has a ‘simple’ referencing scheme, namely the single role ‘enrolled student’ or the 
single role ‘registered student’. In many cases, however, a simple referencing scheme 
will not be sufficient for referencing instances of a given intention within a specific 
portion of a ‘real’ or ‘constructed’ world. In those cases we need compound referencing 
schemes.  

In NLM we will apply compound referencing scheme in the same way as the 
simple referencing schemes. To illustrate this we will first adapt our example UoD and 
give additional domain knowledge that also covers the dynamic aspects of the UoD.  
 

 

Student ID

Student ID

Ft10  

Ft12 

Ft11   

Ft13  

Ft14 

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <student ID> ]  
 majors in major <chosen major>

<university code> and 

1:Student [identified by the combination of  ]  
 gained a number of credits <course credits> for the course <credited course>

<university code> and <student ID>

1:Student [identified by the combination of ]  
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

2:Student [identified by the combination of ]  
has chosen major <chosen major>

1:Student [identified by the combination of  ]  
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
Course

Course
Credits

Last name

 Total
Credits

        Total
Enrolled students

  
  
Fig. 5.6 Fact types and sentence group templates with compound referencing scheme for  student 

from the university enrolment example part 2 
 

The sentence group templates and the corresponding fact types in which such 
a compound referencing scheme is implemented are given in figure 5.626. We have 

                                                 
26  See for an earlier discussion on aggregation: Smith and Smith (1977). 
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introduced the [  ] (‘square brackets’) symbol for capturing the definition of the 
compound referencing scheme (see figure 5.6). The case of a simple referencing 
scheme in NLM is a special case of the compound reference scheme in which the 
brackets and description within (except for the role name used in the reference) are left 
out. In addition we need to adapt the naming convention fact types for the constituting 
intentions of the compound reference scheme. For example the naming convention fact 
type for student should be adapted to reflect the application subject area in which it can 
be used to identify a specific student. In this case a student can be identified by his/her 
student ID within a specific University (Ohao or Vandover). 

 

Student ID
1:  < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students of a specific University (Ohao or Vandover) 

Ft1

 
 

Fig. 5.7 Naming convention fact type for student in the integrated UoD. 
 
 In the University Enrollment example we have shown how the evolvement of 
a Universe of Discourse can lead to the existence of compound referencing schemes. In 
other situations a reference scheme that is a concatenation of multiple value domains 
can be considered a simple referencing scheme. An example of the latter is the postal 
code in the Netherlands that consist of two groups of values: 4 numerical characters (0-
9) and 2 non-numerical (a-z) characters. In most UoD’s the postal code is considered to 
be a simple referencing scheme for a postal area. However, in the UoD of the national 
Dutch postal code administration the first 2 characters refer to a municipality in the 
Netherlands, the last two digits refer to a neighbourhood within that municipality. 
Finally, the non-numerical characters refer to a specific ‘side’ of the street within that 
neighbourhood (within that municipality). In this example we can consider the 
intention postal area as an aggregation (Smith and Smith, 1977) in which the 
‘aggregated intention’ postal area is composed of the ‘basic intentions’ city, 
neighbourhood in that city and  part of the street in this neighbourhood of that city. In 
the fact type template of this example we therefore can incorporate the ‘basic 
intentions’ as follows:  
 
Postal Area [identified by the combination of City <city code>, the neighbourhood 
<neighbourhood code> in the city and the part of the street <part of street code> in 
that neighbourhood] contains the number of addresses <natural number>.  
 
Furthermore, the naming convention fact types for the basic intentions in this 
compound referencing scheme are necessary, in order to precisely understand the 
difference between the ‘global’ and ‘local’ concepts of neighbourhood, respectively 
part of street:  
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<city code> is a name from the city code name class that can be used to identify a city 
among the union of cities within the Netherlands. <neighbourhood code> is a name 
from the neighbourhood code name class that can be used to identify a 
neighbourhood among the union of neighbourhoods within city in which it resides. 
<part of the street code> is a name from the part of the street code name class that 
can be used to identify a specific part of the street  among the union of part of the 
streets cities within a given neighbourhood in a given city. 
 
 We can conclude that the compound referencing scheme that we have 
introduced in this chapter of this thesis is applicable for all possible ‘aggregations’ 
ranging from value-domain aggregations to aggregations that involve exclusively basic 
intentions to aggregations that contain a combination of value domains and basic 
intentions. The incorporation of the explicit UoD in which the ‘intention’ is defined 
and can be identified by the names of the name class is essential for interpreting the 
meaning of the ‘basic intentions’ either as global or local concepts.  
 

R1

R1

SgX

SgY

SgZ

The sentence group template x of sentence 
group SgX is ‘A1 c1< R1> .... ..AN cN< Rn> ’

The intention c1 for fact type SgX has an
identification structure that contains role R1
The intention cN for fact type SgX has an

identification structure that contains role Rn

The sentence group template x of sentence 
group SgX is ‘< Rn> y’

The sentence group template y of sentence 
group SgY is ‘A1 c1[a1< R1> ....am< Rk> ].

..AN cN< Rn> ’
The intention c1 for fact type SgY has an

identification structure that contains role R1.
... ... ... ..

The intention ck for fact type SgY has an
identification structure that contains role Rn.

Rn

Rn

Rn

 
  

Fig. 5.8 Extended example legend for fact types. 
 
In figure 5.8 we have given the extended legend for the (naming convention) fact types 
in which the referencing modes are verbalized. This legend contains the complete 
semantics of the graphical representations for the analyst and how these representations 
must be verbalized as declarative natural language sentences. 
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5.7    THE BASIC INFORMATION MODEL 
 
In this paragraph we will give the definition of a basic information model.  
 
Definition 5.7. A Basic Information Model (BIM) for a Universe of Discourse U is 
defined by  
- a list of intentions and their definitions {(xi,dxi)} applicable to the UoD U. 
- a set of roles R(U) in which each role is played by an intention from  {xi}  for which   
  CARD (EXT(x∈{xi}  )) ≥ 2. 
- a set of fact types F(U) that consist of roles from R(U) under the condition that the   
  roles in {f|f ∈F(U)} are a partition of R(U)27, 
- a set of sentence group templates S(f) for every fact type f ∈F(U) that contain(s)  
  (alternate) descriptions of the fact type semantics and in which exactly one reference  
   to each role contained in f is given. 
 
An example of a basic information model of the university Enrollment example is 
given in figure 5.9. 
 

                                                 
B={Bi|Bi⊂A} is a partition if Bi ⊄ ∅ and Bi∩ Bj = ∅ and ∪ Bi=A 
 



 
 

 108

 

Student ID

Student ID

Ft10  

Ft12 

Ft11   

Ft13  

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <student ID> ]  
 majors in major <chosen major>

<university code> and 

1:Student [identified by the combination of  ]  
 gained a number of credits <course credits> for <credited course>

<university code> and <student ID>

1:Student [identified by the combination of ]  
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

2:Student [identified by the combination of  ]  
has chosen major <chosen major>

<university code> and <student ID>

1:Student [identified by the combination of  ]  
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
 Course

Course
Credits

Last name

 Total
Credits

Student ID Major name
1: < student ID> is a name from the student ID

name class that can be used to identify a student
among the union of students at Vandover University

 or Ohoa University

1: < student ID> is a name from the major name
name class that can be used to identify a major

among the union of majors at Vandover University

Ft1 Ft2 

Course name Natural number
1: < course name> is a name from the course name 

name class that can be used to identify a course
among the union of courses at Vandover University

 and  Ohoa University

1: < Natural number> is a name from theNatural number
name class that can be used to identify an amount of credits

among the union of amount of credits

Ft3 Ft4 

Ft14 

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

        Total
Enrolled students

     
 

Fig. 5.9 Basic information model Ohoadover university enrolment. 
 

In real life business settings we will always experience a specific extension of 
such a basic information model. We will now give the definition of the extension of a 
fact type and of the extension of a Basic Information Model for a given Universe of 
Discourse. 
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Definition 5.8. The extension of a fact type is a set of sentence instances for that fact 
type. 
 

EXT(FTk) = {sij|sij is an instance of sentence group SGk} 
 
 
Definition 5.9. The extension of a basic information model is the union of the 
extensions of the fact types that are contained in that basic information model. 
   

EXT(FTk)  is an extension of fact type FTk 
EXT(BIM)= ∪k EXT(FTk) 
  

 
We now have defined all the constructs necessary for analyzing natural 

language sentences. It was determined what parts were fixed and what parts were 
variable. For the variable parts or roles it was determined to what intention the variable 
instances refer. For each intention, a definition is contained in the basic information 
model of the UoD. Furthermore, the naming conventions for an intention in a role were 
determined. The application of these modeling constructs will lead to an abstraction of 
a UoD as a basic information model as for example, depicted in figure 5.9.  

We will introduce in section 5.8, the modeling constructs that will enable us to 
express that some extensions of a basic information model are not allowed to exist. We 
will use part 2 of the university enrolment example 5.1 to illustrate that domain rules or 
business rules may exist in the UoD that do not allow some extensions of the basic 
information model to occur in real-life situations.  
  
 
 
 
5.8    NLM MODELING CONSTRUCTS FOR THE ENCODING   
         OF EXTENSIONAL CONSTRAINTS 
 
If we look at part two of the University Enrollment example, we can conclude that not 
every extension of a BIM is an extension that is an allowed extension according to the 
business rules in the UoD. If we for example consider the extensions of fact types FT12 
and FT13 then it becomes clear that the following example extension is not allowed 
according to the ‘business’ logic of the university enrolment although it is a possible 
extension of the BIM: {student v 5677 gained 5 credits for the course accounting, 
student v 5677 gained a total number of 4 credits in his/her freshman year}. In order to 
make a distinction into an extension of a basic information model regardless of the fact 
whether it is allowed to exist and an extension of a basic information model that is 
allowed to exist, according to the business rules in the application domain, we will 
introduce the concept of population state. 
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Definition 5.10. A population state is an extension of a basic information model that is 
allowed to exist according to the business rules in the application domain. 
 

Let BR be a set of business rules 
Let ps be a population state 
ps  ∈ {EXT(BIM)j | EXT(BIM)j complies to the rules in BR} 

 
It becomes clear now that in addition to the modeling constructs that are needed for 
abstracting a UoD we need modeling constructs that enable us to specify additional 
limitations on the possible extensions of a basic information model. These modeling 
constructs we will call constraints. We will now give the definitions of the four 
constraint groups that we want to introduce in this thesis and the instances of these 
constraint groups that reflect (parts of) the business rules in our university enrolment 
example. 
 
5.8.1    Definition of  Population state constraints 
 
This first group of constraints specify the limitations on the extensions of a basic 
information model that exist at any point in time. 
 
Definition 5.11. A population state constraint p in a basic information model BIM is a 
proposition that limits the allowed extensions of the basic information model BIM to 
those extensions for which the proposition of p is true.  
 

A population state constraint is a set valued function into the set of extensions 
of a basic information model of  a universe of  discourse. 

 
PC:  { EXTj(BIM)} ----->   { EXTj(BIM)} 

 
The type of constraints in this category are the uniqueness constraints and set 
comparison constraints that must apply in every possible state of the UoD (see section 
A.2 in appendix A). In the university enrolment example, we have derived four 
uniqueness constraints: C1, C2, C3 and C4 and nine set-comparison constraints: C5, 
C6, C7, C8, C9, C10, C10, C11, C12, C13. In figure 5.10 we have illustrated these 
constraints by adding them to the basic information model of our University 
Enrollment example from figure 5.9. See section A.2 in appendix A, for a formal 
definition and verbalization legends for this constraint type. 
 
5.8.2    Definition of  Population state transition constraints 
 
The population state transition constraints specify the limitations on subsequent 
extensions of a basic information model. 
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Definition 5.12. A population state transition constraint q in a basic information model 
BIM is a proposition that limits the before-after extension combinations of the basic 
information model BIM to those combinations for which the proposition of q is true. 
 

A population state transition constraint is a set valued function into the set of 
before-after extensions of a basic information model of  a universe of  
discourse. 

 
PTC:  { EXTj(BIM)} × { EXTj(BIM)}    { EXTj(BIM)} × { EXTj(BIM)}   

 
The transition constraints constrain the possible state sequences of the extension of the 
basic information model. Even if an extension of the BIM complies to the population 
state constraints, the allowed before/after combinations are further constrained by these 
state transition constraints. Constraint C14 in figure 5.10 is an example of a state 
transition constraint that reflects some business rule from our university enrolment 
example. See also section A.3 in appendix A for a formal definition and a verbalization 
legend of this constraint type. 
 
5.8.3    Definition of Derivation rule constraints 
 
In addition to the population state- and population state transition constraints that limit 
the possible extensions of a basic information model in terms of for example 
uniqueness and set-comparison restrictions, a different group of constraints is needed 
that is able to specify limitations on the fact values of roles  from the basic information 
model. We will call this type of constraint: a derivation rule constraint. 
 
Definition 5.13. A derivation rule (constraint) is a function defined on instances of the 
ingredient fact types. The function range is a set of resulting fact instance(s) from the 
derived fact type.  
 
                Let  FT1 through   FTN  be ingredient fact types for the derivation rule CP 
                Let  FTM be the resulting  fact type for the derivation rule CP     
                            
               CP: EXT(FT1) ×…×  EXT(FTN)  ------------>  EXT(FTM)  
 
The derivation rule constraints, specify that instances of a given fact type can not be 
inserted or updated freely, but their value is restricted to the pre-conditions and 
derivation formula of a derivation rule constraint. In the university enrolment example, 
we have derived two derivation rule constraints: C15 and C16 (see figure 5.11). In 
section A.4 in appendix A  a formal definition and a verbalization legend for this 
constraint type are given. 
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5.8.4    Definition of Event occurrence, Event, Event type and  Impulse type   
             constraints 
 
In this section we will give a definition of the event, event type  and event occurrence 
concepts and the group of constraints that constrain the behaviour within a UoD: the 
impulse type constraints. 
 In order to define the impulse type of constraints we need to define the 
concept of event occurrence first. 
 
Definition 5.14. An event occurence is a happening at a certain point in time in the 
application subject area that can lead to the execution of one or more derivation rules 
and/or the insertion or deletion of fact instances into/from the application’s information 
base.  
  
 Let PH be the set of potential happenings 
 Let eo be an event occurrence 

 eo∈ PH 
 
From definition 5.14 it follows that an event occurrence is a ‘one-time’ only thing. For 
example the event occurrence: student ‘V 2345’ wants to enroll for major ‘science at 
12:45:56 on 01/12/2004. A different event occurrence is: student ‘V 2345’ wants to 
enroll for major ‘science at 18:45:56 on 03/06/04. We can group the former two event 
occurrences into the following event: student ‘V 2345’ wants to enroll for major 
‘science’. 
 
Definition 5.15. An event is one or a number of potential happenings in the application 
subject area that can lead to the execution of one or more derivation rules and/or the 
insertion or deletion of fact instances into/from the application’s information base. 
 
 Let e be an event 
 e⊂ PH 
 
Definition 5.16. An event type is a class of events in the application subject area, each 
of these events can lead to the execution of one or more derivation rules (of the same 
type) and/or the insertion or deletion of fact instances (of the same fact types(s)) 
into/from the application’s information base.  
  

Let ET be an event type  
Let E={ei } be the set of events 
ET ⊂ E 
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Definition 5.17. An impulse type (constraint) is an ordered triplet that contains an event 
type,  a condition type28 under which the occurence of an event of an event type can 
lead to the execution, of a specified derivation rule constraint or inserte/delete 
operation. 
 

Let IT be an impulse type 
Let SET be the set of event types 
Let SCT be the set of condition types 
Let SDR be the union of  the set of  derivation rule constraints and the set of   
insert/delete operations 
IT= (A,B,C) | A∈SΕΤ, B∈SCΤ, C∈SDR} 

 
The impulse type constraints explicitly model the temporal relationships between 
‘happenings’ or events in the UoD and information system events and enforces them 
upon the derivation rules and information base update operations. In figure 5.11 we 
have given the instances of the impulse type constraint C17, C18, C19, C20, C21 and 
C22 for our University Enrollment example part 2. 

In appendix A we will give a detailed specification and illustration of the 
constraint types from this section that we consider relevant for a deeper understanding 
of the NLM requirements specification language. These constraint types cover the 
required static and dynamic constraints from chapter 2. In addition to the concepts of 
extension of the BIM, population we need to define a third state concept that reflects 
the extent in which the constraint types are enforced in the extension of the BIM. 
 
Definition 5.18. An information base state is an extension of a basic information model 
that complies with those business rules in the application domain that can be encoded 
using the population state-, population state transition-, derivation rule- and impulse 
type constraints. 
 
 Let SEXT(BIM) be the set of  extensions of a basic information model BIM 

Let IBS be an information base state of a basic information model BIM 
Let SPS be the set of population states for BIM 
Let PS be the set of population state constraints defined on BIM 

 Let PST be the set of population state transition constraints defined on BIM 
 Let DR be the set of derivation rule constraints defined on BIM 
 Let IT be the set of impulse type constraints defined on BIM 

Let BR be a set of business rules 
Let ps be a population state (ps  ∈ PS) 
ps  ∈ {EXT(BIM)j | EXT(BIM)j complies to the rules in BR} 
IBS⊂ (SEXT(BIM)={EXT(BIM)j | EXT(BIM)j complies to the constraints in   
(PS U PST U DR U DT  } 
SPS ⊆  IBS ⊆  SEXT(BIM) 

                                                 
28  Including the ‘empty’ condition type, which means that the occurrence of an event will 
unconditionally lead to the excution of a derivation rule and or/insert delete operation(s) 
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5.9    THE NLM REQUIREMENTS SPECIFICATION FOR A    
         GIVEN UOD 
 
We will now give a definition of a NLM requirements specification for a given UoD. 
 
Definition 5.19. A NLM requirements specification referring to a UoD is a basic 
information model (BIM) for that UoD together with all population constraints for 
which a legend is defined, derivation rule constrains and impulse type constraints, that 
reflect the business rules in that UoD and which fulfill the following conditions: 
- The intentions that are contained in a derivation rule argument should be 

contained in the Basic Information Model (BIM) 
- A post-condition in a derivation rule constraint should be a proposition on the  

Basic Information Model, e.g. it should only reference role and fact types that 
are contained in the BIM. 

- A pre-condition in a derivation rule constraint should be a proposition on the 
Basic Information Model, e.g. it should only reference roles and fact types that 
are contained in the BIM. 

 - A formula in a derivation rule constraint should be a function on the Basic 
Information Model, e.g. it should only reference role and fact types that are 
contained in the BIM and (possibly) values in the derivation rule argument. 

- A condition in an impulse type constraint should be a proposition on the Basic 
Information Model, e.g. it should only reference roles and fact types that are 
contained in the BIM and/or values in the event argument. 

- A derivation rule that is triggered in an impulse type constraint should be a 
derivation rule constraint for that UoD 

- An insert or delete operation that is triggered in an impulse type constraint 
should only refer to a fact type in the BIM of that UoD. 

 
Let RS be an requirements specification for the UoD U 
Let BIM be a basic information model for the UoD U 

Let {psc} be the set of population state constraints for the UoD U. 
Let {ptc} be the set of population state transition constraints for the UoD U. 

Let {drc}be the set of derivation rules constraints for the UoD U. 
Let {itc} be the set of impulse type constraints for the UoD U. 

 
RS= { BIM ∪ {psc} ∪ {ptc}∪ {drc} ∪ {itc} | 

∀r∈psc [ r ∈ BIM]; ∀r∈ptc [ r ∈ BIM]; ∀r∈drc [ r ∈ BIM] ∧ 
∀prc, poc∈drc [ prc •29 BIM ∧ poc • BIM ] ∧ ∀ic∈itc [ ic • BIM] 

∧ ∀ dr∈itc [dr∈ {drc}∨ dr • BIM ]} 
 
The consistency of the NLM modeling elements that are applied in the Basic 
Information Model and the model elements that are used in the different constraint 
types can be enforced by constraints in the NLM requirements specification of the 
                                                 
29  The  x•y operator means that x references an element in y. 
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NLM requirements specification (or the NLM meta model) in figure B.1 of appendix 
B. 
 
5.9.1    The NLM Requirements specification for the University Enrolment UoD 
 

We will give the NLM requirements specification for our integrated university 
Enrollment example in figures 5.10, 5.11 and 5.12. In figure 5.10 the basic information 
model for the University Enrollment example is shown plus the population state- and 
population state transition constraints. In figures 5.11 and 5.12, the derivation rule- 
and impulse type constraints for this UoD are given. 
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Student ID

Student ID

Ft10  
C1 C11

C14

C2
C6

C5

C10

C7

C3

C4 

C13

C9

C8
C12

Ft12 

Ft11   

Ft13  

Student ID

Student ID

University code

University code

University code

University code

1:Student [identified by the combination of <university code> and ]  
 majors in major <chosen major>

<student ID>

1:Student [identified by the combination of  ]  
 gained a number of credits <course credits> for the course <credited course>

<university code> and <student ID>

1:Student [identified by the combination of ]  
 gained a total number of credits <total credits> in his/her freshman year

<university code> and <student ID>

2:Student [identified by the combination of ]  
has chosen major <chosen major>

<university code> and <student ID>

1:Student [identified by the combination of  ]  
 has <last name>

<university code> and <student ID>

Chosen
major

Credited
 Course

Course
Credits

Last name

 Total
Credits

Student ID

Major name

1: < student ID> is a name from the student ID
name class that can be used to identify a student

among the union of students at Vandover University
 or Ohoa University

1: < student ID> is a name from the major name
name class that can be used to identify a major

among the union of majors at Vandover University 
and Ohoa university

Ft1

Ft2 

Course name

Natural number

Natural number

1: < course name> is a name
 from the course name 

name class that can
be used to identify a course
among the union of courses

 at Vandover University
 and  Ohoa University

1: < Natural number> is a name from the
Natural number name class that can be used to identify 

a total of enrolled
 students among the

 union of totals of enrolled students

1: < Natural number> is a name from theNatural number
name class that can be used to identify an amount of credits

among the union of amount of credits

Ft3 

Ft5

Ft4 

Ft14 

1:There is currently a total number of enrolled students <total enrolled students>
 at the combined Ohoa and Vandover universities

        Total
Enrolled students

C14:  state 
       before    after     science   economics  history     law   med 

  science                                         -                +            +     +
  economics                  +                                 +            +     +
  history                        +                +                             +     +
  law                             +                +               +                    +
  medicine                    +                 +               +            +  

 
Fig. 5.10 NLM requirements specification (I):BIM and population constraints 
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C15: Create total number of credits<{(arg ,student)}>
IF  there exist an instance of FT12 
SUCH THAT FT12.<university code>.<student ID>=arg1        
THEN create an instance of fact type FT13   
      SUCH THAT         
       FT13.<university code>.<student ID>:= arg1         
      FT13.<total credits>:=DF1              
                   DF1:=   FT12.<credits> [where FT12.<university code>. <Student ID>='arg1']       
ENDIF

1

 

C16: Create total number of enrolled students
IF  there exist an instance of FT10 
THEN create an instance of fact type FT14   
      SUCH THAT           FT14.<total enrolled students>:=DF2     
      DF2:= COUNT(Ext(FT10))                              
ENDIF

C17
ON E T2:  Insert(Student'x' wants to enroll in Major 'y') into application data  base has 
              succeeded (arg1:'x'; arg 2: 'y')
DO  Create total number of enrolled students

C19
ON ET1: student requests enrollment in major(arg1: student, arg2:major )
IF[FT13.<total credits>
          (Where FT13.<university code>.<Student.ID>='ET1.arg1')] > 24
AND   [ IF ET1.arg2='science' THEN( mathematics EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='mathematics' ]>8)                      
                                                   OR
       [ IF ET1.arg2='history' THEN( language and culture EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='language and culture' ]>5)   
OR
       [ IF ET1.arg2='economics' THEN(macro econ. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='macro econ.' ]>8)
OR
       [ IF ET1.arg2='medicine' THEN(biology. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='biology' ]>5)   
OR
       [ IF ET1.arg2='law' THEN(biology. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='finance' ]>5)  ]
DO Insert (student'Et1.arg1' has chosen major 'ET1.arg2').

C18

Create total number of enrolled students
ON ET3: Delete(Student'x' wants to enroll in Major 'y') from application data  base  has succeeded (arg1:'x'; arg 2: 'y')
DO 

 
Fig. 5.11 NLM requirements specification (II): derivation rule- and impulse type constraints 
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C23
ON ET1: student requests enrollment in major(arg1: student, arg2:major )
IF[FT13.<total credits>
          (Where FT13.<university code>.<Student.ID>='ET1.arg1')] > 24
AND   [ IF ET1.arg2='science' THEN( mathematics EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='mathematics' ]>8)                      
                                                   OR
       [ IF ET1.arg2='history' THEN( language and culture EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='language and culture' ]>5)   
OR
       [ IF ET1.arg2='economics' THEN(macro econ. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='macro econ.' ]>8)
OR
       [ IF ET1.arg2='medicine' THEN(biology. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='biology' ]>5)   
OR
       [ IF ET1.arg2='law' THEN(biology. EXT (FT12.<credited  
         course>[where FT12.<university code>.<Student.ID>='ET1.arg1'] AND 
         FT12.<course credits>[where FT12.<university code> .  
        <Student.ID> ='ET1.arg1' AND where FT12.<credited course > 
          ='finance' ]>5)  

DO  Delete
         Insert (student'Et1.arg1' has chosen major 'ET1.arg2').

]
AND IF EXT (FT10.<chosen major>|where Ft10.<university cod>.
                <student ID>='ET1.arg1'' )    ]

 (student'Et1.arg1' has chosen major 'z').

C20

 Create total number of credits(arg :='Et4.arg1')

ON ET4:  Insert(Student 'x' has gained the number of 'y' course  credits for course'z') into application data 
               base has succeeded (arg1:'x'; arg 2: 'y'; arg3: 'z')
DO 1

C21

Insert (Student 'Et5.arg1' has gained the number of  'Et5.arg2' credits for  course' Et5.arg3')

ON Et5: Credits granted to student(arg1:student; arg2:course;arg3:credits)
IF ET5.arg1 EXT(FT11.<Universitycode>.<student ID>)
DO 

C22
ON Et6: Student graduates(arg1:studen)
IF ET6.arg1 EXT(FT11.<Universitycode>.<student ID>)
DODelete(Student'Et6.arg1' wants to enroll in Major 'y')

 
 

Fig. 5.12 NLM requirements specification (III): impulse type constraints 
 
5.9.2    The University Enrollment case study description revisited 
 
In the following we have summarized  part 2 of the University Enrollment example text 
from section 5.6.2 in which we have references to the relevant  fact types, event types 
and  constraints that encode a specific business rule from the text. 
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For our application it suffices to know that student can be identified by the 
combination of a University code and a locally unique student ID (Ft1, c10). 
Furthermore, we assume that the assignment of a student’s university ID, which takes 
place outside our example UoD, will always lead to the recording of a student’s last 
name (Ft11, c5). In this example we assume that the University system is closed in the 
sense that a major can only be selected by students that are currently doing a freshmen 
year at Ohoa and/or Vandover (et1). A student can apply for at most one major at a 
time (c1). The majors that are offered after the merger are a simple union of the 
existing majors at the ‘old’ universities: science, history and economics at Vandover 
University and medicine and law at Ohao University (c14).  

In the integrated Ohoa and Vandover enrolment system it is decided to record 
all courses (Ft12) and the credits (Ft13) that have been obtained by them during their 
student’s freshmen year at Ohoa or Vandover (c7). The definite enrolment in the major 
of their choice depends upon the number of credits that a student has earned in his/her 
freshman year (Ft10, c6). If the total number of (approved) credits for these freshmen 
courses is 24 or more and the specific required freshmen courses for the major of their 
choice are contained in their credited freshmen courses than a definite enrolment, for 
the student will always be recorded (c19).  

A ‘real-life’ user example of the integrated Ohoadover enrolment system is 
given in figure 5.5. (Fact types Ft10, Ft11, Ft12, Ft13, Ft14 and constraints c2, c3, c4 
are abstracted respectively derived from this example) 
     In the example of figure 5.5 we furthermore have Majors that can be 
identified by a major name among the union of majors at Vandover and Ohoa 
University (Ft2). We also have courses that can be identified by a course name among 
the union of courses at Vandover and Ohoa University (Ft3, c12).  

A course credit (Ft4) or a total number of course credits (Ft4) for a student or 
the total number of enrolled students (Ft5) are expressed by a natural number (c8, c9, 
c13). At any point in time a student can have at most one total number of credits (c4). 
The total number of credits for a student is the arithmetic total of all individual credits 
for credited courses (c15). If a student does not have any credits assigned for at least 
one course the total number of course credits will not be shown (c5, c7) 

There will be some kind of message coming from another part of the 
university system that acknowledges at a certain point in time that student X has been 
credited Y credits for course Z. (c21). As soon as such a message is received by the 
enrolment clerk the information is entered into the enrolment system (et5). After the 
new course credits have been entered into the enrolment system (et4) the total number 
of credits for that student will be recalculated (c20).  

Furthermore, students are allowed to switch majors before graduation (et7). In 
that case the requirements regarding the content of their freshmen course and credits 
needed for this new major will be checked again (c23). In addition the management of 
Ohoadover has decided that not all enrolment switches are allowed. At this time the 
following restriction is applied:  A student can not major in Economics after he has 
majored in Science (c14).  

After a student has successfully finished his/her current major (this is decided 
outside the scope of our example UoD) (et6) he/she will be removed from the 
University Enrollment system (c22). Every time a student is enrolled (et2) or graduated 
(et3) the enrolment system will recalculate the total number enrolled students (c17, 
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c18). The total number of enrolled student at any point in time is calculated by 
inspecting which of the registered students have already enrolled for a major (c16). 

 
 
 

5.10    CONCLUSIONS ON THE WAY OF MODELING IN THE 
NLM RDM 

 
In this chapter of this thesis we have given the definitions of the modeling concepts for 
the requirements specification language of the NLM requirements determination 
method. In appendix B we have given the accompanying (meta) grammar for the 
application of these concepts in a requirements determination project. The way of 
modeling in NLM caters for the modeling of static as well as the dynamic rules of a 
business organization or an enterprise.  

We have introduced the fact type as single information bearing construct. The 
fact type construct that we have defined in this chapter allows us to model any naming 
convention and semantic connection. The introduction of the sentence group template 
construct and the application concept repository allows us to capture the complete 
domain semantics of a UoD. We conclude that NLM fulfills RMD 1 from chapter 4. 

The introduction of naming convention fact types and compound referencing 
schemes share the same general structure and provide in combination with an 
accompanying sentence group template the context in which the naming convention is 
valid. The existence of this unified naming convention/referencing concept in NLM 
fulfills requirement RMD 2 from chapter 4.  

The definition of the role construct as a mandatory modeling construct in 
NLM and the mandatory naming convention for such a construct within the UoD of an 
analyst in the NLM specification language fulfills RMD3 from chapter 4.  

Furthermore we have given modeling provisions that allows us to define any 
type of static constraint that currently exists within the approaches that we have 
investigated: uniqueness and set-comparison constraints in chapter 3, this results in a 
compliance with RMD 4.  

With respect to the definition of the modeling constructs in this chapter we 
have defined them in a way that the modeling constructs for the basic information 
model and the modeling constructs for constraining the possible extensions of the basic 
information model allow us to model ‘atomic’ chunks of business knowledge. This 
means that a NLM requirements specification complies with requirement RMD 5 from 
chapter 4 because the basic information model can evolve with the changing UoD by 
adding or deleting ‘atomic’ fact types and population, derivation rule and impulse 
constraints.  

The definition of an intention from the ACR (that has at least an extension of 
two elements) implies that such an intention plays at least one role in the basic 
information model. If instances of such an intention can only exist on their own, this 
must be explicitly modeled as a unary ‘existence postulating’ fact type (ter Hofstede et 
al., 1997:352). This means that the NLM modeling constructs comply with requirement 
RMD 6 from chapter 4.  

Business rules that can be phrased as propositions on the state of the 
application information base (static constraints) we have coined population state 
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constraints. We have given a legend and a definition of two groups of population state 
constraints: uniqueness constraints and set-comparison constraints. From their 
definition it follows that these constraint types do not intersect in terms of the 
implications for the allowed extensions of the intentional model, they exist 
independently and their definition is not dependent upon the arity of the underlying 
modeling construct from the basic information model, e.g. the definition of the 
uniqueness- and set-comparison constraints is fully scalable as a function of the arity 
(N). The definition of these constraint types caters for an explicit reference to the roles 
of the data model on which the constraint(s) is (are) defined. This means that we have 
complied with requirement RMD 7 from chapter 4.  

With respect to the dynamic constraints we have introduced language concepts 
for business rules that can be phrased as propositions on two subsequent states of the 
application information base.  We have called these types of constraints: population 
state transition constraints. With respect to the transition constraints we remark that in 
our legend we have explicitly incorporated the relationship that the constraint has in 
terms of the values of the roles that are involved. The definition of a state transition 
constraint in NLM contains explicit references to before- and after- states of the 
application information base, therefore, NLM complies with RMD 8 from chapter 4. 

Business rules that can be phrased as transformations of ingredient fact 
instances into (an) derived fact instance(s) we have coined derivation rules that can 
reference some kind of passive constraint, e.g. a proposition on the information base 
that might be true or false at any point in time. Such a proposition we have called a pre-
condition. Furthermore, the derivation rule constraints contain a reference to the roles 
from the Basic Information Model of the UoD and we have given a legend of how 
derivation rule constraints can be created in which the derivation logic can be encoded 
using some formalism that is known to the analyst. This means that NLM complies 
with RDM 9 

An impulse models those dynamic business rules in which the occurrence of 
an event can lead to the execution of a derivation rule or the insertion and/or deletion of 
fact instances into/from the application’s data base. We have made a distinction into 
internal and external events in NLM. This leads to the compliance to RMD 10. In the 
impulse, an information base condition can be contained. Such an information base 
condition (IBC) is evaluated at some point in time. If the application information base 
at that point in time in combination with the information base condition yields the 
value true than the derivation rule and/or insert/delete operation will be executed. If it 
yields the value false nothing will happen. This means that requirement RMD 11 from 
chapter 4 has been fulfilled by the NLM way of modeling. 
 
5.10.1   The added value of the NLM requirements specification language 
 
In this chapter we have introduced the modeling constructs in Natural Language 
Modeling (sections 5.1 through 5.9). The added value in terms of understanding the 
requirements determination process of NLM, in addition to fulfilling the 
operationalized design criteria that were mentioned in the former section, is in the 
consistent application of the modeling primitives onto the UoD of the requirements 
analyst itself. We also have provided a notation legend that enables us to use any 
graphical convention for denoting the language concepts in the NLM requirements 
specification language.  
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 We conclude by stating that the way of modeling in NLM is complete because 
it contains all the necessary modelling constructs for the conceptual specification of 
requirements in the static and dynamic perspectives of an enterprise. Furthermore, the 
way of modeling in NLM is efficient, because the average number of modeling 
constructs that serve the same purpose is very small if compared to the UML, (E)ER 
and ORM requirements specification languages. This means that a prospective NLM 
analyst can learn and apply these modeling constructs with less effort than learning for 
example UML. In appendix B this is illustrated by a significant part of the NLM meta 
model. The consistency of the modeling constructs for the data model and the 
constraints defined on its extension in NLM is guaranteed, because the definition of 
these modeling constructs was based upon the same set of primitives. 
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CHAPTER 630 
 

THE WAY OF WORKING AND THE WAY OF 
CONTROLLING IN NATURAL LANGUAGE 

MODELING 
 
 
6.1    INTRODUCTION 
 
A requirements determination method is a combination of a set of modeling constructs 
(in general referred to as the requirements specification language) and an 
accompanying (set of) procedure(s) that ‘prescribe’ how this language must be applied 
in practice. In this chapter a way of working and a way of controlling for natural 
language modeling (NLM) will be provided.  The modeling constructs in the NLM 
requirements specification language are based upon the axiom that all verbalizable 
information (reports, web-pages, note-books, traffic signs and so forth) can be 
translated into declarative natural language sentences (natural language axiom) (see 
chapter 5). Taking this axiom as a starting point in requirements modeling will 
constrain the feasible requirements specification constructs to those constructs that 
enable analysts to model declarative natural language sentences.  It also means that it 
is not a real or abstract world that is subject to modeling, but that it is the 
communication about such a real or abstract world (Hoppenbrouwers et al., 1997:79; 
van der Lek et al., 1992:279). In chapter 5 we have introduced the NLM requirements 
specification language or the way of modeling. In the first part of this chapter we will 
focus on the NLM modeling procedures or way of working. In the last part of this 
chapter we will discuss the way of controlling when NLM is used as a requirements 
determination method.  
     Earlier work on natural language descriptions in the context of requirements 
determination include Wrycza (1990), Choobineh and Venkatraman (1992) and Silva 
and Carlson (1995). Although these approaches all recognize the importance of natural 
language specifications, they lack the explicit incorporation of domain knowledge to be 
provided by the domain user into the way of working of a requirements determination 
method. Hoppenbrouwers et al. (1997) acknowledge the importance of natural 
language in the communication between user and analyst. Capuchino et al. (2000) give 
a linguistics based conceptual modeling approach in which they need the output of a 
requirements elicitation process as a starting point for the derivation of conceptual OO-
specifications. Tseng and Mannino (1989:53-54) give a survey of earlier work on the 
field of user view modeling based upon forms or examples. 

                                                 
30  An earlier version of this chapter has been published as ‘The Natural Language Modeling 
Procedure’, P.Bollen, in: A. Halevy and A. Gal (eds.). proceedings Fifth Workshop on Next 
Generation Information Technologies and Systems (NGITS’2002). Lecture Notes in Computer 
Science 2382. Springer-Verlag Berlin, Heidelberg  (2002) 123-146. 
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Fig. 6.1 The way of working in the NLM requirements determination method 
 

The way of working in NLM is laid down in a prescriptive document (see 
figure 6.1). Such a prescriptive document not only tells the NLM analyst what to do but 
more importantly it must contain precise guidelines on how to do it and moreover it 
should explicitly state when what type of user input is needed in order to arrive at a 
complete, precise and consistent requirements specification for a given application 
subject area. We will define this completeness, preciseness and consistency within the 
context of an agreed upon set of explicit informational documents (or formal 
organization) of the application UoD that is the subject of analysis. The extent in which 
an informal organization exists and the extent in which the existence of such an 
informal organization is acknowledged by the management and the requirements 
determination analysts severely effects the quality of a requirements specification 
(Land, 1980; Oonincx, 1982:73-76).  

In this chapter of this thesis we will exactly specify when a specific type of user 
input is required.  These user inputs can be considered semantic bridges between the 
‘real-world’ that is subject to modeling and the ‘model-world’ that consists of 
projections of such a real-world in terms of the requirements specification language in 
the methodology that is used.  
 
6.1.1    Organization of chapter 6 
 
In section 6.2 through 6.8 we will specify the way of working in Natural Language 
Modeling. In section 6.2 we will specify how a NLM analyst can create a basic 
information model for a UoD. The specification of the way of working will be done by 
introducing three algorithms that capture the domain semantics from the examples in 
the UoD and result in a set of naming conventions and a set of sentence groups. In 
section 6.3 an algorithm is provided that enables an analyst to derive an atomized basic 
information model for an individual analyst/user interaction for a given (set of) 
example(s). In section 6.4, we will introduce the way of working for those cases in 
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which a requirements determination project is divided into sub-projects in which 
different domain users interact with different analysts most of the time over different 
‘real-life’ examples. The integration algorithm specifies how the basic information 
models from the sub-projects can be integrated in a way that preserves the overall 
domain semantics. In sections 6.5 through 6.8, respectively we will provide the 
modeling procedures for the derivation of population state-, population state transition-, 
derivation rule- and impulse constraints. In section 6.9 we will discuss the way of 
controlling in NLM.   
 
 

6.2    THE DESIGN PROCEDURE FOR A SIMPLE BASIC 
INFORMATION MODEL 

In the remainder of this chapter we will define the procedures that specify how a NLM 
requirements specification for a given Universe of Discourse (UoD) can be created. 
The starting point for every requirements determination process will be a (set of) real-
life user example(s) that represent(s) a specific ‘external’ user view on the subject area. 
We note that the application of ‘real-life’ user examples is not restricted to ‘as-is’ 
situations but also applies to projected ‘real-life’ examples of a ‘to-be’ or 
‘reengineered’ application domain. The only requirement is that a user example must 
contain verbalizable information. Wu et al. (2002) give an overview of previous 
research in which ‘forms’ are used for information system design31. 
 The real-life user examples, however, can only be used in the requirements 
determination process when the people that use these examples are involved in this 
requirements determination process. The assumption that we will use in this chapter of 
this thesis is that users will be available that have the discretion within the organization 
to ‘verbalize’ these user documents in a knowledgeable way and that will be able to 
accept and or reject (combinations) of real-life example documents further on in the 
requirements determination process, based upon the knowledge of the application UoD 
that they possess. Finding these domain users in some UoD’s is not a trivial task, in 
some organizational forms, e.g. professional bureaucracies, political issues might have 
a big impact on the availability and selection of the users that may/can participate in the 
requirements determination process because it is not always evident from the ‘formal’ 
organizational structure who has the discretion to act on behalf of  ‘the organization’  in 
this organizational type (Mintzberg, 1991: 207-211).  
 Legacy systems may contain hidden logic which cannot be verbalized by 
present or past users. In such cases we assume that reverse engineering leads to 
artificial-life user examples. 

                                                 
31  Sometimes the concept of ‘form’ is used to refer to any structured document (e.g. See 
Choobineh and Venkatraman (1992:p.270). 
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Definition 6.1. A user example is an informational document. An informational 
document can have several manifestations. It can be paper-based, it can be a web-page, 
a computer screen, a note-book, and it can even be a formatted conversation. An 
informational document should contain verbalizable information. 
 
An example of a document that is not an informational document and therefore not 
verbalizable  is for example an ‘art’ painting by Rembrandt or van Gogh or a satellite 
picture of a city (you can see things but no single individual can name all of the things 
he/she sees on the picture). 
 
6.2.1    The verbalization transformation 

 
Fig. 6.2 The verbalization transformation. 

 
In NLM the requirements specification language constructs are applied in the analysis 
of the structure of declarative natural language sentences (as laid down in the natural 
language axiom). This means that we must translate ‘real-life’ examples that are not in 
the format of ‘declarative natural language sentences’ into declarative natural 
language sentences. The first step in this modeling procedure, therefore is the 'visual-
to-auditory' transformation (Nijssen, 1986) that will ‘standardize’ each verbalizable 
example into declarative natural language sentences. 
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During this transformation the user is asked to verbalize the content of a 
verbalizable 'real-life' user document that not necessarily should contain written natural 
language sentences.  The result of this verbalization is a set of (verbalized) sentence 
instances. In figure 6.2 the information flow diagram is given for the verbalization 
transformation. When the verbalization transformation is executed the following 
sequence of actions should take place. Firstly, a knowledgeable user is asked to read 
aloud the content of a representative part of a document, sentence by sentence, as if 
he/she were talking to a colleague (information flow 3 in figure 6.2) via the telephone 
(the ‘Aunt Annie in Reykjavik way of verbalizing’,  see Nijssen and Halpin (1989:3); 
Nijssen and Twine (1989:971)). While the knowledgeable user is reading (information 
flow 6 in figure 6.2) the analyst is listening to the user (information flow 4 in figure 
6.2), subsequently the analyst will shade the verbalized parts in the original example 
(information flows 2 and 7 in figure 6.2) and add every new sentence onto the output 
document (information flow 5 in figure 6.2).  

After all the representative information is read aloud, it is checked  with the 
user that each sentence on the output document can be traced back to a shaded pattern 
on the input document by reconstructing (the representative part of) the original 
example. If it is not possible to reconstruct the original example then these steps have 
to be performed again until the reconstruction of the original example(s) is possible.  

 
Initial check on naming conventions. In the verbalization transformation, the user is 
asked to verbalize the content of a real-life example. Whilst verbalizing, the user will 
reference the relevant concepts and entities in his/her UoD by using names. In the NLM 
methodology the concept of naming convention is crucial for bridging the gap between 
the business domain (or knowledge domain) and the formal structure with respect to 
the requirements specification. In the NLM requirements determination method we will 
exactly determine what name classes are of interest. We will enforce the domain users 
to select those ‘candidate’ name class(es) for the naming convention for a specific 
intention within the application subject area that can be considered a reference type.  
 
Definition 6.2. A naming convention is called a reference type for a selected portion of 
the real world if every element in the selected portion of the real world can be 
referenced by exactly one name from the name class used in the naming convention 
and that one name from such a name class references at most one element in that 
selected portion of the real world. 
 

 Let IS be an naming convention 
T: elements or concepts in a selected portion of the real world 
N: All names from a given name class 

( ) },{ NaTtatIS ∈∧∈=  

  ( ) ( )
[ ]( )⇔=⇔=∀

∈
vtdc

ISvdtc ,,,   (IS is a reference type) 
 

The analyst must check whether all names that are uttered by the user for 
referencing elements in that selected portion of the real world belong to a name class 
that is of the reference type.  If this is not the case then a different name class must be 
selected. Finding an appropriate naming convention for a given intention in 
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cooperation with a user can be considered a semantic bridge that is embodied in the 
choice of the proper name class by the user for a specific intention.  
 

Example 6.1:  

Consider the ‘real-life’ example in figure 6.3. 

 

       ABC COMPANY INVOICE        345      Client: 123145 
 
    Item   Description    price      quantity  subtotal 
 
   Ab102     Hose            $ 12,--     2            $    24,-- 
   Cd879     Pipe         $210,50           1            $210,50  
 
        Invoice total: $ 234,50 
 

Fig. 6.3 ‘real-life’ ABC invoice document (example 6.1). 
 
The ABC company creates an invoice for each client order.  A client is identified by a 
client code among the union of clients of the ABC company. An item is identified by 
an item code among the union of items that are contained in the assortment of the ABC 
company.  A  description and a unit price exist for each item.  An amount (of money) is 
identified by a decimal number.  

Furthermore, it is explicitly recorded how many units of a specific item are 
ordered by a client. Such a product quantity is identified by a natural number. A 
subtotal is derived for each item in the invoice by multiplying the (unit) price for that 
item by the quantity that is ordered. A specific invoice is identified by a combination of 
a client and a rank number.  

Finally, the total invoice amount is given on the example. The analyst has to 
check that every verbalized sentence is self-contained. For example: The two 
sentences:  There exists an invoice 345 for client 123145 and on that invoice the total 
amount is $ 234,50 must be replaced by the following sentence: The invoice 345 for 
client 123145 totals $ 234,50. Furthermore, if the user has verbalized the following 
sentence: The item hose has a unit price of $ 12,--, the analyst should ask the user 
following questions: Does the name "Hose" refer to exactly one item among the union 
of items in ABC’s assortment ? and Does the name $12,--refer to exactly one price 
among the union of prices ? It should be noted that in many cases the initial 
verbalization is very compact. In these cases a formal check on the naming convention 
will take place during the classification and qualification transformation.  

Definition 6.3. Verbalization is the process of transforming user examples into natural 
language sentences. 

We will now give the algorithm for the transformation verbalization. 
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Algorithm 1. Verbalization {UoDi is the universe of 
discourse that contains 1 or more ‘real-life’ user 
examples. G is the group of users of the‘real life’ 
examples in UoDi} 
BEGIN VERBALIZATION (UoDi, G)  
WHILE still significant parts of user examples are not  
      shaded 
DO    let knowledgeable user (g∈G) verbalize the next  
      unshaded part from the significant32 part of the  
      real-life example in the UoD33.  
      The analyst will shade this part on the real- 
      life example and he/she will add the verbalized    
      sentences on the document verbalized sentences. 
ENDWHILE 
Replace dependent sentences by self-contained sentences. 
{Reconstruction check} 
Let the analyst recreate the original example documents by 
translating the verbalized sentences document onto the 
corresponding parts on the original document. 
IF the recreated document is identical with the shaded  
   part of the verbalized document 
THEN {no information loss has occurred} 
ELSE{information loss has occurred,   
   VERBALIZATION(UoDi,G) 
     {Have the user verbalize the example again, thereby   
     using a different naming convention and/or  
     verbalizations that refer to bigger parts on the  
     example document} 
ENDIF 
END  
 
Algorithm 1, basically specifies how (a) ‘real-life’ example document(s) can be 
transformed into a verbalization and how the quality check for this transformation is 
implemented (the reconstruction check). 
The document verbalized sentences exclusively contains natural language sentences. 
(A part of) the result of the verbalization transformation applied on the invoice example 
in figure 6.3 is given in figure 6.4. 

                                                 
32  A significant part of a Universe of Discourse in this stage of the way of working of the NLM 
requirements determination method should be considered a set of example ‘instances’ that 
contain all possible variation in the sentence groups. 
33  The bold fonded parts of this and the other algorithms in this chapter denote that this 
information must be supplied by the user and therefore constitute (parts of a) semantic bridge(s). 
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         The item Ab102 has the description hose and a unit price of $ 12,-- 
       The subtotal for item Ab102 on the invoice 345 by client 123145 is  $ 24,-- 
         The item Cd879 has the description pipe and a unit price of $ 210,50 
    The subtotal for item Cd879 on the invoice 345 by client 123145 is $ 210,50         
The item Ab102 is ordered in the quantity of 2 on the invoice 345 by client 123145 
The item Cd879 is ordered in the quantity of 1 on the invoice 345 by client 123145               
                The invoice 345 of client 123145 has a total of $ 234,50 
                       

 
Fig. 6.4 Result of verbalization transformation of example 6.1. 

 
The verbalization transformation is essential for the implementation of the modeling 
foundation of NLM (the natural language axiom in section 5.3). The verbalization 
transformation is the unification transformation that uses all appearances of declarative 
verbalizable information as an input and will converge it into declarative natural 
language sentences as an output.  
 
6.2.2    The grouping transformation 
 
The transformation grouping is the process of sorting sentences from the document 
verbalized sentences according to what they have in common into a number of 
(sentence) groups. The document verbalized sentences should contain a significant set 
of sentences.  If a resulting sentence group only has one sentence instance on the 
significant part of the example document the user should verbalize a second sentence of 
the same type (eventually from a different ‘positive’34 example for the same UoD) until 
all possible variability is reflected  within the sentence groups.  

Definition 6.4. Grouping is the process that divides verbalized sentences into groups of  
the same type.  
 

The result of grouping is a partition of a set of sentences.   
Let B be a partition of A 
B={Bi|Bi⊂A} is a partition if Bi ⊄ ∅  
and Bi∩ Bj = ∅ and ∪ Bi=A 
 
    

                                                 
34   A positive example is an example accepted by the user, otherwise it is negative (Tseng and 
Mannino, 1989:55) 
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Grouping is the mapping of N sentences into M ( ≤ N) groups of sentences by some 
similarity criterion.  The grouping transformation will lead to a partition of the 
sentence groups (out of the 2n that are theoretically possible). We note that in principle 
a set of N sentences can be grouped in different ways. The resulting information 
models for these groupings are (semantically) equivalent, in the sense of entity type - 
fact type conversions (Nijssen and Halpin, 1989: 222-223). In general the algorithms 
that are used in modeling processes have an impact on the outcome of the modeling 
process (Kaufman and Rousseuw, 1990:37). The grouping algorithm can lead to 
different (semantic equivalent) outcomes when applied in cooperation with two 
different users that have the same knowledge of the same UoD. However, in order, to 
be able to create ‘semantic equivalent’ models, the existence of some population state 
constraints must be enforced. To cater for this semantic equivalence transformation that 
is induced by the grouping algorithm, the lexical constraint type must be defined 
(Nijssen and Halpin, 1989:159). 

Example 6.3: 

Verbalized sentences:  
 
The ABC company had a turnover for  item ab 102 of $ 345 in week 34 of year 1997. 
The ABC company had a profit for  item ab 102 of $ 45 in week 34 of year 1997. 
The ABC company had a turnover for  item ab 103 of $ 745 in week 35 of year 1996. 
The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996. 

Result of transformation grouping by user 1: 
 
Group 1: 

The ABC company had a turnover for item ab 102 of $ 345 in week 34 of year 1997. 
The ABC company had a turnover for  item ab 103 of $ 745 in week 35 of year 1996. 

Group 2: 

The ABC company had a profit for the item ab 102 of $ 45 in week 34 of year 1997. 
The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996. 
 
Result of transformation grouping by user 2: 
 
Group 1: 

The ABC company had a turnover for item ab 102 of $ 345 in week 34 of year 1997. 
The ABC company had a profit for the item ab 102 of $ 45 in week 34 of year 1997. 
The ABC company had a turnover for  item ab 103 of $ 745 in week 35 of year 1996. 

The ABC company had a profit for the item ab 103 of $ 75 in week 35 of year 1996. 

 

We will now give the grouping transformation algorithm for a given UoD and user 
group G. 
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Algorithm 2. Grouping {VS is the document verbalized 
sentences which contains the results of the verbalization 
transformation applied on UoDi} 
BEGIN GROUPING(UoDi,G,VS) 
Divide the sentences into groups of the same type (SG) 
WHILE still groups in SG 
DO    take next sentence group {gr∈SG} 
    IF    the number of Sentences in gr= 1 {s1} 
    THEN  let knowledgeable user (g∈G) verbalize a   
          second piece of information belonging to that   
          sentence group from a second example document   
  instance of the same type. This second piece   
          of information together with the first   
          sentence from this sentence group should  
          contain all variability within the sentence  
          group. The analyst will shade this part on the   
          real-life example and he/she will add the  
          verbalized sentences on the document  
          verbalized sentences. 
 IF such a second piece of information can not   
             be found 
         THEN  Add the verbalized sentence s1 to the  
               ACR. 
     Remove this sentence group from the   
               document VS. 
          ENDIF 
    ELSE  assign a unique code to the sentence group35 
    ENDIF 

ENDWHILE 
{completeness check} Each sentence in the verbalized 
sentences document should belong to a sentence group in 
the grouped sentences document or must be contained in the 
ACR.  
END 
 
In figure 6.5 the result of the grouping transformation for example 6.1 is given. 

                                                 
35   Preferably for each individual analyst/user interaction, a set of sentences group codes must 
be reserved. Those codes must not be overlapping among the different analyst/user interactions 
that are carried out within one requirements determination project 
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Sentence group Sg1 
 
The item Ab102 has the description hose and a unit price of $ 12,-- 
The item Cd879 has the description pipe and a unit price of $ 210,50      
 
Sentence group Sg5 
 
The subtotal for item Ab102 on the invoice 345 by client 123145 is  $ 24,-- 
The subtotal for item Cd879 on the invoice 345 by client 123145 is $ 210,50         
    
Sentence group Sg6 
 
The item Ab102 is ordered in the quantity of 2 on the invoice 345 by client 123145 
The item Cd879 is ordered in the quantity of 1 on the invoice 345 by client 123145 
  
Sentence group Sg7 
            
The invoice 345 of client 123145 has a total of $ 234,50 
The invoice 346 of client 123567 has a total of $ 4,20  
 

 
Fig. 6.5 Result of grouping transformation of example 6.1. 

6.2.3    The classification and qualification transformation 

Colleagues know the background of their co-workers and the language they use refers 
to a shared world. An example of such an implicit communication between colleagues 
is: 35467 is due for 23-97 (example 6.2). Suppose another sentence is communicated 
between two colleagues in this subject area: 35469 is due for 25-97. We can now group 
these sentences as follows: 
 
Group 1:  35467 is due for 23-97 
   35469 is due for 25-97 

For the colleagues in the logistics and supply department of a company these sentences 
have a definite meaning but it can be very hard for an outside person (who works for 
the same company) to find out what the communication is about. Because a 
requirements specification should reflect the ‘organizational’ semantics of the complete 
application subject area we have to ask the user that has verbalized the sentences to 
inject ‘additional semantics’ in such a way that the resulting sentences can be 
understood by a colleague from another department within the same company.  The 
result of this ‘semantic injection’ would yield sentences like:   

The supply order with order number 35467 is due for week 23 of the year 1997 and 
The supply order with order number 35469 is due for week 25 of the year 1997.  
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This is the reason that we need a transformation that transforms of the sentence groups 
on the document grouped sentences into a semantic rich format that specifies exactly 
what the communication is about (e.g. what concepts are involved and how these 
concepts are defined) and what naming conventions are used to identify instances of 
these concepts. We will call this transformation the classification and qualification 
transformation. Firstly the variable and fixed parts for each sentence group will be 
determined (the classification sub transformation). Secondly the intention of the 
concepts that play the roles will be determined and a naming convention will be 
established, e.g. it will be made explicit to what name class the individual names, 
which reference those concepts, belong (the qualification sub transformation).  

The classification sub-transformation. In the classification transformation we will 
investigate each sentence group at a time. We will depict those parts of a sentence 
group from example 6.1 that are fixed and the parts that are variable :  
 
Example 6.1(ctd.):  Sentence Group1=:{ The item Ab102 has a unit price of $ 12,--,   
                                                        The item Cd879 has a unit price of $ 210,50} 

Variable parts sentence Group1=:{ The item Ab102 has a unit price   
of $ 12,--,  The item Cd879 has a    
unit price of $ 210,50} 

Fixed parts sentence Group1=:{ The item Ab102 has a unit price of    
$ 12,--,  The item Cd879 has a 
unit price of $ 210,50} 

 
We will call the names in the sentences that are variable within a significant set of 
sentences of the sentence group: individual names. The remaining positions in the 
sentence groups contain text parts that are fixed for every sentence (instance) of the 
sentence group. In the remainder of this paper we will call the variable parts in a 
sentence group roles  and we will call the fixed parts in a sentence group verb parts in 
the accompanying fact type template. We will now be able to specify a sentence group 
by replacing the sentence positions for the roles by a role name. This leads to the 
following sentence group template for sentence group 1:  The item <r1>has the 
description <R2>and a unit price of <R2b>. An equivalent graphical notation for a 
sentence group for this example is shown in figure 6.6 (see also chapter 5). 
 

R1 R2 R2b Sg1

 
 

Fig. 6.6 Graphical notation sentence group for (a part of) example 6.1. 
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In the graphical notation we will denote each role by a box that contains the role name. 
The sentence group template(s) will be placed under the ‘role-boxes’ and each template 
will contain at least one reference to each ‘role box’ (see chapter 5). We must remark 
that the focus in this thesis is not on the notational convention (chapter 1), we will use 
the box notation to facilitate the expression of a number of constraint types that will be 
later on in this chapter, however, any suitable notational legend could be used for this 
purpose.  
 

The qualification sub-transformation. Now we have classified the sentence group 
elements into variable and fixed  parts we can start deriving the additional semantics 
for the Universe of Discourse by establishing additional semantic bridges with the user. 
Firstly, the type of concept or thing (defined as intention) and its definition to which the 
individual names in a role of the sentence group refer, will be recorded. For every role 
in a sentence group we will determine its intention from a sample extension of that 
concept by posing the what question 

To what type of thing or concept refer the individual names in this role ? 

For each intention that is distinguished by the user in the answers to the what question, 
a definition should be recorded in the application concept repository (ACR). Every 
definition of an intention should be expressed in terms of general known concepts 
and/or intentions that are already defined in the application concept repository (see 
section 5.5). Dependent upon the way in which the initial user verbalization has taken 
place, a specific intention might not be contained in the sentence group (e.g. the 
example in the grouping transformation in which an ‘inter-colleague’ level of 
verbalization exists). 

In those cases we will add the intention to the sentence group by putting the intention 
in front of the role names in the sentence group template. 

 
Example 6.2(ctd.): 
 
Sentence group:The item ab102 has a unit price of the amount $ 12,-- 
    The item cd879 has a unit price of the amount $ 210,50 

Sentence group template: The item <R1> has a unit price of the amount <R2> 

Intention(ab102, cd879):= Item;  
Intention ($12,--, $ 210,50):= Amount 

Asking the user to define the intention in terms of other ‘known’ intentions leads to the 
application concept repository (ACR) in figure 6.6. We remark that the ACR should be 
based upon the ontology of the integrated application subject area, and it is therefore, 
defined on a business level. Furthermore, the specialization and generalization 
relationships that exist between intentions within a UoD must be incorporated into the 
ACR. In very large requirements determination projects we recommend to add the 
name of the department (or organizational unit) and the names of the knowledgeable 
users that have defined the concepts to the ACR, in case of definition and interpretation 
conflicts that might in the course of the requirements determination project. 
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Intention Synonym definition 
Item                   a product that is contained in ABC’s assortment 
Client   Customer           a person that has ordered or that is about to order an item at  
                                       ABC               
Invoice             a document that specifies the payments  for an order 
Amount                a specific quantity of money in dollars 
Product quantity   a specific quantity of items 

Fig. 6.7 Initial application concept repository for (a part of) example 6.1. 

Secondly, we will formally establish the naming convention for the intentions 
that have been defined in the UoD in this sub-transformation. We will ask the user the 
how question one time for every intention that has been distinguished. In some 
situations this question serves as a quality check on the initial naming convention that 
has been performed during the verbalization transformation in which the user initially 
has verbalized the ‘real-life’ example. 
 

How ? (or by what names) are instances of a given intention in the 
application repository within this UoD identified ? 

This question determines if a name class can be specified that configures a reference 
type naming convention for the selected portion of the real world that consists of the 
union of instances of the intention.  

In the example of  The item <R1> has a unit price of the amount <R2> sentence group 
the following two how questions can be posed: 

Question 1: How ? (or by what names) are instances of an item in the ABC invoice     
UoD  identified ? 

Question 2: How ? (or by what names) are instances of an amount in the ABC invoice 
UoD identified ? 

The answer to question 1 is that an item is identified by a name from the item code 
name class and the answer to question 2 is that an amount is identified by a name from 
the decimal number name class. The answer to these ‘how’ questions is another 
‘semantic injection’ to the existing sentence groups. We will model these additional 
semantics as a sentence group that is ‘connected’ to the appropriate intention.  In this 
example the naming convention sentence group for the intention Item is :<R3> is a 
name from the item code name class that can be used to identify an item  within the 
union of items in ABC’s assortment and for the intention Amount it is: <R7> is a name 
from the decimal number name class that can be used to identify a specific amount of 
money in dollars within the union of money amounts. It should be noted that the 
selected portion of the real world in which the names from the name class can be 
considered to be of the reference type should be explicitly mentioned in the naming 
convention fact type template. In figure 6.8 we have illustrated  how all extensions of 
the role R1 that  are played by the intention item at any time must be a subset of the 
instances of the name class item code (subset constraint C1) and how all extensions of 
role R2 played by the intention amount at any time must be a subset of the instances of  
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the name class decimal number (subset constraint C6) (see section 5.8 for the definition 
of a subset constraint).  

 

R1 R2 R2b Sg1

Sg2 Sg3 R3  R7  

C1  C6   

 1:  The item<R1> has the description <R2>and  a unit price of an amount<R2b>
 2:  The unit price for the item <R1> is the amount <R2b> and it has as description <R2> 

3:<R3> is a name from the item code name class
         that can be used to  identify an item within the
         union of items in ABC’s assortment  

6:<R7> is a name from the decimal number  name class 
         that can be used to identify an amount in dollars within
         the union of money amounts    

 
 

Fig. 6.8 Application of naming convention fact types in NLM. 

 
We have now shown that in principle we can pose two questions for every role in a 
sentence group. The answer to the what question will lead to the identification of a 
specific application intention for that role. The answer to the how question leads to the 
detection of a specific name class and is encoded as a naming convention sentence 
group plus the appropriate referencing constraint.  Until now we have assumed that the 
name of the name class that can be used to identify instances of the intention is 
different than the name of the intention. However, it is possible that an intention of an 
individual name coincides with the name class. Consider the following verbalized 
sentences from example 6.1 (that constitute one sentence group): 
 

The invoice 345 for client 123145 totals $ 234,50 
The invoice 345 for client 578995 totals $ 125,00 
The invoice 348 for client 578995 totals $ 25,75 

The latter sentence group has three variable parts (denoted by an underscore):  

The invoice 345 for client 123145 totals $ 234.50 
The invoice 345 for client 578995 totals $ 125.00 
The invoice 348 for client 578995 totals $ 25.75 

The intentions for the respective role extensions  are the following: 

Intention(345,348):= number 
Intention(123145, 578995):= client 

Intention ($ 234.50, $125.00, $ 25.75):= amount in dollars 

If we would now ask the how question for every intention that was discovered, we 
yield:   

Name class (number):=number 
Name class (client):=person name 

Name class (amount in dollars):=number 
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In this example we see that for the ‘first’ role in the sentence group the name class that 
can be used to identify instances of the intention is identical to the intention itself. This 
means that there does not exist an intention for this role other than the name class itself. 
In this case we do not define a naming convention fact type. Instead we will record the 
name class in the position of the intention name in the sentence group. We can now 
conclude that for each role in a sentence group we must record the intention of the 
individual names that play that role in the sentence group and the naming convention 
sentence group for that intention or we must record the name class to which the 
individual names that play that role in the sentence group belong. 
 
Compound referencing schemes.  In some subject areas users have introduced 
naming conventions that are complex, e.g. that consist of names that have an internal 
structure. The qualification of every role in such a sentence group, therefore, will not 
necessarily lead to the detection of all intentions that have extensions that consists of 
value combination of two or more roles in a sentence group. Thus, in some sentence 
groups the intentions are not linked to exactly one role. We will illustrate this once 
again in example 6.1. 

Example 6.1(ctd.): 
 
Sentence group:    The invoice 345 for client 123145 totals $ 234,50 
   The invoice 345 for client 578995 totals $ 125,00 
   The invoice 348 for client 578995 totals $ 25,75 
Sentence group template: The invoice <R4> for client <R5> totals <R6> 
Qualified Sentence group 
template: The invoice having rank number <R4> for  client <R5> 

totals the amount in dollars <R6> 
 

We have discovered a fourth intention or name class in this qualified sentence group: 
invoice. If we once again ask the question : by what naming convention is an instance 
of an invoice depicted ?, it will turn out that this is a complex identification structure, 
consisting of combinations of individual names in roles <R4> and <R5>.  

The invoice [identified by rank number <R4> for client  <R5>] totals the amount in 
dollars of <R6> 

This means that in those sentence groups that contain at least one intention with a 
compound referencing scheme we will have to incorporate the naming convention 
sentence group, in the communicated sentence group itself. In case such a ‘compound’ 
intention (or aggregation (Smith and Smith, 1977)) is not contained in the initial 
verbalization by the user we will have to trace the existence of such a ‘compound’ 
intention by systematically confronting the user with all possible role combinations (of 
a sentence group) and ask the user whether such a role combination can be considered 
as a referencing scheme for a potential ‘compound’ intention. The classification and 
qualification transformation should enforce the analyst and the user(s) to specify all 
intentions that have a compound referencing scheme. Consequently, the naming 
convention template for these ‘compound’ intentions will be incorporated into the ‘flat’ 
sentence group in which they appear. We will now give the algorithm for the 
classification and qualification transformation for a specific sentence group. 
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Algorithm 3. Classification and Qualification {SG is the 
set sentence groups on the document grouped sentences that 
is the result of  the transformation grouping} 
BEGIN CLASSIFICATION and QUALIFICATION(UoDj ,G, SG) 
WHILE Still sentence groups 
DO   Take next sentence group {sg∈SG} 
     List all sentences in the sentence group sg. 
     Mark the common parts throughout all the sentence  

 instances in the group sg. 
 Insert a role code36 for  
 every variable part. 

     WHILE still roles in the sentence group sg 
           Take next role in sg {rg} 
     DO Determine the intention that plays the role rg   
        in the sentence group sg by posing the what   
        question (answer: Ix).  
        Pose the How question for Ix: (answer Nx) 
        IF  Nx=Ix THEN Ix is a name class. 

              Let the user record the name    
              class definition in the ACR      

       ELSE Ix is an intention. 
                         Let the user define the intention   
                         and record this definition in the   
                         ACR. Determine the naming   
                         convention fact type37 that   
                         connects name class Nx to  
                         intention Ix. Add a subset  
                         constraint between the role and  
                         the role of the naming convention  
                         fact type 
        ENDIF 
     ENDWHILE                  
     IF arity of sg >=2 
     THEN Check on compound intentions with the users38

  

                                                 
36  Such a role code must be a reference type naming convention within a requirements 
determination project or a group of projects. 
37  In the template of the naming convention fact type the ‘selected portion of the real world’ in 
which the naming convention is of the reference type should be included. 
38  Consider a fact type consisting of roles R1, ...., RN. For each combination of j (2≤ j≤ N) roles 
try to determine an intention, that has a compound referencing scheme. As soon as all roles are 
contained in a (compound) referencing scheme, we can stop this algorithm. We will now replace 
this compound referencing scheme by creating one role for each intention having such a complex 
identification structure. The resulting sentence group will be called the compound sentence 
group as opposed to the flat sentence group. For example, the flat sentence group Sg5 contains 4 
roles, the compound sentence group Sg5 will contain 3 roles (in this cases role R16 and R17 are 
joined into one compound role). See for an earlier discussion on this issue Biller (1979:280-282).  
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     WHILE still compound intentions in sg 
     DO    take next compound intention {CI}. 

  Determine  identification structure for   
  CI in terms of the roles of the 'flat'  
  structure. 

      Add the naming convention sentence group  
      for the complex intention  CI in brackets   
      into the sentence group sg 

        ENDWHILE 
    ENDIF 
ENDWHILE 
{consistency check} For each sentence group on the final 
version of the document ‘grouped sentences’, exactly one 
(non-naming convention) sentence group must exist in the 
document ‘classified and qualified sentence groups’  

END  
 

C10   C5  
C9   

C2  

C8  

R5R12   

R16    

R4R11   

R15   

R6R13    

R17      

R14      

R18        

R8  

R19   

R7 

 8: The invoice [identified by  ranknumber <R4> for client <R5>]
                          totals the amount <R6> in dollars

  7: The item <R11> is ordered in a quantity of <R12> units
           on the invoice [identified by ranknumber <R13> for client <R14>]
                          

  9: The subtotal  for the item <R15> on the invoice [identified by
         ranknumber <R16> for client <R17>] is the amount <R18> 

  5: <R8> is a name from the client code name
          class that can be used to identify a client
          within the union of clients

  10: <R19> is a name from the natural number  
            name class that can be used to identify a 
           quantity within the union of quantities

 6: <R7> is a name from the 
                   decimal number  name 
                   class that can be used to 

                    identify an amount of
                   money in dollars  within
                the union of money  amounts 

R1 R2bR2

R3  

C1  

Sg1

Sg5

Sg6 Sg7 

Sg9 

Sg4

Sg2 

Sg3 
C4 C18  

C7  

C6  

1:  The item<R1> has the description <R2> and unit price of an amount<R2b>
 2:  The unit price for the item <R1> is the amount <R2b> and it has a description <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

 
 

Fig. 6.9 Result of classification/qualification transformation of example 6.1. 
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6.3    THE ATOMIZATION PROCEDURE 
 

In NLM we use ‘real-life’ examples of communication or ‘knowledgeable user’ views 
as a starting point for the requirements determination sub process that involves the 
requirements elicitation on an individual user (or eventually user group) level. In the 
ANSI/SPARC three-schema architecture (Tsichritzis and Klug, 1978) different of these 
external user schemata on the same conceptual schema can be defined.  A conceptual 
schema according to the ANSI/SPARC three-schema architecture should enable all 
workers in the enterprise to access all corporate facts. The definitions in a requirements 
specification, therefore, should not favour one external schema over another. 
Furthermore, a requirements specification must contain all domain semantics that are 
needed to eventually implement an automated information system to support the 
business management and operations. For example, a relational data base 
implementation, requires that the tables in the logical database design are in 5th Normal 
Form (5NF). If the application requirements specification does not explicitly contain 
the semantics with respect to functional dependencies, this would imply that during the 
database normalization process, a database designer once again has to consult the users 
in the application domain to help him/her in determining the functional dependencies. 
For these reasons, the sentence groups in the conceptual schema or requirements 
specification in this architecture need to be atomic elements of which the compounds in 
the external schemata are created and that contain all required semantics for the 
implementers. 

Definition 6.5. An elementary or atomic sentence group is a sentence group of which 
the sentence instances can not be split up into two or more sentences without losing 
information and can not be contained in another atomic sentence group referring to the 
same Universe of Discourse.  An elementary sentence group is also called semantic 
irreducible (Falkenberg, 1976). 

Let {FFTij} be the set of  sentence group templates  defined on UoDk and a 
user group G. Where FFTij refers to sentence group template i for sentence 
group j .Let the sentence α be an instance of a sentence group template FFTim 
for sentence group FTM (⊂ {FFTij}) referring to the universe of discourse 
UoDk.  .The sentence  α  is atomic    ⇔    

                     m(G)
39 

 ( ¬∃ β1,.. βN ♦
40

 {FFTij} \ FFTim  [ α ⇒  β1,.. βN ])      ∨ 
                     m(G)                     m(G) 

( ∃ β1,.. βN ♦ {FFTij} \ FFTm     [ α ⇒  β1,.. βN  ∧  β1,.. βN ¬ ⇒  α]) 

                                                 
39               m(G) 
where    α ⇒  β1,.. ,βN is defined as :  The existence of sentences  β1,.. βN  is implied by  
sentence  α  according to user group G in the given universe of discourse. See also Biller (1979). 
40  Where [a  ♦ A] is defined as: a is an instance of A. 
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We will now give  the algorithm for the atomization transformation for a given UoD 
and a user group G.  
 
Algorithm 4. Atomization (Sg) {Sg is the set of sentence 
groups that results from the application of algorithm 3: 
classification and qualification} 
BEGIN  ATOMIZATION({SGi},G) 
Consider exclusively the compound sentence group formats 
as defined in algorithm 3 for every sentence group 
 
 WHILE not last sentence group from SG AND  
       arity(sg) > 2 
 DO Take a sentence group template (sgt) from sentence   
    group sg (∈ SG) 
    Take following sentence as a first sentence   
    instance of this sentence group template {Let the     
    arity of sgt= N):  a1 b1 ..   N1        
    { Comment: we define the set of different role   
     combinations consisting of j roles within the  
     sentence group template sgt as follows:  

     
( ) },...,...{: 1 ccc j

NjjkjjRCOMBSI
⎟
⎠
⎞⎜

⎝
⎛=

 } 
     j:=1                                         

     
       WHILE j ≠ N-2   
        DO  k:=1 

   WHILE k ≠ 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
j
N

 
   DO  Create a new sentence instance of the    
              sentence group template sgt: si2 
     si2 should have different names in all    
     roles except the roles in cjk. 
    Check with the user in user group G   

 whether a combination of sentences si1 and   
  si2 is allowed 

    IF  such a combination is not allowed 
    THEN the sentence group sg of sentence   
                  group template sgt is not atomic. Ask  
                  the user to split the sentence group   
                  sg into 2 or more fact types sg1,  

                  sg2 .... sgp
41 such that the   

                                                 
41   We assume that the extensions of the name classes that will be used for referring to atomic 
fact types will be disjunct in the different user/analyst interactions. A naming convention for the 
fact types would be the following: For each sentence group that is atomic keep the same name. If 
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                  shading of instances of these new  
                  sentence groups on the original  
                  examples used in the verbalization are  
                  equal to the shaded part for the        
                  corresponding instances of the non- 
                  atomic sentence group sgi 
                  {SG}:= {SG}/sg ∪ {sg1, .. sgp} 
   ELSE k:=k+1 
                 j:=j+1 
   ENDIF 
                 J:=N-2 
   ENDWHILE   
 ENDWHILE 
take next sentence group from SG 
ENDWHILE 
{reference check} 
Check that each sentence group on the (input) document 
‘classified and qualified sentence group’ refers to at 
least one fact type on the output document ‘atomized 
sentence groups’. 
END 
 

We remark that even in the case in which there exists exactly one external view on the 
application information base we still need to atomize the sentence groups that are 
contained in the document sentence group templates simply because an elementary fact 
should be stored at most one time in the application information base in order to avoid 
update anomalies. The atomization process results in a conceptual schema or 
requirements specification for which algorithms can be defined that group these atomic 
fact types into relation types in an optimal normal form (ONF) (Leung and Nijssen, 
1987). The mapping in (Nijssen and Halpin, 1989:254-260) typically generates tables 
in fifth normal form (5NF). For an elaboration on atomization we refer to Kent (1978) 
and Nijssen and Halpin (1989). We note hat we will use the term fact type to refer to 
those sentence groups that are atomic within the UoD. In figure 6.10 we have given the 
result of the application of this transformation for example 6.1. 
 

                                                                                                                       
a sentence group has to be split up use the original name plus one or more new names from the 
designated name class to denote these atomized sentence groups or fact types. 
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C10   C5  
C9   

C2  

C8  

R5R12   

R16    

R4R11   

R15   

R6R13    

R17      

R14      

R18        

R8  

R19   

R7 

 8: The invoice [identified by  ranknumber <R4> for client <R5>]
                          totals the amount <R6> in dollars

  7: The item <R11> is ordered in a quantity of <R12> units
           on the invoice [identified by ranknumber <R13> for client <R14>]
                          

  9: The subtotal  for the item <R15> on the invoice [identified by
         ranknumber <R16> for client <R17>] is the amount <R18> 
                          

  5: <R8> is a name from the client code name
          class that can be used to identify a client
          within the union of clients

  10: <R19> is a name from the natural number  
            name class that can be used to identify a 
           quantity within the union of quantities

 6: <R7> is a name from the 
                   decimal number  name 
                   class that can be used to 

                    identify an amount of
                   money in dollars  within
                the union of money  amounts 

R1 

R9  

R2

R10  

R3  

C1  
Sg1

Sg5

Sg6 Sg7 

Sg8 

Sg9 

Sg4

Sg2 

Sg3 

C3

C4 C18  

C7  

C6  

1:  The item<R1> has a unit price of an amount<R2>

 4:  The item<R9> has the description <R10> 

2:  The unit price for the item <R1> is the amount <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

 
Fig. 6.10 Result of atomization transformation of example 6.1. 

 

We note from the example in figure 6.10 that if compared with the results of the 
classification and qualification transformation in figure 6.9 only sentence group Sg1 
has been split up into the new and atomized fact types Sg1 and Sg8. 

 

6.4    THE PROCEDURE FOR INTEGRATING BIMs IN NLM 

We will now give a number of equivalence transformations that are required in order to 
be able to integrate information models that are created in a  number of different 
analyst/user interactions in different requirements determination sub processes. This is 
generally known as schema integration (Beynon-Davis et al., 1997). Many schema 
integration approaches are based on the (E)E-R approach for conceptual modeling 
(Beynon-Davis et al., 1997; Johannesson, 1997; Kwan and Fong, 1999; Lim and 
Chiang, 2000; McBrien and Poulosvassilis, 1998; Navathe et al., 1984). An approach 
that is based upon a (binary) fact oriented approach can be found in Shoval and Zohn 
(1991). In Johannesson (1997) the schema integration process is divided into schema 
comparison, schema conforming and schema merging. In Lim and Chiang (2000) 
schema-level conflicts are classified into (relationship) naming, structural, identifier, 
cardinality and domain conflicts. Kwan and Fong (1999) in addition, propose to 
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resolve conflicts on synonyms and homonyms, merge entities by generalization and 
merge entities by subtype relationships. 
 
6.4.1    Conflicts on naming, synonyms and homonyms 
 
In NLM schemas we can encounter naming conflicts on two levels: names for 
intentions and names for the verbs in the fact types. To resolve the first conflict we 
need primary naming convention postulation. In principle it is possible that more than 
one reference type naming convention is used for a specific intention in the different 
sub-schemas. In an integrated UoD however it is essential to have exactly one primary 
naming convention for each intention. 
 
Definition 6.6. Primary naming convention postulation is the process of selecting one 
naming convention for every intention for (a) given integrated UoD (s).  

After this negotiation process (Meersman, 1994; Shoval and Zohn, 1991:237), the 
primary naming conventions for the intentions in the application subject42 area must be 
known together with their synonyms that can be incorporated into the conceptual 
information model, by means of synonym fact types, e.g. The employee with employee 
ID <r1> has social security number <r2>. Furthermore, for all intentions that are 
contained in the first UoD and the second UoD and that have identical naming 
convention fact types, it should be checked whether these naming conventions still can 
be considered having a reference type naming convention in the integrated UoD.  
 

Example 6.3: 

     UoD 1: affiliate A: Employee with employee id43 <R1> lives on Address <R2> 

UoD 2: affiliate B: Employee with employee id <R1> lives on Address <R2>. 

 
In example 6.3 the conceptualization into an enterprise wide requirements specification 
forces users in the integrated UoD to determine a new naming convention for 
employees. In such a case it is likely to create a compound naming convention in which 
the extension of the first role consists of names from the name class employee ID and 
the extension of the second role of the names from the name class affiliate code (e.g. A 
or B). An alternative naming convention that is of the reference type for the integrated 
UoD in example 6.3 is an employee ID that identifies employees within the integrated 
application subject area. The advantage of selecting the former naming convention is 
that the company can capitalize on the existing naming conventions. 

                                                 
42  We note that synonyms for intentions or concepts (Mirbel, 1997:184) are directly 
incorporated into the Application Concept Repository (ACR) (Shoval and Zohn, 1991:227). 
43  We assume that the instances of the name class employee ID are (potentially) overlapping 
within the union of  UoD1 and UoD2: The name class employee ID is of the reference type 
within UoD1 and within UoD2, but it is not of the reference type within the integrated UoD. 
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Concerning the possibility of homonyms (Mirbel, 1997:184) for application 
intentions, provisions have been made in the application concept repository in which 
the same definition for different intentions are prohibited, but if they do occur, 
investigations can take place by involving the relevant user groups. With regard to the 
names in the verbs we remark that when we integrate two fact types from two sub-
UoD’s having different fact type templates in which the same intentions are involved 
(in the same roles) we need to determine whether they belong to the same group of fact 
type templates (for a given fact type) or whether they can be considered to represent 
two different fact types. In order to facilitate such a comparison we suggest that the 
main concepts that are contained in the verb-parts of the fact type templates should be 
defined and added to the Application Concept Repository (ACR). In such a way a 
common business ontology is preserved. 

6.4.2    Specialization and generalization relationships 

The second integration transformation is the generalization/specialization 
transformation. The reason for applying this transformation is that it can not be 
expected that all users have complete domain knowledge on the integrated enterprise 
subject area. For some user groups the intentions person and student can be considered 
synonyms because the extensions of both intentions will always contain the same 
instances. Whenever the subject area is extended (which is the case when UoD's are 
integrated) there will be a possibility that the extensions of some intentions in the 
integrated model are overlapping or are contained in one another. For example the 
following intentions person, student, traveller, customer, dutch citizen can refer to 
overlapping or inclusive classes of  "physical persons" depending upon the scope of 
analysis (Kung, 1990). In case the extension of an intention is an inclusive class of  the 
extension of another intention we will call the former a subtype of the latter. 
Furthermore, it is possible that the extensions of two intentions that always exclude 
each other or that partially overlap can be generalized into an ‘overlapping’ intention in 
an integrated UoD whose extension is defined as the union of the extensions of the 
intentions in the different UoD’s. We will call such an intention in the integrated UoD 
a super type. 
 
Definition 6.7. Generalization/specialization  is the process of determining super types 
and subtypes for  the intentions in the integrated basic information model44. 

                                                 
44  We thereby assume that specialization/generalizations that exist in a single user/analyst UoD 
will be modeled explicitly in the BIM by defining the appropriate subset constraints between the 
fact types in which the super/subclass intentions participate or between the appropriate ‘existing-
postulating’ fact types (ter Hofstede et al., 1997:352). Furthermore, specializations and their 
definitions and/or generalizations need to be explicitly stored in the application concept 
repository (ACR). 
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Example 6.5: 

UoD 1:   Tennis player <R1> lives on address <R2> 
UoD 2:   Employee <R3> lives on address <R4> 

Integrated UoD:  Person <R5> lives on address <R6> 
   Tennis player <R7>is a person. 
   Employee <R8>is a person 

This transformation  is called: generalization 

In example 6.5 we have defined the intention Person as a super type of the intentions 
Tennis player and Employee. It should be noted that the generalization transformation 
can only be applied when there exists a naming convention for the derived super type 
that is of the reference type (Bollen, 2002) in the UoD. See also Navathe et al. (1984:84 
case 1) 

Example 6.6: 

UoD 1:   Person <R1> lives on address <R2> 
UoD 2:   Student <R3> lives on address <R4> 

Integrated UoD:  Person <R5> lives on address <R6> 
   Person <R7> is a student  

This transformation is called: specialization  
 
We will define the intention Student as a subtype of the intention Person in the 
integrated UoD of example 6.6.    

6.4.3    Identifier, cardinality and domain conflict 

The integration of sub-schemas in NLM is defined on a basic information model level. 
This means that identifier (or key) conflicts and cardinality conflicts (Lim and Chiang, 
2000:158) will not occur. It is assumed that in a ‘first-pass’ requirements analysis the 
population constraints will be derived directly in the integrated UoD45. Furthermore, 
the attribute domain conflicts are not relevant in NLM because the only fact encoding 
construct is the fact type. Algorithm 5 specifies the integration algorithm for 2 basic 
information models. For the general case in which N basic information models need to 
be integrated we will apply the algorithm on the two first BIMs and subsequently re-
apply algorithm 5 on the (cumulative) integrated model and the next BIM and so forth 
(see for the ‘integration-plan’-tree: Shoval and Zohn (1991:242-243)) 
 

                                                 
45  In section 6.9 where we will discuss the way of controlling in NLM we will elaborate on the 
precedence requirements and the specific users (or user groups) that need to be involved in those 
stages of the requirements determination process. 
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Algorithm 5. Integration of basic information models {BIM1 
and BIM2 are two basic information models that refer to 
sub-UoD’s of UoD, G1and G2 are the respective user groups 
from these sub-UoD’s} 
BEGIN Basic information model integration 
(BIM1,BIM2,G1,G2.) 
 Determine the set of intentions that are contained in 
 BIM1 and BIM2 {OVERLAPINT} 
 WHILE  still intentions in OVERLAPINT 
    DO  take next intention {int} 

    check the naming convention fact types  
    for int in BIM1 and BIM2. 
IF  naming conventions for int is not equal in BIM1  
    and BIM2 

    THEN  IF  the name class for intention int within  
              the sub-models BIM1 and BIM2 is not of the   
              reference type in the integrated UoD 

     THEN create a new naming convention for that  
          intention for the integrated UoD that is a  
          reference type in the integrated UoD. 
     ENDIF 

    ENDIF 
 ENDWHILE  
 WHILE still intentions left in the (integrated)ACR  

      DO take next intention {int} 
         IF int is a generalization of two or more   
            Different intentions in the ACR 
         THEN Create a generalization hierarchy by adding  
           subset constraints between the specialized  
           intentions in the ACR and the generalized  
           intention 
         ENDIF 
 ENDWHILE     
 WHILE still fact types in the integrated BIM in   

   which the same set of intentions play a role   
   {SIFT} 
DO take next group of these fact types {sgi,  
    sgj,..∈SIFT} 
WHILE still pairs [{sgk,sgl}∈SIFT |k<>l] 
   DO  Take next pair {sgk,sgl} 
       IF the semantics of a pair wise comparison  
          sgk, sgl in SIFT reveals no semantic  
          difference  
       THEN replace all but one fact type and  
            add the sentence group template of the  
            other to the sentence group templates  
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            of this fact type 
       ENDIF 

    ENDWHILE 
 ENDWHILE 
{ontological equivalence check} 
Every fact type that can be expressed in each sub-model 
should be expressed in the integrated model. Every fact 
type that can be expressed in the integrated model 
should be expressed in at least one sub model. 
END 

 
 

6.5    THE POPULATION STATE CONSTRAINT MODELING   
         PROCEDURES  
  
After a basic information model is created for a specific UoD, the analyst can elicit 
additional business rules from the domain user(s) by systematically confronting 
him/her (them) with new (combinations of) ‘real-life’ examples from the domain. The 
domain user(s) only needs to confirm or reject the possibility that such a (combination 
of) examples can exist. In this section we will give an illustration of such an algorithm 
for the uniqueness constraints and set comparison constraints 

 

6.5.1    The derivation of uniqueness constraints 
 
Uniqueness constraints will constrain the occurence of two or more fact instances in 
which a subset of the roles have identical value combinations.  

Lemma 6.1. For each elementary (or atomic) fact type f with arity N assuming a ‘one to 
one’ naming convention46, one of the following rules apply47: 

1) No uniqueness constraint exists. 
2) There is at least one uniqueness constraint defined on exactly N-1 roles of  

fact type f. 
 

                                                 
46  We will use the compound fact types for the derivation of uniqueness constraints according 
to the definition given in  algorithm 3. 
47  According to the definition in Tehrani and Nijssen (1985), every elementary fact type has at 
least one uniqueness constraint that involves at least N-1 roles. In NLM we do not consider a 
uniqueness constraint that spans N roles to be a ‘real’ uniqueness constraint, because an 
extension of a fact type is a ‘set’ of ordered instance value combinations and therefore such a 
constraint would always be implied. 
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It is assumed that the basic information model consists of atomic fact types. This 
assumption underlies algorithm 6. It is however, possible to, create an algorithm in 
which the possibility of uniqueness constraints that cover less than N-1 roles is 
considered. Such an extended algorithm can serve as a quality check on the outcome of 
(the atomization) algorithm 4. 
 
Algorithm 6. Uniqueness constraint derivation  
BEGIN UNIQUENESS((I)BIM ,UoD ,G {(I)BIM is basic 
information model that refers to an (integrated UoD)} 
WHILE not last fact type of arity >1 
DO48 take a random sentence instance from a complex fact   
   type template for this fact type from the example  
   UoD: (a1,...., aN): ft∈ (I)BIM 
   Take the first role from this fact type (m:=1) 
   WHILE not last role in fact type 
    DO  Create an example sentence where the instance   
        of role m is altered. Determine whether the  
                   combination of this sentence with the first  
        sentence is allowed 
        IF the existence of such a sentence is allowed  
  together with (a1,.... aN) 
        THEN  add this sentence to the uniqueness   
     significant population 
        ELSE  define a uniqueness constraint UC49 on  
      roles {1,...,N}\m of fact type ft 
        ENDIF 
     Go to the next role in fact type (m:=m+1) 
   ENDWHILE 
         Take next fact type 
 ENDWHILE 
 {N-1 law check}.Apply the N-1 law in Lemma 6.1 on each 
fact type 
END 
 

After the uniqueness constraint derivation procedure has been applied on the BIM of 
our example the analyst can add the uniqueness constraints C11, C12, C13, C16, C17 
to the application’s basic information model (see figure 6.11).  

                                                 
48  When the fact type is contained in more than one BIM then this confrontation with the real-
life examples must be performed with every example document/user group combination that has 
verbalized sentence instances for this fact type (see also section 6.9 on the way of controlling). If 
this process leads to multiple uniqueness constraint configurations on the focal fact type then the 
least constraining set of uniqueness constraints will be chosen. 
49  We need to assign a unique name to every instantiated constraint in the requirements 
specification to distinguish this constraint among the union of constraints in the integrated 
requirements specification for the project. 
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  8: The invoice [identified by  ranknumber <R4> for client <R5>]
                          totals the amount <R6> in dollars

  7: The item <R11> is ordered in a quantity of <R12> units
           on the invoice [identified by ranknumber <R13> for client <R14>]
                          

  9: The subtotal  for the item <R15> on the invoice [identified by
         ranknumber <R16> for client <R17>] is the amount <R18> 
                          

  5: <R8> is a name from the client code name
          class that can be used to identify a client
          within the union of clients

  10: <R19> is a name from the natural number  
            name class that can be used to identify a 
           quantity within the union of quantities

 6: <R7> is a name from the 
                   decimal number  name 
                   class that can be used to 

                    identify an amount of
                   money in dollars  within
                the union of money  amounts 
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1:  The item<R1> has a unit price of an amount<R2>

 4:  The item<R9> has the description <R10> 

2:  The unit price for the item <R1> is the amount <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

 
 

Fig. 6.11 Basic information model50 for example 6.1 with uniqueness constraint(s). 
 
 
6.5.2    The derivation of set comparison constraints 
 
The next group of constraints that will be derived is the group of set comparison 
constraints. A set comparison constraint will be defined on role(s) (combinations) that 
are played by identical combinations of intentions in a basic information model. In 
contrary to the uniqueness constraints, set comparison constraints may be defined on 
roles from different fact types.  

A general legend of set comparison constraints can be found in appendix A of 
this thesis (see also Leung and Nijssen, 1988:35).  It should be noted, however, that in 
the process of classification and qualification, some subset constraints are already 
instantiated as naming convention constraints. The roles in the basic information 
model, therefore, that are contained in the naming convention fact types can be 
excluded from the set of roles under consideration for the derivation of set-comparison 
constraints. Set comparison constraints limit the extensions of two (ordered) 
combinations of roles to the following types (see for the analyst’s legend chapter 5): 
 
                                                 
50  Excluding the application concept repository (ACR). 
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The value combinations in the sets of extensions of each combination are equal: 
equality  
 
The value combinations in the sets of extensions of each combination are exclusive: 
exclusion  
 
The value combinations in the sets of  the extensions of one combination are always 
contained  in the set of  extensions of  the other: subset  
 
We will now provide the algorithm that can be used for the instantiation of set 
comparison constraints for a given basic information model and universe of discourse.  
The outcome of the algorithm will always lead to one of the following outcomes in 
terms of the existence of a proposed set-comparison constraint: such a constraint does 
not exist, such a constraint exists as a subset constraints, such a constraint exists as an 
equality constraint or such a constraint exists as an exclusion constraint. 

 
Algorithm 7. set comparison constraint derivation. 
 
BEGIN SETCOMPARISON(IM ,UoD , G1 ..Gk ) 

Let ROLCOMB be the set of all possible role Combi- nations51 
that refer to the same set of intentions in IM. 
WHILE still role combinations left 
DO take next role combination ∈ ROLCOMB 
   Let (R1, ....RN) and  (RN+1, ....R2n)

52 be the    

   role(s)combination on which the set comparison should   
   be performed. 
   Let (a1,.. aM)  be a sentence instances of  the fact  
   type (FT1) that contains roles (R1, ....RN) (M≥N) 

   Let bN+1,.. b2N+L  and  gN+1,.. g2N+L be sentence  
   instances of  the fact type (FT2) that contains roles    
   (RN+1, ....R2n) (L≥0). 
Let IM:={FT1,FT2}. Create three user examples that re-  
flect the following extensions of fact type FT1 and FT2: 
EXT1(IM): { (a1,.. aM)} 
EXT2(IM): { (a1,.. aM),( bN+1,.. b2N+L) | a1=bN+1 ,. aN=b2N} 
EXT3(IM): { (a1,.. aM),( bN+1,.. b2N+L), (gN+1,.. g2N+L)   
          | a1=bN+1..,.. aN= b2N} 

                                                 
51  The roles of the naming convention fact types are excluded from this analysis 
52   {R1, ....RN} ≠ {RN+1, ....R2n} 
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Let the user53 determine which of these extensions refer to 
an allowed population state for the universe of discourse 
by showing (sets of) real-life examples that match these 
three extensions one at a time. 
IF (∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧ 

 ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧ 

   ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)] ) 
THEN     
(There is a subset constraint54 defined from role 
combination (RN+1, .R2n) to role combination (R1,.R..N)) 

ELSE IF(¬∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧ 

      ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧ 

        ∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)] ) 
THEN     

      (There is a subset constraint defined from role    
       combination (R1, ....RN) to role combination    
      (RN+1, ....R2n) ) 

 ELSE IF  
     (¬∃ Popstate1(UoD) [Popstate1(UoD)= EXT1(IM)] ∧ 

          ∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧ 

           ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)] ) 
      THEN     
          (There is an equality constraint defined from     
           role combination (R1, ....RN) to role   
           combination  (RN+1, ....R2n) ) 

           ELSE  
           IF(∃ Popstate1(UoD)[Popstate1(UoD)= EXT1(IM)] ∧ 

          ¬∃Popstate2(UoD) [Popstate2(UoD)= EXT2(IM)] ∧ 

            ¬∃ Popstate3(UoD) [Popstate3(UoD)= EXT3(IM)] ) 

                                                 
53  If the role combinations are contained in more than one BIM then this confrontation with the 
real-life examples must be performed with every example document/user group combination that 
has verbalized sentence instances for this fact type. If this process leads to multiple set 
comparison constraint configurations on the focal role combinations then the following decision 
table must be used to determine the constraint configuration for the integrated requirements 
specification: no–no  no, excl-subset  no, excl-eq  no, no-excl no, eq-subset subset, no-
subset no, no-eq no.  
54  We need to assign a unique name to every instantiated constraint in the requirements 
specification to distinguish this constraint among the union of constraints in the integrated 
requirements specification for the project. 
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          THEN (There is an exclusion constraint defined   
from role combination (R1, ....RN) to 
role combination(RN+1, ....R2n) ) 

           ENDIF 
      ENDIF 
 ENDIF 
 ENDIF 
ENDWHILE 
END 
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  8: The invoice [identified by  ranknumber <R4> for client <R5>]
                          totals the amount <R6> in dollars

  7: The item <R11> is ordered in a quantity of <R12> units
           on the invoice [identified by ranknumber <R13> for client <R14>]
                          

  9: The subtotal  for the item <R15> on the invoice [identified by
         ranknumber <R16> for client <R17>] is the amount <R18> 
                          

  5: <R8> is a name from the client code name
          class that can be used to identify a client
          within the union of clients

  10: <R19> is a name from the natural number  
            name class that can be used to identify a 
           quantity within the union of quantities

 6: <R7> is a name from the 
                   decimal number  name 
                   class that can be used to 

                    identify an amount of
                   money in dollars  within
                the union of money  amounts 
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1:  The item<R1> has a unit price of an amount<R2>

 4:  The item<R9> has the description <R10> 

2:  The unit price for the item <R1> is the amount <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

 
 

Fig. 6.12 Basic information model for example 6.155  with uniqueness and set-comparison 
constraint(s). 

 
We note that population constraints c19, c20, c21, c22 are set comparison constraints 
that are derived in interaction with user by applying algorithm 7. 

                                                 
55  Excluding the application concept repository (ACR). 
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6.6    THE POPULATION STATE TRANSITION CONSTRAINT  
MODELING PROCEDURE 

The formal definition of a state transition constraint (see definition 5.11) includes all 
population state constraints. In this section, however, we will limit ourselves to those 
population constraints that can not be expressed as population state constraints. 
Furthermore, we will, consider the state transitions as pairs of population states. This 
means that we restrict the applicability of the transition constraints to an application 
information base that has a ‘history’ of 1 state. If we consider the invoicing example 
from this chapter, we can see that there exists a "business rule" stating that an item can 
not have a description other than its initial description.: 
    
An item can not have a description other than its initial description. 
 
In Twisk (1994), Twisk and van Montfoort (1994) and Spijkers (1994), the state 
transition constraints are derived in a user-analyst interaction wherein pairs of real-life 
examples are presented (representing a before and after state respectively). 

The listing of all allowed (or the complement: the non-allowed) before and 
after combinations can be considered as a state transition constraint defined as a set of 
allowed before/after extensions. However, all possible future fact instances must be 
available in order to create those before/after collections. This is only possible in those 
cases where there exist enumerable value elements (Twisk, 1994) for the names in 
those roles.  
 
Algorithm 8: Derivation of transition constraints   
BEGIN TRANSITION ((I)BIM, UoDj, Gj) 
 WHILE still fact types in (I)BIM  
 DO take next fact type {ft} 
         determine state equivalence classes for the  
         functional role56 of ft  

   WHILE not last state equivalence class  
         before/after combination 

    DO    take next combination of state equivalence  
             Classes. 
     Let the user determine if this before/after   
             combination is allowed in the UoD. 
     IF combination not allowed 
     THEN IF no state transition constraint is  
                     defined on the fact type yet  

              THEN create a state transition             
                constraint57 defined on the values         

                                                 
56  The functional role of a fact type on which exactly one uniqueness constraint is defined is the 
role that is not covered by a uniqueness constraint. 
57  We need to assign a unique name to every instantiated constraint in the requirements 

specification to distinguish this constraint among the union of constraints in the integrated 
requirements specification for the project. 
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                 for the functional role in the fact   
                 type. 

                  ENDIF 
                  add this combination to the non- 

  allowed transition value   
                  combinations of the transition    
                  constraint 
              ELSE 
                  add this combination to the  

  allowed transition value   
                  combinations of the transition    
                  constraint  
              ENDIF 
    ENDWHILE 
  ENDWHILE 
END 
 
We will try in most practical applications to give a state transition constraint by means 
of (decision) tables, formulas which serve as a legend for the analyst (see chapter 5 and 
appendix A) and that can subsequently be verbalized into declarative natural language 
sentences in which equivalent value-elements are grouped into state equivalence 
classes, for example:  
 
The constraint ‘c14’ implies that there can not exist a [before extension of the basic 
information model] in combination with an [after extension of the basic information 
model] in which the extension for the role <R10> for a given item is different. 
 
We see from this verbalization that we have introduced facilities in the constraint 
legend for denoting the type of extension (after or before) and the constraint(s) defined 
on one ore more role(s) in either the after and/or before state into the analyst legend for 
the state transition constraints. 

In figure 6.13 the resulting information model for the order invoicing 
application area is shown. We have added the business rule that states that the initial 
item description that is assigned to an item in ABC’s assortment can never be changed. 
The legend for the interpretation of the population state transition constraint symbol 
(for constraint C14) that is used in figure 6.13 is given in figure A.2.  
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Fig. 6.13 Basic information model58 for example 6.1  with uniqueness.-, set comp and transition 
constraint(s). 

 
 

6.7    THE DERIVATION RULE CONSTRAINT PROCEDURE  

In this section we will give the way of working for the detection of derivation rules in 
an application subject area. We deliberately use the term application subject area, 
because the term Universe of Discourse until now has been used to demarcate the 
examples that we consider to be relevant for the process of requirements determination. 
The ‘knowledgeable’ users from the user groups in our (sub) UoD’(s) need to be able 
to verbalize these examples and be able to accept or reject example combinations in 
order to detect population state- and population state transition constraints. However, 
the responsibility for creating, inserting, deleting or deriving facts does not necessarily 
coincide with the responsibilities of the users from these user groups at all times. In 
order to make a distinction between users that have discretion with respect to the latter 

                                                 
58  Excluding the application concept repository (ACR). 
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operations and users who do not have this discretion within the application subject 
area, we will introduce the concept of Sphere of Influence (SoI). 
 
Definition 6.8. The Sphere of Influence (SoI) is a set of users that are considered 
relevant for the application subject area and that have responsibility for creating, 
inserting, deleting or deriving facts. 
 
                      Let U be the set of users in the application subject area. 
                      Let SoI be the sphere of influence 
                      SoI ⊆ U 
 
Algorithm 9: derivation rule creation 
    BEGIN derivation rule creation(IM, UoD, SoI) 
  WHILE still user groups left in UoD  
   DO  take the next user group from SoI {g}          
   WHILE still fact types left in UoD to be considered  
         for user (group) g 
      DO take next fact type {ft∈ IM}   
      IF FT is derived under the responsibility of a  
            User (group) g  
   THEN  
           IF (a pre-condition can be phrased in terms  
       of the extension of IM 
           AND a derivation formula can be specified in  
               terms of the extension of IM) 
           THEN create a derivation rule  
                constraint59. 
                Define a derivation rule argument  
  ENDIF  
   ENDIF 
   ENDWHILE    
 ENDWHILE 
 END 
 
Although it is possible to specify derivation rules whenever a basic information model 
(BIM) of the UoD is known, we recommend performing this procedure after the 
population constraints have been derived. Performing the procedures in this order will 
enable us to capitalize on the knowledge that is contained in the population constraints 
when the derivation rules will be specified. We could extend algorithm 9 with quality 
control checks, e.g. the pre- and post-conditions and the possible outcomes of the 
derivation formula must be compatible with the population constraints. 
 

                                                 
59  We need to assign a unique name to every instantiated constraint in the requirements 
specification to distinguish this constraint among the union of constraints in the integrated 
requirements specification for the project. 
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                    identify an amount of
                   money in dollars  within
                the union of money  amounts   

R1 
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A    
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1:  The item<R1> has a unit price of an amount<R2>

 4:  The item<R9> has the description <R10> 

2:  The unit price for the item <R1> is the amount <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

C10: Create orderline subtotal <{(arg : invoice, arg2:item)}>1

IF  there exist an instance of Sg6 
SUCH THAT Sg6.{<R13>, <R14>}='arg1' AND 
                  Sg6.<R11>='arg2' AND
                 x EXT( Sg1.<r2>) | Sg1.<r1>='arg2')
THEN create an instance of fact type Sg5   
SUCH THAT         
 Sg5.{<r16>,<r17>}:='arg1'
 Sg5.<r15>:='arg2' 
Sg5.<r18>:=DR1        
            
DR1:= Sg6.<r12>*[Sg1.<r2>| [where Sg1.<r1>='arg2'])                                                                                     
ENDIF

(

C15: Create invoice total<{(arg : invoice)}>1

IF  there exist an instance of Sg5 
SUCH THAT Sg5.{<r16>, <r17>}=arg1           
THEN create an instance of fact type Sg7   
SUCH THAT         
 Sg7.{<r4>,<r5>}:=' arg1' 
 Sg7.<r6>:=DR2        
            
DR2:= Sg5.<r18> [where Sg5.{<r16>,<r17>}='arg1']   
           j=1                                         
ENDIF

 

 
 
Fig. 6.14 Basic information model60 for example 6.1 with uniqueness, set comparison, transition 

constraint and derivation rule constraints 

6.8    THE IMPULSE CONSTRAINT PROCEDURE  

The last type of constraints that must be instantiated in the NLM requirements 
determination way of working are the impulses in the application subject area in which 
the relevant events are derived together with the event arguments and where it is 

                                                 
60  Excluding the application concept repository (ACR). 
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specified under what condition(s), the event occurrences of such an event will lead to 
the instantiation of (a) derivation rule(s) or the insertion and/or deletion of one or more 
fact instances to/from the application information base. 
 
Algorithm 10:Impulse constraint derivation((I)BIM,SoI) 
BEGIN  
     WHILE still user groups left in SoI 
     DO take next user from user group in SoI {g} 

WHILE  still derivation rules left 
   DO Take the next derivation rule constraint   

 {drc∈(I)BIM}.Ask the users in {SoI}   
  what event  type(s) invoke such a   
  derivation Rule61 

                      IF  event type not listed 
THEN name the event and determine     
     the event type argument 

                      ENDIF 
                      Determine the condition on the  
                      information base and event    
                      argument(s)under which the  
                      derivation rule is instantiated  

                     IF the condition is different from  
                        an existing condition on the  
                        same event type and derivation 
                        rule 
                     THEN Make a new (combined)  
                         Condition which contains the  
                         old and new condition type 
             ELSE the impulse is already  
                          defined. 
             ENDIF 
                 Create and name62 an impulse and                  
                 determine the impulse mapper63 and  
                  name the impulse  
       ENDWHILE 
         WHILE  still fact types left in (I)BIM64 

                                                 
61  It should be investigated whether a user defined event type coincides with an information 
base or internal event (see Prabhakaran and Falkenberg, 1988), e.g. fact instance of fact type FT2 
inserted (arg1:date). 
62  We need to assign a unique name to every instantiated constraint in the requirements 
specification to distinguish this constraint among the union of constraints in the integrated 
requirements specification for the project. 
63  The impulse mapper is a specification of how the values of the event argument determine the 
instantiation values for the arguments of the derivation rule(s) that is (are) instantiated in an 
impulse. 
64  Although impulse type constraints are constraints in the event perspective, we must also 
specify the unconstrained behaviour or the ‘discretion’ that users within the SoI have to add 
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   DO Take next fact type {f} 
   IF fact instance of this fact type can be  
      inserted into the application base on  
      the discretion of user g without  

invoking a derivation rule and without 
any specific information base condition 
other than the business logic that is 
enforced by the population constraints 

   THEN add an impulse type constraint with   
      name insert {f} having an empty impulse  
      condition and invoking the operation  
      insert {f} 

             ELSE IF fact instance of this fact type  
can be deleted from the   
application base on the  
discretion of user g without  

      invoking a derivation rule and  
      without any specific information  
      base condition other than the  
      business logic that is enforced  
      by the population constraints 
   THEN add an impulse type  
        constraint with name  
        delete{f} having an empty  
        impulse condition and  
        invoking the operation  
        delete{f} 
   ENDIF 

             ENDIF 
         ENDWHILE 
  ENDWHILE 
 END 
 
 

                                                                                                                       
and/or remove fact instances into/from the information base, as an impulse type to show that 
these insertion/deletion operations are allowed on their own. See for example impulse constraints 
c25 and c26 that tell us that it is allowed that the users in this UoD add and remove orderlines 
onto/from an  invoice document (see figure 6.15).  
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C20 

C5  
C9   C2  

C8  

C22

R5R12   

R16    

R4R11   

R15   

R6R13    

R17      

R14      

R18        

R8  

R19   

R7 

  8: The invoice [identified by  ranknumber <R4> for client <R5>]
                          totals the amount <R6> in dollars

  7: The item <R11> is ordered in a quantity of <R12> units
           on the invoice [identified by ranknumber <R13> for client <R14>]
                          

  9: The subtotal  for the item <R15> on the invoice [identified by
         ranknumber <R16> for client <R17>] is the amount <R18> 
                          

  5: <R8> is a name from the client code name
          class that can be used to identify a client
          within the union of clients

  10: <R19> is a name from the natural number  
            name class that can be used to identify a 
           quantity within the union of quantities

 6: <R7> is a name from the 
                   decimal number  name 
                   class that can be used to 

                    identify an amount of
                   money in dollars  within
                the union of money  amounts   

R1 

R9  

R2
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- + A    
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C6  

1:  The item<R1> has a unit price of an amount<R2>

 4:  The item<R9> has the description <R10> 

2:  The unit price for the item <R1> is the amount <R2> 

3:<R3> is a name from the item code name class that can
        be used to  identify an item within the union of items in  
        ABC’s assortment

C10: Create orderline subtotal <{(arg : invoice, arg2:item)}>1

IF  there exist an instance of Sg6 
SUCH THAT Sg6.{<R13>, <R14>}='arg1' AND 
                  Sg6.<R11>='arg2' AND
                There exists an  x EXT( Sg1.<r2>) | Sg1.<r1>='arg2')
THEN create an instance of fact type Sg5   
SUCH THAT         
 Sg5.{<r16>,<r17>}:='arg1'
 Sg5.<r15>:='arg2' 
Sg5.<r18>:=DR1        
            
DR1:= Sg6.<r12>*[Sg1.<r2>| [where Sg1.<r1>='arg2'])                                                                                     
ENDIF

(

C15: Create invoice total<{(arg : invoice)}>1

IF  there exist an instance of Sg5 
SUCH THAT Sg5.{<r16>, <r17>}=arg1           
THEN create an instance of fact type Sg7   
SUCH THAT         
 Sg7.{<r4>,<r5>}:=' arg1' 
 Sg7.<r6>:=DR2        
            
DR2:= Sg5.<r18> [where Sg5.{<r16>,<r17>}='arg1']     
           j=1                                         
ENDIF

 

C24: 
ON Order complete<{(Earg1 : invoice)}>1

IF  There exists an instance of Sg5
  such that 
DO  create invoice total <{arg=’Earg1’}> 

EXT( Sg5.{<r16>,<r17>}=’Earg1’

C25: 
ON Insert (arg1;sg6)
DO Insert (arg1)

C26: 
ON Delete(arg1;sg6)
DO Delete(arg1)

Intention    Synonym       definition

Item                               a product that is contained in ABC's assortment
Client    Customer          a person that has ordered or that is about to order an item at ABC              
Invoice                          a document that specifies the payments  for an order
Amount                         a specific quantity of money in dollars
Product quantity           a specific quantity of items
Item code                    a name class
Natural number           a name class
Decimal number         a name class
Description                  a name class
Ranknumber               a name class

 
 

Fig. 6.15 Complete NLM requirements specification for example 6.1 that contains a basic 
information model with uniqueness, set comparison, transition constraint, derivation rule 

constraints and impulse constraints 
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Example 6.1 (ctd) 
 
We assume that in the process of order intake for the ABC company at any time the 
invoice total only appears on the order clerk’s computer screen when the clerk pushes a 
button named “order complete”. 
 
In figure 6.15 the complete requirements specification for the invoice example 6.1 is 
given. This requirements specification contains an atomic basic information model 
together with all instantiated constraints of all constraint types that we have defined in 
NLM. 
 

6.9    THE WAY OF CONTROLLING IN NLM 

In chapter 5 we have given the way of modeling in NLM and in sections 6.1 through 
6.8 we have given an accompanying way of working for NLM. In this section we will 
give the way of controlling in NLM. The way of controlling deals with issues regarding 
the organization and (project) management of the requirements determination process. 
The NLM requirements determination method uses ‘real-life’ examples of business 
communication as a starting point for the requirements determination process. The first 
question that must be addressed in the way of controlling is how to arrive at these 
relevant examples in the requirements determination process. Secondly, we will discuss 
the project management restrictions in terms of precedence relationships that exist 
regarding the applications of the different stages that were defined in the way of 
working. Although the focus of this dissertation is on the conceptual analysis of the 
requirements we will touch upon a number issues that are relevant for requirements 
management at large, for example, scoping and requirements prioritizing . 
 
6.9.1    The demarcation of the requirements determination project 
 
In most information systems development projects, some type of information strategy 
planning has been taken place, that normally results in a lists of IS development 
projects that contain the priorities and in many times a business case in financial terms 
as to what the expected pay-offs of each IS implementation will be for the host 
organization (Jessup and Valacich, 1999: chapter 13). The demarcation of an IS project 
in such a business case is mostly laid down in a rather vague description, for example, 
a billing system, a HRM system and so forth. These information planning methods in 
general result at best in a list of business processes (activities) and business entities (or 
data classes). An example of such a planning method is Business Systems Planning 
(Sebus, 1981). These information planning methods result in ‘models’ on such a level 
of abstraction that it is not possible to specify the precise data model and the constraints 
defined on the data model. The first activity that must be carried out when an 
information systems development project must be carried out then is to establish clear 
borders regarding what functionality will be contained in the final information system 
and what functionality will be left out. In NLM this distinction between what must be 
incorporated into the system and what not is clearly demarcated in the types of user 
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examples that will be considered in the requirements determination process and the 
ones that will be left out (‘scoping’).  Also the issue of requirements prioritization can 
be dealt with in the stage of ‘example’ selection.  

A second pass of prioritization can be implemented between the stages 
‘verbalization’ and ‘grouping’, in which sentences that do not have priority for the 
application that has to be developed can be left-out. We strongly suggest that the 
information analyst will make explicit notes that state that these facts are contained on 
the example but for the current development ’time-box’ (Jalote et al., 2004) are 
considered non-relevant. In a later development stage or ‘time-box’, such a requirement 
might, however, be a candidate for further analysis. 

We note that the phenomenon of ‘informal’ organization must be dealt with 
during this stage in the requirements determination process, because it means that 
decisions have to be made regarding the incorporation of the ‘informal’ view(s) on the 
UoD with already selected ’formal’ real-life informational documents (see also 
Oonincx, 1982:74). 

For a newly designed information system or an information system that must 
operate in a reengineered environment, the availability of existing ‘real-life’ examples 
is not always guaranteed. In these situations, the requirements determination process 
must be preceded by a reengineering and/or prototyping stage in which the (to be) 
involved user(s) of the application domain will have to create ‘mock-ups’ or 
‘prototypes’ of the examples that they are going to use in their future (reengineered) 
activities (algorithm 0).  

It must be emphasized that the NLM requirements determination method 
assumes a strict distinction into domain knowledge that is possessed by the users in the 
application domain and the knowledge of the requirements determination process that 
is possessed by the NLM analyst. In NLM there is a clear ‘separation-of-concerns’ 
between the responsibility for the content of the requirements specification and the 
responsibility for the way in which this desired specification is created in a 
requirements determination process.  
 
6.9.2    The required precedence of the requirements determination process in 

terms of the way of working 
 
We will now derive the precedence relationships that we must respect when performing 
a requirements determination project using NLM. We assume that the ‘real-life’ types 
of examples that demarcate the functionality of the project have been selected. In 
principle the first stage in the requirements determination process can begin: create a 
basic information model. This stage means that for every example we will perform the 
basic information modeling procedure (algorithms 1 through 4) in combination with a 
domain user. The basic information model can then be added to the existing basic 
information models using the model integration procedure (algorithm 5). We note that 
the phenomenon of ‘informal’ organization must be dealt with again, during this stage 
in the requirements determination process, because decisions have to be made 
regarding the integration of the ‘informal’ view on the UoD with the ’formal’ view. In 
many cases this will lead to the ‘relaxation’ of the constraints from the ‘formal’ view to 
be able to accommodate the requirements from the ‘informal’ view.  
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We remark that the application concept repository (ACR) ideally must be a 
shared document in which all concepts definitions of all sub-projects within the 
requirements determination process at large are defined piecemeal. Subsequently we 
will perform the uniqueness constraint, set-comparison and transition constraint 
derivation (algorithms 6, 7 and 8) that can be performed with those user(s) that use the 
individual or pairs of examples. After the integrated basic information model is 
finished it is already possible to determine the derivation rules (algorithm 9) and 
consecutively the impulses (algorithm 10). 
 Alternatively, it is possible to perform most activities (algorithms 1 through 
10, except for algorithm 5), consecutively with the individual users. However, this 
comes with an expense, namely the additional derivation of set-comparison constraints 
in which multiple user (groups) are involved and the addition of derivation rules and 
impulse types that were initially left out because of demarcation issues. In this 
situation, additional impulses also need to be identified that cross the spheres of 
influences of individual users.  

We can conclude that a NLM requirements determination process that is 
performed in an organizational context contains a large number of variables that can be 
set according to operational constraints, for example, analyst capacity, required 
delivery dates, desired completeness and preciseness regarding uniqueness and set-
comparison constraints (and eventually other state constraint types) and domain user 
availability. A further degree of flexibility can be achieved when an organization for 
example, only needs a requirements specification that contains a basic information 
model, uniqueness constraints and derivation rules because the target implementation 
software does no support other constraint types. From a software development point of 
view NLM can be applied under different software development models: waterfall 
development, iterative and iterative time boxing (Jalote et al., 2004).  

The semantic bridges from the natural language modeling methodology in the 
information perspective can be summarized as follows: 

semantic bridge 1): Capturing the general domain knowledge (or sentence groups)  
   (algorithm 1: verbalization and algorithm 2: grouping). 

semantic bridge 2): Capturing the intention of the individual names (algorithm 3:   
                                classification and qualification) 
semantic bridge 3): Capturing the naming conventions (algorithm 1: verbalization and    

    algorithm 3: classification and qualification))  
semantic bridge 4): Capturing the right level of atomization (algorithm 1:   

    verbalization and algorithm 4:atomization) 
semantic bridge 5): Arbitrating on the primary naming conventions for the integrated  

                  UoD (algorithm 5: integration of (sub)-models) 
semantic bridge 6): Capturing domain generalizations and specializations for the 

    integrated UoD (algorithm 5: integration of (sub)-models ). 
semantic bridge 7): Capturing additional business rules that can be encoded as  
                                population constraints, derivation rule constraints and impulse  

                  constraints (algorithm 6:uniqueness constraint derivation,   
                  algorithm 7: set comparison constraint derivation,  
                  algorithm 8: transition constraint derivation, algorithm 9:  
                  derivation rule constraint creation and algorithm 10:impulse   
                  constraint derivation). 
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These semantic bridges constitute the foundation for a semantically correct 
requirements specification and therefore the approach for the way of working in the to-
be designed requirements determination method fills a niche in the MIS research field 
that we discussed in chapter 1. 
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Fig. 6.16 AON  network for activities in a NLM requirements determination project (I) 
 

     Atomization      integration of
       (sub)-models

       uniqueness
 constraint derivation

     
    set comparison
constraint derivation

     
        transition
constraint derivation

     
  derivation rule
constraint creation

     
  impulse 
constraint derivation F

i
n
i
s
h

 
   

Fig. 6.17 AON  network for activities in a NLM requirements determination project (II) 
 

In figures 6.16 and 6.17 we have given a project plan for a requirements 
determination process in which all the minimal set of precedence relationships are 
extended with additional precedences that should facilitate the definition of derivation 
rules. In figures 6.16 and 6.17 an Activity-on-Node (AON) network (Mantel et al., 
2001:113) for this way of controlling is given. 
 
6.9.3    Resource planning for a requirements determination project in NLM’s  
            way of working 
 
The application of NLM will allow us to establish metrics for the requirements 
determination process. It is easy to estimate the number of ‘analysis steps’ that are 
needed for the derivation of uniqueness and set comparison constraints when a basic 
information model is available. The number of analysis steps for determining the 
population, derivation and impulse constraints is in principle deterministic. The 
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resource planning in terms of ‘analysis steps’, therefore can be made relatively easy 
when a basic information model is available. It is also possible to base a capacity 
planning upon ‘experience’ data regarding the number of communication examples and 
the average number of fact types that can be traced to an example. With respect to the 
management of human resources, metrics can be determined for the level of experience 
of analysts. 

6.10    CONCLUSIONS ON THE WAY OF WORKING AND THE 
WAY OF CONTROLLING IN NLM 

In order to arrive at the basic information model (BIM) of an application UoD, in 
which the modeling constructs from the data model can be instantiated for the 
application UoD, we have specified algorithms 1 through 4. A significant extension to 
the ‘state-of-the-art’ in requirements modeling is the definition of the application 
concept repository (ACR) in which generalizations and specializations can be 
incorporated and in which the intentions, their semantic definitions and their name 
classes are incorporated.  In order to derive all instances of the static constraint types 
for which we have supplied a constraint legend, we have specified state constraint 
derivation algorithms 6 and 7. NLM has the provisions to accommodate other 
constraint types whenever a notational legend is provided and an accompanying 
instantiation algorithm can be given.  In order to derive all instances of the transition 
constraints we have specified transition constraint derivation algorithm 8 as sub-
procedure in NLM’s way of working . In order to derive all instances of the derivation 
rule constraints we have specified the derivation rule constraint algorithm 9 as sub-
procedure in NLM’s way of working in which the precise specification (or derivation 
formula) can be established. In algorithm 10 we have incorporated the question in 
which an internal event can lead to the execution of a derivation rule or another 
information base event. Furthermore, the algorithm systematically confronts the users 
in the SoI with derivation rules and tries to elicit the potential ‘external’ events that 
might invoke such a derivation rule . We can conclude that the way of working in NLM 
fully complies to RDM 12 from chapter 4. 
 Furthermore, the explicit incorporation of an integration algorithm (algorithm 
5) into the way of working is fully in line with requirement RMD 13 (view integration 
sub-procedure). 

The application of the natural language axiom in an organizational setting in 
which domain users are held responsible for the ‘knowledge content’ and in which 
users are confronted with combination of real-life examples can be considered a 
transformation from implicit tacit knowledge held by these users into explicit 
knowledge in the requirements specification. This fulfills requirement RMD 14. 

The application of the natural language axiom in NLM also allows us to apply 
NLM in many organizational settings, ranging from abstract to tangible UoD’s and 
from natural language descriptions to other descriptions that can only be understood by 
users. This leads to compliance to RMD 15. 

The sub-division of the modeling procedures in NLM’s way of working into 
formal algorithms has been done in such a way that the amount of modeling steps that 
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have to be performed by (an) analyst(s) is minimized and therefore NLM is in line with 
RDM 16 from chapter 4.  

The reconstruction check in algorithm 1, the completeness check in algorithm 
2, the consistency check in algorithm 3, the reference check in algorithm 4, the 
ontological equivalence check in algorithm 5, and the N-1 law check in algorithm 6 are 
explicit quality-assuring verification sub-procedures that are built-into NLM’s way of 
working. Every  algorithm within NLM’s way of working contains (bold-fonded) parts 
that confronts users with his/her assumptions. We can conclude that this precise 
specification of the NLM modeling procedure in a number of algorithms fulfills 
requirement RMD 17 as given in chapter 4.  

The elements that constitute the way of controlling in chapter 1 are all covered 
in the NLM requirements determination method. NLM enables the management of 
analyst resources, to plan and control their efforts using project management 
techniques, e.g. precedence analysis and capacity requirements and quality 
management. NLM is fully scalable in terms of project size and complexity. It’s natural 
language features and the mandatory referencing schemes that are imposed upon the 
way of working of the analyst, will enable the analysts to record and maintain all 
project information and analysis results (RMD 18).  The existence of  a mandatory 
naming conventions for the elements (projects, user examples, sentence groups, fact 
types, constraints) in the subsequent results in the requirements determination process 
in NLM fulfills the traceability requirement (RMD 19). 
 
6.10.1    The added value of the NLM requirements determination method 
 
We can conclude that the NLM requirements determination procedure explicitly shows 
the separation of concerns between the analyst and the user in the process of 
requirements modeling by providing the semantic bridges for this analyst-user 
dialogue. In addition to the creation of a NLM requirements specification that is an 
allowed extension of the NLM meta model from appendix B that is a syntactically 
correct specification (see chapter 1), we need guidance on what specific extension of 
this meta model reflects the domain semantics in a precise and a consistent way. We 
have shown that such a semantic correct specification will be achieved when the 
algorithms that we have introduced in this chapter will be applied in a requirements 
determination project in which the sequence of their application is performed under the 
precedence requirements that were given in figures 6.16 and 6.17.  

Although a number of procedures in the NLM requirements determination 
method at first sight have a ‘trivial’ appearance, the consistent application of the 
procedures in the ‘way-of-working’ in this chapter in practice has proven to improve 
the ‘quality’ levels of the resulting requirements specification, because even the 
experienced analyst can always ‘fall back’ on the procedure in those situations in which 
the application subject area becomes too complex. The biggest advantage, however, is 
that inexperienced analysts will be able to create requirements specifications that have 
the same quality level as the specifications that are created by experienced analysts. In 
a project in which the NLM requirements determination method is applied for the 
creation of a requirements specification, the division into sub-projects and the order in 
which these sub-projects are executed does not have an impact on the final 
specification. The NLM requirements determination method, therefore is fully scalable 
in terms of the complexity of the subject area, analyst capacity and user availability. 
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Another advantage of the application of the NLM requirements determination method 
is in the full accountability of the modeling results in which the user inputs and the 
analyst modeling transformations are precisely defined. 

An interesting practical application of NLM for integrating business processes 
in the implementation process of a SAP R/3 module at multi-divisional pharmaceutical 
company, was carry out by Natasja Enter as her graduation project in international 
business studies (Enter, 1999)65. In this project NLM was used to reduce the problems 
around the complexity of the system by defining the core concepts and their 
relationships within the integrated system in a precise way. 

An application of  (an earlier version of) NLM on a static business knowledge 
domain, e.g. general ledger accounting was performed by Marjan Wolthuis (Wolthuis, 
1997),  which the business process redesign of the accounting function was illustrated. 
In this master’s thesis, the basic information model for the accounting application 
domain together with uniquenss, set comparison and lexical constraints were derived. 
Subsequently, the derivation rule constraints in the accounting application domain were 
derived. She concluded in this thesis that a number of  ‘manual’ verification steps in 
this domain can be considered redundant in the IT-era. 
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CHAPTER  7 
 

CONCLUSIONS, GENERAL DISCUSSION AND 
RECOMMENDATIONS 

 
 
7.1    INTRODUCTION 
 
In this final chapter of this thesis we will evaluate our main research question that we 
have stated in chapter 1: 
 
“Does there exist a requirements determination method that is applicable in a wide 
range of business organizations and that can be used for specifying the complete 
domain requirements for a given business application subject area in an efficient, and 
formal way ?” 
 

In chapter 1 we illustrated the relevance of the field of requirements 
determination. We have concluded that the theory development on the field of our 
research topic: requirements determination, has taken place in a number of fields of 
study. Among those fields of study are: management information systems, information 
systems development methodologies, speech-act theory, ontology and conceptual 
modeling. Furthermore, we concluded that the theory development on the field of 
requirements determination has been plentiful but a sound methodology for the 
specification of application requirements is missing. In chapter 1 we have also pointed 
at a MIS research niche that we want to exploit. This research niche is concerned with 
the semantic verification of (initial) requirements (Dullea et al., 2003). This has lead us 
to formulate the design object of the research in this study as: the development of a 
method for requirements determination that has modeling provisions that guide an 
analyst in elicitating the initial requirements from domain users and that contains a 
semantic verification or validation procedure that guarantees user validation of the 
requirements.   

We have sketched a research approach that is suitable for our research 
purposes: the ‘design-research’ approach. In this approach we have applied the ‘design-
research’-cycle (Van Engelen and Van der Zwaan, 1994) in which we first have to 
establish a design objective and subsequently a design specification in order to be able 
to evaluate existing designs for a requirements determination method.  

The design specification for a requirements determination method was given 
in chapter 2 in which we have synthesized from the literature, four (groups of) criteria 
that a requirements determination method must comply to: domain richness, 
completeness, efficiency and formality.   

In chapter 3 we have covered the first group of ‘alternative’ designs, namely 
an evaluation of the existing alternative designs for requirements determination 
methods by surveying the existing literature on requirements determination, e.g. DFD’s 
ISAC, EER, UML, ARIS and ORM. In the research methodology literature this is 
called the ‘evaluation problem’. In chapter 3 we have concluded that no single 
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approach fulfills the design specification that was given in chapter 2. In case no single 
existing design can be found that conforms to our design specification we need to 
develop an alternative design that must fulfill the requirements that we have postulated 
in the final research question (the development problem).  

In chapter 4 of this thesis we subsequently have derived a detailed design 
specification that resulted in 19 requirements method demands (RMDs) for a ‘to-be’ 
designed RDM.  

In chapter 5 we have documented the way of modeling for a proposed 
requirements determination method: Natural Language Modeling (NLM) and in 
chapter 6 we have documented the way of working and the way of controlling for 
NLM. Chapters 5 and 6, therefore, constitute the results of the generation of an 
alternative design as is given in the ‘generation of alternative designs’ stage from the 
‘design-research’-cycle (Van Engelen and Van der Zwaan, 1994).  

We concluded in sections 5.10 and 6.10 that the NLM requirements 
specification language, its set of accompanying modeling algorithms and it’s project 
management precedence logic jointly fulfill all 18 design requirements that were 
derived in chapter 4 for a to be designed RDM. Hence, we can conclude that Natural 
Language Modeling (NLM) is a requirements determination method (RDM) that 
complies to the design objective in this thesis. Natural Language Modeling, therefore, 
provides the answer to our main research question from chapter 1. 
 
7.1.1    Organization of chapter 7 
 
 This chapter is organized as follows. In section 7.2 we will summarize the 
research findings for the research sub-questions that were derived in chapter 1. 
Furthermore, we will, show in section 7.2 how the answers to the sub-questions of our 
research lead to the answer to our definite research question. In section 7.3 we will 
defend our research methodology from a retrospective point of view. In section 7.4 we 
will give recommendations for future research areas in the field of Management 
Information Systems. In section 7.5 we will give recommendations for practitioners in 
the MIS field. Finally, in section 7.6 we will reflect upon the research questions for this 
thesis, our research approach, the research outcome and the research process. 
 
 
 
7.2    RESEARCH  FINDINGS 
 
In chapter 1 we have introduced the subject of this study: requirements determination. 
We have also sketched the application of computerized information systems in the past 
50 years and we have shown that in recent history the emphasis within the application 
of information systems in businesses has been on ERP systems. We concluded that a 
complete and consistent requirements specification is still needed as a starting point for 
the customisation and implementation of an ERP system. Existing approaches for 
requirements determination often use a natural language statement of the initial 
requirements as a starting point for the creation of a requirements specification (Goldin 
and Berry, 1997). However, none of the tools that were mentioned in this study give 
much help on how such an (initial) language statement can be obtained.  
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 The application of the ‘design-research’-cycle to carry out the research that 
will enable us to achieve the (preliminary) goal of our research will lead to a number of 
research sub-questions. 
 
Research sub question 1 : 

 
What are according to the existing requirements determination literature, the 
quality criteria for a requirements determination method that can be used for 
eliciting, verifying and specifying the complete domain requirements for a 
given business application subject area in a wide range of business 
organizations in an efficient and formal way  ? 

 
Research findings for sub question 1 : 
 
We have synthesized (four groups of) criteria for a requirements determination method: 
domain richness, completeness, efficiency and formality. 
 
Domain richness criterion 
 
A literature review of the requirements determination literature has lead to four 
dimensions for the domain richness criterion. 

The first dimension that characterizes a domain is what we have labelled the 
dimension perception. The actual ‘value’ on this dimension for any given domain can 
range from “uniform for all users” (similar perception) to “different for all users” 
(every user has a different perception of a underlying reality) (Galliers and Swan, 
2000).  

The second dimension that characterizes a domain is labelled the dimension 
turbulence. This dimension actually represents the extent (or frequency) in which the 
rules, information and procedures in an application domain are subject to change 
(Land, 1998).  

The third domain dimension that we have derived from our literature study in 
chapter 2 is the dimension tacitness. The tacitness can range from a fully ‘tacit’ 
application domain in which no single knowledge creating process is explicit to a fully 
‘explicit’ UoD in which every knowledge or information generating process can be 
made explicit. 

The fourth dimension for domain richness, is the dimension anchoring 
(Bubenko and Wangler, 1992; Flynn and Warhurst, 1994), ranging from a ‘tangible’ 
starting point for the requirements determination process to an ‘abstract’ starting point.  
  
Completeness criterion 
 
The completeness criterion for a requirements determination method has been 
operationalized along two dimensions that define what must be incorporated in a 
requirements specification for application domains. The first dimension is the 
perspective dimension: the data-oriented perspective, the process-oriented perspective 
and the behaviour-oriented perspective. The conceptual data-oriented perspective 
should  concentrate on the business data and must capture the domain concepts, the 
definition and the naming conventions for those domain concepts,  the semantic 
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relationships between the domain concepts and other ‘static’ and ‘structural’ 
knowledge in the enterprise. The process-oriented perspective should be able to capture 
the business activity and user perceivable tasks and describe the ‘cross-reference’ on 
how the ‘elements’ in the static structure are created, or what procedures exist for the 
creation of instances of semantic relationships. Finally, the behaviour-oriented 
perspective describes how ‘events’ can be cross-referenced to ‘elements’ in the 
process- and data-oriented perspectives. This means that any requirements specification 
should potentially consist of models that covers these three (conceptual) perspectives. 
The second dimension is concerned with the question what elements must be contained 
in every perspective (see table 7.1) 
  
Table 7.1 Types of rules within perspectives for completeness criterion 
 

 state state action 
Data-oriented Data model Static constraints  Dynamic constraints 
Process-oriented  Static derivation  
Behaviour-oriented   Dynamic rules 

 
Efficiency criterion 
 
Another criterion that we can use for evaluating requirements determination methods is 
concerned with the amount of resources that are needed to create a requirements 
specification when such a requirements determination method is applied in a given 
application UoD. This criterion is generally known as efficiency. The operationalization 
of this criterion for the purpose of evaluating requirements determination methods has 
taken place for the way of modeling and the way of working as well as the way of 
controlling.  

With respect to the way of modeling the number of equivalent modeling 
constructs in the specification language determines the value on this criterion,  

With respect to the way of working of a requirements determination method 
we can say that the availability of a (set of) procedure(s) that guides an analyst in the 
requirements determination project will determine the efficiency of the way of 
modeling of requirements determination method. 

With respect to the way of controlling we can define efficiency on two areas. 
Firstly, the area of quality management. In this philosophy, quality deficiencies must be 
prevented by having a number of ‘quality-checking’ sub-procedures. Secondly, the way 
of controlling is concerned with the project management of the requirements 
determination project. The efficiency regarding these project management issues must 
be measured in terms of three project targets: performance, cost and time (Mantel et al., 
2001) 

Formality criterion 
 

The relevant formality dimension to which a requirements specification must 
comply are the following: consistency and preciseness. This means that the modeling 
constructs that are used for creating requirements specifications in the different 
perspectives must be formally defined, in order to prove their consistency. Secondly, 
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the way of working, must be formal: a formal modeling procedure(s) must exist that 
precisely specifies how the consistent modeling constructs that were defined in the way 
of modeling, must be instantiated in a requirements determination project in order to 
obtain semantic correctness in complicated application subject areas.  

With respect to the way of controlling we must be able to formalize the 
planning of activities that have to be carried out in a requirements determination 
project, for example in a precedence diagram and we must be able to give provisions 
that enable traceability.  
 
Research sub question 2 : 

 
Why do the existing requirements determination approaches from the 
literature not comply with the quality criteria for assessing requirements 
determination methods ? 
 

Research findings for sub question 2 : 
 
 
Research findings for the domain richness criterion 
 
The application of a requirements determination method must lead to a requirements 
specification that reflects the (possibly) different perceptions of an underlying reality 
by different user groups. It is possible to reflect these different perceptions by using the 
EER, UML and ORM approaches, whenever they are embedded in a procedure that 
enables an analyst to integrate the different views from different user groups on the 
‘underlying reality’ by integrating the sub-schemas of these users into a final ‘overall’ 
requirements specification in which the different perceptions are made explicit. The 
EER, UML and ORM approaches that we have discussed in chapter 3 do not give 
provisions for this.   

The ‘turbulence’ dimension characterizes the extent in which an application 
domain is subject to changes in the business data and business rules. We concluded that 
the EER and UML approaches are most prone to remodeling because of the multitude 
of information bearing constructs. ORM has a problem with a multitude of naming 
conventions which might lead to unstable models. 

With respect to the ‘tacitness’ dimension, the EER, UML and ORM 
approaches basically have the assumption that users will be able to express their initial 
requirements in natural language. This restricts the applicability of these approaches to 
those domains that exclusively contain explicit knowledge 

With respect to the ‘anchoring’ dimension, the requirements determination 
processes in which we use EER and UML models for our specification language are in 
principle not limited to any specific range on the anchoring scale. ORM is anchored in 
familiar examples and it requires the domain expert to come up with these real 
examples and therefore is applicable for those domains that are on the ‘tangible’ side of 
the anchoring scale. The initial language in ORM is the language of verbalizable 
familiar examples and it requires the domain expert to verbalize these examples in (a 
subset of) natural language. The initial language in EER and UML is not specified but 
it can be anything because no procedure is given how to get from an initial 
requirements statement to the EER diagram or UML model(s). 
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Research findings for the completeness criterion 
 
With respect to the encoding capabilities of a given approach for the data model, the 
static constraints, the dynamic constraints, static derivation rules and dynamic rules, the 
main conclusion is that no single approach is able to comply fully with the 
completeness criterion.  There exists a large difference between the families of 
approaches and even between members within a given family in terms of the extent in 
which the application domain semantics can be expressed in the data model, and as 
static or dynamic constraints, static derivation (rules) and dynamic rules. Furthermore, 
the existing approaches, generally, lack a formalized way of working that will assure 
completeness, in the sense that all existing relationships and constraints in an 
application subject area, will be ‘detected’ by the analyst in the requirements 
determination project. This means that there still is an opportunity to improve the 
requirements determination approaches we have surveyed in chapter 3 in terms of 
completeness.  
 
Research findings for the efficiency criterion 
 
With respect to the efficiency criterion we must remark that in EER and UML in a 
number of cases remodelling is necessary because of the application of the attribute 
modeling construct in the initial requirements specification. The main finding of this 
literature survey is that 2 out of these 3 approaches use more than 2 information 
bearing constructs which can lead to instable requirements specifications. Furthermore, 
the non-existence of a precise modeling procedure in all approaches might lead to 
unnecessary rework in the requirements determination process, because verification is 
not enforced. Furthermore, with respect to the way of controlling, the existing 
approaches do not cover the project management and quality assurance steps. 
 
Research findings for the formality criterion 
 
With respect to the consistency dimension we can conclude that in many (E)ER 
approaches and in the UML it is not possible to use a single definition for minimum 
cardinalities or multiplicities across all types of semantic relationships. In UML it is 
not clear how the modeling concepts that are used in the 9 different diagram types are 
related on the level of an application requirements specification. In ORM an 
inconsistency is found with respect to the treatment of derived fact types, sometimes 
they will be contained in the application information grammar sometimes they will not.     

With respect to the preciseness dimension we remark that the optionality of 
some modelling constructs in all three approaches that we’ve studied might lead to 
imprecise requirements specifications. With respect to the questioning of assumptions 
we can conclude that in  EER, UML and ORM no procedure exists that allows an 
analyst to question the assumptions on which the utterance of the domain semantics is 
based. The position of these approaches is basically that the domain requirements that 
are uttered by the user are encoded in the model 1-on-1. ORM claims to perform 
checks on sample populations, however, it does not give guidelines on how to formally 
perform these checks in a dialogue with the responsible domain user. 
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Table 7.2 Requirements method demands for the way of modeling  
 

RMD Requirements method demands for the way of modeling 
1 A to-be designed RDM must contain 1 information bearing modeling 

construct. This construct must be able to express the complete, precise 
and consistent communication semantics of any N-ary relationship 

2 The modeling construct(s) for naming conventions must allow for one 
domain-based naming convention and  must be able to capture the 
semantics regarding the context in which the naming convention is valid.  

3 The to be designed requirements method must contain a role construct 
and an explicit naming convention for roles 

4 The static constraint types in the to-be designed requirements method 
must at least contain those types that enable us to encode those business 
rules that can be encoded by relationship cardinalities in EER and UML 

5 A requirements specification that is the result of the application of the to-
be designed requirements determination method must  be able to adapt to 
an evolving application logic without unnecessary remodeling 

6 The definition of an application object or entity in the to be designed 
requirements method must not imply that it can exist on its own by 
default 

7 The definition of the static constraint types in the to-be designed 
requirements method must be the same for all arities of the semantic 
relationships in the data model and must contain an explicit reference to 
the elements in the data model. 

8 The definition of the dynamic constraint types in the to-be designed 
requirements method must enable us to explicitly refer to the (actual and 
projected states of the) application’s data base 

9 The definition of static derivation (rules) in the to-be designed 
requirements method must contain an explicit reference to the elements in 
the data model that serve as an input for the static derivation (rule) and it 
must contain a precise specification on how these elements lead to the 
result of the static derivation (rule) 

10 An internal event in the to-be designed requirements method must be 
defined as the insertion or deletion of a specific piece of domain 
knowledge into or from the application’s data base An external event in 
the to-be designed requirements method must be defined as something 
that happens in the application domain and that can lead to the insertion 
or deletion of a specific piece of domain knowledge into or from the 
application’s data base or the execution of a static derivation rule 
(eventually) under some condition on the content of the application’s data 
base 

11 A condition in the to-be designed requirements method must be defined 
as a proposition on the application’s information base that must yield the 
value true or false when evaluated at any point in time 
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In chapter 3 of this thesis it was concluded that for the three requirements 
determination approaches that were studied in detail in this chapter (E)ER, UML and 
ORM no single approach fulfills all the quality criteria for a RDM that were derived in 
chapter 2.  
 
Research sub question 3 : 

 
What are the necessary elements for the way of modeling, the way of working 
and the way of controlling for a requirements determination method so that 
this method complies with the quality criteria that we have given for the 
design specification  ? 
 

Research findings for sub question 3 : 
 
The diagnosis of these modeling deficiencies in the state-of-the-art in requirements 
determination has lead to the formulation of 18 requirement method demands (RMD’s) 
for the specification of a to-be designed requirements method in chapter 4. We have 
divided the 19 RMD’s into RMD’s for the way of modeling (table 7.2), RMD’s for the 
way of working (table 7.3) and RMD’s for the way of controlling (table 7.4). 
 
Table 7.3 Requirements method demands for the way of working  
 

RMD Requirements method demands for the way of working  
12 The definition of the modeling constructs for the data model in the to-be 

designed requirements method must be accompanied by some kind of 
guidance on how all instances of these modelling constructs can be found 
in an application subject area. The definition of the constraint types in the 
to-be designed requirements method must be accompanied by some kind of 
guidance on how such instances of a constraint type can be found in an 
application subject area. 

13 A view integration sub-procedure must be defined in the to-be designed 
RDM in which it is specified how an analyst must carry out the integration 
of views on the application domain by user (groups) that have a different 
perception on the ‘underlying’ reality 

14 The to-be designed requirements determination method must provide 
facilities for transforming implicit tacit knowledge into explicit knowledge 

15 The to be designed requirements determination method must accommodate 
every possible starting point in the requirements determination process 
ranging from abstract to tangible; ranging from natural language 
description to documents that can only be understood by domain users. 

16 Formal modeling procedure(s) must be defined in the to-be designed 
requirements method in which it is precisely specified how an analyst must 
carry out a modeling step in the most efficient way. 
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Table 7.4 Requirements method demands for the way of controling 
 

RMD Requirements method demands for the way of controlling  
17 The way of working in the to-be designed RDM must have explicit formal 

quality assuring sub-procedures for the activities in the work breakdown 
structure and formal checks that enables an analyst to validate the 
information that is supplied by the user and that confronts a domain user 
with his/her assumptions and enables a user to validate the information that 
is supplied to the analyst 

18 The way of working in the to-be designed requirements determination 
method must have a work breakdown structure that allows to formally plan 
the activites in a requirements determination project. 

19 The way of modeling and the way of working  in the to-be designed RDM 
must have provisions that enable traceability. 
 

 
We  now go back to our main research question 
 
Main research question  : 
 

Does there exist a requirements determination method that is applicable in a 
wide range of business organizations and that can be used for specifying the 
complete domain requirements for a given business application subject area in 
an efficient and formal way ? 

 
 
Research findings for main research question : 
 
In chapter 5 NLM’s way of modeling was defined. The modeling constructs for the 
specification of an application requirement in a basic information model and the 
accompanying constraints and their naming conventions were given. Furthermore, their 
applicability and generalizability in business UoD’s was illustrated. In the first part of 
chapter 6, the elements for the way of working in NLM were defined, consisting of 
procedures or algorithms that specify how an analyst must carry out the requirements 
elicitation process in a dialogue with a knowledgeable domain user. Every procedure or 
algorithm contains built-in quality preserving and verification step(s) that verifies the 
recorded requirements segment (generally) in a dialogue with the domain user. In the 
second part of chapter 6 the elements in the way of controlling for NLM, were given in 
which the (project) management of the requirements determination process using the 
NLM method was illustrated. 

In chapters 5 and 6 we have defined a requirements determination method that 
contains the necessary elements as they were laid down in 19 RMD’s from chapter 4 
and which therefore gives an answer to our main research question from chapter 1. The 
Natural Language Modeling (NLM) requirements determination method turns out to 
fulfill all necessary requirements for a to-be requirements determination method as was 
defined in chapter 1. In figure 7.1 we have shown how the research (sub)-questions are 
related. 
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              Main Research Question : 

Does there exist  a requirements determination
 method that is applicable in a wide range of 
business organizations and that can be used for
specifying the complete domain requirements for
 a given business application subject area in an 
efficient and formal way ?”

               Research sub question 1:

What are according to the existing requirements 
determination literature, the quality criteria for 
a requirements determination method that 

 ?

can 
be used for eliciting, verifying and specifying
the complete domain requirements for a given
business application subject area in a wide range 
of  business organizations in an efficient and 
formal way 

              Research sub question 2:

Why do the existing requirements determination 
approaches from the literature  not comply with
the quality criteria for assessing requirements 
determination methods 

               Research sub question 3:

What are the necessary elements for the way of 
modeling, the way of working and the way of 
controlling for a requirements determination 
method so that this method complies with the 
quality criteria that we have given for the design
 specification  ?

Chapter 2

Chapter 3Chapter 2

Chapter 4

 
   

Fig. 7.1 Relationship between research (sub) questions) 
 

The main findings regarding the extent in which NLM satisfices the 19 
demands that we have derived are summarized here.  
 
Findings for the way of modeling 
 
The NLM requirements specification language contains only one information bearing 
construct: the fact type and it allows us to model any naming convention and semantic 
connection. The introduction of the sentence group template construct and the 
application concept repository allows us to capture the complete domain semantics of 
the UoD and therefore fulfills requirement RMD 1. The introduction of naming 
convention fact types and compound referencing schemes in combination with an 
accompanying sentence group template that enables us to capture the context in which 
the naming convention is valid fulfills requirement RMD 2. The definition and 
consistent application of the role construct and the mandatory naming convention from 
such a construct within the UoD of an analyst in the NLM specification language 
fulfills requirement RMD 3. Furthermore we have given modeling provisions that 
allows us to define any type of static constraint that currently exists within the EER and 
UML (compliance to RMD 4). It was also shown that NLM leads to requirements 
specifications that can easily evolve with changing application requirements (RMD 5). 
If instances of an intention can only exist on their own, this can be modeled as a unary 
fact type. This means that the NLM modeling constructs comply with requirement 
RMD 6. The definition of the uniqueness- and set-comparison constraints is fully 
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scalable as a function of the arity (N). This means that we have complied with 
requirement RMD 7. With respect to the transition constraints we remark that in our 
legend we have explicitly incorporated the relationship that the constraint has in terms 
of the values of the roles that are involved and it contains explicit references to before- 
and after- states of the application information base and therefore, NLM complies to 
RMD 8. The derivation rule constraints contain a reference to the roles from the Basic 
information Model of the UoD. This means that the derivation rule constraint that we 
have defined in the NLM’s way of modeling complies with RMD 9. We have made a 
distinction into internal and external events in NLM. This leads to the compliance to 
RMD 10. In the impulse, an information base condition can be contained. Such an 
information base condition (IBC) is evaluated at some point in time. If the application 
information base at that point in time in combination with the information base 
condition yields the value true than the derivation rule and/or insert/delete operation 
will be executed. If it yields the value false nothing will happen. This means that 
requirement RMD 11  has been fulfilled. 
 
Findings for the way of working  
 
The application of algorithms 1 through 4 will lead to the detection of all semantic 
relationships and naming conventions in the application subject area. We have 
specified static constraint derivation algorithms 6 and 7 to detect all uniqueness and set 
comparison constraints. In order to derive all instances of the dynamics constraints we 
have specified transition constraint derivation algorithm 8 as sub-procedure in NLM’s 
way of working. In order to derive all instances of the derivation rule constraints we 
have specified the derivation rule constraint algorithm 9 in which the precise 
specification (or derivation formula) can be established. In algorithm 10 we have 
incorporated the question in which an internal event can lead to the execution of a 
derivation rule or another information base event. Furthermore, the algorithm 
systematically confronts the users in the SoI with derivation rules and tries to elicit the 
potential ‘external’ events that might invoke such a derivation rule. We can conclude 
that  RMD 12 has been fulfilled. In algorithm 5 a view integration algorithm has been 
defined. This fulfills RMD 13. The application of the natural language axiom in an 
organizational setting in which domain users are enabled to make implicit knowledge, 
explicit fulfills requirements RMD 14. The application of the natural language axiom in 
NLM also allows us to apply NLM in many organizational settings, ranging from 
abstract to tangible UoD’s and from natural language descriptions to other descriptions 
that can only be understood by users. This leads to compliance to RMD 15. The sub-
division of the modeling procedures in NLM’s way of working into a number of formal 
algorithms has been done in such a way that the amount of analysis steps that have to 
be performed by  (an) analyst(s) is minimized and therefore NLM fulfills RMD 16. 
The precise specification of the NLM modeling procedure in a number of algorithms 
with built-informal  quality assurance checks fulfills requirements RMD 17.  
 
Findings for the way of controlling 
 
The way of working in NLM has a work breakdown structure that consists of 10 
activities or transformations that are laid down as formal algorithms and therefore can 
be formally planned as activities in a requirements determination project according to 
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RMD 18. Furthermore, NLM contains provisions that enable traceability in the 
requirements determination processes, by forcing an analyst to use naming conventions 
for the concept that he/she uses in the process of requirements determination and 
therefore NLM fulfills requirement RMD 19. 
 
 
 
7.3    RESEARCH METHODOLOGY 
 
In sections 5.10 and 6.10 we have already concluded that the NLM requirements 
determination method complied with all 19 requirements method demands RMD’s that 
were specified in chapter 4. In this concluding chapter of this thesis we will reflect on 
the final stage from the ‘design-research’-cycle: selection of the desired design from 
the set of alternative designs. 
 We can now conclude that NLM is a ‘satisficing’ solution to our main 
problem statement from chapter 1, since it ‘satisfices’ all 19 demands for a 
requirements determination method that were derived, based upon the literature 
research on the state-of-the-art in requirements determination methods. The research 
goal that was phrased in chapter 1: “to develop a method for requirements 
determination for which the way of modeling allows the analyst to capture all business 
entities and all business rules. This to-be developed RDM should have a way of 
working that contains modeling provisions that guide an analyst in elicitating the initial 
requirements from domain users. Finally, this method’s way of controlling must 
contain quality preserving procedures that guarantees that a requirements specification 
that is the result of the application of this method have been validated by the user(s)” .., 
therefore, is achieved, by developing an alternative design that complies to the 
requirements that were derived in chapter 4. 
 
 
 
 
7.4    FUTURE MIS RESEARCH PROPOSALS  
 
We will conclude this chapter with a number of topics for future research.  
 We have documented the NLM requirements determination method in 
chapters 5 and 6 of this thesis. The NLM requirements determination method clearly, 
provides a number of advantages over the ‘state-of-the-art’ in requirements 
determination methods. One of the most distinguishing features of NLM compared to 
for example, (E)ER, ORM or UML is the way in which the application of modeling 
constructs, for example, constraint types, is made explicit in a ‘constraint’-legend and 
an accompanying  ‘instantiation algorithm’. In the appendix A to this thesis, we have 
provided the readers with some example constraint legends and in chapter 6 we have 
shown the accompanying instantiation algorithms for these constraint types. An agenda 
for future research, is to define more (in the sense of ‘orthogonal’ to the existing 
constraint types in this thesis) constraint types, that prove to be significant for business 
application subject areas, but above all, to develop accompanying instantiation 
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algorithms that can be used in an analyst-domain user dialogue, and that are based upon 
the acceptance and/or rejection of ‘real-life’ examples by knowledgeable domain users. 
 
 
 
 
7.5    RECOMMENDATIONS FOR PRACTITIONERS IN THE   
         MIS  FIELD 
 
We can conclude that the NLM requirements determination procedure explicitly shows 
the separation of concerns between the analyst and the user in the process of 
requirements modeling by providing the semantic bridges for this analyst-user 
dialogue. In addition to the creation of a NLM requirements specification that is an 
allowed extension of the NLM meta model we need guidance on what specific 
extension of this meta model reflects the domain semantics in a  precise and a complete 
way. We have shown that such a semantic correct specification will be achieved when 
the algorithms that we have introduced in this thesis will be applied in a requirements 
determination project in which the sequence of their application is performed under the 
precedence requirements that were given in chapter 6. Furthermore, this will result in 
the most efficient way of working. Although a number of procedures in the NLM 
requirements determination method at first sight have a ‘trivial’ appearance, the 
consistent application of the procedures in the ‘way-of-working’ in this thesis in 
practice has proven to improve the ‘quality’ levels of the resulting information models, 
because even the experienced analyst can always ‘fall back’ on the procedure in those 
situations in which the application subject area becomes too complex. Another 
advantage is that inexperienced analysts will be able to create requirements 
specifications that have the same quality level as the specifications that are created by 
experienced analysts. In a project in which the NLM requirements determination 
method is applied for the creation of a requirements specification, the division into sub-
projects and the order in which these sub-projects are executed does not have an impact 
on the final specification. 

As we pointed out earlier, the objective of this thesis research was to develop a 
requirements modeling language and a modeling procedure, rather than to specify an 
‘optimal’ notation legend for such a language. Practitioners, however, need to be able 
to communicate, with domain users, management and peers in many cases using a pre-
defined diagramming technique or notational legend. The conclusions from this 
research in terms of giving a preference to a modeling language that has one 
information bearing construct, that has uniform modeling facility for naming 
conventions and that has a number of orthogonal constraint types. The definition of 
these constraint types in combination with an instantiation procedure has a built-in 
guarantee that these constraint instances can always be derived in any application UoD, 
whenever the appropriate instantiation procedure is applied in combination with a 
knowledgeable domain user. The practitioner should evaluate the requirements 
specification/determination approach that he/she is currently using. After this 
evaluation the practitioners can decide to limit or redefine the modeling constructs that 
they want to keep and define new modeling constructs if one more necessary constructs 
are missing. In a second stage a ‘notational’  legend must be (re)defined that preferably 
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is ‘backwards compatible’ with the old way of modeling and the old way of working. 
In the third stage of the evaluation of the current approach, practitioners must decide on 
what types of constraints are relevant for the specific type(s) of application domain(s) 
in which the requirements determination method is going to be applied. We emphasize 
that for these constraint types, accompanying procedures must be specified on such a 
level of concreteness that an analyst can apply these procedures in a dialogue with a 
knowledgeable user.  

 
7.5.1    Application of NLM in practice 
 
The NLM requirements determination that we have documented in chapters 5 and 6 has 
been applied by master students in MIS a number of times in large and small 
enterprises, see for example Bogget (1994) and  Enter (1999).  Other students have 
applied this approach on object-oriented models (Clayes, 1996) and on the accounting 
knowledge domain (Wolthuis, 1997). 
 
 
 
 
7.6    CONCLUDING REMARKS 
 
In this thesis we have studied the field of requirements determination for enterprise 
information systems. We discovered that in the ERP era that characterizes the 
information systems in many (large) enterprises at the beginning of the 21st century, the 
issue of requirements determination is still relevant. We also discovered that the ‘state-
of-the-art’ of this field still shows a number of omissions in the definition of 
requirements specifications modeling constructs and methodology. We have chosen to 
specify ‘the requirements’ or demands for a requirements method itself using four 
(groups of) criteria. These criteria were operationalized by studying the three most 
dominant requirements determination approaches that exist today. These criteria were 
subsequently translated into 19 specific demands (RMD’s) for a to be designed 
requirements determination method. In the second part of this thesis (chapters 5 and 6) 
we have introduced the Natural Language Modeling (NLM) approach for requirements 
determination. It turns out that NLM satisfices all 19 requirements and therefore can be 
considered an appropriate design alternative, as is specified in the design research cycle 
(Van Engelen and Van der Zwaan, 1994). Hence the choice of Natural Language 
Modeling as answer for our research objective is justified. 
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APPENDIX A: 
 

THE SPECIFICATION OF THE CONSTRAINT TYPES 
IN THE NLM  REQUIREMENTS SPECIFICATION 

LANGUAGE 
 
 
 
A.1    INTRODUCTION 
 
In this appendix we will zoom in on the modeling constructs that will enable us to 
express that some extensions of a basic information model are not allowed to exist. We 
will use part 2 of the university enrollment example in chapter 5 to illustrate the 
different constraint types.  
 
 
A.2    POPULATION STATE CONSTRAINTS 
 
We can consider a population state as a further reduction of the extensions in the set of 
possible extensions of a basic information model. After the restriction of the names to 
the name classes, that can be used to identify a specific thing, entity or concept in the 
application UoD, we will further restrict the extensions that are allowed to exist by 
incorporating specific domain knowledge or those domain rules (or business rules) that 
can be expressed as propositions on the basic information model and that must be true 
in every population state. We will call such a proposition a population state constraint.  
 
Definition A.1 (=5.11). A population state constraint p in a basic information model 
BIM is a proposition that limits the allowed extensions of the basic information model 
BIM to those extensions for which the proposition of p is true.  
 

A population state constraint is a set valued function into the set of extensions 
of a basic information model of  a universe of  discourse. 

 
PC:  { EXTj(BIM)} ----->   { EXTj(BIM)} 

 
 
Example 5.1: University Enrollment part 1 (ctd.)  
 
BIM:={FT1, FT2, STUDENTNAME, STUDENTMAJOR} 
 
Business rule: a student must be enrolled in at most one major at a time. 
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Domain extensions     Range extensions 
 
{student V1234 majors in major science};  {student V1234 majors in major science} 
{ student V1234 majors in major science, 
  student V1234 majors in major economics} 
 

R1

R1

R1

RN+1

RN+1

RN+1

R1

RN

RN

RN

Cy

Cx

Cz

Cu

R2N

R2N

R2N

RNRN-1

The constraint Cy  implies that there can not exist an 
extension of the basic information model in which the set of  
value combinations in the roles R1 through RN is not a 
subset of the set of the value combinations in the roles 
RN+1 through R2N

The constraint Cx implies that there can not exist an 
extension of the basic information model in which the set of  
value combinations in the roles R1 through RN is not 
equal too the set of value combinations in the roles 
RN+1 through R2N

The constraint Cz  implies that there can not exist an 
extension of the basic information model in which the set of  
value combinations in the roles R1 through RN is overlapping
with  the set of value combinations in the roles 
RN+1 through R2N

The constraint Cu  implies that there can not exist  an
 extension of the basic information model in which the same
 name combination in the roles  R1 through RN-1 appears more
 than one time       

 
          

Fig. A.1 Example legend for uniqueness-, exclusion-, subset- and equality-66 population state 
constraints. 

 
 
A.3    POPULATION STATE TRANSITION CONSTRAINTS 
 
The business rule: a student can be enrolled in at most one major at a time, can be 
expressed as the following constraint instance from the constraint legend in figure 
A.167: 

                                                 
66  Exclusion constraints, equality constraints and subset constraints together are referred to as 
set comparison constraints (Leung and Nijssen, 1988:35) 

 
67  We note that this sentence refers to the Universe of Discourse of an information analyst, who 
has knowledge of NLM and has access to an accompanying  constraint legend. 
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The constraint c1 implies that there can not exist an extension of the basic information 
model in which the same name in the role enrolled student appears more than one time.  
 
If we inspect this example we can conclude that the addition of a population state 
constraint onto a (basic) information model actually eliminates those extensions from 
the set of extensions that do not comply with the proposition. In this example we have 
shown that the example extension: {student V1234 majors in major science, student 
V1234 majors in major economics} does not comply with the proposition of population 
constraint c1.  

The population state of a basic information model (BIM) will change over 
time because fact instances can be added or removed from the application’s 
information base at any time. We will define the addition or deletion of fact instances 
to or from the application’s information base a state transition from a population before 
(the addition or deletion has taken place) to a population after (the addition or deletion 
has taken place) 
 
Definition A.2 (=5.12). A population state transition constraint q in a basic 
information model BIM is a proposition that limits the before-after extension 
combinations of the basic information model BIM to those combinations for which the 
proposition of q is true.  
 

A population state transition constraint is a set valued function into the set of 
before-after extensions of a basic information model of  a universe of  
discourse. 

 
PTC:  { EXTj(BIM)} × { EXTj(BIM)}    { EXTj(BIM)} × { EXTj(BIM)}   

 
In the student enrollment example we have illustrated how population state constraint 
c1 will guarantee that only those extensions of the BIM can potentially exist as 
population states that are allowed with respect to the business rule that a student can be 
enrolled in at most one major. In some UoD’s business rules might exist that can not 
exclusively be modelled as (a combination of) population state constraints. Consider 
the following business rule in the university enrollment UoD: A student can not major 
in Economics after he/she has majored in Science. This business rule prohibits for 
example the following before-after combination of fact type extensions: {student 
V1234 majors in major science, student V1234 majors in major economics} although 
this before/after extension combination is allowed according to constraint c1 and , 
therefore, must be encoded as a population transition constraint c14:  
 
The population constraint c14 implies that there can not exist a before/after 
combination of extensions of the basic information model in which the extension for the 
role chosen major for a given student in the before state is equal to ‘ science’  and in 
the after state is equal to ‘ economics’.  
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The addition of the population state transition constraints to the basic information 
model reduces the set of allowed before-after extensions in the UoD. We have provided 
a legend for the state transition constraints in figure A.2.  
 

Cx:  RN 
       before    after       ax              ay ....            am

  ax                                 +                  -              +
  ay                                 +                 +              +
  ..
  am                               +                 +               +

R1 

Y: a <R1> B......  N <RN>

RNR(N-1)

The population constraint Cx  implies that there 
can not exist a before/after combination of 
extensions of the basic information model in 
which the extension for the role RN  for a given 
value combination {R1,..,R(N-1)} in the before 
state is equal to ' ax’ and in theafter state is equal
 to ‘ay’ 

 
   

Fig. A.2 Example legend for population state transition constraints. 
 
 

A.4    DERIVATION RULE CONSTRAINTS 
 
In addition to the population constraints, constraints can exist between the values that 
particular fact instances must hold when other fact instances are given. For example, in 
part 2 of our University Enrollment, if we want to record the total number of credits for 
a person in his/her freshmen year (fact type FT13) in addition to the number of credits 
for every individual course (fact type FT12) we know that whenever instances of FT12 
are known, the instances of FT13 can be ‘computed’. If instances of fact type FT13 are 
known, however we can not infer or ‘compute’ the instances of FT12. This means that 
there exists a type of constraint that determines a specific fact instance when instances 
of other fact types are known to exist. This type of constraint we will call a derivation 
rule. 

In this section we will define the modeling constructs that will allow us to 
precisely specify derivation rules on fact types in the basic information model (defined 
in section 5.7). Derivation rules specify how fact instances of a given fact type in the 
BIM are composed of fact instances of other fact types in the application ‘s basic 
information model. 
 
Example 5.1 part 2 (ctd): 
 
Consider  the following fact instance on the example form from figure 5.5: 
 
Fact 1:  
The total numbers of credits for the student O 5678 in his/her freshmen year was 24 
 
It may be created in the following way: 
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The total number of credits for student O 5678 is created by adding all 
 the credits for the courses for student 0 5678. 

 
using the following ingredient facts: 
   
Fact 2:  Student O 5678 earned 8 credits for the course macro economics. 
Fact 3:  Student O 5678 earned 8 credits for the course micro economics. 
Fact 4:  Student O 5678 earned 8 credits for the course finance. 
   
The creation of fact instance fact 1 is a function defined on the ingredient fact 
instances fact 2, fact 3 and fact 4. The fact type(s) of the fact instances created in (an) 
instance(s) a derivation rule will be referred to as the resulting fact type(s) for the 
derivation rule. An (the) ingredient fact type(s) of a derivation rule specifies what the 
fact instances serve as an input for the derivation of a fact in a derivation rule.  
 
Definition A.3 (=5.13). A derivation rule (constraint) is a function defined on instances 
of the ingredient fact types. The function range is a set of resulting fact instance(s) 
from the resulting fact typesof the derivation rule.  
    
                Let  FT1 through   FTN  be ingredient fact types for the derivation rule CP 
                Let  FTM be the resulting  fact type for the derivation rule CP     
                            
               CP: EXT(FT1) ×…×  EXT(FTN)  ------------>  EXT(FTM)  
 
Example 5.1 part 2 (continued): 
 
Ingredient fact type FT12: Student [identified by the combination of <university code>  
and <student ID>] gained a number of credits <course credits>for the course 
<credited course>. 
 
Resulting fact type FT 13: Student [identified by the combination of <university code>  
and <student ID>] gained a total number of credits <total credits>in his/her freshman 
year 
 
Function DF1: FT13.<total credits>(FT13.<university code>.<student ID>):=  
                      
       M 
              Σ               FT12. <course credits> [FT12.<university code>.  
      j68=1               <student ID>=FT13.<university code>.<student ID>] 
                  
 The specification of a derivation rule can be considered another semantic 
bridge in the natural language modeling requirements determination method. In this 
process the variables in the function formula are assigned specific semantics in terms 
of roles of the basic information model (BIM) of the UoD. The  parameters that tell us 

                                                 
68  Where j is the index on the instances of courses. 
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what fact instances will be the 'tangible' end results of the execution of a derivation rule 
and what other factors constrain the possible outcomes of such a derivation. We will 
call such a set of parameters: the derivation rule argument69.  
 
Definition A.4. A derivation rule argument specifies the types of values that must be 
specified for the creation of a derived fact instance.  
 
                Let CP be a derivation rule 
                Let  FTM be the resulting  fact type for the derivation rule CP     
               Let dfi be a derived fact instance for CP: dfi∈ EXT(FTM)  
               Let drarg be a derivation rule argument. 
 
            CP: EXT(FT1) ×…× EXT(FTN)  × DOM (drarg)  ------------>  EXT(FTM) 
 
Example 5.1 part 2 (ctd.):  
 
Derivation rule constraint c15: create total number of course credits 
The  instances of this derivation rule create instances of fact type FT13 
Derivation rule argument: {(arg1, student)} 
 
We note that derivation rules can exist in which a derivation rule argument does not 
exist (see the next example ). 
 
Example 5.1 part 2 (ctd.):  
 
Derivation rule constraint c16: create total number of enrolled students at vandover 
and Ohoa university combined 
The  instances of this derivation rule create instances of fact type FT14 and for this 
derivation rule no derivation rule argument exists. 
 

                                                 
69  In some application UoD’s, the derivation rule arguments and derived fact types can change 
depending upon the specific set of argument instances that are given. For example in a project 
management UoD three fact types might exist: FT1: <activity> starts on <time>, FT2: <activity> 
ends on <time>, FT3: <activity> has <duration>. Sometimes FT3 will be derived based upon 
FT1 and FT2 as (given) arguments. In other instances FT2 will be derived based upon FT1 and 
FT3 as arguments and in other instances FT1 will be derived based upon FT2 and FT3 as 
arguments. In this example, therefore, it is not known in advance precisely which 2 fact instances 
of the three are known. In this example, therefore, three derivation rules must be created. The 
modeling provision that allows us to specifiy when which derivation rule will be executed is the 
specific event that initiates the triggering of the derivation rule. If the event argument contains 
instances of FT1 and FT2 then the derivation rule that derives an instance of FT3 will be 
triggered. This will be modeled in three impulses. See the remainder of this Appendix. 
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Definition A.5. An information base condition (IBC) is a proposition on the 
information base. 
 
 Let EXT(BIM) be an information base 
 Let IBC be an information base condition 
 IBC= prop (EXT(BIM)) 
 
Example 5.1 part 2 (ctd):  
 
ibc1: ∃ f∈ EXT(FT12)[f.<student ID>.<University code>>= ‘O 5678’] 
 
 
Definition A.6. An information base condition type (IBCT) is a set of propositions 
defined on the information base. An instance of an information base condition type is 
an information base condition.  
 
 Let EXT(BIM) be an information base 
 Let IBC be an information base condition 
 Let IBCT be an information base condition type 
 EXT(IBCT)= {IBC} 
 
An information base condition type in a derivation rule can be instantiated into an 
information base condition whenever the instantiation values of the derivation rule 
argument are known. 
 
DR1: Create total number of credits (arg: student) 
CT: ∃ x∈EXT(R2) [ x=DR1.arg] 
 
If we consider the derivation rule: create total number of credits it will only then create 
(a) fact instance(s) of fact type FT13 when at least one fact instance of fact type FT12 
exists in the application information base. If we inspect the derivation rule and the 
instantiation values for the derivation rule argument it should be clear whether the 
execution of the process will lead to a result before the derivation rule is actually 
executed. The pre-condition serves as this checking mechanism for the instantiation of 
a derivation rule. If the pre-condition is violated by the actual content of the application 
information base, (a) derived fact instance(s) will not be created.  
 
Definition A.7. A precondition in a derivation rule is an information base condition 
(type) that checks whether the required input fact instances and derivation rule 
argument values for the derivation rule exist in the application information base. 
 

Let EXT(BIM) be an information base 
 Let IBC be an information base condition 
 Let PC be a precondition 
 PC∈ {IBC| IBC= prop (EXT(BIM))} 
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Example 5.1 part 2 (ctd):  
 
DR1<{(arg1,student)}> 
IF there exist an instance of FT12 
SUCH THAT FT12.<university code>.<student ID>=arg1 {pre-condition} 
 
The post-condition specifies what the fact argument is for the facts that will be created 
as a result of the execution of the derivation rule. Furthermore, a reference is given on 
how the fact values for the roles in the facts that will be created in the derivation rule 
will be obtained. This post-condition should, furthermore, specify what fact instances 
(in terms of the derivation rule) argument should be instantiated for the resulting fact 
type(s) when the derivation rule is executed. 
 
Definition A.8. A post-condition specifies (parts of) the fact argument for the instances 
of the resulting fact type(s) that must be created in the derivation rule.  
 

Let EXT(BIM) be an information base 
 Let IBC be an information base condition 
 Let PO be a postcondition 
 PO∈ {IBC| IBC= prop (EXT(BIM))} 
 
Example 5.1 part 2 (continued): 
   
C15: Create total number of credits<{(arg1,student)}> 
IF  there exist an instance of FT12  
SUCH THAT FT12.<university code>.<student ID>=arg1        {pre-condition} 
THEN create an instance of fact type FT13    
      SUCH THAT              
       FT13.<university code>.<student ID>:= arg1 {this is the fact argument}          
        
      FT13.<total credits>:=DF1            {post condition}       
                    
     DF1:=   Σ FT12.<credits> [where FT12.<university code>. <student ID>=’arg1’] 
  
ENDIF                                                  {derivation formula} 
 
C16: Create total number of enrolled students 
IF  there exist an instance of FT10  
THEN create an instance of fact type FT14    
      SUCH THAT           
       FT14.<total enrolled students>:=DF2      {post condition}       
DF2:= COUNT(Ext(FT10))                                {derivation formula} 
ENDIF 
 
In figure A.3 an example of a (verbalization) legend for the derivation rule constraint is 
given. 
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  DRX<{derivation rule argument argDRX}> 
  IF    {pre-condition Prx1} 
                        AND   …. 
                        AND       {pre-condition PrxN} 
  THEN create an instance of resulting fact type FTX    
  SUCH THAT              
  {post condition Pox}                                         
                        {derivation formula Dx} 
  ENDIF 
 
The constraint DRX implies that whenever the values for the derivation rule argument 
argDRX are known and fulfill the pre-condition ‘Prx1’ and……and ‘PrxN’ then (an) 
instance(s) of fact type Ftx will be created in which the fact type argument complies to 
the post condition ‘Pox’ and the formula ‘Dx’ will be used to derive the fact value 

 
Fig. A.3 Example legend for derivation rule constraint.  

 
 
 
 
A.5    IMPULSE CONSTRAINTS 
 
In the information systems literature numerous definitions of the event concept can be 
found: “An event is an occurrence or happening of something in the environment 
under consideration.” (De and Sen, 1984:182). “An event is a noteworthy change of 
state; all the changes of state of objects are not events.”(Rolland, 1983:34). We will 
give the following definitions of event occurence and event : 
 
Definition A.9(=5.14). An event occurence is a happening at a certain point in time in 
the application subject area that can lead to the execution of one or more derivation 
rules and/or the insertion or deletion of fact instances into/from the application’s 
information base.  
 

Let PH be the set of potential happenings 
 Let eo be an event occurrence 

 eo∈ PH 
 
From definition A.9 it follows that an event occurrence is a ‘one-time’ only thing. For 
example the event occurrence: student ‘V 2345’ wants to enroll for major ‘science at 
12:45:56 on 01/12/2004. A different event occurrence is: student ‘V 2345’ wants to 
enroll for major ‘science at 18:45:56 on 03/06/04. We can group the former two event 
occurrences into the following event: student ‘V 2345’ wants to enroll for major 
‘science’. 
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Definition A.10 (=5.15). An event is one or a number of potential happenings in the 
application subject area that can lead to the execution of one or more derivation rules 
and/or the insertion or deletion of fact instances into/from the application’s information 
base.  
 

Let PH be the set of potential happenings 
Let e be an event 

 e⊂ PH 
 
Examples: 
 
Student requests enrollment for major 
Student has earned credits for a course 
 
If we take the University Enrollment example, we can qualify the example event from 
the University Enrollment example: Student requests enrollment for major into the 
following event: Student V 5463 requests enrollment for Major economics. If we 
observe this Universe of Discourse over a certain period of time we can encounter also 
the following event instances Student O7564 requests enrollment for major Economics, 
Student with V 4467 requests enrollment for major law. We can conclude that the 
former verbalization of events can be further grouped and qualified  into the event type 
having an event argument:  
 

Student wants to enroll in major(arg1: student, arg2:major) 
 
Definition A.11(=5.16.) An event type is a class of events in the application subject 
area, each of these events can lead to the execution of one or more derivation rules (of 
the same type) and/or the insertion or deletion of fact instances (of the same fact 
types(s)) into/from the application’s information base.  
 

Let ET be an event type  
Let E={ei } be the set of events 
ET ⊂ E 
 

 
Example 5.1 part 2 (ctd.): 
 
Consider following event set E1. 
E1={ Student O7564 requests enrollment for major Economics, Student with V 4467 
requests enrollment for major law, Student V 3456 has earned 7 credits for the course 
behavioral finance} 
The event type ET1= { Student O7564 requests enrollment for major Economics, 
Student with V 4467 requests enrollment for major law } . 
 
All events of an event type, therefore, in addition must have the same intentions in the 
event argument for a universe of discourse U. 
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Once we have found an event type argument we can add the definition of the 
concepts that underlies this argument in the list of definitions or application concept 
repository in case it is not yet contained in the ACR. 
 
Definition A.12. An event type argument of a given event type specifies all intentions, 
instances of which must be known at the occurence of an event instance of the event 
type. 
 

Let ET be an event type and b be an event type argument then ET<b> is the 
event type ET with event type argument set b. 

 
Example 5.1 part 2  ctd.): 
 
Consider the following event type: ET1: Student wants to enroll in Major (arg1: 
student; arg2: major) 
 
An instance of this event type is: Student wants to enroll in major (arg1:’issn 5678, 
arg2: ‘Science’) 
  
The derivation rule or insert/delete operation that must be instantiated as a result of this 
event is the insertion of an instance of fact type Ft11. The instances of the intentions in 
the argument for the event type can be used for instantiating the derivation rule or 
insert/delete operation (in an impulse). The modeling construct of event refers to an 
action that can occur, for example: student graduates or it can refer to a more ‘static’ 
action, for example the start of a new day when the clock strikes 12:00 P.M. We can 
conclude that events can have different appearances and therefore we will use the basic 
information model and the derivation rules in combination as a starting point for 
‘detecting’ events that are relevant for the application subject area. A significant source 
for potential events is the state change in the application information base (Prabhakaran 
and Falkenberg, 1988) or database events (Chakravarthy and Mishra, 1994:2).  

The derivation and the specification of the event type out of a significant set 
of event instances (or event sentences) follows the same procedure as the grouping, 
qualification and classification of the user verbalized sentences in the information 
perspective. The significant difference between the event types in the event perspective 
and the fact types in the information perspective lies in the Universe of Discourse to 
which they refer. In the information perspective this UoD consist of user examples of 
declarative information. Subsequently these examples are verbalized by the user. The 
‘UoD’ in the event perspective is less tangible and in general can not be traced back as 
user-example that contains declarative information (see the discussion regarding status 
data versus event data in (McFadden et. al, 1994:539)).  
 
A.5.1    Impulse and impulse type 
 
An event can start the execution of a derivation rule (in some cases) under (a) 
condition(s) on the information base (Dayal et al., 1990:106). In the population 
constraints from the application requirements specification we have modeled the 
business rules in terms of the state and state transition of the application information 
base.  In the pre-conditions of the derivation rules, the business rules are modeled that 
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specify what ingredient fact instances should be available in order to ‘compose’ or 
‘derive’ the derived fact instance(s). In the event perspective we will model the 
business rules that contain the knowledge under what condition (on the state of the  
application information base (Chakravarthy and Mishra, 1994:5)) an event of an event 
type will trigger a derivation rule or an information base insertion and/or deletion.  
 
Example 5.1 part 2 (ctd.): 
Suppose that in the (integrated) University Enrollment UoD  the total number of 
enrolled students must always be up-to-date and be available on the example document 
from figure 5.5. This means that there exist two event types, that must lead to the 
(re)calculation of the total number of enrolled students: the event type that designates 
that a new student is enrolled and an event type that designates that a student has 
graduated. The impulse type constraints for this example will be the following: 
 
C17 
ON ET2:  Insert (Student’x’ wants to enroll in Major ‘y’) into application data   
            base has succeeded (arg1:’x’; arg 2: ‘y’) 
DO Create total number of enrolled students 
 
C18 
ON ET3: Delete (Student’x’ wants to enroll in Major ‘y’) from application data   
                   base has succeeded (arg1:’x’; arg 2: ‘y’) 
DO Create total number of enrolled students 
 
We can see that there exist two different types of events that can lead to the execution 
of (different) instances of the same derivation rules (in this case create total number of 
enrolled students). In this example events of two different event types will lead to the 
triggering of the same derivation rule (see figure A.4). 
 

Dr1

Et1 Et2 

Dr1

 
 

Fig. A.4 Two different event types that trigger the same derivation rule. 
 
On the other hand it is possible that two or more different derivation rules exist in the 
application subject area that derive (different) instances of the same fact type. 
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Dr1
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Et3
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Ct1 NOT
 Ct1

Dr2

Dr1 Dr2

 
 

Fig. A.5 Two derivation rules that create instances of the same fact type. 
 
In order to be able to decide which derivation rule will be used for the creation of a 
specific fact instance we either need two different event types that unconditionally 
instantiate and trigger these two process types on the discretion of the domain user 
(option A in figure A.5) or we need one event type and a condition that tells us under 
what condition on the information base the derivation rule DR1 will be used or 
derivation rule DR2 will be used (option B in figure A.5). The reason for the existence 
of these two sets of impulse types is that each user group within the application area 
exclusively has knowledge of the fact creation processes that are executed by that user 
group. If all user groups would have knowledge of all business rules in the integrated 
application subject area then the condition CT1 most likely would be incorporated into 
the description of one single derivation rule.  

An impulse condition is an information base condition for the execution of a 
derivation rule or information base insertion/deletion that is ‘triggered’ by a specific 
event. In option B from the application event description in figure A.5 we see that 
when an event instance of event type ET3 occurs and the proposition in condition CT1 
evaluates to true then derivation rule DR1 will be instantiated. If the proposition in 
condition CT1 evaluates to false then a derivation rule DR2 will be instantiated. In 
addition to the conditions that are given in the pre-condition of the derivation rule or a 
condition that is enforced by the population constraints in the application information 
grammar, the information base condition that is specified in the impulse is defined in 
terms of a proposition on the information base state at that moment in relative time in 
which the information base condition is checked (see figure A.6). 
 
Definition A.13. An impulse is the occurrence of an event leading to the instantiation of 
a derivation rule and or insert/delete process, eventually under some condition on the 
application’s information base. 
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The abstraction of a set of impulses that have events of the same event type, have 
conditions of the same condition types and trigger the same derivation rule 
(constraints) we will call an impulse type (constraint). 
 
Definition A.14 (=5.17). An impulse type (constraint) is an ordered triplet that contains 
an event type, a condition type under which an event occurence of an event of a given 
event type can lead to the execution, of a specified derivation rule constraint or 
insert/delete operation.70,71 
 

Let IT be an impulse type 
Let SET be the set of event types 
Let SCT be the set of condition types 
Let SDR be the union of the set of  derivation rule constraints and the set of 
insert/delete operations 
 
IT= (A,B,C) | A∈SΕΤ, B∈SCΤ, C∈SDR} 
  

Application 
Information 
base

Event 
type
et 1

(arg1:customer)

Derivation rule
Dr1

(arg1:order)

impulse 
type
it 1

Condition 
type
ct 1

 
 

Fig. A.6 Event triggering a derivation rule when a condition is satisfied (impulse). 
 

                                                 
70  In this thesis we have defined an impulse type as a triplet. We thereby assume that there exist 
some form of ‘event-processor’ that is able to process the occurrence of two events 
simultaneously and also is able to invoke two different derivation rules and/or insert/delete 
operations that must be excuted in parallel in which the sequence in which derivation rules 
and/or impulse/delete operations are executed is determined by a prioritizer that checks the pre-
conditions of these derivation rules. An additional complicating factor is the situation in which 
the joint occurence of two events of different event types will lead to execution of a possibly 
different derivation rule and/or insert/delete operation under a possibly different condition (type) 
than the condition types that are given in the two ‘individual’ impulse types. This complication 
can be circumvented by labelling the joint occurrence of these two events as a different event and 
subsequently consider it as a different impulse type. 
71  In this thesis we will only consider elementary updates: adding or deleting a fact (we have 
called this insert and delete operations) in line with Nijssen and Halpin (1989:17). This means 
that for these operations we will allow a ‘compound transaction’ in the impulse in which an ‘old’ 
fact will be deleted and a ‘new’ fact will be inserted. 
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Example 5.1 part 2 (ctd.):   
 
    Event type ET1 student requests enrollment in major (arg1: student, arg2: major) 
Event instance student requests enrollment in major (arg1: “O 7689”; 
                     arg2: Economics) 
 
Under the condition that the number of credits that the student has gained in his/her 
freshmen year is greater or equal than 24 and the student has at least 8 credits for the 
course macro economics this event should lead to the instantiation of the following fact 
insertion rule: Insert (student<university code><student ID> has chosen major 
<chosen major>). The occurrence of this event instance will lead to the following 
instantiation of this fact insertion rule: Insert (student ‘O 7689’ has chosen major 
‘economics’). A different event occurence of the same type is student requests 
enrollment in major (arg1: “O 7689”; arg2: “Psychology”). Given the fact that this 
student requests to be enrolled in a major that does not exist within the Ohoadover 
University, the event occurence will not lead to the instantiation of an insertion rule. 
 
C19 
ON ET1: student requests enrollment in major (arg1: student, arg2: major) 
IF [FT13.<total credits> 
          (Where FT13.<university code>.<Student.ID>=’ET1.arg1’)] > 24 
AND   [ IF ET1.arg2=’science’ THEN( mathematics∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’mathematics’ ]>8)                       
                                                   OR72 
       [ IF ET1.arg2=’history’ THEN ( language and culture∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .<Student.ID>   
        =’ET1.arg1’ AND where FT12.<credited course>=’language &culture’ ]>5)    
    OR 
       [ IF ET1.arg2=’economics’ THEN(macro economics∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’macro econ.’ ]>8) 
    OR 
       [ IF ET1.arg2=’medicine’ THEN (biology∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’biology’ ]>5)    
    OR 
                                                 
72  In the sense of an exclusive OR 
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       [ IF ET1.arg2=’law’ THEN (finance ∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’finance’ ]>5)  ] 
DO Insert (student’Et1.arg1’ has chosen major ‘ET1.arg2’). 
 
An example legend for the impulse constraint is given in figure A.7. 
 
  Imx 
  ON occurrence of event E (<Earg>) 
  IF {impulse-condition Cx1} 
  AND…. 
  AND{impulse-condition CxN} 
  DO instantiate derivation rule Drx 
 
The constraint Imx implies that whenever the values for the event argument ‘Earg’ of 
event E are known and fulfill the impulse-conditions ‘Cxi’ and… and ‘cxN’ then (an) 
instance(s) of derivation rule Dr1 will be instantiated in which the event type argument 
‘Earg’ will be used to determine the derivation rule argument of Drx 

    
Fig. A.7 Example legend type constraints. 

 
So far, we have assumed that the occurrence of the event, the check of the impulse-
condition and the execution of a (the) derivation rule(s) will take place instantenously. 
In many real-life business UoD’s some form of delay or date-constraint exists that puts 
a temporal constraint on the event-occurrence, the check of the impulse condition and 
the execution of the derivation rules (and/or insertion/deletion rules). Consider the 
diagram in figure A.8. 
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Fig. A.8 The possible temporal characteristic of impulse(s) (types) 
 

In the University enrollment example it could be decided to perform the check on the 
major availability not on a first come, first served basis but to accumulate the requests 
on a monthly or bi-monthly base to make up for time-preferences but to evaluate the 
requests on additional student criteria (for example average grades for freshman 
courses) if the aggregate demand for enrollments exceeds the capacity at that point in 
time. In this case we need to qualify the existence of an impulse with a construct that 
controls the moment in which a condition is checked whenever an event takes place. 
We also need to define the moment in relative time in which a conceptual process is 
executed whenever the impulse condition evaluates to true. We will have to introduce 
the concept of (relative) time.  In figure A.8 we have illustrated all the situations that 
can exist for the moments in relative time in which an event can occur, subsequently a 
condition can be checked and finally a derivation rule or insert/delete operation can be 
executed. In situation A in figure A.8 the occurrence of an event, the condition check 
and the (potential) execution of the conceptual process will take place at the same 
moment t0 in relative time. In situation B we see that an event occurs at relative time t1 
where the condition check in the impulse and the potential execution of the conceptual 
process in the impulse will take place a t2 (>t1). In situation C the occurrence of the 
event and the condition check in the impulse will take place at the same moment in 
relative time t3. The (potential) execution of the conceptual process will take place at t4 
(>t3). Finally in situation D we have the general case where we see the event 
occurrence at relative time t5. The condition in the impulse will be checked in t6 (>t5) 
and the (potential) execution of the conceptual process will take place at relative time 
t7 (>t6). We can conclude now that in addition to the concepts of event (type), 
information base condition (type) and impulse (type) we need two time variables that 
can encode the potential time delays between on the one hand the occurrence of an 
event and the check on the condition in the impulse and on the other hand the check on 

Relative time 

Situation A Situation C Situation DSituation B

T0 T1 T2 T3 T4 T7T6T5
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the condition and the execution (if any) of the conceptual process in the impulse. If 
these time variables are necessary in order to be able to model the dynamic constraints 
that exist in an application UoD, the impulse type legend in figure A.7 can be adapted 
accordingly. 
 
Example 5.1 University Enrollment part 2 (ctd.): 
 
We will now give the remaining impulse types for our University Enrollment example 
 
C20 
ON ET4:  Insert (Student ’x’ has gained the number of ‘y’ course credits for   
                     course’z’) into application data base has succeeded (arg1:’x’;  
                     arg 2: ‘y’; arg3: ‘z’) 
DO  Create total number of credits (arg1:=’Et4.arg1’) 
 
C21 
ON ET5: Credits granted to student (arg1: student; arg2:course; arg3:credits) 
IF  ET5.arg1∈ EXT (FT11.<Universitycode>.<student ID>) 
DO Insert (Student ’Et5.arg1’ has gained the number of ‘Et5.arg2’ course  
            credits for course’ Et5.arg3’) 
 
C22 
ON ET6: Student graduates (arg1:student) 
IF  ET6.arg1∈ EXT (FT11.<Universitycode>.<student ID>) 
DO Delete (Student’Et6.arg1’ wants to enroll in Major ‘y’) 
 
C23 
ON ET1: student requests enrollment in major (arg1: student, arg2:major ) 
IF [FT13.<total credits> 
          (Where FT13.<university code>.<Student.ID>=’ET1.arg1’)] > 24 
AND   [ IF ET1.arg2=’science’ THEN ( mathematics∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’mathematics’ ]>8)                       
                                                   OR73 
       [ IF ET1.arg2=’history’ THEN ( language and culture∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .<Student.ID>   
        =’ET1.arg1’ AND where FT12.<credited course>=’language &culture’ ]>5)    
    OR 
       [ IF ET1.arg2=’economics’ THEN(macro economics∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
                                                 
73  In the sense of an exclusive OR 
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        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’macro econ.’ ]>8) 
    OR 
       [ IF ET1.arg2=’medicine’ THEN(biology∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’biology’ ]>5)    
    OR 
       [ IF ET1.arg2=’law’ THEN(finance ∈ EXT (FT12.<credited   
         course>[where FT12.<university code>.<Student.ID>=’ET1.arg1’] AND  
         FT12.<course credits>[where FT12.<university code> .   
        <Student.ID> =’ET1.arg1’ AND where FT12.<credited course >  
          =’finance’ ]>5)  
AND IF EXT (FT10.<chosen major>|where Ft10.<university cod>. 
                <student ID>=’ET1.arg1’’ ) ≠ ∅  ] 
DO    Delete (student’Et1.arg1’ has chosen major ‘z’) 
        Insert (student’Et1.arg1’ has chosen major ‘ET1.arg2’). 
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APPENDIX B: 
 

THE META MODEL FOR THE NLM 
REQUIREMENTS SPECIFICATION 

LANGUAGE 
          
 
In this appendix we will narrow down the 'real' or 'constructed' world of interest 
(Universe of Discourse) to the UoD of a Natural Language Modeling analyst. The 
result of applying the NLM way of working from chapter 6 on a significant set of 
examples from this UoD will be called the NLM information meta model (Dedourek et 
al., 1989). Firstly, the list of concepts and their definitions for the complete NLM UoD 
are summarized.  
 
Concept   Definition 
 
Sentence group template   The ordering of  fixed and variable parts of a 

group of  sentences that reflect domain semantics 
Role   a  variable part in one or more  sentence group 

template (def. 5.2) 
Role code  a name class 
Intention the meaning or the definition of a concept in a real or 

abstract world (def. 5.3) 
Intention name  a name class 
Verb                the parts of a sentence group template that are not variable 
Fact type  a set of roles (def. 5.5) 
Fact type code  a name class 
Basic information model   the union of intentions and their definitions of a 

UoD, a set of roles, a set of fact types, a set of sentence 
group templates for every fact type… (def. 5.7) 

Population state constraint    a proposition that limits the allowed extensions 
of a basic information model to those extensions that comply 
to the proposition in the population state constraint. (def. 
5.11) 

Population state transition 
constraint a proposition that limits the combinations of  before-after 

extensions  of  a basic information model to those 
before/after  extension combinations for which the 
proposition is true(def. 5. 12) 

Population constraint a population state constraint or a population state transition 
constraint 
Derivation Rule               a function defined on instances of the ingredient 
constraint  fact types resulting in instances of the derived fact type (def.   
                                          5.13) 
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Concept   Definition (ctd.) 
 
Derivation Rule                  specifies the types of values that must be specified for the  
argument  creation of a derived fact instances (def. A.4) 
Information base  A proposition on the information base (def. A.5) 

condition 
Information base  A set of propositions defined on the information 
condition type   base (def. A.6) 
Pre-condition is an information base condition (type) that checks whether 

the required input fact instances and derivation rule 
argument values for the derivation rule exist in the 
application information base (def A.7) 

Post-condition  specifies (parts of) the fact argument for the instances of the 
resulting fact type(s) that must be created in the derivation 
rule. (def A.8) 

Event occurrence        a happening at a certain point in time in the application 
subject area that can lead to the execution of one or more 
derivation rules and/or the insertion or deletion of fact 
instances into/from the application’s information base (def 
5.14) 

Event   is one or a number of potential happenings in the 
application subject area that can lead to the execution of one 
or more derivation rules and/or the insertion or deletion of 
fact instances into/from the application’s information base. 
(def. 5.15) 

Event type a class of events in the application subject area, each of 
which lead to the execution of one or more derivation rules 
(of the same type) and/or the insertion or deletion of fact 
instances into/from the application’s information base (def 
5.16) 

Event type argument  specification of the intentions, instances of which must be 
known at the occurrence of an event instance of the event 
type (def. A.12) 

Impulse The occurrence of event leading to the instantiation of a 
derivation rule and or insert/delete process eventually when 
an information base condition evaluates to true (def. A.13) 

Impulse type(constraint)   An ordered triplet that contains an event type,  an 
Information base condition type under which the occurence 
of an event of an event type can lead to the execution, of a 
derivation rule constraint or inserte/delete operation (def. 
A.14). 

Constraint A population constraint, derivation rule constraint or 
impulse constraint 
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Concept   Definition (ctd.) 
 
Constraint code  a name class 
Requirements specification a basic information model for that UoD together 

with all population constraints for which a legend is defined, 
derivation rule constraints and impulse type constraints, that 
reflect the business rules in that UoD(def. 5.19) 

 
Secondly, we will apply the way of working of the NLM requirements determination 
method on the ‘real-life’ examples for the NLM analyst, those real life examples can be 
verbalized in a number of ways. In chapter 5 we have provided a verbalization legend 
for the graphical or diagrammatic NLM format. In that legend we considered the fact 
type template as a ’string’ which contains no internal structure. However, in the 
analyst’s UoD that we will focus on in this appendix the ‘analyst’ (in the sense of an 
information systems developer) is a meta-analyst (in the sense of an information 
systems development process developer74) and this ‘meta-analyst’ wants to make a 
distinction into the intentions, roles and naming conventions that are embedded in the 
NLM fact type or sentence group templates. This means that the following ‘pseudo’ 
example verbalization by the analyst: 
 
The sentence group template x of fact type FtX is ‘A1 c1<R1>......AN cN<Rn>’ 
 
Will be translated into real declarative natural language sentences by the ‘meta-
analyst’. We will now show the results of the meta-analysis applied on a simple 
example when the verbalization, grouping, classification and qualification and 
atomization transformations have been applied: 
 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘1’ the verb ‘A1’ 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘2’ the verb ‘c1’ 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K-2’ the verb ‘aN’ 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K-1’ the verb ‘cN’ 
 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘3’ the role ‘R1’ 
The sentence group template ‘x’ of fact type ‘FtX’ has in position ‘K’ the role ‘RN’ 
 
The intention ‘c1’ for fact type ‘FtX’ has an identification structure that contains the 
role ‘R1’ 
The intention ‘cN’ for fact type ‘FtX’ has an identification structure that contains the 
role ‘RN’ 
 
The information meta model for the partial model in natural language modeling that 
refers to the basic information model and the population constraints contains the 
following NLM specific intentions: Fact type, fact type code, role, role code  sentence 
group template, verb-part, intention, intention name, together with following fact types 
in which these intentions play roles: VERB IN TEMPLATE , ROLE IN TEMPLATE 

                                                 
74 See the Universal framework for information activities in Auramäki et al. (1987). 
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and REFERENCE SCHEME and the corresponding naming convention fact types 
FACT TYPE ID, ROLE ID, INTENTION ID. Furthermore, the concept of population 
constraint is encoded using the intentions of: constraint, role and verb. 
The fact types in which the intentions for the encoding of the constraint concept are 
involved are the following: VERB IN CONSTRAINT and ROLE IN CONSTRAINT 
and the accompanying naming convention fact type CONSTRAINT ID. In addition we 
are able to explicitly record reference schemes using the REFERENCE SCHEME fact 
type.  
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<R24> is a name from the
fact type code name class that

can be used to identify a fact type
within the NLM application  model

<R23> is a name from the
sentence group name  name class that

can be used to identify a sentence group
within the union of sentence groups

that belong to a specific fact type

<R1> is a name from the
intension ID  name class that

can be used to identify an intension
within  the union of intensions groups
that belong to a specific application

model

<R16> is a name from the
role code  name class that

can be used to identify a role
within the union of roles
that belong to a specific 

fact type

<R19> is a name from the
constraint  code  name class that

can be used to identify a population
constraint within the union of  constraints 

that belong to a specific NLM 
application model

<R17> is an ordinal that can be
used to identify a position within the union 

of positions within a specific sentence 
group template of a fact type

<R18> is a nominal

The sentence group template <R2> of fact type <R3>
 has in position <r4> the role <R5>

The constraint <R10> has in position <R11>
 the role <R12>

The sentence group template <R6> of fact type <R7> 
has in position <R8> the verb <R9>

The intension <r21> for fact type <r20> has an
identification structure that contains the role <r22>  

The constraint <R13> has in position <R14>
 the verb <R15>

 
 

Fig. B.1 Information meta model for BIM and population constraints in NLM. 
 
We will describe a small part of domain knowledge from  NLM that underlies the 
propositions in the NLM information meta model reflected in constraints c1 through 
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C27 to illustrate the applicability of NLM on itself. Constraint c1 expresses that a 
sentence group template can not have a role and a verb-part in the same position at the 
same time. Constraint C2 expresses that every sentence group template of every fact 
type has at least one verb-part and at least one role or no verb and no role at all. 
Constraint C3 expresses that a constraint predicate can not have a reference to a role 
and a verb part in the same position. Constraint c4 expresses that a constraint has at 
least one reference to a role and at least one verb part or no verb part and no role at all. 
Constraint C5 expresses that every role that is referenced in a constraint predicate has 
to be defined as a role in a fact type template of the basic information model. 
Constraint C6 expresses that in a specific sentence group template of a specific fact 
type in a specific position there can exist at most one reference to a role. In figure B.1 a 
part of the information meta model for NLM is shown. We note that we have chosen an 
atomic reference scheme for roles. Furthermore, we have specialized the names from 
the archetype into nominal names and ordinal names. In the latter group or scale type 
the names have an ordering. 
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SUMMARY (in dutch)  
 
 
 
Dit proefschrift handelt over informatiebehoeftebepalingsmethoden ten behoeve van 
het ontwikkelen van informatiesystemen. In de afgelopen 35 jaar hebben deze 
methoden zich ontwikkeld via structured analysis and design tot de object-
georienteerde methoden zoals de Unified Modeling Language (UML). Het 
toepassingsdomein van deze methoden is echter ook veranderd in die 35 jaar. De 
belangrijkste ontwikkeling in dit toepassingsgebied is de verschuiving van ‘maatwerk’ 
naar implementaties van ‘standaard’ product-software, zoals ERP. Voorbeelden van 
ERP pakketten die geparameteriseerd, kunnen worden voor een specifieke 
implementatie zijn SAP/R3 en BAAN. In dit proefschrift tonen we aan dat een goede 
informatiebehoeftebepaling nog steeds maatgevend is voor de kwaliteit van het 
uiteindelijke informatiesysteem. We laten eveneens zien dat de belangrijkste bestaande 
informatiebehoeftebepalingsmethoden niet aan alle kwaliteitseisen die  men aan deze 
methoden dient te stellen, voldoen.  Dit derhalve leidt tot de hoofdvraagstelling in dit 
proefschrift in hoofdstuk 1:  
 
Bestaat er een informatiebehoeftebepalingsmethode die kan worden toegepast in een 
breed scala van organisaties voor het specificeren van de volledige informatiebehoefte 
voor een bepaald deelgebied van zo’n organisatie, in het kader van het ontwikkelen en 
implementeren van informatiesysteem voor (een deel van) zo’n organisatie. 
 
In hoofdstuk 2 van dit proefschrift worden een aantal criteria gegeven waaraan een 
informatiebehoeftebepalings methode dient te voldoen.  
 In hoofdstuk 3 van dit proefschrift worden de belangrijkste 
informatiebehoeftebepalingsmethoden geanalyseerd en worden een aantal 
tekortkomingen van deze methodieken blootgelegd. 
 In hoofdstuk 4 worden de criteria die in hoofdstuk 2 zijn gegeven verwerkt 
met de tekortkomingen van de bestaanden methodieken. Dit resulteert in een 19-tal 
ontwerp-eisen  waaraan een te ontwikkelen methodiek dient te voldoen. 
In hoofdstukken 5 en 6 van dit proefschrift wordt een nieuwe 
informatiebehoeftebepalingsmethodiek beschreven: Natuurlijke taaL Modellering 
(NLM). Deze methodiek kenmerkt zich doordat er een volledig gespecificeerd 
stappenplan wordt gegeven dat precies aangeeft hoe een informatie-analist in 
samenspraak met een domeingebruiker kan komen tot een specificatie voor een 
applicatie. De NLM methodiek neemt gebruikersvoorbeelden als een startpunt en 
kenmerkt zich doordat op het gehele informatiebehoeftebepalingstraject, in het jargon 
van de gebruiker wordt gecommuniceerd. De NLM methodiek voldoet tevens aan de 
19 ontwerpeisen, die we in hoofdstuk 4 aan een dergelijke methodiek hebben gesteld.  

In hoofdstuk 7 wordt geconcludeerd dat NLM (onder meer) een 
informatiebehoeftebepalingsmethode is die een aantal tekortkomingen van bestaande 
methodieken heeft verbeterd en voldoet aan de door ons verkregen 19 ontwerpeisen. 
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