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Chapter 2

Methodology

This thesis deals with applied research in the field of political economy. Before
we present the results of this research, its econometric context needs to be dis-
cussed. The majority of the models described in the following chapters deal
with issues concerning latent variables and measurement error. The first section
of this methodological chapter provides a general introduction to latent vari-
ables models and the techniques to estimate them, while section 2.2 describes
how to deal with underestimation of the coefficient of a latent variable in a re-
gression model. In some of the models that are used in the thesis, dynamics play
a role. Section 2.3 describes two tests for panel data models: a test whether or
not the model is in fact dynamic, and a test for the presence of a unit root. These
tests do not rely on asymptotic results.

2.1 Latent variables

Economic theory tries to describe the relationships between variables using math-
ematical models. To be able to apply these models empirically, a quantitative
measure of these variables has to be available. Some economic variables are
clearly defined and straightforward to measure, such as the consumer price
level, the total value of exported goods or the number of unemployed people in
the labour force of a country. Others, however, are more difficult to capture nu-
merically. For mental constructs such as the independence of central banks, the
level of corporatism or the amount of economic freedom of a country, different
definitions and quantifications exist. These variables are called latent variables,
since they are not directly observable. In order to use them in empirical mod-
els, we need to find observable related variables, also called proxies or indicators.
This process creates measurement error, since the proxies are only approxima-
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tions of the true unobservable phenomenons. This section describes the basic
concepts of latent variables models with measurement error and the techniques
that can be used to estimate them. For a thorough discussion of the subject, see
Wansbeek and Meijer (2000).

The standard linear multiple regression model is written as

y = Ξβ + ε, (2.1)

with y an observable N−vector, ε an unobservable N−vector of random distur-
bances, β a k−vector of unknown parameters and Ξ anN×k−matrix containing
the regressors. The disturbances are assumed to be independently identically
distributed (i.i.d.) with expectation zero and variance σ2

ε , and the regressors are
assumed to be uncorrelated with the disturbances. Now, if there is measurement
error in the regressors, the matrix X is observed instead of the unobservable Ξ:

X = Ξ + V. (2.2)

Here, V is an N × k−matrix of measurement errors. Its rows are assumed to
be i.i.d. with zero expectation and covariance matrix Ω, and are assumed to be
uncorrelated with Ξ and ε.

Factor analysis The observable regressors X in equation (2.2) can also be as-
sumed to be generated by the following model, known as the multiple factor
analysis (MFA) model:

xni = τi + λ′iξn + δni. (2.3)

In model (2.3), there are k latent variables. The subscript i corresponds to the
different observable regressors, and n to the observational units. Since in this
thesis the factor analysis model is applied in a macroeconomic context, the ob-
servational units n are from now on denoted as countries. Then, xni denotes
indicator i for country n and ξn is a k−vector containing the aspects of the un-
observable concept (the factors) that the indicators are supposed to measure,
for country n. The parameter τi captures the mean of indicator i, while λi is
a k−vector of parameters (the factor loadings) that capture both the scale of in-
dicator i and the strength of its relation to the factors. Further, δni is a random
measurement error, with mean zero and variance ψii, often called the unique
variance, and δni and δnj are assumed uncorrelated for i �= j. Both are assumed
uncorrelated with the factors ξn.
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The factor analysis model was originally developed in psychology to model
the dependencies among different measures of intelligence (Spearman, 1904).
The model is illustrated graphically by way of a path diagram in figure 2.1, for
the simple case of one latent variable and three indicators. Drawing a path di-
agram obeys certain conventions. Circled variables denote latent variables, i.e.
hypothetical constructs. Variables in square boxes denote observed variables,
such as the different indicators of the latent variable. Variables that are not cir-
cled and not in square boxes denote error terms. An arrow denotes a causal
dependency in the order indicated.

From (2.3), it is clear that the mean and variance of ξ can be chosen arbitrar-
ily, because a change in its mean or variance can be counteracted by changing
the corresponding τ or λ accordingly, without changing the observed variables.
Hence, it is customary to let ξ have mean zero and variance one. An introduc-
tion to this type of measurement model can be found in Bollen (1989, chapter 6)
or Wansbeek and Meijer (2000, chapter 7).
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Figure 2.1: Path diagram of a factor analysis model with 1 factor and 3 indicators

Next, we discuss how the unknown parameters in model (2.3) can be esti-
mated. For ease of exposition, we consider the simple factor analysis model
with one factor, so k = 1. Estimation in MFA is in general a straightforward
extension of this case. The parameters of the model, that is, the intercepts τi, the
factor loadings λi, and the unique variances ψii, are typically estimated from
the means and covariance matrix of the indicators. From (2.3), the assumption
that the errors are uncorrelated, and the imposed restriction that the mean of
ξ is zero and its variance is one, it follows that the means of the indicators are
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µi ≡ E(xi) = τi. Hence, a consistent estimator of τi is given by τ̂i ≡ x̄i, the
sample mean of the i-th indicator. The covariance of indicator i and indicator j
is simply

σij ≡ E(xi − τi)(xj − τj) = λiλj , (2.4)

where i �= j. The variance of indicator i is

σii ≡ E(xi − τi)2 = λ2
i + ψii. (2.5)

If there are at least three indicators, consistent estimators can be obtained by
minimizing some sort of discrepancy between the sample variances and covari-
ances and the theoretical variances and covariances as functions of the parame-
ters, as given in (2.4) and (2.5). For example, (2.4) and (2.5) imply

λ1 =
(
σ21σ31

σ32

)1/2

and ψ11 = σ11 − λ2
1. Hence, consistent estimators of λ1 and ψ11 are given by

λ̂1 ≡
(
s21s31
s32

)1/2

and ψ̂11 = s11 − λ̂2
1, where sij denotes the sample covariance between indica-

tors i and j (provided that the expressions are nonnegative, cf. Dijkstra, 1992).
However, when there are more than three indicators, generally more efficient es-
timators can be obtained that balance the discrepancies for different covariances
optimally. Due to the small number of observational units in the empirical mod-
els, maximum likelihood procedures are used to estimate the unknown param-
eters throughout the rest of this thesis. Wansbeek and Meijer (2000) show that
the estimation of the factor loadings and covariances in MFA comes down to
solving a system of eigenequations. As will be shown later on, the correspond-
ing eigenvalues are also used to determine the number of factors. The reliability
of indicator i, denoted as r, is the squared correlation of the indicator and the
unobservable concept ξ. As well as for the indicators, the reliability of the factor
itself can also be estimated to assess the quality of the result.

In many cases, the scaling of the variables is arbitrary. For instance, there
is no straightforward scale for central bank independence. In these cases, the
model might be easier to interpret if the variables are rescaled such that they
have variance 1. The corresponding solution of the FA model is called the stan-
dardized solution. The standardized solution is usually equivalent to the model



2.1. Latent variables 9

estimated on (a reparametrization of) the correlation instead of the covariance
matrix. In the one-factor model, the factor loadings of the standardized solution
are simply the correlations of the indicators with the factor.

Now that the unknown parameters in (2.3) have been estimated, we would
like to obtain values for the latent variable that we can use in empirical appli-
cations. These values are called factor scores, and the predictor ξ̂n of ξn that has
minimum mean squared error, under the restriction that the predictor is unbi-
ased, is

ξ̂n = λ′Σ−1(x− τ)

for k = 1. This predictor is called the Bartlett predictor. Its expression for the
MFA model follows analogously, see Wansbeek and Meijer (2000). If we rewrite
the one-factor model as

xni − τi
λi

= ξn +
1
λi
δni = ξn + un,

we can write the Bartlett predictor as

ξ̂n = λ′Σ−1λ(ξn + un) = γξn + vn,

where γ = λ′Σ−1λ and vn = λ′Σ−1λun.
Since the factor ξ is assumed to have expectation 0 and variance 1, and ξ and

vn are assumed to be uncorrelated, the variance of ξ̂n is

var(ξ̂n) = E(ξ̂2n) = γ2 + var(vn),

and consequently the estimated reliability r̂ is

r̂ =
γ2

var(ξ̂n)
=

γ2

γ2 + var(vn)
. (2.6)

Finally, since the original factor ξ is assumed to have expectation 0 and variance
1, we would like the same to hold for our estimated counterpart. This means
that ξ̂ needs to be adjusted by a factor γ such that

ξ̃n =
1
γ
ξ̂n = ξn +

1
γ
vn = ξn + ṽn. (2.7)

The variance of ṽ in (2.7) is called the measurement error variance, and is denoted
as φ.
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Related issues The MFA model can be used in two different situations. In ex-
ploratory factor analysis (EFA), the analysis is purely exploratory and does not
use subject matter theory to restrict the model parameters. Confirmatory factor
analysis (CFA), however, takes subject matter theory as its point of departure
and uses restrictions on the factor loadings and the covariance matrix of the fac-
tors. The EFA model, by contrast, is estimated on the basis of the correlation
matrix. If we want to perform EFA, we have to choose the number of factors
k to be used in the analysis. There are two commonly applied rules to do this,
which are both based on the eigenvalues of the correlation matrix of the stan-
dardized variables. The first rule, which is also called the Kaiser rule, says that
relevant factors correspond to eigenvalues larger than 1. The second rule uses
the scree plot, which plots the number of factors against the eigenvalues. It states
that the number of factors to select is the number of eigenvalues before a ‘kink’
that is often found in the scree plot. An example is shown in figure 2.2

Figure 2.2: Scree plot of a factor analysis
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There are two eigenvalues larger than 1 in figure 2.2. Also, the number of
factors before the kink in the plot is two, so using either rule leads to the same
conclusion: we should select two factors in this case. If the two rules have dif-
ferent outcomes, the number of factors corresponding to the solution that is in-
terpreted more easily is selected.

It may happen that the solution of a MFA is difficult to interpret. In that case,
we can make use of the fact that the matrix of factor loadings is not identified:
it can be multiplied with any orthonormal matrix without affecting the distri-
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bution of the indicators. Put differently, the factor loadings matrix is open to
rotation, yielding a solution that may be easier to interpret because the matrix
has a simpler structure. Ideally, each indicator is correlated with as few factors
as possible. Several rotation methods can be applied: the one most frequently
used in practice is varimax rotation. Another rotation method that is used in
this thesis is direct oblimin rotation, which minimizes the correlation between
columns of the factor loadings matrix. For a more detailed discussion of rotation
and rotation methods see Wansbeek and Meijer (2000, pp. 167–169).

Finally, there are a number of criteria available to judge the fit of a fac-
tor analysis model. Of these criteria, we use the following two in this thesis:
the χ2−statistic, which compares the proposed restricted model to an unre-
stricted alternative (the saturated model), and the so-called comparative fit index
(CFI) which considers the proposed model compared to a highly restrictive null
model. In the null model, all factor loadings are restricted to zero. The CFI is
an assessment of model fit that is especially valuable in small samples, which
are encountered in most of the macroeconomic models in this thesis. An elabo-
rate discussion of these and other model fit measures is found in chapter 10 of
Wansbeek and Meijer.

Principal components analysis As we have mentioned above, the factor anal-
ysis model imposes a specific structure on the covariance matrix, implying as-
sumptions that may not be satisfied in practical applications. As an alternative,
one may drop the assumptions and try to find a Ξ and λ in (2.1) so that the re-
sulting errors are small is some sense or other. This is the idea behind a data
analysis method called principal components analysis (PCA). Here, the columns
of the matrix Ξ are the principal components of y, which are uniquely obtained
as a linear combination of the observed variables. If the number of indicators
is not too small, the solutions of PCA and FA are quite similar. An application
of PCA is found in chapter 7, where the measurement of economic freedom is
discussed. More on PCA is found in Wansbeek and Meijer (2000).

2.2 Measurement error in a single regressor: the CALS
estimator

When a latent variable is used as a regressor in a regression model, we are con-
fronted with the problem that it can only be imperfectly measured. It is well
known that a neglect of this problem leads to inconsistent estimation results. In
particular, the coefficient of the latent variable will be underestimated. This phe-
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nomenon is quite widespread (as discussed earlier, many economic variables
are theoretical ideals that allow no direct measurement) and is equally widely
ignored. It may explain the experience, well known to applied researchers, that
regression coefficient estimates are often disappointingly low.

If the variance of the differences between true and observed values of the
regressor is known, it is possible to adapt the results and come up with con-
sistent estimates. Meijer and Wansbeek (2000) and Wansbeek and Meijer (2000,
section 5.2) describe how to do it, using the general approach due to Kapteyn
and Wansbeek (1984) known as the consistent adjusted least squares (CALS)
estimator.

Although the principle is easy to understand, the attention paid to it is mod-
est. The main reason for this is that the condition of a known variance is usually
not met in practice. However, if we know the reliability of the construct that has
been derived from the unobservable phenomenon by factor analysis techniques,
the adaptation to adjust the underestimation is carried out easily. Here, know-
ing the reliability should be interpreted in the sense of a consistent estimator
being available. In the previous section, we have seen that the reliability of the
factor can be estimated from the factor model. Consequently, CALS estimators
can be computed.

Summarizing, our aim is to provide consistent estimation results and get rid
of the underestimation of the coefficient of the latent variable. Then, the term
we are interested in is the measurement error variance φ. From equation (2.7) in
section 2.1 it follows that

φ = var(ṽn) =
var(vn)
γ2

=
1
r
− 1.

Since an estimate of r is available, the measurement error variance φ follows.
To correct for the downward bias, we define the matrix AN ≡ 1

NX
′X and

scalar α ≡ e′1A
−1
N e1. Here, X is the N × k matrix of observed variables of

equation (2.2) and e1 is an N−vector with first element equal to 1 and zeros
otherwise. Further, let θ = 1

1−φα . Then, if b1 is the estimated coefficient of the
latent variable using OLS, the CALS estimator that corrects for underestimation
in case of measurement error is

β̂1 = θb1.

Now, we can also derive the t-value that corresponds to a measurement error of
size φ. The t-statistic in case of no measurement error is
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t0 =
b1
√
N√

s2εα
.

Then, the t-statistic corresponding to a measurement error of size φ is given by

tφ =
t0√

1 + 2
N (θ − 1)2t20

.

Meijer and Wansbeek show that, while the coefficient estimate increases when
the CALS estimator is used, the t-value decreases. Consequently, for large val-
ues of the measurement error variance φ, the coefficient estimate becomes in-
significant.

2.3 An exact test for dynamic panel data models

In this section, we shortly step away from models containing latent variables to
discuss econometric models that include dynamics. In particular, we are inter-
ested in panel data models that contain a lagged dependent variable among the
regressors. We use the simple model specification

y = γy−1 +Xβ + Zα+ u, (2.8)

where y and y−1 areNT × 1-vectors. For ease of exposition, we let the regressor
matrix X be an NT × 1-vector, with β its corresponding unknown parameter.
The procedure outlined below can easily be generalized to the case of k regres-
sors. The term Zα denotes the individual specific effects, with Z an NT × N -
matrix defined as Z = ιT ⊗ IN and α an N × 1-parameter vector. Here, ιT is
a vector consisting of T ones, and IN is the identity matrix of order N . Finally,
u is an NT × 1-disturbance vector with variance matrix σ2I . Then, u/σ has ex-
pectation 0 and variance 1 and, under normality, does not depend on unknown
parameters. Our aim is to derive an exact test for different values of γ. To do
this, we use a test described in Van den Doel and Kiviet (1995) that does not rely
on asymptotics.

Since the inclusion of a lagged dependent variable complicates the estima-
tion procedure of a panel data model, it is useful to test first whether the model
is dynamic. In this case, the null hypothesis is H0 : γ = 0. Next, we adapt this
test to test for unit roots, with null hypothesis H0 : γ = 1. In chapter 4, these
tests are applied in an empirical, macroeconomic context.
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2.3.1 Testing for dynamics

To test for γ = 0 in model (2.8), we might use the fixed effects estimator of γ,

γ̂FE =
y′−1MXZy

y′−1MXZy−1
,

where the matrix MXZ = INT − (X,Z){(X,Z)′(X,Z)}−1(X,Z)′ is the projector
orthogonal to (X,Z). However, basing a test on γ̂FE has the disadvantage that
its distribution depends on unknown parameters. If we estimate γ from a dif-
ferent regression in an augmented model, this dependence can be avoided and
the exact distribution of the resulting estimator of γ can be computed. In order
to do so, define lag operators

B0 =
[

0 0
IT−1 0

]
,

and

B = B0 ⊗ IN .

Our aim is to estimate γ in the augmented regression model

y = γy−1 +Xβ +BXβ∗ + Zα+BZα∗ + u

= γy−1 +Wθ + u,

where W = (X,BX,Z,BZ) and θ contains all parameters except γ. The estima-
tor for γ in this model is

γ̂∗FE =
y′−1MW y

y′−1MW y−1
, (2.9)

which can also be written as

γ̂∗FE =
u′B′MWu

u′B′MWBu
. (2.10)

Under H0 : γ = 0, the distribution of this estimator does no longer depend on
unknown parameters. Moreover, it is easily computed, since we can draw a
large number of normally distributed vectors u and simulate the distribution of
γ̂∗FE using (2.10).

The augmented regression comes down to adding BX , which contains the
regressors X lagged by one period, to the regression, along with BZ . Since
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BZ = Z − e1 ⊗ IN , adding this term means an additional transformation to
the original data: adding BZ is equivalent to ignoring the first N observations
of X , BX and Z . For notational convenience, we still denote the transformed
data as X , BX and Z , which are now two vectors of order N(T − 1) × 1 and
one matrix of order N(T − 1) ×N , respectively. The matrix W is redefined as
W = (X,BX,Z).

In order to compute MWu and MWBu in (2.10), the matrix W ′W needs to
be inverted. Since this matrix can become quite large, it is useful to make the
computation more efficient by avoiding direct inversion of the matrix. This is
done as follows. To compute MWu, let R = (X,BX) and consider

u = Rδ + Zη + ε = W (δ′, η′)′ + ε.

The unknown parameters δ and η are estimated by

(δ̂′, η̂′)′ = (W ′W )−1W ′u,

hence the estimate of u is

û = W (δ̂′, η̂′)′ = W (W ′W )−1W ′u.

Then

MWu = (IN(T−1) −W (W ′W )−1W ′)u = u− û.

Using the Frisch-Waugh theorem, see Wansbeek and Meijer (2000, p.352), the
parameters δ and η can be estimated separately by

δ̂ = (R′MZR)−1R′MZu

and

η̂ = (Z ′Z)−1Z ′(u−Rδ̂).

To start with δ̂, note that

MZ = (IN(T−1) − Z(Z ′Z)−1Z ′) = IN(T−1) − 1
T − 1

(ιT−1ι
′
T−1 ⊗ IN ).

To write this in a more convenient form, use vec(ABC) = (C′ ⊗ A)vec B, see
Wansbeek and Meijer (2000, p.350). If we let u = vec U , where the matrix U is
of order N × (T − 1) with elements uit, then
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MZu = u− 1
T − 1

vec(UιT−1ι
′
T−1).

The computation of MZR follows by analogy:

MZR = (X,BX) − 1
T − 1

(ιT−1ι
′
T−1 ⊗ IN ).

LetX = vec X̃ andBX = vec B̃X with X̃ and B̃X matrices of orderN×(T−1),
then

MZR = (X,BX) − 1
T − 1

{vec (X̃ιT−1ι
′
T−1),vec (B̃XιT−1ι

′
T−1)},

where vec (X̃ιT−1ι
′
T−1) is simply a vector containing the column sums of X̃

stacked T − 1 times. Then, δ̂ = (δ̂1, δ̂2)′ is obtained by regressing MZu on the
columns of MZR, and

η̂ = (Z ′Z)−1Z ′(u−Rδ̂) =
1

T − 1
Z ′(u −Rδ̂)

=
1

T − 1
(ι′T−1 ⊗ IN )(u −Rδ̂).

The expression for η̂ can be computed more easily by noting that

u−Rδ̂ = u− δ̂1X − δ̂2BX = vec(U − δ̂1X̃ − δ̂2B̃X)

and, using vec(ABC) = (C ′ ⊗A)vec B again,

η̂ =
1

T − 1
vec{(U − δ̂1X̃ − δ̂2B̃X)ιT−1}.

Now, all that is left to obtain γ∗FE in (2.10) is the term MWBu. This can be done
by analogy to the computation of MWu, using

Bu = W (δ′B, η
′
B)′ + ε,

and estimating δB and ηB as above, yielding B̂u = W (δ̂′B, η̂
′
B)′. Then

γ̂∗FE =
u′B′(u− û)

u′B′(Bu− B̂u)
,

which concludes the computation of the test statistic.
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2.3.2 Testing for unit roots

The procedure described for testing dynamics can easily be adjusted to derive
an exact test for a unit root. Let

Γ =




1 0
...

. . .
1 · · · 1


 ⊗ IN .

Then, the aim is to estimate γ in the augmented regression model

y = γy−1 +Xβ +BΓXβ∗ + Zα+BΓZα∗ + u

= γy−1 +Wθ + u,

where W = (X,BΓX,Z,BΓZ) and θ contains all parameters except γ. The
estimator for γ, under the null hypothesis H0 : γ = 1, is

γ̂∗∗FE =
y′−1MW y

y′−1MW y−1
, (2.11)

which can also be written as

γ̂∗∗FE = 1 +
u′Γ′B′MWu

u′Γ′B′MWBΓu
. (2.12)

This estimator has a distribution that does not depend on unknown parameters.
It is noted that BΓ = Γ − INT , so the augmented regression is computed using
W = (X,ΓX −X,Z,ΓZ − Z).

As in the previous subsection, the terms MWu and MWBΓu in (2.12) can
be computed more efficiently by avoiding direct inversion of the matrix W ′W ,
using R = (X,ΓX −X) and Q = (Z,ΓZ − Z). Further, let

u = Rδ +Qη + ε = W (δ′, η′)′ + ε,

and

Γu = RδΓ +QηΓ + ε = W (δ′Γ, η
′
Γ)′ + ε,

to get û = W (δ̂′, η̂′)′ and Γ̂u = W (δ̂′Γ, η̂
′
Γ)′. Then equation (2.12) can be written

as

γ̂∗∗FE = 1 +
(u′Γ′ − u′)(u − û)

(u′Γ′ − u′)(Γu− Γ̂u)(u− û)
,

which concludes the computation of γ̂∗∗FE .






