

 University of Groningen

Finite-state pre-processing for natural language analysis
Prins, Robbert Paul

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Prins, R. P. (2005). Finite-state pre-processing for natural language analysis. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-12-2022

https://research.rug.nl/en/publications/3d7b7c77-1caa-44b9-b21e-64e048a83227

Chapter 2

Finite-state syntactic analysis

In this chapter the finite-state automaton is introduced, and it is explained
why finite-state techniques are suitable for use in natural language processing.
Of particular importance is the distinction between competence and perform-
ance in human language processing. Against this background the idea of
finite-state approximation is introduced, and several methods of approxima-
tion are described. This is followed by a discussion of the suitability of these
methods for the current research and a proposal for an alternative method.

2.1 Finite-state automata

Finite-state automata (FSA) are used in a wide variety of fields to describe
processes. They are used in predicting the weather, in controlling robots,
in recognition of spoken language, in compiling computer programs, and so
on. In all cases, the automaton also describes a language, in the sense that
it dictates how single actions can be combined to form processes and thus
how symbols can be combined to form acceptable sequences of symbols. The
class of languages described by finite-state automata is known as the class
of regular languages. In the complexity scale of languages known as the
Chomsky hierarchy [28], represented in table 2.1, the regular languages are
the least powerful class. That finite-state automata are nonetheless often
used to model processes suggests that these processes are either of regular
form, or close enough to regular form so that a finite-state description is an
acceptable approximation.

In order to be better able to talk about finite-state automata and their
role in natural language processing (NLP), the next section will define the
concept of the finite-state automaton and the variations on it that are most
relevant to the research described in following chapters. First an informal

5

6 Chapter 2. Finite-state syntactic analysis

Grammar Languages
Type-0 Recursively enumerable
Type-1 Context-sensitive
Type-2 Context-free
Type-3 Regular

Table 2.1: The Chomsky hierarchy of languages.

sketch will be presented, which is followed by a more formal definition.

2.1.1 Informal definition

A finite-state automaton may be thought of as an input-reading machine
that has a finite number of internal states. At any moment, the machine is
in one of its states. The input to the machine consists of sequences of symbols
from an alphabet associated with the machine. For every state a set of state
transitions into other states is defined. Every transition is governed by a
symbol from the alphabet, and a transition can only be used if the symbol
that governs the transition is the current input symbol. That symbol is then
“consumed” as the machine moves from the one state to the other, using
the transition. In addition, a transition may be governed by the ε symbol
that represents the empty string. Such an ε-transition may be used without
consuming an input symbol. One state is assigned the role of initial state,
and one state is assigned the role of final state. (Particular definitions allow
for sets of initial and final states, however in this case the simpler definition
is used as explained in section 2.1.2.) A series of symbols is recognized by
the automaton when, starting from the initial state and reading the symbols
in the input sequence one by one, a sequence of transitions can be used that
brings the automaton into the final state, and there are no input symbols
left to be read. The automaton is said to define a language, which is the
language of all strings that can be recognized by the automaton.

Graphical representation of finite-state automata

A finite-state automaton can be defined in terms of its set of states, its alpha-
bet and its transitions. In this manner the different subtypes of automata
will be formally defined in section 2.1.2. A way of presenting an automaton is
through the use of a graph. In this type of graph, nodes represent the states
of the automaton and arcs between the nodes represent state transitions.
Arcs are labeled with the symbols associated with the transitions. The ini-

2.1. Finite-state automata 7

tial state is marked with a small arrow, and the final state is marked with a
double circle. States may be numbered or otherwise labeled for explanatory
reasons.

1 2

a

b

Figure 2.1: Finite-state automaton defining the language (ab)∗.

Figure 2.1 shows an automaton that defines the regular language (ab)∗.
This is the language of all words that consist of zero or more occurrences
of the string ab. A word consisting of no symbols will be accepted by the
automaton since in this particular case the starting state is also the final
state. Any number of repetitions of the string ab will be accepted through
first taking the transition from state 1 to state 2, reading the a, followed
by the transition from state 2 back to state 1, reading the b. If there is
no input left at this point, the input string is accepted as the automaton
is in the final state. If repetitions of ab are left in the input, recognition
continues as described. If at any point during this process an input symbol
is encountered for which there is no transition available, or all input has been
read yet the automaton is not in its final state, the input is not accepted.
Examples of input leading to these two different types of rejection are abb
and aba respectively.

Deterministic versus non-deterministic

If input is fed to the automaton in figure 2.1, the characters in the input
will determine exactly the actions of the automaton. For example, when the
automaton is in state 1, and an a is read, it will move to state 2. There is
only one transition from state 1 that is labeled with an a. If in general an
automaton has for every state exactly one transition for each input symbol,
it is called a deterministic automaton. The alternative is a non-deterministic
automaton in which the input characters do not necessarily determine what
states the automaton will go through. In such an automaton, a single state
may feature several transitions associated with the same input symbol.

Figure 2.2 shows an example of a non-deterministic automaton. It defines
the language (ab+)∗, which is the language consisting of repetitions of the

8 Chapter 2. Finite-state syntactic analysis

1 2

a

b

b

Figure 2.2: Non-deterministic finite-state automaton defining the
language (ab+)∗.

pattern in which an a is followed by one or more b’s. Examples of words in this
language are ab, abb, and abbbbabbb. The non-determinism in the automaton
compared to the automaton in figure 2.1 is caused by the additional transition
from state 2 to itself, labeled with a b. If the automaton is in state 2, and the
current input symbol is a b, both a transition to state 1 as well as a transition
to state 2 are possible. In this situation the input alone does not uniquely
determine the next state.

Apart from two transitions from the same state sharing the same input
symbol, non-determinism can also be caused by ε-transitions. If a state
features an ε-transition, the automaton can decide at this point in processing
to use the ε-transition instead of a standard transition that may also be
possible. In doing so, the internal state is changed, but no input symbol is
consumed. Deterministic automata are required not to contain ε-transitions.

1 2 3
a

b

a

b

Figure 2.3: Deterministic finite-state automaton defining the lan-
guage (ab+)∗.

Writing down a non-deterministic automaton is typically easier than find-
ing its deterministic counterpart. As an example, a deterministic version of
the automaton for the language (ab+)∗ is given in figure 2.3. In an actual im-
plementation a deterministic automaton is preferable. Using a deterministic
finite-state automaton, the time needed for recognizing a given input is linear

2.1. Finite-state automata 9

in the length of the input; the size of the automaton itself is not important.
With a non-deterministic automaton, the recognition time is related to the
size of the automaton. However, there exists an algorithm to create an equi-
valent deterministic automaton out of a non-deterministic automaton ([57],
p. 69).

Weighted versus non-weighted

A second distinction that is important and also relevant to this work is that
between weighted and non-weighted automata. In the above description of
the finite-state automaton, weights did not play a role; the non-weighted
automaton either accepts or rejects a sequence of symbols. In a weighted
automaton, transitions are associated with weights as well as with symbols.
This kind of automaton assigns a weight to input in addition to merely ac-
cepting or rejecting it, by combining weights that correspond to subsequent
transitions; such an automaton therefore defines a weighted language. If the
requirement is met that for every state the weights associated with the trans-
itions from that state sum up to one, the automaton defines a probabilistic
language; in this case the probabilities of all strings accepted by the auto-
maton, as computed by multiplication over transition probabilities, also sum
up to one.

1 2 3 4
a/1.0

b/0.9

c/0.1
d/1.0

Figure 2.4: Weighted finite-state automaton defining the language
abd ∪ acd.

Figure 2.4 represents a weighted automaton, defining the language that
contains just the two strings abd and acd. In this particular example the
transition weights can be viewed as probabilities, therefore the automaton
defines a probabilistic language. The transition probabilities are indicated
to the right of the corresponding transition symbols. It can be seen that the
transition from state 2 to 3 that is labeled with a b has a probability of 0.9
assigned to it, which is to be compared with the probability of 0.1 that is
assigned to the alternative transition that is labeled with a c. The probab-
ilities of strings are computed by multiplying the transition probabilities as

10 Chapter 2. Finite-state syntactic analysis

a sequence of states in the automaton is visited. This means that according
to this automaton the probability of abd is 0.9 (1.0 × 0.9 × 1.0) whereas the
probability of acd is 0.1 (1.0 × 0.1 × 1.0).

2.1.2 Formal definition

Typically one will find in the literature definitions of the deterministic auto-
maton featuring multiple final states and definitions of the non-deterministic
automaton featuring, in addition, multiple initial states. In order to simplify
the definition and the presentation and use of the automata, the different
kinds of automata are defined here to have exactly one initial state and one
final state. These definitions are equivalent to the more extensive defini-
tions, in that an automaton with multiple initial states can be changed into
an equivalent automaton with just one initial state by first adding the new
initial state, and then adding ε-transitions from the new initial state to each
of the former initial states. In a similar manner a set of former final states
can be linked to a single final state. (In practice both modifications to the
model can be accomplished by adding respectively beginning-of-sentence

and end-of-sentence markers to the data on which the models are based: if
these are unique symbols that mark the beginning and end of every sentence,
the model based on this data will automatically feature a single initial and
a single final state. This approach avoids the use of ε-transitions.)

Deterministic finite-state automaton

The non-weighted deterministic finite-state automaton (DFSA) is a 5-tuple
M = (Q, Σ, δ, q1, qf) where Q is the finite set of states, Σ is the finite input
symbol alphabet, δ is the transition function Q × Σ → Q, q1 is the initial
state such that q1 ∈ Q, and qf is the final state such that qf ∈ Q. In order
to define the recognition of a sequence by M , we define δ∗ as the extended
transition function Q × Σ∗ → Q. A string W is recognized by M if and
only if δ∗(q1, W) = qf . All strings thus recognized by M form the language
defined by M . This is by definition a regular language.

Non-deterministic finite-state automaton

The non-deterministic finite-state automaton (NFSA) is defined as a 5-tuple
M = (Q, Σ, ∆, q1, qf). This is the same 5-tuple as in the case of the DFSA,
with the exception that the transition function δ is now a transition relation
∆ that is defined as Q × (Σ ∪ ε) × Q. Next, ∆∗ is defined as a subset of

2.2. Motivation for the finite-state paradigm 11

Q × (Σ ∪ ε)∗ × Q, the reflexive and transitive closure of ∆. A string W is
recognized by M if and only if (q1, W, qf) ∈ ∆∗.

Weighted deterministic finite-state automaton

The weighted deterministic finite-state automaton (WDFSA) is defined as a
5-tuple M = (Q, Σ, δ, q1, qf), identical to the DFSA except that the transition
function δ is defined as Q×Σ×R → Q so that every transition is associated
with a weight. Recognition of a sequence by M is defined as in the case of the
DFSA, and in addition a weight is associated with a sequence W recognized
by M that is defined as the product of the weights on the transitions used
during recognition of W .

Weighted non-deterministic finite-state automaton

The weighted non-deterministic finite-state automaton (WNFSA) is defined
as a 5-tuple M = (Q, Σ, ∆, q1, qf) that is similar to the WDFSA except for
the transition function δ that is replaced by a transition relation ∆ defined
as Q × (Σ ∪ ε) × R × Q. Recognition of a sequence W by M proceeds as
in the case of the NFSA. In addition, a weight is assigned to the recognized
sequence that is the sum of the separate weights for all paths through the
automaton that correspond to W , representing all possible ways in which M
can recognize W .

2.2 Motivation for the finite-state paradigm

In this section arguments will be provided in favor of using finite-state auto-
mata in NLP, and for syntactic analysis in particular. First, it will be ex-
plained what makes finite-state techniques attractive in general, leading to
their application in many different fields. Second, their application in syn-
tactic analysis will be discussed with specific arguments and examples.

2.2.1 General motivation for finite-state techniques

In a deterministic FSA, every input symbol that is read will prompt the auto-
maton to use the appropriate transition from the current state into the next
state, if this transition is available. When all n symbols of an input string
have been processed, the automaton will have used at most n transitions and
the input is either accepted or rejected based on whether the current state is
a member of the set of final states. This linear complexity renders finite-state
techniques efficient for use in implemented computational systems.

12 Chapter 2. Finite-state syntactic analysis

For every non-deterministic automaton, there exists a deterministic ver-
sion. In addition, an automaton can also be minimized. This means we
can define for every automaton the minimal (most compact) deterministic
automaton that still defines the same language.

Furthermore, an important aspect of the class of regular languages is
that it is closed under the operations of union, intersection, Kleene star,
concatenation and complementation. This means that a set of finite-state
automata, each representing a particular regular language, may be combined
under these operations into a larger automaton that still represents a regular
language. This allows for the creation of separate modules, in the form of
automata, that are combined into a more versatile automaton that still has
the attractive properties of a finite automaton.

Consequently finite-state approaches are used successfully in different
areas within the larger field of NLP. These areas include phonology, mor-
phology and syntax. An extensive overview of finite-state techniques in NLP
is [76]. With respect to syntax, a popular application involving finite-state
automata is that of part-of-speech tagging, which plays an important role
in this work. Section 2.2.2 will consider the use of finite-state methods in
syntax.

2.2.2 Finite-state techniques in syntactic analysis

In judging the use of finite-state techniques in the processing of natural
language on the level of its syntax, we will not ignore constructions found
in natural languages that are not representable through finite-state means.
Granting the existence of these constructions, we will argue that finite-state
techniques are nevertheless appropriate and useful in syntactic analysis.

Grammars underlying natural languages typically allow for constructions
that are not regular. Many languages allow for the type of construction called
center-embedding (or self-embedding), and Dutch, as well as other languages,
additionally features the cross-serial dependency construction. A case of
center-embedding is given in example (1). Pairs of noun phrases and verb
phrases that are syntactically dependent of each other are recursively divided
through the embedding of phrases of a similar structure. The result is a
palindrome sequence with a structure of the form w1w2w2w1, or in general
WW R, where W R is the reverse of sequence W . Example (2) is a case of
cross-serial dependencies, where noun phrases and their corresponding verbs
are again separated. The resulting sequence of the form w1w2w3w1w2w3 is an
example of an utterance in a copy language, which is generally represented
as WW .

2.2. Motivation for the finite-state paradigm 13

(1) de
the

kat
cat

die1

that
de
the

muis
mouse

die2

that
de
the

kaas
cheese

at2

ate
ving1

caught
the cat that caught the mouse that ate the cheese

(2) de
the

bewaker
guard

die1

that
de
the

man2

man
de
the

gevangene3

prisoner
liet1

let
helpen2

help

ontsnappen3

escape
the guard that let the man help the prisoner to escape

•

•

•

•

•

•

•

•

•

de

kat

die

de

muis

die

de kaas

at

ving

Figure 2.5: A parse tree corresponding to example (1).

A simplified parse tree for example (1) is given in figure 2.5. The palin-
drome and the copy language utterance share the characteristic that elements
in the left half of the sequence are systematically related to elements in the
right half. It can be seen in figure 2.5 how the parse tree for the center em-
bedding example contains a large tree fragment for the phrase de muis die de
kaas at that separates the noun kat from its verb ving. In order to properly
analyze the combination of the noun and the verb, the noun must remain
in memory until the whole of the embedded tree fragment has been ana-
lyzed, at which point the verb is finally addressed. This type of dependency
cannot be expressed through finite-state means for sequences of unrestricted
length, since the automaton does not have a mechanism for storing inform-
ation about an unbounded number of elements that were seen in the past.

14 Chapter 2. Finite-state syntactic analysis

This will now be proven by contradiction. In this proof, the language anbn

for n >= 0, in which words consist of any number of a’s followed by the same
number of b’s, is used as an example.

Proof. Assume a finite-state automaton can be created that defines the lan-
guage anbn for n >= 0. The number of states in the automaton is i. By
its definition, the automaton must accept akbk for k = i. Each symbol read
means a transition into a next state, thus after having accepted k symbols,
starting from the initial state, k + 1 states will have been visited (namely
the initial state and one state for every symbol). Since k = i, one state must
have been visited (at least) twice. Assume this is state q. State q was visited
in accepting symbols at two distinguished positions i1 and i2 with i1, i2 ≤ k.
State q thus represents both sequences of a’s of length i1 as well as of length
i2. Now assume the automaton is in state q and starts reading b’s. From that
state the automaton has to accept sequences of b’s of length i1 as well as of
length i2. Therefore, one of the total sequences accepted by the automaton
is ai1bi2 for i1 6= i2, which is not in the language anbn. Thus this automaton
is not a correct definition of anbn for n >= 0.

The palindrome structure can be described using a context-free grammar,
a type of grammar that is one level higher than the regular languages in the
Chomsky hierarchy. In the case of the copy language, not even a context-free
description is possible; here, a grammar of context-sensitive power is required.

In practice however, language produced by humans has characteristics
that are reminiscent of finite-state processes. The distinction between what is
possible in theory and what is produced in practice is the distinction between
language competence and language performance as made by Chomsky [29].
Chomsky suggested that the competence grammar might be approximated
by a finite-state device, proposing that a theory of grammars should provide,
in addition to a set of possible grammars G1, G2, . . . , a function g(i, n) that
returns the description of a finite-state automaton with memory capacity n
that accepts sentences and produces structural analyses assigned to these
sentences in accordance with competence grammar Gi.

Center-embedding and cross-serial dependencies are clearly part of the
competence grammar of languages that allow such constructions. Although
these constructions are non-regular, there are three aspects of human lan-
guage processing that suggest that human language performance is finite-
state in nature:

1. Humans have a limited amount of working memory available, as do
finite-state automata.

2.2. Motivation for the finite-state paradigm 15

2. Humans have problems processing cases of center-embedding and cross-
serial dependencies, which are non-regular constructions.

3. Human language processing efficiency is reminiscent of finite-state effi-
ciency.

The amount of working memory available to any organism or machine
is physically limited. The number of dependencies between elements in a
sentence has to be finite in order for such an entity to properly analyze
or produce it. This implies that actual cases of non-regular syntactic con-
structions, occurring in utterances by humans, can always be represented by
some finite-state automaton. To argument 1 one could object that although
memory available to humans is indeed not unlimited, it is still of considerable
size, rendering the fact that it is finite less interesting when considering the
length of sentences in human language; one could speculate that relatively
to the length of the average sentence, the amount of available memory could
be treated as infinitely large.

However, in this respect argument 2 about center-embedding is stronger
than the first argument, and it suggests that the above speculation is in-
correct. It can be observed that the admissible number of embeddings of
this kind in a sentence that is still easily understandable is quite small. Ex-
ample (1) is easy to understand, but the meaning of example (3) is only
retrieved after studying the sentence for a longer period than would typically
be required for a sentence of this length, and through actively combining the
actors with their actions.

(3) De
The

man1

man
die2

that
de
the

hond
dog

die3

that
de
the

kat
cat

die4

that
de
the

muis
mouse

die5

that
de
the

kaas
cheese

at5

ate
ving4

caught
beet3

bit
riep2

called
stierf1.
died

The man that called the dog that bit the cat that caught the mouse that
ate the cheese died.

Pulman [71] defines an automaton as strictly finite-state when its number of
states is not only finite but also small, in contrast to the trivial definition
where only the finiteness is considered. Example (3) makes it clear that,
although the amount of memory available to humans is considerable, the
center-embedding construction quickly leads to problems when the number
of embeddings is increased beyond even a small count. This suggests that
human performance on this point is finite-state, not just in the trivial sense
as implied by argument 1, but also in the strict sense.

16 Chapter 2. Finite-state syntactic analysis

The third point mentioned here to support the idea that human language
performance is finite-state is concerned with processing efficiency. It can be
observed that humans understand longer sentences just as easily as shorter
ones. In both cases, understanding seems to be almost instantaneous, need-
ing about as much time as is needed to utter the sentence in the first place.
Finite-state automata show a linear increase in the number of steps necessary
for recognizing longer sequences of symbols. More powerful types of grammar
are less efficient: practical algorithms used to analyze sentences with context-
free grammars in the worst case require a number of steps that is proportional
to the length of the sentence to the power of three. (The algorithm by Valiant
[89] has a slightly lower worst case complexity but is not practical due to the
fact that it always operates at the worst case complexity.) This difference in
efficiency between the class of context-free grammars and human language
processing, and the apparent similarity on this point between human lan-
guage processing and finite-state processing, suggests that the finite-state
formalism is a more likely model of human language performance than more
powerful formalisms.

2.3 Methods of finite-state approximation

It can be concluded from section 2.2 that if finite-state methods are to be
used in syntactic analysis of natural language, the result can only be a model
of language performance, which was argued in the previous section to be
finite-state, and an approximation of language competence, which is taken
to be of at least context-free power.

What separates the class of regular languages from the class of context-
free languages, is the ability in the case of the context-free grammars to
remember an unbounded number of symbols that featured in an earlier part
of an expression to be accepted or generated, and to use the information
stored in processing subsequent parts of the same expression. As illustrated
in figure 2.7, this ability corresponds to the operation of self-embedding. Self-
embedding is a combination of embedding and recursion. Recursion in itself
is not a sufficient condition for a grammar to be of greater than finite-state
power, and neither is embedding. As an example, the grammar in figure 2.6
features embedding of the term X in S, as well as a recursive definition of
X itself. It defines the language ac∗b, which is regular.

In this language the number of a’s and b’s to the left and right of the em-
bedded structure is fixed. This relation can therefore be represented in a
finite-state automaton. Contrary to this, through self-embedding a similar
correspondence can be defined for unbounded numbers of a’s and b’s, as in

2.3. Methods of finite-state approximation 17

S → a X b
X → c X
X → ε

Figure 2.6: Grammar generating a regular language with embed-
ding.

the grammar in figure 2.7 that defines the language anbn which was shown
to be non-regular in section 2.2.2.

S → a S b
S → ε

Figure 2.7: Grammar generating a non-regular language.

Regular grammars or finite-state automata are thus able to remember a
bounded number of past events, while context-free grammars, or in general
grammars of greater than regular power, may represent structures that re-
quire remembering an unbounded number of past events. In this context, the
technique referred to as approximation of context-free grammars with finite-
state grammars is concerned with reproducing as much as possible the infin-
ite memory of non-regular grammars in a finite-state automaton. This idea
can be expressed through Chomsky’s function g(i, n) that was already men-
tioned in section 2.2.2. For a competence grammar Gi and a given amount
of memory n, this function returns the description of a finite-state approx-
imation of Gi that uses memory proportional to n. The parameter n can be
seen as indicating how close the approximation is to the original: although
n will always be finite, and the resulting automaton will always have a finite
memory, larger values for n will result in an automaton that better approx-
imates a device with unbounded memory.

As an example the language ambm is considered. A regular grammar
may only recognize this language correctly for 0 >= m >= j for some
fixed j. Allowing the use of a smaller or larger amount of memory, j may
be respectively lower or higher. As the amount of available memory nears
infinity, j will near infinity, and the language defined by the automaton will
be an increasingly accurate approximation of ambm for unbounded m.

Approximation may result in an automaton that defines a subset of the
original language, or a superset, or neither. In the subset case, the accuracy
of the approximation increases as an increasingly large subset of the target
language is represented. For the superset approximation, accuracy increases

18 Chapter 2. Finite-state syntactic analysis

as a smaller superset is defined. If the approximation represents neither a
subset nor a superset of the target language, evaluation of the approximation
has to be done along an empirical route by taking precision and recall into
account, which are measurements of the approximation based on respectively
the incorrect constructions and the missing constructions with respect to the
target language.

It has to be noted here that there are many approaches to finite-state syn-
tax in which finite-state automata are created, sometimes manually, without
reference to a more powerful grammar. Examples are cascades of finite-state
transducers [2, 16, 46]. (Transducers are automata that translate input to
output.) A single transducer may also be used repeatedly on its own output
[75]. These methods are not regarded as methods of approximation.

What follows is an overview of different approaches to finite-state approx-
imation of context-free grammars. An overview of this research field given
by Nederhof [64] was used as a guideline.

2.3.1 Approximation through RTNs

Nederhof [65] proposed an approach to finite-state approximation of context-
free grammars inspired by recursive transition networks (RTNs). RTNs [102]
can be seen as defining context-free languages. Nederhof describes how a
RTN can be constructed for a given CFG. A finite-state automaton is con-
structed for every nonterminal and its defining rules in the CFG. The result-
ing set of automata form the RTN. An example CFG, G, is given in figure 2.8.
The corresponding RTN, R, which in this case consists of just one automaton
for the single nonterminal S, is given in figure 2.9. It can be seen that the
automaton features a recursive call to itself (that is, to the automaton defin-
ing S) on the transition from state q2 to q3.

S → a S b
S → ε

Figure 2.8: Example CFG G.

The approximation is constructed by combining the automata of the RTN
into one automaton and approximating any occurrences of recursion using
ε-transitions. If states qA and q′A are respectively the start and end state of
an automaton recognizing nonterminal A, a transition (q, A, q ′) is replaced
by two transitions (q, ε, qA) and (q′A, ε, q′). Figure 2.10 shows this operation
being applied to R. The end result, after removal of ε-transitions, is the FSA

2.3. Methods of finite-state approximation 19

qS

q1 q2 q3 q4

q5 q6

q′S

a S b
ε ε

ε
ε

ε

Figure 2.9: RTN R corresponding to CFG G.

F in figure 2.11. F describes the language a∗b∗, a superset of the original
non-regular language anbn.

qS

q1 q2 q3 q4

q5 q6

q′S

a b

ε
ε

ε ε

ε
ε

ε

Figure 2.10: FSA approximating recursion in RTN R.

Nederhof describes a parameterized variant of this approach. It is noted
that states correspond to items, where items are dotted rules that represent
steps in processing. A dotted rule of the form A → α • γ corresponds to a
rule A → αγ from the original grammar to which a dot in the right hand
side of the rule has been added indicating how far the derivation of A has
proceeded.

In the parameterized variant, each state is associated not only with an
item I, but with a history H of items as well. Every item in H is of the form
A → α • Bγ. For all states that are used in the sub-automaton describing
nonterminal B, this history will be identical. If there are several different
histories possible for reaching B, there will be equally many copies of the sub-
automaton defining B, associated with their respective histories. This way,
limited depths of recursion are implemented by “folding out” the original
automaton. The length of the history H is limited according to parameter
d, such that |H| < d. Further details of the construction are not repeated
here, but an example is given in figure 2.12.

In this example, d = 2. The sub-automaton at the top of figure 2.12 is

20 Chapter 2. Finite-state syntactic analysis

qS

q′S

a

b

b

Figure 2.11: FSA F , the automaton of figure 2.10 after minimiza-
tion and determinization.

associated with history H = [ε]. The bottom sub-automaton is associated
with history H = [S → a • Sb], defining a nonterminal S that is recursively
embedded in another S.

The language described by this new automaton is a slightly more accurate
approximation of anbn than the previous approximation a∗b∗, in that if there
are zero a’s, there will also be zero b’s, and vice versa. As d is increased,
the result will be an automaton that describes the recursive structure of
the language anbn exactly for larger n, making for an increasingly accurate
approximation.

qS

q1 q2 q3 q4

q5 q6

q′S

qSS

q7 q8 q9 q10

q11 q12

q′SS

a b

ε

ε ε

ε

ε
ε

a b

ε
ε

ε

ε ε

ε
ε

ε

Figure 2.12: FSA that is a more accurate approximation of the RTN
R resulting from applying the parameterized algorithm (d = 2) to
G.

2.3. Methods of finite-state approximation 21

2.3.2 Approximation through grammar transformation

Nederhof [64] describes an alternative approach that modifies the rules of a
CFG in such a way that the grammar is restricted to describing a regular
language, by ruling out self-embedding.

The steps of the transformation are not repeated here in their literal form.
Instead, the rules and their effect are described by use of the concept of spines
in a parse tree, as is done in [64]. A spine of a parse tree is defined as a path
from the root of the tree to a leaf of the tree. Figure 2.13 shows a parse tree
in which circles are drawn around nodes that make up a spine.

S

F

G

F

a

b

Figure 2.13: Example parse tree with spine indicated by circles.

All possible spines for a given CFG are considered, and traversed from
top to bottom. On coming across a nonterminal A in the spine, it is tagged
with a set of pairs (B, C). B is a nonterminal occurring in the spine above
A. Thus we are considering a production B → A. C is a set that indicates
whether elements have occurred to the left or right of nonterminal B, in
which case C contains respectively an l and an r.

If C = {l, r}, we are considering a production of the form B → αAβ for
non-empty α and β. The effect of the grammar transformation rules is that
in the transformed grammar, a node A labeled with a set C that contains
(A, {l, r}) is not allowed to be part of the tree, as this would constitute
a case of self-embedding: A has occurred once already in the parse tree,
and elements were since then produced to the left and to the right of this
occurrence.

In the tree in figure 2.13, the F at the bottom of the spine would be
labeled with the set {(S, {l, r}), (F, {l, r}), (G, {r})}. The derivation from G
to F would not be possible in the transformed grammar due to (F, {l, r})
being part of the labeling for the lower node F .

22 Chapter 2. Finite-state syntactic analysis

The resulting automaton is a subset approximation of the original lan-
guage. It is noted that this method may produce huge grammars, as the set
of labeled nonterminals grows very large.

An alternative parameterized method with lower complexity is also presen-
ted. A parameter d indicates a maximum number of times that elements are
added to both the left and right of the spine. In between these events, cases
of left recursion followed by right recursion and right recursion followed by
left recursion are allowed. Nonterminals are tagged with a set containing
either l, r, or both, but without referring to a previous nonterminal. If after
having seen d rules that add something to the left and right there are yet
more rules of this type occurring further down along the spine, these are not
added to the transformed grammar. This method has lower complexity than
the previously described approach, but it is also less precise in that it may
cancel derivations that are not cases of self-embedding.

2.3.3 Approximation through restricted stack

Storage and retrieval of past events can be implemented by means of a stack.
Elements can be put on top of the stack one by one, and retrieved in reversed
order by taking them from the top of the stack. An automaton equipped
with an unbounded stack (or push-down store) can recognize the non-regular
language anbn. Such an automaton is called a push-down automaton (PDA).

1 a : push ab : pop a

Figure 2.14: Push-down automaton defining the language anbn.

Figure 2.14 shows a push-down automaton that recognizes the language
anbn. The transitions are labeled with input symbols and stack operations.
The two operations allowed are push and pop, which will respectively place a
symbol on top of the stack, and remove a symbol from the top of the stack.
An input sequence is accepted if the automaton is in a final state, there is
no input left, and the stack is empty. Table 2.2 shows the current state, the
remaining input, stack contents, and subsequent actions taken by the PDA
in figure 2.14 in recognizing the input sequence aaabbb.

Methods of approximation can use the push-down automaton as a basis.
The general idea is to limit the size of the stack, effectively turning the push-
down automaton into a finite-state automaton. Two approaches using this

2.3. Methods of finite-state approximation 23

state input stack action
1 aaabbb { } read a, push a
1 aabbb {a} read a, push a
1 abbb {a,a} read a, push a
1 bbb {a,a,a} read b, pop a
1 bb {a,a} read b, pop a
1 b {a} read b, pop a
1 { } accept

Table 2.2: Current state, remaining input, stack contents, and ac-
tions of the PDA in figure 2.14 during recognition of aaabbb.

idea are presented, differing with respect to whether a subset or a superset
of the target language is defined by the resulting approximation.

Subset approximation

Pulman [71] notes that in aiming for a psychologically plausible model for
human language performance, left and right recursive structures are prob-
lematic. Although these are typically considered regular, their internal struc-
ture is non-regular. This can be illustrated with example (4). The brackets
that indicate structure are related to each other in a non-regular (center-
embedded) way.

(4) [1the cat that caught [2the mouse that ate [3the cheese]3]2]1

Pulman presents a parsing procedure which is described as similar to the
shift-reduce algorithm [5]. It differs from this procedure in that it can also
handle incomplete constituents, the effect of which is that it can be seen as
using the left-corner parsing strategy. (The left-corner strategy defines the
order in which the parse tree is constructed as first recognizing the left-most
element of a rule’s right hand side as in bottom-up parsing, on the basis of
which the remainder of the rule’s right hand side is predicted as in top-down
parsing; these remaining elements are then parsed using the same alternation
of bottom-up recognition and top-down prediction.)

With the above observation concerning recursion in mind, as a first step
towards an approximation it is stated that no unlimited recursion of any kind
is allowed. A limit L is implemented in such a way that if the parser calls a
recursive routine more than L times, the information related to the previous L
calls is lost. However, humans do not show problems in actually dealing with
left and right recursive (or left and right embedding) structures. Pulman’s

24 Chapter 2. Finite-state syntactic analysis

parser accommodates this. Left embedding does not pose a problem for the
parser under the restriction as described above, as in this case the use of the
stack never increases beyond a constant amount. Right embedding can pose
a problem to the parser, as stack usage will in some cases grow proportional
to the height of the parse tree. The parser is therefore extended with the
clear operation. This operation is applied to the parser’s stack and combines
a VP needing an S with an S (and an S needing a VP with a VP) into just
one stack entry if the two entries are adjacent, and only when the stack size is
beyond some predefined value. This operation serves to keep right recursive
structures under the recursion limit L.

The finite-stateness of the parser is thus ensured through maintaining
the limit L on the amount of recursion allowed, restricting the application
of center-embedding while leaving left embedding and right embedding un-
restricted. Pulman’s approximation will accept a subset of the original lan-
guage. Center-embedded expressions will be exactly recognized for a fixed
maximal recursive depth, while such expressions containing recursion beyond
the maximal depth will be rejected.

The asymmetry in efficiency of processing of left-branching and right-
branching structures using the left-corner parsing strategy is also noted by
Resnik [74]. A parser uses memory to store nodes that are as yet incom-
plete; either their parent node or a child node of the node at hand has not
been created. Resnik gives parse tree examples of left-branching, center-
embedded, and right-branching structures. The left-branching construction,
using the left-corner strategy, requires a constant amount of memory. The
right-branching construction, using the same strategy, requires an amount of
memory that is proportional to the height of the parse tree.

A

B C

D E

F G

Figure 2.15: A right-branching parse tree.

Resnik then proposes a left-corner parser using arc-eager enumeration.
In the case of arc-standard enumeration, the arc between a node and its
child node will only be created once the child’s subtree has been parsed.

2.3. Methods of finite-state approximation 25

Figure 2.15 shows a right-branching tree. The arc between nodes A and
C will only be created once the subtree dominated by E has been parsed.
However, using arc-eager enumeration, the arc between A and C will be
created as soon as C is predicted (which is immediately after creation of
node D). This renders node A complete even though E still has to be parsed.
It is shown that this strategy, formalized as a push-down automaton, requires
memory proportional to the height of the parse tree only for cases of center
embedding. The use of arc-eager enumeration is equivalent to Pulman’s use
of the clear operation; both are cases of tail-recursion optimization.

A similar idea is presented by Johnson [49]. Johnson proposes a left-
corner grammar transformation. This transforms a context-free grammar
into a grammar that enforces the left-corner parsing strategy, including tail-
recursion optimization to ensure that right-recursive structures can be ana-
lyzed with a finite memory. The method is implemented as a finite-state
transducer that for a given input sentence produces a sequence of produc-
tions representing a parse of the input with respect to the transformed gram-
mar. Following this, the transformation is inverted, resulting in a parse tree
corresponding to the previous end result but written down in terms of the
original grammar.

Superset approximation

Pereira and Wright [68] note that grammars powerful enough for accurate
syntactic analysis are typically not efficient enough for an application such as
speech recognition. They propose to use separate grammars for recognition
and interpretation, the grammar for recognition to be implemented as a
finite-state grammar. The recognition grammar should not cancel readings
allowed by the interpretation grammar that is applied after it, and should,
at the same time, enforce as many of the constraints in the interpretation
grammar as it can. It is noted that in the process of constructing both these
grammars at the same time it can be difficult to ensure these requirements
are met. Therefore Pereira and Wright choose to create the recognition
grammar automatically as a finite-state approximation of the context-free
interpretation grammar.

S → a S b
S → ε

Figure 2.16: Example CFG G.

26 Chapter 2. Finite-state syntactic analysis

S’ → • S
S → • a S b
S → •

1
S → a • S b
S → • a S b
S → •

2

S’ → S •
5

S → a S • b

3

S → a S b •

4

a

S

b

S

a

Figure 2.17: Characteristic finite-state machine M for CFG G.

Their method creates a finite-state acceptor based on the characteristic
finite-state machine (CFSM) of a context-free grammar. The CFSM is the
finite-state control for a shift-reduce recognizer, or LR(0) parser. As an
example, the CFSM for the CFG in figure 2.8, repeated here in 2.16, is given
in figure 2.17. The states of the CFSM contain sets of items, or dotted rules.
Transitions between states represent applications of the shift operation, and
items of the form A → γ• allow for application of the reduce operation. The
construction of the CFSM, which is omitted here, is described by Pereira and
Wright and in [4, p. 221] and [8], for example.

state input stack action
0 aabb {} shift a
1 abb {〈1, a〉} shift a
1 bb {〈1, a〉, 〈2, a〉} reduce S → •
2 bb {〈1, a〉, 〈2, a〉, 〈2, S〉} shift b
3 b {〈1, a〉, 〈2, a〉, 〈2, S〉, 〈3, b〉} reduce S → a S b •
2 b {〈1, a〉, 〈2, S〉} shift b
3 {〈1, a〉, 〈2, S〉, 〈3, b〉} reduce S → a S b •
4 {〈1, S〉} accept

Table 2.3: Steps taken in recognizing aabb using M.

Table 2.3 shows the steps taken in recognizing the string aabb using the
CFSM in figure 2.17. The table shows the current state, remaining input,
stack contents, and the performed action which leads to the situation de-
scribed by the next line in the table. The stack contains pairs of the form
〈s, a〉 where s is a state and a is a symbol. A transition from state q1 to q2

2.3. Methods of finite-state approximation 27

associated with symbol a corresponds to a shift operation and adds the pair
〈q1, a〉 to the stack. The reduction operation for a rule of the form A → γ•
removes pairs corresponding to symbols γ from the top of the stack and takes
the transition labeled with A from the state s associated with the last pair
popped from the stack (or from the current state if no elements are popped,
as in the case of reduction S → •) and pushes the pair 〈s, A〉.

Pereira and Wright propose to turn the shift-reduce recognizer into an
FSA by removing the stack and replacing reduction moves with ε-transitions.
This technique is called flattening. Normally a reduction leads to another
state based on the elements that were popped from the stack, as explained
above. Now this is achieved through an ε-transition directly to that state.
The result of flattening the CFSM in figure 2.17, followed by removal of trans-
itions labeled with nonterminals and after minimization and determinization,
is the FSA in figure 2.18 that describes the language a+b+ ∪ {ε}.

1 2 3
a b

a b

Figure 2.18: FSA resulting from flattening CFSM M.

As a finite-state approximation of the non-regular language anbn, this is
acceptable. However, Pereira and Wright point out that even simple regular
languages are often incorrectly reproduced using this method. They provide
an example of a language consisting of the strings aca and bcb. Flattening
of the corresponding CFSM leads to an FSA that recognizes not only these
strings, but also acb and bca. The problem lies in the replacing of reductions
with ε-transitions. The state where a reduction is applied may have been
reachable from a number of different states, which were part of distinct paths
that are now merged.

The suggested solution is to apply an operation of unfolding to the CFSM
before the automaton is flattened, which means that each state is replaced by
a set of states corresponding to possible stack configurations at that state. In
this manner, the different ways in which the original state could have been
reached are explicitly represented. The set of possible stacks is typically
infinite due to loops in the CFSM, therefore an equivalence relation is used
according to which different stacks are treated as one and the same stack,
creating a finite number of stack classes. Two stacks are considered equivalent
if they can be made similar by removal of loops, where loops are repeated

28 Chapter 2. Finite-state syntactic analysis

stack segments.
Rood [77] uses the same idea and adds the ability to specify the number

of loops that is still considered in differentiating stacks. Here, states are
labeled with the paths that led to them, where paths consist of alternating
state numbers and input symbols. An unfolding criterion N is decided on,
and paths containing a number of loops greater than N are assigned to one
and the same infinite class of paths, represented by the path that contains
N + 1 loops.

In general the resulting automaton will recognize a superset of the original
language. Using Rood’s method, the automaton is able to exactly recognize
non-regular languages up to a recursive depth specified by the unfolding
criterion. The algorithm described by Pereira and Wright [68] has been used
in limited-domain speech recognition tasks.

2.3.4 Approximation using n-gram models

In n-gram models of language, the probability of the occurrence of a word
is modeled as only depending on the identity of the previous n − 1 words.
Models of this kind will be discussed in detail in chapter 3.

Stolcke and Segal [83] describe a method in which n-gram probabilities
are computed directly from a stochastic context-free grammar (SCFG). This
method is said to avoid problems related to learning n-gram models from
annotated data, which include the estimation of probabilities for a large
number of parameters, the requirement of a very large training corpus, the
inability to directly model linguistic knowledge, and the relative difficulty of
adding new information to a model.

The method estimates the probabilities for n-grams by computing their
expected frequencies in sentences generated by the SCFG. The different ways
in which a nonterminal (in particular the start symbol S) can produce a
given substring are considered, and the respective probabilities are summed.

The implementation described by Stolcke and Segal computes bigram
probabilities in time O(N 2) at most, where N is the number of nonterminals
in the grammar. The system is used in a speech-recognizer in the BeRP
spoken-language system [52]. An experiment using a prototype system of
BeRP resulted in a word recognition error rate of 35.1% when using bi-
gram probabilities that were estimated from the training corpus, compared
to 33.5% when using a combination of corpus-based probabilities and probab-
ilities estimated from the SCFG as described above, in a proportion of 2500
: 200,000. It is concluded that in this experiment, in which a training corpus
of 2500 sentences was used with an average length of 4.8 words, the method
was of help in improving bigram probability estimates that were based on a

2.4. Discussion of methods of approximation 29

relatively small amount of data.

2.4 Discussion of methods of approximation

As described in chapter 1, this research aims at a finite-state approximation
of the Alpino wide-coverage parser for Dutch [15]. In the previous section,
several methods of finite-state approximation of a grammar of greater than
finite-state power were described. With the intended source system in mind,
the described methods are considered and an alternative and more suitable
approach will be suggested, to be discussed in the next chapter.

2.4.1 Computational complexity

High complexity may be a problem in constructing finite-state automata that
approximate more powerful grammars. Nederhof [64] found that in using the
method of Pereira and Wright [68] to approximate a relatively small grammar
of 50 rules, an amount of memory was required that rendered the process of
determinization and minimization of the automata practically impossible. In
this respect, the RTN methods were shown to be preferable. The automaton
created using both the standard and parameterized RTN approach grows
only moderately as the size of the source grammar increases.

2.4.2 Systems beyond context-free power

The techniques described are methods that approximate a context-free gram-
mar. It was mentioned in section 2.2.2 that the cross-serial dependency type
of construction cannot be represented with a context-free grammar. A system
that tries to describe as precisely as possible a natural language that features
cross-serial dependencies is likely to contain special machinery for this task.
Thus in a practical setting where a system is designed to cover as much of a
given language as possible, an approximation technique expecting a standard
context-free grammar is not useful. Typically, this would require that one
somehow compile the grammar into an intermediate context-free grammar, as
in [68]. The left-corner transformation described by Johnson [49] is described
as being easily adaptable to finite-state approximation of unification-based
grammars, not requiring an intermediate context-free grammar, but this is
not explained in detail.

30 Chapter 2. Finite-state syntactic analysis

2.5 Discussion

One of the goals of this work is to find a way of approximating an existing
wide-coverage parser accurately in a finite-state model. The parser we have in
mind uses a stochastic attribute-value grammar. In such systems in general,
features are used that cannot be described in a context-free way. As described
above, an intermediate context-free approximation would have to be used in
order to be able to use a method of approximation that expects a context-free
grammar as input.

In addition, systems used in a practical setting will encounter problems
in parsing real text. For instance, various rule-based and/or stochastic heur-
istics may have to be implemented to cope with unknown words. These
techniques will typically be separate modules, in principal unrelated to the
grammar used in the main system. An approximation directly based on the
grammar would not contain the heuristics. An example concerning the sys-
tem to be approximated in this work, the Alpino parser, is the stochastic
disambiguation model which is used to decide which parse for a given input
is most likely the correct one. In approximating the system as a whole, we
would like components such as these to be accounted for.

In the next chapter, the method known as inference will be presented. In-
ference consists of deriving a grammar from a collection of utterances. The
process of inference will be used in chapter 4 to acquire an approximation of
the source system. Instead of using an algorithm to directly reduce a gram-
mar to finite-state power, the output of the system that uses the grammar
is collected and used to construct a finite-state model. The approximation
process is shown in figure 2.19.

In this manner, in principle nothing needs to be known about the nature
of the original grammar and the parsing system that uses it. Techniques such
as the stochastic disambiguation used to select the most probable analysis
will be reflected in the system’s output so that through inference, this com-
ponent can be part of the approximation. This approach closely follows the
idea of creating a finite-state model of language performance, as an approx-
imation of language competence. The complete parsing system represents
the competence, and a collection of sentences, originally produced by hu-
mans and now analyzed and annotated by the parser, represents linguistic
performance.

2.5. Discussion 31

sample of language

parser

annotated sample

method of inference

HMM

Figure 2.19: Approximation through inference.

32 Chapter 2. Finite-state syntactic analysis

