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PET Imaging of Beta-Adrenoceptors in Human Brain: A Realistic Goal or
a Mirage?

Aren van Waarde*, Willem Vaalburg, Petra Doze, Fokko J.Bosker1 and Philip H. Elsinga

PET Center and 1Dept. Biological Psychiatry, Groningen University Hospital P.O.Box 30001, Hanzeplein 1 9700 RB
Groningen The Netherlands

Abstract: Beta-adrenoceptors are predominantly located in the cerebral cortex, nucleus accumbens and striatum. At lower
densities, they are also present in amygdala, hippocampus and cerebellum. Beta-2 sites regulate glial proliferation during
ontogenic development, after trauma and in neurodegenerative diseases. The densities of beta-1 adrenoceptors are
changed by stress, in several mood disorders (depression, excessive hostility, schizophrenia) and during treatment of
patients with antidepressants.

A technique for beta-adrenoceptor imaging in the human brain is not yet available. Although 24 (ant)agonists have been
labeled with either 11C or 18F and some of these are successful myocardial imaging agents, only two (S-1’-18F-
fluorocarazolol and S-1’-18F-fluoroethylcarazolol) could actually visualize ß-adrenoceptors within the central nervous
system. Unfortunately, these radiopharmaceuticals showed a positive Ames test. They may be mutagenic and cannot be
employed for human studies.

Screening of more than 150 beta-blockers described in the literature yields only two compounds (exaprolol and L643,717)
which can still be radiolabeled and evaluated for ß-adenoceptor imaging. However, other imaging techniques could be
examined. Cerebral ß-adrenoceptors might be labeled after temporary opening of the blood-brain barrier (BBB) and
simultaneous administration of a hydrophilic ligand such as S-11C-CGP12388. Another approach to target ß-adrenoceptor
ligands to the CNS is esterification of a myocardial imaging agent (such as 11C-CGP12177), resulting in a lipophilic
prodrug which can cross the BBB and is split by tissue esterases. BBB opening is not feasible in healthy subjects, but the
prodrug approach may be successful and deserves to be explored.

Key Words: Beta-adrenoceptors, positron emission tomography, human, brain, depression, multiple sclerosis, radiopharma-
ceuticals, imaging.

INTRODUCTION

In the autonomic nervous system, two networks can be
distinguished which regulate the internal environment to
maintain a steady-state (homeostasis): the sympathetic and
the parasympathetic system. The latter network maintains
basal functions (heart rate, respiration, etc.) under normal
conditions, whereas the former responds to threatening situa-
tions (hypoglycemia, hypoxia, sudden changes in the environ-
ment). Sympathetic activation results e.g. in increased
cardiac output, body temperature and blood glucose in order
to respond adequately in case of an emergency.

The physiological responses resulting from activation of
the sympathetic nervous system are mediated by the neuro-
transmitter noradrenalin and the hormone adrenalin. These
catecholamines originate from the amino acid tyrosine.
Noradrenalin is synthesized in nerve endings, while adrena-
lin is produced mainly in the chromaffin cells of the adrenal
medulla. Both compounds activate specific membrane recep-
tors called adrenoceptors. The interaction of noradrenalin
with these receptors was discovered by Sir Henry Dale
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E-mail: a.van.waarde@pet.azg.nl

in the first decade of the twentieth century [51]. Later, it was
shown that the adrenoceptor family could be divided in two
populations, called α- and β-adrenoceptors [8]. The former
induce activation of the uterus and vasoconstriction, the
latter inhibition of the uterus and vasodilation. Later still, ß-
adrenoceptors were classified in two different subtypes: ß1

and ß2 [136]. Beta-1 agonists stimulate cardiac contractility
and lipolysis, whereas beta-2 agonists cause bronchodilation
and vasodepression. Since then, ß1-adrenoceptors involved in
lipolysis have been reclassified as ‘atypical’ or ß3-adreno-
ceptors [14]. A fourth subtype, the putative ß4-adrenoceptor,
has been suggested to exist in myocardial and adipose tissue
[84, 127]. Blocking this subtype requires much higher
concentrations of ß-adrenoceptor antagonists than those
required to block ß1- or ß2-adrenoceptors.

Since responses to stressful situations occur all over the
body, ß-adrenoceptors are present in many different organs.
Stimulation of myocardial receptors increases heart rate and
contractile force, resulting in enhanced cardiac output [32].
Stimulation of pulmonary ß-adrenoceptors causes bronchodi-
lation and increased blood flow, resulting in enhanced
oxygen uptake [16]. Beta-adrenoceptors in the pancreas
regulate the secretion of glucagon [135], while those in the
liver and kidney control glycogenolysis and glucose release
[125, 91]. The overall effect of stimulation of these receptors
is an increased availability of glucose and an increased
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capacity of tissues to use glucose as a fuel. Beta-adreno-
ceptors in the spleen are involved in the stress-induced
augmentation of circulatory blood volume and lymphoid cell
mobilization [232, 196]. The secretion of many glands,
including the lacrimal [1], salivary [188], thyroid [9] and
pituitary [210] glands, is also under ß-adrenergic control.

Physiological and behavioral responses to noradrenalin in
the central nervous system are regulated predominantly by
two different nuclei in the brain stem: the locus coeruleus
and the lateral tegmental neurons. The former has very broad
projections throughout the brain. Much less noradrenergic
neurons project from the lateral tegmental neurons to the
brain stem, spinal cord and thalamus. While the lateral
tegmental neurons contribute to the integration of autonomic
functions (blood pressure and heart rate), the projections of
the locus coeruleus play an important role in behavioral
responses such as orientation, and reactions to sudden
contrasting or aversive sensori stimuli [167].

Cerebral ß-adrenoceptors are involved in several physio-
logical functions, such as respiratory [12, 81], cardiovascular
[231] and renal [132] sympathetic nervous control. Further-
more, ß-adrenoceptors located on glial cells regulate (injury-
induced) astrogliosis and microglial proliferation [224, 85,
104, 83]. These processes contribute to neuronal regenera-
tion after injury, but they can also play a negative role in
neurodegenerative diseases and contribute to ischemia-
induced neuronal death [116, 154]. Biological rhythms, such
as the diurnal activity cycle [251, 122], the sleep/wakeful-
ness cycle [217] and annual hibernation [182] are accom-
panied by changes of ß-adrenoceptor density and/or ß-
adrenoceptor signalling in particular brain areas.

Cerebral ß-adrenoceptors are essential to various memory
functions, such as memory storage of emotional events [159,
36], motor learning [102], conditioned olfactory [145] and
taste [20] learning. They also regulate the processing of
visual information [170]. Memory functions, processing of
external information and the ability to hibernate are required
to respond correctly in case of emergencies.

Studies in rodents have revealed changes of regional ß-
adrenoceptor density and of the activity of ß-adrenoceptor-
coupled second messenger systems after exposure of the
animals to stress. Acute or unpredictable stress is thought to
be accompanied by an increase of ß-adrenoceptor density,
probably in order to assess the danger of a situation [179]. In
contrast, a predictable form of chronic stress is often
accompanied by a reduction of ß-adrenoceptor numbers [80,
103]. This reduction may be interpreted as an adaptation of
the animal to recurrent stressful events and the accompany-
ing release of large amounts of catecholamines. In some
studies, there were no changes of ß-adrenoceptor density
after exposure of animals to stress [29, 93, 100]. These
conflicting results may be due to the different stress paradi-
gms and test procedures that were employed.

Postmortem studies in humans have provided evidence
for abnormal ß-adrenoceptor density and function in mood
disorders such as depression. Initial studies in suicide victims
reported either increases [13, 23], no alteration [162, 221,
48], or decreases [54] in various brain areas, such as the
frontal cortex and hippocampus. The data were difficult to

interpret because of the heterogeneity of the patient groups
(e.g., large differences in medication) and the fact that many
different radioligands were used in the receptor assays. Later
studies employing more stringent inclusion criteria demons-
trated ß-adrenoceptor decreases in several cortical areas, not
only in antidepressant-treated but also in drug-free depressed
patients [55, 149, 202]. After long-term treatment with
antidepressants, cerebral ß-adrenoceptors are downregulated
in human brain [56, 11].

Several other disorders of mood and behavior, such as
schizophrenia [130, 121], excessive hostility [256, 222],
premenstrual dysphoria [95] and chronic alcohol abuse [94]
have been reported to be accompanied by abnormal ß-
adrenoceptor densities and/or coupling of ß-adrenoceptors to
the Gs protein. Low doses of lipophilic ß-blockers proved
often effective in the suppression of psychosis or anxiety and
the reduction of aggressive behavior in chronic psychiatric
patients [96, 15, 75].

Neurodegenerative diseases may also be associated with
abnormal ß-adrenoceptor function. In some patients with
Parkinson’s disease, an increased number of ß1 adrenocep-
tors was found in the pre-frontal cortex [38]. Alzheimer’s
dementia has been reported to be accompanied by changes of
the relative sizes of ß-adrenoceptor subpopulations (decrease
of ß1, increase of ß2) [123, 247] and impaired ß-adrenoceptor
coupling to adenylyl cyclase [47] in various regions of the
brain. An almost complete loss of ß1-adrenoceptors in basal
ganglia of patients suffering from Huntington’s disease is
observed only in late stages of the disease. This loss is
accompanied by a strong increase of ß2-adrenoceptor density
in the posterior putamen, probably as a result of gliosis
[249]. Normal aging is accompanied by a slow decrease of
ß1-adrenoceptor densities in human brain [123, 202].
Apparently, this loss is accelerated in certain forms of
neurodegeneration.

POSITRON EMISSION TOMOGRAPHY (PET) OF
CEREBRAL ß-ADRENOCEPTORS

If a method could be developed to image and quantify ß-
adrenoceptors in the human brain, this would allow investi-
gators to answer several questions:

(a) Beta-adrenoceptor occupancy of novel and existing
CNS drugs could be measured and related to plasma
levels of the drug , to the desired therapeutic effect and
to undesired side effects.

(b) Changes in ß-adrenoceptor availability after adminis-
tration of noradrenalin reuptake inhibitors could be
assessed in the intact human brain, reduced ß-adreno-
ceptor availability indicating increased occupancy of
the ß-adrenoceptor population by endogenous noradre-
nalin.

(c) The time course of ß1-adrenoceptor downregulation in
patients during treatment with antidepressants could
then be assessed and related to mood changes in the
same subjects.

(d) It would become possible to make a differential diagno-
sis between multiple sclerosis and other neurodegenera-
tive diseases in an early stage of the disease. White
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matter in the brain of healthy subjects is virtually
devoid of ß-adrenergic sites [257], but glial cells poss-
ess ß2-adrenoceptors [154]. Gliosis after neurodegenera-
tion might therefore be visualized with a suitable ß2-
adrenoceptor ligand and PET. Proliferation of microglia
results normally in increased ß2-adrenoceptor densities
in white matter, but astrocyte proliferation in multipe
sclerosis is not accompanied by such increases because
astrocytes in MS have lost their ß2-adrenoceptors [52,
257].

Myocardial and pulmonary ß-adrenoceptors in patients
and healthy volunteers have already been quantified, using
the radiolabeled antagonists S-11C-CGP12177 [98, 139, 161,
185, 186, 206, 239] and S-11C-CGP12388 [64, 72]. Since the
lipophilicity of these radiopharmaceuticals is very low
(calculated log P at pH 7.4 -2.07 and -2.01, respectively1),
they do not cross the blood-brain barrier. Therefore, the
Ciba-Geigy compounds are not suitable for visualization of
ß-adrenoceptors in the central nervous system.

Some lipophilic ß-adrenoceptor antagonists have also
been labeled with a positron emitter. These include: S-11C-
bisoprolol (logP -0.20, [215]), S-11C-carazolol (logP +0.80,
[21]), 11C-carvedilol (logP +2.97, [63]), S-18F-fluorocara-
zolol (logP +2.19, [258]), S-18F-fluoroethylcarazolol (logP
+1.66, [67]), 18F-fluoroisopropylbupranolol (logP +1.93,
[63]), 18F-fluoroisopropylpenbutolol (logP +2.53, [63]), 18F-
fluoropropranolol (logP +1.81, [234]), 11C-ICI 118,551 (logP
+1.07, [168]), 11C-pindolol (logP -0.53, [184]), 11C-propra-
nolol (logP +0.43, [19]) and 11C-toliprolol (logP -0.22, [63]).
Only two out of these twelve radiopharmaceuticals displayed
specific binding in rodent brain: 18F-fluorocarazolol and 18F-
fluoroethylcarazolol. A pilot study with non-carrier-added
18F-fluorocarazolol indicated specific binding of this
radioligand also in the human brain [243]. Unfortunately, in
later more extensive screening, both fluorinated carazolol
analogs showed a positive Ames (i.e., mutagenicity) test
([62], Doze unpublished). Therefore, these radioligands can
no longer be employed for human studies.

Radioiodinated analogs of pindolol (ICYP and IPIN)
display some specific binding within the CNS in vivo  [236,
63], but the brain uptake of these compounds is low, result-
ing in very poor signal-to-noise ratios. Moreover, ICYP binds
not only to ß-adrenoceptors, but also to several subtypes of
the serotonin (5-HT) receptor within the brain [63].

Since no other radiopharmaceuticals are available for
PET imaging of ß-adrenoceptors in human brain, the follow-
ing questions should be answered in this review:

(1) Do other lipophilic ß-blockers exist which could be
labeled with 11C or 18F and tested as radiopharmaceu-
ticals for cerebral ß-adrenoceptor imaging?

(2) Can a strategy be devised to increase the brain uptake of
established ß-adrenoceptor ligands, so that they become
suitable for visualisation of ß-adrenoceptors within the
central nervous system?

                                                          
1 Calculated logP values were determined with the computer program Pallas. All values
mentioned in this article refer to pH 7.40.

CRITERIA FOR THE SELECTION OF LIGAND
CANDIDATES

1. Affinity

Receptor imaging requires a specific signal above
background radioactivity. To predict if a radioligand will
provide a specific signal that can be detected externally, the
bound/free ratio (B/F) is often estimated from the Scatchard
equation [205]:

B/F = Bmax/Kd - B/Kd

Since the specific activity of positron-emitting radio-
ligands is very high (i.e., B is very small), the term B/Kd can
be neglected and B/F is approximately equal to Bmax/Kd. This
ratio, originating from equilibrium binding equations devel-
oped for in vitro binding assays, describes target/nontarget
binding in the ideal case. The actual ratio of bound/free
radioactivity observed in vivo is often much lower because of
metabolism, protein binding and non-specific uptake of the
radioligand [86]. For receptor visualisation, a B/F ratio ≥ 10
is required in planar imaging and ≥ 4 in PET [88, 70].

Estimations of ß-adrenoceptor density (Bmax) in human
brain vary over a fairly wide range depending on the
laboratory of assay, the radioligand employed, the method
used to obtain a membrane fraction and the age and personal
history of the subjects. In frontal cortex, the lowest value
reported was 18 fmol/mg protein [38] and the highest value
was 147 fmol/mg protein [209]. If we assume an average
protein content of tissue of 10%, these values correspond to
1.8-14.7 pmol/g wet weight. Thus, the affinity of a radio-
ligand to visualize ß-adrenoceptors in the frontal cortex
should be < 0.45-3.7 nM for PET (Bmax/Kd >4) and < 0.18-
1.47 nM for planar imaging (Bmax/Kd >10). In reality, the
affinity should be even higher because there is always some
metabolism, protein and non-specific binding.

2. Lipophilicity

Imaging of neuroreceptors within the CNS is only
possible when the radiopharmaceutical is transported across
the blood-brain barrier (BBB). The cerebral endothelium acts
as a lipophilic physical barrier by which the passive entry of
hydrophilic compounds into the brain is restricted. Optimal
diffusion across the blood-brain barrier occurs if the drug has
an octanol/water partition coefficient (log P) of +2 to +3, the
maximum of the parabola describing the relationship
between lipophilicity and brain uptake [59, 147, 165, 208].
Reduced lipophilicity results in little transport of the test
drug across phospholipid bilayers, and increased lipophilicity
promotes nonspecific binding of the compound to blood cells
and plasma proteins, which reduces delivery to the brain.

3. Lack of Affinity to P-Glycoprotein

Although successful CNS radioligands possess logP
values between +0.5 and +3, this does not imply that all
compounds with that lipophilicity will show good brain
uptake. Many ß-blockers are substrates for P-glycoprotein
(Pgp) [174]. This protein is expressed in endothelial cells of
the blood-brain barrier and it promotes active efflux of drugs
from the CNS. Cerebral uptake of Pgp-substrates is therefore
much lower than would be expected on the basis of their
lipophilicity [101].
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4. Optimal Molecular Size and Charge

Besides lipophilicity, the distribution of charge within a
molecule seems to affect its brain uptake. Higher uptake
(0.8-4.8% ID/g) has been observed for compounds with
electron withdrawing substituents in beta-position to the
amine group (pKa values 7.4 to 8.3) than for those with more
basic amine groups (pKa values > 8.9, < 0.4% ID/g), even
though both classes of compounds had similar octanol/water
partition coefficients at pH 7.4 [82].

Passive diffusion across the blood-brain barrier is also
dependent on molecular volume, larger volumes resulting in
reduced transport. It has been claimed that for optimal brain
uptake, a drug should have a molecular weight smaller than
600 Da [69]. The criterion of molecular size is not relevant
to ß-adrenoceptor imaging, since most ß-adrenoceptor (ant)
agonists have molecular weights between 200 and 350 Da.

5. Specificity for the Target

The ideal radioligand should bind to a single receptor
population only. Changes in binding parameters can then be
attributed to one clearly-defined subtype. Truly specific
compounds are rare. If the anatomic localization of receptor
populations within the human brain is sufficiently distinct, a
single ligand with affinity to all sites of interest can be
employed. However, visualisation of the noradrenergic
system requires highly specific ligands, since ß-adrenocep-
tors are widely distributed throughout the brain and low
densities are only observed in white matter, pons and
medulla [257]. Most ß-adrenoceptor antagonists display
significant affinity towards serotonin 5-HT1A, 5-HT1B and 5-
HT1D receptors. Affinity of the radioligand to these
serotonergic sites should be at least 2 (preferably even 3)
orders of magnitude less than that to ß-adrenoceptors for
successful PET imaging [198].

6. Resistance to Metabolism

An ideal radioligand should either show negligible
metabolism within a PET time scale (i.e., 2 h) or it should be
metabolized to hydrophilic radioactive products with negli-
gible brain uptake. In that case, bound radioactivity within
the CNS will reflect mainly parent compound which greatly
facilitates tracer-kinetic modeling.

7. Amenable to Labeling

Candidate radiopharmaceuticals should possess molecular
groups that can be labeled using rapid synthetic procedures.
Because of the short half-lives of positron emitters (11C only
20 minutes), this is a stringent requirement.

PREDICTIVE VALUE OF THE CRITERIA

The literature on ß-blockers usually provides only the
following information: (i) chemical structure of the com-
pound; (ii) some proof of its action (affinity to ß-adrenocep-
tors, or data on functional antagonism); (iii) in some cases,
also a measured octanol/water partition coefficient. If
candidate radiopharmaceuticals should be selected based on
literature data, the following questions may arise:

1. Can the brain uptake of radioligands be predicted on the
basis of (measured or calculated) octanol/water partition
coefficients?

2. Can the magnitude of the specific binding (i.e., the
signal-to-noise ratio in PET images) of radioligands in
target organs such as the brain be predicted on the basis
of their in vitro affinities to ß-adrenoceptors?

To answer the first question, we plotted the uptake of
sixteen ß-adrenoceptor ligands within rat CNS against their
(calculated) log P value at pH 7.4 (Fig. 1). This plot suggests
that optimal brain uptake of ß-blockers occurs at log P values
between +2 and +3, just as has been described for other
radiopharmaceuticals. Unfortunately, ß-blockers with log P
values > 3 have not yet been labeled with a positron emitter
and evaluated for PET imaging. Therefore, no data points are
available for the right half of the parabola.The fitted curve (a
Boltzmann sigmoidal) has a good correlation coefficient (r =
0.97) and the relationship between log P and brain uptake is
highly significant (p = 0.0003). However, two compounds
were not included in the fit since they did not obey the
general trend. In figure 1, these ligands are indicated by
asterisks.

Fig. (1). Relationship between (calculated) log P and brain
uptake of ß-adrenoceptor ligands. Brain uptake is plotted as the
SUV in rat brain at 60 min post injection (with exception of
formoterol and procaterol for which only data at 10 min post
injection were available). Uptake data were from the following
publications: CGP [241], PRO [245], FCG [241], PIN [63], FOR
[246], BIS [215], ICYP [63], IPIN [236], CAR [65], FEC [67], FPR
[234], BUP [63], FCA [240, 66], PEN [63], ICI [168], CVD [63].

The most noteworthy exception is 11C-carvedilol (CVD).
This drug is quite lipophilic (calculated log P + 2.97 at pH
7.4), but its brain uptake is negligible (SUV ≤ 0.08 at 60 min
post injection, [63]). The exceptionally low brain uptake is
probably due to the fact that carvedilol is a high-affinity
substrate for P-glycoprotein and actively expelled from the
CNS, in contrast to other ß-blockers which are only weak
substrates for this ATP-dependent drug efflux pump [174].
Another exception is 11C-ICI 118,551 (ICI). Brain uptake of
this compound is much higher than predicted on the basis of
the curve fit. This finding is hard to explain - perhaps the
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ligand is metabolized to a lipophilic radioactive product
which can more easily cross the blood brain barrier.
Unfortunately, the literature does not provide information on
radiolabeled species arising from 11C-ICI 118,551.

Figure 1 suggests that candidate radioligands should
possess log P values greater than +1.5 in order to have
adequate brain uptake. Apparently, octanol/water partition
coefficients can predict uptake of ß-adrenoceptor (ant)
agonists within the CNS, although there are a few (2 out of
16) exceptions to the general rule.

To answer the question if the ß-adrenoceptor affinity of a
ligand can predict the magnitude of its specific signal in PET
images, we plotted the measured ratio of specific/nonspecific
binding (signal-to-noise ratio) for various ß-blockers in rat
heart in vivo against their binding potentials (Bmax divided by
Kd determined in vitro, see Figure 2). A similar figure cannot
be prepared for rat brain, since only four ß-adrenoceptor
ligands (FEC, FCA, ICYP and IPIN) have shown specific
binding within the CNS. To calculate Bmax/Kd in rat heart, we
assumed a Bmax of 6 pmol/g wet weight of tissue [137] and a
ratio of the ß1:ß2 subtypes of 83:17 [164].

The data from eleven compounds were well fitted by a
hyperbola (r = 0.97, p < 0.0001). That the relationship
between in vitro affinity and target/non-target ratio in PET
imaging is curvilinear rather than linear is not surprising.
Binding of potent ß-adrenoceptor antagonists approaches
equilibrium slowly, i.e. true equilibrium is reached only after
several hours. It is thus possible that an interval of 60 min
post injection is too short to acquire an optimal ratio of
specific/nonspecific binding for potent radioligands, such as
CAR and ICYP. Moreover, if Kd is very small (<= 10-10M),
the expression B/Kd in the Scatchard equation will no longer
be negligible, especially in the case of ligands labeled with
carbon-11. Target-nontarget ratios (B/F) will in such cases
be smaller than Bmax/Kd .

Apparently, values for radioligand affinity determined in
vitro can be used to predict the results of myocardial
imaging. However, one compound deviated from the general
pattern shown in Fig. 2, [11C]carvedilol (CVD). According to
in vitro assays, Bmax/Kd-1 of S-carvedilol in rat heart is 11.5
to 14 [175], but 11C-carvedilol did not show any specific
binding in rat heart in vivo [63]. The reason for the failure of
[11C]carvedilol as a myocardial imaging agent is not clear.
The affinity of carvedilol to ß-adrenoceptors may have been
overestimated. Estimations of the affinity of ß-adrenoceptor
antagonists can vary by a factor of 10, depending on the
tissue preparation and the laboratory of assay. The affinity of
carvedilol was determined in guinea pig atrium rather than
rat ventricle. If there is a species difference between rat and
guinea pig and if the affinity of carvedilol was indeed
overestimated, carvedilol data may in fact fit the plotted
curve.

Figure 2 suggests that for an acceptable signal-to-noise
ratio, the binding potential (Bmax/Kd based on in vitro  assays
of Bmax and Kd) of a radiolabeled ß-blocker should be greater
than 10. Based on the data presented in Fig. 1 and 2, we may
predict that ligand candidates should have (calculated) log P
values > +1.5 and affinities < 1.5 nM for successful ß-
adrenoceptor imaging.

Fig. (2). Relationship between the in vitro affinities of ß-
adrenoceptor ligands and their target/nontarget ratios observed
in rat heart in vivo. Target/nontarget ratios were calculated from
tissue uptake in the absence and presence of propranolol, at 60 min
after injection (with exception of ICI118,551, bisoprolol and
CGP20712A, for which only data at 30 min were available). Uptake
data were from the following publications: ICI [168], PIN [63], BIS
[215], FCG [241], CGP2 [73], FEC [67], CGP1 [242], CGP3 [241],
FCA [66], CAR [65], ICYP [63], CVD [63].

UNEXPLORED CANDIDATES

Are there still any ß-blockers with moderate lipophilicity
(log P +1.5-3) and high affinity which could be labeled with
a positron emitter? In order to answer this question, we
performed an extensive literature search and classified ß-
adrenoceptor antagonists into four different groups: (i)
Extremely potent compounds (Kd < 1 nM, Table 1), (ii)
Potent compounds (Kd 1-10 nM, Table 2), (iii) Beta-blockers
with moderate affinities (Kd 10-100 nM, Table 3) and (iv)
Weak ß-adrenoceptor antagonists (Kd > 100 nM, Table 3).

Of the 57 extremely potent ß-blockers listed in Table 1,
only 10 are sufficiently lipophilic: bucindolol, carvedilol,
CGP20712A, exaprolol, fluorocarazolol, fluoroethylcara-
zolol, iodoazidobenzylpindolol, iodohydroxybenzylpindolol,
L643,717, and compound 21a. Carvedilol and CGP20712A
have already been labeled and found to be unsuitable for
cerebral ß-adrenoceptor imaging [63, 242]. Fluorocarazolol
and fluoroethylcarazolol are successful ligands, but they
cannot be employed for human studies because of a positive
Ames test [62]. Iodoazidobenzylpindolol is a photoaffinity
label which cannot be used for PET imaging. [125I]Iodo-
hydroxybenzylpindolol shows very poor target/nontarget
ratios in vivo  [35]. Radioactive bucindolol, exaprolol, L643,
717, and compound 21a have not yet been prepared (see
Figure 3 and [105] for chemical structures). Unfortunately,
bucindolol and compound 21a are not amenable to labeling
with a positron emitter. However, exaprolol can be labeled
by reaction of a desisopropyl precursor with 11C-acetone, and
L643,717 by reaction of a hydroxy precursor with 11C-
methyl iodide.

Analogs of pindolol (not listed in Table 1) may show
high affinities to ß-adrenoceptors and could be explored for
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Table 1. ß-Adrenoceptor Antagonists with Affinities in the sub-nM Range for at least one of the ß-Adrenoceptor Subtypes

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

(-) Alprenolol Not determined 0.6 [58] +0.35c +0.80m [5]

AlpM Not determined 0.2 [181] -1.77c -1.58c (2 isomers)

Arotinolol 0.2 [237] 0.5 [237] -0.34c

(-) Befunolol 1 [133] 0.9 [133] -0.62c -0.12m [192]

BFE61 Not determined 0.2 [228] -0.11c

Bucindolol 1.7 [31] 0.8 [31] + 1.66c

Bucumolol 0.8 [112] Not determined -0.60c +0.93m [112]

Bunitrolol 0.7 [158] Not determined -0.92c -0.36m [192]

(-) Bupranolol 1.6 [143] 0.3 [143] +0.29c +0.57m [141]

Butylpindolol 0.7 [45] 0.7 [45] -0.16m [45]

Carazolol 0.15 [117] Not determined +0.80c +1.36m [220]

(-) Carteolol 0.1 [133] 0.1 [133] -1.55c

(-) Carvedilol 0.4 [175] Not determined +2.97c

CGP 12177 0.3 [173] 0.9 [173] -2.07c -0.49m [5]

CGP 12388 Like CGP 12177 [241] Like CGP 12177 [241] -2.01c

(-) CGP 20712A 0.5 [61] 4200 [61] +1.78c

Chloranolol Sub-nM [78] Not determined +0.47c

(-) Dihydroalprenolol 0.6 [58] 0.4 [58] +0.69c +1.00m [220]

Erhardt et al., compd 12 0.1 [77] 0.5 [77] -1.19c

Erhardt et al., compd 14 0.2 [77] 1 [77] -1.25c

Exaprolol 0.2 [110] Not determined +1.61c

Fluorocarazolol 0.4 [243] 0.1 [243] +2.19c

Fluoroethylcarazolol 0.5 [67] 0.4 [67] +1.66c

ICI 89,406 0.3 [180] 100 [180] -1.05c

ICI 118,551 68 [25] 0.5 [25] +1.07c +1.33m [45]

ICI 147,798 0.8 [126] 1.6 [126] -0.11c

Indenolol Like propranolol [229] Not determined -0.05c

Iodoazidobenzylpindolol Unknown 0.5-0.7 [191] +4.16c

Iodocyanopindolol < 0.1 [33] < 0.01 [90] +0.43c +1.26m [220]

Iodohydroxybenzylpindolol < 0.2 [238] 0.2 [153] +2.68c

Iodopindolol 0.2 [146] Not determined +0.62c

IPS 339 13 [155] 0.8 [155] +0.98c

K 105 Like bupranolol [144] Like bupranolol [144] -0.24c

Kierstead et al., compd 4a 35 [129] 0.6 [129] -2.80c

Kierstead et al., compd 4d 650 [129] < 0.1 [129] -3.71c

Kierstead et al., compd 4f 60 [129] 0.8 [129] -3.38c

Kierstead et al., compd 4v 55 [129] < 0.1 [129] -3.52c
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(Table 1) contd….

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Kö-1313 < propranolol [18] 22 [114] -0.83c

Kö-1366 < propranolol [18] Like propranolol [18] -0.92c

L 643,717 0.8 [169] 7413 [169] +3.36c

Los Angeles, compd 21a 182 [150] 0.3 [150] +3.76c

LT 18-502 0.7 [108] 0.4 [108] -0.29c

Mauléon et al., compd 3b 0.2  [156] < 0.1 [156] +0.91c

McClure et al., compd 34 0.6 [158] Not determined +0.14c

McClure et al., compd 40 0.7 [158] Not determined +0.86c

McClure et al., compd 42 0.7 [158] Not determined +0.86c

(S,R) Nipradilol 0.3 [211] 0.7 [211] -0.75c

(-) Penbutolol < propranolol [99] Not determined +1.17c +1.97m [192]

(-) Pindolol 0.9 [106] 1.2 [106] -0.53c -0.33m [45]

Procinolol < alprenolol [214] Not determined +0.84m [192]

(-) Propranolol 0.6 [58] 0.7 [58] +0.43 +1.20m [45]

Soquinolol 3.3 [92] 0.8 [92] -1.78c

Spirendalol 12 [169] < 0.1 [169] +0.67c

Tertatolol 0.4 [244] 1.5 [244] -0.09c

(-) Timolol 0.8 [58] 0.5 [58] -2.14c

Toliprolol Like bupranolol [254] 44 [114] -0.22c

Symbols: compd = compound; c = calculated, m = measured log P.

Table 2. ß-Adrenoceptor Antagonists with Affinities in the nM Range for at least one of the ß-Adrenoceptor Subtypes

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Adimolol 1.2 [151] Not determined +1.87c

BFE37 Not determined 2.3 [228] +0.56c

Bisoprolol 1.6 [128] 100 [128] -0.20c

BL 343 Ac 3.2 [131] Not determined -0.51c

Bopindolol 229 [108] 4.3 [108] +2.45c

Bufetolol 2.2 [118] Not determined -0.53c

Bufuralol 2.5 [166] Not determined +0.73c

Bunolol See levobunolol See levobunolol -0.53c

Capsinolol 6.9 [40] 9.1 [40] +1.50c

Carré et al., compd 15a Unknown 1.3 [37] +0.04c

Carré et al., compd 15b Unknown 1.3 [37] +0.13c

Carré et al., compd 9b Unknown 2.0 [37] +1.41c

Compound A Like MK-761 [207] Like MK-761 [207] +0.23c
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(Table 2) contd….

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Compound 10 6.8 [28] 2.1 [28] -0.53c

Dilevalol 6.3 [166] Not determined +0.65c

Epanolol 3.8 [24] 468 [24] -0.75c +0.92m [24]

Eugenolol 5.2 [253] 6.6 [253] +0.29c

Falintolol 23 [28] 6.9 [28] -0.86c

Ferulidilol 9.1 [253] 31 [253] +2.21c

Flestolol 9.8 [89] 6.9 [89] -0.93c

Flusoxolol >= pindolol [157] Not determined +1.19c

HX-CH 44 BS 5-10 [50] 7493-10000 [50] -4.21c

Kam 96 2.5 [124] 6.3 [124] -0.32c

Labetalol 4.9 [44] 7.9 [44] +0.65c

Levobunolol Not determined 2.1 [187] -0.53c

LK 203-939 4.5 [163] 9332 [163] -0.55c

LK 204-545 3.2 [163] 10965 [163] +0.81c

LL 21-945 2.5 [43] Not determined Unknown

(-) Medroxalol 4 [41] Not determined +0.50c

Mepindolol 1.6 [10] 5 [10] -0.39c +0.05m [192]

Metipranolol 5 [223] 4 [223] +0.08c +0.43m [192]

MK 761 1.5 [169] Not determined -1.78c

l-Moprolol 1.2 [183] 5.8 [183] -0.77c -0.64m [192]

Nebivolol 7.6 [31] 310 [31] +2.22c

Oxprenolol 2.1 [106] 6.2 [106] -0.18c

(-) P0160 3 [87] 340 [87] Unknown

S 2395.1 1259 [68] 4 [68] Unknown

Sulfinalol As MK761 [226] Not determined -0.30c

Tilisolol 55 [172] 2.8 [172] -2.00c

(-) Tolamolol 2.8 [2] 36 [2] +0.81c

Xibenolol 2.9 [106] 1.7 [106] +0.19c

Abbreviations as in Table 1

Table 3. Low-Affinity ß-Blockers

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Affinity 10-100 nM

(-) Amosulalol 13 [60] Not determined +0.55c

9-Amino-Acridine Propranolol 20 [160] 30 [46] +1.72c

(-) Betaxolol 19 [142] 151 [142] +0.24c +0.55m [192]
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(Table 3) contd….

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Affinity 10-100 nM

Bevantolol 15 [230] 589 [230] +2.22c

BFE-55 Not determined 20 [228] -0.11c

exo Bornaprolol 25 [138] Not determined +1.44c +2.53m [192]

Cetamolol 20 [195] 50 [195] -1.93c  -1.03m [192]

Cicloprolol 15 [213] Not determined -0.15c

Dehydrozingeronolol 31 [253] 141 [253] -0.52c

Eugenodilol 13 [253] 47 [253] +2.44c

H-I 42 BS 14 [49] 3000 [49] -0.76c

Isoeugenolol 13 [148] 759 [148] +0.32c

LK 203-030 17 [163] 16596 [163] -1.09c

LK 204-155 28 [163] 60256 [163] -0.02c

Nadolol 13 [68] 32 [68] +1.29c

Nadoxolol Moderate [250] Not determined +1.85c

Pafenolol 28 [71] 2240 [71] -0.69c +0.30m [193]

Pamatolol 28 [120] 2884 [120] -1.05c

Pargolol Moderate [111] Not determined -0.19m [192]

Primidolol Moderate [201] Not determined Unknown

Prizidolol 69 [233] 93 [233] -1.14c

Talinolol Moderate [53, 79] Not determined -0.12c

Trimetoquinol 324 [150] 44 [150] +1.44c

Vanidilol 21 [253] 22 [253] -1.12c

Vanidipinedilol 81 [255] 229 [255] Unknown

Vaninolol 21 [253] 174 [253] -0.65c

Vasomolol 39 [253] 1549 [253] -0.23c

Xamoterol 56 [152] 5754 [152] -2.73c

Zingeronolol 30 [252] 155 [252] -0.64c

Affinity > 100 nM

Acebutolol 646 [142] 4169 [142] -0.77c

(-) Atenolol 603 [142] 4266 [142] -2.07c -2.24m [142]

Butidrine Like atenolol [27] Like atenolol [27] +1.11c

Butofilolol Like atenolol [140] Like atenolol [140] +0.11c

Butoxamine 15136 [204] 3715 [204] -0.64c

Celiprolol 350 [97] 2800 [97] -1.13c

DAPN 300 [46] Not determined ?

Esmolol 110 [194] 4677 [194] -0.44c

Ferulinolol 103 [253] 2412 [253] -0.13c
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(Table 3) contd….

Compound ß1 affinity (nM) ß2 affinity (nM) Log P (pH 7.4)

Affinity > 100 nM

Landiolol 257 [113] 66069 [113] -2.11c

LT 20-785 1175 [108] 214 [108] -1.92c

(-) Metoprolol 141 [142] 631 [142] -0.56c

Nifenalol 126 [216] Not determined -0.59c

(-) Practolol 1175 [142] 128825 [142] -1.74c -1.49m [106]

Pronethalol Not determined 160 [115] -0.10c

Sotalol 603 [106] 148 [106] -1.15c

Xanthonolol 50000 [39] Not determined +2.15c

Abbreviations as in Table 1

Fig. (3). Chemical structures of some potent ß-blockers which have not yet been labeled with a positron emitter.

imaging purposes. These include: benzylcyanopindolol,
butylcyanopindolol, cyanopindolol, cyclohexylcyanopindolol,
ethylesterpindolol, iodoallyl-cyanopindolol, iodobutylcyano-
pindolol, iodocyclohexylcyanopindolol, iodoethylesterpin-
dolol, and isopropylcyanopindolol [105]. However, we do
not expect these compounds to be suitable for cerebral beta-
adrenoceptor imaging as: (i) they are not very lipophilic
(calculated log P values < + 1.5 with exception of iodocyclo-
hexylcyanopindolol), so they will probably have low brain
uptake and (ii) they probably bind not only to ß-adrenocep-
tors but also to 5-HT1A and 5-HT1B receptors within mamma-
lian brain [63].

Of the 41 potent compounds listed in Table 2, only one
has a Kd < 1.5 nM and a log P > +1.5, namely adimolol.
Unfortunately, adimolol has a chemical structure which is
not amenable to labeling with either 11C or 18F.

Although some of the 46 ß-blockers listed in Table 3
have been labeled with 11C or 18F and evaluated for imaging
purposes, no specific binding was ever observed in vivo. This

result was to be expected, since for these antagonists, Bmax/
Kd < < 1. Therefore, they cannot accumulate in target tissues
above plasma levels due to ligand-receptor interaction.

Thus, extensive screening of the pharmacological litera-
ture yields very few novel drugs which can still be labeled
with a positron emitter and be evaluated as radiopharma-
ceuticals for cerebral ß-adrenoceptor imaging. 11C-Exaprolol
and 11C-L643,717 may be prepared, using the acetone and
methyliodide methods.

ENHANCING LIGAND UPTAKE: BLOOD-BRAIN
BARRIER OPENING

Since there are very few novel candidate ligands for ß-
adrenoceptor imaging in the CNS, we considered the possi-
bility of enhancing the brain uptake of existing radioligands
(e.g. 11C-CGP 12388 or 11C-CGP12177) by temporary
opening of the blood-brain barrier. Various strategies for
BBB opening have been proposed to deliver therapeutic
agents (cytostatic drugs, antisense oligonucleotides, immune
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proteins and growth factors) to human brain for the treatment
of intracerebral tumors and other diseases [107, 190, 134].

Permeability of the BBB can be increased by the
following techniques:

Osmotic Shock

If a hypertonic solution of mannitol, arabinose or urea is
administered for 30 s through a vessel which supplies blood
to the brain, the endothelial cells in the cerebral vessels
contract, both via passive shrinking and because of calcium-
induced contraction of the cytoskeleton. This leads to
transient opening of the blood-brain barrier, for a period of
10 min to about 2 h [22, 134, 212, 248].

Receptor-Mediated Permeability Increase

The cytoskeleton of endothelial cells can also be forced
to contract by administration of bradykinin or histamine H2

receptor agonists. The synthetic peptide RMP-7 (CereportR,
labradimil) is used for this purpose in clinical trials [17, 57,
74].

Inducing Endothelial Leakiness

The endothelium lining the cerebral blood vessels can be
made leaky by transient infusion of various compounds, such
as short-chain alkylglycerols, sodium dodecylsulfate, dehyd-
rocholate and oleic acid. Such compounds induce large pores
in the vessel wall which allow the transport of therapeutic
drugs with molecular weights up to 70 kD [76, 176, 199,
219, 227].

Acute Acidosis

Infusion of an acidic buffer (40 mM malonic acid pH 2.5)
induces transient (60 s) opening of the tight junctions in the
cerebral endothelium, resulting in significant brain uptake of
polar test substances [178]. A similar effect is observed after
provoking acute hypertension by infusion of epinephrine or
phenylephrine [171].

Infusion of Bacterial Glycopeptides

Causes a time- and dose-dependent increase of the
permeability of the blood-brain barrier for substances with
molecular weight smaller than 20 kD [218].

Although such strategies have shown to be effective and
will certainly result in increased uptake of polar radiophar-
maceuticals within the CNS [6, 7, 119], they cannot be used
for cerebral ß-adrenoceptor imaging.

First, the barrier modifiers have to be infused through a
vessel which supplies blood to the brain, preferably the arteria
carotis. Intrafemoral infusion is not effective [34]. After
infusion of the therapeutic agents, the blood-brain barrier is
opened in one cerebral hemisphere only (the ipsilateral
hemisphere). Cannulation of the carotis followed by osmotic
opening of the blood-brain barrier is a surgical manipulation
which cannot be performed in healthy volunteers. It requires
general anesthesia [203] and is only allowed in patients when
the benefits of the treatment outweigh its risks.

Second, osmotic opening of the blood-brain barrier app-
ears to be relatively dangerous. Development of microinfarc-
tion is possible [225], although this risk can be minimized by
administration of the mannitol solution via a Millipore filter
to prevent infusion of microcrystals [235, 189]. Seizures
were noticed in 2 out of 45 cancer patients upon infusion of
mannitol [197]. Finally, there is the possibility of subsequent
demyelination and development of multiple sclerosis [3].

This combination of factors makes opening of the BBB a
last resort for the treatment of cancer, but not a viable option
for the study of neuroreceptors within the human CNS.

ENHANCING LIGAND UPTAKE: PRODRUG
APPROACH

Another approach to enhance the brain uptake of
established radioligands is esterification of the OH-group in
the aryloxy part of the molecule, resulting in a lipophilic
prodrug which can be converted to the active compound by
cerebral esterases. An example of this targeting strategy is
the registered drug bopindolol (SandonormR, see Fig. 4).
Bopindolol is the benzoyl ester of the beta-blocker LT18-
502. The active drug (LT18-502) has a high affinity to the ß1

and ß2 subtypes of adrenoceptors (Kd 0.7 and 0.4 nM), but its
lipophilicity is low (calculated logP -0.29 at pH 7.4) which
results in a relatively low bioavailability after oral dosing.
The prodrug (bopindolol) is much more lipophilic (calcu-
lated logP +2.45 at pH 7.4) and easily taken up from the
intestine. In contrast to its active metabolite, bopindolol has a
rather low affinity to ß1-adrenoceptors (Kd 229 nM), but it is

Fig. (4). Conversion of bopindolol to its active metabolite by esterases.
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rapidly converted to LT18-502 in vivo, since the benzoyl
ester bond is hydrolyzed [30, 42, 108, 109, 177, 200].

A similar targeting strategy could be employed to increase
the delivery of hydrophilic ligands to the brain of intact
animals or man. A calculated logP of +2.45 (as displayed by
bopindolol) is about optimal for passive diffusion of a
radiolabeled compound across the blood-brain barrier upon
intravenous injection [147, 59, 165, 208]. Hopefully, the
benzoyl esters are not substrates for P-glycoprotein, for this
would result in very low brain uptake, as was observed for
11C-carvedilol. If the esterified ß-blockers are not actively
expelled from the brain, visualisation of cerebral ß-adreno-
ceptors will be critically dependent on rapid conversion of
the prodrugs to the active compounds. The half-life of the
benzoyl ester of LT18-502 in humans upon oral dosing is 18
min [4], i.e. within a PET time scale, but the half-life of the
ester bond within the CNS is unknown. If the hydrolysis of
benzoyl esters within the CNS is not rapid enough, other
chemical structures (e.g. acetyl- and butyl esters) could be
tried. A comparable targeting strategy, i.e. synthesis of
ketoxime analogs of known beta-blockers, has been used to
deliver beta-adrenoceptor antagonists to the iris-ciliary body
of the eye [26].

Calculations show that the logP of several potent ß-
blockers can be changed to the optimal value of +2…+3 by
the addition of a benzoyl group. Thus, this approach may
hold promise for the development of novel radioligands for
the visualisation of cerebral ß-adrenoceptors.

CONCLUSION

The development of radioligands for visualisation of
cerebral beta-adrenoceptors has proven to be unusually
difficult. Future work in this area should perhaps be focused
on chemical modification of myocardial imaging agents to
increase their lipophilicity (i.e., a prodrug approach to target
the tracer to the CNS) rather than on labeling of beta-
blockers which are used as drugs.

ABBREVIATIONS

BIS = Bisoprolol

BUP = Fluoroisopropyl analog of bupranolol

CAR = Carazolol

CGP = CGP12177 and/or CGP12388

CGP1 = CGP12177

CGP2 = CGP20712A

CGP3 = CGP12388

CVD = Carvedilol

FCA = Fluorocarazolol

FCG = Fluoroisopropyl analog of CGP12388

FEC = Fluoroethylcarazolol

FOR = Formoterol

FPR = Fluoropropranolol

ICI = ICI 118,551

ICYP = Iodocyanopindolol

IPIN = Iodopindolol

PEN = Penbutolol

PIN = Pindolol

PRO = Procaterol

SUV = Standardized Uptake Value
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