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Abstract

The main topic of this paper is the matrix V = A−XY ∗, where A is a nonsingular com-
plex k × k matrix and X and Y are k × p complex matrices of full column rank. Because
properties of the matrix V can be derived from those of the matrix Q = I −XY ∗, we will
consider in particular the case where A = I . For the case that Y ∗X = I , so thatQ is singular,
we will derive the Moore–Penrose inverse of Q. The Moore–Penrose inverse of V in case
Y ∗A−1X = I then easily follows. Finally, we will focus on the eigenvalues and eigenvectors
of the real matrix D − xy′ with D diagonal.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In statistics, econometrics and linear algebra we often encounter a matrix of the
type V = A−XY ∗, where A is some nonsingular k × k complex matrix and X, Y
are k × p complex matrices of rank p < k. Of special interest is the case p = 1.
Well-known is the centering operator with the matrix H = I − k−1ιι′, where ι is a
k × 1 vector of ones. This operator maps a vector (x1, . . . , xk)

′ to (x1 − x̄, . . . , xk −
x̄)′, where x̄ denotes the mean of the xi . The matrix H is idempotent being the
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orthogonal projector on the subspace orthogonal to the vector ι. Another well-known
example is R = � − ππ ′, where π = (π1, . . . , πk)

′ with πi > 0, ι′π = 1, and � =
diag(π). Note that nR is the covariance matrix of the multinomial distribution with
parameters n and π . A third example is V = diag(d)+ aι′, where d, a ∈ Rk have
positive elements. This matrix was originally studied by Vermeulen [18], because of
a physical investigation on the electronic properties of particle-counting diamonds.

The matrix V , with A symmetric and p = 1, was studied in its general form by
Trenkler [17]. He generalized results previously obtained by Vermeulen [18], Klam-
kin [10], Tanabe and Sagae [16], Neudecker [12], and Watson [20]. We will continue
this line of research by, for example, dropping the assumption of symmetry of A
and allowing p > 1. We also consider the more special case V = D − ab′, where
D = diag(d) and a, b, d ∈ Rk .

In our notation, Vermeulen [18] showed that the eigenvalues of D − aι′, where
D = diag(d), d1, . . . , dk > 0 and a1, . . . , ak < 0, are real. Klamkin [10] gave a more
elementary derivation. Moreover, he gave simple bounds for the eigenvalues. He
derived the characteristic polynomial

|λI − (D − aι′)| =

1 +

k∑
j=1

aj

λ− dj




k∏
i=1

(λ− dj ). (1.1)

From this result, he observed that if 0 < d1 < d2 < · · · < dk , then the eigenvalues
λ1, . . . , λk are obtained by solving

1 +
k∑
j=1

aj

λ− dj = 0, (1.2)

and if some of the di coincide, then there will be eigenvalues equal to the di that
coincide. This was generalized to D − ab′ by Trenkler [17]. In Section 5, we will
return to these results of Trenkler [17] and give alternative proofs that exploit the
original ideas of Vermeulen [18] and Klamkin [10]. Moreover, we will also derive
the eigenvectors using some ideas of Watson [20].

De Boer and Harkema [2] were interested in the maximum likelihood estimation
of sum-constrained linear models: Y ∼ Nk(µ,�), ι′Y = c, so that �ι = 0, where
a certain structure will be imposed on µ. Such models are of interest in modelling
demand systems, brand choice, and so on. In case of relatively small samples, the
model has to be parsimonious, especially with regard to the parameterization of �.
De Boer and Harkema [2] suggested the specification

� = D − 1

ι′d
dd ′, (1.3)

where D = diag(d) and d ∈ Rk, di /= 0, i = 1, . . . , k. Because of the constraint,
they deleted one component of Y and the (k − 1)× (k − 1) covariance matrix ob-
tained became nonsingular. Wansbeek [19] assumed d1 < · · · < dk and obtained the
following results. One eigenvalue of � is equal to zero, the other eigenvalues λ
satisfy
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k∑
i=1

di

λ− di = 0. (1.4)

This follows from the characteristic equation he derived in the following way:

0 = |λI − �|=|λI −D|
(

1 + 1

ι′d
d ′(λI −D)−1d

)

= 1

ι′d
|λI −D|

(
ι′(λI −D)(λI −D)−1d + d ′(λI −D)−1d

)
=|λI −D|

{ λ
ι′d
ι′(λI −D)−1d

}
.

Wansbeek [19] observed from (1.4) that if di and di+1 are of the same sign, then
there lies an eigenvalue between them. We will use the same method in Section 5
to obtain the characteristic polynomial of D − ab′. Wansbeek [19] also derived the
Moore–Penrose inverse of �, namely �+ = HD−1H . Since the matrix � is sym-
metric and should be positive semi-definite, he concluded that 0 < d2 < · · · < dk is
a necessary condition. In case d1 < 0 < d2 < · · · < dk he used the Moore–Penrose
inverse to establish that it is necessary that

∑k
i=1 di < 0. This can, however, more

easily be shown by observing that it is necessary that the (1, 1) element of � should
be nonnegative. This amounts to

d1 − 1

ι′d
d2

1 > 0

and hence d1 < 0 implies that ι′d < 0.
A matrix that is very similar to � is the matrix R we already discussed, since

the covariance matrix of the multinomial distribution is based upon R = � − ππ ′,
where � = diag(π), π1, . . . , πk > 0 and ι′π � 1. If there are k + 1 possible cat-
egories, then one may wish to count only the number of outcomes in the first k
categories, because the number of outcomes in category k + 1 uniquely follows from
the total number of outcomes in the remaining categories. In this case ι′π < 1. The
matrix R has been studied under the condition ι′π � 1 by Tanabe and Sagae [16].
They obtained, among other things, the square-root free Cholesky decomposition,
the Moore–Penrose inverse in case ι′π = 1, namely R+ = H�−1H , and the inverse
in case ι′π < 1, that is, R−1 = �−1 + (1 − ι′π)−1ιι′. Neudecker [12] offered more
elegant proofs and presented some new results. Watson [20] assumed ι′π = 1 and
showed how the eigenvalues and eigenvectors can be obtained. He showed that an
eigenvalue not equal to any of the πi satisfies

k∑
i=1

π2
i

πi − λ = 1. (1.5)

This equation is very similar to (1.2) and (1.4). One eigenvalue is equal to zero and
the other eigenvalues λ1, . . . λk−1 satisfy

π1 � λ1 � π2 � λ2 � π3 � · · · � λk−1 � πk
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with strict inequalities if the π ′
i s are all distinct. Similar observations have been made

by Klamkin [10] and Wansbeek [19]. Watson furthermore derived how to obtain the
eigenvectors. The product of the nonzero eigenvalues of R was obtained by Tanabe
and Sagae [16] and Neudecker [12].

Dol [3] and Dol et al. [4] studied the Horvitz-Thompson estimator. Consider a
finite population Y1, . . . , YN . A fixed effective sample design of size n can be inter-
preted as a probability distribution on the set of all subsets of n elements from the
labels {1, . . . , N}. Let S denote the random set of n labels that occur in the sample.
The indicators E1, . . . , EN are defined by Ei = 1 if i ∈ S, and Ei = 0 if i /∈ S. The
first order inclusion probability is πi = P(S � i) for i = 1, . . . , N . It is assumed that
πi = EEi is positive. The Horvitz-Thompson estimator ȲHT for the population mean
Ȳ is

ȲHT = 1

N

∑
i∈S

Yi

πi
= 1

N

N∑
i=1

Ei
Yi

πi
.

This is a famous unbiased estimator. In order to give the variance, the second order
inclusion probabilities are needed: πij = P(S � i, j) = EEiEj , for i, j = 1, . . . , N .
Note that πii = πi . We define π = (π1, . . . , πN)

′,� = diag(π) and �2 = (πij ). It
is easy to see that π ′ι = n and �2ι = nπ . The well-known expression for the vari-
ance of the Horvitz-Thompson estimator is

Var ȲHT = N−2Y ′�−1(�2 − ππ ′)�−1Y,

where Y = (Y1, . . . , YN)
′. The matrix �2 − ππ ′ looks similar to R, but it is more

complicated. In order to derive bounds for this variance, Dol [3] and Dol et al. [4]
obtained the following Moore–Penrose inverse:

(�2 − ππ ′)+ = H�−1
2 H.

Inspired by Trenkler [17], we will derive the (Moore–Penrose) inverse of

V = A−XY ∗, (1.6)

where A is a nonsingular k × k complex matrix and X and Y are k × p complex
matrices of full column rank p < k. Thus, we will generalize Trenkler’s results in
two ways. First, the matrix A is only restricted to be nonsingular, symmetry is not
necessary. Secondly, the vectors a and b in the matrixA− ab′ examined by Trenkler
can be replaced by matrices of full column rank. Because |V | = |A| |I − Y ∗A−1X|
(see e.g. [7]), an interesting case is Y ∗A−1X = I , so that V is singular. We call this
the singular case and it will be discussed in Section 4. Note that the assumption that
Y ∗A−1X = I implies that bothX and Y are of full-column rank. If |I − Y ∗A−1X| /=
0, then V is invertible, and we will refer to this as the nonsingular case. It will be
discussed in Section 3. We will not consider the mixture case where Y ∗A−1X /= I

and |I − Y ∗A−1X| = 0.
It is worthwhile to first consider a special case of (1.6), namely A = I , because

properties of the matrix V can be derived from those of the matrixQ = I −XY ∗. If
Y ∗X = I , then the matrixQ is idempotent, sinceQ2 = Q, hence
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rank(Q) = tr(Q) = k − tr(XY ∗) = k − tr(Y ∗X) = k − p.
In particular, if V = A−XY ∗ with Y ∗A−1X = I , it is not difficult to see that the

rank of V also equals k − p, since V = A−XY ∗ = A(I − A−1XY ∗), and
rank(V ) = rank(I − A−1XY ∗) = k − p as we showed above.

In the literature, considerable attention has been paid to the (generalized) inverse
of a sum of matrices. Henderson and Searle [7] reviewed and derived expressions for
the (generalized) inverse of matrices of the form A+ UBV , where A is nonsingular
and U,B and V may be rectangular. Riedel [15] considered the matrix A+ (V1 +
W1)G(V2 +W2)

∗ withA square and singular, G nonsingular and Vi andWi possibly
rectangular, i = 1, 2. Under the conditions R(V1)⊆ R(A),R(W1)⊥R(A),R(V2) ⊆
R(A∗),R(W2)⊥R(A∗),W1 is of full rank,W2 is of full rank and R(W1) = R(W2),
they were able to find an explicit expression for (A+ (V1 +W1)G(V2 +W2)

∗)+ in
terms of A+,G, V1, V2,W1, and W2. Fill and Fishkind [5] exploit this result to find
a neat relationship between the Moore–Penrose inverse of A+ B and the Moore–
Penrose inverse of the individual terms A and B, provided that rank(A+ B) =
rank(A)+ rank(B). Moreover, they also showed that this rank-additivity hypothesis
cannot be avoided in any proof that uses the result by Riedel, since rank additivity
is shown to be implied by the hypotheses of Riedel’s theorem. Because rank(A−
XY ′) = k − p while rank(A)+ rank(XY ′) � k, the result of Fill and Fishkind does
not apply to our situation, and consequently, neither does the result of Riedel. Kala
and Klaczyński [9] established the representation of various generalized inverses
of the sum of two (i) rectangular matrices of the form A+ BDC∗, and (ii) Her-
mitian positive semi-definite matrices of the form A+ BDB∗, where A and D are
Hermitian positive semi-definite matrices, thereby extending the results of Riedel.
However, by checking the conditions Kala and Klaczyński impose on the matrix
A+ BDC∗, it follows that their results are also not applicable to obtain the Moore–
Penrose inverse of our matrix A−XY ∗. For results on generalized inverses of a sum
of two weakly bicomplementary matrices, we refer to Werner [21] and Jain et al. [8].

In Section 2 we present some preliminaries. Subsequently, we will shortly address
the case where V is nonsingular in Section 3. Section 4 deals with the singular case,
where we will first consider the specific situation where A = I . The general case
then easily follows. In Sections 2–4, the matrices may be complex. Finally, Section
5 focuses on the eigenvalues and eigenvectors of the real matrix D − xy′ with D
diagonal.

2. Some preliminaries

Let A be a k × p complex matrix and consider a p × k complex matrix X which
satisfies one ore more of the following properties:

(1) AXA = A,
(2) XAX = X,
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(3) XA is Hermitian,
(4) AX is Hermitian.

IfX satisfies (1), thenX is called a generalized inverse ofA, denoted byX = A−.
If X satisfies both (1) and (2), then X is called a reflexive generalized inverse of A,
which is denoted by X = A−

r . If X satisfies the properties (1), (2), and (3), then we
call X a left pseudoinverse of A, denoted by A−

L , whereas we call X a right pseudo-
inverse of A, denoted by A−

R , if it satisfies the properties (1), (2), and (4). Finally,
if X satisfies all four properties, then X is called the Moore–Penrose inverse of A
which we will denote by A+. The Moore–Penrose inverse of a matrix is uniquely
defined by (1)–(4). For textbooks on generalized inverses we refer to, for example,
[1,14].

Lemma 1. The matrix A−
LAA

−
R is the Moore–Penrose inverse of A.

This lemma is easily proved by checking the four conditions the Moore–Penrose
inverse has to satisfy [1, Chapter 1].

As already mentioned in Section 1, the matrix Q = I −XY ∗ is idempotent if
Y ∗X = I . A typical example is Y ∗ = X+ = (X∗X)−1X∗. In this case Q = I −
XX+ = I −X(X∗X)−1X∗ is the very familiar Hermitian, idempotent matrix to
be denoted by QX: the orthogonal projector on the orthogonal complement of the
column space of X.

Since we also use the properties of idempotent matrices, we recall the most impor-
tant facts. A k × k complex matrix Q is idempotent if Q2 = Q. In statistics and
econometrics, Q will often also be Hermitian, but this is not necessary as we have
remarked. IfQ is idempotent, then I −Q is also idempotent andQ(I −Q) = (I −
Q)Q = 0. For idempotent matrices, the rank is equal to the trace.

3. The nonsingular case

Let A be a nonsingular complex k × k matrix and X and Y complex k × p matri-
ces. It is well-known that the matrix

S =
(
A X

Y ∗ I

)
can be written as

S =
(

I 0
Y ∗A−1 I

) (
A 0
0 I − Y ∗A−1X

)(
I A−1X

0 I

)
. (3.1)

This representation is very instructive, since it immediately follows that S is nonsin-
gular if and only if I − Y ∗A−1X is nonsingular. Moreover, Eq. (3.1) also shows that
|S| = |A| |I − Y ∗A−1X|. If S is nonsingular, we know from the standard results on
inverses of partitioned matrices that S11, the upper left-hand block of S−1, can be
written in two ways:
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S11 =A−1 + A−1X(I − Y ∗A−1X)−1Y ∗A−1 (3.2)

= (A−XY ∗)−1, (3.3)

and we have a well-known expression for (A−XY ∗)−1, also known as the Sher-
man–Morrison–Woodbury formula. Henderson and Searle [7] gave an excellent re-
view of the Sherman–Morrison–Woodbury formula and related formulas. If S is
singular, it is tempting to replace the inverses by Moore–Penrose inverses. According
to Corollary 4.4 from [13], we have the following result.

Theorem 1. If A is a k × k complex matrix, X and Y are k × p complex matrices
with k � p, and if

rank

(
A

Y ∗
)

= rank(A,X) = rankA = rank (A−XY ∗)

and

rank (I − Y ∗A+X) = p,

then

(A−XY ∗)+ = A+ + A+X(I − Y ∗A+X)−1Y ∗A+. (3.4)

On account of Theorem 4.6 from [13], which originates from [11, p. 439], we
know that we need I − Y ∗A+X to be nonsingular in order to have results similar to
(3.2) and (3.4).

However, in the sequel, we will focus on the case that Y ∗A+X = I . In particular,
we already assumed that A is nonsingular. Note that theorem 1 also does not apply
to the mixture case where Y ∗A−1X /= I and |I − Y ∗A−1X| = 0, as mentioned in
Section 1.

4. The singular case

In this section we will be interested in obtaining the Moore–Penrose inverse of
V = A−XY ∗, where the k × k complex matrix A is nonsingular and the k × p
complex matrices X and Y satisfy the condition Y ∗A−1X = I . As we observed, this
implies that X and Y are of full column rank p < k. We will first derive the Moore–
Penrose inverse in the special case thatA = I and then derive the more general result
in a constructive way.

Let Q = I −XY ∗ where X and Y are k × p matrices with Y ∗X = I . Some use-
ful properties are:

QX = 0, Y ∗Q = 0, (4.1)

QQX = Q, QYQ = Q, (4.2)

QXQ = QX, QQY = QY , (4.3)



T. Steerneman, F. van Perlo-ten Kleij / Linear Algebra and its Applications 410 (2005) 70–86 77

QY = −QYXY ∗Y, X∗Q = −X∗XY ∗QX, (4.4)

QQ = Q. (4.5)

Obviously, we have from (4.2) and (4.5) that QQXQYQ = QQ = Q, so that
QXQY is a generalized inverse of Q. Next, we observe that QYQQX = Q. Hence
QXQYQQXQY = QXQQY = QXQY . Moreover, QXQYQ = QXQ = QX and
QQXQY = QY are Hermitian matrices. These observations prove the following
theorem.

Theorem 2. Let Q = I −XY ∗, where X and Y are k × p complex matrices with
Y ∗X = I. Then

Q+ = QXQY .

We can now use Theorem 2 and Lemma 1 to prove our main result as given in the
following theorem.

Theorem 3. Let V = A−XY ∗, where A is a nonsingular complex k × k matrix,
and X and Y are k × p complex matrices with Y ∗A−1X = I. Define K = A−1X

and L = (A−1)∗Y, then

V + = QKA
−1QL

is the Moore–Penrose inverse of V .

Proof. We will derive the Moore–Penrose inverse by using a left and right pseudo-
inverse of V , cf. Lemma 1. Note that

A−XY ∗ =A(I − A−1XY ∗)
= (I −XY ∗A−1)A.

This suggests to consider (I − A−1XY ∗)+A−1 and A−1(I −XY ∗A−1)+ to be de-
noted by V −

L and V −
R , respectively. Obviously, V −

L is indeed a left pseudoinverse of
V and V −

R is a right pseudoinverse of V . Lemma 1 states that the Moore–Penrose
of V can now be computed as V + = V −

L V V
−
R . From Theorem 2 we know that

(I − A−1XY ∗)+ = QKQY and (I −XY ∗A−1)+ = QXQL. On account of (4.2),
it follows that

V + =QKQYA−1(A−XY ∗)A−1QXQL

=QKQY (I −KY ∗)A−1QXQL

=QK(I −KY ∗)A−1QXQL

=QKA−1(I −XL∗)QXQL
=QKA−1(I −XL∗)QL
=QKA−1QL. �
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Taking X = a and Y = −b, we have the result derived in [17]. If we compare
the expression of Trenkler for the Moore–Penrose inverse of A+ ab′ with V +, then
we see that our result is a straightforward generalization. We therefore could have
guessed this solution and verify the four conditions the Moore–Penrose inverse has
to satisfy, just as we did in the proof of Theorem 2. Anyway, the basic properties
(4.1)–(4.5) of idempotent matrices like Q are needed. We think, however, that the
proof as given above is nicer, because it is more constructive.

5. Eigenvalues and eigenvectors of D − xy′

Throughout this section we will only deal with real matrices and vectors. We will
study the eigenvalues and eigenvectors of the matrixD − xy′, whereD = diag(d) is
a nonsingular diagonal real matrix and x and y are k × 1 real vectors. Similar prob-
lems have been studied by Vermeulen [18], Klamkin [10], Wansbeek [19], Watson
[20] and Trenkler [17]. Trenkler noted that we need not restrict ourselves to diagonal
D. If we look at the eigenvalues of A− xy′, where A is a nonsingular symmetric
matrix, then there exists an orthogonal matrix C, such that A = C�C′, where � is
a nonsingular diagonal matrix with the eigenvalues of A along its diagonal. Since
A− xy′ and � − C′xy′C have the same eigenvalues, we might as well study the
matrix � − C′xy′C. The condition of symmetry can be replaced by the requirement
that A is similar to a diagonal matrix �, that is, A = U�U−1 for some k × k matrix
U . In this case, the eigenvalues of A− xy′ coincide with those of � − U−1xy′U .

5.1. Eigenvalues

Consider the matrix D − xy′, where D = diag(d) is a nonsingular diagonal mat-
rix and d, x and y are k × 1 vectors. We are interested in the eigenvalues of this
matrix. Inspired by Vermeulen [18], we now present the following theorem.

Theorem 4. IfD = diag(d) is a nonsingular diagonal k × k matrix and x and y are
k × 1 vectors with xiyi /= 0, i = 1, . . . , k, then

|D − xy′| = (−1)s(x,y)|Dxy − vv′|,
where

Sx = diag(sgn x1, . . . , sgn xk),

Sy = diag(sgn y1, . . . , sgn yk),

Dxy = DSxSy,

v = (|x1y1| 1
2 , . . . , |xkyk| 1

2
)′
,

s(x, y) = #
{
i = 1, . . . , k | xiyi < 0

}
.
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Proof. Let Dx = diag(|x1| 1
2 , . . . , |xk| 1

2 ) and Dy = diag(|y1| 1
2 , . . . , |yk| 1

2 ). Then

|D − xy′| = |Dx | |D−1
x DD

−1
y −D−1

x xy
′D−1
y | |Dy |

= |DyD−1
x DD

−1
y Dx −DyD−1

x xy
′D−1
y Dx |

= |D − Sxvv′Sy |
= |Sx | |SxDSy − vv′| |Sy |
= (−1)s(x,y)|Dxy − vv′|. �

If, for some index j , we have xjyj = 0, then we can expand |D − xy′| along its
j th row or column:

|D − xy′| = dj |Djj − (xy′)jj |,
where Djj and (xy′)jj denote the matrices obtained by deleting the j th row and the
j th column of D, respectively xy′. We can continue this process until none of the
xiyi is equal to zero and then apply Theorem 4 to the remaining part of the matrix
D − xy′.

From Theorem 4, we see that |D − xy′| is the same as |Dxy − vv′|, except possi-
bly for a difference in sign. Likewise,

|λI − (D − xy′)| = (−1)s(x,y)|(λI −D)SxSy + vv′| (5.1)

with Sx, Sy and v as defined in Theorem 4. Eq. (5.1) implies that if SxSy = I , that
is if xiyi > 0 for i = 1, . . . , k, then the roots of the characteristic equation of D −
xy′ and those of the symmetric matrix D − vv′ are the same. If, on the other hand
SxSy = −I , that is if xiyi < 0 for i = 1, . . . , k, then the roots of the characteristic
equationD − xy′ and those of the symmetric matrixD + vv′ are the same. Because
the roots of a symmetric matrix are always real, we have shown that if all xiyi have
the same sign, then the eigenvalues of D − xy′ are real.

Theorem 5. If D = diag(d) is a nonsingular diagonal k × k matrix and x, y are
k × 1 vectors such that xiyi < 0 for i = 1, . . . , k or xiyi > 0 for i = 1, . . . , k, then
Q = D − xy′ has real eigenvalues.

Vermeulen [18] showed that the roots of the determinantal equation

|λI + diag(e)+ aι′|, (5.2)

with all ai and ei strictly positive are real. By constructing a difference equation
for the determinantal equation, he also showed that these roots are negative. These
results immediately follow from Theorem 4, because

|λI + diag(e)+ aι′| = |λI + diag(e)+ vv′|,
with v = (

√
a1, . . . ,

√
ak)

′, so that the eigenvalues of diag(e)+ aι′ are the same
as the eigenvalues of the symmetric matrix diag(e)+ vv′. These eigenvalues are
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positive, because diag(e)+ vv′ is positive definite. This implies that the roots of the
determinantal equation (5.2) are real and negative.

Trenkler [17] remarked in his paper that the matrix T = A+ ab′, with A being
symmetric and nonsingular, always has real eigenvalues. However, the condition of
Theorem 5 that all aibi should have the same sign is vital more or less, as can be
seen from the following example.

Example 1. Consider the matrix D − xy′ with D = diag(1, 2), x = (−1,−1)′ and
y = (1,−3)′. It is easily derived that in this case |λI − (D − xy′)| = λ2 − λ+ 1, so
that both eigenvalues are complex.

The eigenvalues of D − xy′, with D nonsingular, can be determined from the
characteristic equation

0 = |λI − (D − xy′)|
= |(λI −D)(I + (λI −D)−1xy′)|
= |λI −D|(1 + y′(λI −D)−1x)

=
[
k∏
i=1

(λ− di)
] [

1 +
k∑
i=1

xiyi

λ− di

]

=
k∏
i=1

(λ− di)+
k∑
i=1

xiyi
∏
j /=i
(λ− dj ), (5.3)

a result which was also given by Graybill [6] in Theorem 8.5.2. The following theo-
rem immediately follows from (5.3). It covers Theorems 2, 3, and 4 of [17].

Theorem 6. ConsiderD − xy′, whereD = diag(d) is a nonsingular diagonal mat-
rix and x and y are k × 1 vectors.
(i) If all di are different and all xiyi /= 0, then none of the di is an eigenvalue of
D − xy′. In this case, λ is an eigenvalue if and only if

1 +
k∑
i=1

xiyi

λ− di = 0. (5.4)

(ii) If xjyj = 0, then dj is an eigenvalue of D − xy′.
(iii) If some of the di’s coincide, then di is an eigenvalue of D − xy′.

Note that we can find all eigenvalues ofD − xy′ by combining the different cases
considered in this theorem. Suppose dj has multiplicity kj � 1. Without loss of gen-
erality we assume that D is partitioned as follows:

D = diag(d1I, d2I, . . . , drI ), (5.5)
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where dj I is of order kj × kj and
∑r
j=1 kj = k. We partition x and y accordingly:

x = (x′
k1
, x′
k2
, . . . , x′

kr
)′,

y = (y′
k1
, y′
k2
, . . . , yk′r )

′. (5.6)

Eq. (5.3) gives

|λI − (D − xy′)| =
r∏
j=1

(λ− dj )kj +
r∑
j=1

(x′
kj
ykj )(λ− dj )kj−1

∏
h /=j
(λ− dh)kh

=

 r∏
j=1

(λ− dj )kj−1




×

 r∏
j=1

(λ− dj )+
r∑
j=1

(x′
kj
ykj )

∏
h /=j
(λ− dh)


 . (5.7)

From (5.7) we observe that in this case λ = dj has at least multiplicity kj − 1. More-
over, the remaining eigenvalues can be found by putting the second factor on the
right-hand side of (5.7) equal to zero. The equation to be solved is then exactly of
the type (5.3), so that the remaining eigenvalues can be determined from (5.4). Note
that λ = dj can have multiplicity kj if and only if x′

kj
ykj = 0.

If all di coincide, that is, if D = dI , then Eq. (5.3) gives

|λI − (D − xy′)| = (λ− d)k−1

[
(λ− d)+

k∑
i=1

xiyi

]
= 0,

so that λ = d is an eigenvalue with multiplicity k − 1 at least, and the remaining
eigenvalue equals d − y′x, which is equal to d if y′x = 0 and in this case λ = d has
multiplicity k.

In the situation that all di are different and all xiyi /= 0, case (i) of Theorem 6,
the eigenvalues of D − xy′ can be determined by solving Eq. (5.4). Note that, in
this case, λ = 0 is a solution of (5.4) if and only if y′D−1x = 1, that is, D − xy′ is
singular. Moreover, if y′D−1x = 1, Eq. (5.3) simplifies to

0 = |λI − (D − xy′)|
= |λI −D|

(
1 + y′(λI −D)−1x

)
= |λI −D| (y′D−1(λI −D)(λI −D)−1x + y′(λI −D)−1x)

= |λI −D| (y′(λD−1 − I )(λI −D)−1x + y′(λI −D)−1x)

= |λI −D| λy′D−1(λI −D)−1x.

Thus, apart from Eq. (5.4), the eigenvalues different from zero also satisfy
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k∑
i=1

xiyi

di(λ− di) = 0.

Let us assume that d1 < d2 < · · · < dk . Just as Klamkin [10], Wansbeek [19]
and Trenkler [17], we want to pay attention to the location of the eigenvalues for
this special case. We restrict ourselves to the situation in which all xiyi have the
same sign, because then the eigenvalues are real. So, we are dealing with case (i) of
Theorem 6. In line with Klamkin [10], consider the graph of

f (λ) = 1 + x1y1

λ− d1
+ x2y2

λ− d2
+ · · · + xkyk

λ− dk . (5.8)

This graph is continuous except at the points λ = d1, d2, . . . , dk , which correspond
to vertical asymptotes. It follows by continuity that there are k real roots such that an
eigenvalues lies between every two successive di . If xiyi > 0 for i = 1, . . . , n, this
implies that

λ1 < d1 < λ2 < · · · < dk−1 < λk < dk. (5.9)

If xiyi < 0 for i = 1, . . . , n, then, by using a similar argument, we observe that

d1 < λ1 < d2 < · · · < λk−1 < dk < λk. (5.10)

A typical graph for k = 3 is shown in Fig. 1.
Now we assume d1 � d2 � · · · � dk . In case of situation (ii) or (iii) of Theorem 6,

where some of the dj coincide or xjyj = 0, we know that dj is an eigenvalue ofD −
xy′. The other eigenvalues are located as before, so that, if all xiyi are nonnegative,
then

λ

ƒ(λ)

λ=d1 λ=d2 λ=d3λ=d3λ=d2

ƒ(λ)=1

λ

Fig. 1. Example of the roots of the characteristic equation |λI − (D − xy′)| = 0 for k = 3 and
xiyi > 0, i = 1, 2, 3.
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λ1 � d1 � λ2 � · · · � dk−1 � λk � dk. (5.11)

If all xiyi are nonpositive, we obtain the inequality

d1 � λ1 � d2 � · · · � λk−1 � dk � λk. (5.12)

To show that we cannot locate the eigenvalues among the di as easily as in Eq.
(5.12) if we do not impose any restrictions on the sign of the xiyi , consider the
following example.

Example 2. We continue with Example 1 and consider the graph of (5.8), that is, the
graph of

f (λ) = 1 − 1

λ− 1
+ 3

λ− 2
.

We know that there are no real roots, so that the graph never intersects the x-axis.
The corresponding graph is shown in Fig. 2.

5.2. Eigenvectors

Watson [20] considered the eigenvectors of the matrix � − ππ ′, with � =
diag(π) and

∑
πi = 1. Somewhat more general, we will consider in this section

the eigenvectors of D − xy′.
We begin with the case where all di are different and all xiyi /= 0, case (i) of

Theorem 6. The elements of the eigenvector vj = (v1j , . . . , vkj )
′ of D − xy′ corre-

sponding to λj must satisfy

divij − (y′vj )xi = λjvij , i = 1, . . . , k,

λ

ƒ(λ)

ƒ(λ)=1

λ

λ=1 λ=2

Fig. 2. Graph corresponding to Example 2.



84 T. Steerneman, F. van Perlo-ten Kleij / Linear Algebra and its Applications 410 (2005) 70–86

so that

vij = (y′vj )
xi

di − λj . (5.13)

Note that λj /= di . In order to have a true eigenvector, we must have y′vj /= 0. If we
choose

vij = xi

di − λj /= 0, (5.14)

then

y′vj =
k∑
i=1

xiyi

di − λj = 1,

because λj satisfies (5.4). This shows that we can indeed find the elements of the
eigenvector vj by means of Eq. (5.14). Note that we only need the vector y to deter-
mine the eigenvectors of D − xy′ via the eigenvalues of D − xy′.

Again we assume that all di are different. If xjyj = 0, the second case of Theorem
6, then dj is an eigenvalue of D − xy′. First, consider the situation that yj = 0 and
xj is arbitrary. It is straightforward to show that in this case ej , the j th unit vector,
is an eigenvector corresponding to dj . If, on the other hand xj = 0 and yj /= 0, then
the elements of the eigenvector v = (v1, . . . , vk)

′ corresponding to dj must satisfy

divi − (y′v)xi = djvi, i = 1, . . . , k. (5.15)

For i /= j this leads to

vi = (y′v)xi
di − dj ,

so that

y′v = yjvj + (y′v)
∑
i /=j

xiyi

di − dj ,

and vj follows:

vj = y′v
yj


1 −

∑
i /=j

xiyi

di − dj


 .

Because y′v is a constant factor, this shows that we can choose v such that

vi = xi

di − dj for i /= j,

vj = 1

yj


1 −

∑
i /=j

xiyi

di − dj


 .

Note that y′v = 1 with this choice of v.
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In case (iii) of Theorem 6, where some of the di coincide, partition D, x and y as
in (5.5) and (5.6). We know from Theorem 6 that if kj > 1, then dj is an eigenvalue
of D − xy′. We partition an eigenvector v corresponding to dj in a similar fashion
as in (5.6). Assume that xkj /= 0 and ykj /= 0. It is easy to show that in this case,
v = (vk1 , vk2 , . . . , vkr )

′ consists of zeros, except for the subvector vkj . This subvec-
tor must satisfy y′

kj
vkj = 0. This implies that in this case, dj has kj − 1 eigenvectors

of the form (0, . . . , 0, vkj , 0 . . . , 0)
′, where the vkj are orthogonal to ykj /= 0 and are

also mutually orthogonal. If xkj = 0 or ykj = 0, then dj has multiplicity kj and we
can take for vkj the kj × 1 unit vectors e1, . . . , ekj .
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