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Permeable friction course (PFC) is a porous asphalt pavement placed on top of a
regular impermeable roadway. Under small rainfall intensities, drainage is contained
within the PFC layer; but, under higher rainfall intensities drainage occurs both within
and on top of the porous pavement. This dissertation develops a computer model—the
permeable friction course drainage code (PERFCODE)—to study this two-dimensional
unsteady drainage process. Given a hyetograph, geometric information, and hydraulic
properties, the model predicts the variation of water depth within and on top of the PFC
layer through time. The porous layer is treated as an unconfined aquifer of variable
saturated thickness using Darcy’s law and the Dupuit-Forchheimer assumptions. Surface
flow is modeled using the diffusion wave approximation to the Saint-Venant equations.
A mass balance approach is used to couple the surface and subsurface phases. Straight
and curved roadway geometries are accommodated via a curvilinear grid. The model is
validated using steady state solutions that were obtained independently. PERFCODE
was applied to a field monitoring site near Austin, Texas and hydrographs predicted by
the model were consistent with field measurements. For a sample storm studied in detail,
PFC reduced the duration of sheet flow conditions by 80%. The model may be used to

improve the drainage design of PFC roadways.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

New roadway materials are changing the wet weather driving experience. One
exciting and innovative material is a porous pavement that allows water to drain through
the roadway rather than across it. The porous pavement—also called permeable friction
course (PFC)—is placed in a 50mm layer on top of conventional, impermeable,
pavement. During rain events, water seeps into the porous layer and flows to the side of
the road by gravity. By removing water from the road surface, PFC improves safety by
reducing splashing and hydroplaning (Berbee et al., 1999). In addition to safety benefits,
PFC has also been shown to reduce pollutants commonly observed in highway runoff
(Barrett, 20006).

Although usually placed in a 50mm layer, the PFC thickness may be selected so
that all of the rainfall for a design event drains within the pavement. However, structural
and cost concerns prevent the use of an arbitrarily thick porous layer. Additionally, PFC
has been shown to clog over time, resulting in lower subsurface drainage capacity
(NCHRP, 2009). Therefore, some storms will exceed the installed capacity, forcing
drainage to occur both on the pavement surface and within the porous matrix.
Understanding this coupled flow process is the goal of this research.

A precise description of PFC’s response to rainfall events is needed for several
reasons including driver safety, water quality, and basic science. From a safety
perspective, flow over traffic lanes can cause vehicles to hydroplane. Hydroplaning is
especially hazardous when right and left tires encounter different water depths—the
difference in resistance imposes a torque on the vehicle, potentially causing the driver to
lose control. A detailed runoff model for PFC could identify areas of excessive sheet
flow depth so that additional drainage can be provided. Such a model also has
implications for water quality. Field studies of runoff from PFC have shown that runoff
concentrations of pollutants are lower for PFC than conventional pavement, but the

mechanisms responsible for lower concentrations have not been identified (Stanard,



2008). Possible mechanisms include reduced wash-off from vehicles, filtration and
absorption within the pavement, and even biological activity. Studying these
mechanisms in detail requires an accurate hydraulic model. Finally, the proposed model
is of general scientific interest because the problem of flow over porous media appears in
numerous applications. Civil engineering applications include surface irrigation,
watershed modeling, and sediment transport. The concept of flow over porous media has
also been applied to biological systems such as blood flow within the arterial wall
(Dabaghmeshin, 2008). A better technical understanding of flow in PFC will contribute
to a diverse scientific field and promote wider use of the material, thereby improving
driver safety and the environment.

Figure 1 shows a photograph of a PFC layer. The PFC overlay is very thin
compared to the length and width of the roadway section. A cross section of typical PFC
roadway is shown in Figure 2 and a more detailed schematic of the PFC layer is shown in

Figure 3.

Impermeable
Base

Figure 1: Photograph of PFC layer on Loop 360, Austin, Texas
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Figure 2: Cross section of a typical PFC roadway
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Figure 3: Schematic cross section of a roadway with a PFC overlay

1.2 Research Objectives

The goal of this research is to understand the coupling between overland flow and
porous media flow in roadway applications. In this context, understanding the coupling
means predicting water depths at a fine enough scale to assess the risk of hydroplaning.
To accomplish this goal, a numerical model that predicts water surface elevations on
roads overlain with PFC has been developed and validated. The model has as inputs the

roadway geometry, rainfall intensity, and porous media properties. The model has been

3



formulated to accommodate roadway geometries where the horizontal alignment may be
straight or curved and to accommodate variable rainfall intensity.
Based on these inputs, the goal of understanding coupled flow between the
surface and subsurface will be pursued through the following research objectives:
1. Identify governing equations for surface and subsurface flow for the geometry
of interest
2. Develop a scheme to couple flow between the surface and subsurface
3. Implement the coupling scheme and numerical methods in a computer model
that represents roadway geometry using a coordinate transformation
4. Validate the model using analytical solutions
5. Compare model predictions of runoff rates with values measured at an

existing monitoring site

During the preparation of this dissertation, the National Cooperative Highway
Research Program (NCHRP) issued Report 640 entitled “Construction and Maintenance
Practices for Permeable Friction Courses” (NCHRP, 2009). The report signifies the
growing popularity and importance PFC layers for highways in the USA. Several of the
future research needs listed in the report are addressed in part by this dissertation:

¢ Field work to document how water flows within a PFC layer

e Methods for selecting the minimum PFC thickness

¢ Consideration for water sheets on the PFC surface
Field work included constructing a monitoring site to measure runoff hydrographs from a
PFC roadway. The dynamic simulation model developed in this dissertation accounts for
sheet flow on the PFC surface and seepage through the porous layer; it can be used to
evaluate methods for selecting the thickness of a PFC layer. Another important and
related research need identified in the report is a method to determine the permeability of
PFC layers. The work of Klenzendorf (2010) addresses the hydraulic conductivity of

PFC and this dissertation uses his results to simulate PFC flow on highways.



1.3  Organization of the Dissertation

This document is organized into six chapters. Chapter 1 has introduced the work
and defined the research objectives. Chapter 2 reviews selected literature that bears on
the work. A method for developing a predictive model for PFC drainage is given in
Chapter 3. The proposed model is essentially a specialized hydrologic model so Chapters
2 and 3 are organized around hydrologic processes. The methods of Chapter 3 have been
implemented in a Fortran computer model called PERFCODE, the structure of which is
described in Appendix A. Chapter 4 validates the model’s numerics by comparing model
results with independently obtained solutions for simplified cases. Chapter 4 also
discusses the model’s stability and convergence properties. Chapter 5 applies the model
to a field monitoring site, facilitating a comparison of modeled results with field
measurements. Chapter 6 concludes the dissertation with a summary of the findings and

possible avenues for future work.



CHAPTER 2: LITERATURE REVIEW

This review summarizes the literature that provides the theoretical foundation for
this research. Developments related specifically to permeable friction course (PFC) are
given first. A general discussion of subsurface flow is given next and readers who are
unfamiliar with flow in porous media may prefer to review it prior to the section on PFC.
A section on overland flow is given next, followed by a discussion of coupling schemes
and models of coupled surface/subsurface systems. The final section identifies gaps in

the literature that are addressed by this research.

2.1  Permeable Friction Course
2.1.1 Water Depth Predictions

Three authors have published predictions of water depth in PFC for straight
roadway sections under constant rainfall. Ranieri (2002) gives a numerical solution to
the governing equation. Tan et al. (2004) use a commercially available finite element
program to model flow through PFC. Both Ranieri (2002) and Tan et al. (2004) provide
charts to find the required thickness of PFC from slope information and rainfall intensity.
Charbeneau and Barrett (2008) provide an analytical solution for the saturated thickness
along the flow path.

These three papers consider the same roadway geometry: a straight road with a
longitudinal slope and a cross slope. The drainage slope is the Pythagorean sum of the
longitudinal slope and the cross slope. In these papers, the drainage slope is a constant,
making the problem one dimensional—that is the saturated thickness only varies along
the drainage path. Under the assumption of constant rainfall intensity the system reaches
a steady state. It is this one-dimensional steady state solution that these authors present.

A comparison of their predictions for a single point reveals that Charbeneau and
Barrett (2008) and Ranieri (2002) have essentially identical results. Tan et al. obtain a

different result, predicting a thinner porous layer than the other workers. The reasons for



this discrepancy are difficult to uncover because Tan et al. used a commercial finite
element program for analysis.

The problem of drainage within a PFC layer of constant slope and under steady
rainfall is analogous the problem of hillslope seepage under constant recharge. Most
solutions make the Dupuit-Forchheimer assumptions of horizontal flow with the local
discharge proportional to the slope of the water table. Equivalent results to those of
Charbeneau and Barrett (2008) and Ranieri (2002) have been presented by Yates,
Warrick and Lomen (1985) and also by Loaiciga (2005).

Very little has been mentioned in the literature regarding the coupling between
surface and subsurface flow in PFCs. Charbeneau and Barrett (2008) address the issue
briefly and provide an estimate of sheet flow thickness based on the Darcy-Weisbach
equation. Eck et al. (2010) refined the coupling between PFC and sheet flow by using a
different boundary condition for the PFC equation. The idea was to compute the location
that sheet flow begins based on the principle of continuity and use that location and the
pavement thickness as the initial point to integrate the first order ODE that governs the

PFC part of the problem.

2.1.2 Hydraulic Properties of PFC

Hydraulic properties of PFC have been investigated by several authors, which
have been summarized by Standard et al. (2008). Reported values for hydraulic
conductivity range from 5*%10™ cm/s to 3 cm/s. Ongoing research by Klenzendorf (2010)
investigates the porosity and the hydraulic conductivity of PFC. Porosity was measured
from core samples and found to range from 0.12 to 0.23. Hydraulic conductivity was
also measured from core samples and ranged from 0.1 to 3 cm/s. A new field method for
measuring the in-situ hydraulic conductivity of PFC was developed and compared to the

laboratory measurements.



2.2 Saturated Porous Media Flow

Saturated porous media flow refers to the movement of fluid through a porous
medium when the pore space is filled with fluid. The boundary between saturated and
unsaturated zones of a porous medium is the water table. The water table is at
atmospheric pressure. Below the water table the media is saturated. Above the water
table the media is considered unsaturated, though a small area of saturated pores may
exist above the water table due to capillary effects. Quantitative predictions of saturated
porous media flow apply Darcy’s law or the Forchheimer equation to relate the hydraulic

gradient and the specific discharge.

2.2.1 Darcy’s Law

The usual way of characterizing flow through porous media is Darcy’s law.
Darcy’s law states that the relationship between the hydraulic gradient and seepage
velocity is linear when velocities are low enough to neglect inertia (Charbeneau, 2000).
A simple statement of Darcy’s law is:

Q =KIA (2.1)
where Q is the volumetric flow rate, I is the hydraulic gradient, A is the cross sectional
area of the flow, and K is a parameter called the hydraulic conductivity that depends on
the properties of the porous medium and the fluid. Darcy’s law is frequently presented in
terms of the velocity obtained by dividing the flow rate by the area:

q = KI (2.2)
where q is the fictitious velocity known as the Darcy velocity, or the specific discharge.
The relative contributions of the porous medium and the fluid to the hydraulic
conductivity can be seen by expressing the hydraulic conductivity as:

_ Pgk
U

where p is the fluid density, g is the constant of gravitational acceleration, p is the

K (2.3)

dynamic viscosity of the fluid , and k is a property of the medium called the intrinsic

permeability which is related to the grain size distribution of the medium. From an

8



analysis of the Fanning friction factor, one relationship between permeability and grain
size is (Charbeneau, 2000):
d>?
% =2000

Bear (1972) gives several correlations between the mean or effective grain size

(2.4)

and the intrinsic permeability. The hydraulic conductivity is typically preferred in
groundwater hydrology because water is the only fluid of interest. In contrast, the
petroleum industry uses the intrinsic permeability because several fluids are often of

interest.

2.2.2 Reynolds Number and Porous Media Flow Regimes
Although Darcy’s law neglects inertial effects, the inertial terms are physically
real and do not disappear from the equations. In fluid mechanics the relative importance
of inertial and viscous effects is quantified using the Reynolds number (Re), which
expresses the ratio of these effects (White, 1999):
pvd
T

In the expression for Reynolds number, d is a length scale of the problem, v is the

Re (2.5)

fluid velocity, and other terms are defined previously. At low values of Reynolds
number, the numerator (inertial effects) is small compared to the denominator (viscous
effects). As Re increases, inertial effects become more important. In porous media
applications Reynolds number is formulated using the seepage velocity and a

representative length scale. Several length scales have been used including the median

grain size (dsg) and k% (Ward, 1964).

As the value of Re increases, inertial effects become important and Darcy’s law
ceases to apply. This behavior suggests the identification of flow regimes in a porous
media based on the Reynolds number. Bear (1972) identifies three such regimes:

(1) A linear regime where the Reynolds number is lower than a limit somewhere

between 1 and 10 and Darcy’s law applies.



(2) A non-linear regime where inertial effects are important, but the flow remains
laminar. An upper limit of Re=100 has been suggested for this regime.
(3) A turbulent regime where Reynolds number is high.

Darcy’s law applies in the first regime only.

2.2.3 Relations for Non-Darcy Flow

PFC drainage under highway drainage conditions is expected to fall in the Darcy
regime of flow. However, experimental efforts to estimate the hydraulic conductivity of
PFC have observed non-Darcy flow regimes (Ranieri 2002; Barrett et al. 2009). In this
section, relations for non-Darcy flow are reviewed to provide a basis for estimating the
error of the Darcy approximation and to identify methods of including a non-Darcy effect

in future versions of the model.

Forchheimer’s Equation
One approach for describing non-Darcy flow is Forchheimer’s equation, which is

written either in terms of the hydraulic gradient:

I =aq+ Bq? (2.6)

or equivalently in terms of the pressure gradient:
———=aq+ fpq* 27
where the hat symbol distinguishes the coefficients between the equations. If § = § = 0

1 . , . , . . A .
and a = P then Forchheimer’s equation reduces to Darcy’s law. The coefficient £ is

often called the Forchheimer coefficient (Ruth and Ma, 1992) or the non-Darcy
coefficient (Li and Engler, 2001). It is related to f of the hydraulic gradient formulation

by the constant of gravitational acceleration:

(2.8)

Q |

p =
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Many correlations for the Forchheimer coefficient have been developed. Ergun
(1952) measured the pressure drop of gases through columns packed with granular
material. He gives an empirical correlation for the energy loss based on a least squares
treatment of the experimental data. Ergun partitioned the total energy loss between
viscous and kinetic energy losses. Ergun’s work was presented in the form of
Forchheimer’s equation by Bird et al. (1960):

_150(1 —n)?u N 1.75(1-n) |
~ n3d?pg 1 gn3d

(2.9)

where d is the mean grain diameter, n is the porosity of the medium, the values of

a = 1.75 and b = 150 were obtained by Ergun, and other terms are defined previously.
More recently Thauvin and Mohanty (1998) presented, but did not derive, an expression
for the Forchheimer coefficient by dimensional analysis of Forchheimer’s equation based

on Ergun’s work:
B =ab~1/2(1078k)~1/2n=3/2 (2.10)
where ﬁ is the non-Darcy coefficient in 1/cm and k is the permeability in units of darcy.

Equation (2.10) is a different result than Equation (2.9). Ward (1964) also gives a

correlation for the coefficients of Forchheimer’s equation:

U 0.55
= % + g_\/z q (2.11)
Whereas Ergun’s experimental work used gases, Ward’s experiments were
performed with water. In the Ward formula, the linear term is consistent with Darcy’s
law, and no estimate of the porosity is required. Many other correlations for the
Forchheimer coefficient are reviewed by Li and Engler (2001).
So far this review has used the Reynolds number to distinguish between linear
and non-linear flow regimes in porous media. This usage is not entirely consistent
because Darcy’s law and Forchheimer’s equation pertain to the macroscopic flow

parameters of hydraulic or pressure gradient and seepage velocity, but the Reynolds

number applies to the microscopic velocity. In order to avoid confusion, a dimensionless
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group similar to the Reynolds number, but called the Forchheimer number has been

proposed by Zeng and Grieg (2006):
k
E, = pakp (2.12)

This proposal amounts to suggesting another representative length scale (kf3) for
a porous medium. Ruth and Ma (1992) also define a Forchheimer number. Their
formulation holds that the permeability depends on the velocity. Because this principle is
not widely held, the Zeng and Grieg formulation is used in this work. A Forchheimer
number of 0.11 corresponds to a 10% non-Darcy effect, and is recommended as a critical

value for the transition to non-Darcy flow (Zeng and Grieg 2006).

Kovac’s Hyperbola

Another approach to characterizing non-Darcy flow is given by Kovacs (1981).
Kovacs reviews many correlations for porous media flow in the transition and turbulent
regimes. He proposes a hyperbola to describe all of the flow regimes through porous
media. Relations for the different regimes may be developed by approximating the
hyperbola in that regime. The approximation proposed for the transition regime is of the
form:

q =KIp” (2.13)

where q is the specific discharge, K is the Darcy hydraulic conductivity, I is the

hydraulic gradient, and £~ is a function of the Reynolds number. Ranieri (2002)

determined values for f* from experimental data.

2.2.4 Dupuit-Forchheimer Assumptions

So far, this review has discussed several ways to predict how the hydraulic
gradient (or pressure gradient) in a porous medium varies in space, but has not directly
addressed the pressure distribution through the medium. In the case of flow through a
PFC, the porous medium flow is always bounded above by a free surface so the flow is

said to be unconfined. If the velocities are essentially horizontal, then the hydraulic head
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will be the same on any vertical line and the pressure distribution will be hydrostatic
(Bear, 1972). In this case, the discharge is proportional to the hydraulic gradient. The
assumptions that the head is independent of depth, and that the discharge is proportional
to the hydraulic gradient are the Dupuit-Forchheimer assumptions (Charbeneau, 2000).

Irmay (1967) studied the error in predicting the hydraulic head using the Dupuit-
Forchheimer assumptions. He gives formulas for computing the relative error at different
depths for flat and inclined aquifers. For a flat aquifer, the maximum error occurs at mid
depth and depends mostly on the hydraulic gradient. A hydraulic gradient of 10% caused
a maximum error of 0.25% in the hydraulic head. As most roadways have a drainage
slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good

approximation.

2.3  Unsaturated Porous Media Flow

Unsaturated porous media flow occurs when the pore space is not completely
filled with a single fluid. Unsaturated flow is more difficult to describe than saturated
flow because the hydraulic conductivity and capillary pressure change with the water
content. Richard’s equation governs unsaturated flow and considers the variation of

hydraulic conductivity and capillary pressure with water content:

a6 d¥ 0K, (0)
= _ givl - el TTusiV) 2.14
R dw( K, (0) T grad(H)) + 97 ( )

In Richard’s equation 6 is the water content, W is the capillary pressure head, and K, is
the unsaturated hydraulic conductivity (Charbeneau, 2000).

For PFC drainage, unsaturated flow is essentially vertical and the primary effect
of interest is the travel time through the unsaturated zone. For this purpose, Richard’s
equation may be simplified by considering only vertical flow and neglecting capillary

pressure gradients. This leads to the kinematic form of Darcy’s law:

q = Kys(0) (2.15)
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where q is the specific discharge and K, is the unsaturated hydraulic conductivity which
depends on the water content, 8. This form of Darcy’s law applies specifically to vertical
flow so the hydraulic gradient is unity.

In order to apply the kinematic form of Darcy’s law a relationship between the
hydraulic conductivity and water content must be obtained. One such relationship is the

power law model of Brooks and Corey (Charbeneau, 2000):

K, = K@3+2/4 (2.16)
where K, is the unsaturated hydraulic conductivity, K is the saturated hydraulic
conductivity, O is the water content assuming zero field capacity, and A is the pore size
distribution index.

Using Equations (2.15) and (2.16), Charbeneau (2000) estimates the average
pore-water velocity using an average value of the water content:

G
v = 7

6, + (n—0,) (5)""

where G is net recharge rate (assumed equal the rainfall rate for the PFC), ,. is the

(2.17)

irreducible water content, K is the saturated hydraulic conductivity, and A is the pore size
distribution index. With this average velocity, the travel time through the unsaturated
zone can be estimated:

p== (2.18)
v

where L is the depth to the water table. The equations presented in this section are used

in Section 3.2.3 to evaluate the effect of unsaturated flow in the model.

24  Overland Flow

Overland flow is governed by a simplification of the Navier-Stokes equations first
presented by Saint-Venant in 1871 (Chow et al., 1988). The full Saint-Venant equations
retain all of the terms of the Navier-Stokes equations including terms for inertial, viscous,
and gravitational forces, along with convective accelerations. For the purpose of

predicting flow at shallow depths, various levels of approximation to the Saint-Venant
14



equations have been applied (Chow et al., 1988). The kinematic wave approximation
retains only the gravitational and viscous terms. The diffusion wave approximation adds
the pressure term. The full Saint-Venant equations, with no simplifications, are known as
the dynamic wave model.

Three non-dimensional parameters are important in characterizing the overland
flow problem: (1) Reynolds number, (2) Froude number, (3) Kinematic wave number.

Reynolds number is defined in Equation (2.5). The Froude number is defined as:

F= Jﬁ (2.19)

where v is the velocity, g is the gravitational constant, and h is the flow depth.
The Froude number compares the speed of the flow with the speed of a gravity wave
(White, 1999).

The kinematic wave number is defined as:

N, = SL
T hF?
where S is the slope, L is the length, h is the depth and F is the Froude number. The

(2.20)

symbol Ny, is used here instead of the usual symbol K to avoid confusion with the
saturated hydraulic conductivity. The kinematic wave number reflects the length and
slope of the plane as well as the normal flow variables (Woolhiser and Liggett, 1967).
The ranges of applicability for the levels of approximation to the Saint-Venant
equations are studied in terms of the Froude number and kinematic wave number by
Daluz Vieira (1983). The author produced a plot showing the range of applicability for

the kinematic wave, diffusion wave, and full Saint-Venant equations (Figure 4).
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Figure 4: Range of applicability for sheet flow models (Daluz Vieira, 1983);
used with permission

On smooth urban slopes the kinematic wave number lies between 5 and 20 (Daluz
Vieira, 1983) so the diffusion wave approximation is appropriate for the full range of

Froude numbers.

2.5 The CRWR Approach to Modeling Highway Drainage

The research presented in this dissertation is the latest advance in a long tradition
of work in highway drainage hydraulics conducted at the Center for Research in Water
Resources (CRWR) at The University of Texas at Austin. The present sub-section
describes how different aspects of the previous research have been incorporated into the
present work.

Previous highway drainage research at CRWR has included both experimental
measurements and numerical modeling. Experimental work included measuring the

sheet flow thickness on a laboratory roadway section under simulated rainfall. The
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roadway section is rectangular and situated so that the elevation of three corners can be
adjusted to achieve a range of longitudinal and cross slopes. Sheet flow thicknesses and
unit discharge were measured on three surfaces having different roughness under a range
of slopes and rainfall conditions. Charbeneau et al. (2009) analyzed this data and
evaluated depth-discharge relationships. They concluded that Manning’s equation had
equivalent accuracy to logarithmic boundary layer theory, and that the hydraulic effects
of rainfall on sheet flow were negligible.

Previous research at CRWR in the area of numerical modeling developed a
hydrodynamic diffusion wave model for sheet flow in superelevation transitions (Jeong,
2008). Beyond implementing the diffusion wave model for sheet flow, this work
developed a curvilinear grid generation scheme that is well suited for highway drainage
hydraulics. The idea of the grid generation scheme is that each point along a roadway
centerline lies on the circumference of a circle. The coordinates of the center of the circle
may be given explicitly, or estimated from neighboring points. The radius of curvature is
assumed to vary linearly along the centerline between known points. The radius of
curvature is very large for straight sections and smaller for curved sections. This
approach to grid generation accommodates a wide range of roadway geometry, and gives
models developed from it a consistent basis.

The superelevation transition study also formulated kinematic boundary
conditions for a 2D diffusion wave model using the method of characteristics. Boundary
conditions for highway drainage can be quite complicated, especially in unsteady
conditions. Making the kinematic approximation is often reasonable and provides at least
some dynamic behavior at drainage boundaries. Applying the method of characteristics
along the drainage path allows the boundary condition to be physically reasonable, and to

vary in time.

2.6  Coupling Schemes
The need to couple fluid behavior on the surface with that in the subsurface comes

from the hydrologic cycle. Rain falls on the earth’s surface as precipitation and infiltrates
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the soil to become groundwater. Various approaches to coupling surface and subsurface
flow have been proposed. An early study by Beavers and Joseph (1967) investigated the
interface region and detected a slip velocity at the interface. In hydrologic models the
conductance method (Anderson and Woessner, 1992) is widely used. In this method, the
flux between the phases is the gradient times the conductance. This approach is
acceptable for a distinct boundary between phases, but the high surface roughness of PFC
blurs this boundary. Recently, Kollet and Maxwell (2006) proposed coupling the surface

and subsurface by requiring the pressure to be constant right at the land surface.

2.7  Coupled Surface-Subsurface Models

There many examples of hydrologic models that couple surface and subsurface
flow processes. Most models focus on flow in only one phase, and use the other phase as
a boundary condition. For example, in an irrigation system, the detailed solution of the
groundwater system is not terribly important; the objective is a good representation of
surface flow and infiltration. In the same way, subsurface flow models such as
MODFLOW focus on the solution to the groundwater system, which is usually
unaffected by the sheet flow dynamics. In contrast, models of entire watersheds do
attempt to represent surface flow, infiltration, and subsurface flow. However, a detailed
solution for overland flow is rarely found along with a detailed groundwater solution.
Two notable exceptions are discussed below.

Researchers at the University of Mississippi recently published a paper entitled
“Coupled Finite-Volume Model for 2D Surface and 3D Subsurface Flows” (He et al.,
2008). This model couples a diffusion wave model on the surface with Richard’s
equation in the subsurface. The coupling is accomplished by requiring the pressure to be
continuous right at the land surface. This formulation treats overland flow as a boundary
to subsurface flow. The model predicts the variation of surface water depth through time
over the watershed.

The MIKE-SHE model-—maintained by the Danish Hydrologic Institute, Inc

(DHI)—is a commercial software package for watershed simulation. The model
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simulates the major hydrological processes that occur in the land phase of the hydrologic
cycle, including surface flow and groundwater flow (Refsgaard and Storm, 1995). For
coupling between surface and subsurface phases, the program calculates the exchange
flux from Darcy’s law. The MIKE-SHE model has been used widely to model many
watersheds and is often used to evaluate new models (e.g. He et al., 2008).

Numerous models that couple surface and subsurface processes have been
reviewed by Furman (2008). In his review, Furman categorizes models according to the
type of surface flow and subsurface flow that the model uses. In his summary of 26
models, there are seven models that deal with surface flow in two dimensions—of these
only one deals with the subsurface as a groundwater problem instead of only infiltration
or partial saturation. The one model that does both is a unique application by Liang et al.
(2007) where buildings in the floodplain are modeled as a porous medium. In their
formulation, Liang et al. (2007) restrict the solution at any point in the system to either
surface flow or subsurface flow. The coupling is horizontal; water from the flood wave

flows laterally into the buildings.

2.8  Uniqueness of this Dissertation
This research shares many attributes with previous studies—predicting water
depth and runoff from rainfall is essentially a hydrologic model. The original
contribution of this work comes from several areas:
¢ The model predicts the transient response of PFC, which has yet to be
addressed in the literature.
e The work examines a surface/subsurface flow system at the fine spatial scale
of a roadway, in contrast to the watershed scale studies identified above.
¢ In the PFC system, subsurface flow drives overland flow. This forcing
contrasts with the natural process of ponding from overland flow causing

infiltration.
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CHAPTER 3: MODEL DEVELOPMENT

This chapter describes the development of the permeable friction course drainage
code (PERFCODE). A statement of the research problem is given first along with a
discussion of the physical processes involved. With this basis, a mathematical
formulation is developed for each physical process. A discussion of major assumptions
is provided next. The mathematical models are applied on a control volume to formulate
the numerical model that will provide the predictions of interest. The chapter concludes
with a discussion of model tolerances and the technique used for the transition between

sheet flow and PFC flow.

3.1 Problem Statement

The research problem is predicting the elevation of the water surface throughout a
PFC roadway during a rainstorm. PFC is a permeable pavement placed in a 50mm layer
on top of regular, impermeable pavement. During rain events, water seeps into the porous
layer and flows to the side of the road by gravity. When the rainfall intensity is small, all
of the drainage is contained within the pavement. Under higher rainfall intensities
drainage occurs both within and on top of the pavement. The model predicts depths in
both cases.

For the straight roadway shown in Figure 5, the road has a longitudinal slope and
a cross slope. The resultant of these slopes is the drainage slope, along which water
particles move to the edge of the pavement. For straight roadway sections without
shoulders the problem is one dimensional along the drainage slope. However, the
drainage problem becomes two-dimensional when shoulders have a different slope than
the traffic lanes or when the roadway is curved. PFC is frequently used to improve
driving conditions in these cases. Some specific configurations of interest are:

e Roadways with shoulders e Superelevation transitions

e Curved sections e Sag vertical curves
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Figure 5: Straight roadway section

3.2  Physical Processes

In order to achieve the model aims, several physical processes must be
considered. Modeling drainage from a PFC roadway can be considered as a specialized
watershed model. As such, the physical processes may be categorized in terms of the
hydrologic cycle. The hydrologic processes that occur in this system are: precipitation,
evaporation, infiltration, unsaturated porous media flow, saturated porous media flow,
and overland flow. One of these processes is important for the present work if it has a
meaningful effect on the mass of water in the system or affects the travel time of a water
particle moving through the system. The significance of each hydrologic process with

respect to the model is evaluated in the following sub-sections.

3.2.1 Precipitation and Evaporation
Precipitation is the process by which water that has condensed in the atmosphere
falls to earth. Precipitation can take the form of rain, sleet, snow or hail depending on

atmospheric conditions. For the purposes of this research, rain is the only form of
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precipitation considered. The rainfall rate is a model input, assumed to be a known
function of time.

Evaporation is the process of water changing from the liquid phase to the vapor
phase. Key factors in determining the evaporation potential are the solar radiation and
relative humidity (Charbeneau, 2000). In this work evaporation is neglected because
most drainage occurs during or immediately following rainfall events while the relative

humidity is high.

3.2.2 Infiltration

Infiltration is the process of rainfall entering the porous medium. Infiltration is
governed by hydraulic conductivity, porosity and moisture content of the medium. For
infiltration to be an important process with respect to PFC drainage, the process of water
entering the pavement would have to cause a meaningful delay in the travel time of a
water particle. Such a delay would cause water to pond on the pavement surface before
the pore space was filled. According to the Green-Ampt method for calculating
infiltration, ponding will not occur unless the rainfall intensity exceeds the hydraulic
conductivity (Charbeneau, 2000). As an example, consider a five minute rainfall of one
inch (2.54cm), which exceeds the 100-year 5S-minute rainfall event for the entire eastern
United States (Chow et al. 1988, pg 447). Such an event corresponds to a rainfall rate of
0.0085 cm/s--far below the 1 cm/s order of PFC hydraulic conductivity. Since the
hydraulic conductivity of PFC is much higher than rainfall rates, infiltration is not
expected to play an important role in this problem and is neglected in the model

formulation.
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3.2.3 Unsaturated Porous Media Flow

Although infiltration occurs very quickly for a PFC, unsaturated porous media
flow from the pavement surface to the water table may play an important role. To
quantify the effect of this process an estimate of the travel time for a range of rainfall

intensities was made using Equations (2.17) and (2.18) and the results plotted in Figure 6.
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Figure 6: Travel time though an unsaturated PFC layer having a thickness of Scm,
irreducible water content of zero, pore size distribution index of 1.7, and a saturated
hydraulic conductivity of 1 cm/s

Figure 6 shows that travel times are longer at lower rainfall intensities, but that
the travel time is on the order of minutes. The significance of this delay depends on the
model time step. Model time steps for this work are on the order of seconds, suggesting
that the delay may be important. However, rainfall measurements necessarily report
rainfall accumulation over a time period, frequently five or fifteen minutes. Considering
the reporting period for rainfall data compared to the expected travel time, flow through

the unsaturated PFC is neglected in this model.
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3.2.4 Saturated Porous Media Flow

Saturated porous media flow refers to the movement of fluid through a porous
medium when the pore space is filled with fluid. The boundary between saturated and
unsaturated zones of a porous medium is the water table. At the water table, the pressure
is atmospheric. Below the water table the media is saturated. Above the water table the
media is considered unsaturated, though a small area of saturated pores may exist above
the water table due to capillary effects. Saturated porous media flow is an essential
process for the model because drainage to the edge of pavement occurs horizontally.
This model treats all of the drainage through the PFC as saturated porous media flow.

Quantitative predictions of saturated porous media flow apply Darcy’s law or
Forchheimer’s equation to relate the hydraulic gradient and the specific discharge. This
model assumes that Darcy’s law characterizes PFC drainage. The validity of this

assumption is investigated in Section 3.4.2.

3.2.5 Overland Flow

Overland flow is the process of water flowing on the land surface, usually in a
thin layer. Hydrologists categorize overland flow as either Hortonian overland flow or
saturation overland flow (Chow et al., 1988). The distinction is the source of the flow.
Hortonian overland flow occurs when the rainfall rate exceeds the infiltration capacity of
the surface. Saturation overland flow occurs when the subsurface becomes saturated and
discharges flow onto the land surface, usually at the bottom of a hill. In PFC drainage,
overland flow occurs through the latter mechanism.

Overland flow velocities are generally much higher than subsurface flow
velocities because viscous forces are smaller due to differences in surface area. Because
of the higher velocities, overland flow drains water more quickly from the roadway than
subsurface flow. The high drainage capacity of overland flow makes it an important

process for modeling drainage from PFC roadways.
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3.2.6 Summary of Physical Processes

The physical processes that occur during drainage from a PFC roadway have been
identified and evaluated. The processes of precipitation, saturated porous media flow,
and overland flow were found to be important for the current work. The interaction

between these processes is shown in Figure 7.

Overland
Flow

Precipitation

Saturated Porous
Media Flow

Figure 7: Interaction between physical processes in PERFCODE

3.3  Mathematical Model Development

Now that the important physical processes for PFC drainage have been identified,
a mathematical description of each process is needed. For the precipitation process, the
variation of rainfall over time is assumed to be known so no further description is
required. Models for saturated porous media flow and overland flow are developed in the
following sections. A sketch of the dimensional variables used to represent different

physical quantities is shown in Figure 8.

25



» 3 - < < » < > < - <
4 < 4 4 4 3
Spatiall
| N S
rgt) Rainfall

Porous
Pavement

Zy(x,y)

!

rd

Figure 8: Cross section along drainage path

The rainfall rate r(t) is assumed to be spatially uniform, but variable in time. The
elevation of the bottom of the PFC layer with respect to a datum is Z(x,y). The PFC
layer has a thickness b, which is taken as constant throughout the domain. The saturated
thickness of water in the PFC layer is h,, (x, y) where the subscript refers to the
pavement. The specific discharge through the PFC is g(x, y). On the pavement surface,
the thickness of sheet flow is hy and the average velocity is v(x,y). The total head of

water at any point in the domain is H(x, y).
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3.3.1 Mathematical Model of Saturated Porous Media Flow
The equations of motion for saturated flow in a porous media consist of the
continuity equation and the momentum equation. This development follows Halek and

Svec (1979). Consider first the equation of continuity:

dq,  0q,  0q,
- 1
ax "oy Taz =0 @D

where q is the Darcy velocity in each of the coordinate directions. If the drainage slope is
small enough, the only vertical fluxes are from rainfall or movement of the free surface.
In the present problem, rainfall is prescribed and the free surface position is of interest.
Integrating the continuity equation over the saturated thickness gives:
" (dq, 0q, 0q 0 0
y z
dz = —(qxh,) + —\qyhy ) + — 3.2
fo (6x+ay+az> z= 55 (@hy) + 50 (ayhy) +an, —q0 32

This integration makes use of Leibnitz’s rule to interchange the order of differentiation

and integration. By assuming that the PFC has no resistance to flow in the vertical
direction, the effects free surface movement and rainfall may be separated into g, and go,
respectively. The movement of the free surface (within the PFC) in time is given by

qn, = Ne aaLtP and the rainfall may be expressed as go= r(t). Making these substitutions

and rearranging:

oh,

d 9
ne <. =~ 5z (Gxhy) - 3y (ayhy) +7(®) (3.3)

For the case of non-inertial flow, the momentum equation reduces to Darcy’s law

for each coordinate direction.

0H 0H

qx = —Kx ax’ 4y = _Kyg (3.4)

where q and K are the Darcy velocity and hydraulic conductivity in the coordinate

directions. For the present case, horizontal anisotropy will be neglected so that K,
K, = K . Substituting Darcy’s law into the vertically integrated continuity equation

gives:
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Equation (3.5) is known as the Boussinesq equation. It describes unsteady two-

dimensional flow in an unconfined porous medium with spatially uniform recharge.

3.3.2 Mathematical Model of Overland Flow

The following development of the mathematical model for overland flow follows
that of Jeong (2008), except that the velocity is used as the primary variable rather than
unit discharge. The dynamics of shallow water flow over the pavement surface are
described by the Saint-Venant equations, which comprise a continuity equation and a
momentum equation for each component direction. The continuity equation is expressed
as:

dhs N d(v,hy) N d(vyhs)
ot ox dy

r(t) (3.6)

where h; is the thickness of water on the surface, v is the average velocity in each

coordinate direction, and r(t) is the rainfall rate. The two full momentum equations are:

d(vehs)  d(v2hg)  8(vevyhs) oH
at T oax T oy +gh5<5f"+ﬁ)_o o
d(vyhs)  9(v2h)  (vevyhy) oH '
at oy | ox +gh5<5fy+E)_o

This system of three partial differential equations may be reduced to a single
equation by applying the diffusion wave approximation—neglecting local and convective
accelerations. Neglecting inertial terms and dividing by g hy gives the simplified

momentum equations:

_ OH _ OH
o= S, = (3.8)



To combine continuity and momentum into a single equation, the velocity
components (v, and v,,) must be expressed in terms of the friction slope. Manning’s

equation relates the velocity and friction slope as follows:

1
v = ER2/3S]3/2 (3.9)

Where v is the velocity, n is the Manning roughness coefficient, R is the
hydraulic radius, and S; is the friction slope. Manning’s equation is a scalar equation that
applies in the direction of flow. In order to apply the Manning’s equation to this problem
it needs to be formulated using the vector components of Equation (3.7). Inserting these
components and approximating the hydraulic radius as the depth as is common for

shallow flows yields:

2 _ 1 33002 2|2
W2 +v3)"" =~ (577 +577) (3.10)
The friction slope term may also be expressed in terms of both vector components

and the magnitude:

1h2?
2 +v3)"" =22 (5,2 +52) 3.11)

n. [SfNx
This formulation shows that Manning’s equation can be written as the vector sum

of the velocity components. Using the momentum result of Equation (3.8), the friction

slope may also be written in terms of the hydraulic gradient.

1h2/3 112 0H

= — S S = —_—— S —_—

Vx n /Sf S x n /Sf Ox
(3.12)

_1R¥? 1h**® 0H

v, = — S =—— —
y f
n [S Y n /Sy 0y
Substituting these velocity components into the continuity equation yields a single
partial differential equation that contains the essential physics of the overland flow

problem.
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This equation may be simplified by lumping the non-differential terms within the

spatial derivatives into a single coefficient,D (h;). Additionally, the time derivative must

be converted from depth to elevation above datum. From Figure 8 the variables are
related by H = Z + hy, + hg.  Taking the time derivative, dz/dt is zero and % hy, is zero
when there is flow on the surface. That is, during surface flow, the saturated depth of the
PFC will be equal to the pavement thickness. Making these substitutions gives the
desired PDE:

0H 0 0H d 0H
E +a<_D(hs) a) + @<_D(h’s) E) = T(t) (314)

5/3
where D(hg) = L2 _ and other terms are defined previously. This approach to

n /57

describing surface flow is a two-dimensional diffusion wave model.

3.4  Mathematical Model Assumptions

The forgoing development made simplifying assumptions about the physical
system. In particular it was assumed that the saturated subsurface varies hydrostatically,
that porous media flow is slow enough to neglect inertial effects, and that inertial effects
can also be neglected for overland flow. Each of these assumptions is discussed in the

following sections.

3.4.1 Dupuit-Forchheimer Assumptions
In developing the mathematical model for saturated porous media flow, it was
assumed that pressure varied hydrostatically and that the subsurface discharge was
proportional to the hydraulic gradient. These are the Dupuit-Forchheimer assumptions.
Irmay (1967) studied the error made in predicting the hydraulic head using the
Dupuit-Forchheimer assumptions. He gives formulas for computing the relative error at

different depths for flat and inclined aquifers. For a flat aquifer, the maximum error
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occurs at mid depth and depends mostly on the hydraulic gradient. A hydraulic gradient
of 10% caused a maximum error of 0.25% in the hydraulic head. As most roadways have
a drainage slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good

approximation.

3.4.2 Darcy’s Law

Along with the Dupuit-Forchheimer assumptions, the model development
assumed that Darcy’s law applies for flow through PFC. However, experimental efforts
to estimate the hydraulic conductivity of PFC have shown that Darcy’s law does not
apply once hydraulic gradients become sufficiently large (Klenzendorf, 2010).

Forchheimer’s equation is frequently used to describe flow in this case:

= ags + B4 (3.15)

In Equation (3.15), I is the hydraulic gradient taking a downward slope as
positive, g is the specific discharge of the fluid as predicted by the Forchheimer
equation, and « and £ are coefficients. In the case that  is zero, Forchheimer’s equation
reduces to Darcy’s law with the coefficient a equal to the inverse of the hydraulic
conductivity K. To facilitate a comparison with Darcy’s law, the Forchheimer specific
discharge g is obtained using the quadratic formula. The positive radical is taken since

a negative discharge is not meaningful in this case.

_—at+Jat+4Apl o« ’ 461
r = 28 —ﬁ[ 1+?—1 (3.16)

Using this form of Forchheimer’s equation, a vector form comparable to Darcy’s

_ - a 4p1
qF:IZ_ﬁI 1+?—1 (317)

Since Darcy’s law is § = KI, the specific discharge predicted by the two

law may be obtained:

equations can be compared using a ratio, termed the Discharge Ratio (D).
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o = ar _ 4—ﬁl—l (3.18)
_QD Zﬁl '

The value of @ ranges from O to 1. At a value of 1 the Forchheimer specific
discharge matches the Darcy specific discharge. At values less than 1, the Forchheimer
specific discharge is less than the Darcy specific discharge. The value of @ depends
upon the hydraulic gradient I and the coefficients & and 5. A change in one of these
variables that results in a higher velocity pushes the flow away from the Darcy regime
toward Forchheimer flow.

For the present purposes, the region of applicability of Darcy’s law is of interest.
To determine this region, the value of @ over a range of values for I, o & 8 is
investigated. The hydraulic gradient can be estimated as the roadway slope. A
reasonable slope range might be 0% to 10%. Values of a can be approximated by taking
the inverse of the hydraulic conductivity. The hydraulic conductivity of PFC is an area of
ongoing research. Preliminary results indicate that values range from O to 5 cm/s.

Values of § are estimated using equations from the literature and compared to recent
experimental results.

Li and Engler (2001) give a literature review of correlations for the Non-Darcy
coefficient. Of the correlations they give, an extension of the work of Ergun (1952)
given by Thauvin and Mohanty (1998) appeared relevant to this research:

B = ab=1/2(1078k)~1/2¢~3/2 (3.19)
where ﬁ is the non-Darcy coefficient in 1/cm, k is the permeability in units of Darcy, ¢ is
the porosity. The values of a = 1.75 and b = 150 were obtained by Ergun (1952)
using a least squares fit to experimental data. This correlation was chosen because the
experimental data come from columns packed with porous materials (e.g. sand,
pulverized coke) rather than geologic formations. The non-Darcy coefficient is related to

p by the constant of gravitational acceleration:
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(3.20)

Q |

Another correlation for the coefficients of the Forchheimer equation is given by
Ward (1964):

I= & + %qz 3.21)
In Ward’s equation, the linear term is consistent with Darcy’s law and no estimate of the
porosity is required.

Recent work by Klenzendorf (2010) has used a combination of numerical
modeling and laboratory experiments to determine the Forchheimer coefficients for PFC.
Comparing the coefficients obtained by Klenzendorf to the relationships proposed by
Ward and Thauvin and Mohanty suggests that Ward’s equation provides better estimates
for PFC flow (Figure 9). This result applies especially at higher values of hydraulic
conductivity, where non-linear effects are more pronounced.

A comparison of the value of f with the hydraulic conductivity shows that the
variables are inversely related (Figure 9). Conceptually, this relationship says that
smaller values of hydraulic conductivity have higher values of f. The meaning of this
trend is that inertial effects reduce the drainage capacity of PFC. Darcy’s law will under-

predict the water depth.
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Figure 9: Comparison of Forchheimer coefficients for PFC obtained by Klenzendorf
(2010) with the relationships proposed by Ward (1964) and Thauvin and Mohanty
(1998). Three of Klenzendorf’s data points [(0.047,167); (0.056,64.3); (0.10,29.1)] are
excluded for clarity.

Invoking either relationship for the Forchhiemer coefficients reduces the
discharge ratio to a function of two variables. By establishing a threshold value for @,
we can get a sense of which PFC roadways can be reasonably represented by Darcy’s
law. A 10% non-Darcy effect—corresponding to @ = 0.9 —has been suggested as
reasonable (Zeng and Grigg, 2006) and is adopted here. Using this criterion, a surface
plot of the discharge ratio shows that Darcy’s law provides acceptable predictions at low
hydraulic gradients (small slopes) and small hydraulic conductivities (Figure 10).
Furthermore, this figure shows that even modest roadway slopes can lead to non-Darcy

flow.
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Figure 10: Contour plot of discharge ratio using Thauvin and Mohanty (1998) with

porosity of 0.2.
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Figure 11: Contour plot of discharge ratio using the relationship of Ward (1964)
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The contour plot of the discharge ratio using Ward’s formula (Figure 11) shows
the same general trends as Figure 10, but Ward’s formula—which agrees more closely

with experimental data for PFC—gives a larger region where Darcy’s law is acceptable.

3.4.3 Diffusion Wave Approximation

The reasons for selecting the diffusion wave approximation are discussed more
thoroughly in the literature review. Briefly, the diffusion wave model provides a balance
between accuracy and computational efficiency. The kinematic wave approximation is
too simplified because it cannot deal with adverse slopes or backwater effects. The
dynamic wave model would be ideal, but comes at a high computational cost and is not

expected to give substantially different results than the diffusion wave model.

3.5 Computational Grid

In order to implement the mathematical models of the physical processes for real
roadways, a computational grid for the roadway must be developed. This research uses
the same grid generation employed by Jeong (2008), which is summarized below.

The idea of the grid generation scheme is that each point along a roadway
centerline lies on the circumference of a circle. The coordinates of the center of the circle
may be given explicitly, or estimated from neighboring points. The radius of curvature is
assumed to vary linearly along the centerline between known points. The radius of
curvature is very large for straight sections and smaller for curved sections.

The center and radius of curvature can be obtained by specifying them directly as
was done in this work, or by analyzing a digital elevation model as was done by Jeong
(2008). In either approach, a point along the roadway centerline has the following
attributes:

e C(Cartesian X,Y coordinates (input)
e Coordinates of center of curvature, (x.., V..) (output)

e Radius of curvature, R (output)
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¢ Angle (from positive horizontal axis) of ray from center of curvature to
centerline point, © (output)
Considering adjacent DEM points, the difference in radius of curvature and
angular position are AR and A®, respectively. Using these quantities the curvilinear
roadway can be mapped to a rectangular representation through the coordinate

transformation functions (Jeong 2008):

X(E, n) = (chl + E(chz - chl)) + (Rl + EAR + (11 - O-S)W)COS (91 + EAG)) (3 22)

y(E' n) = (YCcl + E(YCCZ - YCcl)) + (Rl + EAR + (11 - O-S)W)Sin (91 + EAG))

In Equation (3.22), ¢ and n are parameters that range from O to 1; W is the width
of the roadway. This equation only applies between adjacent DEM points.
The length ¢, and width «w of a line segment centered at the point (£, 1) are

computed using the partial derivatives of the coordinate transformation functions:

2 2
£ = A8 j (g—;) + (Z—?) (3.23)

w(§,n) =Whn
with A§ = 1/Ng and Anp = 1/N,,, N being the number of elements between DEM points

in each direction.

The area of a grid cell is computed from the Jacobian of the transformation

functions:
Ox Ox
_ _ 19§ on
¢ on

Equations (3.23) and (3.24) provide the information needed to develop a
numerical formulation in the computational space. The coordinate transformation

process is depicted visually in Figure 12.
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Figure 12: Development of computational grid from roadway geometry

3.6  Numerical Formulation

The major goal of this research is the development of a numerical model for the
drainage of water from a PFC. The Boussinesq equation and the diffusion wave model
developed above provide the theoretical basis for the system of interest. However,
predicting flow behavior in a real system requires that the surface and subsurface
behaviors interact.

The numerical formulation uses the finite volume method with central
differencing in space and the Crank-Nicolson method in time. A mass balance is
developed for an interior grid cell with flux components for rainfall, subsurface flow, and

surface flow. The flux across each face of the grid cell is estimated using Darcy’s law
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and the diffusion wave model. The mass balance is initially expressed in terms of the

total head at adjacent cells and then re-expressed in terms of the depth at adjacent cells.

3.6.1 Mass Balance on a Grid Cell
An interior grid cell is shown in Figure 14 and Figure 14 with horizontal

dimensions in computational space. The total head for the center of the grid cell is:
H=2z+h,+hs (3.25)
where z is the elevation above the datum, hp is the saturated thickness in the pavement

and hg is the thickness on the pavement surface. The volume of the grid cell is:
V = Area * Depth = AA(H — z) = AA(h,, + hs) (3.26)

The volume of water in the grid cell must account for the porosity, and is given

Vo = AAhyn, + AAhg (3.27)

where n, is the effective porosity of the pavement.

W
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Figure 13: Profile view of interior grid cell
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Figure 14: Isometric View of Interior Grid Cell

The change in volume of water in the cell over time is found from the partial

derivative of Equation (3.27). This derivative must consider the physical constraint that

. dh, @ . . . . .
either a_tp or f will be zero at all times according to the location of the free surface with

respect to the pavement surface.

AA ohy h,<b
Wio _ | BTG oty (3.28)
at dhy '
AA 5t for h, =b

The principle of continuity states that the time rate of change of volume is equal
to the net flow rate, which can be expressed mathematically as:
Wh,o0
ot

The volume of water in the cell changes by rainfall, subsurface flow, and surface

= Qin — Qout (3.29)

flow. Flow into the grid cell is considered positive. To estimate the flow rate due to each
component, consider an interior control volume and its adjacent cells as in Figure 15.
The central cell in the figure has node i, j at the center. The faces of the center cell are

identified with the compass directions.
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Note that the grid in computational space is uniform—each cell has the same
value of An and A and the grid is situated so that the cell faces lie halfway between the
cell centers. The grid in physical space is not uniform because cells have different
lengths in the longitudinal direction according their radial position. In the figure, the
subscripts of An and A refer to the metric coefficients, which do vary in space.

In the indexing scheme for the model, the i index changes longitudinally through
the domain and the j index changes transversely. These indices are related to the
compass directions within a grid cell for convenience. In terms of coordinate directions,
the local north and south compass directions correspond to the positive and negative 1

directions.

Anj—k—l ] .,',j+1 ®
1
n
X e
A TR R Y
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A& Ag; A&

Figure 15: Top View of Grid in Computational Space
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For cell i, j the flow rate due to rainfall is given by the rainfall intensity and the cell area:
Qrain = r(t) * AA (3.30)
The flow rate due to subsurface flow can be estimated using Darcy’s law,

(Q = KIA), where K is the hydraulic conductivity, I is the hydraulic gradient, and A is
the cross sectional area. The hydraulic gradient and cross sectional area must be
estimated using the physical lengths of the cells. Considering Figure 15, the head
gradient with respect to ¢ at location w can be approximated as:

OH| _  Hiay—Hy

o¢l,  1/2(4%-4 + A%)

Since ¢ is dimensionless, this equation does not have the dimensions of hydraulic

(3.31)

gradient. In order to estimate the hydraulic gradient at cell face w, cell size computed in
Equation (3.23) must be used. Applying the transformation gives an estimate for the

hydraulic gradient:

OH|  Hi,;—H;;

atl, ~1/2(6iiy; + 4y

(3.32)

Using this formulation for the hydraulic gradient, the subsurface flow into the

each face of cell i,] is expressed:

Qpw =K a7 My,
Pw T )2 (biogy + £yp) P
Hiy1; — Hy
=K S
Qp,e 1/2 (8i4q; + i) peWij
3.33
0,.= K Hyj_1—Hy; hop ( )
p.S 1/2 (wi,j—1 + wi,j) p,s ¥ L)s
H .. ..—H;:
Qp,‘n_ = K l']+1 LJ h ,Ei,].,n

1/2 (wijq +awyy) P
Here the hydraulic gradient at the cell boundary is estimated as the difference in
head divided by the distance between nodes. The cross sectional area is the saturated

thickness times the length of the cell boundary. The length of the cell boundary has the

42



same value for the east and west faces (w; j), but differs for the north and south faces

(i) or €; ;) because the radius of curvature is different.
The flow rates due to surface flow can be estimated using the diffusion wave

model according to the equation:
2

3
0=via=tl 0\ ay (3.34)

n \/_ dx
Here, h; is the thickness on the pavement surface and Sf is the magnitude of the
slope of the water surface. Using the same estimate of the hydraulic gradient as for
subsurface flow gives the following estimates for the flow rate into cell i, j at each of the

cell boundaries.

2

3
e (Mot ),
n Sf,w 1/2(& 1]+’E1]) ’ ,

sw =
2
1 h3 Hi_,;—H;
Qs,e ( a2 4 > hs,ewi,j
n Sfe 1/2(€1+1]+’E1])

2

1 h3 Hi_y;—H;; Th s
n Srs 1/2 (wij-q + wiy) $s7LLS

(3.35)

58 —

2
1 h3 Hi_y;—H;; Th
n an 1/2 (w1]+1 +wl]) S

sm =

Now that flow rates for each cell boundary have been developed, the water
balance on a grid cell can be expressed in terms of the flow rates. All of the flow rates
are formulated as being positive because of the arrangement of the H; ; term. If the head
in cell i, j is lower than the cell it is subtracted from, water will flow into cell i,j. The
flow rates were formulated this way to make it easier to check the equations. For the 2D

case, the mass balance has nine flow components:
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V0
ot

= Qp,w + Qs,w + Qp,e + Qs,e + Qp,s + Qs,s + Qp,n + Qs,n + Qrain

or (3.36)
OVh,0
ot

Substituting the flow rates for rainfall, subsurface, and surface flow into the

= Qp,w + Qs,w + Qp,e + Qs,e + Qrain

continuity equation gives a mass balance for an interior grid cell:

Wh,o0 _
ot
2
Hi_1;—H;; 1h§w< Hi_1;—H;; )
K - - h, ,uw;; +——= - - * Noy W i
1/2(figj+€5) 7YY n S \1/2 (61 + 455) SWEL
2
Hiyyj— Hyj 1h§e< Hi_,;—H; )
+ K : — hy i + ——= : : * hg oW
1/2 (‘Ei+1,j + 1£)i,j) pey n./Sq.\1/2 ({)i+1,j + 1£)i,j) ve
2
H;j1 —H;; 1 ki Hi_,;—H; (3.37)
+K . . hpstijs + ——F= . .
1/2 (wi,j_l +wi,j) n Sf,s 1/2 (wi,j_l +wi,j)
* hs,s‘gi,j,s
2
3
LK Hijv1—H;j B i 1 hgy ( Hi_y;—H; )
1/2 (wi,jﬂ +wi,j) n Sf,n 1/2 (wi,jﬂ +wi,j)
* hs,nfi,j,n
+ r(t) * AA

Equation (3.37) contains four dependent variables: Vo, H, hy,, and h,. A fifth

variable, the total thickness h, may be formed as the sum of the thickness in the pavement

and the thickness on the surface.
h = hp + hy (3.38)
So the total head is:

H=z+h (3.39)
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In order to solve the problem, Equation (3.37) must be expressed in terms of the
total head or total thickness. Choosing the total head is perhaps more intuitive, and
makes the equations simpler, but the total thickness is a better choice numerically
because it avoids subtracting two large numbers (the elevation being much larger than the
total thickness). The equation will be expressed first in terms of the head, and then

expressed again in terms of the thickness.

3.6.2 Formulation using Total Head

To express the equations in terms of the head, h , h, and Sy must be expressed
at the cell center and the boundaries in terms of H. Each of these terms will be examined
in turn, starting with those on right hand side of Equation (3.37). In the development, it

will also be convenient to define conveyance coefficients and a porosity function.

Saturated Thickness and Sheet Flow Depth

The saturated thickness at the grid cell boundaries—h,, ,—can be estimated from
the total head at the cell centers by linear interpolation. Since the computational grid is
evenly spaced, the interpolation is just the average of the head values. To find the
saturated thickness at the boundary, the total head at the cell boundary is estimated from
the adjacent nodes, and the elevation at the boundary is subtracted to give the saturated

thickness:

_ Hi,jfi—l,j + Hi—l,jf

iL,j

= z
P tij+Hioy; v
B = Hijfive,j + Hivrjlij ,
e Cij+ L) ¢
(3.40)
_ Hiyw g + Hyjoawy
hp,s - — 4s

Wij + Wijq

Hijw; ji1 + Hp jaw
hpn = n -z,
Wij T Wit
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The surface flow thickness at the grid cell boundaries—hg ,—is estimated in the
same way as the saturated thickness. The elevation at the cell boundary and the PFC
thickness are subtracted from the interpolated total head at the boundary to give an

estimate of the thickness of sheet flow:

_ Hi,jfi—l,j + Hi—l,jf

ij
h —-z,—b
S,W w
Cijttiog
Hijfivs,j + Hivrti)
hse = —Z,—b
Cijttiv
(3.41)
_ Higwijoa + Hyjawy,
hss = —z;—b
Wij+ Wij1
_ Hijwijeq + Hyjw b
hs,n - —Zn—

Wij+ Wit
The approximations given in Equations (3.40) and (3.41) must consider the
physical constraints on and interdependence of the saturated thickness and surface
thickness. The saturated thickness must be greater than or equal to zero and less than or
equal to the thickness of the PFC layer. The surface thickness must be positive, and must
be zero when the saturated thickness is less than the thickness of the PFC layer. These

constraints are expressed mathematically as:
0<h,<b
(3.42)
hs =0 forh, <b

These constraints are imposed on the estimates of thickness at the cell boundaries
using minimum and maximum functions. Examples of how these functions are used are

given for the western boundary. The other boundaries are calculated in a similar way.

Hijfi_1j + Hi_q ¥
h — . b : )) '] J L)
pw m1n< fi,j n fi_l,j Zyw
Hop 0o (3.43)
i1+ Hi_q it
h — 0; 1,jvi-1,j =157y . b
s, max( ‘Ei,j n fi_l,j Zyw
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Use of these functions means that the overall mass balance equation is no longer
smooth in the mathematical sense; however the physical system under consideration is
not smooth either. There is a shift in the behavior of the system when the PFC layer
becomes saturated and sheet flow begins, or when sheet flow disappears into the
pavement because the rainfall intensity decreased. The minimum and maximum
functions have the advantages of ease implementation in a numerical scheme and of
facilitating the use of a single equation to describe subsurface flow and combined

surface/subsurface flow.

Friction Slope

By the Dupuit-Forchheimer assumptions, the friction slope is the same as the
hydraulic gradient. This is a vector quantity, so the component in each coordinate
direction will be estimated. Estimates of the component in the proper direction and the
overall magnitude are needed for the sheet flow part of the problem.

The ¢-component of the friction slope at the middle of the west and east faces are

computed from the node values of neighboring cells.

. = Hi_,;—H;
ToW T 1/2 (im0 + 43)) )
Hiy;—H;j '

S —
188 T 1)2 (B4 + i)

Similarly, the n-component of the friction slope at the middle of the south and

north faces are computed from the node values of neighboring cells.

s = Hyj_1—H;;
s =172 (wij—1 + wij) (3.45)
H;jy1 —H;j '

S, =
/2 (wije1 + wij)
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The other friction slope component for each face is found from a weighted
average of the component in that direction from the nearest four faces where it was
computed. This means the n-component at the western face is estimated as the weighted

average of the n-component at the north and south faces of the central cell and its western

neighbor.
 Span +Sm)iori + (Spyn + Spns) i
o 2(£i; +4iaj)
(3.46)
 Span + S ivni + (Sppn + Spns) o i
fme 2(05 + i)

The ¢-component of the friction slope at the southern and northern faces is estimated in a

similar way:

(Sree + Spew)wijen + (Sree + Spew), Wi

(3.47)

Sff’n - Z(Wi,j + wi,jﬂ)

Note that Equations (3.46) and (3.47) could equivalently use the metric coefficients
corresponding to each cell face rather than the actual lengths and widths. The magnitude

of the total friction slope at any location is the Pythagorean sum of the components.

Sty = \/sff,wz + Sy (3.48)
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Conveyance Coefficients

Now that all of the terms on the right hand side of the mass balance given in
(3.37) are expressed in terms of the total head, we return to the overall equation.
Collecting collecting like terms and dividing by the cell area gives the model equation
where terms in square brackets are defined to be conveyance coefficients:

5
iaVHZO _ K xR + 1 h?,w ( Zwi,j )( 1 )
bW

AA at Em 24, +4,;)\AA
« (Hi—1j — Hij)
g 2w i 1
R A s,
*(Hi+1.j Hl})
hg (3.49)

In Equation (3.49) the terms in square brackets are conveyance coefficients.
There is a conveyance coefficient for each face of the grid cell. The thickness estimates
at the cell boundary appear only in the conveyance coefficient. Substituting the thickness
estimates of Equation (3.43) yields the final conveyance coefficients for the faces. The

conveyance coefficient for the western boundary is:
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/ K * min b H ’El 1]+Hl 1,j 111 \
| Cij+ti_q; |
| |

C. = s 2w (1) (3.50)
v max(O Bijlisy + Him ity ZW—b)3 iy + b +{). AA '
E 7 Tl

n [Srw

Conveyance coefficients allow the mass balance equation to be expressed more

concisely:

1 0V
Ba 9= G (Hiny = Hyp) + Com (Hiny = Hig) 4.,

* (Hi,j—l - Hi,j) + G, * (Hi,j+1 - Hi,j) + r(t)

(3.51)

Porosity Function

With the right hand side of the mass balance expressed in terms of the total head
we turn to the left hand side of Equation (3.51) and recall that the volume of water in a
grid cell must consider the porosity of the PFC. Considering Equation (3.28), the left

hand side of Equation (3.51) can be expressed as:

oh

p

1 aVHZO B ne¥ fOThp <b 352

A ot ) ok, (3.52)
R forh, =b

The constraints on h,, and h are imposed by the physical system are that either

oh dhs . ) . .
py —Lor a: will be zero at all times. In other words the time derivative of the total head,

d . ) oh ) . oo
a_I:’ will be completely given by a_tp when the flow is contained within the pavement. For
the case of combined surface/subsurface flow, the pavement is saturated, therefore the

. . ohy, . . .
saturated thickness is constant and a_tp is zero, leaving changes in the total head to the

surface component. Table 1 summarizes these cases.
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Table 1: Flow Cases
Time Derivative  Left Hand Side of

Flow Condition

of Total Head Mass Balance
Case 1 Flow completely within OH _oh, oh,
pavement ot ot eTge
Case 2 Combined OH _ dh, dhs
surface/subsurface flow ot ot ot

The difference between these flow conditions is reflected in the mass balance
equation through the porosity. When the water is contained in the pavement, changes in
the volume of water in the grid cell are reflected in the head through the porosity.
Consider for example, a cell having an area of 1 square meter that receives 1 mm of
rainfall and has no other fluxes. In either case 1 or case 2 the volume of water in the cell
increases by 1 liter. In case 1 the total head increases by 1 mm/n,, while in case 2 the
head increases by only 1mm.

To combine the time derivatives into a single term, we must apply the porosity to
the right hand side based on the flow condition. For this purpose a “porosity function” is
defined to accomplish switching between the phases. This function says to divide by the
porosity if the flow is contained within the pavement, but not change anything if the

pavement is saturated.

1 forH—z2>Db
pf(HrZrbrne) - {1/713 fOTH—Z < b

(3.53)
Model Equation in terms of Total Head

With the use of the porosity function, we can combine the time derivatives of
thickness into the time derivative of total head, and express the mass balance for a grid
cell in terms of the total head and problem parameters. The equation is arranged in order

of the bands that appear in the coefficient matrix.

0H
—- = pf *[CyH;—1; + CsH;j_q — (Cy + Cs + Cy + C)H; j + CuH; g

Jt (3.54)

+ CoHiyqj +7(0)]
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Equation (3.54) accomplishes the goals set out for this numerical formulation.

The mass balance is expressed in terms of the total head at the center of a grid cell and a
single equation applies for both subsurface flow and combined surface/subsurface flow.
When the saturated thickness (hy,) is less than the thickness of the PFC layer, the porosity
function is active, the max function removes the surface flow part of the conveyance
coefficient, and Equation (3.54) reduces to the Boussinesq equation. When the saturated
thickness is equal to or greater than the thickness of the PFC layer, the porosity function
turns off, the minimum function forces the saturated thickness to the PFC layer thickness,

and the surface flow part of the conveyance coefficient is non-zero.

3.6.3 Depth Formulation, Time Discretization, Linearization

As mentioned earlier, the discretized equations will now be re-expressed in terms
of the thickness rather than the total head. This is accomplished by making the
substitution H = h + z. The time derivative converts directly because the elevation does
not change in time.

oh; :
5= Pf #[Cu(h+ )iy + CH(h +2)1j

—(Cy+C+C+CI(h+2);; + Co(h+2) 11 (3.5)
+ Co(h +2)i41; +7()]

To solve Equation (3.55) the time dimension is discretized using the Crank-
Nicolson method. The resulting non-linear system is linearized by lagging the
conveyance coefficients using an inner iteration loop. The Crank-Nicolson method is
summarized as follows, using the superscript n as the time level (Ferziger and Peric,
2002).

Al —pn 1
% :E[RHS]n-l_l +§[RHS]n (356)

Now the system is arranged for solving as a linear system by moving the
unknowns—the depths at time level n + 1—to the left side of the equation and moving

the known quantities to the right.
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At At
hit — - [RHS v = - [RHS]" + hi; (3.57)

Let A, B, C, D, E be the bands of the penta-diagonal coefficient matrix and F be
the right side of the linear system, or force vector. A linear index is needed to relate grid
points using i, j indices to a single index for the matrix system. The linear index is
formed by numbering the grid cells consecutively along the columns starting in the
southwest corner of the domain. Taking the largest value of the domain column index as
Jmax the linear index k for any grid cell is computed from:

k(i,j) = (@ = 1) * jmax +J (3.58)

Using the linear index, the system can be written as:

A RRZ5 o+ B il + G R + Dy higly + Ex higdj,. = Fi (3.59)
where the expressions for the matrix coefficients are (with the conveyance coefficients at

the n+1 level):

A = _7*pf * Cwn+1
At
By = _7*pf * Csn+1
At n+1 n+1 n+1 n+1
Ck=7*Pf*(Cw +CM M M) +1 (3.60)
At
Dy = _7*pf * Cnn+1
At
E, = _7*pf * Cen+1
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The right hand side of the system is:

( CWhi—l,j + Cshi,j—l - \ n
(Cy+Cs+Cp+Cehy; +
At Cohiiv1+Cohiypq: +
Fk — pfn _{ n't,j+1 e'ti+1,j 4 h:l
2 Cwzi-1,j + Cs2ij-1 — J
(CW + Cs + Cn + Ce)Zi,j + (361)

\CnZijs1 + CeZiyrj + 7(1))

n+1
Cwzi—qj +Cszijq —

At
+ pfrtt - (Cy+Cs+Cp+Cozi; +
Cnzijp1 + CeZiyqj +1(0)

Note that the value of in each band for an interior grid cell depends upon the four cells on
its borders and on itself so the computational molecule is comprised of five cells and the
coefficient matrix is penta-diagonal.

The values of the coefficient matrix (A, B, C, D, E) depend on the conveyance
coefficients, which in turn depend on the unknown thicknesses so the system of equations
is non-linear. Linearization is accomplished using the fixed point method—conveyance
coefficients are computed using old values of the depths and these coefficients are then
used to compute new depths (Ferziger and Peric, 2002). The new depths are used to
update the conveyance coefficients and this process is repeated until values of the depths
stop changing within the iteration. At each iteration, the linearized system of equations is

solved using the Gauss-Seidel method for solving linear systems of equations.

3.7 Initial Conditions and Boundary Conditions

Solution of the governing equations requires suitable initial conditions and
boundary conditions. In the following sections initial conditions are discussed first,
followed by the no-flow boundary condition. The subsequent section proposes a new

boundary condition for PFC flow—the kinematic condition. A formulation for kinematic
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boundary conditions in the case of sheet flow is also given, followed by an algorithm

combining the kinematic condition for PFC and sheet flow.

3.7.1 Initial Conditions

The initial condition for the entire system is that of zero depth, corresponding to a
PFC roadway that is completely dry at the onset of rainfall. Any known depth could
theoretically be used as an initial condition, but the zero depth condition arises frequently

in practice.

3.7.2 No Flow Boundaries
A no flow boundary is a Neumann type condition because the derivative is
specified at the boundary. For a no-flow boundary, the conveyance coefficient for the
cell face corresponding to the boundary is set to zero, effectively enforcing the condition
of a zero head gradient.
&y
dn

Considering Equation (3.49), which shows the conveyance coefficients in

(3.62)

brackets, setting the conveyance coefficient equal to zero is equivalent to the zero

gradient condition. Note that this approach works for PFC flow and sheet flow.

3.7.3 Kinematic Boundary Conditions for PFC Flow

Boundary conditions other than no-flow boundaries are difficult to formulate for
PFC roadways. Boundary conditions are classified as Dirichlet type when the solution is
prescribed at the boundary, Neumann type when the first derivative is specified at the
boundary and as Robin type when some combination of the solution and its derivative are
specified at the boundary (Kreyszig, 1999). Formulating boundary conditions for PFC
flow—especially under unsteady conditions—is difficult because the solution at the

boundary varies according to the external forcing (rainfall), the solution within the
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domain, and the geometry of the domain itself. In addition, the boundary condition
should be able to transition back and forth between sheet flow conditions.

Strictly speaking, the edge of a PFC is a seepage face because the pressure at any
point along the edge is atmospheric. Treating the edge of pavement as a seepage surface
is problematic for at least two reasons: (1) the velocity field near a seepage face has a
strong vertical component (see the experiments of Simpson et al. 2003) but the model
equation excludes vertical velocities; and (2) the Dupuit-Forchheimer assumptions on
which the model is based do not allow for a seepage surface since they require the
pressure to vary along a vertical line.

As a way to overcome these challenges it is desirable to specify the saturated
thickness at the center of a boundary grid cell based on the forcing, geometry, and
solution from the previous time step. The center of a boundary cell is a nodal unknown,
the value of which is referred to by the adjacent cells. Specifying the value at such a
location is a Dirichlet condition because the value of the solution is prescribed.

The following formulation develops a new method for specifying boundary
conditions to a Dupuit-Forchheimer flow model. The principle assumption is that of
kinematic flow. In the following three subsections, the algorithm is developed for a
linear roadway; the effect of the algorithm on the steady state solution is investigated; and

the applicability to curved roads is assessed.

Linear Roadways

The saturated thickness at the center of a boundary cell may be estimated by
applying the method of characteristics (MOC) to the PDE for one-dimensional flow
under kinematic conditions. The MOC is a mathematical solution technique for PDEs of
first-order and for hyperbolic PDEs of second-order (Street, 1973). The concept of
kinematic flow refers to the case where pressure and acceleration are neglected in the

momentum equation.
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The continuity equation for flow in a porous medium under unsteady conditions
and with a free surface is given by Equation (3.3); considering only the x direction the

equation becomes

oh 0
_ — 3.63

”Eat+ax(q*h) r (3.63)

where n, is the effective porosity, h is the saturated thickness, r is the rainfall rate and

the Darcy velocity is

0H oh
— g _ g _ 3.64
q=—K K- —KS (3.64)
Making this substitution and expanding the terms gives
oh 02h ohy\? oh
— —Kh——-K([=) = — = (3.65)
negy ~Khgez K (E)x) Koogx =7

The assumption of kinematic conditions means that the depth gradient is neglected in the

Darcy velocity, which removes the higher order terms in Equation (3.65) and gives

dh oh
Resr—KSya- =7 (3.66)

Removing the higher order terms destroys the parabolic nature of the PDE. This
is not a typical approximation for porous media flow and does introduce some error in the
solution. However, neglecting these terms allows the formulation of a boundary
algorithm that considers the problem parameters and can transition smoothly to sheet
flow conditions.

The MOC procedure given by Street (1973) is followed here. The solution of
Equation (3.66) can be considered as a surface in x, t, h(x, t) space. The tangent plane to

the surface is given by the total differential

dh dh
dh = —dt + —dx (3.67)
ot 0x

. . dh 9h . .
and the normal vector to this tangent plane is (E ot 1). This normal vector is tangent

to the vector (n,, —KS,, r)because their dot product is zero by Equation (3.66).
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oh oh
o= KSy o= =0 (3.68)

dh oh
( 0x

E,a,—l) (e, —KSp, 1) =n

The vector (n,, —KS,, r) must be tangent to the solution surface because it is orthogonal

to the surface normal. A position vector for a point on the solution surface can also be

dx dt dh
ds’ds’ ds

represented parametrically as ( x(s), t(s), h(s) ). Its tangent vector is ( ) The

fact that components of the tangent vectors must be proportional leads to the MOC
formulation of the problem:

(dx/ds) @ t/ds) _ h/ds)
N, - —KS, r

(3.69)

This formulation is usually presented after ds has been eliminated from the equations:

dt  dx dh
n, —-KS, r

(3.70)

To obtain a Dirichlet type boundary condition for the domain, we need to estimate the
saturated thickness in the boundary cell at the new time level based on the solution from
the previous time-step. Since the solution travels along characteristic curves, the idea is
to figure out how far the solution will move along a characteristic during a time-step. In
this way the solution at time level n+1 is estimated by going up the characteristic by the
proper distance. In other words, if A and B are points along the characteristic curve, the
solution at point A and time level n can be used to find the solution at point B for time
level n+1. The problem now is to find the distance from point B to point A. This
estimate comes from integrating Equation (3.70).

Integrating the second and third terms of (3.70) gives an estimate of the boundary

value in terms of the distance up the characteristic curve

— h,—h
i = o hy =hy — L(xz — X1) (3.71)
_KSO r KSO

Integrating the first and second terms of (3.70) yields an estimate of the distance in terms

of the time-step:
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bhh—t XxX2—x

= 3.72
Ne —-KS, - Ax N, ( )
Substituting (3.72) into (3.71) gives the desired estimate:
r At
h, =h; + (3.73)

e

The value of h, is estimated as the solution at time level n a distance Ax up the drainage
slope from point h,.

The kinematic approximation implies a maximum value for the saturated
thickness that is not reflected in the algorithm of Equations (3.72) and (3.73). At steady
state there is no change with time so At = 0, which makes Ax = 0 and puts h; and
h, at the same location. Since the hydraulic gradient was approximated as the pavement
slope, the Darcy velocity is constant (see Equation (3.64)) and the saturated thickness is
determined by the flow rate per unit width. For the one dimensional case, the steady state
flow rate per unit width is given by the rainfall rate, r, and length of the drainage path, L.

rL

his :K_SO

(3.74)

When the kinematic condition is applied to a 1D problem, the boundary is the
edge of pavement and the approximation gives a maximum depth as just described. A 2D
problem has boundaries at both the edge of pavement and the ends of the domain, where
the road continues beyond the modeled area. The kinematic boundary condition can also
be applied at the end of the domain, but the boundary values—having neglected the depth
gradient in Darcy’s law—will be inconsistent with the domain interior. This
inconsistency results in a boundary effect. The model domain should be expanded so that
this effect does not influence the area of interest. One approach is to ensure the drainage
path for a water particle starting at the boundary exits the model domain rather than
entering the area of interest, thereby “washing out” the error. The required distance is

found from the longitudinal and cross slopes and the width.
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Effect on Steady State Solution

The steady state solution for 1D drainage in PFC is given by an ODE and an
initial point along the solution curve is needed to integrate the equation (Charbeneau and
Barrett, 2008). The kinematic approximation described above is one approach to
specifying such an initial point based on the problem parameters. Figure 16 shows that
the shape of the solution curve, especially near the boundary, depends upon the value that
was specified at the boundary (hL). The solution curves show that the kinematic
approximation does not allow the solution to ‘draw down’ near the boundary as is usual
near a seepage face (Simpson et al., 2003). This draw down is required because the
phreatic surface must be tangent to the seepage face (Bear, 1972). This draw-down
decreases the saturated thickness but increases the hydraulic gradient. In contrast, the
approximation over-estimates the saturated thickness and reduces the hydraulic gradient.
Which one of the curves is closest to the true physical solution is unknown, but a range of
possible solutions has now been established.

In Figure 16, the solutions collapse to a single curve away from the downstream
boundary, but this behavior depends on the problem parameters. Doubling the rainfall
rate for example pushes the point at which the curves collapse to the left, provided that
the thickness of the PFC layer is sufficient to contain the additional flow (Figure 17). If
the PFC thickness is Scm, then doubling the rainfall rate to 1cm/hr causes sheet flow and
the boundary condition for the region of PFC flow is given by the pavement thickness
(Eck et al., 2010). In general, a finite pavement thickness means that the uncertainty in
the boundary value matters most for low rainfall rates. Together, these examples
illustrate that:

¢ the predicted value of the saturated thickness depends on the boundary value;

¢ the boundary value is unknown only for low rainfall rates; and

e the solution is less sensitive to the boundary value in this case.
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hL = 4.6 (Kinematic)
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Figure 16: Steady state drainage profile for different boundary values; all cases used
K=1cm/s, Sg=3%; r=0.5cm/hr

hL = 9.3 (Kinematic)
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Figure 17: Steady state drainage profile for different boundary values; all cases used
K=1cm/s, So=3%; r=1cm/hr
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Kinematic Boundary for Curved Roadways

The algorithm outlined in Equations (3.72) and (3.73) was developed under the
assumption of a straight roadway section and not a curved one. An order of magnitude
approach is used to assess the applicability of the linear algorithm for curved sections.

The continuity equation for radial flow is

oh 10
"e5t TROR

where R is the radial coordinate and r is the rainfall rate. Darcy’s law for radial flow is

(Rqr) =7 (3.75)

oh
qr = —Khﬁ + KhS, (3.76)

Neglecting depth gradients in Darcy’s law and using the continuity equation for one-

dimensional radial flow gives a PDE in h(R, t).

dh KhS, oh
—_ — = 3.77
Nemr + % +KS“aR r (3.77)
Using the method of characteristics approach described above gives the formulation:
dt dR  dh
n, KS, . _KhS, (3.78)
"T7R

The order of magnitude for the quantities in Equation (3.78) can be estimated as
r = Scm/hr ~ 10'3cm/s; h~1cm; So~0.03; R=10%cm. Using these values,
KhSy/R = 3(10)6 cm/s, which is much less than the rainfall rate of 10°cm/s. This result
suggests that the linear domain kinematic approximation should be adequate for

calculating boundary conditions to curved domains of interest.
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3.7.4 Kinematic Boundary Conditions for Sheet Flow
Kinematic boundary conditions for sheet flow were derived by Jeong (2008). The
resulting algorithm is repeated here for completeness. The distance up the drainage path

is estimated in terms of the time-step and the boundary depth, h,, at time level n.

ps = Y50 (chs + rAE)3 — (hg)g) (3.79)

nr

The solution at the upstream point is obtained using bi-linear interpolation, and

the value of the boundary depth at time level n + 1 is

0.6

p = <(h§1)g £ (RD +7ADS — (hg)g) (3.80)

3.7.5 Combined Kinematic Boundary Condition for PFC and Sheet flow

The algorithms for kinematic boundary conditions for sheet flow and PFC flow
have been developed separately, but need to be combined so that the appropriate
condition is used within the model. The combined algorithm must select between the
PFC and sheet flow equations, handle the case of zero rainfall, and provide for a
transition between PFC and sheet flow. This is accomplished through nested if-then
statements as depicted in Figure 18.

When the flow depth is less than the pavement thickness, the PFC algorithm is
used. The distance up the drainage slope is computed from Equation (3.72) and the
solution at this location is estimated using bi-linear interpolation. Then the boundary
value for the next time-step is computed from Equation (3.73). No modification to the
algorithm is required for zero rainfall. The computed boundary value is compared to the

maximum depth of Equation (3.74).
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Figure 18: Combined algorithm for kinematic boundary condition

Implementation of the sheet flow algorithm is more complex due to the
possibilities of zero rainfall and transition back to PFC flow. If the rainfall rate is zero,
the distance to interpolate up the drainage path becomes arbitrary; the PFC distance is
used in case a transition back to PFC flow is indicated. If the rainfall rate is greater than
zero the interpolation distance is computed according to Equation (3.79) and the solution
is estimated using bi-linear interpolation. If the interpolated value suggests PFC flow
then the boundary value is estimated using the PFC equations, otherwise the sheet flow

equation is used.
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3.8 Solution Procedure and Tolerances

The numerical formulation and boundary conditions described in this chapter

have been implemented in a Fortran computer code. The general solution procedure can

is outlined as follows and depicted in flow chart form (Figure 19):

Read model parameters, geometry information and rainfall from input files
Create a curvilinear grid for the domain. The grid includes the coordinates,
length, width and area of each grid cell.

Assign elevations to the center of each grid cell.

Loop through the time steps, recording details of the solution at each step
Within a time-step, iteratively compute the depths using the fixed point
method.

Within each iteration, solve the linearized system of equations using the

Gauss-Seidel method.

A vector of errors or residuals is calculated at each iteration in order to determine

when the non-linear iteration loop has converged. Absolute errors are computed when

the solution is near zero and relative errors are computed when the solution is away from

zero. Two norms of the error vector are checked; the L., norm is simply the largest value

in the error vector, and the L, norm is the square root of the sum of the squared errors

(Kreyzig, 1999). Both the L, norm and the L., norm must be less than the tolerance for

the loop to converge. A typical tolerance value of 10™3 was used for simulations.
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Figure 19: Flow chart of solution process

3.9 Convergence and the Transition to Sheet Flow

Trial runs during the model development process revealed numerical difficulties
regarding the transition from PFC flow to sheet flow. During the time step that a grid
cell transitioned from PFC flow to sheet flow the solution frequently oscillated between
the PFC and sheet flow states, never reaching a solution. Physically, this transition
represents a change in the character of the flow. Mathematically, there is a change in the
governing equations. Given these changes, some oscillatory behavior was not wholly
unexpected.

Several schemes were tried in order to overcome the numerical difficulties but the
most successful approach was using an under-relaxation factor. This approach is based
on the method of successive over relaxation for solving linear systems (Ferziger and
Peric, 2002). The idea in successive over relaxation is to reduce the number of iterations
by amplifying the change at each step using an over-relaxation factor. The under-

relaxation approach aims to increase the number of iterations by making smaller changes
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at each step. In this way, only part of a large oscillation is taken, thus reducing the
overshoot of the actual solution.

Under relaxation was found to reduce the errors by an order of magnitude, but
even still a looser iterative tolerance was needed for convergence. During a simulation,
the model detects a transition time-step, loosens the tolerance by a factor of 10 (changes
the tolerance from 107 to 10™) and applies under-relaxation. When no grid cells are
switching between PFC and sheet flow no relaxation factor is applied and the usual
tolerance is imposed. An example of the relaxation factor’s effect is given at the end of

Section 5.3.
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CHAPTER 4: MODEL VALIDATION

This chapter presents modeling results from PERFCODE for two simplified
geometries: a linear section or straight road and a converging section or curved road. The
purpose of the chapter is to demonstrate that solutions obtained by simulating the domain
through time agree with steady state solutions, which were obtained independently of the
model. Three simulations are presented for each geometric configuration: (1) PFC flow
only, (2) sheet flow only, and (3) combined PFC and sheet flow. The unsteady

simulations provide runoff hydrographs, which are also discussed.

4.1 Linear Section (Straight Roadway)

The linear section selected for testing is 10m wide and 20m long with a 3% cross
slope. Other parameters common to all simulations were a hydraulic conductivity,
porosity and rainfall rate (Table 2). Holding these parameters constant, the PFC
thickness was set to 15cm, Ocm, and S5cm to simulate PFC flow only, sheet flow only, and
combined PFC/sheet flow.

Table 2: Model parameters for simulating a linear section

Parameter Unit  Value
Roadway width m 10
Domain length m 20
Cross Slope % 3
Hydraulic Conductivity cm/s 1
Porosity -- 0.2
Rainfall Rate cm/hr 1

A plan view of the model domain for the linear section (Figure 20) shows
elevation contours, locations of grid cell centers and boundary conditions imposed on the
model. Because the objective of these simulations was a comparison with analytical
solutions, the domain and boundary conditions were chosen to make the flow one-

dimensional.
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Figure 20: Linear domain showing elevation contours, grid cell centers, and boundary
conditions

4.1.1 PFC Flow Only

This first simulation sets the PFC thickness at 15cm so that the steady state
drainage profile will stay within the pavement. The model starts from an initial condition
of zero depth and continues until steady state is reached. The model converged to a
steady state solution after 20,480 seconds of rainfall. In computing the steady state

solution, the initial point for integrating the ODE was found from
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B 157+ 1000cm

h;, = 9.26cm 4.1)

T Ks 1%*3%

This value corresponds to the kinematic boundary condition used in the model—the
hydraulic gradient is only due to the slope of the pavement.

Modeled values of the saturated thickness along the drainage path agreed closely
with the analytical solution (Figure 21). In the figure, the normalized width variable 7 is
plotted on the abscissa. For the linear section a value of = 1 corresponds to the no flow
boundary at the edge of pavement and a value of n = 0 corresponds to the kinematic
drainage boundary at the edge of pavement. The scale on the figure has been plotted in

reverse order so that drainage occurs from left to right.
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Figure 21: Depth profile for linear section with drainage by PFC flow only
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4.1.2 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurs as
sheet flow. The sheet flow simulation converged to a steady state solution after 252
seconds of rainfall. The flow thickness along the drainage path compares well with the
analytical solution from the kinematic model (Figure 22). Sheet flow reaches steady state
much faster PFC flow. The difference in time scales for transport via sheet flow versus

PFC flow foreshadows some challenges of modeling the coupled flow process.
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Figure 22: Depth profile for linear section with drainage by sheet flow only
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4.1.3 Combined Flow
For the combined flow simulation, the PFC thickness was set to Scm. Steady
state was reached after 5,128 seconds of rainfall. Good agreement was again obtained

between the numerical and analytical solutions.
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Figure 23: Depth profile for linear section with drainage by PFC and sheet flow
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4.1.4 Runoff hydrographs
For each simulation the discharge from the outflow boundary was tracked through

time. These rising hydrographs are plotted on a logarithmic scale on account of the wide
range of times required to reach steady state (Figure 24). Several points of interest are
noted on the hydrographs.

e The presence of a PFC layer delays the initial discharge from the roadway,

in this case by about 1 minute from when rainfall begins.
e PFC delays the peak flow by nearly 10,000 seconds—much longer than

most actual storms.

72



e For the combined case, the transition to sheet flow is evidenced as a sharp
increase in the slope of the hydrograph.

e For the PFC flow only, the break in slope corresponds to the time when
the outflow boundary reaches the maximum depth allowed by the

kinematic condition.
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Figure 24: Runoff hydrographs from a linear section

4.2  Converging Section (Curved Roadway)

The next geometry investigated in the validation process was a fully super-
elevated roadway section with a constant radius of curvature. For the purposes of this
discussion such a geometry is called a converging section. This roadway geometry is of
interest for evaluating the model’s ability to simulate flow on a curved road. Keeping the
cross-slope and radius of curvature constant makes the problem one-dimensional.

The converging section selected for testing is similar to the linear section, except
that the radius of curvature at the roadway center is 60m. Simulation parameters are
summarized in Table 3. A plan view of the model domain for the converging section

(Figure 20) shows elevation contours, locations of grid cell centers and boundary
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conditions imposed on the model. Holding these parameters constant, the PFC thickness
was set to 15cm, Ocm, and 5cm to simulate PFC flow only, sheet flow only, and

combined PFC/sheet flow.

Table 3: Model parameters for simulating a converging section

Parameter Unit  Value
Roadway width m 10
Domain length m 20
Cross Slope % 3
Radius of curvature at roadway center m 60
Hydraulic Conductivity cm/s 1
Porosity -- 0.2
Rainfall Rate cm/hr 1
o |
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Figure 25: Converging domain showing elevation contours,
grid cell centers, and boundary conditions
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4.2.1 Derivation of ODE for PFC Flow on Converging Sections

The steady state solution for PFC flow on a linear domain is given by Charbeneau
and Barrett (2008). Steady-state solutions for sheet flow on linear and converging
sections are given by Eck et al. (2010), and also Jeong et al. (2010). What is missing is
the solution for PFC flow on a converging section, which is the topic of the present
subsection.

Consider a section of roadway having a constant radius of curvature and constant
cross-slope as shown in Figure 26. Geometrically, this shape is equivalent to an inverted
cone. A cross section view along the radius is shown in Figure 27. It is important to
realize the coordinate system is arranged so that flow moves from a large radial position
to a smaller radial position as it moves down the slope.

At steady state, the volumetric flow-rate into an area equals the flow-rate out of
that area. For a converging section, the discharge is radial. The flow rate is the rainfall
rate times the contributing area. The area is found by subtracting the area of the sector at

radius R from the area of the sector at Rpax.

Figure 26: Schematic of converging section
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Figure 27: Cross section view

For the discharge through station R, the area is:

6 6 6
A(R) = %anax2 —EnRZ = (RZax — R?) (4.2)

where @ is the included angle. The flow rate is given by:

rf
QR) =r+AR) = o (ernax - RZ) (4.3)
The unit flux past radius R is the flow rate divided by the arc length at R:
QR) r 5
=—=— — 4.4
UR) = == = 57 (Rhax = R) (44

Because flow through a PFC is the problem of interest, Darcy’s law is the
appropriate form of the momentum equation:

dH
= - 4.5
U K*h*dR 4.5)

The hydraulic gradient decomposes as:

Z—Z=%+j—;=%+s (4.6)
where s is the slope, which due to the choice of coordinate system is positive for a down-
slope flux.

In order to agree with this convention, a positive hydraulic gradient in Darcy’s
law should cause a down-slope flux. This requirement is satisfied because the coordinate
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system for this problem is reversed from our usual system—the origin is at the down-hill
end of the domain rather than the uphill end.

Combining Equations (4.4), (4.5) and (4.6) gives the ODE for PFC flow on a
converging section:

dh r
Kh <ﬁ + S) = ﬁ(ernax - RZ)

or 4.7

dh N r (R2%,,, — R?
dR > T2Kh R

This ODE is first-order, but non-linear, and an analytical solution is not known at
this time. The same general features of the ODE for the linear section (see Charbeneau
and Barrett, 2008) also apply to the ODE for the converging section:

1. The location of maximum radius, Ry, 1S automatically a no-flow

boundary because for R = R, % = —s, and from (4.6) this implies
& — .
dR

2. The thickness initially increases as the radius decreases because s > 0.

3. At the location of maximum depth % = 0 and the variables are related by

2 _ D2
b = Rina —R (4.8)
max =T R

The ODE of (4.7) applies on a domain where flow is completely contained within
the PFC. To integrate the ODE, an initial point is needed somewhere on the solution
curve. The appropriate initial point depends on problem conditions. When flow is
completely contained in the PFC the saturated thickness at the edge of the domain can be
specified; in the case of combined PFC and sheet flow the appropriate point is the PFC
thickness taken at the location where sheet flow begins. This location is found by

equating (4.4) and (4.5) and setting the hydraulic gradient to the pavement slope. Note
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that a hydraulic gradient equal to the pavement slope is a requirement for sheet flow to

occur.

2 _ D2
r*<%>=1’(*b*s 4.9)

Applying the quadratic formula gives the location where sheet flow begins:

1/ 2Kbs\ 1 [/2Kbs\* ,
Rsheet:§<_ " )+§ < - ) +4Rmax

or (4.10)
Kbs Kbs\? 5
Rsheet = <_T) + <T) + Rmax

As an analytical solution is not known at this time, a numerical solution was

developed using a fourth order Runge-Kutta scheme (Figure 28). Comparisons between

linear and converging sections are discussed in Section 4.3 of this dissertation.
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Figure 28: Drainage depth profiles for a converging section with maximum radius of
55m, hydraulic conductivity 1cm/s, slope of 2%, initial depth of 1cm at R=5000cm and
range of rainfall rates.
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4.2.2 PFC Flow Only

The first simulation of the converging section set the PFC thickness to 15c¢m so
that all of the drainage would be contained in the pavement. The model reached a steady
state solution after 21,760 seconds of rainfall and showed good agreement with the steady
state ODE (Figure 29). The linear kinematic boundary condition of Equation (4.1) was
applied to the converging section. An order of magnitude analysis suggests that this

approximation is appropriate (see Section 3.7.3).
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Figure 29: Depth profile for converging section with drainage by PFC flow only
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4.2.3 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurred as

sheet flow. Steady state was reached in 196 seconds and had good agreement with the

analytical solution (Figure 30).
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Figure 30: Depth profile a converging section with sheet flow only
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4.2.4 Combined Flow
This simulation set the PFC thickness to S5cm so that drainage occurred both
within the pavement and on the surface. The model reached a steady state solution in

5,398 seconds, and showed generally good agreement with the analytical solution (Figure
31).
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Figure 31: Depth profile for a converging section with combined PFC and sheet flow
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4.2.5 Runoff Hydrographs

For each simulation the discharge from the outflow boundary was tracked through
time. These rising hydrographs are plotted on a logarithmic scale on account of the wide
range of times required to reach steady state (Figure 24). Hydrographs from the
converging section show the same general trends as the linear section (see page 72). A

comparison of the linear and converging cases is presented in the next section.
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Figure 32: Runoff hydrographs for converging section

4.3 Comparison of Linear and Converging Sections

So far, this chapter has considered two extremes of roadway geometry: perfectly
straight and perfectly curved. Most real roads fall into neither category, but these
extreme cases are useful for bounding the range of problems likely to be encountered in
practice.

A converging section has the effect of increasing the flow depth along the
drainage path. This increase occurs because the width available for drainage decreases as
the flow moves toward the center of a curve. How much the depth increases compared

to a linear section depends on the radius of curvature and on the road width.
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Depth profiles for the combined flow scenarios (10m width, 3% cross slope, 1
cm/hr rainfall, 5cm PFC thickness, 1 cm/s PFC hydraulic conductivity, 60m radius of
curvature at center) are shown in Figure 33. As expected, the flow thickness for the
converging section is slightly higher than the linear section and the difference increases
as the effect of convergence becomes more pronounced moving down the slope. The
difference drops sharply near the transition to sheet flow because the porosity no longer

amplifies the depth. Sheet flow also begins slightly higher on the converging section.
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Figure 33: Comparison of exact solutions for steady state flow thickness on linear and
converging sections, other parameters given in Table 2 and Table 3.

The effect of a converging section on flow depth can be determined from the
steady state ODEs, but the influence on the outflow hydrograph requires numerical
simulation. The hydrographs for the combined PFC/Sheet Flow scenarios from Figure
24 and Figure 32 are plotted together in Figure 34 to illustrate the effect of convergence
on the outflow hydrograph. Unlike previous the figures, an arithmetic scale is used
because the relevant time range is smaller. The converging section begins sheet flow

earlier than the linear section by 110 seconds. The figure also shows the evolution of the
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depth at the domain boundary. Adding this line to the plot emphasizes that the sharp

increase in the flow rate is associated with the transition to sheet flow.
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Figure 34: Hydrograph comparison for linear and converging sections,
PFC thickness was 0.05m

4.4  Stability

A numerical method is considered to be stable if errors introduced into the
solution are not amplified by the method (Ferziger and Peric, 2002). An amplification
factor for a method may be computed by introducing a small error into the solution (as a
Fourier component) at time level n and seeing how the error grows by time level n + 1.
The amplification factor is the ratio of these errors. An amplification factor of less than
unity is required for a method to be stable. This analysis of stability is called the von
Neumann stability analysis. The von Neumann approach applies only to linear

problems; there are no comprehensive methods for assessing stability of non-linear
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problems (Ferziger and Peric, 2002). The non-linear coefficients are frozen here so that
the von Neumann approach may be used.
The model equation for stability this analysis is formulated in terms of the total

head (see Equation (3.49)) rather than the depth for simplicity. With reference to
5

Equation (3.49), the substitutions £ = Ax; w = Ay; AA = AxAy; D =K xh+

\/_0
give a simplified expression of the model equation
iy _ D — (H;_1; — 2H;j + Hi14 )+ (Hjj—1 —2H;j + H; j+1)
at  Ax? A BT Ay2 VRS b (4.11)

+r
In this formulation the diffusion coefficient D is assumed to be a constant so the equation

is linear. Applying Crank-Nicolson to the time dimension gives

H{ff“l — H} 1D

At ZA Z(Hl 1,j ZHn +Hln+1]
1 n n
+§F(H” 1 ZH +Hl}+1
(4.12)
1
EA_(Hln-l-llj _ 2Hn+1 + H1n++11]
1
EA_(HZLJ+11 _ 2Hn+1 + H;rl]++11) +7r
The value of the solution at H;'; can be expressed as a Fourier component
H; = AlelPibxglajhy (4.13)

where A is the amplitude at time level n, I = v—1, and p and g are the wave numbers in
the x and y directions and i, j are the indices of the grid cell. The details of the
substitution of (4.13) into (4.12) are shown for the first term on the right side of (4.12).

1D
2 Ax?

Making similar substitutions for the remaining terms and dividing by A™e!/PA*gl0/AY

(An Ip(L 1)Ax IqjAy _ ZAneIpiAxelquy +Anelp(i+1)Aerquy) (414)

gives
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— ;AI;Z (e—Ipr 2 + eIpr)
1 A A
EA—yz(e_Iq y -2+ e’q y)
(4.15)
1 1 1
li ﬂe_Ipr _2An+ +£eIpr
2 Ax?\ A" Am Am
n+1 n+1 n+1
li A_e—Iqu — 24 + A_elqu
2 A Am Am Am

Making use of the identity:

e PAX 4 oIPAX = 2 cos(pAx) (4.16)

Antl . . .
e the linearized model equation can be

and defining the amplification factor G =

written as an equation for the amplification factor

—(G -D=7 2(<:os(pr)— D+13 2 (cos(qu) -1

D (4.17)
+G <A )(cos(pr) -1D+G <A ) (cos(pAy) — 1)
Solving this expression for the amplification factor gives
c 1
- 4.18
1+ 4 () s (B) + 4 (z2) v () o

Equation (4.18) shows that the amplification factor will always be less than unity because
the coefficient D is always positive and sin’is also always positive. This stability
analysis has shown that the Crank-Nicolson method is unconditionally stable for a linear
diffusion problem. The actual model equations however are non-linear and so may

exhibit some stability problems.
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4.5 Model Convergence

A numerical solution is said to converge if the errors in the solution decrease as
the grid is refined. This model was developed using central differencing scheme. Based
on a Taylor series expansion, central differencing schemes can be shown to have a
second-order truncation error (Ferziger & Peric, 2002). This means that the largest term
in the neglected part of the Taylor series expansion contains the grid spacing term raised
to the second power. The observed order of the truncation error for a model can be
obtained by comparing model runs for different grid sizes.

The model domain selected for the convergence study is the same domain studied
in Section 4.2.4—10m width, 3% cross slope, 1 cm/hr rainfall, 5cm PFC thickness, 1
cm/s PFC hydraulic conductivity, 60m radius of curvature at the roadway centerline.
Double precision variables were used for the convergence study to assure that differences
in the solution at the various grid sizes were due to truncating the Taylor series
approximations for derivatives and not due to floating point errors. Even with double
precision variables, the solutions using a 10cm grid was indistinguishable from the
solution using a Scm grid. A plot of the solution for various grid sizes shows that the
model converges to the same solution independent of the grid size (Figure 35).

For the purposes of this convergence study, the model solution for a nominal grid
spacing of Scm was used as the exact solution. The difference between the model
solution and the exact (5cm) solution, or the residual, was computed for each point. The
portion of the domain in PFC flow had higher residuals than the sheet flow part of the
domain (Figure 36). That the sheet flow and PFC flow parts of the domain would have
different behaviors is not completely unexpected because the governing equations differ.
What should be consistent though, is the rate at which the errors change with grid size.

The observed convergence rate of the model was investigated by computing the
residual with respect to the Scm grid at several locations along a cross section in the
center of the domain (at different points along the cross-section for the longitudinal
station in the middle of the domain). The grid refinement study (Figure 37) shows that

the model gives second order behavior as the grid is refined.
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Q v
o] ¢ o ©
X
+ X X X X X y
+
PR T
3 | BOANANANAAAAANAADAALALAEEE v
D < o <o
T X
N x X N +X 4
+ +
A TR TS LD
20 N
"\.3_ LN anh®
o A AAAAA
- N
A
© 10cm X 80cm
o | 2 20cm < 160cm
?.',— + 40cm Vv 320cm
— I I I I I I
1.0 0.8 0.6 04 0.2 0.0
Ul

Figure 36: Residual with respect to Scm grid by location,
all residuals for 10cm grid were zero

88




Modulus of Residual (m)

18103

Grid Spacing (cm)
Figure 37: Grid refinement study

89

0o
o_
1)
N~
o_
1)
o —— n=0.2
-&- =04
-%-- 1=0.8
o) — — First Order
?.',— —— Second Order
i [ [ [ [
20 50 100 200




CHAPTER 5: COMPARISON WITH FIELD DATA

This chapter compares model results with field data from a monitoring site
constructed on Loop 360, near Austin, Texas. The variable of interest remains the water
depth on the highway, but measurements of this quantity are difficult to make. Indeed,
one motivation for developing a model is to estimate quantities that are difficult to
measure. What has been measured is the rainfall depth and runoff hydrograph at the
monitoring site. The measured rainfall is taken as input and the variation of water depth
through the storm is computed along with the runoff hydrograph. Reasonable agreement
between the modeled and measured hydrographs lends credibility to the associated depth

predictions.

51 Construction of Field Monitoring Site

The monitoring site, located on southbound Loop 360 near Austin, Texas (Figure
38), was initially established as a monitoring site for stormwater runoff in 2004. Later
that year, the highway was repaved with PFC. Lower concentrations of total suspended
solids and total heavy metals were observed in the runoff, which generated interest in
additional research.

In the autumn of 2006 equipment for automatic sample collection was installed at
the Loop 360 monitoring site. The field site was designed to measure the runoff
hydrograph and to collect water quality samples. A drainage system was constructed
using 4-inch PVC pipe to collect runoff from an 18m (60 ft) length of roadway and direct
it to the sampler. A 6-inch H-flume was used to measure the flow rate from the drainage
pipe. An ISCO 4230 bubbler flow meter measured the water depth in the H-flume and
calculated the flow rate. An ISCO 3700 portable sampler used the flow rate to collect
flow-weighted water samples. An ISCO 674 tipping bucket rain gage recorded rainfall.
Both rainfall and runoff were recorded in five-minute intervals, rainfall as the total depth
and runoff as the average flow rate. Refer to Stanard (2008) for additional details on the

construction of the monitoring site and programming of the equipment.
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5.2 Model Inputs and Parameters

At the location of the monitoring site, Loop 360 is a four-lane divided highway.
The monitoring site is situated on the right-hand shoulder of the south-bound traffic
lanes. The traffic lanes (24{t) and right hand shoulder (10ft) slope to the driver’s right-
hand side at cross-slopes of 2% and 4%, respectively. The left shoulder (6ft) drains to the
left at a cross-slope of 4%. The entire section has a longitudinal slope of 2.3%.

The roadway geometry for Loop 360 was used to develop input files for the
model. The model domain was extended beyond the 60ft length monitored so that errors
in the kinematic condition on the east and west boundaries would not influence the
solution in the domain of interest. Kinematic boundary conditions were used on all four
sides of the domain. In Figure 40, the middle third of the domain corresponds to the
location of the drainage pipe at the monitoring site.

The storm event of July 20, 2007 was selected for simulation because it was a
large enough to cause substantial sheet flow. The hydraulic conductivity and porosity for
this simulation correspond to values measured by Klenzendorf (2010) for a nearby
location on the same highway. Values of Manning’s n have not been measured for PFC,
but a value of 0.015 s / m'” appears appropriate considering the analysis of Charbeneau et

al. (2009). Table 4 summarizes the model parameters.

Table 4: Model Parameters for Loop 360 Monitoring Site

Parameter Unit  Value
Roadway width m 12.2
Domain length m 36.6
Cross Slope % various
Hydraulic Conductivity cm/s 3
PFC Thickness cm 5
Porosity -- 0.2
Manning’s n s/m” 0.015
Rainfall Rate cm/hr  various
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The storm of July 20, 2007 occurred during an unusually wet summer, and was a
particularly large storm. A total of 48mm (1.9 in) of rainfall were recorded at the
monitoring site over a 5.6 hour period. The peak rainfall depths on a five, fifteen and
sixty minute basis were 6.6mm 18mm, and 39mm (0.26in, 0.71in, 1.56in), respectively.
On a sixty minute basis, the storm corresponded to a return period of about 2 years
(Chow et al., 1988 pg. 450) The highest five-minute rainfall intensity was 80mm/hr.

The field measurements provided the time at the end of five-minute periods for
which the rainfall total was reported. This information was prepared for use in the model
by computing the rainfall intensity (mm/hr or m/s) and inserting points at the beginning
of each five-minute interval (Figure 41). The purpose of this approach was to facilitate
use of a linear interpolation routine for selecting the proper rainfall rate for any time

during the model simulation.
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Figure 41: Measured rainfall and model input function for
Loop 360 monitoring site on July 20, 2007
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5.3  Results and Discussion for event of July 20, 2007

The rainfall function and other parameters were used as inputs for a simulation
over 20,000 seconds. During the simulation, the runoff through the domain’s southern
boundary and was computed for each time step. The overall maximum depth and the
maximum depth in the middle of the domain were also tracked throughout the simulation.
This distinction in the depths was necessary due to oscillations near the boundary.

A model time step of 5s was used when the all of the drainage was contained
within the pavement, but a step of 0.1s was needed during sheet flow for the model to
remain stable. In order to make a fair comparison with the field measurements, the
calculated flow rates were averaged over five minute intervals. A weighted average flow
rate was used so that a five-minute interval containing two sizes of time step has the
proper flow rate. These averaged flow rates showed generally good agreement with the
field measurements (Figure 42). The model predicted peak flows of the proper time and
magnitude, and the shape of the hydrograph generally matches the field observations.

The model predicted a peak flow 3.7 L/s, which is 97% of the measured value of
3.8 L/s. The difference between the modeled and measured flow rates (residual) had a
mean -0.029L/s, median 0.021 L/s, standard deviation 0.24 L/s and standard error of the
mean 0.029 L/s. The largest residuals were associated with high flow rates. This
comparison suggests that the model parameters were consistent with field conditions and
lends credibility to the associated depth predictions.

A plot of the model solution for maximum depth conditions shows sheet flow
occurring in both traffic lanes and on the right hand shoulder (Figure 43). Within the
domain of interest, the depth contours are parallel to the roadway centerline. This result
is consistent with a straight road and constant slopes. Some oscillations in the depth
contours appear outside of the domain of interest, especially near the western boundary.
It is believed that these oscillations are related to using the kinematic outflow boundary
condition from the east end of the domain on the inflow boundary at the west end.

During this simulation, maximum depth in the domain of interest was 0.05142m

above the impervious layer, which represents a sheet flow depth of 1.4mm. This

95



maximum occurred near the edge of the right traffic lane (Figure 44). The exact location
was 3.2m from the southern edge of the domain; since the shoulder width is 3.05m, the
maximum depth occurred 15¢m from the shoulder. This peak occurred 1 hour after
rainfall began (3599.9s) and during the peak rainfall intensity of 80 mm/hr.

The model results show that sheet flow begins 1.6m due south of the grade break
for the left hand shoulder (Figure 44). Under most conditions, this break in slope acts as
a no-flow boundary within the domain; the no flow condition is assumed here for
purposes of comparison with the analytical model even though some flow does occur.

At the peak rainfall rate for this storm, the analytical model (see Charbeneau & Barrett
2008 and Eck et al. 2010) predicts sheet flow at 2m down the drainage slope or 1.4m due
south of the grade break (2% cross slope, 2.3% longitudinal slope; 3.048% drainage
slope). This seems a reasonable match, considering that the numerical model is not at

steady state, and that boundary condition is approximate.
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Figure 42: Comparison of modeled and measured hydrographs for storm of July 20, 2007
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In addition to examining water depths during an actual rainstorm, this example
also provides an opportunity to illustrate the effect of using an under-relaxation factor in
the non-linear iteration loop. Figure 45 shows how the solution at a grid cell just on the
right shoulder evolves during a time step shortly after peak rainfall has started (time
2821.9s). At the previous time-step the traffic lanes have sheet flow and the shoulder is
in PFC flow. The model is trying to determine if the shoulder is also now in sheet flow
or if it remains in PFC flow. Without the under-relaxation, the solution bounces between
inside and outside of the PFC surface, the grid cell shown has the largest error, and the
solution does not converge for the time step. This ‘hunting’ behavior does not occur with
the relaxation factor and the model concludes that the depth at this location remains in the

PFC for this time-step.

0.05025 -
0.05020 -
0.05015 -

0.05010 -
== No Relaxation
0.05005 - == Under relaxed

PFC Surface
0.05000 -

Depth above impervious layer (m)

0.04995 -

0.04990 T - .
0 5 10 15

Iteration Number

Figure 45: Solution history for an interior point (grid cell 2138) with and without under-
relaxing the non-linear iteration
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5.4  Loop 360 with and without PFC

One opportunity afforded by the simulation model is to compare results with and
without PFC for the same storm event. Such an analysis gives direct insight about how
PFC changes the drainage hydraulics as compared to conventional pavement and is the
topic of this section. The same roadway geometry and simulation parameters used for the
comparison with field measurements were used in this simulation, except that the
thickness of the PFC layer was set to zero so that all drainage occurred as sheet flow.

The simulated hydrograph for Loop 360 without PFC is shown in Figure 46 along
with the simulated hydrograph corresponding with a 5cm PFC layer. Both hydrographs
have been time averaged over the reporting period for rainfall measurements (5 minutes).
The absence of a PFC layer appears to make the hydrograph rise and fall faster,
especially later in the storm (10,000s) when flow would be contained within the PFC.
The PEC layer reduced the magnitude of this small peak by about 70% and delayed it
five minutes, or one averaging period.

A PFC layer might be expected to delay the runoff hydrograph due to storage
within the pavement, but that effect is not observed in this case. The high rainfall
intensity quickly overwhelmed the capacity of the PFC layer, causing most of the
drainage to occur as sheet flow so the hydrographs exhibit a similar shape.

The presence of a PFC layer reduced the sheet flow thickness during this event
(Figure 47). The PFC layer prevented sheet flow entirely for the left part of the left lane
and also on the left shoulder. In regions where sheet flow occurred over PFC, the PFC
layer reduced the depth by an average of 0.35mm. Some small oscillations are noted in
the sheet flow profile near the right shoulder and were associated with sharp change in
cross slope.

In addition to reducing the magnitude of sheet flow on the highway, PFC also
reduced the duration that sheet flow was present. Simulation results showed that sheet
flow depths in excess of 0.1mm were present for about 1600 seconds when the PFC layer

was present and for 8580 seconds without the PFC layer.

100



T s — O
'\ —
co —
L. O
Te)
Lo —
2 =
_' ] ~
o N —— Rainfall 5 E
§ —— Hydrograph Without PFC - © =
2 Hydrograph With PFC ..g
S o - 5
* 14
" - 3
B o
© g == - S
[a\}
I T I I |
0 5000 10000 15000 20000
Time (s)

Figure 46: Comparison of modeled hydrographs with and without a PFC layer for Loop
360 on July 20, 2007. Plotted flow rates are five minute averages.
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5.5 Storm event of June 3, 2007

A comparison between model results and field measurements was made for a
second storm event to confirm that the results obtained for July 20, 2007 were not
coincidental. The event of June 3, 2007 was selected for analysis because the total
rainfall depth was around 1-inch and because 90% of the rainfall was measured as runoff,
a reasonable mass balance for field sampling. The measured rainfall data was prepared
for simulation as outlined previously; all other simulation parameters remained the same.

The modeled hydrograph again shows reasonable agreement with the measured
one (Figure 48). The model predicted a peak discharge of 2.6 L/s, which is 76% of the
measured peak discharge of 3.4 L/s. Statistics of the residuals (the differences between
modeled and measured values) are reported in Table 5. Compared to the July 20 event,
the peak discharge was not modeled as well, but the statistics of the residuals were
comparable between the events, suggesting that the model performed consistently in both
cases.

A contour plot of the model domain during maximum depth conditions shows that
sheet flow occurred over most of the roadway and that sheet flow depths were on the
order of Imm (Figure 49). The onset of sheet flow occurred 2.2m from the left hand
shoulder and the maximum sheet flow depth of 1.3mm occurred near the right shoulder
(Figure 50). These values compare favorably to the steady state model, which predicts

sheet flow 3.4m from the left shoulder and a maximum sheet flow depth of 1.3mm.
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Table 5: Summary of statistics of model residuals, all in units of L/s

Statistic July 20, 2007 June 3, 2007
Mean -0.029 0.016
Median 0.021 0.035
Standard Deviation 0.24 0.16
Standard Error of the Mean 0.029 0.02
0w - - O
q- —
~ o
=3
. E
3 @ =
Py Rain S
=2 — Field Measurement | -2 o
> © PERFCODE 2
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i o =
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Figure 48: Comparison of modeled and measured hydrographs for June 3, 2007
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1  Project Summary
This project has developed, validated, and applied a numerical model that couples
the dynamics of overland flow with porous media flow for PFC roadways. The model
represents overland flow using the 2-D diffusion wave approximation to the Saint-Venant
equations. Porous media flow is described by the Boussinesq equation. Coupling these
equations together facilitated water depth predictions at a fine spatial scale. This work
has addressed the research objectives which were established in Chapter 1 and are
repeated here for reference:
1. Identify governing equations for surface and subsurface flow for the geometry
of interest
2. Develop a scheme to couple flow between the surface and subsurface
3. Implement the coupling scheme and numerical methods in a computer model
that represents roadway geometry using a coordinate transformation
4. Validate the model using analytical solutions
5. Compare model predictions of runoff with values measured at an existing
monitoring site
The governing equations for surface and subsurface flow have been identified
and applied to roadway geometry. A scheme to couple the surface and subsurface flow
components has been developed. The proposed scheme uses a mass balance approach
and adjusts conveyance coefficients based on the flow conditions. A computer model has
been developed and validated against steady state solutions that were obtained
independently. Predictions of the runoff hydrograph were compared to measured values
for the field monitoring site.
Several aspects of this work represent new and unique contributions to the fields

of hydraulics and porous media flow:
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6.2

The model itself—PERFCODE—is a unique tool for understanding highway
drainage. It builds on a long tradition of research in highway drainage hydraulics
at The University of Texas at Austin.

The way in which PFC flow and sheet flow are coupled within the model led to a
better understanding of the interaction between PFC flow and sheet flow (see Eck
et al. 2010).

The ODE for PFC flow on a converging section has been derived and a numerical
solution provided. The solution is useful for understanding how roadway
geometry influences drainage behavior and for validating more comprehensive
numerical treatments.

A new boundary condition—the kinematic condition—for PFC flow has been

developed and found to have reasonable agreement with field measurements.

Conclusions

Developing the simulation model and applying it to linear sections, converging

sections, and the field monitoring site provided insight into the drainage behavior of PFC

highways. Conclusions from this work are as follows:

The kinematic boundary condition developed for PFC flow addresses an
important gap in the literature of porous pavement hydraulics: the depth at the
boundary can now be estimated for steady state or transient conditions. At the
edge of pavement this condition gives a maximum depth in the PFC layer; but at
the ends of the domain depth estimates are inconsistent with the domain interior,
resulting in a boundary effect. The model domain should therefore be expanded
to remove this effect from the area of interest. Use of this boundary condition
yielded hydrographs that were consistent with field measurements.

Predictions of runoff hydrographs for PFC roadways are available for the first
time. These hydrographs show that PFC delays the initial discharge from the
roadway compared to conventional pavement and that flow in a PFC layer

requires a long time to reach steady state. For a constant rainfall case, PFC
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6.3

delayed the initial discharge by 60 seconds and required 50 times more rainfall to
reach steady state, though these values depend on problem parameters.

One dimensional steady state equations remain a powerful tool for engineering
design. For the storm investigated in Chapter 5, the 1D steady state equations
predicted the location that sheet flow begins within 20cm of the PERFCODE’s
prediction. The location and magnitude of the maximum sheet flow depth were
also closely predicted by the 1D steady state equations. This result confirms that
the steady state equations (Charbeneau and Barrett, 2008 and Eck et al., 2010) are
suitable for designing the PFC thickness on straight roads.

The presence of a PFC layer did not affect the timing or magnitude of the peak
discharge for the storm that was analyzed, but a later and smaller peak in the
runoff hydrograph was delayed and reduced by the PFC layer. This result
suggests that PFC has a negligible effect on the hydrology of large events, but can
reduce the peak discharge of smaller events.

During intense storms a PFC layer cannot prevent sheet flow altogether, but it can
reduce the time during which sheet flow conditions persist. In the example
studied, PFC reduced the duration of sheet flow conditions by about 80% and

reduced the maximum sheet flow depth by 25%.

Recommendations for Future Work

Based on the research reported in this dissertation, several areas that should be

considered for future research are as follows:

The model required very small time-steps to simulate the measured rainfall. An
infinite number of rainfall patterns are consistent with the five-minute rainfall
data that was measured. Future work could include using a smoother rainfall
function to see if the model’s stability properties could be improved (e.g. take
larger time-steps).

Measured values of the hydraulic conductivity for PFC are at the high end of the

acceptable range for Darcy’s law on typical roadway slopes. Related
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experimental and modeling efforts conducted by Klenzendorf (2010) used the
Forchheimer equation to model flow through PFC and found the Forchheimer
coefficients. Future work could update the model developed here to use
Forchheimer’s equation in place of Darcy’s law. Such an update need only
modify the subroutine for computing conveyance coefficients. Since the Darcy’s
law problem is already non-linear, the non-linearity introduced from
Forchheimer’s equation would be handled within the existing non-linear iteration
loop.

Small time steps (0.1s) were needed for non-smooth rainfall functions and high
rainfall intensities. This small time step dramatically increased the time required
for a model run. It also is based on the lowest common denominator—it is likely
that larger time steps would be stable for part of the simulation time. An adaptive
time stepping scheme could improve the run time while maintaining stability.
The statistics of the residuals (modeled minus measured discharges) were similar
for the two storms investigated. Future work should simulate additional storm
events to further quantify the uncertainty in the model predictions.

The model formulation is intended to allow simulations of more complex
roadway geometry such as a superelevation transition or sag vertical curves.
Although it is believed that major changes would not be required to deal with

such geometries, they have not been attempted.

110



APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE

The model described in this dissertation—PERFCODE—was implemented for
computation in the Fortran 90/95 language and compiled for Microsoft Windows with the
Lahey/Fujitsu Fortran compiler v5.5. The program runs as a console mode application
(i.e. from the command prompt). This appendix describes (1) how to use model and (2)
model limitations through a discussion of the model input files. A summary of the
Fortran source code is given next, followed by a listing of the source code. The
interested reader is encouraged to contact the author of this dissertation for an electronic

copy of the model.

A.1 Model Limitations

PERFCODE has been designed to simulate highway drainage for a wide variety
of conditions within certain limitations:
e The structure of the input files does not allow for a cross section that
varies longitudinally (e.g. superelvation transition)

¢ Boundary conditions have not been developed for PFC on curbed sections

A.2  Running PERFCODE: Developing Input Files

PERFCODE is designed to simulate roadway drainage under a variety of
conditions. Inputs to the model have been arranged into text files so that parameters can
be changed without recompilation. In order apply the model to a situation of interest,
input files must be developed. Model inputs and calculations use SI units.

The first input file contains basic simulation parameters and requires the most
explanation. These parameters are read from Data File 1: Parameters.dat. As shown
below, this file has several sections.

e PFC properties are listed first and these four properties are the only

parameters of the mathematical model—these values must be accurate in
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order for simulation results to be consistent with physical observations.
For the work of this dissertation, the hydraulic conductivity, porosity and
pavement thickness were measured from core samples and the Manning’s
n value was inferred from an experimental study.
The model uses different time steps for sheet flow and PFC flow
conditions. The time of a model run must also be specified and care
should be taken to select a simulation time that is consistent with the
rainfall input.
The grid spacing is controlled by selecting an approximate grid cell size.
The size is approximate because the grid is creating using ‘equal
increments’ see (Jeong et al. 2010). The size is also approximate because
the user may specify a value that is not an exact divisor of the domain size
(e.g. dy =0.4m when the domain width is Sm). The quantities dx and dy
should probably be called dxi and deta because the correspond to the cell
size in the longitudinal and transverse directions (respectively).
Several tolerances are needed including the maximum number of
iterations, the required accuracy (eps is short for epsilon), and the
relaxation factors for the non-linear iteration.
The initial condition is simply the depth at the beginning of a simulation.
A small value is used instead of zero because zero is a difficult number in
floating point calculations.
The boundary condition for each edge of the domain must also be
specified

o NO_FLOW is simply a no flow boundary

o MOC_KIN means to use the method of characteristics to

implement a kinematic boundary condition for PFC flow and sheet
flow.
o eastKIN means to use the MOC_KIN boundary from the east edge

of the domain on the west end of the domain. This only makes
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sense if the solutions on the east and west faces should be the
same.

o 1D_FLOW means to use the one dimensional unsteady model as
the boundary condition for the two dimensional domain. This

boundary condition is experimental and not recommended for use.

Data File 1: Parameters.dat
Parameter Input file for PERFCODE

PEC Properties

0.01 < Hydraulic Conductivity [m/s]
0.2 <——— Porosity
0.05 < Pavement Thickness [m]
0.015 <———— Manning's n [ sec / m ~ (1/3) ]
Physical Constants
9.81 <——— Gravitational Acceleration [m/s/s]
Time Steps
5. < time step for PEC flow [s]
1. L time step for sheet flow [s]
8000 L Time to simulate [s]
Grid Spacing
0.10 <—— preliminary value of dx [m]
0.10 < preliminary value of dy [m]
Tolerances
200 < agmax (maximum number of non-linear iterations)
5000 <—— maxit ( maximum number of solver iterations)
l.e-4 <——— eps_matrix
l.e-3 <——— eps_itr
l.e-3 <—— eps_ss
1. <——— Relaxation Factor for non-linear iteration
0.2 <———— Relaxation factor for transition
Initial Condition
1.e-10 <——— Initial depth [m]
Boundary Conditions ( legal values are: MOC_KIN, NO_FLOW, 1D_FLOW, eastKIN )
NO_FLOW  <———— NORTH boundary of domain
MOC_KIN  <———— SOUTH boundary of domain
NO_FLOW  <——— FAST boundary of domain
NO_FLOW  <———— WEST boundary of domain

Rainfall information is read from Data File 2: Rainfall.dat. The first line of the
file is the number of rainfall records, which the program needs in order to read in the
proper number of values. Note that the times move in 300s increments, consistent with

the field monitoring data. The remaining lines of the file are not shown for brevity. A
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technical computing platform—such as the R Environment for Statistical Computing and
Graphics or MATLAB—is useful for generating this file from a record of measured
rainfall. In order to simulate a constant rainfall rate, only two records are required: time

zero and some large time both with the same rainfall rate.

Data File 2: Rainfall.dat
208 <—— Number of rainfall records 20 July 2007
1,0,1.693333e-06 <—— Record, Time[s], Rainfall Rate [m/s]
2,299.99,1.693333e-06
3,300, 0.000000e+00
4,599.99,0.000000e+00
5,600, 8.466667e—-07
6,899.99,8.466667e-07
7,900, 0.000000e+00
8,1199.99, 0.000000e+00
9,1200,0.000000e+00

Information about the horizontal alignment of the roadway is read from Data File
3: CL_Segments.dat. The information in this file pertains to the geometry of the roadway
centerline. The variables correspond to Equation (3.22). This information can be
specified directly as was done in this dissertation, or obtained by processing an output file

from roadway design software such as GEOPACK as done by Jeong (2008).

Data File 3: CL_Segments.dat
1 < Number of Segments
Segment, xccl, yccl, dx, dy, Rl, dR, W, thetal, dtheta,
1, 89.14400, -1000000, 0, O, 1000040., 0.0, 12.192,1.57080547,-1.82873E-05,

The vertical alignment of the roadway is specified by two different files. Cross
section information is read from Data File 4: CrossSection.dat. Note that this file
specifies relative elevations in the form of slopes, but not absolute elevations. The sum of
the segment widths specified here should match the overall roadway width (W) that is
given in Data File 3: CL_Segments.dat.
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Data File 4: CrossSection.dat
Roadway Cross Section Input file for PERFCODE

3 < Number of segments to define cross section
Segment Slope Width [m]
1, -0.04, 3.0480
2, -0.02, 7.3152
3, 0.04, 1.8288

Note: SLOPE is defined left to right with a negative slope
corresponding to a loss of elevation moving from left to right.
SEGQVENTS are numbered from eta = 0 to eta = 1 so segment 1 is
on the right end of the domain.

Elevations are obtained from Data File 5: LongProfile.dat. The elevations in this
file correspond to the right edge of the pavement (7 = 0). The structure of this file
allows for more variations in longitudinal slope than were considered in this dissertation.
By including more points in this file, different longitudinal geometries such as sag

vertical curves can be represented.

Data File 5: LongProfile.dat
Longitudinal Profile Input file for PERFCODE

2 L Number of points to define longitudinal profile
Point No. Distance(m) and Elevation(m) ALONG ETA = 0

1, 0.000000, 10.0000000 <——— West boundary of domain

2, 18.28800, 9.579376 <——— East boundary of domain 2.3%

Once these data files have been formulated for the problem of interest, model runs
can begin. Several output files are written during each model run and the content of these

files is the subject of the next section.

A.3 PERFCODE Output Files

Output files are mostly formatted as .csv (comma separated values) so that results
can be opened by a spreadsheet program or read into a technical computing environment.
The primary output files are:

® details.csv contains summary information for each time step including the
outflow hydrograph and other time history data.
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¢ max_depth.csv contains the model solution for maximum depth conditions
encountered during the simulation. The file is in vector form.

e params.csv is an echo of the model parameters used in the simulation

e PERFCODE_Run.txt is a log file with information about each iteration
and each time step of the model run. Most warning messages during the
simulation are directed to this file. If the simulation failed for some

reason, this file is the first place to look for an explanation.

A.4 Fortran Source Code

In writing the code for the model, extensive use was made of Fortran modules for
storing common variables and grouping procedures (functions and subroutines)
thematically. Each module comprises its own source file, but may contain several
procedures provided the procedures do not reference each other. Each module is
compiled separately. When the main program is compiled, links to the requisite modules
are made and the product is a single executable file. Table 6: shows the name and
contents of each programming unit. The order of the source files in the table (after the
main program) reflects the order in which the files must be compiled for proper linking.
This table also serves as an index to the code listing. The interaction between the

procedures is depicted graphically in Figure 51 on page 121.

Table 6: Fortran program and module listing

Program or Source file Contents
Module and
Name Page No.
PERFCODE | PERFCODE.f95 | Main program (compiled last)
122
shared shared.f95 Variables shared between different programming units
152
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Program or
Module

Name

Source file
and

Page No.

Contents

pfc2Dfuns

pfc2Dfuns.f95
157

Function subprograms used in the 2D PFC drainage
model:

F_LinearIndex computes the linear index for each
grid cell

F_por computes the porosity factor (pf) for each grid
cell

F_RHS_n computes the contribution to the right hand
side of the linear system due to time level n
F_RHS_n1 computes the contribution to the right

hand side of the linear system due to time level n+1

utilities

utilities.f95
159

Functions and subroutines for general use
UNLINEARIZE converts the solution from the linear
form used in the matrix system into a two-dimensional
array

BILINEAR_INTERP performs bi-linear
interpolation

F_LINTERP Performs linear interpolation
F_L2_NORM Computes the L2 norm of a vector
F_PYTHAGSUM Computes the Pythagorean sum of
two numbers

F_EXTRAPOLATE Performs linear extrapolation

inputs

inputs.f95
169

Subroutines for reading the simulation parameters and
rainfall information GET _PARAMETERS and
GET_RAINFALL
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Program or

Source file

Contents

Module and
Name Page No.
outputs outputs.f95 Subroutines for generating selected outputs
172 ECHO_INPUTS prints selected input parameters to

the screen

WRITE_FLIPPED MATRIX creates comma
seperated values (.csv) file of a matrix that has been
‘flipped’ to match the model domain (e.g. the 1,1
location is in the southwest corner)
WRITE_MATRIX creates a .csv file of a matrix
WRITE_VECTOR creates a .csv file of a vector
WRITE_SYSTEM creates a .csv file of the bands
and right hand side of the penta-diagonal matrix

system

geom_funcs

geom_funcs.f95

177

Function sub-programs related to the curvilinear grid
generation

F_L_xi computes the metric coefficient for the length
mapping

UNMAP_X computes the x coordinate of a point in
physical space from its coordinates in computational
space

UNMAP_Y computes the y coordinate of a point in
physical space from its coordaintes in computational

space

118




Program or
Module

Name

Source file
and

Page No.

Contents

ConvCoef

ConvCoef.f95
180

Subroutines related to computing the conveyance
coefficients:

CONVEYANCE computes the conveyance
coefficient for a cell face

FrictionSlope computes the friction slope at the

center of each grid cell face

GridGen

GridGen.f95
188

Subroutines related to the grid generation scheme
GENERATE_GRID reads the centerline geometry
file and creates a curvilinear grid (horizontal
coordinates) based on a given approximate grid
spacing

SET_ELEVATIONS reads the longitudinal profile

from a file and assigns an elevation to each grid cell

Solvers

Solvers.f95
199

Subroutines related to solving linear systems:
DIAGDOM_PENTA checks for diagonal dominance
given the bands of a penta-diagonal matrix
GAUSS_SEIDEL_PENTA uses the Gauss-Seidel
method for iterative solution of a penta-diagonal
system of linear equations.

THOMAS uses the tri-diagonal matrix algorithm to

solve a tri-diagonal linear system

pfc1Dfuns

pfc1Dfuns.f95
204

Functions used the 1D pfc flow model:
F_CC computes the conveyance coefficient

F_por computes the porosity function for a grid cell
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Program or Source file Contents
Module and
Name Page No.
pfc1Dfuns2 | pfclDfuns2.f95 | Lower level functions used in the 1D pfc flow model:
205 F_hp_face computes the saturated thickness at the cell
face
F_hs_face computes the sheet flow thickness at the
cell face
pfc1Dsubs pfc1Dsubs.f95 | Subroutines used for the 1D flow model:
207 GRID_1D_SECTION creates a grid for the 1D
drainage path
pfc1Dimp solves the 1D pfc drainge problem using
the crank-nicolson implicit method. The routine only
takes a single time-step.
pfc2Dsubs pfc2Dsubs.f95 | Subroutines related to the 2D pfc flow model:
223 SET_ABCDEF fills the coefficients of the linear
system for a single grid cell
SET_XYH assigns values of x,y,and h for use in the
bi-linear interpolation routine
BoundCond | BoundCond.f95 | The subroutine MOC_KIN, which uses the method of
225 characteristics to implement a kinematic boundary

condition.
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Source File 1: PERFCODE.{95

fortran free source

PPPP EFEFEE RRRR FEFEEFE CCccc 0000 DDDDD EFEFEE
P P E R R F C C O @) D D E
P P E R R F C O O D D E
P P E R R F C O O D D E
P P E R R F C O O D D E
PPPP EFEFEE RRRR FEFEEFE C O O D D EEEEEE
P E R R C O O D D E
P E R R F C O O D D E
P E R R F C O O D D E
P E R R F C C O 0] D D E
P EFEFEE R R F CCccc 0000 DDDDD EFEFEE
PERmeable Friction COurse Drainge codE
Written By: Brad Eck
Date: April 2010
ANV PROGRAM /117777177
/117171777 DESCRIPTION AN
Purpose: This program computes a 2D solution for unsteady
drainage through a PFC. The water THICKNESS in each
cell is used as the primary variable.
IC: Specified in input file
BCs: Specified in input file

Linearization: Picard Iteration (lag the coefficients)
Linear Solver: Gauss—Seidel iteration

Alphabetical list of variables used in the main program PERFCODE
(variables used in subroutines are described there)

Cel —
Cn —
Cnl —
Cs —

lowest band of penta diagonal matrix

area of a grid cell

array allocation statuses

subdiadonal band of penta diagonal matrix

thickness of the PFC layer

main diagonal of penta diagonal matrix

conveyance coefficient ( conv coef ) for the

EASTtern cell face at time level n

conv coef for EASTern cell face at time level n + 1

conv coef for the NORTHern cell face at time level n
' ' '' at time level n + 1

conv coef for the SOUTHern cell face at time level n
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52! Csl — ' " ''at time level n + 1
53 ! CV_Info  —— information about each grid cell (aka Control Volume)
54 ! Cw —— conv coef for the WESTern cell face at time level n
55 ! Cwl — ' " '' at time level n + 1
56 ! D —— superdiagonal band of penta diagonal matrix

57! dist_lp —— distance along longitudinal profile

58 ! diagdom — logical flag for test of diagonal dominance

59 ! ds —— distance up characteristic in sheet flow moc bc

60 ! dt —— time step for the simulation

61 ! dt_pfc —— time step for PFC flow

62 ! dt_sheet —— time step for sheet flow

63 ! ax —— prelim. grid size for longitudinal direction

64 ! dx_moc —— distance up drainage path in pfc moc bc

65 ! dy —— prelim. grid size for transverse direction

66 ! E —— uppermost band of penta diagonal matrix

67 ! east_lbc - condition for east boundary

68 ! eps_matrix—— tolerance (epsilon) for matrix solver

69 ! eps_itr —— tolerance for an iteration

70 ! eps_itr_tol— selected tolerance for the iteration (based on transition)
71 ! eps_ss —— tolerance for steady state (not used)

72! eta _cs — values of eta along the cross slope

73! eta_0_hp2_max—— max possible value for pfc moc bc

74 ! eta _cs 1D — values of eta for 1D model

75 ! etalD — value of eta at each point in 1D domain

76 ! etaCv — value of eta at CV center for 1D grid

77! E_ —— the letter F with an underscore ( F_ ) denotes a

78 ! function call and NOT an array

79! F —— right hand side of linear system in pentadiagonal matrix
80 ! Fl —— contribution to F from time level n+l

81 ! Fn —— contribution to F from time level n

82 ! g —— constant of gravitational acceleration

83 ! grid — number of each grid cell

84 ! h0 —— initial depth (m)

85 ! h bound - depth at boundary (returned by MOC_KIN or 1D_FLOW)

86 ! h imid jl _max—— solution when depth at middle of south boundary is max
87 ! h imid jl max hist

88 ! h imid max—— solution when depth in middle of domain is max

89 ! h imid max hist

90 ! h itr — matrix form of solution at level n+l

91 ! h itr vec —— vector form of solution at time level n+l

92 !  h max —— solution at maximum depth

93 !  hnew 1d - solution at time level n+l for 1D problem

94 ! h old —— solution at time level n

95 ! h old 1d —- solution at time level n for 1D problem

9% ! h old vec —

97 ! h pfc min — minimum value for pfc flow thickness

98 ! h Q max — solution at maximum flow

99 ! h temp hist — history of solution during an iteration

100 ! h tmp vec —

101 !  hpl —— depth at point 1 in pfc MOC bc

102 ! hp2 —— depth at point 2 in pfc MOC bc

103 ! hsl —— sheet flow depth at point 1 in sheet flow moc bc

104 ! hs2 —— sheet flow depth at point 2 in sheet flow moc bc

105 ! i —— array index ( longitudinally in the domain )
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106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

input_values— array of values of the input variables

input_variables —— character array of input variables
imax — maximum value of the array index i
3 —— array index ( transverse in the domain )
Jmax — maximum value of the array index j
K —— the saturated hydraulic conductivity of the PFC
L2_history — value of the L2 norm for each timestep
1ng —— curvilinear length of a grid cell at its center
Ing north — curvilinear length of the northern face
Ing south — curvilinear length of the southern face
loc —— the location of the largest relative change in a time step
long_slope — overall longitudinal slope
max_rec  — maximum number of records (for pre-allocating arrays
where values are read in from a file )

max_time —— longest time to simulate
maxdiff  — the change in head at location LOC for timestep n
maxit —— maximum number of matrix iterations
maxrelchng ss— maximum relative change for a timestep, for stdy state check
maxthk — maximum thickness fot the timestep
matrix numits— number of iterations to solve the matrix
n —— index for time stepping
n_mann —— Manning's roughness coefficient
north bc —— condition for north boundary
nlast —— last timestep taken
nmax — maximum number of time steps in the simulation
numit —— the number of iterations required for a timestep to converge
nr_cs — number of records in the cross slope file
nr lp — number of records in the longitudinal profile file
nrr — number of rainfall records
out_time —
pf —— porosity factor ( includes effect of porosity

when pavement is not saturated )
pf_int —— porosity factor as an integer
pfl —— porosity factor for time level n+l
pfl int — " " """ as integer
por —— the effective porosity of the PEC
g —— iteration index
qmax —— maximum number of iterations
rain —— rainfall rate for each timestep of the simulation
Qout — flow rate out the southern boundary for a timestep
rain rate —— rainfall rate for each time increment in the

rainfall input file

rain time —— time column of rainfall input file
relax —— relaxation factor for non-transition iterations
relaxation factor —— underrelaxation factor for non-linear iteration
relax tran — relaxation factor for transition
relchng —— the relative change between solns for an iteration or timestep
residual —- difference between old and itr solutions
seg —— properties of a centerline segment
Sfe_itr — friction slope at center of east face at time level n+l
Sfe_old — friction slope at center of east face at time level n
Sfn itr  — friction slope at center of north face at time level n+l
Sfn old — friction slope at center of north face at time level n
Sfs_itr — friction slope at center of south face at time level n+l
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160
lel
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Sfs_old — friction slope at center of south face at time level n
Sfw_itr — friction slope at center of west face at time level n+l
Sfw_old — friction slope at center of west face at time level n
slope_cs —— slope column of cross section file

slope _cs_1d — slope of 1D segment

sim tim  —— character variable for time simulated

solver_numits—— number of iterations for the solver

south bc —— condition for south boundary

time —— time at each timestep

time simulated—— the time simulated
timestep solver numits —

transition — logical to see if we're in a transition timestep

tolit —— tolerence for iterations, used for relative (fractional) changes

TNE —— total number of elements for 1D grid

A4 —— linear index for domain

ve — linear index for cell to the east

v_in —— linear index of adjacent inside cell

vmax — number of unknowns in the domain

west_bc  — condition for west boundary

wid —— curvilinear width of a grid cell at its center

wid _cs — width column of cross slope file

wid cs 1d — width of 1D segment

XCV —— coordinate of CV center for 