
CRWR Online Report 10-02

DRAINAGE HYDRAULICS OF POROUS PAVEMENT:

COUPLING SURFACE AND SUBSURFACE FLOW

by

Bradley J. Eck, B.S.; M.S.E.

Randall J. Charbeneau, Ph.D.

Michael E. Barrett, Ph.D.

May 2010

Center for Research in Water Resources

The University of Texas at Austin

J.J. Pickle Research Campus

Austin, TX 78712-4497

This document is available online via the World Wide Web at:

http://www.crwr.utexas.edu/online.shtml

ii

Drainage Hydraulics of Porous Pavement:

Coupling Surface and Subsurface Flow

Bradley Joseph Eck, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Randall Charbeneau

Permeable friction course (PFC) is a porous asphalt pavement placed on top of a

regular impermeable roadway. Under small rainfall intensities, drainage is contained

within the PFC layer; but, under higher rainfall intensities drainage occurs both within

and on top of the porous pavement. This dissertation develops a computer model—the

permeable friction course drainage code (PERFCODE)—to study this two-dimensional

unsteady drainage process. Given a hyetograph, geometric information, and hydraulic

properties, the model predicts the variation of water depth within and on top of the PFC

layer through time. The porous layer is treated as an unconfined aquifer of variable

saturated thickness using Darcy’s law and the Dupuit-Forchheimer assumptions. Surface

flow is modeled using the diffusion wave approximation to the Saint-Venant equations.

A mass balance approach is used to couple the surface and subsurface phases. Straight

and curved roadway geometries are accommodated via a curvilinear grid. The model is

validated using steady state solutions that were obtained independently. PERFCODE

was applied to a field monitoring site near Austin, Texas and hydrographs predicted by

the model were consistent with field measurements. For a sample storm studied in detail,

PFC reduced the duration of sheet flow conditions by 80%. The model may be used to

improve the drainage design of PFC roadways.

iii

Acknowledgements

This research was supported by the Texas Department of Transportation under

project 0-5220.

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

LIST OF SYMBOLS.. ix

CHAPTER 1: INTRODUCTION .. 1

1.1 Background and Motivation .. 1

1.2 Research Objectives.. 3

1.3 Organization of the Dissertation.. 5

CHAPTER 2: LITERATURE REVIEW ... 6

2.1 Permeable Friction Course .. 6

2.1.1 Water Depth Predictions ... 6

2.1.2 Hydraulic Properties of PFC ... 7

2.2 Saturated Porous Media Flow ... 8

2.2.1 Darcy’s Law ... 8

2.2.2 Reynolds Number and Porous Media Flow Regimes 9

2.2.3 Relations for Non-Darcy Flow .. 10

2.2.4 Dupuit-Forchheimer Assumptions ... 12

2.3 Unsaturated Porous Media Flow ... 13

2.4 Overland Flow .. 14

2.5 The CRWR Approach to Modeling Highway Drainage 16

2.6 Coupling Schemes .. 17

2.7 Coupled Surface-Subsurface Models .. 18

2.8 Uniqueness of this Dissertation ... 19

CHAPTER 3: MODEL DEVELOPMENT .. 20

3.1 Problem Statement .. 20

3.2 Physical Processes .. 21

3.2.1 Precipitation and Evaporation ... 21

3.2.2 Infiltration ... 22

3.2.3 Unsaturated Porous Media Flow ... 23

3.2.4 Saturated Porous Media Flow ... 24

3.2.5 Overland Flow .. 24

3.2.6 Summary of Physical Processes .. 25

3.3 Mathematical Model Development ... 25

3.3.1 Mathematical Model of Saturated Porous Media Flow 27

3.3.2 Mathematical Model of Overland Flow ... 28

3.4 Mathematical Model Assumptions .. 30

3.4.1 Dupuit-Forchheimer Assumptions ... 30

3.4.2 Darcy’s Law ... 31

3.4.3 Diffusion Wave Approximation .. 36

3.5 Computational Grid .. 36

3.6 Numerical Formulation ... 38

v

3.6.1 Mass Balance on a Grid Cell ... 39

3.6.2 Formulation using Total Head ... 45

3.6.3 Depth Formulation, Time Discretization, Linearization 52

3.7 Initial Conditions and Boundary Conditions ... 54

3.7.1 Initial Conditions .. 55

3.7.2 No Flow Boundaries ... 55

3.7.3 Kinematic Boundary Conditions for PFC Flow 55

3.7.4 Kinematic Boundary Conditions for Sheet Flow.............................. 63

3.7.5 Combined Kinematic Boundary Condition for PFC and Sheet flow . 63

3.8 Solution Procedure and Tolerances ... 65

3.9 Convergence and the Transition to Sheet Flow 66

CHAPTER 4: MODEL VALIDATION .. 68

4.1 Linear Section (Straight Roadway) ... 68

4.1.1 PFC Flow Only ... 69

4.1.2 Sheet Flow Only ... 71

4.1.3 Combined Flow .. 72

4.1.4 Runoff hydrographs .. 72

4.2 Converging Section (Curved Roadway) .. 73

4.2.1 Derivation of ODE for PFC Flow on Converging Sections 75

4.2.2 PFC Flow Only ... 79

4.2.3 Sheet Flow Only ... 80

4.2.4 Combined Flow .. 81

4.2.5 Runoff Hydrographs ... 82

4.3 Comparison of Linear and Converging Sections 82

4.4 Stability .. 84

4.5 Model Convergence .. 87

CHAPTER 5: COMPARISON WITH FIELD DATA ... 90

5.1 Construction of Field Monitoring Site ... 90

5.2 Model Inputs and Parameters .. 92

5.3 Results and Discussion for event of July 20, 2007 95

5.4 Loop 360 with and without PFC ... 100

5.5 Storm event of June 3, 2007 .. 103

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 107

6.1 Project Summary .. 107

6.2 Conclusions .. 108

6.3 Recommendations for Future Work .. 109

APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE 111

REFERENCES.. 234

vi

LIST OF TABLES

Table 1: Flow Cases .. 51

Table 2: Model parameters for simulating a linear section ... 68

Table 3: Model parameters for simulating a converging section 74

Table 4: Model Parameters for Loop 360 Monitoring Site ... 92

Table 5: Summary of statistics of model residuals, all in units of L/s 104

Table 6: Fortran program and module listing ... 116

vii

LIST OF FIGURES

Figure 1: Photograph of PFC layer on Loop 360, Austin, Texas 2

Figure 2: Cross section of a typical PFC roadway .. 3

Figure 3: Schematic cross section of a roadway with a PFC overlay 3

Figure 4: Range of applicability for sheet flow models (Daluz Vieira, 1983);

used with permission ... 16

Figure 5: Straight roadway section... 21

Figure 6: Travel time though an unsaturated PFC layer having a thickness of 5cm,

irreducible water content of zero, pore size distribution index of 1.7, and a

saturated hydraulic conductivity of 1 cm/s ... 23

Figure 7: Interaction between physical processes in PERFCODE 25

Figure 8: Cross section along drainage path ... 26

Figure 9: Comparison of Forchheimer coefficients for PFC obtained by Klenzendorf

(2010) with the relationships proposed by Ward (1964) and Thauvin and

Mohanty (1998). Three of Klenzendorf’s data points [(0.047,167);

(0.056,64.3); (0.10,29.1)] are excluded for clarity. ... 34

Figure 10: Contour plot of discharge ratio using Thauvin and Mohanty (1998) with

porosity of 0.2. .. 35

Figure 11: Contour plot of discharge ratio using the relationship of Ward (1964) 35

Figure 12: Development of computational grid from roadway geometry 38

Figure 13: Profile view of interior grid cell .. 39

Figure 14: Isometric View of Interior Grid Cell ... 40

Figure 15: Top View of Grid in Computational Space ... 41

Figure 16: Steady state drainage profile for different boundary values; all cases used

K=1cm/s, S0=3%; r=0.5cm/hr.. 61

Figure 17: Steady state drainage profile for different boundary values; all cases used

K=1cm/s, S0=3%; r=1cm/hr .. 61

Figure 18: Combined algorithm for kinematic boundary condition 64

Figure 19: Flow chart of solution process .. 66

Figure 20: Linear domain showing elevation contours, grid cell centers, and boundary

conditions.. 69

Figure 21: Depth profile for linear section with drainage by PFC flow only 70

Figure 22: Depth profile for linear section with drainage by sheet flow only 71

Figure 23: Depth profile for linear section with drainage by PFC and sheet flow 72

Figure 24: Runoff hydrographs from a linear section ... 73

Figure 25: Converging domain showing elevation contours, grid cell centers, and

boundary conditions .. 74

Figure 26: Schematic of converging section... 75

Figure 27: Cross section view .. 76

Figure 28: Drainage depth profiles for a converging section with maximum radius of

55m, hydraulic conductivity 1cm/s, slope of 2%, initial depth of 1cm at

R=5000cm and range of rainfall rates. ... 78

Figure 29: Depth profile for converging section with drainage by PFC flow only 79

viii

Figure 30: Depth profile a converging section with sheet flow only 80

Figure 31: Depth profile for a converging section with combined PFC and sheet flow ... 81

Figure 32: Runoff hydrographs for converging section .. 82

Figure 33: Comparison of exact solutions for steady state flow thickness on linear and

converging sections, other parameters given in Table 2 and Table 3. 83

Figure 34: Hydrograph comparison for linear and converging sections, PFC thickness

was 0.05m ... 84

Figure 35: Steady state depth profile for various grid sizes .. 88

Figure 36: Residual with respect to 5cm grid by location, all residuals for 10cm grid

were zero .. 88

Figure 37: Grid refinement study ... 89

Figure 38: Aerial map of Loop 360 monitoring site (Google 2010) 91

Figure 39: Photograph of H-flume and drainage pipe at Loop 360 monitoring site 91

Figure 40: Simulation domain for Loop 360 monitoring site showing elevation contours

(m) and location of grid cell centers .. 93

Figure 41: Measured rainfall and model input function for Loop 360 monitoring site on

July 20, 2007 ... 94

Figure 42: Comparison of modeled and measured hydrographs for storm of July 20, 2007

.. 96

Figure 43: Water depth above impervious layer (m) for Loop 360 during maximum depth

conditions on July 20, 2007. The PFC thickness was 0.05m; contours

correspond to sheet flow conditions. .. 97

Figure 44: Profile through maximum depth section; the horizontal coordinate is 94.42m

.. 98

Figure 45: Solution history for an interior point (grid cell 2138) with and without under-

relaxing the non-linear iteration ... 99

Figure 46: Comparison of modeled hydrographs with and without a PFC layer for Loop

360 on July 20, 2007. Plotted flow rates are five minute averages............... 101

Figure 47: Comparison of sheet flow depths with and without a PFC layer horizontal

coordinate of 94.42m at Loop 360 on July 20, 2007 102

Figure 48: Comparison of modeled and measured hydrographs for June 3, 2007 104

Figure 49: Water depth above impervious layer (m) for Loop 360 during maximum depth

conditions on June 3, 2007. The PFC thickness was 0.05m; contours

correspond to sheet flow conditions. .. 105

Figure 50: Profile through maximum depth section; the horizontal coordinate is 94.42m

.. 106

Figure 51: Calling tree for PERFCODE ... 121

ix

LIST OF SYMBOLS

Symbol Definition

� Area � PFC thickness � Conveyance coefficient � Mean grain size of a porous medium OR characteristic

length scale � Gravitational acceleration � Total head above datum � Flow depth �� Saturated thickness in the PFC layer �� Sheet flow thickness � Hydraulic gradient � Longitudinal index of grid cells � Transverse index of grid cells � Saturated hydraulic conductivity ��� Unsaturated hydraulic conductivity � Intrinsic Permeability � Depth to water table, Flow length ℓ Length of grid cell in the longitudinal direction � Porosity of a porous medium OR Manning’s roughness

coefficient �� Effective porosity of a porous medium Pressure !" Porosity function # Volumetric Flow Rate $ Darcy velocity $% Specific discharge predicted by Forchheimer equation & Hydraulic radius or radius of curvature at roadway

centerline ' Rainfall rate (Slope () Bed slope (* Friction slope + Time , Overland flow velocity - Volume . Velocity / Width of roadway 0 Width of a grid cell 1 Cartesian coordinate direction

x

2 Cartesian coordinate direction 3 Elevation above datum 4 Cartesian coordinate or elevation above datum

Greek Symbol Definition 5 First Forchheimer coefficient 56 Inverse of hydraulic conductivity 7 Non-linear coefficient in Forchheimer’s equation 78 Forchheimer coefficient or non-Darcy coefficient for

pressure gradient formulation of Forchheimer equation 79 Darcy’s law modification factor that depends on Reynold’s

 number : Partial differentiation operator ; Transverse roadway coordinate in computational space < Longitudinal roadway coordinate in computational space = Dynamic viscosity > Fluid density ? Kinematic viscosity @ Water content of porous medium or angular position of

 roadway centerline point @A Irreducible water content Ψ Cappilary pressure head (m) C Pore size distribution index Φ Ratio comparing discharge predicted by Darcy’s law and

Forchheimer’s equation

Dimensionless Number Definition &E Reynold’s number F Froude number FG Forchhiemer number HI Kinematic wave number

Abbreviation Definition

MOC Method of characteristics

PERFCODE PERmeable Friction COurse Drainage codE, the name of

the numerical model developed in this dissertation

PFC Permeable friction course

RHS Right hand side of an equation

1

CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

New roadway materials are changing the wet weather driving experience. One

exciting and innovative material is a porous pavement that allows water to drain through

the roadway rather than across it. The porous pavement—also called permeable friction

course (PFC)—is placed in a 50mm layer on top of conventional, impermeable,

pavement. During rain events, water seeps into the porous layer and flows to the side of

the road by gravity. By removing water from the road surface, PFC improves safety by

reducing splashing and hydroplaning (Berbee et al., 1999). In addition to safety benefits,

PFC has also been shown to reduce pollutants commonly observed in highway runoff

(Barrett, 2006).

Although usually placed in a 50mm layer, the PFC thickness may be selected so

that all of the rainfall for a design event drains within the pavement. However, structural

and cost concerns prevent the use of an arbitrarily thick porous layer. Additionally, PFC

has been shown to clog over time, resulting in lower subsurface drainage capacity

(NCHRP, 2009). Therefore, some storms will exceed the installed capacity, forcing

drainage to occur both on the pavement surface and within the porous matrix.

Understanding this coupled flow process is the goal of this research.

A precise description of PFC’s response to rainfall events is needed for several

reasons including driver safety, water quality, and basic science. From a safety

perspective, flow over traffic lanes can cause vehicles to hydroplane. Hydroplaning is

especially hazardous when right and left tires encounter different water depths—the

difference in resistance imposes a torque on the vehicle, potentially causing the driver to

lose control. A detailed runoff model for PFC could identify areas of excessive sheet

flow depth so that additional drainage can be provided. Such a model also has

implications for water quality. Field studies of runoff from PFC have shown that runoff

concentrations of pollutants are lower for PFC than conventional pavement, but the

mechanisms responsible for lower concentrations have not been identified (Stanard,

2

2008). Possible mechanisms include reduced wash-off from vehicles, filtration and

absorption within the pavement, and even biological activity. Studying these

mechanisms in detail requires an accurate hydraulic model. Finally, the proposed model

is of general scientific interest because the problem of flow over porous media appears in

numerous applications. Civil engineering applications include surface irrigation,

watershed modeling, and sediment transport. The concept of flow over porous media has

also been applied to biological systems such as blood flow within the arterial wall

(Dabaghmeshin, 2008). A better technical understanding of flow in PFC will contribute

to a diverse scientific field and promote wider use of the material, thereby improving

driver safety and the environment.

Figure 1 shows a photograph of a PFC layer. The PFC overlay is very thin

compared to the length and width of the roadway section. A cross section of typical PFC

roadway is shown in Figure 2 and a more detailed schematic of the PFC layer is shown in

Figure 3.

Figure 1: Photograph of PFC layer on Loop 360, Austin, Texas

3

Figure 2: Cross section of a typical PFC roadway

Figure 3: Schematic cross section of a roadway with a PFC overlay

1.2 Research Objectives

The goal of this research is to understand the coupling between overland flow and

porous media flow in roadway applications. In this context, understanding the coupling

means predicting water depths at a fine enough scale to assess the risk of hydroplaning.

To accomplish this goal, a numerical model that predicts water surface elevations on

roads overlain with PFC has been developed and validated. The model has as inputs the

roadway geometry, rainfall intensity, and porous media properties. The model has been

4

formulated to accommodate roadway geometries where the horizontal alignment may be

straight or curved and to accommodate variable rainfall intensity.

 Based on these inputs, the goal of understanding coupled flow between the

surface and subsurface will be pursued through the following research objectives:

1. Identify governing equations for surface and subsurface flow for the geometry

of interest

2. Develop a scheme to couple flow between the surface and subsurface

3. Implement the coupling scheme and numerical methods in a computer model

that represents roadway geometry using a coordinate transformation

4. Validate the model using analytical solutions

5. Compare model predictions of runoff rates with values measured at an

existing monitoring site

During the preparation of this dissertation, the National Cooperative Highway

Research Program (NCHRP) issued Report 640 entitled “Construction and Maintenance

Practices for Permeable Friction Courses” (NCHRP, 2009). The report signifies the

growing popularity and importance PFC layers for highways in the USA. Several of the

future research needs listed in the report are addressed in part by this dissertation:

• Field work to document how water flows within a PFC layer

• Methods for selecting the minimum PFC thickness

• Consideration for water sheets on the PFC surface

Field work included constructing a monitoring site to measure runoff hydrographs from a

PFC roadway. The dynamic simulation model developed in this dissertation accounts for

sheet flow on the PFC surface and seepage through the porous layer; it can be used to

evaluate methods for selecting the thickness of a PFC layer. Another important and

related research need identified in the report is a method to determine the permeability of

PFC layers. The work of Klenzendorf (2010) addresses the hydraulic conductivity of

PFC and this dissertation uses his results to simulate PFC flow on highways.

5

1.3 Organization of the Dissertation

This document is organized into six chapters. Chapter 1 has introduced the work

and defined the research objectives. Chapter 2 reviews selected literature that bears on

the work. A method for developing a predictive model for PFC drainage is given in

Chapter 3. The proposed model is essentially a specialized hydrologic model so Chapters

2 and 3 are organized around hydrologic processes. The methods of Chapter 3 have been

implemented in a Fortran computer model called PERFCODE, the structure of which is

described in Appendix A. Chapter 4 validates the model’s numerics by comparing model

results with independently obtained solutions for simplified cases. Chapter 4 also

discusses the model’s stability and convergence properties. Chapter 5 applies the model

to a field monitoring site, facilitating a comparison of modeled results with field

measurements. Chapter 6 concludes the dissertation with a summary of the findings and

possible avenues for future work.

6

CHAPTER 2: LITERATURE REVIEW

This review summarizes the literature that provides the theoretical foundation for

this research. Developments related specifically to permeable friction course (PFC) are

given first. A general discussion of subsurface flow is given next and readers who are

unfamiliar with flow in porous media may prefer to review it prior to the section on PFC.

A section on overland flow is given next, followed by a discussion of coupling schemes

and models of coupled surface/subsurface systems. The final section identifies gaps in

the literature that are addressed by this research.

2.1 Permeable Friction Course

2.1.1 Water Depth Predictions

Three authors have published predictions of water depth in PFC for straight

roadway sections under constant rainfall. Ranieri (2002) gives a numerical solution to

the governing equation. Tan et al. (2004) use a commercially available finite element

program to model flow through PFC. Both Ranieri (2002) and Tan et al. (2004) provide

charts to find the required thickness of PFC from slope information and rainfall intensity.

Charbeneau and Barrett (2008) provide an analytical solution for the saturated thickness

along the flow path.

These three papers consider the same roadway geometry: a straight road with a

longitudinal slope and a cross slope. The drainage slope is the Pythagorean sum of the

longitudinal slope and the cross slope. In these papers, the drainage slope is a constant,

making the problem one dimensional—that is the saturated thickness only varies along

the drainage path. Under the assumption of constant rainfall intensity the system reaches

a steady state. It is this one-dimensional steady state solution that these authors present.

A comparison of their predictions for a single point reveals that Charbeneau and

Barrett (2008) and Ranieri (2002) have essentially identical results. Tan et al. obtain a

different result, predicting a thinner porous layer than the other workers. The reasons for

7

this discrepancy are difficult to uncover because Tan et al. used a commercial finite

element program for analysis.

The problem of drainage within a PFC layer of constant slope and under steady

rainfall is analogous the problem of hillslope seepage under constant recharge. Most

solutions make the Dupuit-Forchheimer assumptions of horizontal flow with the local

discharge proportional to the slope of the water table. Equivalent results to those of

Charbeneau and Barrett (2008) and Ranieri (2002) have been presented by Yates,

Warrick and Lomen (1985) and also by Loaiciga (2005).

Very little has been mentioned in the literature regarding the coupling between

surface and subsurface flow in PFCs. Charbeneau and Barrett (2008) address the issue

briefly and provide an estimate of sheet flow thickness based on the Darcy-Weisbach

equation. Eck et al. (2010) refined the coupling between PFC and sheet flow by using a

different boundary condition for the PFC equation. The idea was to compute the location

that sheet flow begins based on the principle of continuity and use that location and the

pavement thickness as the initial point to integrate the first order ODE that governs the

PFC part of the problem.

2.1.2 Hydraulic Properties of PFC

Hydraulic properties of PFC have been investigated by several authors, which

have been summarized by Standard et al. (2008). Reported values for hydraulic

conductivity range from 5*10
-4

 cm/s to 3 cm/s. Ongoing research by Klenzendorf (2010)

investigates the porosity and the hydraulic conductivity of PFC. Porosity was measured

from core samples and found to range from 0.12 to 0.23. Hydraulic conductivity was

also measured from core samples and ranged from 0.1 to 3 cm/s. A new field method for

measuring the in-situ hydraulic conductivity of PFC was developed and compared to the

laboratory measurements.

8

2.2 Saturated Porous Media Flow

Saturated porous media flow refers to the movement of fluid through a porous

medium when the pore space is filled with fluid. The boundary between saturated and

unsaturated zones of a porous medium is the water table. The water table is at

atmospheric pressure. Below the water table the media is saturated. Above the water

table the media is considered unsaturated, though a small area of saturated pores may

exist above the water table due to capillary effects. Quantitative predictions of saturated

porous media flow apply Darcy’s law or the Forchheimer equation to relate the hydraulic

gradient and the specific discharge.

2.2.1 Darcy’s Law

The usual way of characterizing flow through porous media is Darcy’s law.

Darcy’s law states that the relationship between the hydraulic gradient and seepage

velocity is linear when velocities are low enough to neglect inertia (Charbeneau, 2000).

A simple statement of Darcy’s law is: # J ��� (2.1)

where # is the volumetric flow rate, � is the hydraulic gradient, � is the cross sectional

area of the flow, and � is a parameter called the hydraulic conductivity that depends on

the properties of the porous medium and the fluid. Darcy’s law is frequently presented in

terms of the velocity obtained by dividing the flow rate by the area: $ J �� (2.2)

where $ is the fictitious velocity known as the Darcy velocity, or the specific discharge.

The relative contributions of the porous medium and the fluid to the hydraulic

conductivity can be seen by expressing the hydraulic conductivity as:

� J >��= (2.3)

where > is the fluid density, � is the constant of gravitational acceleration, = is the

dynamic viscosity of the fluid , and � is a property of the medium called the intrinsic

permeability which is related to the grain size distribution of the medium. From an

9

analysis of the Fanning friction factor, one relationship between permeability and grain

size is (Charbeneau, 2000):

� J �K2000 (2.4)

Bear (1972) gives several correlations between the mean or effective grain size

and the intrinsic permeability. The hydraulic conductivity is typically preferred in

groundwater hydrology because water is the only fluid of interest. In contrast, the

petroleum industry uses the intrinsic permeability because several fluids are often of

interest.

2.2.2 Reynolds Number and Porous Media Flow Regimes

Although Darcy’s law neglects inertial effects, the inertial terms are physically

real and do not disappear from the equations. In fluid mechanics the relative importance

of inertial and viscous effects is quantified using the Reynolds number (Re), which

expresses the ratio of these effects (White, 1999):

&E J >.�= (2.5)

In the expression for Reynolds number, � is a length scale of the problem, . is the

fluid velocity, and other terms are defined previously. At low values of Reynolds

number, the numerator (inertial effects) is small compared to the denominator (viscous

effects). As Re increases, inertial effects become more important. In porous media

applications Reynolds number is formulated using the seepage velocity and a

representative length scale. Several length scales have been used including the median

grain size (�N)O and �PQ (Ward, 1964).

As the value of Re increases, inertial effects become important and Darcy’s law

ceases to apply. This behavior suggests the identification of flow regimes in a porous

media based on the Reynolds number. Bear (1972) identifies three such regimes:

(1) A linear regime where the Reynolds number is lower than a limit somewhere

between 1 and 10 and Darcy’s law applies.

10

(2) A non-linear regime where inertial effects are important, but the flow remains

laminar. An upper limit of Re=100 has been suggested for this regime.

(3) A turbulent regime where Reynolds number is high.

Darcy’s law applies in the first regime only.

2.2.3 Relations for Non-Darcy Flow

PFC drainage under highway drainage conditions is expected to fall in the Darcy

regime of flow. However, experimental efforts to estimate the hydraulic conductivity of

PFC have observed non-Darcy flow regimes (Ranieri 2002; Barrett et al. 2009). In this

section, relations for non-Darcy flow are reviewed to provide a basis for estimating the

error of the Darcy approximation and to identify methods of including a non-Darcy effect

in future versions of the model.

Forchheimer’s Equation

One approach for describing non-Darcy flow is Forchheimer’s equation, which is

written either in terms of the hydraulic gradient: � J 5$ R 7$K (2.6)

or equivalently in terms of the pressure gradient:

S � �1 J 56$ R 78>$K (2.7)

where the hat symbol distinguishes the coefficients between the equations. If 7 J 78 J 0

and 5 J TU then Forchheimer’s equation reduces to Darcy’s law. The coefficient 78 is

often called the Forchheimer coefficient (Ruth and Ma, 1992) or the non-Darcy

coefficient (Li and Engler, 2001). It is related to 7 of the hydraulic gradient formulation

by the constant of gravitational acceleration:

7 J 78� (2.8)

11

Many correlations for the Forchheimer coefficient have been developed. Ergun

(1952) measured the pressure drop of gases through columns packed with granular

material. He gives an empirical correlation for the energy loss based on a least squares

treatment of the experimental data. Ergun partitioned the total energy loss between

viscous and kinetic energy losses. Ergun’s work was presented in the form of

Forchheimer’s equation by Bird et al. (1960):

� J 150X1 S �OK=�Y�K>� $ R 1.75X1 S �O��Y� $K (2.9)

where � is the mean grain diameter, � is the porosity of the medium, the values of \ J 1.75 and � J 150 were obtained by Ergun, and other terms are defined previously.

More recently Thauvin and Mohanty (1998) presented, but did not derive, an expression

for the Forchheimer coefficient by dimensional analysis of Forchheimer’s equation based

on Ergun’s work: 78 J \�]T K⁄ X10]_�O]T K⁄ �]Y K⁄ (2.10)

where 78 is the non-Darcy coefficient in 1/cm and � is the permeability in units of darcy.

Equation (2.10) is a different result than Equation (2.9). Ward (1964) also gives a

correlation for the coefficients of Forchheimer’s equation:

� J =�>� $ R 0.55�√� $K (2.11)

Whereas Ergun’s experimental work used gases, Ward’s experiments were

performed with water. In the Ward formula, the linear term is consistent with Darcy’s

law, and no estimate of the porosity is required. Many other correlations for the

Forchheimer coefficient are reviewed by Li and Engler (2001).

So far this review has used the Reynolds number to distinguish between linear

and non-linear flow regimes in porous media. This usage is not entirely consistent

because Darcy’s law and Forchheimer’s equation pertain to the macroscopic flow

parameters of hydraulic or pressure gradient and seepage velocity, but the Reynolds

number applies to the microscopic velocity. In order to avoid confusion, a dimensionless

12

group similar to the Reynolds number, but called the Forchheimer number has been

proposed by Zeng and Grieg (2006):

FG J >$�78= (2.12)

This proposal amounts to suggesting another representative length scale (�78) for

a porous medium. Ruth and Ma (1992) also define a Forchheimer number. Their

formulation holds that the permeability depends on the velocity. Because this principle is

not widely held, the Zeng and Grieg formulation is used in this work. A Forchheimer

number of 0.11 corresponds to a 10% non-Darcy effect, and is recommended as a critical

value for the transition to non-Darcy flow (Zeng and Grieg 2006).

Kovac’s Hyperbola

Another approach to characterizing non-Darcy flow is given by Kovacs (1981).

Kovacs reviews many correlations for porous media flow in the transition and turbulent

regimes. He proposes a hyperbola to describe all of the flow regimes through porous

media. Relations for the different regimes may be developed by approximating the

hyperbola in that regime. The approximation proposed for the transition regime is of the

form: $ J ��79 (2.13)

where $ is the specific discharge, � is the Darcy hydraulic conductivity, � is the

hydraulic gradient, and 79 is a function of the Reynolds number. Ranieri (2002)

determined values for 79 from experimental data.

2.2.4 Dupuit-Forchheimer Assumptions

So far, this review has discussed several ways to predict how the hydraulic

gradient (or pressure gradient) in a porous medium varies in space, but has not directly

addressed the pressure distribution through the medium. In the case of flow through a

PFC, the porous medium flow is always bounded above by a free surface so the flow is

said to be unconfined. If the velocities are essentially horizontal, then the hydraulic head

13

will be the same on any vertical line and the pressure distribution will be hydrostatic

(Bear, 1972). In this case, the discharge is proportional to the hydraulic gradient. The

assumptions that the head is independent of depth, and that the discharge is proportional

to the hydraulic gradient are the Dupuit-Forchheimer assumptions (Charbeneau, 2000).

Irmay (1967) studied the error in predicting the hydraulic head using the Dupuit-

Forchheimer assumptions. He gives formulas for computing the relative error at different

depths for flat and inclined aquifers. For a flat aquifer, the maximum error occurs at mid

depth and depends mostly on the hydraulic gradient. A hydraulic gradient of 10% caused

a maximum error of 0.25% in the hydraulic head. As most roadways have a drainage

slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good

approximation.

2.3 Unsaturated Porous Media Flow

Unsaturated porous media flow occurs when the pore space is not completely

filled with a single fluid. Unsaturated flow is more difficult to describe than saturated

flow because the hydraulic conductivity and capillary pressure change with the water

content. Richard’s equation governs unsaturated flow and considers the variation of

hydraulic conductivity and capillary pressure with water content: :@:+ J ��. a – ���X@O �Ψ�@ �'\�X@Oc R :���X@O:4 (2.14)

In Richard’s equation @ is the water content, Ψ is the capillary pressure head, and ��� is

the unsaturated hydraulic conductivity (Charbeneau, 2000).

 For PFC drainage, unsaturated flow is essentially vertical and the primary effect

of interest is the travel time through the unsaturated zone. For this purpose, Richard’s

equation may be simplified by considering only vertical flow and neglecting capillary

pressure gradients. This leads to the kinematic form of Darcy’s law: $ J ���XθO (2.15)

14

where $ is the specific discharge and ��� is the unsaturated hydraulic conductivity which

depends on the water content, @. This form of Darcy’s law applies specifically to vertical

flow so the hydraulic gradient is unity.

In order to apply the kinematic form of Darcy’s law a relationship between the

hydraulic conductivity and water content must be obtained. One such relationship is the

power law model of Brooks and Corey (Charbeneau, 2000): ��� J �ΘYfK/h (2.16)

where ��� is the unsaturated hydraulic conductivity, � is the saturated hydraulic

conductivity, Θ is the water content assuming zero field capacity, and C is the pore size

distribution index.

Using Equations (2.15) and (2.16), Charbeneau (2000) estimates the average

pore-water velocity using an average value of the water content:

. J i
@A R X� S @AO ji�k hYhfK

(2.17)

where G is net recharge rate (assumed equal the rainfall rate for the PFC), @A is the

irreducible water content, � is the saturated hydraulic conductivity, and C is the pore size

distribution index. With this average velocity, the travel time through the unsaturated

zone can be estimated:

+ J �. (2.18)

where L is the depth to the water table. The equations presented in this section are used

in Section 3.2.3 to evaluate the effect of unsaturated flow in the model.

2.4 Overland Flow

Overland flow is governed by a simplification of the Navier-Stokes equations first

presented by Saint-Venant in 1871 (Chow et al., 1988). The full Saint-Venant equations

retain all of the terms of the Navier-Stokes equations including terms for inertial, viscous,

and gravitational forces, along with convective accelerations. For the purpose of

predicting flow at shallow depths, various levels of approximation to the Saint-Venant

15

equations have been applied (Chow et al., 1988). The kinematic wave approximation

retains only the gravitational and viscous terms. The diffusion wave approximation adds

the pressure term. The full Saint-Venant equations, with no simplifications, are known as

the dynamic wave model.

Three non-dimensional parameters are important in characterizing the overland

flow problem: (1) Reynolds number, (2) Froude number, (3) Kinematic wave number.

Reynolds number is defined in Equation (2.5). The Froude number is defined as:

F J .l�� (2.19)

where . is the velocity, � is the gravitational constant, and � is the flow depth.

The Froude number compares the speed of the flow with the speed of a gravity wave

(White, 1999).

The kinematic wave number is defined as:

HI J (��FK (2.20)

where (is the slope, � is the length, � is the depth and F is the Froude number. The

symbol HI is used here instead of the usual symbol � to avoid confusion with the

saturated hydraulic conductivity. The kinematic wave number reflects the length and

slope of the plane as well as the normal flow variables (Woolhiser and Liggett, 1967).

The ranges of applicability for the levels of approximation to the Saint-Venant

equations are studied in terms of the Froude number and kinematic wave number by

Daluz Vieira (1983). The author produced a plot showing the range of applicability for

the kinematic wave, diffusion wave, and full Saint-Venant equations (Figure 4).

16

Figure 4: Range of applicability for sheet flow models (Daluz Vieira, 1983);

used with permission

On smooth urban slopes the kinematic wave number lies between 5 and 20 (Daluz

Vieira, 1983) so the diffusion wave approximation is appropriate for the full range of

Froude numbers.

2.5 The CRWR Approach to Modeling Highway Drainage

The research presented in this dissertation is the latest advance in a long tradition

of work in highway drainage hydraulics conducted at the Center for Research in Water

Resources (CRWR) at The University of Texas at Austin. The present sub-section

describes how different aspects of the previous research have been incorporated into the

present work.

Previous highway drainage research at CRWR has included both experimental

measurements and numerical modeling. Experimental work included measuring the

sheet flow thickness on a laboratory roadway section under simulated rainfall. The

17

roadway section is rectangular and situated so that the elevation of three corners can be

adjusted to achieve a range of longitudinal and cross slopes. Sheet flow thicknesses and

unit discharge were measured on three surfaces having different roughness under a range

of slopes and rainfall conditions. Charbeneau et al. (2009) analyzed this data and

evaluated depth-discharge relationships. They concluded that Manning’s equation had

equivalent accuracy to logarithmic boundary layer theory, and that the hydraulic effects

of rainfall on sheet flow were negligible.

Previous research at CRWR in the area of numerical modeling developed a

hydrodynamic diffusion wave model for sheet flow in superelevation transitions (Jeong,

2008). Beyond implementing the diffusion wave model for sheet flow, this work

developed a curvilinear grid generation scheme that is well suited for highway drainage

hydraulics. The idea of the grid generation scheme is that each point along a roadway

centerline lies on the circumference of a circle. The coordinates of the center of the circle

may be given explicitly, or estimated from neighboring points. The radius of curvature is

assumed to vary linearly along the centerline between known points. The radius of

curvature is very large for straight sections and smaller for curved sections. This

approach to grid generation accommodates a wide range of roadway geometry, and gives

models developed from it a consistent basis.

The superelevation transition study also formulated kinematic boundary

conditions for a 2D diffusion wave model using the method of characteristics. Boundary

conditions for highway drainage can be quite complicated, especially in unsteady

conditions. Making the kinematic approximation is often reasonable and provides at least

some dynamic behavior at drainage boundaries. Applying the method of characteristics

along the drainage path allows the boundary condition to be physically reasonable, and to

vary in time.

2.6 Coupling Schemes

The need to couple fluid behavior on the surface with that in the subsurface comes

from the hydrologic cycle. Rain falls on the earth’s surface as precipitation and infiltrates

18

the soil to become groundwater. Various approaches to coupling surface and subsurface

flow have been proposed. An early study by Beavers and Joseph (1967) investigated the

interface region and detected a slip velocity at the interface. In hydrologic models the

conductance method (Anderson and Woessner, 1992) is widely used. In this method, the

flux between the phases is the gradient times the conductance. This approach is

acceptable for a distinct boundary between phases, but the high surface roughness of PFC

blurs this boundary. Recently, Kollet and Maxwell (2006) proposed coupling the surface

and subsurface by requiring the pressure to be constant right at the land surface.

2.7 Coupled Surface-Subsurface Models

There many examples of hydrologic models that couple surface and subsurface

flow processes. Most models focus on flow in only one phase, and use the other phase as

a boundary condition. For example, in an irrigation system, the detailed solution of the

groundwater system is not terribly important; the objective is a good representation of

surface flow and infiltration. In the same way, subsurface flow models such as

MODFLOW focus on the solution to the groundwater system, which is usually

unaffected by the sheet flow dynamics. In contrast, models of entire watersheds do

attempt to represent surface flow, infiltration, and subsurface flow. However, a detailed

solution for overland flow is rarely found along with a detailed groundwater solution.

Two notable exceptions are discussed below.

Researchers at the University of Mississippi recently published a paper entitled

“Coupled Finite-Volume Model for 2D Surface and 3D Subsurface Flows” (He et al.,

2008). This model couples a diffusion wave model on the surface with Richard’s

equation in the subsurface. The coupling is accomplished by requiring the pressure to be

continuous right at the land surface. This formulation treats overland flow as a boundary

to subsurface flow. The model predicts the variation of surface water depth through time

over the watershed.

The MIKE-SHE model—maintained by the Danish Hydrologic Institute, Inc

(DHI)—is a commercial software package for watershed simulation. The model

19

simulates the major hydrological processes that occur in the land phase of the hydrologic

cycle, including surface flow and groundwater flow (Refsgaard and Storm, 1995). For

coupling between surface and subsurface phases, the program calculates the exchange

flux from Darcy’s law. The MIKE-SHE model has been used widely to model many

watersheds and is often used to evaluate new models (e.g. He et al., 2008).

Numerous models that couple surface and subsurface processes have been

reviewed by Furman (2008). In his review, Furman categorizes models according to the

type of surface flow and subsurface flow that the model uses. In his summary of 26

models, there are seven models that deal with surface flow in two dimensions—of these

only one deals with the subsurface as a groundwater problem instead of only infiltration

or partial saturation. The one model that does both is a unique application by Liang et al.

(2007) where buildings in the floodplain are modeled as a porous medium. In their

formulation, Liang et al. (2007) restrict the solution at any point in the system to either

surface flow or subsurface flow. The coupling is horizontal; water from the flood wave

flows laterally into the buildings.

2.8 Uniqueness of this Dissertation

This research shares many attributes with previous studies—predicting water

depth and runoff from rainfall is essentially a hydrologic model. The original

contribution of this work comes from several areas:

• The model predicts the transient response of PFC, which has yet to be

addressed in the literature.

• The work examines a surface/subsurface flow system at the fine spatial scale

of a roadway, in contrast to the watershed scale studies identified above.

• In the PFC system, subsurface flow drives overland flow. This forcing

contrasts with the natural process of ponding from overland flow causing

infiltration.

20

CHAPTER 3: MODEL DEVELOPMENT

This chapter describes the development of the permeable friction course drainage

code (PERFCODE). A statement of the research problem is given first along with a

discussion of the physical processes involved. With this basis, a mathematical

formulation is developed for each physical process. A discussion of major assumptions

is provided next. The mathematical models are applied on a control volume to formulate

the numerical model that will provide the predictions of interest. The chapter concludes

with a discussion of model tolerances and the technique used for the transition between

sheet flow and PFC flow.

3.1 Problem Statement

The research problem is predicting the elevation of the water surface throughout a

PFC roadway during a rainstorm. PFC is a permeable pavement placed in a 50mm layer

on top of regular, impermeable pavement. During rain events, water seeps into the porous

layer and flows to the side of the road by gravity. When the rainfall intensity is small, all

of the drainage is contained within the pavement. Under higher rainfall intensities

drainage occurs both within and on top of the pavement. The model predicts depths in

both cases.

For the straight roadway shown in Figure 5, the road has a longitudinal slope and

a cross slope. The resultant of these slopes is the drainage slope, along which water

particles move to the edge of the pavement. For straight roadway sections without

shoulders the problem is one dimensional along the drainage slope. However, the

drainage problem becomes two-dimensional when shoulders have a different slope than

the traffic lanes or when the roadway is curved. PFC is frequently used to improve

driving conditions in these cases. Some specific configurations of interest are:

• Roadways with shoulders

• Curved sections

• Superelevation transitions

• Sag vertical curves

21

Figure 5: Straight roadway section

3.2 Physical Processes

In order to achieve the model aims, several physical processes must be

considered. Modeling drainage from a PFC roadway can be considered as a specialized

watershed model. As such, the physical processes may be categorized in terms of the

hydrologic cycle. The hydrologic processes that occur in this system are: precipitation,

evaporation, infiltration, unsaturated porous media flow, saturated porous media flow,

and overland flow. One of these processes is important for the present work if it has a

meaningful effect on the mass of water in the system or affects the travel time of a water

particle moving through the system. The significance of each hydrologic process with

respect to the model is evaluated in the following sub-sections.

3.2.1 Precipitation and Evaporation

Precipitation is the process by which water that has condensed in the atmosphere

falls to earth. Precipitation can take the form of rain, sleet, snow or hail depending on

atmospheric conditions. For the purposes of this research, rain is the only form of

22

precipitation considered. The rainfall rate is a model input, assumed to be a known

function of time.

Evaporation is the process of water changing from the liquid phase to the vapor

phase. Key factors in determining the evaporation potential are the solar radiation and

relative humidity (Charbeneau, 2000). In this work evaporation is neglected because

most drainage occurs during or immediately following rainfall events while the relative

humidity is high.

3.2.2 Infiltration

Infiltration is the process of rainfall entering the porous medium. Infiltration is

governed by hydraulic conductivity, porosity and moisture content of the medium. For

infiltration to be an important process with respect to PFC drainage, the process of water

entering the pavement would have to cause a meaningful delay in the travel time of a

water particle. Such a delay would cause water to pond on the pavement surface before

the pore space was filled. According to the Green-Ampt method for calculating

infiltration, ponding will not occur unless the rainfall intensity exceeds the hydraulic

conductivity (Charbeneau, 2000). As an example, consider a five minute rainfall of one

inch (2.54cm), which exceeds the 100-year 5-minute rainfall event for the entire eastern

United States (Chow et al. 1988, pg 447). Such an event corresponds to a rainfall rate of

0.0085 cm/s--far below the 1 cm/s order of PFC hydraulic conductivity. Since the

hydraulic conductivity of PFC is much higher than rainfall rates, infiltration is not

expected to play an important role in this problem and is neglected in the model

formulation.

23

3.2.3 Unsaturated Porous Media Flow

Although infiltration occurs very quickly for a PFC, unsaturated porous media

flow from the pavement surface to the water table may play an important role. To

quantify the effect of this process an estimate of the travel time for a range of rainfall

intensities was made using Equations (2.17) and (2.18) and the results plotted in Figure 6.

Figure 6: Travel time though an unsaturated PFC layer having a thickness of 5cm,

irreducible water content of zero, pore size distribution index of 1.7, and a saturated

hydraulic conductivity of 1 cm/s

Figure 6 shows that travel times are longer at lower rainfall intensities, but that

the travel time is on the order of minutes. The significance of this delay depends on the

model time step. Model time steps for this work are on the order of seconds, suggesting

that the delay may be important. However, rainfall measurements necessarily report

rainfall accumulation over a time period, frequently five or fifteen minutes. Considering

the reporting period for rainfall data compared to the expected travel time, flow through

the unsaturated PFC is neglected in this model.

0

5

10

15

20

25

30

0 1 2 3 4 5

T
ra

v
e

l
ti

m
e

 t
h

o
u

g
h

 5
cm

 P
F

C
 l

ay
e

r

(m
in

u
te

s)

Rainfall rate (cm/hr)

24

3.2.4 Saturated Porous Media Flow

 Saturated porous media flow refers to the movement of fluid through a porous

medium when the pore space is filled with fluid. The boundary between saturated and

unsaturated zones of a porous medium is the water table. At the water table, the pressure

is atmospheric. Below the water table the media is saturated. Above the water table the

media is considered unsaturated, though a small area of saturated pores may exist above

the water table due to capillary effects. Saturated porous media flow is an essential

process for the model because drainage to the edge of pavement occurs horizontally.

This model treats all of the drainage through the PFC as saturated porous media flow.

Quantitative predictions of saturated porous media flow apply Darcy’s law or

Forchheimer’s equation to relate the hydraulic gradient and the specific discharge. This

model assumes that Darcy’s law characterizes PFC drainage. The validity of this

assumption is investigated in Section 3.4.2.

3.2.5 Overland Flow

Overland flow is the process of water flowing on the land surface, usually in a

thin layer. Hydrologists categorize overland flow as either Hortonian overland flow or

saturation overland flow (Chow et al., 1988). The distinction is the source of the flow.

Hortonian overland flow occurs when the rainfall rate exceeds the infiltration capacity of

the surface. Saturation overland flow occurs when the subsurface becomes saturated and

discharges flow onto the land surface, usually at the bottom of a hill. In PFC drainage,

overland flow occurs through the latter mechanism.

Overland flow velocities are generally much higher than subsurface flow

velocities because viscous forces are smaller due to differences in surface area. Because

of the higher velocities, overland flow drains water more quickly from the roadway than

subsurface flow. The high drainage capacity of overland flow makes it an important

process for modeling drainage from PFC roadways.

25

3.2.6 Summary of Physical Processes

The physical processes that occur during drainage from a PFC roadway have been

identified and evaluated. The processes of precipitation, saturated porous media flow,

and overland flow were found to be important for the current work. The interaction

between these processes is shown in Figure 7.

Figure 7: Interaction between physical processes in PERFCODE

3.3 Mathematical Model Development

Now that the important physical processes for PFC drainage have been identified,

a mathematical description of each process is needed. For the precipitation process, the

variation of rainfall over time is assumed to be known so no further description is

required. Models for saturated porous media flow and overland flow are developed in the

following sections. A sketch of the dimensional variables used to represent different

physical quantities is shown in Figure 8.

26

Figure 8: Cross section along drainage path

The rainfall rate 'X+O is assumed to be spatially uniform, but variable in time. The

elevation of the bottom of the PFC layer with respect to a datum is 3X1, 2O. The PFC

layer has a thickness �, which is taken as constant throughout the domain. The saturated

thickness of water in the PFC layer is ��X1, 2O where the subscript refers to the

pavement. The specific discharge through the PFC is $X1, 2O. On the pavement surface,

the thickness of sheet flow is �� and the average velocity is .X1, 2O. The total head of

water at any point in the domain is �X1, 2O.

27

3.3.1 Mathematical Model of Saturated Porous Media Flow

The equations of motion for saturated flow in a porous media consist of the

continuity equation and the momentum equation. This development follows Halek and

Svec (1979). Consider first the equation of continuity: :$n:1 R :$o:2 R :$p:4 J 0 (3.1)

where $ is the Darcy velocity in each of the coordinate directions. If the drainage slope is

small enough, the only vertical fluxes are from rainfall or movement of the free surface.

In the present problem, rainfall is prescribed and the free surface position is of interest.

Integrating the continuity equation over the saturated thickness gives:

q r:$n:1 R :$o:2 R :$p:4 s �4tu
) J ::1 v$n��w R ::2 v$o��w R $tu S $) (3.2)

This integration makes use of Leibnitz’s rule to interchange the order of differentiation

and integration. By assuming that the PFC has no resistance to flow in the vertical

direction, the effects free surface movement and rainfall may be separated into qhp and q0,

respectively. The movement of the free surface (within the PFC) in time is given by $tu J �� xtuxy and the rainfall may be expressed as q0= r(t). Making these substitutions

and rearranging:

�� :��:+ J S ::1 v$n��w S ::2 v$o��w R 'X+O (3.3)

For the case of non-inertial flow, the momentum equation reduces to Darcy’s law

for each coordinate direction.

$n J S�n :�:1 , $o J S�o :�:2 (3.4)

where $ and � are the Darcy velocity and hydraulic conductivity in the coordinate

directions. For the present case, horizontal anisotropy will be neglected so that �n J�o J � . Substituting Darcy’s law into the vertically integrated continuity equation

gives:

28

�� :��:+ J � z ::1 a:�:1 ��c R ::2 a:�:1 ��c{ R 'X+O (3.5)

 Equation (3.5) is known as the Boussinesq equation. It describes unsteady two-

dimensional flow in an unconfined porous medium with spatially uniform recharge.

3.3.2 Mathematical Model of Overland Flow

The following development of the mathematical model for overland flow follows

that of Jeong (2008), except that the velocity is used as the primary variable rather than

unit discharge. The dynamics of shallow water flow over the pavement surface are

described by the Saint-Venant equations, which comprise a continuity equation and a

momentum equation for each component direction. The continuity equation is expressed

as: :��:+ R :X.n��O:1 R :v.o��w:2 J 'X+O (3.6)

where �� is the thickness of water on the surface, . is the average velocity in each

coordinate direction, and 'X+O is the rainfall rate. The two full momentum equations are: :X.n��O:+ R :X.nK��O:1 R :v.n.o��w:2 R ��� a("n R :�:1 c J 0

:v.o��w:+ R :v.oK��w:2 R :v.n.o��w:1 R ��� a("o R :�:2 c J 0

(3.7)

This system of three partial differential equations may be reduced to a single

equation by applying the diffusion wave approximation—neglecting local and convective

accelerations. Neglecting inertial terms and dividing by � �� gives the simplified

momentum equations:

(*n J S :�:1 (* o J S :�:2 (3.8)

29

To combine continuity and momentum into a single equation, the velocity

components (.n and .o) must be expressed in terms of the friction slope. Manning’s

equation relates the velocity and friction slope as follows:

 . J 1� &K Y⁄ (*T K⁄
 (3.9)

Where . is the velocity, � is the Manning roughness coefficient, & is the

hydraulic radius, and (* is the friction slope. Manning’s equation is a scalar equation that

applies in the direction of flow. In order to apply the Manning’s equation to this problem

it needs to be formulated using the vector components of Equation (3.7). Inserting these

components and approximating the hydraulic radius as the depth as is common for

shallow flows yields:

v.nK R .oKwT K⁄ J 1� ��K Y⁄ j(*nK R (*oK kT K⁄
 (3.10)

The friction slope term may also be expressed in terms of both vector components

and the magnitude:

v.nK R .oKwT K⁄ J 1� ��K Y⁄
l(" j(*nK R (*oK k (3.11)

This formulation shows that Manning’s equation can be written as the vector sum

of the velocity components. Using the momentum result of Equation (3.8), the friction

slope may also be written in terms of the hydraulic gradient.

 .n J 1� ��K Y⁄
l(* (*n J S 1� ��K Y⁄

l(*
:�:1

.o J 1� ��K Y⁄
l(* (* o J S 1� ��K Y⁄

l(*
:�:2

(3.12)

Substituting these velocity components into the continuity equation yields a single

partial differential equation that contains the essential physics of the overland flow

problem.

30

:��:+ R ::1 |S 1� ��K Y⁄
l(*

:�:1 ��} R ::2 |S 1� ��K Y⁄
l(*

:�:2 ��} J 'X+O (3.13)

This equation may be simplified by lumping the non-differential terms within the

spatial derivatives into a single coefficient,~X��O. Additionally, the time derivative must

be converted from depth to elevation above datum. From Figure 8 the variables are

related by � J 3 R �� R ��. Taking the time derivative, �4/�+ is zero and
xxy �� is zero

when there is flow on the surface. That is, during surface flow, the saturated depth of the

PFC will be equal to the pavement thickness. Making these substitutions gives the

desired PDE: :�:+ R ::1 aS~X��O :�:1 c R ::2 aS~X��O :�:2 c J 'X+O (3.14)

where ~X��O J T� t�� �⁄
l�� and other terms are defined previously. This approach to

describing surface flow is a two-dimensional diffusion wave model.

3.4 Mathematical Model Assumptions

The forgoing development made simplifying assumptions about the physical

system. In particular it was assumed that the saturated subsurface varies hydrostatically,

that porous media flow is slow enough to neglect inertial effects, and that inertial effects

can also be neglected for overland flow. Each of these assumptions is discussed in the

following sections.

3.4.1 Dupuit-Forchheimer Assumptions

In developing the mathematical model for saturated porous media flow, it was

assumed that pressure varied hydrostatically and that the subsurface discharge was

proportional to the hydraulic gradient. These are the Dupuit-Forchheimer assumptions.

Irmay (1967) studied the error made in predicting the hydraulic head using the

Dupuit-Forchheimer assumptions. He gives formulas for computing the relative error at

different depths for flat and inclined aquifers. For a flat aquifer, the maximum error

31

occurs at mid depth and depends mostly on the hydraulic gradient. A hydraulic gradient

of 10% caused a maximum error of 0.25% in the hydraulic head. As most roadways have

a drainage slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good

approximation.

3.4.2 Darcy’s Law

Along with the Dupuit-Forchheimer assumptions, the model development

assumed that Darcy’s law applies for flow through PFC. However, experimental efforts

to estimate the hydraulic conductivity of PFC have shown that Darcy’s law does not

apply once hydraulic gradients become sufficiently large (Klenzendorf, 2010).

Forchheimer’s equation is frequently used to describe flow in this case: � J 5$% R 7$%K (3.15)

In Equation (3.15), � is the hydraulic gradient taking a downward slope as

positive, $% is the specific discharge of the fluid as predicted by the Forchheimer

equation, and 5 and 7 are coefficients. In the case that 7 is zero, Forchheimer’s equation

reduces to Darcy’s law with the coefficient 5 equal to the inverse of the hydraulic

conductivity �. To facilitate a comparison with Darcy’s law, the Forchheimer specific

discharge $% is obtained using the quadratic formula. The positive radical is taken since

a negative discharge is not meaningful in this case.

$% J S5 R l5K R 47�27 J 527 ��1 R 47�5K S 1� (3.16)

Using this form of Forchheimer’s equation, a vector form comparable to Darcy’s

law may be obtained:

$�% J �� 527� ��1 R 47�5K S 1� (3.17)

Since Darcy’s law is $� J �� �, the specific discharge predicted by the two

equations can be compared using a ratio, termed the Discharge Ratio (ΦO.

32

Φ J $%$� J 5K27� ��1 R 47�5K S 1� (3.18)

The value of Φ ranges from 0 to 1. At a value of 1 the Forchheimer specific

discharge matches the Darcy specific discharge. At values less than 1, the Forchheimer

specific discharge is less than the Darcy specific discharge. The value of Φ depends

upon the hydraulic gradient � and the coefficients 5 and 7. A change in one of these

variables that results in a higher velocity pushes the flow away from the Darcy regime

toward Forchheimer flow.

For the present purposes, the region of applicability of Darcy’s law is of interest.

To determine this region, the value of Φ over a range of values for �, 5 & 7 is

investigated. The hydraulic gradient can be estimated as the roadway slope. A

reasonable slope range might be 0% to 10%. Values of 5 can be approximated by taking

the inverse of the hydraulic conductivity. The hydraulic conductivity of PFC is an area of

ongoing research. Preliminary results indicate that values range from 0 to 5 cm/s.

Values of 7 are estimated using equations from the literature and compared to recent

experimental results.

Li and Engler (2001) give a literature review of correlations for the Non-Darcy

coefficient. Of the correlations they give, an extension of the work of Ergun (1952)

given by Thauvin and Mohanty (1998) appeared relevant to this research: 78 J \�]T K⁄ X10]_�O]T K⁄ �]Y K⁄ (3.19)

where 78 is the non-Darcy coefficient in 1/cm, � is the permeability in units of Darcy, � is

the porosity. The values of \ J 1.75 and � J 150 were obtained by Ergun (1952)

using a least squares fit to experimental data. This correlation was chosen because the

experimental data come from columns packed with porous materials (e.g. sand,

pulverized coke) rather than geologic formations. The non-Darcy coefficient is related to 7 by the constant of gravitational acceleration:

33

7 J 78� (3.20)

Another correlation for the coefficients of the Forchheimer equation is given by

Ward (1964):

� J =�>� $ R 0.55�√� $K (3.21)

In Ward’s equation, the linear term is consistent with Darcy’s law and no estimate of the

porosity is required.

Recent work by Klenzendorf (2010) has used a combination of numerical

modeling and laboratory experiments to determine the Forchheimer coefficients for PFC.

Comparing the coefficients obtained by Klenzendorf to the relationships proposed by

Ward and Thauvin and Mohanty suggests that Ward’s equation provides better estimates

for PFC flow (Figure 9). This result applies especially at higher values of hydraulic

conductivity, where non-linear effects are more pronounced.

A comparison of the value of 7 with the hydraulic conductivity shows that the

variables are inversely related (Figure 9). Conceptually, this relationship says that

smaller values of hydraulic conductivity have higher values of 7. The meaning of this

trend is that inertial effects reduce the drainage capacity of PFC. Darcy’s law will under-

predict the water depth.

34

Figure 9: Comparison of Forchheimer coefficients for PFC obtained by Klenzendorf

(2010) with the relationships proposed by Ward (1964) and Thauvin and Mohanty

(1998). Three of Klenzendorf’s data points [(0.047,167); (0.056,64.3); (0.10,29.1)] are

excluded for clarity.

Invoking either relationship for the Forchhiemer coefficients reduces the

discharge ratio to a function of two variables. By establishing a threshold value for Φ,

we can get a sense of which PFC roadways can be reasonably represented by Darcy’s

law. A 10% non-Darcy effect—corresponding to Φ J 0.9 —has been suggested as

reasonable (Zeng and Grigg, 2006) and is adopted here. Using this criterion, a surface

plot of the discharge ratio shows that Darcy’s law provides acceptable predictions at low

hydraulic gradients (small slopes) and small hydraulic conductivities (Figure 10).

Furthermore, this figure shows that even modest roadway slopes can lead to non-Darcy

flow.

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3

In
e
rt

ia
l
T

e
rm

 ββ ββ
(s

2
/c

m
2
)

Hydraulic Conductivity (cm/s)

Klenzendorf (2010)

Ward (1964)

Thauvin and Mohanty (1998)

35

Figure 10: Contour plot of discharge ratio using Thauvin and Mohanty (1998) with

porosity of 0.2.

Figure 11: Contour plot of discharge ratio using the relationship of Ward (1964)

0.001

0.02

0.04

0.06

0.08

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H
y
d

ra
u

li
c
 G

ra
d

ie
n

t
(c

m
/c

m
)

Hydraulic Conductivity (cm/s)

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

0.001

0.02

0.04

0.06

0.08

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H
y
d

ra
u

li
c
 G

ra
d

ie
n

t
(c

m
/c

m
)

Hydraulic Conductivity (cm/s)

0.9-1

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0-0.1

36

The contour plot of the discharge ratio using Ward’s formula (Figure 11) shows

the same general trends as Figure 10, but Ward’s formula—which agrees more closely

with experimental data for PFC—gives a larger region where Darcy’s law is acceptable.

3.4.3 Diffusion Wave Approximation

 The reasons for selecting the diffusion wave approximation are discussed more

thoroughly in the literature review. Briefly, the diffusion wave model provides a balance

between accuracy and computational efficiency. The kinematic wave approximation is

too simplified because it cannot deal with adverse slopes or backwater effects. The

dynamic wave model would be ideal, but comes at a high computational cost and is not

expected to give substantially different results than the diffusion wave model.

3.5 Computational Grid

In order to implement the mathematical models of the physical processes for real

roadways, a computational grid for the roadway must be developed. This research uses

the same grid generation employed by Jeong (2008), which is summarized below.

The idea of the grid generation scheme is that each point along a roadway

centerline lies on the circumference of a circle. The coordinates of the center of the circle

may be given explicitly, or estimated from neighboring points. The radius of curvature is

assumed to vary linearly along the centerline between known points. The radius of

curvature is very large for straight sections and smaller for curved sections.

The center and radius of curvature can be obtained by specifying them directly as

was done in this work, or by analyzing a digital elevation model as was done by Jeong

(2008). In either approach, a point along the roadway centerline has the following

attributes:

• Cartesian X,Y coordinates (input)

• Coordinates of center of curvature, X1��, 2��O (output)

• Radius of curvature, & (output)

37

• Angle (from positive horizontal axis) of ray from center of curvature to

centerline point, Θ (output)

Considering adjacent DEM points, the difference in radius of curvature and

angular position are Δ& and ΔΘ, respectively. Using these quantities the curvilinear

roadway can be mapped to a rectangular representation through the coordinate

transformation functions (Jeong 2008): 1Xξ, ηO J vx��T R ξXx��K S x��TOw R XRT R ξΔR R Xη S 0.5OWOcos XΘT R ξΔΘO 2Xξ, ηO J Xy��T R ξXy��K S y��TOO R XRT R ξΔR R Xη S 0.5OWOsin XΘT R ξΔΘO
(3.22)

In Equation (3.22), < and ; are parameters that range from 0 to 1; / is the width

of the roadway. This equation only applies between adjacent DEM points.

The length ℓ, and width 0 of a line segment centered at the point X<, ;O are

computed using the partial derivatives of the coordinate transformation functions:

ℓX<, ;O J Δ<�a:1:<cK R a:2:<cK

0X<, ;O J /Δ;

(3.23)

with Δ< J 1/H� and Δ; J 1/H�, H being the number of elements between DEM points

in each direction.

The area of a grid cell is computed from the Jacobian of the transformation

functions:

Δ� J �X<, ;O J ��
:1:< :1:;:2:< :2:;�� (3.24)

Equations (3.23) and (3.24) provide the information needed to develop a

numerical formulation in the computational space. The coordinate transformation

process is depicted visually in Figure 12.

38

Figure 12: Development of computational grid from roadway geometry

3.6 Numerical Formulation

The major goal of this research is the development of a numerical model for the

drainage of water from a PFC. The Boussinesq equation and the diffusion wave model

developed above provide the theoretical basis for the system of interest. However,

predicting flow behavior in a real system requires that the surface and subsurface

behaviors interact.

The numerical formulation uses the finite volume method with central

differencing in space and the Crank-Nicolson method in time. A mass balance is

developed for an interior grid cell with flux components for rainfall, subsurface flow, and

surface flow. The flux across each face of the grid cell is estimated using Darcy’s law

(xcc,ycc)1

(xcc,ycc)2

(xc,yc)2

(xc,yc)1

∆x

∆y

R1

R2=R1+∆R

θ1

θ2=θ1+∆θ

x

y

ξ

39

and the diffusion wave model. The mass balance is initially expressed in terms of the

total head at adjacent cells and then re-expressed in terms of the depth at adjacent cells.

3.6.1 Mass Balance on a Grid Cell

An interior grid cell is shown in Figure 14 and Figure 14 with horizontal

dimensions in computational space. The total head for the center of the grid cell is: � J 4 R �� R �� (3.25)

where z is the elevation above the datum, �� is the saturated thickness in the pavement

and �� is the thickness on the pavement surface. The volume of the grid cell is: - J �'E\ 9 ~E!+� J ΔAX� S 4O J ΔAX�� R ��O (3.26)

The volume of water in the grid cell must account for the porosity, and is given

by: -�Q� J Δ����� R ΔA�� (3.27)

where �� is the effective porosity of the pavement.

Figure 13: Profile view of interior grid cell

z

hp

hs

PFC Layer

Elevation Datum

H

bPorosity = ne

Computational

Node

40

Figure 14: Isometric View of Interior Grid Cell

The change in volume of water in the cell over time is found from the partial

derivative of Equation (3.27). This derivative must consider the physical constraint that

either
xtuxy or

xt�xy will be zero at all times according to the location of the free surface with

respect to the pavement surface.

:-�Q�:+ J ΔA �� :��:+ "¡' �� ¢ �
ΔA :��:+ "¡' �� £ � ¤ (3.28)

The principle of continuity states that the time rate of change of volume is equal

to the net flow rate, which can be expressed mathematically as: :-�Q�:+ J #¥� S #G�y (3.29)

The volume of water in the cell changes by rainfall, subsurface flow, and surface

flow. Flow into the grid cell is considered positive. To estimate the flow rate due to each

component, consider an interior control volume and its adjacent cells as in Figure 15.

The central cell in the figure has node �, � at the center. The faces of the center cell are

identified with the compass directions.

Elevation Datum

b

∆η∆ξ

PFC

z

Water Surface

41

Note that the grid in computational space is uniform—each cell has the same

value of ∆η and ∆ξ and the grid is situated so that the cell faces lie halfway between the

cell centers. The grid in physical space is not uniform because cells have different

lengths in the longitudinal direction according their radial position. In the figure, the

subscripts of ∆η and ∆ξ refer to the metric coefficients, which do vary in space.

In the indexing scheme for the model, the i index changes longitudinally through

the domain and the j index changes transversely. These indices are related to the

compass directions within a grid cell for convenience. In terms of coordinate directions,

the local north and south compass directions correspond to the positive and negative η

directions.

Figure 15: Top View of Grid in Computational Space

42

For cell �, � the flow rate due to rainfall is given by the rainfall intensity and the cell area: #A¦¥� J 'X+O 9 ΔA (3.30)

The flow rate due to subsurface flow can be estimated using Darcy’s law,

(# J ���O, where K is the hydraulic conductivity, � is the hydraulic gradient, and � is

the cross sectional area. The hydraulic gradient and cross sectional area must be

estimated using the physical lengths of the cells. Considering Figure 15, the head

gradient with respect to < at location w can be approximated as:

¤:�:< §¨ J �¥]T,© S �¥,©1 2⁄ XΔξª]T R ΔξªO (3.31)

Since < is dimensionless, this equation does not have the dimensions of hydraulic

gradient. In order to estimate the hydraulic gradient at cell face w, cell size computed in

Equation (3.23) must be used. Applying the transformation gives an estimate for the

hydraulic gradient:

¤:�:ℓ §¨ J �¥]T,© S �¥,©1 2⁄ Xℓª]T,« R ℓª,«O (3.32)

Using this formulation for the hydraulic gradient, the subsurface flow into the

each face of cell �, � is expressed:

#�,¨ J � �¥]T,© S �¥,©1 2⁄ Xℓª]T,« R ℓª,«O ��,¨0¥,©
#�,� J � �¥fT,© S �¥,©1 2⁄ XℓªfT,« R ℓª,«O ��,�0ª,«

#�,� J � �¥,©]T S �¥,©1 2⁄ X0ª,«]T R 0ª,«O ��,�ℓª,«,¬

#�,� J � �¥,©fT S �¥,©1 2⁄ X0ª,«fT R 0ª,«O ��,� ℓª,«,­

(3.33)

Here the hydraulic gradient at the cell boundary is estimated as the difference in

head divided by the distance between nodes. The cross sectional area is the saturated

thickness times the length of the cell boundary. The length of the cell boundary has the

43

same value for the east and west faces (0¥,©O, but differs for the north and south faces vℓ¥,©,� ¡' ℓ¥,©,�w because the radius of curvature is different.

The flow rates due to surface flow can be estimated using the diffusion wave

model according to the equation:

J - 9 � J 1� ��KYl(*
:�:1 9 ��Δy (3.34)

Here, �� is the thickness on the pavement surface and (* is the magnitude of the

slope of the water surface. Using the same estimate of the hydraulic gradient as for

subsurface flow gives the following estimates for the flow rate into cell �, � at each of the

cell boundaries.

#�,¨ J 1� ��,¨KYl(*,¨ r �¥]T,© S �¥,©1 2⁄ Xℓª]T,« R ℓª,«Os 9 ��,¨0¥,©

#�,� J 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ XℓªfT,« R ℓª,«Os 9 ��,�0¥,©

#�,� J 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ X0ª,«]T R 0ª,«Os 9 ��,�ℓª,«,¬

#�,� J 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ X0ª,«fT R 0ª,«Os 9 ��,�ℓª,«,­

(3.35)

Now that flow rates for each cell boundary have been developed, the water

balance on a grid cell can be expressed in terms of the flow rates. All of the flow rates

are formulated as being positive because of the arrangement of the �¥,© term. If the head

in cell �, � is lower than the cell it is subtracted from, water will flow into cell �, �. The

flow rates were formulated this way to make it easier to check the equations. For the 2D

case, the mass balance has nine flow components:

44

:-�Q�:+ J #�,¨ R #�,¨ R #�,� R #�,� R #�,� R #�,� R #�,� R #�,� R #A¦¥�

or :-�Q�:+ J #�,¨ R #�,¨ R #�,� R #�,� R #A¦¥�

(3.36)

Substituting the flow rates for rainfall, subsurface, and surface flow into the

continuity equation gives a mass balance for an interior grid cell: :-�Q�:+ J
� �¥]T,© S �¥,©1 2⁄ vℓª]T,« R ℓª,«w ��,¨0¥,© R 1� ��,¨KYl(*,¨ r �¥]T,© S �¥,©1 2⁄ vℓª]T,« R ℓª,«ws 9 ��,¨0¥,©

R � �¥fT,© S �¥,©1 2⁄ vℓªfT,« R ℓª,«w ��,�0ª,« R 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ vℓªfT,« R ℓª,«ws 9 ��,�0¥,©

 R � �¥,©]T S �¥,©1 2⁄ v0ª,«]T R 0ª,«w ��,�ℓª,«,¬ R 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ v0ª,«]T R 0ª,«ws
9 ��,�ℓª,«,¬

R � �¥,©fT S �¥,©1 2⁄ v0ª,«fT R 0ª,«w ��,� ℓª,«,­ R 1� ��,�KYl(*,� r �¥]T,© S �¥,©1 2⁄ v0ª,«fT R 0ª,«ws
9 ��,�ℓª,«,­ R 'X+O 9 ΔA

(3.37)

Equation (3.37) contains four dependent variables: -�Q� , �, ��, \�� ��. A fifth

variable, the total thickness �, may be formed as the sum of the thickness in the pavement

and the thickness on the surface. � J �� R �� (3.38)

So the total head is: � J 4 R � (3.39)

45

In order to solve the problem, Equation (3.37) must be expressed in terms of the

total head or total thickness. Choosing the total head is perhaps more intuitive, and

makes the equations simpler, but the total thickness is a better choice numerically

because it avoids subtracting two large numbers (the elevation being much larger than the

total thickness). The equation will be expressed first in terms of the head, and then

expressed again in terms of the thickness.

3.6.2 Formulation using Total Head

To express the equations in terms of the head, �� , �� and (* must be expressed

at the cell center and the boundaries in terms of �. Each of these terms will be examined

in turn, starting with those on right hand side of Equation (3.37). In the development, it

will also be convenient to define conveyance coefficients and a porosity function.

Saturated Thickness and Sheet Flow Depth

The saturated thickness at the grid cell boundaries—��,9—can be estimated from

the total head at the cell centers by linear interpolation. Since the computational grid is

evenly spaced, the interpolation is just the average of the head values. To find the

saturated thickness at the boundary, the total head at the cell boundary is estimated from

the adjacent nodes, and the elevation at the boundary is subtracted to give the saturated

thickness:

��,¨ J Hª,«ℓ¥]T,© R �¥]T,©ℓ¥,©ℓ¥,© R ℓ¥]T,© S 4¨

��,� J Hª,«ℓ¥fT,© R �¥fT,©ℓ¥,©ℓ¥,© R ℓ¥fT,© S 4�

��,� J Hª,« ¥̄,©]T R �¥,©]T ¥̄,©¥̄,© R ¥̄,©]T S 4�

��,� J Hª,« ¥̄,©fT R �¥,©fT¯
¥̄,© R ¥̄,©fT S 4�

(3.40)

46

The surface flow thickness at the grid cell boundaries—��,9—is estimated in the

same way as the saturated thickness. The elevation at the cell boundary and the PFC

thickness are subtracted from the interpolated total head at the boundary to give an

estimate of the thickness of sheet flow:

��,¨ J Hª,«ℓ¥]T,© R �¥]T,©ℓ¥,©ℓ¥,© R ℓ¥]T,© S 4¨ S �

��,� J Hª,«ℓ¥fT,© R �¥fT,©ℓ¥,©ℓ¥,© R ℓ¥fT,© S 4� S �

��,� J Hª,« ¥̄,©]T R �¥,©]T ¥̄,©¥̄,© R ¥̄,©]T S 4� S �

��,� J Hª,« ¥̄,©fT R �¥,©fT¯
¥̄,© R ¥̄,©fT S 4� S �

(3.41)

The approximations given in Equations (3.40) and (3.41) must consider the

physical constraints on and interdependence of the saturated thickness and surface

thickness. The saturated thickness must be greater than or equal to zero and less than or

equal to the thickness of the PFC layer. The surface thickness must be positive, and must

be zero when the saturated thickness is less than the thickness of the PFC layer. These

constraints are expressed mathematically as: 0 ° �� ° � �� J 0 "¡' �� ¢ �
(3.42)

These constraints are imposed on the estimates of thickness at the cell boundaries

using minimum and maximum functions. Examples of how these functions are used are

given for the western boundary. The other boundaries are calculated in a similar way.

��,¨ J min r� ; Hª,«ℓ¥]T,© R �¥]T,©ℓ¥,©ℓ¥,© R ℓ¥]T,© S 4¨s
��,¨ J max r0 ; Hª,«ℓ¥]T,© R �¥]T,©ℓ¥,©ℓ¥,© R ℓ¥]T,© S 4¨ S �s

(3.43)

47

Use of these functions means that the overall mass balance equation is no longer

smooth in the mathematical sense; however the physical system under consideration is

not smooth either. There is a shift in the behavior of the system when the PFC layer

becomes saturated and sheet flow begins, or when sheet flow disappears into the

pavement because the rainfall intensity decreased. The minimum and maximum

functions have the advantages of ease implementation in a numerical scheme and of

facilitating the use of a single equation to describe subsurface flow and combined

surface/subsurface flow.

Friction Slope

By the Dupuit-Forchheimer assumptions, the friction slope is the same as the

hydraulic gradient. This is a vector quantity, so the component in each coordinate

direction will be estimated. Estimates of the component in the proper direction and the

overall magnitude are needed for the sheet flow part of the problem.

The <-component of the friction slope at the middle of the west and east faces are

computed from the node values of neighboring cells.

(*�,¨ J �¥]T,© S �¥,©1 2⁄ Xℓª]T,« R ℓª,«O

(*�,� J �¥fT,© S �¥,©1 2⁄ XℓªfT,« R ℓª,«O

(3.44)

Similarly, the ;-component of the friction slope at the middle of the south and

north faces are computed from the node values of neighboring cells.

(*�,� J �¥,©]T S �¥,©1 2⁄ X0ª,«]T R 0ª,«O

(*�,� J �¥,©fT S �¥,©1 2⁄ X0ª,«fT R 0ª,«O

(3.45)

48

The other friction slope component for each face is found from a weighted

average of the component in that direction from the nearest four faces where it was

computed. This means the ;-component at the western face is estimated as the weighted

average of the ;-component at the north and south faces of the central cell and its western

neighbor.

(*�,¨ J X(*�,� R (*�,�Oℓ¥]T,© R v(*�,� R (*�,�w¥]Tℓ¥,©2Xℓ¥,© R ℓ¥]T,©O

(*�,� J X(*�,� R (*�,�Oℓ¥fT,© R v(*�,� R (*�,�w¥fTℓ¥,©2Xℓ¥,© R ℓ¥fT,©O

(3.46)

The <-component of the friction slope at the southern and northern faces is estimated in a

similar way:

(*�,� J v(*�,� R (*�,¨w0¥,©fT R v(*�,� R (*�,¨w¥,©fT0¥,©2v0¥,© R 0¥,©fTw (3.47)

Note that Equations (3.46) and (3.47) could equivalently use the metric coefficients

corresponding to each cell face rather than the actual lengths and widths. The magnitude

of the total friction slope at any location is the Pythagorean sum of the components.

(*,¨ J ´(*�,¨K R (*�,¨K
 (3.48)

49

Conveyance Coefficients

Now that all of the terms on the right hand side of the mass balance given in

(3.37) are expressed in terms of the total head, we return to the overall equation.

Collecting collecting like terms and dividing by the cell area gives the model equation

where terms in square brackets are defined to be conveyance coefficients:

1Δ� :µ�Q�:+ J ¶·� 9 ��,¨ R 1� ��,¨NYl(*,¨¸ r 20¥,©ℓ¥]T,© R ℓ¥,©s a 1Δ�c¹
9 v�¥]T,© S �¥,©w
R ¶·� 9 ��,� R 1� ��,�NYl(*,�¸ r 20¥,©ℓ¥fT,© R ℓ¥,©s a 1Δ�c¹
9 v�¥fT,© S �¥,©w
R ¶·� 9 ��,� R 1� ��,�NYl(*,�¸ r 2º¥,©0ª,«]T R 0ª,«s a 1Δ�c¹
9 v�¥,©]T S �¥,©w
R ¶·� 9 ��,� R 1� ��,�NYl(*,�¸ r 2º¥,©0ª,«fT R 0ª,«s a 1Δ�c¹
9 v�¥,©fT S �¥,©w

(3.49)

In Equation (3.49) the terms in square brackets are conveyance coefficients.

There is a conveyance coefficient for each face of the grid cell. The thickness estimates

at the cell boundary appear only in the conveyance coefficient. Substituting the thickness

estimates of Equation (3.43) yields the final conveyance coefficients for the faces. The

conveyance coefficient for the western boundary is:

50

�¨ J
»
¼¼¼
½ � 9 min r� ; Hª,«ℓ¥]T,© R �¥]T,©ℓ¥T,©ℓ¥,© R ℓ¥]T,© S 4¨s

R 1� max a0 ; Hª,«ℓ¥]T,© R �¥]T,©ℓ¥T,©ℓ¥,© R ℓ¥]T,© S 4¨ S �cNY
l(*,¨ ¾

¿¿¿
À r 20¥,©ℓ¥]T,© R ℓ¥,©s a 1Δ�c (3.50)

Conveyance coefficients allow the mass balance equation to be expressed more

concisely:

 1Δ� :µ�Q�:+ J �¨ 9 v�¥]T,© S �¥,©w R �� 9 v�¥fT,© S �¥,©w R ��9 v�¥,©]T S �¥,©w R �� 9 v�¥,©fT S �¥,©w R 'X+O

(3.51)

Porosity Function

With the right hand side of the mass balance expressed in terms of the total head

we turn to the left hand side of Equation (3.51) and recall that the volume of water in a

grid cell must consider the porosity of the PFC. Considering Equation (3.28), the left

hand side of Equation (3.51) can be expressed as:

1Δ� :µ�Q�:+ J �� :��:+ "¡' �� ¢ �:��:+ "¡' �� £ � ¤ (3.52)

The constraints on �� and �� are imposed by the physical system are that either

xtuxy or
xt�xy will be zero at all times. In other words the time derivative of the total head,

x�xy , will be completely given by
xtuxy when the flow is contained within the pavement. For

the case of combined surface/subsurface flow, the pavement is saturated, therefore the

saturated thickness is constant and
xtuxy is zero, leaving changes in the total head to the

surface component. Table 1 summarizes these cases.

51

Table 1: Flow Cases

Flow Condition

Time Derivative

of Total Head

Left Hand Side of

Mass Balance

Case 1 Flow completely within

pavement

:�:+ J :��:+ �� :��:+

Case 2 Combined

surface/subsurface flow

:�:+ J :��:+
:��:+

The difference between these flow conditions is reflected in the mass balance

equation through the porosity. When the water is contained in the pavement, changes in

the volume of water in the grid cell are reflected in the head through the porosity.

Consider for example, a cell having an area of 1 square meter that receives 1 mm of

rainfall and has no other fluxes. In either case 1 or case 2 the volume of water in the cell

increases by 1 liter. In case 1 the total head increases by 1mm/ne, while in case 2 the

head increases by only 1mm.

To combine the time derivatives into a single term, we must apply the porosity to

the right hand side based on the flow condition. For this purpose a “porosity function” is

defined to accomplish switching between the phases. This function says to divide by the

porosity if the flow is contained within the pavement, but not change anything if the

pavement is saturated.

!"X�, 4, �, ��O J Á1 "¡' � S 4 £ �1 ��⁄ "¡' � S 4 ¢ �¤ (3.53)

Model Equation in terms of Total Head

With the use of the porosity function, we can combine the time derivatives of

thickness into the time derivative of total head, and express the mass balance for a grid

cell in terms of the total head and problem parameters. The equation is arranged in order

of the bands that appear in the coefficient matrix. :�:+ J !" 9 Â�¨�¥]T,© R ���¥,©]T S X�¨ R �� R �� R ��O�¥,© R ���¥,©fTR ���¥fT,© R 'X+OÃ (3.54)

52

Equation (3.54) accomplishes the goals set out for this numerical formulation.

The mass balance is expressed in terms of the total head at the center of a grid cell and a

single equation applies for both subsurface flow and combined surface/subsurface flow.

When the saturated thickness (��) is less than the thickness of the PFC layer, the porosity

function is active, the max function removes the surface flow part of the conveyance

coefficient, and Equation (3.54) reduces to the Boussinesq equation. When the saturated

thickness is equal to or greater than the thickness of the PFC layer, the porosity function

turns off, the minimum function forces the saturated thickness to the PFC layer thickness,

and the surface flow part of the conveyance coefficient is non-zero.

3.6.3 Depth Formulation, Time Discretization, Linearization

As mentioned earlier, the discretized equations will now be re-expressed in terms

of the thickness rather than the total head. This is accomplished by making the

substitution � J � R 4. The time derivative converts directly because the elevation does

not change in time. :�¥,©:+ J !" 9 Â�¨X� R 4O¥]T,© R ���X� R 4O¥,©]TS X�¨ R �� R �� R ��OX� R 4O¥,© R ��X� R 4O¥,©fTR ��X� R 4O¥fT,© R 'X+OÃ
(3.55)

To solve Equation (3.55) the time dimension is discretized using the Crank-

Nicolson method. The resulting non-linear system is linearized by lagging the

conveyance coefficients using an inner iteration loop. The Crank-Nicolson method is

summarized as follows, using the superscript � as the time level (Ferziger and Peric,

2002). �¥,©�fT S �¥,©�Δ+ J 12 Â &�(Ã�fT R 12 Â &�(Ã� (3.56)

Now the system is arranged for solving as a linear system by moving the

unknowns—the depths at time level � R 1—to the left side of the equation and moving

the known quantities to the right.

53

�¥,©�fT S Δ+2 Â &�(Ã�fT J Δ+2 Â &�(Ã� R �¥,©� (3.57)

Let A, B, C, D, E be the bands of the penta-diagonal coefficient matrix and F be

the right side of the linear system, or force vector. A linear index is needed to relate grid

points using �, � indices to a single index for the matrix system. The linear index is

formed by numbering the grid cells consecutively along the columns starting in the

southwest corner of the domain. Taking the largest value of the domain column index as �Ä¦n the linear index � for any grid cell is computed from: �X�, �O J X� S 1O 9 �Ä¦n R � (3.58)

Using the linear index, the system can be written as: �I �I]©ÅÆÇ�fT R ÈI �I]T�fT R �I �I�fT R ~I �IfT�fT R ÉI �If©ÅÆÇ�fT J FI (3.59)

where the expressions for the matrix coefficients are (with the conveyance coefficients at

the n+1 level):

�I J S Δ+2 9 !" 9 �¨�fT

ÈI J S Δ+2 9 !" 9 ���fT

�I J Δ+2 9 !" 9 v�¨�fT R ���fT R ���fT R ���fTw R 1

~I J S Δ+2 9 !" 9 ���fT

ÉI J S Δ+2 9 !" 9 ���fT

(3.60)

54

The right hand side of the system is:

FI J !"� Δ+ 2
ÊËË
Ì
ËËÍ

�¨�¥]T,© R ���¥,©]T SX�¨ R �� R �� R ��O�¥,© R���¥,©fT R ���¥fT,© R�¨4¥]T,© R ��4¥,©]T SX�¨ R �� R �� R ��O4¥,© R��4¥,©fT R ��4¥fT,© R 'X+OÎËË
Ï
ËËÐ

�

R �¥,©�

 R !"�fT Δ+ 2 Ñ �¨4¥]T,© R ��4¥,©]T SX�¨ R �� R �� R ��O4¥,© R��4¥,©fT R ��4¥fT,© R 'X+O Ò�fT

(3.61)

Note that the value of in each band for an interior grid cell depends upon the four cells on

its borders and on itself so the computational molecule is comprised of five cells and the

coefficient matrix is penta-diagonal.

 The values of the coefficient matrix (A, B, C, D, E) depend on the conveyance

coefficients, which in turn depend on the unknown thicknesses so the system of equations

is non-linear. Linearization is accomplished using the fixed point method—conveyance

coefficients are computed using old values of the depths and these coefficients are then

used to compute new depths (Ferziger and Peric, 2002). The new depths are used to

update the conveyance coefficients and this process is repeated until values of the depths

stop changing within the iteration. At each iteration, the linearized system of equations is

solved using the Gauss-Seidel method for solving linear systems of equations.

3.7 Initial Conditions and Boundary Conditions

Solution of the governing equations requires suitable initial conditions and

boundary conditions. In the following sections initial conditions are discussed first,

followed by the no-flow boundary condition. The subsequent section proposes a new

boundary condition for PFC flow—the kinematic condition. A formulation for kinematic

55

boundary conditions in the case of sheet flow is also given, followed by an algorithm

combining the kinematic condition for PFC and sheet flow.

3.7.1 Initial Conditions

The initial condition for the entire system is that of zero depth, corresponding to a

PFC roadway that is completely dry at the onset of rainfall. Any known depth could

theoretically be used as an initial condition, but the zero depth condition arises frequently

in practice.

3.7.2 No Flow Boundaries

A no flow boundary is a Neumann type condition because the derivative is

specified at the boundary. For a no-flow boundary, the conveyance coefficient for the

cell face corresponding to the boundary is set to zero, effectively enforcing the condition

of a zero head gradient. ���; J 0 (3.62)

Considering Equation (3.49), which shows the conveyance coefficients in

brackets, setting the conveyance coefficient equal to zero is equivalent to the zero

gradient condition. Note that this approach works for PFC flow and sheet flow.

3.7.3 Kinematic Boundary Conditions for PFC Flow

Boundary conditions other than no-flow boundaries are difficult to formulate for

PFC roadways. Boundary conditions are classified as Dirichlet type when the solution is

prescribed at the boundary, Neumann type when the first derivative is specified at the

boundary and as Robin type when some combination of the solution and its derivative are

specified at the boundary (Kreyszig, 1999). Formulating boundary conditions for PFC

flow—especially under unsteady conditions—is difficult because the solution at the

boundary varies according to the external forcing (rainfall), the solution within the

56

domain, and the geometry of the domain itself. In addition, the boundary condition

should be able to transition back and forth between sheet flow conditions.

Strictly speaking, the edge of a PFC is a seepage face because the pressure at any

point along the edge is atmospheric. Treating the edge of pavement as a seepage surface

is problematic for at least two reasons: (1) the velocity field near a seepage face has a

strong vertical component (see the experiments of Simpson et al. 2003) but the model

equation excludes vertical velocities; and (2) the Dupuit-Forchheimer assumptions on

which the model is based do not allow for a seepage surface since they require the

pressure to vary along a vertical line.

As a way to overcome these challenges it is desirable to specify the saturated

thickness at the center of a boundary grid cell based on the forcing, geometry, and

solution from the previous time step. The center of a boundary cell is a nodal unknown,

the value of which is referred to by the adjacent cells. Specifying the value at such a

location is a Dirichlet condition because the value of the solution is prescribed.

The following formulation develops a new method for specifying boundary

conditions to a Dupuit-Forchheimer flow model. The principle assumption is that of

kinematic flow. In the following three subsections, the algorithm is developed for a

linear roadway; the effect of the algorithm on the steady state solution is investigated; and

the applicability to curved roads is assessed.

Linear Roadways

The saturated thickness at the center of a boundary cell may be estimated by

applying the method of characteristics (MOC) to the PDE for one-dimensional flow

under kinematic conditions. The MOC is a mathematical solution technique for PDEs of

first-order and for hyperbolic PDEs of second-order (Street, 1973). The concept of

kinematic flow refers to the case where pressure and acceleration are neglected in the

momentum equation.

57

The continuity equation for flow in a porous medium under unsteady conditions

and with a free surface is given by Equation (3.3); considering only the 1 direction the

equation becomes

�� :�:+ R ::1 X$ 9 �O J ' (3.63)

where �� is the effective porosity, � is the saturated thickness, ' is the rainfall rate and

the Darcy velocity is

$ J S� :�:1 J S� :�:1 S �() (3.64)

Making this substitution and expanding the terms gives

�� :�:+ S �� :K�:1K S � a:�:1cK S �() :�:1 J ' (3.65)

The assumption of kinematic conditions means that the depth gradient is neglected in the

Darcy velocity, which removes the higher order terms in Equation (3.65) and gives

�� :�:+ S �() :�:1 J ' (3.66)

Removing the higher order terms destroys the parabolic nature of the PDE. This

is not a typical approximation for porous media flow and does introduce some error in the

solution. However, neglecting these terms allows the formulation of a boundary

algorithm that considers the problem parameters and can transition smoothly to sheet

flow conditions.

The MOC procedure given by Street (1973) is followed here. The solution of

Equation (3.66) can be considered as a surface in 1, +, �X1, +O space. The tangent plane to

the surface is given by the total differential

�� J :�:+ �+ R :�:1 �1 (3.67)

and the normal vector to this tangent plane is Xxtxy , xtxn , S1O. This normal vector is tangent

to the vector X��, S�(), 'Obecause their dot product is zero by Equation (3.66).

58

a:�:+ , :�:1 , S1c · X��, S�(), 'O J �� :�:+ S �() :�:1 S ' J 0 (3.68)

The vector X��, S�(), 'O must be tangent to the solution surface because it is orthogonal

to the surface normal. A position vector for a point on the solution surface can also be

represented parametrically as X 1XÔO, +XÔO, �XÔO O. Its tangent vector is jÕnÕ� , ÕyÕ� , ÕtÕ�k. The

fact that components of the tangent vectors must be proportional leads to the MOC

formulation of the problem: X� 1 �ÔO⁄�� J X� + �ÔO⁄S�() J X� � �ÔO⁄' (3.69)

This formulation is usually presented after �Ô has been eliminated from the equations: �+�� J �1S�() J ��' (3.70)

To obtain a Dirichlet type boundary condition for the domain, we need to estimate the

saturated thickness in the boundary cell at the new time level based on the solution from

the previous time-step. Since the solution travels along characteristic curves, the idea is

to figure out how far the solution will move along a characteristic during a time-step. In

this way the solution at time level n+1 is estimated by going up the characteristic by the

proper distance. In other words, if A and B are points along the characteristic curve, the

solution at point A and time level n can be used to find the solution at point B for time

level n+1. The problem now is to find the distance from point B to point A. This

estimate comes from integrating Equation (3.70).

Integrating the second and third terms of (3.70) gives an estimate of the boundary

value in terms of the distance up the characteristic curve 1K S 1TS�() J �K S �T' Ö �K J �T S '�() X1K S 1TO (3.71)

Integrating the first and second terms of (3.70) yields an estimate of the distance in terms

of the time-step:

59

+K S +T�� J 1K S 1TS�() Ö Δ1 J S �()Δ+�� (3.72)

Substituting (3.72) into (3.71) gives the desired estimate:

�K J �T R r Δ+�� (3.73)

The value of �T is estimated as the solution at time level � a distance Δ1 up the drainage

slope from point �K.

The kinematic approximation implies a maximum value for the saturated

thickness that is not reflected in the algorithm of Equations (3.72) and (3.73). At steady

state there is no change with time so Δ+ J 0 , which makes Δ1 J 0 and puts �T and �K at the same location. Since the hydraulic gradient was approximated as the pavement

slope, the Darcy velocity is constant (see Equation (3.64)) and the saturated thickness is

determined by the flow rate per unit width. For the one dimensional case, the steady state

flow rate per unit width is given by the rainfall rate, ', and length of the drainage path, �.
��� J '��() (3.74)

When the kinematic condition is applied to a 1D problem, the boundary is the

edge of pavement and the approximation gives a maximum depth as just described. A 2D

problem has boundaries at both the edge of pavement and the ends of the domain, where

the road continues beyond the modeled area. The kinematic boundary condition can also

be applied at the end of the domain, but the boundary values—having neglected the depth

gradient in Darcy’s law—will be inconsistent with the domain interior. This

inconsistency results in a boundary effect. The model domain should be expanded so that

this effect does not influence the area of interest. One approach is to ensure the drainage

path for a water particle starting at the boundary exits the model domain rather than

entering the area of interest, thereby “washing out” the error. The required distance is

found from the longitudinal and cross slopes and the width.

60

Effect on Steady State Solution

The steady state solution for 1D drainage in PFC is given by an ODE and an

initial point along the solution curve is needed to integrate the equation (Charbeneau and

Barrett, 2008). The kinematic approximation described above is one approach to

specifying such an initial point based on the problem parameters. Figure 16 shows that

the shape of the solution curve, especially near the boundary, depends upon the value that

was specified at the boundary (hL). The solution curves show that the kinematic

approximation does not allow the solution to ‘draw down’ near the boundary as is usual

near a seepage face (Simpson et al., 2003). This draw down is required because the

phreatic surface must be tangent to the seepage face (Bear, 1972). This draw-down

decreases the saturated thickness but increases the hydraulic gradient. In contrast, the

approximation over-estimates the saturated thickness and reduces the hydraulic gradient.

Which one of the curves is closest to the true physical solution is unknown, but a range of

possible solutions has now been established.

In Figure 16, the solutions collapse to a single curve away from the downstream

boundary, but this behavior depends on the problem parameters. Doubling the rainfall

rate for example pushes the point at which the curves collapse to the left, provided that

the thickness of the PFC layer is sufficient to contain the additional flow (Figure 17). If

the PFC thickness is 5cm, then doubling the rainfall rate to 1cm/hr causes sheet flow and

the boundary condition for the region of PFC flow is given by the pavement thickness

(Eck et al., 2010). In general, a finite pavement thickness means that the uncertainty in

the boundary value matters most for low rainfall rates. Together, these examples

illustrate that:

• the predicted value of the saturated thickness depends on the boundary value;

• the boundary value is unknown only for low rainfall rates; and

• the solution is less sensitive to the boundary value in this case.

61

Figure 16: Steady state drainage profile for different boundary values; all cases used

K=1cm/s, S0=3%; r=0.5cm/hr

Figure 17: Steady state drainage profile for different boundary values; all cases used

K=1cm/s, S0=3%; r=1cm/hr

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

E
le

v
at

io
n

 (
cm

)

Distance Along Drainage Path (cm)

hL = 4.6 (Kinematic)

hL = 2

hL = 1

hL = 0.1

Impermeable Base

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

E
le

va
ti

o
n

 (
c
m

)

Distance Along Drainage Path (cm)

hL = 9.3 (Kinematic)

hL= 5

hL = 1

hL = 0.1

Impermeable Base

62

Kinematic Boundary for Curved Roadways

The algorithm outlined in Equations (3.72) and (3.73) was developed under the

assumption of a straight roadway section and not a curved one. An order of magnitude

approach is used to assess the applicability of the linear algorithm for curved sections.

The continuity equation for radial flow is

�� :�:+ R 1& ::& X&$ØO J ' (3.75)

where R is the radial coordinate and ' is the rainfall rate. Darcy’s law for radial flow is

$Ø J S�� :�:& R ��(G (3.76)

 Neglecting depth gradients in Darcy’s law and using the continuity equation for one-

dimensional radial flow gives a PDE in �X&, +O.
�� :�:+ R ��(G& R �(G :�:& J ' (3.77)

Using the method of characteristics approach described above gives the formulation: �+�� J �&�(G J ��' S ��(G& (3.78)

The order of magnitude for the quantities in Equation (3.78) can be estimated as

r = 5cm/hr ~ 10
-3

cm/s; h~1cm; So~0.03; R=10
4
cm. Using these values,

KhS0/R = 3(10)
6
 cm/s, which is much less than the rainfall rate of 10

-3
cm/s. This result

suggests that the linear domain kinematic approximation should be adequate for

calculating boundary conditions to curved domains of interest.

63

3.7.4 Kinematic Boundary Conditions for Sheet Flow

Kinematic boundary conditions for sheet flow were derived by Jeong (2008). The

resulting algorithm is repeated here for completeness. The distance up the drainage path

is estimated in terms of the time-step and the boundary depth, �K, at time level �.
ΔÔ J l()� ' aX�K� R 'Δ+ONY S X�K�ONYc (3.79)

The solution at the upstream point is obtained using bi-linear interpolation, and

the value of the boundary depth at time level � R 1 is

�K�fT J aX�T�ONY R X�K� R 'Δ+ONY S X�K�ONYc).Ù
 (3.80)

3.7.5 Combined Kinematic Boundary Condition for PFC and Sheet flow

The algorithms for kinematic boundary conditions for sheet flow and PFC flow

have been developed separately, but need to be combined so that the appropriate

condition is used within the model. The combined algorithm must select between the

PFC and sheet flow equations, handle the case of zero rainfall, and provide for a

transition between PFC and sheet flow. This is accomplished through nested if-then

statements as depicted in Figure 18.

When the flow depth is less than the pavement thickness, the PFC algorithm is

used. The distance up the drainage slope is computed from Equation (3.72) and the

solution at this location is estimated using bi-linear interpolation. Then the boundary

value for the next time-step is computed from Equation (3.73). No modification to the

algorithm is required for zero rainfall. The computed boundary value is compared to the

maximum depth of Equation (3.74).

64

Figure 18: Combined algorithm for kinematic boundary condition

Implementation of the sheet flow algorithm is more complex due to the

possibilities of zero rainfall and transition back to PFC flow. If the rainfall rate is zero,

the distance to interpolate up the drainage path becomes arbitrary; the PFC distance is

used in case a transition back to PFC flow is indicated. If the rainfall rate is greater than

zero the interpolation distance is computed according to Equation (3.79) and the solution

is estimated using bi-linear interpolation. If the interpolated value suggests PFC flow

then the boundary value is estimated using the PFC equations, otherwise the sheet flow

equation is used.

65

3.8 Solution Procedure and Tolerances

The numerical formulation and boundary conditions described in this chapter

have been implemented in a Fortran computer code. The general solution procedure can

is outlined as follows and depicted in flow chart form (Figure 19):

• Read model parameters, geometry information and rainfall from input files

• Create a curvilinear grid for the domain. The grid includes the coordinates,

length, width and area of each grid cell.

• Assign elevations to the center of each grid cell.

• Loop through the time steps, recording details of the solution at each step

• Within a time-step, iteratively compute the depths using the fixed point

method.

• Within each iteration, solve the linearized system of equations using the

Gauss-Seidel method.

A vector of errors or residuals is calculated at each iteration in order to determine

when the non-linear iteration loop has converged. Absolute errors are computed when

the solution is near zero and relative errors are computed when the solution is away from

zero. Two norms of the error vector are checked; the �Ú norm is simply the largest value

in the error vector, and the �K norm is the square root of the sum of the squared errors

(Kreyzig, 1999). Both the �K norm and the �Ú norm must be less than the tolerance for

the loop to converge. A typical tolerance value of 10]Y was used for simulations.

66

Figure 19: Flow chart of solution process

3.9 Convergence and the Transition to Sheet Flow

Trial runs during the model development process revealed numerical difficulties

regarding the transition from PFC flow to sheet flow. During the time step that a grid

cell transitioned from PFC flow to sheet flow the solution frequently oscillated between

the PFC and sheet flow states, never reaching a solution. Physically, this transition

represents a change in the character of the flow. Mathematically, there is a change in the

governing equations. Given these changes, some oscillatory behavior was not wholly

unexpected.

Several schemes were tried in order to overcome the numerical difficulties but the

most successful approach was using an under-relaxation factor. This approach is based

on the method of successive over relaxation for solving linear systems (Ferziger and

Peric, 2002). The idea in successive over relaxation is to reduce the number of iterations

by amplifying the change at each step using an over-relaxation factor. The under-

relaxation approach aims to increase the number of iterations by making smaller changes

67

at each step. In this way, only part of a large oscillation is taken, thus reducing the

overshoot of the actual solution.

Under relaxation was found to reduce the errors by an order of magnitude, but

even still a looser iterative tolerance was needed for convergence. During a simulation,

the model detects a transition time-step, loosens the tolerance by a factor of 10 (changes

the tolerance from 10
-3

 to 10
-2

) and applies under-relaxation. When no grid cells are

switching between PFC and sheet flow no relaxation factor is applied and the usual

tolerance is imposed. An example of the relaxation factor’s effect is given at the end of

Section 5.3.

68

CHAPTER 4: MODEL VALIDATION

This chapter presents modeling results from PERFCODE for two simplified

geometries: a linear section or straight road and a converging section or curved road. The

purpose of the chapter is to demonstrate that solutions obtained by simulating the domain

through time agree with steady state solutions, which were obtained independently of the

model. Three simulations are presented for each geometric configuration: (1) PFC flow

only, (2) sheet flow only, and (3) combined PFC and sheet flow. The unsteady

simulations provide runoff hydrographs, which are also discussed.

4.1 Linear Section (Straight Roadway)

The linear section selected for testing is 10m wide and 20m long with a 3% cross

slope. Other parameters common to all simulations were a hydraulic conductivity,

porosity and rainfall rate (Table 2). Holding these parameters constant, the PFC

thickness was set to 15cm, 0cm, and 5cm to simulate PFC flow only, sheet flow only, and

combined PFC/sheet flow.

Table 2: Model parameters for simulating a linear section

Parameter Unit Value

Roadway width m 10

Domain length m 20

Cross Slope % 3

Hydraulic Conductivity cm/s 1

Porosity -- 0.2

Rainfall Rate cm/hr 1

A plan view of the model domain for the linear section (Figure 20) shows

elevation contours, locations of grid cell centers and boundary conditions imposed on the

model. Because the objective of these simulations was a comparison with analytical

solutions, the domain and boundary conditions were chosen to make the flow one-

dimensional.

69

Figure 20: Linear domain showing elevation contours, grid cell centers, and boundary

conditions

4.1.1 PFC Flow Only

This first simulation sets the PFC thickness at 15cm so that the steady state

drainage profile will stay within the pavement. The model starts from an initial condition

of zero depth and continues until steady state is reached. The model converged to a

steady state solution after 20,480 seconds of rainfall. In computing the steady state

solution, the initial point for integrating the ODE was found from

70

�Û J '1�Ô J 1 ÜÝ�' 9 1000ÜÝ1 ÜÝÔ 9 3% J 9.26ÜÝ (4.1)

This value corresponds to the kinematic boundary condition used in the model—the

hydraulic gradient is only due to the slope of the pavement.

Modeled values of the saturated thickness along the drainage path agreed closely

with the analytical solution (Figure 21). In the figure, the normalized width variable ; is

plotted on the abscissa. For the linear section a value of ; J 1 corresponds to the no flow

boundary at the edge of pavement and a value of ; J 0 corresponds to the kinematic

drainage boundary at the edge of pavement. The scale on the figure has been plotted in

reverse order so that drainage occurs from left to right.

Figure 21: Depth profile for linear section with drainage by PFC flow only

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

00.20.40.60.81

S
a

tu
ra

te
d

 T
h

ic
k

n
e

ss
 (

m
)

ηηηη

Analytical

PERFCODE

71

4.1.2 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurs as

sheet flow. The sheet flow simulation converged to a steady state solution after 252

seconds of rainfall. The flow thickness along the drainage path compares well with the

analytical solution from the kinematic model (Figure 22). Sheet flow reaches steady state

much faster PFC flow. The difference in time scales for transport via sheet flow versus

PFC flow foreshadows some challenges of modeling the coupled flow process.

Figure 22: Depth profile for linear section with drainage by sheet flow only

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

00.20.40.60.81

T
h

ic
k

n
e

ss
 (

m
)

ηηηη

Analytical

PERFCODE

72

4.1.3 Combined Flow

For the combined flow simulation, the PFC thickness was set to 5cm. Steady

state was reached after 5,128 seconds of rainfall. Good agreement was again obtained

between the numerical and analytical solutions.

Figure 23: Depth profile for linear section with drainage by PFC and sheet flow

4.1.4 Runoff hydrographs

For each simulation the discharge from the outflow boundary was tracked through

time. These rising hydrographs are plotted on a logarithmic scale on account of the wide

range of times required to reach steady state (Figure 24). Several points of interest are

noted on the hydrographs.

• The presence of a PFC layer delays the initial discharge from the roadway,

in this case by about 1 minute from when rainfall begins.

• PFC delays the peak flow by nearly 10,000 seconds—much longer than

most actual storms.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

00.20.40.60.81

T
h

ic
k

n
e

ss
 (

m
)

ηηηη

Analytical

PERFCODE

73

• For the combined case, the transition to sheet flow is evidenced as a sharp

increase in the slope of the hydrograph.

• For the PFC flow only, the break in slope corresponds to the time when

the outflow boundary reaches the maximum depth allowed by the

kinematic condition.

Figure 24: Runoff hydrographs from a linear section

4.2 Converging Section (Curved Roadway)

The next geometry investigated in the validation process was a fully super-

elevated roadway section with a constant radius of curvature. For the purposes of this

discussion such a geometry is called a converging section. This roadway geometry is of

interest for evaluating the model’s ability to simulate flow on a curved road. Keeping the

cross-slope and radius of curvature constant makes the problem one-dimensional.

The converging section selected for testing is similar to the linear section, except

that the radius of curvature at the roadway center is 60m. Simulation parameters are

summarized in Table 3. A plan view of the model domain for the converging section

(Figure 20) shows elevation contours, locations of grid cell centers and boundary

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000

R
u

n
o

ff
 F

lo
w

 R
a

te
 (

L/
s)

Time (s)

Theoretical

Steady

Discharge

Sheet Flow

Only

Combined

Flow

PFC Flow

Only

74

conditions imposed on the model. Holding these parameters constant, the PFC thickness

was set to 15cm, 0cm, and 5cm to simulate PFC flow only, sheet flow only, and

combined PFC/sheet flow.

Table 3: Model parameters for simulating a converging section

Parameter Unit Value

Roadway width m 10

Domain length m 20

Cross Slope % 3

Radius of curvature at roadway center m 60

Hydraulic Conductivity cm/s 1

Porosity -- 0.2

Rainfall Rate cm/hr 1

Figure 25: Converging domain showing elevation contours,

grid cell centers, and boundary conditions

75

4.2.1 Derivation of ODE for PFC Flow on Converging Sections

The steady state solution for PFC flow on a linear domain is given by Charbeneau

and Barrett (2008). Steady-state solutions for sheet flow on linear and converging

sections are given by Eck et al. (2010), and also Jeong et al. (2010). What is missing is

the solution for PFC flow on a converging section, which is the topic of the present

subsection.

Consider a section of roadway having a constant radius of curvature and constant

cross-slope as shown in Figure 26. Geometrically, this shape is equivalent to an inverted

cone. A cross section view along the radius is shown in Figure 27. It is important to

realize the coordinate system is arranged so that flow moves from a large radial position

to a smaller radial position as it moves down the slope.

At steady state, the volumetric flow-rate into an area equals the flow-rate out of

that area. For a converging section, the discharge is radial. The flow rate is the rainfall

rate times the contributing area. The area is found by subtracting the area of the sector at

radius R from the area of the sector at Rmax.

Figure 26: Schematic of converging section

R

Rmax

θ

A(R)

76

Figure 27: Cross section view

For the discharge through station R, the area is:

�X&O J @2á á&Ý\1K – @2á á&K J @2 9 X&Ä¦nK S &KO (4.2)

where @ is the included angle. The flow rate is given by:

#X&O J ' 9 �X&O J '@2 X&Ä¦nK S &KO (4.3)

The unit flux past radius R is the flow rate divided by the arc length at R:

,X&O J #X&O@& J '2& X&Ä¦nK S &KO (4.4)

Because flow through a PFC is the problem of interest, Darcy’s law is the

appropriate form of the momentum equation:

, J � 9 � 9 ���& (4.5)

The hydraulic gradient decomposes as: ���& J ���& R �4�& J ���& R Ô (4.6)

where Ô is the slope, which due to the choice of coordinate system is positive for a down-

slope flux.

In order to agree with this convention, a positive hydraulic gradient in Darcy’s

law should cause a down-slope flux. This requirement is satisfied because the coordinate

z

h
PFC Layer

H

b

Rmax
RsheetR R=0

77

system for this problem is reversed from our usual system—the origin is at the down-hill

end of the domain rather than the uphill end.

Combining Equations (4.4), (4.5) and (4.6) gives the ODE for PFC flow on a

converging section:

�� a���& R Ôc J '2& X&Ä¦nK S &KO

or ���& J SÔ R '2�� r&Ä¦nK S &K& s

(4.7)

This ODE is first-order, but non-linear, and an analytical solution is not known at

this time. The same general features of the ODE for the linear section (see Charbeneau

and Barrett, 2008) also apply to the ODE for the converging section:

1. The location of maximum radius, Rmax, is automatically a no-flow

boundary because for & J &âãä ,
ÕtÕØ J SÔ, and from (4.6) this implies

Õ�ÕØ J 0.
2. The thickness initially increases as the radius decreases because Ô å 0.
3. At the location of maximum depth

ÕtÕØ J 0 and the variables are related by

�âãä J '�Ô &âãäK S &K2& (4.8)

The ODE of (4.7) applies on a domain where flow is completely contained within

the PFC. To integrate the ODE, an initial point is needed somewhere on the solution

curve. The appropriate initial point depends on problem conditions. When flow is

completely contained in the PFC the saturated thickness at the edge of the domain can be

specified; in the case of combined PFC and sheet flow the appropriate point is the PFC

thickness taken at the location where sheet flow begins. This location is found by

equating (4.4) and (4.5) and setting the hydraulic gradient to the pavement slope. Note

78

that a hydraulic gradient equal to the pavement slope is a requirement for sheet flow to

occur.

' 9 r&Ä¦nK S &K2& s J � 9 � 9 Ô (4.9)

Applying the quadratic formula gives the location where sheet flow begins:

&�t��y J 12 aS 2��Ô' c R 12 �a2��Ô' cK R 4&Ä¦nK

or

&�t��y J aS ��Ô' c R �a��Ô' cK R &Ä¦nK

(4.10)

As an analytical solution is not known at this time, a numerical solution was

developed using a fourth order Runge-Kutta scheme (Figure 28). Comparisons between

linear and converging sections are discussed in Section 4.3 of this dissertation.

Figure 28: Drainage depth profiles for a converging section with maximum radius of

55m, hydraulic conductivity 1cm/s, slope of 2%, initial depth of 1cm at R=5000cm and

range of rainfall rates.

0

2

4

6

8

10

12

14

500051005200530054005500

E
le

v
a

ti
o

n
 (

cm
)

Radial Position (cm)

2 cm/hr

1 cm/hr

0.5 cm/hr

Impermeable Base

79

4.2.2 PFC Flow Only

The first simulation of the converging section set the PFC thickness to 15cm so

that all of the drainage would be contained in the pavement. The model reached a steady

state solution after 21,760 seconds of rainfall and showed good agreement with the steady

state ODE (Figure 29). The linear kinematic boundary condition of Equation (4.1) was

applied to the converging section. An order of magnitude analysis suggests that this

approximation is appropriate (see Section 3.7.3).

Figure 29: Depth profile for converging section with drainage by PFC flow only

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

00.20.40.60.81

Fl
o

w
 T

h
ic

k
n

e
ss

 (
m

)

ηηηη

Steady State ODE

PERFCODE

80

4.2.3 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurred as

sheet flow. Steady state was reached in 196 seconds and had good agreement with the

analytical solution (Figure 30).

Figure 30: Depth profile a converging section with sheet flow only

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

00.20.40.60.81

Fl
o

w
 T

h
ic

k
n

e
ss

 (
m

)

ηηηη

Steady State ODE

PERFCODE

81

4.2.4 Combined Flow

This simulation set the PFC thickness to 5cm so that drainage occurred both

within the pavement and on the surface. The model reached a steady state solution in

5,398 seconds, and showed generally good agreement with the analytical solution (Figure

31).

Figure 31: Depth profile for a converging section with combined PFC and sheet flow

0.00

0.01

0.02

0.03

0.04

0.05

0.06

00.20.40.60.81

Fl
o

w
 T

h
ic

k
n

e
ss

 (
m

)

ηηηη

Steady State ODE

PERFCODE

82

4.2.5 Runoff Hydrographs

For each simulation the discharge from the outflow boundary was tracked through

time. These rising hydrographs are plotted on a logarithmic scale on account of the wide

range of times required to reach steady state (Figure 24). Hydrographs from the

converging section show the same general trends as the linear section (see page 72). A

comparison of the linear and converging cases is presented in the next section.

Figure 32: Runoff hydrographs for converging section

4.3 Comparison of Linear and Converging Sections

So far, this chapter has considered two extremes of roadway geometry: perfectly

straight and perfectly curved. Most real roads fall into neither category, but these

extreme cases are useful for bounding the range of problems likely to be encountered in

practice.

A converging section has the effect of increasing the flow depth along the

drainage path. This increase occurs because the width available for drainage decreases as

the flow moves toward the center of a curve. How much the depth increases compared

to a linear section depends on the radius of curvature and on the road width.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000

R
u

n
o

ff
 F

lo
w

 R
a

te
 (

L/
s)

Time (s)

Theoretical

Steady

Discharge

Sheet Flow

Only

Combined

Flow

PFC Flow

Only

83

Depth profiles for the combined flow scenarios (10m width, 3% cross slope, 1

cm/hr rainfall, 5cm PFC thickness, 1 cm/s PFC hydraulic conductivity, 60m radius of

curvature at center) are shown in Figure 33. As expected, the flow thickness for the

converging section is slightly higher than the linear section and the difference increases

as the effect of convergence becomes more pronounced moving down the slope. The

difference drops sharply near the transition to sheet flow because the porosity no longer

amplifies the depth. Sheet flow also begins slightly higher on the converging section.

Figure 33: Comparison of exact solutions for steady state flow thickness on linear and

converging sections, other parameters given in Table 2 and Table 3.

The effect of a converging section on flow depth can be determined from the

steady state ODEs, but the influence on the outflow hydrograph requires numerical

simulation. The hydrographs for the combined PFC/Sheet Flow scenarios from Figure

24 and Figure 32 are plotted together in Figure 34 to illustrate the effect of convergence

on the outflow hydrograph. Unlike previous the figures, an arithmetic scale is used

because the relevant time range is smaller. The converging section begins sheet flow

earlier than the linear section by 110 seconds. The figure also shows the evolution of the

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
0

.0
2

0
.0

4

η

T
h

ic
k
n

e
s
s
 (

m
)

0
e

+
0

0
4

e
-0

4
8

e
-0

4

D
if
fe

re
n

c
e

 i
n

 T
h

ic
k
n

e
s
s
 (

m
)

Linear
Converging

Difference

84

depth at the domain boundary. Adding this line to the plot emphasizes that the sharp

increase in the flow rate is associated with the transition to sheet flow.

Figure 34: Hydrograph comparison for linear and converging sections,

PFC thickness was 0.05m

4.4 Stability

A numerical method is considered to be stable if errors introduced into the

solution are not amplified by the method (Ferziger and Peric, 2002). An amplification

factor for a method may be computed by introducing a small error into the solution (as a

Fourier component) at time level � and seeing how the error grows by time level � R 1.

The amplification factor is the ratio of these errors. An amplification factor of less than

unity is required for a method to be stable. This analysis of stability is called the von

Neumann stability analysis. The von Neumann approach applies only to linear

problems; there are no comprehensive methods for assessing stability of non-linear

T
ra

n
s

it
io

n
 to

 S
h

e
e
t F

lo
w

85

problems (Ferziger and Peric, 2002). The non-linear coefficients are frozen here so that

the von Neumann approach may be used.

The model equation for stability this analysis is formulated in terms of the total

head (see Equation (3.49)) rather than the depth for simplicity. With reference to

Equation (3.49), the substitutions ℓ J Δ1; 0 J Δ2; Δ� J Δ1Δ2; ~ J � 9 � R t���l�æ

give a simplified expression of the model equation :�¥,©:+ J ~Δ1K v�¥]T,© S 2�¥,© R �¥fT,©w R ~Δ2K v�¥,©]T S 2�¥,© R �¥,©fTw
R '

(4.11)

In this formulation the diffusion coefficient ~ is assumed to be a constant so the equation

is linear. Applying Crank-Nicolson to the time dimension gives �¥,©�fT S �¥,©�Δ+ J 12 ~Δ1K v�¥]T,©� S 2�¥,©� R �¥fT,©� w
R 12 ~Δ2K v�¥,©]T� S 2�¥,©� R �¥,©fT� w
R 12 ~Δ1K v�¥]T,©�fT S 2�¥,©�fT R �¥fT,©�fT w
R 12 ~Δ2K v�¥,©]T�fT S 2�¥,©�fT R �¥,©fT�fT w R '

(4.12)

The value of the solution at �¥,©� can be expressed as a Fourier component

�¥,©� J ��Eç�¥ènEçé©èo (4.13)

where � is the amplitude at time level �, � J √S1, and ! and $ are the wave numbers in

the 1 and 2 directions and �, � are the indices of the grid cell. The details of the

substitution of (4.13) into (4.12) are shown for the first term on the right side of (4.12). 12 ~Δ1K X��Eç�X¥]TOènEçé©èo S 2��Eç�¥ènEçé©èo R ��Eç�X¥fTOènEçé©èoO (4.14)

Making similar substitutions for the remaining terms and dividing by ��Eç�¥ènEçé©èo

gives

86

1Δ+ r��fT�� S 1s
J 12 ~Δ1K XE]ç�èn S 2 R Eç�ènO
R 12 ~Δ2K XE]çéèê S 2 R EçéèoO
R 12 ~Δ1K r��fT�� E]ç�èn S 2��fT�� R ��fT�� Eç�èns
R R 12 ~Δ2K r��fT�� E]çéèê S 2��fT�� R ��fT�� Eçéèos

(4.15)

Making use of the identity: E]ç�èn R Eç�èn J 2 cosX!ë1O (4.16)

and defining the amplification factor i J ìíîPìí the linearized model equation can be

written as an equation for the amplification factor 1Δ+ Xi S 1O J ~Δ1K XcosX!Δ1O S 1O R ~Δ2K XcosX$Δ2O S 1O
R i a ~Δ1Kc XcosX!Δ1O S 1O R i a ~Δ2Kc XcosX!Δ2O S 1O

(4.17)

Solving this expression for the amplification factor gives

i J 11 R 4 j ~Δ1Kk sinK j!Δ12 k R 4 j ~Δ1Kk sinK j!Δ22 k (4.18)

Equation (4.18) shows that the amplification factor will always be less than unity because

the coefficient D is always positive and sin
2

is also always positive. This stability

analysis has shown that the Crank-Nicolson method is unconditionally stable for a linear

diffusion problem. The actual model equations however are non-linear and so may

exhibit some stability problems.

87

4.5 Model Convergence

A numerical solution is said to converge if the errors in the solution decrease as

the grid is refined. This model was developed using central differencing scheme. Based

on a Taylor series expansion, central differencing schemes can be shown to have a

second-order truncation error (Ferziger & Peric, 2002). This means that the largest term

in the neglected part of the Taylor series expansion contains the grid spacing term raised

to the second power. The observed order of the truncation error for a model can be

obtained by comparing model runs for different grid sizes.

The model domain selected for the convergence study is the same domain studied

in Section 4.2.4—10m width, 3% cross slope, 1 cm/hr rainfall, 5cm PFC thickness, 1

cm/s PFC hydraulic conductivity, 60m radius of curvature at the roadway centerline.

Double precision variables were used for the convergence study to assure that differences

in the solution at the various grid sizes were due to truncating the Taylor series

approximations for derivatives and not due to floating point errors. Even with double

precision variables, the solutions using a 10cm grid was indistinguishable from the

solution using a 5cm grid. A plot of the solution for various grid sizes shows that the

model converges to the same solution independent of the grid size (Figure 35).

For the purposes of this convergence study, the model solution for a nominal grid

spacing of 5cm was used as the exact solution. The difference between the model

solution and the exact (5cm) solution, or the residual, was computed for each point. The

portion of the domain in PFC flow had higher residuals than the sheet flow part of the

domain (Figure 36). That the sheet flow and PFC flow parts of the domain would have

different behaviors is not completely unexpected because the governing equations differ.

What should be consistent though, is the rate at which the errors change with grid size.

The observed convergence rate of the model was investigated by computing the

residual with respect to the 5cm grid at several locations along a cross section in the

center of the domain (at different points along the cross-section for the longitudinal

station in the middle of the domain). The grid refinement study (Figure 37) shows that

the model gives second order behavior as the grid is refined.

88

Figure 35: Steady state depth profile for various grid sizes

Figure 36: Residual with respect to 5cm grid by location,

 all residuals for 10cm grid were zero

1.0 0.8 0.6 0.4 0.2 0.0

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

η

D
e

p
th

 a
b

o
v
e

 I
m

p
e

rv
io

u
s
 L

a
y
e

r
(m

)

5cm
10cm

20cm
40cm
80cm
160cm

320cm

1.0 0.8 0.6 0.4 0.2 0.0

1
e

-0
9

1
e

-0
7

1
e

-0
5

1
e

-0
3

η

M
o

d
u

lu
s
 o

f
R

e
s
id

u
a

l
(m

)

10cm
20cm
40cm

80cm
160cm
320cm

89

Figure 37: Grid refinement study

20 50 100 200

1
e

-0
9

1
e

-0
7

1
e

-0
5

1
e

-0
3

Grid Spacing (cm)

M
o

d
u

lu
s
 o

f
R

e
s
id

u
a

l
(m

)

η = 0.2

η = 0.4
η = 0.6
η = 0.8

First Order
Second Order

90

CHAPTER 5: COMPARISON WITH FIELD DATA

This chapter compares model results with field data from a monitoring site

constructed on Loop 360, near Austin, Texas. The variable of interest remains the water

depth on the highway, but measurements of this quantity are difficult to make. Indeed,

one motivation for developing a model is to estimate quantities that are difficult to

measure. What has been measured is the rainfall depth and runoff hydrograph at the

monitoring site. The measured rainfall is taken as input and the variation of water depth

through the storm is computed along with the runoff hydrograph. Reasonable agreement

between the modeled and measured hydrographs lends credibility to the associated depth

predictions.

5.1 Construction of Field Monitoring Site

The monitoring site, located on southbound Loop 360 near Austin, Texas (Figure

38), was initially established as a monitoring site for stormwater runoff in 2004. Later

that year, the highway was repaved with PFC. Lower concentrations of total suspended

solids and total heavy metals were observed in the runoff, which generated interest in

additional research.

In the autumn of 2006 equipment for automatic sample collection was installed at

the Loop 360 monitoring site. The field site was designed to measure the runoff

hydrograph and to collect water quality samples. A drainage system was constructed

using 4-inch PVC pipe to collect runoff from an 18m (60 ft) length of roadway and direct

it to the sampler. A 6-inch H-flume was used to measure the flow rate from the drainage

pipe. An ISCO 4230 bubbler flow meter measured the water depth in the H-flume and

calculated the flow rate. An ISCO 3700 portable sampler used the flow rate to collect

flow-weighted water samples. An ISCO 674 tipping bucket rain gage recorded rainfall.

Both rainfall and runoff were recorded in five-minute intervals, rainfall as the total depth

and runoff as the average flow rate. Refer to Stanard (2008) for additional details on the

construction of the monitoring site and programming of the equipment.

91

Figure 38: Aerial map of Loop 360 monitoring site (Google 2010)

Figure 39: Photograph of H-flume and drainage pipe at Loop 360 monitoring site

Monitoring

Site

92

5.2 Model Inputs and Parameters

At the location of the monitoring site, Loop 360 is a four-lane divided highway.

The monitoring site is situated on the right-hand shoulder of the south-bound traffic

lanes. The traffic lanes (24ft) and right hand shoulder (10ft) slope to the driver’s right-

hand side at cross-slopes of 2% and 4%, respectively. The left shoulder (6ft) drains to the

left at a cross-slope of 4%. The entire section has a longitudinal slope of 2.3%.

The roadway geometry for Loop 360 was used to develop input files for the

model. The model domain was extended beyond the 60ft length monitored so that errors

in the kinematic condition on the east and west boundaries would not influence the

solution in the domain of interest. Kinematic boundary conditions were used on all four

sides of the domain. In Figure 40, the middle third of the domain corresponds to the

location of the drainage pipe at the monitoring site.

The storm event of July 20, 2007 was selected for simulation because it was a

large enough to cause substantial sheet flow. The hydraulic conductivity and porosity for

this simulation correspond to values measured by Klenzendorf (2010) for a nearby

location on the same highway. Values of Manning’s n have not been measured for PFC,

but a value of 0.015 s / m
1/3

appears appropriate considering the analysis of Charbeneau et

al. (2009). Table 4 summarizes the model parameters.

Table 4: Model Parameters for Loop 360 Monitoring Site

Parameter Unit Value

Roadway width m 12.2

Domain length m 36.6

Cross Slope % various

Hydraulic Conductivity cm/s 3

PFC Thickness cm 5

Porosity -- 0.2

Manning’s n s/m
1/3

0.015

Rainfall Rate cm/hr various

93

F
ig

u
re

 4
0
:

S
im

u
la

ti
o
n
 d

o
m

ai
n
 f

o
r

L
o
o
p

 3
6
0
 m

o
n

it
o
ri

n
g
 s

it
e

sh
o
w

in
g
 e

le
v
at

io
n
 c

o
n
to

u
rs

 (
m

)
an

d

lo
ca

ti
o
n
 o

f
g
ri

d
 c

el
l

ce
n

te
rs

6
0

7
0

8
0

9
0

1
0

0
1

1
0

3035404550

D
is

ta
n
c
e

 (
m

)

Distance (m)

E
le

va
ti
o

n
 C

o
n
to

u
rs

 a
n
d

 C
V

 C
e

n
te

rs

 9

 9

 9
.2

 9
.4

 9
.6

 9

.8

 1
0

 10.2

L
e
ft

 S
h
o

u
ld

e
r

T
ra

ff
ic

 L
a
n
e
s

D
o

m
a
in

 o
f

In
te

re
s
t

R
ig

h
t
S

h
o

u
ld

e
r

94

The storm of July 20, 2007 occurred during an unusually wet summer, and was a

particularly large storm. A total of 48mm (1.9 in) of rainfall were recorded at the

monitoring site over a 5.6 hour period. The peak rainfall depths on a five, fifteen and

sixty minute basis were 6.6mm 18mm, and 39mm (0.26in, 0.71in, 1.56in), respectively.

On a sixty minute basis, the storm corresponded to a return period of about 2 years

(Chow et al., 1988 pg. 450) The highest five-minute rainfall intensity was 80mm/hr.

The field measurements provided the time at the end of five-minute periods for

which the rainfall total was reported. This information was prepared for use in the model

by computing the rainfall intensity (mm/hr or m/s) and inserting points at the beginning

of each five-minute interval (Figure 41). The purpose of this approach was to facilitate

use of a linear interpolation routine for selecting the proper rainfall rate for any time

during the model simulation.

Figure 41: Measured rainfall and model input function for

Loop 360 monitoring site on July 20, 2007

0 5000 10000 15000 20000

0
.0

e
+

0
0

5
.0

e
-0

6
1
.0

e
-0

5
1

.5
e
-0

5
2
.0

e
-0

5

Time(s)

F
iv

e
 M

in
u

te
 R

a
in

fa
ll
 I
n

te
n

s
it
y
 (

m
/s

)

Rainfall Input Function

Field Measurement

95

5.3 Results and Discussion for event of July 20, 2007

The rainfall function and other parameters were used as inputs for a simulation

over 20,000 seconds. During the simulation, the runoff through the domain’s southern

boundary and was computed for each time step. The overall maximum depth and the

maximum depth in the middle of the domain were also tracked throughout the simulation.

This distinction in the depths was necessary due to oscillations near the boundary.

A model time step of 5s was used when the all of the drainage was contained

within the pavement, but a step of 0.1s was needed during sheet flow for the model to

remain stable. In order to make a fair comparison with the field measurements, the

calculated flow rates were averaged over five minute intervals. A weighted average flow

rate was used so that a five-minute interval containing two sizes of time step has the

proper flow rate. These averaged flow rates showed generally good agreement with the

field measurements (Figure 42). The model predicted peak flows of the proper time and

magnitude, and the shape of the hydrograph generally matches the field observations.

The model predicted a peak flow 3.7 L/s, which is 97% of the measured value of

3.8 L/s. The difference between the modeled and measured flow rates (residual) had a

mean -0.029L/s, median 0.021 L/s, standard deviation 0.24 L/s and standard error of the

mean 0.029 L/s. The largest residuals were associated with high flow rates. This

comparison suggests that the model parameters were consistent with field conditions and

lends credibility to the associated depth predictions.

A plot of the model solution for maximum depth conditions shows sheet flow

occurring in both traffic lanes and on the right hand shoulder (Figure 43). Within the

domain of interest, the depth contours are parallel to the roadway centerline. This result

is consistent with a straight road and constant slopes. Some oscillations in the depth

contours appear outside of the domain of interest, especially near the western boundary.

It is believed that these oscillations are related to using the kinematic outflow boundary

condition from the east end of the domain on the inflow boundary at the west end.

During this simulation, maximum depth in the domain of interest was 0.05142m

above the impervious layer, which represents a sheet flow depth of 1.4mm. This

96

maximum occurred near the edge of the right traffic lane (Figure 44). The exact location

was 3.2m from the southern edge of the domain; since the shoulder width is 3.05m, the

maximum depth occurred 15cm from the shoulder. This peak occurred 1 hour after

rainfall began (3599.9s) and during the peak rainfall intensity of 80 mm/hr.

The model results show that sheet flow begins 1.6m due south of the grade break

for the left hand shoulder (Figure 44). Under most conditions, this break in slope acts as

a no-flow boundary within the domain; the no flow condition is assumed here for

purposes of comparison with the analytical model even though some flow does occur.

At the peak rainfall rate for this storm, the analytical model (see Charbeneau & Barrett

2008 and Eck et al. 2010) predicts sheet flow at 2m down the drainage slope or 1.4m due

south of the grade break (2% cross slope, 2.3% longitudinal slope; 3.048% drainage

slope). This seems a reasonable match, considering that the numerical model is not at

steady state, and that boundary condition is approximate.

Figure 42: Comparison of modeled and measured hydrographs for storm of July 20, 2007

0 5000 10000 15000 20000

0
1

2
3

4
5

Elapsed Time (s)

F
lo

w
 R

a
te

 (
L

/s
)

2
0

1
5

1
0

5
0

F
iv

e
 M

in
u
te

 R
a

in
fa

ll
 (

m
m

)

Rain
Field Measurement
PERFCODE

97

F
ig

u
re

 4
3
:

W
at

er
 d

ep
th

 a
b
o

v
e

im
p
er

v
io

u
s

la
y
er

 (
m

)
fo

r
L

o
o
p
 3

6
0
 d

u
ri

n
g
 m

ax
im

u
m

 d
ep

th
 c

o
n
d
it

io
n
s

o
n
 J

u
ly

 2
0
,

2
0

0
7
.

 T
h
e

P
F

C
 t

h
ic

k
n
es

s
w

as
 0

.0
5

m
;

co
n
to

u
rs

 c
o
rr

es
p
o
n
d
 t

o
 s

h
ee

t
fl

o
w

 c
o

n
d
it

io
n
s.

98

F
ig

u
re

 4
4
:

P
ro

fi
le

 t
h
ro

u
g
h
 m

ax
im

u
m

 d
ep

th
 s

ec
ti

o
n
;

th
e

h
o
ri

zo
n
ta

l
co

o
rd

in
at

e
is

 9
4
.4

2
m

9
.2

0

9
.2

5

9
.3

0

9
.3

5

9
.4

0

9
.4

5

9
.5

0

9
.5

5

9
.6

0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

Elevation Above Datum (m)

V
e
rt

ic
a
l

C
o

o
rd

in
a
te

 (
Y

-d
ir

e
c
ti

o
n

)
(m

)

P
F

C
 S

u
rf

a
c
e

W
a
te

r
S

u
rf

a
c
e

Im
p

e
rm

b
e
a
b

le
 B

a
s
e

Onset of Sheet Flow

Maximum Depth

99

In addition to examining water depths during an actual rainstorm, this example

also provides an opportunity to illustrate the effect of using an under-relaxation factor in

the non-linear iteration loop. Figure 45 shows how the solution at a grid cell just on the

right shoulder evolves during a time step shortly after peak rainfall has started (time

2821.9s). At the previous time-step the traffic lanes have sheet flow and the shoulder is

in PFC flow. The model is trying to determine if the shoulder is also now in sheet flow

or if it remains in PFC flow. Without the under-relaxation, the solution bounces between

inside and outside of the PFC surface, the grid cell shown has the largest error, and the

solution does not converge for the time step. This ‘hunting’ behavior does not occur with

the relaxation factor and the model concludes that the depth at this location remains in the

PFC for this time-step.

Figure 45: Solution history for an interior point (grid cell 2138) with and without under-

relaxing the non-linear iteration

0.04990

0.04995

0.05000

0.05005

0.05010

0.05015

0.05020

0.05025

0 5 10 15

D
e
p

th
 a

b
o

v
e
 i

m
p

e
rv

io
u

s
 l

a
y
e
r

(m
)

Iteration Number

No Relaxation

Under relaxed

PFC Surface

100

5.4 Loop 360 with and without PFC

One opportunity afforded by the simulation model is to compare results with and

without PFC for the same storm event. Such an analysis gives direct insight about how

PFC changes the drainage hydraulics as compared to conventional pavement and is the

topic of this section. The same roadway geometry and simulation parameters used for the

comparison with field measurements were used in this simulation, except that the

thickness of the PFC layer was set to zero so that all drainage occurred as sheet flow.

The simulated hydrograph for Loop 360 without PFC is shown in Figure 46 along

with the simulated hydrograph corresponding with a 5cm PFC layer. Both hydrographs

have been time averaged over the reporting period for rainfall measurements (5 minutes).

The absence of a PFC layer appears to make the hydrograph rise and fall faster,

especially later in the storm (10,000s) when flow would be contained within the PFC.

The PFC layer reduced the magnitude of this small peak by about 70% and delayed it

five minutes, or one averaging period.

 A PFC layer might be expected to delay the runoff hydrograph due to storage

within the pavement, but that effect is not observed in this case. The high rainfall

intensity quickly overwhelmed the capacity of the PFC layer, causing most of the

drainage to occur as sheet flow so the hydrographs exhibit a similar shape.

The presence of a PFC layer reduced the sheet flow thickness during this event

(Figure 47). The PFC layer prevented sheet flow entirely for the left part of the left lane

and also on the left shoulder. In regions where sheet flow occurred over PFC, the PFC

layer reduced the depth by an average of 0.35mm. Some small oscillations are noted in

the sheet flow profile near the right shoulder and were associated with sharp change in

cross slope.

In addition to reducing the magnitude of sheet flow on the highway, PFC also

reduced the duration that sheet flow was present. Simulation results showed that sheet

flow depths in excess of 0.1mm were present for about 1600 seconds when the PFC layer

was present and for 8580 seconds without the PFC layer.

101

Figure 46: Comparison of modeled hydrographs with and without a PFC layer for Loop

360 on July 20, 2007. Plotted flow rates are five minute averages.

102

F
ig

u
re

 4
7
:

C
o
m

p
ar

is
o
n
 o

f
sh

ee
t

fl
o

w
 d

ep
th

s
w

it
h
 a

n
d

 w
it

h
o
u
t

a
P

F
C

 l
ay

er
 h

o
ri

zo
n
ta

l

co
o
rd

in
at

e
o
f

9
4
.4

2
m

 a
t

L
o

o
p
 3

6
0
 o

n
 J

u
ly

 2
0
,

2
0
0
7

0

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
0
6

0
.0

0
0
8

0
.0

0
1

0
.0

0
1
2

0
.0

0
1
4

0
.0

0
1
6

0
.0

0
1
8

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

Sheet Flow Thickness (m)

V
e
rt

ic
a
l

C
o

o
rd

in
a
te

 (
Y

-D
ir

e
c
ti

o
n

)
(m

)

N
o

 P
F

C
 L

a
y
e
r

5
c
m

 P
F

C
 L

a
y
e
r

103

5.5 Storm event of June 3, 2007

A comparison between model results and field measurements was made for a

second storm event to confirm that the results obtained for July 20, 2007 were not

coincidental. The event of June 3, 2007 was selected for analysis because the total

rainfall depth was around 1-inch and because 90% of the rainfall was measured as runoff,

a reasonable mass balance for field sampling. The measured rainfall data was prepared

for simulation as outlined previously; all other simulation parameters remained the same.

The modeled hydrograph again shows reasonable agreement with the measured

one (Figure 48). The model predicted a peak discharge of 2.6 L/s, which is 76% of the

measured peak discharge of 3.4 L/s. Statistics of the residuals (the differences between

modeled and measured values) are reported in Table 5. Compared to the July 20 event,

the peak discharge was not modeled as well, but the statistics of the residuals were

comparable between the events, suggesting that the model performed consistently in both

cases.

A contour plot of the model domain during maximum depth conditions shows that

sheet flow occurred over most of the roadway and that sheet flow depths were on the

order of 1mm (Figure 49). The onset of sheet flow occurred 2.2m from the left hand

shoulder and the maximum sheet flow depth of 1.3mm occurred near the right shoulder

(Figure 50). These values compare favorably to the steady state model, which predicts

sheet flow 3.4m from the left shoulder and a maximum sheet flow depth of 1.3mm.

104

Table 5: Summary of statistics of model residuals, all in units of L/s

Statistic July 20, 2007 June 3, 2007

Mean -0.029 0.016

Median 0.021 0.035

Standard Deviation 0.24 0.16

Standard Error of the Mean 0.029 0.02

Figure 48: Comparison of modeled and measured hydrographs for June 3, 2007

0 5000 10000 15000 20000

0
1

2
3

4
5

Elapsed Time (s)

F
lo

w
 R

a
te

 (
L

/s
)

2
0

1
5

1
0

5
0

F
iv

e
 M

in
u

te
 R

a
in

fa
ll
 (

m
m

)

Rain
Field Measurement
PERFCODE

105

D
o
m

a
in

 o
f

In
te

re
st

F
ig

u
re

 4
9

:
W

at
er

 d
ep

th
 a

b
o
v
e

im
p

er
v
io

u
s

la
y
er

 (
m

)
fo

r
L

o
o
p

 3
6
0
 d

u
ri

n
g
 m

ax
im

u
m

 d
ep

th
 c

o
n
d
it

io
n
s

o
n

Ju
n
e

3
,

2
0
0
7

.
 T

h
e

P
F

C
 t

h
ic

k
n
es

s
w

as
 0

.0
5
m

;
co

n
to

u
rs

 c
o
rr

es
p
o

n
d
 t

o
 s

h
ee

t
fl

o
w

 c
o
n
d
it

io
n
s.

6
0

7
0

8
0

9
0

1
0

0
1

1
0

25303540455055

D
is

ta
n
c
e

(m
)

Distance(m)

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

0
.0

4
5

0
.0

5
0

C
o

n
to

u
rs

 o
f
D

e
p

th
 a

b
o

ve
 Im

p
e

rv
io

u
s
 L

a
ye

r
(m

)

 0
.0

5

 0
.0

5
0
5

 0
.0

5
1

 0
.0

5
1

 0
.0

5
1

 0
.0

5
1

106

F
ig

u
re

 5
0
:

P
ro

fi
le

 t
h
ro

u
g
h
 m

ax
im

u
m

 d
ep

th
 s

ec
ti

o
n
;

th
e

h
o
ri

zo
n
ta

l
co

o
rd

in
at

e
is

 9
4
.4

2
m

9
.3

5

9
.4

0

9
.4

5

9
.5

0

9
.5

5

9
.6

0

9
.6

5

9
.7

0

9
.7

5

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

Elevation Above Datum (cm)

V
e
rt

ic
a
l

C
o

o
rd

in
a
te

 (
Y

-d
ir

e
c
ti

o
n

)
(m

)

P
F

C
 S

u
rf

a
c
e

W
a
te

r
S

u
rf

a
c
e

Im
p

e
rm

e
a
b

le
 B

a
s
e

Onset of Sheet Flow

Maximum Depth

107

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Project Summary

This project has developed, validated, and applied a numerical model that couples

the dynamics of overland flow with porous media flow for PFC roadways. The model

represents overland flow using the 2-D diffusion wave approximation to the Saint-Venant

equations. Porous media flow is described by the Boussinesq equation. Coupling these

equations together facilitated water depth predictions at a fine spatial scale. This work

has addressed the research objectives which were established in Chapter 1 and are

repeated here for reference:

1. Identify governing equations for surface and subsurface flow for the geometry

of interest

2. Develop a scheme to couple flow between the surface and subsurface

3. Implement the coupling scheme and numerical methods in a computer model

that represents roadway geometry using a coordinate transformation

4. Validate the model using analytical solutions

5. Compare model predictions of runoff with values measured at an existing

monitoring site

 The governing equations for surface and subsurface flow have been identified

and applied to roadway geometry. A scheme to couple the surface and subsurface flow

components has been developed. The proposed scheme uses a mass balance approach

and adjusts conveyance coefficients based on the flow conditions. A computer model has

been developed and validated against steady state solutions that were obtained

independently. Predictions of the runoff hydrograph were compared to measured values

for the field monitoring site.

Several aspects of this work represent new and unique contributions to the fields

of hydraulics and porous media flow:

108

• The model itself—PERFCODE—is a unique tool for understanding highway

drainage. It builds on a long tradition of research in highway drainage hydraulics

at The University of Texas at Austin.

• The way in which PFC flow and sheet flow are coupled within the model led to a

better understanding of the interaction between PFC flow and sheet flow (see Eck

et al. 2010).

• The ODE for PFC flow on a converging section has been derived and a numerical

solution provided. The solution is useful for understanding how roadway

geometry influences drainage behavior and for validating more comprehensive

numerical treatments.

• A new boundary condition—the kinematic condition—for PFC flow has been

developed and found to have reasonable agreement with field measurements.

6.2 Conclusions

Developing the simulation model and applying it to linear sections, converging

sections, and the field monitoring site provided insight into the drainage behavior of PFC

highways. Conclusions from this work are as follows:

• The kinematic boundary condition developed for PFC flow addresses an

important gap in the literature of porous pavement hydraulics: the depth at the

boundary can now be estimated for steady state or transient conditions. At the

edge of pavement this condition gives a maximum depth in the PFC layer; but at

the ends of the domain depth estimates are inconsistent with the domain interior,

resulting in a boundary effect. The model domain should therefore be expanded

to remove this effect from the area of interest. Use of this boundary condition

yielded hydrographs that were consistent with field measurements.

• Predictions of runoff hydrographs for PFC roadways are available for the first

time. These hydrographs show that PFC delays the initial discharge from the

roadway compared to conventional pavement and that flow in a PFC layer

requires a long time to reach steady state. For a constant rainfall case, PFC

109

delayed the initial discharge by 60 seconds and required 50 times more rainfall to

reach steady state, though these values depend on problem parameters.

• One dimensional steady state equations remain a powerful tool for engineering

design. For the storm investigated in Chapter 5, the 1D steady state equations

predicted the location that sheet flow begins within 20cm of the PERFCODE’s

prediction. The location and magnitude of the maximum sheet flow depth were

also closely predicted by the 1D steady state equations. This result confirms that

the steady state equations (Charbeneau and Barrett, 2008 and Eck et al., 2010) are

suitable for designing the PFC thickness on straight roads.

• The presence of a PFC layer did not affect the timing or magnitude of the peak

discharge for the storm that was analyzed, but a later and smaller peak in the

runoff hydrograph was delayed and reduced by the PFC layer. This result

suggests that PFC has a negligible effect on the hydrology of large events, but can

reduce the peak discharge of smaller events.

• During intense storms a PFC layer cannot prevent sheet flow altogether, but it can

reduce the time during which sheet flow conditions persist. In the example

studied, PFC reduced the duration of sheet flow conditions by about 80% and

reduced the maximum sheet flow depth by 25%.

6.3 Recommendations for Future Work

Based on the research reported in this dissertation, several areas that should be

considered for future research are as follows:

• The model required very small time-steps to simulate the measured rainfall. An

infinite number of rainfall patterns are consistent with the five-minute rainfall

data that was measured. Future work could include using a smoother rainfall

function to see if the model’s stability properties could be improved (e.g. take

larger time-steps).

• Measured values of the hydraulic conductivity for PFC are at the high end of the

acceptable range for Darcy’s law on typical roadway slopes. Related

110

experimental and modeling efforts conducted by Klenzendorf (2010) used the

Forchheimer equation to model flow through PFC and found the Forchheimer

coefficients. Future work could update the model developed here to use

Forchheimer’s equation in place of Darcy’s law. Such an update need only

modify the subroutine for computing conveyance coefficients. Since the Darcy’s

law problem is already non-linear, the non-linearity introduced from

Forchheimer’s equation would be handled within the existing non-linear iteration

loop.

• Small time steps (0.1s) were needed for non-smooth rainfall functions and high

rainfall intensities. This small time step dramatically increased the time required

for a model run. It also is based on the lowest common denominator—it is likely

that larger time steps would be stable for part of the simulation time. An adaptive

time stepping scheme could improve the run time while maintaining stability.

• The statistics of the residuals (modeled minus measured discharges) were similar

for the two storms investigated. Future work should simulate additional storm

events to further quantify the uncertainty in the model predictions.

• The model formulation is intended to allow simulations of more complex

roadway geometry such as a superelevation transition or sag vertical curves.

Although it is believed that major changes would not be required to deal with

such geometries, they have not been attempted.

111

APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE

The model described in this dissertation—PERFCODE—was implemented for

computation in the Fortran 90/95 language and compiled for Microsoft Windows with the

Lahey/Fujitsu Fortran compiler v5.5. The program runs as a console mode application

(i.e. from the command prompt). This appendix describes (1) how to use model and (2)

model limitations through a discussion of the model input files. A summary of the

Fortran source code is given next, followed by a listing of the source code. The

interested reader is encouraged to contact the author of this dissertation for an electronic

copy of the model.

A.1 Model Limitations

PERFCODE has been designed to simulate highway drainage for a wide variety

of conditions within certain limitations:

• The structure of the input files does not allow for a cross section that

varies longitudinally (e.g. superelvation transition)

• Boundary conditions have not been developed for PFC on curbed sections

A.2 Running PERFCODE: Developing Input Files

PERFCODE is designed to simulate roadway drainage under a variety of

conditions. Inputs to the model have been arranged into text files so that parameters can

be changed without recompilation. In order apply the model to a situation of interest,

input files must be developed. Model inputs and calculations use SI units.

The first input file contains basic simulation parameters and requires the most

explanation. These parameters are read from Data File 1: Parameters.dat. As shown

below, this file has several sections.

• PFC properties are listed first and these four properties are the only

parameters of the mathematical model—these values must be accurate in

112

order for simulation results to be consistent with physical observations.

For the work of this dissertation, the hydraulic conductivity, porosity and

pavement thickness were measured from core samples and the Manning’s

n value was inferred from an experimental study.

• The model uses different time steps for sheet flow and PFC flow

conditions. The time of a model run must also be specified and care

should be taken to select a simulation time that is consistent with the

rainfall input.

• The grid spacing is controlled by selecting an approximate grid cell size.

The size is approximate because the grid is creating using ‘equal

increments’ see (Jeong et al. 2010). The size is also approximate because

the user may specify a value that is not an exact divisor of the domain size

(e.g. dy = 0.4m when the domain width is 5m). The quantities dx and dy

should probably be called dxi and deta because the correspond to the cell

size in the longitudinal and transverse directions (respectively).

• Several tolerances are needed including the maximum number of

iterations, the required accuracy (eps is short for epsilon), and the

relaxation factors for the non-linear iteration.

• The initial condition is simply the depth at the beginning of a simulation.

A small value is used instead of zero because zero is a difficult number in

floating point calculations.

• The boundary condition for each edge of the domain must also be

specified

o NO_FLOW is simply a no flow boundary

o MOC_KIN means to use the method of characteristics to

implement a kinematic boundary condition for PFC flow and sheet

flow.

o eastKIN means to use the MOC_KIN boundary from the east edge

of the domain on the west end of the domain. This only makes

113

sense if the solutions on the east and west faces should be the

same.

o 1D_FLOW means to use the one dimensional unsteady model as

the boundary condition for the two dimensional domain. This

boundary condition is experimental and not recommended for use.

Data File 1: Parameters.dat
Parameter Input file for PERFCODE

PFC Properties

 0.01 <----- Hydraulic Conductivity [m/s]

 0.2 <----- Porosity

 0.05 <----- Pavement Thickness [m]

 0.015 <----- Manning's n [sec / m ̂ (1/3)]

Physical Constants

 9.81 <----- Gravitational Acceleration [m/s/s]

Time Steps

 5. <----- time step for PFC flow [s]

 1. <----- time step for sheet flow [s]

 8000 <----- Time to simulate [s]

Grid Spacing

 0.10 <----- preliminary value of dx [m]

 0.10 <----- preliminary value of dy [m]

Tolerances

 200 <----- qmax (maximum number of non-linear iterations)

 5000 <----- maxit (maximum number of solver iterations)

 1.e-4 <----- eps_matrix

 1.e-3 <----- eps_itr

 1.e-3 <----- eps_ss

 1. <----- Relaxation Factor for non-linear iteration

 0.2 <----- Relaxation factor for transition

Initial Condition

 1.e-10 <----- Initial depth [m]

Boundary Conditions (legal values are: MOC_KIN, NO_FLOW, 1D_FLOW, eastKIN)

 NO_FLOW <----- NORTH boundary of domain

 MOC_KIN <----- SOUTH boundary of domain

 NO_FLOW <----- EAST boundary of domain

 NO_FLOW <----- WEST boundary of domain

Rainfall information is read from Data File 2: Rainfall.dat. The first line of the

file is the number of rainfall records, which the program needs in order to read in the

proper number of values. Note that the times move in 300s increments, consistent with

the field monitoring data. The remaining lines of the file are not shown for brevity. A

114

technical computing platform—such as the R Environment for Statistical Computing and

Graphics or MATLAB—is useful for generating this file from a record of measured

rainfall. In order to simulate a constant rainfall rate, only two records are required: time

zero and some large time both with the same rainfall rate.

Data File 2: Rainfall.dat
208 <------ Number of rainfall records 20 July 2007

1,0,1.693333e-06 <--- Record, Time[s], Rainfall Rate [m/s]

2,299.99,1.693333e-06

3,300,0.000000e+00

4,599.99,0.000000e+00

5,600,8.466667e-07

6,899.99,8.466667e-07

7,900,0.000000e+00

8,1199.99,0.000000e+00

9,1200,0.000000e+00

.....

.....

Information about the horizontal alignment of the roadway is read from Data File

3: CL_Segments.dat. The information in this file pertains to the geometry of the roadway

centerline. The variables correspond to Equation (3.22). This information can be

specified directly as was done in this dissertation, or obtained by processing an output file

from roadway design software such as GEOPACK as done by Jeong (2008).

Data File 3: CL_Segments.dat
1 <----- Number of Segments

Segment, xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta,

1, 89.14400, -1000000, 0, 0, 1000040., 0.0, 12.192, 1.57080547,-1.82873E-05,

The vertical alignment of the roadway is specified by two different files. Cross

section information is read from Data File 4: CrossSection.dat. Note that this file

specifies relative elevations in the form of slopes, but not absolute elevations. The sum of

the segment widths specified here should match the overall roadway width (W) that is

given in Data File 3: CL_Segments.dat.

115

Data File 4: CrossSection.dat
Roadway Cross Section Input file for PERFCODE

 3 <------ Number of segments to define cross section

Segment Slope Width[m]

 1, -0.04, 3.0480

 2, -0.02, 7.3152

 3, 0.04, 1.8288

Note: SLOPE is defined left to right with a negative slope

 corresponding to a loss of elevation moving from left to right.

 SEGMENTS are numbered from eta = 0 to eta = 1 so segment 1 is

 on the right end of the domain.

Elevations are obtained from Data File 5: LongProfile.dat. The elevations in this

file correspond to the right edge of the pavement (; J 0O. The structure of this file

allows for more variations in longitudinal slope than were considered in this dissertation.

By including more points in this file, different longitudinal geometries such as sag

vertical curves can be represented.

Data File 5: LongProfile.dat
Longitudinal Profile Input file for PERFCODE

 2 <------ Number of points to define longitudinal profile

 Point No. Distance(m) and Elevation(m) ALONG ETA == 0

 1, 0.000000, 10.0000000 <--- West boundary of domain

 2, 18.28800, 9.579376 <--- East boundary of domain 2.3%

Once these data files have been formulated for the problem of interest, model runs

can begin. Several output files are written during each model run and the content of these

files is the subject of the next section.

A.3 PERFCODE Output Files

Output files are mostly formatted as .csv (comma separated values) so that results

can be opened by a spreadsheet program or read into a technical computing environment.

The primary output files are:

• details.csv contains summary information for each time step including the

outflow hydrograph and other time history data.

116

• max_depth.csv contains the model solution for maximum depth conditions

encountered during the simulation. The file is in vector form.

• params.csv is an echo of the model parameters used in the simulation

• PERFCODE_Run.txt is a log file with information about each iteration

and each time step of the model run. Most warning messages during the

simulation are directed to this file. If the simulation failed for some

reason, this file is the first place to look for an explanation.

A.4 Fortran Source Code

In writing the code for the model, extensive use was made of Fortran modules for

storing common variables and grouping procedures (functions and subroutines)

thematically. Each module comprises its own source file, but may contain several

procedures provided the procedures do not reference each other. Each module is

compiled separately. When the main program is compiled, links to the requisite modules

are made and the product is a single executable file. Table 6: shows the name and

contents of each programming unit. The order of the source files in the table (after the

main program) reflects the order in which the files must be compiled for proper linking.

This table also serves as an index to the code listing. The interaction between the

procedures is depicted graphically in Figure 51 on page 121.

 Table 6: Fortran program and module listing

Program or

Module

Name

Source file

and

Page No.

Contents

PERFCODE PERFCODE.f95

122

Main program (compiled last)

shared shared.f95

152

Variables shared between different programming units

117

Program or

Module

Name

Source file

and

Page No.

Contents

pfc2Dfuns pfc2Dfuns.f95

157

Function subprograms used in the 2D PFC drainage

model:

F_LinearIndex computes the linear index for each

grid cell

F_por computes the porosity factor (pf) for each grid

cell

F_RHS_n computes the contribution to the right hand

side of the linear system due to time level n

F_RHS_n1 computes the contribution to the right

hand side of the linear system due to time level n+1

utilities utilities.f95

159

Functions and subroutines for general use

UNLINEARIZE converts the solution from the linear

form used in the matrix system into a two-dimensional

array

BILINEAR_INTERP performs bi-linear

interpolation

F_LINTERP Performs linear interpolation

F_L2_NORM Computes the L2 norm of a vector

F_PYTHAGSUM Computes the Pythagorean sum of

two numbers

F_EXTRAPOLATE Performs linear extrapolation

inputs inputs.f95

169

Subroutines for reading the simulation parameters and

rainfall information GET_PARAMETERS and

GET_RAINFALL

118

Program or

Module

Name

Source file

and

Page No.

Contents

outputs outputs.f95

172

Subroutines for generating selected outputs

ECHO_INPUTS prints selected input parameters to

the screen

WRITE_FLIPPED_MATRIX creates comma

seperated values (.csv) file of a matrix that has been

‘flipped’ to match the model domain (e.g. the 1,1

location is in the southwest corner)

WRITE_MATRIX creates a .csv file of a matrix

WRITE_VECTOR creates a .csv file of a vector

WRITE_SYSTEM creates a .csv file of the bands

and right hand side of the penta-diagonal matrix

system

geom_funcs geom_funcs.f95

177

Function sub-programs related to the curvilinear grid

generation

F_L_xi computes the metric coefficient for the length

mapping

UNMAP_X computes the x coordinate of a point in

physical space from its coordinates in computational

space

UNMAP_Y computes the y coordinate of a point in

physical space from its coordaintes in computational

space

119

Program or

Module

Name

Source file

and

Page No.

Contents

ConvCoef ConvCoef.f95

180

Subroutines related to computing the conveyance

coefficients:

CONVEYANCE computes the conveyance

coefficient for a cell face

FrictionSlope computes the friction slope at the

center of each grid cell face

GridGen GridGen.f95

188

Subroutines related to the grid generation scheme

GENERATE_GRID reads the centerline geometry

file and creates a curvilinear grid (horizontal

coordinates) based on a given approximate grid

spacing

SET_ELEVATIONS reads the longitudinal profile

from a file and assigns an elevation to each grid cell

Solvers Solvers.f95

199

Subroutines related to solving linear systems:

DIAGDOM_PENTA checks for diagonal dominance

given the bands of a penta-diagonal matrix

GAUSS_SEIDEL_PENTA uses the Gauss-Seidel

method for iterative solution of a penta-diagonal

system of linear equations.

THOMAS uses the tri-diagonal matrix algorithm to

solve a tri-diagonal linear system

pfc1Dfuns pfc1Dfuns.f95

204

Functions used the 1D pfc flow model:

F_CC computes the conveyance coefficient

F_por computes the porosity function for a grid cell

120

Program or

Module

Name

Source file

and

Page No.

Contents

pfc1Dfuns2 pfc1Dfuns2.f95

205

Lower level functions used in the 1D pfc flow model:

F_hp_face computes the saturated thickness at the cell

face

F_hs_face computes the sheet flow thickness at the

cell face

pfc1Dsubs pfc1Dsubs.f95

207

Subroutines used for the 1D flow model:

GRID_1D_SECTION creates a grid for the 1D

drainage path

pfc1Dimp solves the 1D pfc drainge problem using

the crank-nicolson implicit method. The routine only

takes a single time-step.

 pfc2Dsubs pfc2Dsubs.f95

223

Subroutines related to the 2D pfc flow model:

SET_ABCDEF fills the coefficients of the linear

system for a single grid cell

SET_XYH assigns values of x,y,and h for use in the

bi-linear interpolation routine

BoundCond BoundCond.f95

225

The subroutine MOC_KIN, which uses the method of

characteristics to implement a kinematic boundary

condition.

121

F
ig

u
re

 5
1
:

C
al

li
n
g
 t

re
e

fo
r

P
E

R
F

C
O

D
E

122

Source File 1: PERFCODE.f95

 1 ! fortran_free_source

 2 !

 3 !

 4 ! PPPP EEEEEE RRRR FFFFFF CCCC OOOO DDDDD EEEEEE

 5 ! P P E R R F C C O O D D E

 6 ! P P E R R F C O O D D E

 7 ! P P E R R F C O O D D E

 8 ! P P E R R F C O O D D E

 9 ! PPPP EEEEEE RRRR FFFFFF C O O D D EEEEEE

 10 ! P E R R F C O O D D E

 11 ! P E R R F C O O D D E

 12 ! P E R R F C O O D D E

 13 ! P E R R F C C O O D D E

 14 ! P EEEEEE R R F CCCC OOOO DDDDD EEEEEE

 15 !

 16 !

 17 ! P E R m e a b l e F r i c t i o n C O u r s e D r a i n g e c o d E

 18 !

 19 ! Written By: Brad Eck

 20 !

 21 ! Date: April 2010

 22 !

 23 !==

 24 ! \\\\\\\\\\ P R O G R A M //////////

 25 ! ////////// D E S C R I P T I O N \\\\\\\\\\

 26 !==

 27 !

 28 !

 29 ! Purpose: This program computes a 2D solution for unsteady

 30 ! drainage through a PFC. The water THICKNESS in each

 31 ! cell is used as the primary variable.

 32 ! IC: Specified in input file

 33 ! BCs: Specified in input file

 34 ! Linearization: Picard Iteration (lag the coefficients)

 35 ! Linear Solver: Gauss-Seidel iteration

 36 !

 37 ! Alphabetical list of variables used in the main program PERFCODE

 38 ! (variables used in subroutines are described there)

 39 !

 40 ! A -- lowest band of penta diagonal matrix

 41 ! area -- area of a grid cell

 42 ! astat -- array allocation statuses

 43 ! B -- subdiadonal band of penta diagonal matrix

 44 ! b_pfc -- thickness of the PFC layer

 45 ! C -- main diagonal of penta diagonal matrix

 46 ! Ce -- conveyance coefficient (conv coef) for the

 47 ! EASTtern cell face at time level n

 48 ! Ce1 -- conv coef for EASTern cell face at time level n + 1

 49 ! Cn -- conv coef for the NORTHern cell face at time level n

 50 ! Cn1 -- '' '' '' at time level n + 1

 51 ! Cs -- conv coef for the SOUTHern cell face at time level n

123

 52 ! Cs1 -- '' '' '' at time level n + 1

 53 ! CV_Info -- information about each grid cell (aka Control Volume)

 54 ! Cw -- conv coef for the WESTern cell face at time level n

 55 ! Cw1 -- '' '' '' at time level n + 1

 56 ! D -- superdiagonal band of penta diagonal matrix

 57 ! dist_lp -- distance along longitudinal profile

 58 ! diagdom -- logical flag for test of diagonal dominance

 59 ! ds -- distance up characteristic in sheet flow moc bc

 60 ! dt -- time step for the simulation

 61 ! dt_pfc -- time step for PFC flow

 62 ! dt_sheet -- time step for sheet flow

 63 ! dx -- prelim. grid size for longitudinal direction

 64 ! dx_moc -- distance up drainage path in pfc moc bc

 65 ! dy -- prelim. grid size for transverse direction

 66 ! E -- uppermost band of penta diagonal matrix

 67 ! east_bc -- condition for east boundary

 68 ! eps_matrix-- tolerance (epsilon) for matrix solver

 69 ! eps_itr -- tolerance for an iteration

 70 ! eps_itr_tol-- selected tolerance for the iteration (based on transition)

 71 ! eps_ss -- tolerance for steady state (not used)

 72 ! eta_cs -- values of eta along the cross slope

 73 ! eta_0_hp2_max-- max possible value for pfc moc bc

 74 ! eta_cs_1D -- values of eta for 1D model

 75 ! eta1D -- value of eta at each point in 1D domain

 76 ! etaCV -- value of eta at CV center for 1D grid

 77 ! F_ -- the letter F with an underscore (F_) denotes a

 78 ! function call and NOT an array

 79 ! F -- right hand side of linear system in pentadiagonal matrix

 80 ! F1 -- contribution to F from time level n+1

 81 ! Fn -- contribution to F from time level n

 82 ! g -- constant of gravitational acceleration

 83 ! grid -- number of each grid cell

 84 ! h0 -- initial depth (m)

 85 ! h_bound -- depth at boundary (returned by MOC_KIN or 1D_FLOW)

 86 ! h_imid_j1_max-- solution when depth at middle of south boundary is max

 87 ! h_imid_j1_max_hist

 88 ! h_imid_max-- solution when depth in middle of domain is max

 89 ! h_imid_max_hist

 90 ! h_itr -- matrix form of solution at level n+1

 91 ! h_itr_vec -- vector form of solution at time level n+1

 92 ! h_max -- solution at maximum depth

 93 ! h_new_1d -- solution at time level n+1 for 1D problem

 94 ! h_old -- solution at time level n

 95 ! h_old_1d -- solution at time level n for 1D problem

 96 ! h_old_vec --

 97 ! h_pfc_min -- minimum value for pfc flow thickness

 98 ! h_Q_max -- solution at maximum flow

 99 ! h_temp_hist -- history of solution during an iteration

 100 ! h_tmp_vec --

 101 ! hp1 -- depth at point 1 in pfc MOC bc

 102 ! hp2 -- depth at point 2 in pfc MOC bc

 103 ! hs1 -- sheet flow depth at point 1 in sheet flow moc bc

 104 ! hs2 -- sheet flow depth at point 2 in sheet flow moc bc

 105 ! i -- array index (longitudinally in the domain)

124

 106 ! input_values-- array of values of the input variables

 107 ! input_variables -- character array of input variables

 108 ! imax -- maximum value of the array index i

 109 ! j -- array index (transverse in the domain)

 110 ! jmax -- maximum value of the array index j

 111 ! K -- the saturated hydraulic conductivity of the PFC

 112 ! L2_history -- value of the L2 norm for each timestep

 113 ! lng -- curvilinear length of a grid cell at its center

 114 ! lng_north -- curvilinear length of the northern face

 115 ! lng_south -- curvilinear length of the southern face

 116 ! loc -- the location of the largest relative change in a time step

 117 ! long_slope -- overall longitudinal slope

 118 ! max_rec -- maximum number of records (for pre-allocating arrays

 119 ! where values are read in from a file)

 120 ! max_time -- longest time to simulate

 121 ! maxdiff -- the change in head at location LOC for timestep n

 122 ! maxit -- maximum number of matrix iterations

 123 ! maxrelchng_ss-- maximum relative change for a timestep, for stdy state check

 124 ! maxthk -- maximum thickness fot the timestep

 125 ! matrix_numits-- number of iterations to solve the matrix

 126 ! n -- index for time stepping

 127 ! n_mann -- Manning's roughness coefficient

 128 ! north_bc -- condition for north boundary

 129 ! nlast -- last timestep taken

 130 ! nmax -- maximum number of time steps in the simulation

 131 ! numit -- the number of iterations required for a timestep to converge

 132 ! nr_cs -- number of records in the cross slope file

 133 ! nr_lp -- number of records in the longitudinal profile file

 134 ! nrr -- number of rainfall records

 135 ! out_time --

 136 ! pf -- porosity factor (includes effect of porosity

 137 ! when pavement is not saturated)

 138 ! pf_int -- porosity factor as an integer

 139 ! pf1 -- porosity factor for time level n+1

 140 ! pf1_int -- " " "" as integer

 141 ! por -- the effective porosity of the PFC

 142 ! q -- iteration index

 143 ! qmax -- maximum number of iterations

 144 ! rain -- rainfall rate for each timestep of the simulation

 145 ! Qout -- flow rate out the southern boundary for a timestep

 146 ! rain_rate -- rainfall rate for each time increment in the

 147 ! rainfall input file

 148 ! rain_time -- time column of rainfall input file

 149 ! relax -- relaxation factor for non-transition iterations

 150 ! relaxation_factor -- underrelaxation factor for non-linear iteration

 151 ! relax_tran -- relaxation factor for transition

 152 ! relchng -- the relative change between solns for an iteration or timestep

 153 ! residual -- difference between old and itr solutions

 154 ! seg -- properties of a centerline segment

 155 ! Sfe_itr -- friction slope at center of east face at time level n+1

 156 ! Sfe_old -- friction slope at center of east face at time level n

 157 ! Sfn_itr -- friction slope at center of north face at time level n+1

 158 ! Sfn_old -- friction slope at center of north face at time level n

 159 ! Sfs_itr -- friction slope at center of south face at time level n+1

125

 160 ! Sfs_old -- friction slope at center of south face at time level n

 161 ! Sfw_itr -- friction slope at center of west face at time level n+1

 162 ! Sfw_old -- friction slope at center of west face at time level n

 163 ! slope_cs -- slope column of cross section file

 164 ! slope_cs_1d -- slope of 1D segment

 165 ! sim_tim -- character variable for time simulated

 166 ! solver_numits-- number of iterations for the solver

 167 ! south_bc -- condition for south boundary

 168 ! time -- time at each timestep

 169 ! time_simulated-- the time simulated

 170 ! timestep_solver_numits --

 171 ! transition -- logical to see if we're in a transition timestep

 172 ! tolit -- tolerence for iterations, used for relative (fractional) changes

 173 ! TNE -- total number of elements for 1D grid

 174 ! v -- linear index for domain

 175 ! ve -- linear index for cell to the east

 176 ! v_in -- linear index of adjacent inside cell

 177 ! vmax -- number of unknowns in the domain

 178 ! west_bc -- condition for west boundary

 179 ! wid -- curvilinear width of a grid cell at its center

 180 ! wid_cs -- width column of cross slope file

 181 ! wid_cs_1d -- width of 1D segment

 182 ! XCV -- coordinate of CV center for 1D grid

 183 ! Z -- elevation at the cell center

 184 ! Z_cs -- elevation along the cross slope

 185 ! Z_lp -- elevation along longitudinal profile

 186 ! ZCV -- elevation of CV center for 1D grid

 187

 188 !===

 189 ! \\\\\\\\\\ B E G I N P R O G R A M //////////

 190 ! ////////// P E R F C O D E \\\\\\\\\\

 191 !===

 192 program PERFCODE

 193

 194 !---

 195 ! >>>>>>>>>> M O D U L E S <<<<<<<<<<

 196 !---

 197 ! Refer to the modules that are referred to by this code

 198

 199 USE SHARED ! SHARED is used to store VARIABLES

 200 USE INPUTS ! INPUTS has subroutines

 201 USE OUTPUTS ! OUTPUTS has subroutines

 202 USE ConvCoef ! computes conveyance coefficinnts

 203 USE SOLVERS ! linear solvers

 204 USE Utilities

 205 USE gridgen

 206 use pfc1Dsubs

 207 use pfc2Dsubs

 208 use pfc2Dfuns

 209 use BoundCond

 210

 211

126

 212 !---

 213 ! >>>>>>>>>> V A R I A B L E S <<<<<<<<<<

 214 !---

 215

 216 implicit none

 217

 218 ! All variables are declared in module SHARED

 219

 220 !---

 221 ! >>>>>>>>>> P R O B L E M S E T U P <<<<<<<<<<

 222 !--

 223

 224 !Create a file to store details of the run

 225 open(unit = 100, file = 'PERFCODE_Run.txt', status = 'REPLACE')

 226

 227 !----------------------------------

 228 ! Problem parameters file

 229 !-----------------------------------

 230 CALL GET_PARAMETERS(K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, &

 231 dx, dy, qmax, maxit, h0, eps_matrix, eps_itr, eps_ss, &

 232 relax, relax_tran, &

 233 north_bc, south_bc, east_bc, west_bc, &

 234 animate, dt_ani)

 235

 236

 237 !--

 238 ! Rainfall file & maximum number of timesteps

 239 !--

 240

 241 call GET_RAINFALL(max_rec, rain_time, rain_rate, nrr)

 242

 243 nmax = (maxval(rain_time(1:nrr)) / min(dt_pfc, dt_sheet)) !* 100

 244

 245

 246 !--

 247 ! GRID GENERATION

 248 !---

 249 ! This subroutine takes the centerline geometry file that is generated

 250 ! mannualy and creates a curvilinear grid.

 251 ! INPUTS: Preliminary grid spacing

 252 ! OUTPUTS: Size of computational domain (imax & jmax)

 253 ! Length, width and area of each grid cell (module SHARED)

 254 ! Coordinates of each CV center

 255 call GENERATE_GRID(prelim_dx = dx , prelim_dy = dy)

 256

 257

 258 ! Reads in cross section and longitudinal files and computes elevations

 259 ! of CV Centers

 260

 261 CALL SET_ELEVATIONS()

 262

 263

127

 264 ! Creates a grid for a 1D section in case a 1D boundary condition is used

 265 call setup_1d_section()

 266 CALL grid_1d_section(slope_in = slope_cs_1D , &

 267 width_in = wid_cs_1D , &
 268 seg = nr_cs , &
 269 dx = ((dx+dy) / 2.))

 270

 271 !---

 272 ! inputs summary

 273 !---

 274 ! make a list of input variables and values

 275 input_variables = (/ 'K ', &

 276 'por ', &

 277 'b_pfc ', &

 278 'n_mann ', &

 279 'g ', &

 280 'dt_pfc ', &

 281 'dt_sheet ', &

 282 'max_time ', &

 283 'dx ', &

 284 'dy ', &

 285 'qmax ', &

 286 'maxit ', &

 287 'h0 ', &

 288 'eps_matrix', &

 289 'eps_itr ', &

 290 'eps_ss ', &

 291 'relax ', &

 292 'relax_tran' /)

 293

 294 !also collect and store values of input variales

 295 input_values = (/ K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, &

 296 max_time, dx, dy, real(qmax), real(maxit), &

 297 h0, eps_matrix, eps_itr, eps_ss, relax, relax_tran /)

 298

 299

 300 ! Echo inputs to the screen, unit 6 by default

 301 CALL ECHO_INPUTS(dev = 6)

 302 !also echo to log file

 303 CALL ECHO_INPUTS(dev = 100)

 304

 305

 306 !--------------------------------------

 307 ! Animation setup

 308 !---------------------------------------

 309

 310 if(animate .eqv. .TRUE.) then

 311

 312 animax = int(floor(max_time / dt_ani))
 313 allocate(h_vec_ani (vmax, animax))
 314 allocate(ani_lab (animax))
 315 allocate(ani_time(animax))

 316

 317 endif

128

 318

 319 !---

 320 ! >>>>>>>>>> A L L O C A T E A R R A Y S <<<<<<<<<<

 321 !---

 322

 323 ! inialize as we go.

 324

 325 ! VARIABLES IN MODULE SHARED

 326

 327 allocate(h_old(imax, jmax), STAT = astat(7)); h_old = 0.0
 328 allocate(h_itr(imax, jmax), STAT = astat(8)); h_itr = 0.0
 329 allocate(Sfw_old(imax, jmax), STAT = astat(9)); Sfw_old = 0.0
 330 allocate(Sfe_old(imax, jmax), STAT = astat(10)); Sfe_old = 0.0

 331 allocate(Sfs_old(imax, jmax), STAT = astat(11)); Sfs_old = 0.0
 332 allocate(Sfn_old(imax, jmax), STAT = astat(12)); Sfn_old = 0.0
 333 allocate(Sfw_itr(imax, jmax), STAT = astat(13)); Sfw_itr = 0.0
 334 allocate(Sfe_itr(imax, jmax), STAT = astat(14)); Sfe_itr = 0.0
 335 allocate(Sfs_itr(imax, jmax), STAT = astat(15)); Sfs_itr = 0.0

 336 allocate(Sfn_itr(imax, jmax), STAT = astat(16)); Sfn_itr = 0.0
 337 allocate(h_max(imax, jmax)); h_max = 0.0
 338 allocate(h_Q_max(imax, jmax)); h_Q_max = 0.0
 339 allocate(h_imid_j1_max (imax, jmax));h_imid_j1_max = 0.0
 340 allocate(h_imid_max_hist(nmax)); h_imid_max_hist = 0.0

 341 allocate(h_imid_max(imax, jmax)) ; h_imid_max = 0.0

 342

 343 allocate(h_old_1d(TNE))
 344 allocate(h_new_1d(TNE))

 345

 346

 347 ! Check allocation statuses

 348 do i = 1, 20
 349 if(astat(i) .NE. 0) then
 350 WRITE(100,*) 'PERFCODE: allocation problem!! &

 351 & check shared variable:', i

 352 end if
 353 end do

 354

 355 if(maxval(astat) .eq. 0) then

 356 WRITE(100,*) 'PERFCODE: allocation of shared variables sucessful'
 357 endif

 358

 359

 360 ! VARIABLES IN THIS PROGRAM

 361

 362 allocate(A(vmax), stat = astat2(1)); A = 0.0
 363 allocate(B(vmax), stat = astat2(2)); B = 0.0
 364 allocate(C(vmax), stat = astat2(3)); C = 0.0
 365 allocate(D(vmax), stat = astat2(4)); D = 0.0

 366 allocate(E(vmax), stat = astat2(5)); E = 0.0
 367 allocate(Fn(vmax), stat = astat2(6)); Fn= 0.0
 368 allocate(F1(vmax), stat = astat2(7)); F1= 0.0
 369 allocate(F(vmax), stat = astat2(8)); F = 0.0

 370

 371

129

 372 allocate(h_itr_vec(vmax), stat = astat2(9)); h_itr_vec = 0.0
 373 allocate(h_tmp_vec(vmax), stat = astat2(10)); h_tmp_vec = 0.0
 374 allocate(h_old_vec(vmax), stat = astat2(11)); h_old_vec = 0.0

 375 allocate(h_new_vec(vmax), stat = astat2(12)); h_new_vec = 0.0
 376 allocate(relchng (vmax), stat = astat2(13)); relchng = 0.0

 377

 378 allocate(numit(nmax), stat = astat2(14)); numit = 0
 379 allocate(loc(nmax), stat = astat2(15)); loc = 0

 380 allocate(maxdiff(nmax), stat = astat2(16)); maxdiff = 0.0
 381 allocate(Qout(nmax)); Qout = 0.0
 382 allocate(matrix_numits(nmax))
 383 allocate(L2_History(nmax)); L2_History = 0.0

 384

 385

 386 ! Set indices for rain so that n-1 always works. This is b/c

 387 ! in Crank-Nicolson half of the rainfall rate is from time level

 388 ! n and half is from time level n-1

 389 allocate(rain(0 : nmax-1), stat = astat2(0))

 390 allocate(time(nmax), stat = astat2(17))

 391

 392

 393 allocate(grid(jmax, imax), stat = astat2(19))

 394

 395 allocate(maxthk(nmax), stat = astat2(20)); maxthk = 0.0

 396

 397 allocate(residual(vmax), stat = astat2(21)); residual = 0.0

 398

 399

 400

 401 allocate(h_temp_hist(vmax, qmax)); h_temp_hist = 0.0

 402

 403 allocate(h_imid_j1_hist(nmax), stat = astat(22))

 404 ! Check allocation statuses

 405 do i = 1, 29
 406 if(astat2(i) .NE. 0) then
 407 WRITE(100,*) 'PERFCODE: allocation problem in main &

 408 & program!!, check variable:', i

 409 end if

 410 end do

 411

 412 if(maxval(astat2) .eq. 0) then
 413 WRITE(100,*) 'PERFCODE: allocation of main program variables sucessful'
 414 endif

 415

 416

 417 !---

 418 ! >>>>>>>>>> P R O B L E M S O L V I N G <<<<<<<<<<

 419 !---

 420

 421 ! INITIAL CONDITIONS

 422 ! set all all arrays to the initial depth value

 423 h_old = h0
 424 h_itr = h0 ! added this after b/c the first iteration kept failing

 425 h_old_vec = h0

130

 426 h_itr_vec = h0

 427

 428 h_old_1D = h0 ! initial depth for 1D boundary condition

 429 h_new_1D = h0

 430

 431

 432 WRITE(*,*) 'PERFCODE: starting time stepping loop,&

 433 & max time = ', max_time, ' seconds'

 434

 435 CALL SYSTEM_CLOCK(RUN_START_TIME, count_rate, count_max)

 436

 437

 438

 439 ! !open a file to store each timestep

 440 ! open(unit = 50, file = 'timesteps.csv', status = 'REPLACE')

 441 ! write(50,5) ' n / v,', (v, v=1, vmax) !implied DO loop

 442 ! 5 format(A, 10000(I, ','))

 443 !

 444

 445

 446 ! Set rainfall rate for begining of simulation

 447 n=0
 448 rain(n) = F_Linterp(0.0 , &

 449 rain_time(1:nrr), &

 450 rain_rate(1:nrr), &

 451 nrr)

 452

 453 !--

 454 ! BEGIN TIME STEPPING

 455 !--

 456

 457 time_stepping: do while (time_simulated .LT. max_time)

 458

 459 !increment n and store the largest n we've gotten so far

 460 n = n + 1
 461 nlast = n

 462

 463 ! Select the time step

 464 if(maxval(h_old) .GT. b_pfc * 0.95) then
 465 dt = dt_sheet
 466 else
 467 dt = dt_pfc
 468 endif

 469

 470 !Computed the time simulated

 471 ! Do the accumulation with an internal write/read to

 472 ! avoid accumulating the floating point errors

 473

 474 write(sim_time, 123) time_simulated
 475 read(sim_time, *) time_simulated

 476

 477 123 format(F8.2)

 478

 479 time_simulated = time_simulated + dt

131

 480 time(n) = time_simulated

 481 !Report which timestep we're in every 20 or so time steps

 482 if(nint(real(n)/2.) .gt. report) then

 483 report = report + 1
 484 write(*,*) ' n = ', n, ' time = ', time_simulated, &

 485 'L_inf_norm = ', maxrelchng_ss, &

 486 'L2_norm = ', F_L2_Norm(relchng,vmax), &

 487 'Qout = ', Qout(n-1)

 488 endif

 489

 490

 491 !Come up with the rainfall rate for this timestep

 492 rain(n) = F_Linterp(time_simulated , &

 493 rain_time(1:nrr), &

 494 rain_rate(1:nrr), &

 495 nrr)

 496

 497

 498 !PART OF NON-LINEAR SYSTEM FROM TIME LEVEL n

 499 ! FRICTION SLOPE

 500 ! Compute friction slope magnitudes based on the converged thicknesses

 501 ! from the previous time step

 502 CALL FrictionSlope('old', Sfw_old, Sfe_old, Sfs_old, Sfn_old)

 503

 504

 505

 506 ! Compute solution for 1D model to use as a boundary condition

 507

 508 ! only invoke the 1D solver if called for by the boundary conditions

 509

 510 if(west_bc .eq. '1D_FLOW' .or. &
 511 east_bc .eq. '1D_FLOW') then

 512

 513 h_old_1d = h_new_1d

 514

 515 CALL PFC1DIMP(h_old = h_old_1d, &
 516 dt = dt , &
 517 rain = rain(n) , & ! Should probably add rain(n-1)

 518 tolit = eps_itr , &
 519 qmax = qmax , &
 520 h_new = h_new_1d, &
 521 imax = TNE , &
 522 eta_0_BC = south_bc, &

 523 eta_1_BC = north_bc)

 524

 525

 526 ! Vet the solution to avoid a weird problem

 527 if(maxval(h_new_1d) .LT. TINY(h_new_1d(1))) then

 528 write(100,*) 'PERFCODE: 1D Model zeroed out....stopping program'

 529 call write_vector(h_old_1d, TNE, 'h_old_1D.csv')

 530 call write_vector(h_new_1d, TNE, 'h_new_1D.csv')

 531 stop
 532 end if

 533

132

 534 endif

 535

 536 !---

 537 ! B O U N D A R Y C O N D I T I O N S

 538 !---

 539

 540 ! put east first so that west bc 'eastKIN' could copy it

 541

 542 !EASTERN BOUNDARY

 543 i = imax
 544 if(east_bc .eq. 'NO_FLOW') then
 545 do j = 2, jmax - 1
 546 pf = F_por(h_old(i, j))

 547 CALL Conveyance('west ', 'old', i, j, Cw)

 548 Ce = 0.0 !<---- NO FLOW BOUNDARY

 549 CALL Conveyance('south', 'old', i, j, Cs)

 550 CALL Conveyance('north', 'old', i, j, Cn)

 551 v = F_LinearIndex(i, j, jmax)

 552 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
 553 end do

 554

 555 elseif(east_bc .eq. '1D_FLOW') then

 556

 557 !open(unit = 66, file = 'eta_mapping.csv', status = 'REPLACE')

 558 !write(66, *) 'i,j,eta,eta_1D'

 559

 560 do j = 1, jmax
 561 v = F_LinearIndex(i, j, jmax)

 562 eta_1D = F_LINTERP(X = CV_Info(v) % eta , &
 563 known_X = eta_cs , &
 564 known_Y = eta_cs_1D , &
 565 n = nr_cs + 1)
 566 h_bound= F_LINTERP(X = eta_1D , &

 567 known_X = etaCV , &
 568 known_Y = h_new_1D , &
 569 n = TNE)
 570 C(v) = 1.0
 571 F(v) = h_bound

 572

 573 ! write(66, 660) i, j, CV_Info(v) % eta, eta_1D

 574

 575 end do

 576

 577 !close(66)

 578

 579

 580 elseif(east_bc .eq. 'MOC_KIN') then

 581

 582 do j = 2, jmax - 1

 583 CALL MOC_KIN_BC(i, j, rain(n), dt, 'east ', h_bound, 100)

 584 v = F_LinearIndex(i, j, jmax)
 585 C(v) = 1.
 586 F(v) = h_bound

 587 ! write(100,*) 'PERFCODE: east bc i=',i, 'j=',j, 'h_bound=',h_bound

133

 588 end do

 589

 590

 591 end if

 592

 593

 594

 595 !WESTERN BOUNDARY

 596 i = 1
 597 if(west_bc .eq. 'NO_FLOW') then
 598 do j = 2, jmax - 1

 599 ! Set porosity factor for this cell

 600 pf = F_por(h_old(i, j))

 601 ! Set the conveyance coefficients

 602 Cw = 0.0 !<---- NO FLOW BOUNDARY

 603 CALL Conveyance('east ', 'old', i, j, Ce)

 604 CALL Conveyance('south', 'old', i, j, Cs)

 605 CALL Conveyance('north', 'old', i, j, Cn)

 606 ! Compute the part if the right-hand-side that is from

 607 ! time level n

 608 v = F_LinearIndex(i, j, jmax)
 609 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
 610 end do

 611 elseif(west_bc .eq. '1D_FLOW') then
 612 do j = 1, jmax
 613 v = F_LinearIndex(i, j, jmax)
 614 eta_1D = F_LINTERP(X = CV_Info(v) % eta , &
 615 known_X = eta_cs , &

 616 known_Y = eta_cs_1D , &
 617 n = nr_cs + 1)
 618 h_bound= F_LINTERP(X = eta_1D , &
 619 known_X = etaCV , &
 620 known_Y = h_new_1D , &

 621 n = TNE)
 622 C(v) = 1.0
 623 F(v) = h_bound
 624 end do

 625

 626 elseif(west_bc .eq. 'MOC_KIN') then
 627 write(*,*) 'PERFCODE: Boundary condition ', west_bc, &

 628 'not supported for western boundary'

 629

 630 elseif(west_bc .eq. 'eastKIN') then

 631

 632 do j = 2, jmax-1
 633 v = F_LinearIndex(i, j, jmax)

 634 ! index of corresponding eastern cell

 635 ve = F_LinearIndex(imax, j, jmax)

 636 ! Use solutions from east side on the west side

 637 C(v) = C(ve)
 638 F(v) = F(ve)
 639 end do

 640

 641 endif

134

 642

 643

 644

 645

 646

 647 !NORTHERN BOUNDARY

 648 j = jmax
 649 if(north_bc .eq. 'NO_FLOW') then

 650 do i = 2, imax - 1

 651 ! Set porosity factor for this cell

 652 pf = F_por(h_old(i, j))

 653 ! Set the conveyance coefficients

 654 CALL Conveyance('west ', 'old', i, j, Cw)

 655 CALL Conveyance('east ', 'old', i, j, Ce)

 656 CALL Conveyance('south', 'old', i, j, Cs)

 657 Cn = 0.0 ! <---- NO FLOW BOUNDARY

 658 ! Compute the part if the right-hand-side that is from

 659 ! time level n

 660 v = F_LinearIndex(i, j, jmax)
 661 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
 662 end do

 663

 664 elseif(north_bc .eq. 'MOC_KIN') then

 665 do i = 2, imax - 1

 666 CALL MOC_KIN_BC(i, j, rain(n), dt, 'north', h_bound, 100)

 667 v = F_LinearIndex(i, j, jmax)
 668 C(v) = 1.
 669 F(v) = h_bound

 670 end do

 671 ! ! Use the value of the next inside cell for cells

 672 ! ! second from the end of the domain

 673 ! i = 2

 674 ! v = F_LinearIndex(i, j, jmax)

 675 ! v_in = F_LinearIndex(i+1, j, jmax)

 676 ! C(v) = 1.

 677 ! F(v) = F(v_in)

 678 ! i = imax - 1

 679 ! v = F_LinearIndex(i, j, jmax)

 680 ! v_in = F_LinearIndex(i-1, j, jmax)

 681 ! C(v) = 1.

 682 ! F(v) = F(v_in)

 683 !

 684 elseif(north_bc .eq. '1D_FLOW') then

 685 write(*,*) 'PERFCODE: Boundary condition ', north_bc, &

 686 'not supported for northern boundary'

 687

 688 elseif(north_bc .eq. 'west_1D' .and. &
 689 west_bc .eq. '1D_FLOW') then

 690

 691 ! Put the answer for the northern most cell on the west end (i=1, j=jmax)

 692 ! in all of the northern cells

 693

 694 do i = 2, imax - 1

 695 v = F_LinearIndex(i, j, jmax)

135

 696 v_in = F_LinearIndex(1, jmax, jmax)
 697 C(v) = 1.
 698 F(v) = F(v_in)

 699 end do

 700

 701 end if

 702

 703

 704 !SOUTHERN BOUNDARY

 705 j = 1
 706 if(south_bc .eq. 'NO_FLOW') then
 707 do i = 2, imax - 1
 708 pf = F_por(h_old(i, j))

 709 CALL Conveyance('west ', 'old', i, j, Cw)

 710 CALL Conveyance('east ', 'old', i, j, Ce)

 711 Cs = 0.0 !<------- NO FLOW BOUNDARY

 712 CALL Conveyance('north', 'old', i, j, Cn)

 713 v = F_LinearIndex(i, j, jmax)

 714 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
 715 end do

 716

 717 elseif(south_bc .eq. 'MOC_KIN') then
 718 do i = 2, imax - 1

 719 CALL MOC_KIN_BC(i, j, rain(n), dt, 'south', h_bound, 100)

 720 v = F_LinearIndex(i, j, jmax)
 721 C(v) = 1.
 722 F(v) = h_bound
 723 end do

 724 ! ! Use the value of the next inside cell for cells

 725 ! ! second from the west end of the domain

 726 ! i = 2

 727 ! v = F_LinearIndex(i, j, jmax)

 728 ! v_in = F_LinearIndex(i+1, j, jmax)

 729 ! C(v) = 1.

 730 ! F(v) = F(v_in)

 731 ! ! second from east end of domain

 732 ! i = imax - 1

 733 ! v = F_LinearIndex(i, j, jmax)

 734 ! v_in = F_LinearIndex(i-1, j, jmax)

 735 ! C(v) = 1.

 736 ! F(v) = F(v_in)

 737

 738 elseif(south_bc .eq. '1D_FLOW') then

 739 write(*,*) 'PERFCODE: Boundary condition ', south_bc, &

 740 'not supported for southern boundary'

 741

 742 elseif(south_bc .eq. 'west_1D' .AND. &
 743 west_bc .eq. '1D_FLOW') then

 744

 745 ! Put the answer for the southern most cell on the west end (v=1)

 746 ! in all of the southen cells

 747

 748 do i = 2, imax - 1

 749 v = F_LinearIndex(i, j, jmax)

136

 750 v_in= F_LinearIndex(1, 1, jmax)
 751 C(v) = 1.
 752 F(v) = F(v_in)

 753 end do

 754

 755 end if

 756

 757

 758

 759 !----------------------------

 760 ! C O R N E R P O I N T S

 761 !----------------------------

 762 ! only the 1D_FLOW condition is already handled for the corner points

 763

 764 ! NORTH EAST CORNER

 765 i = imax; j = jmax
 766 if(north_bc .eq. 'NO_FLOW' .AND. east_bc .eq. 'NO_FLOW') then

 767 ! Set porosity factor for this cell

 768 pf = F_por(h_old(i, j))

 769 ! Set the conveyance coefficients

 770 CALL Conveyance('west ', 'old', i, j, Cw)

 771 Ce = 0.0 ! <---- NO FLOW BOUNDARY

 772 CALL Conveyance('south', 'old', i, j, Cs)

 773 Cn = 0.0 ! <---- NO FLOW BOUNDARY

 774 ! Compute the part of the right-hand-side that is from

 775 ! time level n

 776 v = F_LinearIndex(i, j, jmax)
 777 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)

 778

 779 elseif(north_bc .eq. 'MOC_KIN' .AND. east_bc .eq. 'NO_FLOW') then

 780 ! use the depth in the adjacent MOC_KIN cell

 781 v = F_LinearIndex(i, j, jmax)
 782 v_in = F_LinearIndex(i-1, j, jmax)

 783 C(v) = 1.0
 784 F(v) = F(v_in)

 785

 786 elseif(north_bc .eq. 'NO_FLOW' .AND. &
 787 east_bc .eq. 'MOC_KIN') then

 788

 789 ! is a problem when there are no grade breaks

 790 ! just value of adjacent no flow cell ??

 791 v = F_LinearIndex(i, j, jmax)
 792 A(v) = -1.

 793 C(v) = 1.
 794 F(v) = 0.

 795

 796 elseif(Z(imax, jmax) .GE. Z(imax, jmax-1) .AND. &
 797 north_bc .NE. 'NO_FLOW') then

 798

 799 write(100, *) ' North east corner drains to the south &

 800 &consider NO_FLOW boundary for the north &

 801 &side of the domain. '

 802

 803 elseif(Z(imax, jmax) .LT. Z(imax, jmax-1) .AND. &

137

 804 east_bc .eq. 'MOC_KIN') then

 805

 806 ! drainage is to the north and MOC KIN will work

 807 call MOC_KIN_BC(i, j, rain(n), dt, 'east ', h_bound, 100)

 808 v = F_LinearIndex(i, j, jmax)
 809 C(v) = 1.
 810 F(v) = h_bound

 811

 812 end if

 813

 814

 815

 816 ! NORTH WEST CORNER POINTS

 817 i = 1; j = jmax
 818 if(north_bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW') then

 819 ! Set porosity factor for this cell

 820 pf = F_por(h_old(i, j))

 821 ! Set the conveyance coefficients

 822 Cw = 0.0 ! <---- NO FLOW BOUNDARY

 823 CALL Conveyance('east ', 'old', i, j, Ce)

 824 CALL Conveyance('south', 'old', i, j, Cs)

 825 Cn = 0.0 ! <---- NO FLOW BOUNDARY

 826 ! Compute the part if the right-hand-side that is from

 827 ! time level n

 828 v = F_LinearIndex(i, j, jmax)
 829 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)

 830

 831 elseif(north_bc .eq. 'MOC_KIN' .AND. west_bc .eq. 'NO_FLOW') then

 832 !use the depth from the adjaent MOC_KIN cell

 833 v = F_LinearIndex(i, j, jmax)
 834 v_in = F_LinearIndex(i+1, j, jmax)
 835 C(v) = 1.0
 836 F(v) = F(v_in)

 837

 838 elseif(west_bc .eq. 'eastKIN') then

 839

 840 v = F_LinearIndex(i, j, jmax)

 841 ! index of corresponding eastern cell

 842 ve = F_LinearIndex(imax, j, jmax)

 843 ! Use solutions from east side on the west side

 844 C(v) = C(ve)
 845 F(v) = F(ve)

 846

 847 end if

 848

 849

 850

 851 ! SOUTH EAST CORNER

 852 i = imax; j = 1
 853 if(south_bc .eq. 'NO_FLOW' .and. east_bc .eq. 'NO_FLOW') then
 854 pf = F_por(h_old(i, j))

 855 ! Set the conveyance coefficients

 856 CALL Conveyance('west ', 'old', i, j, Cw)

 857 Ce = 0.0 ! <---- NO FLOW BOUNDARY

138

 858 Cs = 0.0 ! <---- NO FLOW BOUNDARY

 859 CALL Conveyance('north', 'old', i, j, Cn)

 860 ! Compute the part of the right-hand-side that is from

 861 ! time level n

 862 v = F_LinearIndex(i, j, jmax)
 863 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)

 864

 865 elseif(south_bc .eq. 'MOC_KIN' .AND. east_bc .eq. 'NO_FLOW') then

 866 ! use the depth in the adjacent MOC_KIN cell

 867 v = F_LinearIndex(i, j, jmax)
 868 v_in = F_LinearIndex(i-1, j, jmax)
 869 C(v) = 1.0
 870 F(v) = F(v_in)

 871

 872 elseif(south_bc .eq. 'MOC_KIN' .AND. east_bc .eq. 'MOC_KIN') then

 873

 874 call MOC_KIN_BC(i, j, rain(n), dt, 'east ', h_bound, 100)

 875 v = F_LinearIndex(i, j, jmax)

 876 C(v) = 1.
 877 F(v) = h_bound

 878

 879 end if

 880

 881 ! SOUTHWEST CORNER

 882 i = 1; j = 1
 883 if(south_bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW') then
 884 pf = F_por(h_old(i, j))

 885 ! Set the conveyance coefficients

 886 Cw = 0.0 ! <---- NO FLOW BOUNDARY

 887 CALL Conveyance('east ', 'old', i, j, Ce)

 888 Cs = 0.0 ! <---- NO FLOW BOUNDARY

 889 CALL Conveyance('north', 'old', i, j, Cn)

 890 ! Compute the part of the right-hand-side that is from

 891 ! time level n

 892 v = F_LinearIndex(i, j, jmax)
 893 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)

 894

 895 elseif(south_bc .eq. 'MOC_KIN' .AND. west_bc .eq. 'NO_FLOW') then

 896 ! use the depth in the adjacent MOC_KIN cell

 897 v = F_LinearIndex(i, j, jmax)
 898 v_in = F_LinearIndex(i+1, j, jmax)
 899 C(v) = 1.0
 900 F(v) = F(v_in)

 901

 902 elseif(west_bc .eq. 'eastKIN') then

 903

 904 v = F_LinearIndex(i, j, jmax)

 905 ! index of corresponding eastern cell

 906 ve = F_LinearIndex(imax, j, jmax)

 907 ! Use solutions from east side on the west side

 908 C(v) = C(ve)
 909 F(v) = F(ve)

 910

 911

139

 912 end if

 913

 914

 915 !---

 916 ! D O M A I N I N T E R I O R

 917 !---

 918 ! Compute the part of the right hand side of the linear system

 919 ! that is from time level n (the stationary part that does not

 920 ! change as the iteration progresses)

 921 do j = 2, jmax -1; do i = 2, imax - 1

 922

 923 ! Set porosity factor for this cell

 924 pf = F_por(h_old(i, j))

 925 ! Set the conveyance coefficients

 926 CALL Conveyance('west ', 'old', i, j, Cw)

 927 CALL Conveyance('east ', 'old', i, j, Ce)

 928 CALL Conveyance('south', 'old', i, j, Cs)

 929 CALL Conveyance('north', 'old', i, j, Cn)

 930 ! Compute the part of the right-hand-side that is from

 931 ! time level n

 932 v = F_LinearIndex(i, j, jmax)
 933 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)

 934

 935 end do; end do

 936

 937

 938 !--

 939 !ITERATIVE (LAGGED) PART OF NON-LINEAR SYSTEM

 940 !--

 941

 942 !zero out matrix iteration counter

 943 timestep_solver_numits = 0

 944

 945 iteration: do q = 1, qmax

 946

 947 ! FRICTION SLOPE

 948 ! compute friction slope magnitudes based on the thickness

 949 ! from the previous iteration

 950 CALL FrictionSlope('itr', Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr)

 951

 952

 953 ! BOUNDARY CELLS

 954 !WESTERN BOUNDARY

 955 if(west_bc .eq. 'NO_FLOW') then
 956 i = 1
 957 do j = 2, jmax - 1
 958 pf = F_por(h_itr(i, j))
 959 Cw1 = 0.0 !<---------------No flow boundary

 960 CALL Conveyance('east ', 'itr', i, j, Ce1)

 961 CALL Conveyance('south', 'itr', i, j, Cs1)

 962 CALL Conveyance('north', 'itr', i, j, Cn1)

 963 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

 964 end do

 965 end if

140

 966

 967 !EASTERN BOUNDARY

 968 if(east_bc .eq. 'NO_FLOW') then

 969 i = imax
 970 do j = 2, jmax - 1
 971 pf = F_por(h_itr(i, j))

 972 CALL Conveyance('west ', 'itr', i, j, Cw1)

 973 Ce1 = 0.0 !<---------------No flow boundary

 974 CALL Conveyance('south', 'itr', i, j, Cs1)

 975 CALL Conveyance('north', 'itr', i, j, Cn1)

 976 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

 977 end do
 978 end if

 979

 980 !SOUTHERN BOUNDARY

 981 if(south_bc .eq. 'NO_FLOW') then
 982 j = 1
 983 do i = 2, imax - 1

 984 ! Set porosity factor for this cell

 985 pf = F_por(h_itr(i, j))

 986 ! Set the conveyance coefficients

 987 CALL Conveyance('west ', 'itr', i, j, Cw1)

 988 CALL Conveyance('east ', 'itr', i, j, Ce1)

 989 Cs1 = 0.0 ! <---- NO FLOW BOUNDARY

 990 CALL Conveyance('north', 'itr', i, j, Cn1)

 991 ! Fill in the linear system

 992 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

 993 end do

 994 end if

 995

 996

 997 !NORTHERN BOUNDARY

 998 if(north_bc .eq. 'NO_FLOW') then

 999 j = jmax
1000 do i = 2, imax - 1

1001 ! Set porosity factor for this cell

1002 pf = F_por(h_itr(i, j))

1003 ! Set the conveyance coefficients

1004 CALL Conveyance('west ', 'itr', i, j, Cw1)

1005 CALL Conveyance('east ', 'itr', i, j, Ce1)

1006 CALL Conveyance('south', 'itr', i, j, Cs1)

1007 Cn1 = 0.0 ! <---- NO FLOW BOUNDARY

1008 ! Fill in the linear system

1009 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1010 end do
1011 end if

1012

1013

1014 !NORTH WEST CORNER

1015 if(north_bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW') then
1016 i = 1; j = jmax

1017 ! Set porosity factor for this cell

1018 pf = F_por(h_itr(i, j))

1019 ! Set the conveyance coefficients

141

1020 Cw1 = 0.0 ! <---- NO FLOW BOUNDARY

1021 CALL Conveyance('east ', 'itr', i, j, Ce1)

1022 CALL Conveyance('south', 'itr', i, j, Cs1)

1023 Cn1 = 0.0 ! <---- NO FLOW BOUNDARY

1024 ! Fill in the linear system

1025 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1026 end if

1027

1028 !NORTH EAST CORNER

1029 if(north_bc .eq. 'NO_FLOW' .AND. east_bc .eq. 'NO_FLOW') then
1030 i = imax; j = jmax

1031 ! Set porosity factor for this cell

1032 pf = F_por(h_itr(i, j))

1033 ! Set the conveyance coefficients

1034 CALL Conveyance('west ', 'itr', i, j, Cw1)

1035 Ce1 = 0.0 ! <---- NO FLOW BOUNDARY

1036 CALL Conveyance('south', 'itr', i, j, Cs1)

1037 Cn1 = 0.0 ! <---- NO FLOW BOUNDARY

1038 ! Fill in the linear system

1039 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1040 end if

1041

1042

1043 ! SOUTH WEST CORNER

1044 if(south_bc .eq. 'NO_FLOW' .and. &
1045 west_bc .eq. 'NO_FLOW') then

1046

1047 i = 1; j = 1

1048 pf = F_por(h_itr(i, j))
1049 Cw1 = 0.0

1050 call conveyance('east ', 'itr', i, j, Ce1)

1051 Cs1 = 0.0

1052 call Conveyance('north', 'itr', i, j, Cn1)

1053 call set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1054

1055 end if

1056

1057

1058 ! SOUTH EAST CORNER

1059 if(south_bc .eq. 'NO_FLOW' .and. &
1060 east_bc .eq. 'NO_FLOW') then

1061

1062 i = 1; j = 1

1063 pf = F_por(h_itr(i, j))

1064 call conveyance('east ', 'itr', i, j, Cw1)

1065 Ce1 = 0.0
1066 Cs1 = 0.0

1067 call Conveyance('north', 'itr', i, j, Cn1)

1068 call set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1069

1070 end if

1071

1072

1073 ! INTERIOR of DOMAIN

142

1074 do j = 2, jmax - 1; do i = 2, imax - 1

1075

1076 ! set porosity factor for this cell

1077 pf = F_por(h_itr(i, j))

1078 ! These things Do change as the iteration progresses

1079 CALL Conveyance('west ', 'itr', i, j, Cw1)

1080 CALL Conveyance('east ', 'itr', i, j, Ce1)

1081 CALL Conveyance('south', 'itr', i, j, Cs1)

1082 CALL Conveyance('north', 'itr', i, j, Cn1)

1083 ! Fill in the linear system

1084 CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))

1085

1086 end do; end do

1087

1088

1089 ! TRANSITION CHECK

1090 ! test to see if there is a transition to or from sheet flow

1091 ! happening during this timestep. Use under-relaxtion to

1092 ! control oscillations during a transition timestep.

1093

1094 transition = .false.
1095 do j = 1, jmax
1096 do i = 1, imax

1097 ! integers used to assure correct behavor when equal

1098 pf_int = nint(F_por(h_old(i,j)))
1099 pf1_int= nint(F_por(h_itr(i,j)))
1100 if(pf_int .NE. pf1_int) then
1101 transition = .true.

1102 endif
1103 end do
1104 end do

1105

1106 if(transition .eqv. .true.) then

1107 relaxation_factor = relax_tran
1108 eps_itr_tol = eps_itr * 10.
1109 else
1110 relaxation_factor = relax
1111 eps_itr_tol = eps_itr

1112 endif

1113

1114

1115 ! CALL diagdom_penta(A, B, C, D, E, n, LB, UB, diagdom)

1116 ! WRITE(100,*) 'Timestep ', n, 'Iteration ', q, &

1117 ! 'Is matrix diagonally dominant?', diagdom

1118

1119

1120 ! Confirm that there is a value of C for all of the rows

1121 ! this is mostly a check to see that the corner points of

1122 ! the domain had values put in.

1123 do v = 1, vmax
1124 if(abs(C(v)) .LT. TINY(C(v))) then
1125 write(100,*) ' No value of C: v = ', v, 'C(v)=', C(v)
1126 write(*,*) 'STOPPING PROGRAM'

1127 STOP

143

1128 end if
1129 end do

1130

1131

1132

1133 !CALL SOLVER

1134 ! gauss_seidel_penta(A,B,C,D,E,F,n,LB,UB,tolit,maxit,Xold,Xnew)

1135 CALL GAUSS_SEIDEL_penta(A, B, C, D, E, F, vmax, jmax, jmax, eps_matrix, maxit,&

1136 h_itr_vec, h_tmp_vec, 100, solver_numits)

1137

1138

1139 ! Compute residual and relative change for this iteration. This took

1140 ! some careful thought to handle both filling and draining cases.

1141 ! Relative change is used when the solution is far from zero

1142 ! and absolute change (residual) is used near zero.

1143

1144

1145 ! Should put residual/ relchng computation block into a subroutine.

1146

1147 do v = 1, vmax

1148

1149 if(h_tmp_vec(v) .GT. TINY(h_tmp_vec(v))) then

1150

1151 ! Compute residual for this iteration

1152 residual(v) = h_tmp_vec(v) - h_itr_vec(v)

1153

1154 ! Handle a result that is effectively zero by

1155 ! using an absolute tolerance instead of

1156 ! a relative one

1157 if(h_tmp_vec(v) .LE. h_pfc_min .and. &
1158 residual (v) .LE. eps_itr_tol) then

1159

1160 relchng(v) = 0.0

1161

1162 else
1163 relchng (v) = residual (v) / h_itr_vec(v)
1164 endif

1165

1166 elseif(h_tmp_vec(v) .LE. TINY(h_tmp_vec(v))) then

1167

1168 ! the model is saying the cell is empty,

1169 ! so force the solution to be zero

1170 h_tmp_vec(v) = 0.0

1171 ! compute the residual

1172 residual(v) = h_tmp_vec(v) - h_itr_vec(v)

1173 ! For the zero case, use an absolute rather than

1174 ! relative tolerance by setting the value of relchng

1175 ! below the tolerance instead of computing it.

1176 if(abs(residual(v)) .LE. eps_itr_tol) then

1177

1178 relchng(v) = 0.0
1179 endif
1180 endif

1181

144

1182 end do

1183

1184

1185 ! Store solution history during iteration in case

1186 ! the model fails to converge

1187 h_temp_hist(:, q) = h_tmp_vec

1188

1189

1190 !Output the biggest change for this iteration

1191 WRITE(100,*) 'PERFCODE: Iteration q =', q , &

1192 'Solver Interations =', solver_numits , &

1193 'L_inf_norm =', maxval(abs(relchng)) , &

1194 'At Cell v =', maxloc(abs(relchng)) , &

1195 ' L2 Norm =', F_L2_NORM(relchng, vmax) , &

1196 'eps_itr_tol =', eps_itr_tol

1197

1198 ! CONVERGENCE TEST

1199 ! Exit iteration loop if this timestep has converged

1200 if(maxval(abs (relchng)) .le. eps_itr_tol .AND. &
1201 F_L2_NORM (relchng, vmax) .le. eps_itr_tol) then
1202 WRITE(100,*) 'Time step n = ', n, time(n),'sec ' , &

1203 'rain(n) = ', rain(n) , &

1204 ' converged in q = ', q, ' iterations.' , &

1205 ' maxdepth=', maxval(h_tmp_vec), &

1206 ' max 1D =', maxval(h_new_1D) , 'min 1D =', minval(

h_new_1D)

1207

1208 WRITE(100,*)''

1209 !output results for each timestep for checking purposes

1210 ! write(50,2) n, h_itr_vec(:)

1211 EXIT iteration
1212 endif

1213

1214

1215

1216 !update iteration variables

1217 h_itr_vec = h_itr_vec + relaxation_factor * residual

1218

1219

1220

1221 ! un-linearize the thicknesses back to a matrix h_itr_vec ---> h_itr

1222 call unlinearize(h_itr_vec, imax, jmax, vmax, h_itr)

1223

1224

1225 end do iteration

1226

1227

1228 !Give Error if Iteration fails to converge and write some diagnostics

1229 if (q .gt. qmax) then
1230 WRITE(*,*) ' Iteration failed to converge for time level n = ', n

1231 !output the coefficient matrix and main diagonal

1232 call write_system(A, B, C, D, E, F, vmax, 'ABCDEF.csv')

1233 call write_flipped_matrix(h_old, imax, jmax, 'h_old.csv')

1234 call write_matrix(h_temp_hist, vmax, qmax, 'h_temp_hist.csv')

145

1235 call WRITE_VECTOR(residual, vmax, 'residual_iteration.csv')

1236 call WRITE_VECTOR(relchng, vmax, 'relchng_iteration.csv')

1237 ! call put_bands(a, b, c, d, e, vmax, lb, ub, amatrix)

1238 ! call write_matrix(amatrix, vmax, vmax, 'amatrix.csv')

1239 EXIT time_stepping
1240 end if

1241

1242

1243 ! Compute Change for this time step

1244 !Time stepping residual (re-uses the arrays)

1245 residual = h_tmp_vec - h_old_vec

1246

1247 ! compute relative change for this timestep

1248 do v = 1, vmax
1249 if(abs(residual(v)) .LT. TINY(residual(v))) then

1250 ! The converged solution is zero

1251 relchng(v) = 0.0
1252 else

1253 !the solution is non-zero, compute as ususal

1254 relchng(v) = residual(v) / h_old_vec(v)
1255 endif
1256 end do

1257

1258 maxrelchng_ss = maxval (ABS(relchng))

1259

1260 !call WRITE_VECTOR(relchng, vmax, 'relchng_time.csv')

1261

1262

1263

1264 !Update the old and new solutions

1265 !At the end of the iteration, we have found values for the

1266 !next time step.

1267 h_new_vec = h_tmp_vec

1268

1269 !but when we go back to the top of the loop, the old is what we just found

1270 h_old_vec = h_new_vec

1271 !and now we need to unlinearize the h_old values

1272 call unlinearize(h_old_vec, imax, jmax, vmax, h_old)

1273

1274

1275

1276

1277

1278

1279 !--

1280 ! Summary Info for this timestep

1281 !---

1282

1283 numit (n) = q
1284 loc (n) = maxloc (abs(relchng), dim = 1)
1285 maxdiff (n) = relchng (loc (n))
1286 maxthk (n) = maxval(h_old_vec)
1287 L2_History (n) = F_L2_Norm(relchng, vmax)

1288 h_imid_j1_hist(n) = h_old(imax/2, 1)

146

1289 h_imid_max_hist(n) = maxval(h_old(imax/2 , :))

1290

1291 ! Compute the flow into the southern boundary for this time step

1292 ! (assume that we can neglect the drainage area of the last row)

1293 j = 2
1294 do i = 1, imax

1295 CALL Conveyance('south', 'itr', i, j, Cs1)

1296 Qout(n) = Qout(n) + Cs1 * area(i,j) * &

1297 ((h_itr(i, j-1) - h_itr(i,j)) &
1298 + (Z(i, j-1) - Z(i,j)))
1299 end do

1300

1301

1302 !SELECTIVELY STORE MODEL RESULTS

1303 ! MAXIMUM DEPTH

1304 ! Check to see if this was the maximum time-step and store if so

1305 if(maxval(h_old_vec) .GT. maxval(h_max)) then

1306 call unlinearize(h_old_vec, imax, jmax, vmax, h_max)

1307 endif

1308

1309 ! MAXIMUM DISCHARGE

1310 if(Qout(n) .GT. maxval(Qout(1:n-1))) then

1311 call unlinearize(h_old_vec, imax, jmax, vmax, h_Q_max)

1312 endif

1313

1314 ! MAXIMUM MID DOMAIN DISCHARGE DEPTH

1315 if(h_imid_j1_hist(n) .GT. maxval(h_imid_j1_hist(1:n-1))) then

1316 call unlinearize(h_old_vec, imax, jmax, vmax, h_imid_j1_max)

1317 endif

1318

1319 ! MAXIMUM MID DOMAIN DISCHARGE DEPTH

1320 if(h_imid_max_hist(n) .GT. maxval(h_imid_max_hist(1:n-1))) then

1321 call unlinearize(h_old_vec, imax, jmax, vmax, h_imid_max)

1322 endif

1323

1324

1325 ! ANIMATION

1326 ! Decide if the results from this timestep should be stored for

1327 ! animation output. Take the time, divide by the animation step,

1328 ! round to the lowest integer and then convert to integer

1329 if(animate .eqv. .true.) then

1330

1331 if(int(floor(time(n) / dt_ani)) .gt. ani) then

1332 ! set the value of ani

1333 ani = ani + 1
1334 print *, 'n = ', n, 'ani=', ani

1335 ! store the solution for this step

1336 h_vec_ani(:, ani) = h_old_vec

1337 ! also store a label

1338 write(sim_time2, 123) time_simulated
1339 ani_lab(ani) = 'h'//sim_time2//'s'
1340 ani_time(ani) = time_simulated
1341 endif

1342

147

1343 endif

1344

1345

1346

1347 !STEADY-STATE CHECK (disabled in favor of setting

1348 ! the time for the simulation to run)

1349 !IF (maxrelchng_ss .le. eps_ss .AND. &

1350 ! F_L2_NORM(relchng, v) .le. eps_ss) then

1351 ! WRITE(*,*) 'Simulation reached steady state after', n, &

1352 ! &'time steps or', time_simulated, 'seconds'

1353 ! EXIT time_stepping

1354 !end if

1355

1356 end do time_stepping

1357

1358 !for outputting each timestep

1359 ! close(50)

1360

1361 !close log file

1362 close(100)

1363

1364 !---

1365 ! >>>>>>>>>> P O S T P R O C E S S I N G <<<<<<<<<<

1366 !---

1367

1368

1369

1370 !---

1371 ! >>>>>>>>>> W R I T E O U T P U T F I L E S <<<<<<<<<<

1372 !---

1373 !Set date and time stamps

1374

1375 CALL SYSTEM_CLOCK(RUN_END_TIME, COUNT_RATE, COUNT_MAX)

1376 call DATE_AND_TIME(FILE_DATE,FILE_TIME)

1377 call CPU_TIME(cputime)

1378

1379 !---

1380 ! file to show 1D solution along i = imax / 2; j = 1:jmax

1381

1382 OPEN(UNIT = 10, FILE = 'PERFCODE.csv', STATUS='REPLACE')
1383 WRITE(10,*) 'Output From PERFCODE.f95'
1384 WRITE(10,*) 'Timestamp,', FILE_DATE,' ', FILE_TIME,','
1385 do i = 1, 18

1386 write(10, *) input_variables(i), ',', input_values(i), ','
1387 end do
1388 write(10,*) 'north_bc,', north_bc
1389 write(10,*) 'south_bc,', south_bc
1390 write(10,*) 'east_bc,', east_bc

1391 write(10,*) 'west_bc,', west_bc

1392

1393 WRITE(10,200) 'Average Rainfall Intensity (m/s),', &
1394 sum(rain(1:nlast)) / time_simulated
1395 WRITE(10,200) 'Average Rainfall Intensity (cm/hr),',&

1396 sum(rain(1:nlast)) / time_simulated * 3600. * 100.

148

1397 WRITE(10,200) 'Final Time (sec),', time_simulated
1398 WRITE(10,201) 'Number of cells longitudinally,', imax
1399 WRITE(10,201) 'Number of cells transversly,' , jmax

1400 WRITE(10,201) 'Total Number of Grid Cells,', vmax
1401 WRITE(10,200) 'CPU Time (seconds),', cputime
1402 WRITE(10,200) 'Run Time (seconds),', &
1403 real(run_end_time - run_start_time)/real(count_rate)
1404 WRITE(10, *) '************************** &

1405 &1D MODEL OUTPUT IN [SI] UNITS &

1406 &***********************************,'

1407 i = imax / 2
1408 write(10,*) ' i = ', i,','
1409 write(10, *) 'j,eta,Z,PFC_Surf,h,Head,Surf_Thk.mm,'

1410 do j = 1, jmax
1411 v = F_LinearIndex(i, j, jmax)
1412 write(10, 2) j, CV_Info(v)%eta, Z(i,j), Z(i,j) + b_pfc, &
1413 h_old(i,j), Z(i,j) + h_old(i,j), &
1414 (h_old(i,j) - b_pfc) * 1000.

1415 end do

1416

1417

1418

1419 !--

1420 ! 3d plotting output for maximum depth

1421 ! (contour plots of the resuls are made from this file)

1422 open(unit = 10, file = 'max_depth.csv', status = 'replace')

1423

1424 write(10, *) 'v, X, Y, Z, h,'

1425

1426 do j = 1, jmax
1427 do i = 1, imax
1428 v = F_LinearIndex(i, j, jmax)
1429 write(10, 2) v, CV_Info (v) % X, &

1430 CV_Info(v) % Y, Z(i,j), h_max(i,j)

1431 end do
1432 end do

1433

1434 close(10)

1435

1436

1437

1438 !---

1439 ! 3d plotting output for maximum discharge

1440 ! (contour plots of the resuls are made from this file)

1441 open(unit = 10, file = 'max_Q.csv', status = 'replace')

1442

1443 write(10, *) 'v, X, Y, Z, h,'

1444

1445 do j = 1, jmax
1446 do i = 1, imax
1447 v = F_LinearIndex(i, j, jmax)
1448 write(10, 2) v, CV_Info (v) % X, &

1449 CV_Info(v) % Y, Z(i,j), h_Q_max(i,j)

1450 end do

149

1451 end do

1452

1453 close(10)

1454 !--

1455 ! 3d plotting output for maximum mid-domain outlet depth

1456 ! (contour plots of the resuls are made from this file)

1457 open(unit = 10, file = 'max_imidj1depth.csv', status = 'replace')

1458

1459 write(10, *) 'v, X, Y, Z, h,'

1460

1461 do j = 1, jmax
1462 do i = 1, imax
1463 v = F_LinearIndex(i, j, jmax)

1464 write(10, 2) v, CV_Info (v) % X, &

1465 CV_Info(v) % Y, Z(i,j), h_imid_j1_max(i,j)

1466 end do
1467 end do

1468

1469 close(10)

1470 !---

1471 ! 3d plotting output for maximum mid-domain outlet depth

1472 ! (contour plots of the resuls are made from this file)

1473 open(unit = 10, file = 'max_imiddepth.csv', status = 'replace')

1474

1475 write(10, *) 'v, X, Y, Z, h,'

1476

1477 do j = 1, jmax
1478 do i = 1, imax

1479 v = F_LinearIndex(i, j, jmax)
1480 write(10, 2) v, CV_Info (v) % X, &

1481 CV_Info(v) % Y, Z(i,j), h_imid_max(i,j)

1482 end do
1483 end do

1484

1485 close(10)

1486

1487

1488

1489 !--

1490 ! Write parameters to a seperate file for convenicence

1491 open(unit = 15, file = 'params.csv', status = 'REPLACE')
1492 write(15, 155) input_variables(:), 'north_bc', 'south_bc', 'east_bc', 'west_bc'
1493 write(15, 156) input_values(:), north_bc, south_bc, east_bc, west_bc

1494 close(15)

1495

1496 155 format (22(A, ','))
1497 156 format (18(E, ','), 4 (A, ','))

1498 !---

1499 !Write time history to a file

1500 ! (hydrographs and anything else time-dependant

1501 ! is plotted from this file)

1502

1503 OPEN(UNIT = 20, FILE = 'details.csv', STATUS='REPLACE')

1504 WRITE(20,*) 'Timestamp,', FILE_DATE, ' ', FILE_TIME, ','

150

1505 DO i = 1, 18
1506 WRITE(20, *) input_variables(i), ',', input_values(i), ','
1507 END DO

1508 write(20,*) 'north_bc,', north_bc
1509 write(20,*) 'south_bc,', south_bc
1510 write(20,*) 'east_bc,', east_bc
1511 write(20,*) 'west_bc,', west_bc
1512 WRITE(20,*) 'imax,', imax, ','

1513 WRITE(20,*) 'jmax,', jmax, ','
1514 WRITe(20,*) 'vmax,', vmax, ','
1515 WRITE(20,*) '-----,'
1516 WRITE(20,*) 'Timestep,Iterations,MaxRelChng,MaxLocn,' , &

1517 'L2_Norm,Rain.mmphr,' , &

1518 'MaxThk.cm,Time,Qout.Lps,' , &

1519 'h_imid_j1_hist,' , &

1520 'h_imid_max_hist,'

1521 DO n = 1, nlast
1522 WRITE(20,300) n, numit(n), maxdiff(n), loc(n) , &

1523 L2_History(n), rain(n)*1000.*3600. , &
1524 maxthk(n)*100., time(n), -Qout(n)*1000. , &

1525 h_imid_j1_hist(n), h_imid_max_hist(n)

1526 end do
1527 close(20)

1528

1529

1530 !---

1531 ! Output depth grid for last timestep

1532

1533 ! an internal write statement to store the value of the REAL variable

1534 ! "time_simulated" in the CHARACTER variable "out_time"

1535 write(out_time, 111) time_simulated

1536

1537 call write_flipped_matrix(h_old, imax, jmax, 'h_old'//out_time//' sec.csv')

1538

1539 !--

1540 ! Output iteration history for the last time-step

1541

1542 call write_matrix(h_temp_hist, vmax, qmax, 'h_temp_hist'//out_time//' sec.csv')

1543

1544 !---

1545 ! Animation output

1546

1547 if(animate .eqv. .TRUE.) then

1548

1549 !Animation results

1550 open(unit = 70, file = 'animate.csv', status = 'REPLACE')
1551 write(70, 700) 'v,X,Y,Z,', ani_lab(:)
1552 do j = 1, jmax

1553 do i = 1, imax
1554 v = F_LinearIndex(i, j, jmax)
1555 write(70, 2) v, CV_Info(v) % X, &

1556 CV_Info(v) % Y, Z(i,j), h_vec_ani(v, :)

1557 end do

1558 end do

151

1559 close(70)

1560

1561 700 format((A, 10000(A, ',')))

1562

1563 !Also sperately output the list of animation lables

1564 open(unit = 71, file = 'ani_labs.csv', status = 'REPLACE')
1565 write(71, *) 'ani,lab,time,'
1566 do ani = 1, animax

1567 write(71, 711) ani, ani_lab(ani), ani_time(ani)
1568 end do
1569 close(71)

1570

1571 end if

1572

1573

1574 711 format((I, ','), (A, ','), (F8.2, ','))

1575

1576 !---

1577 ! Output grid numbering scheme to a file

1578 ! store grid numbering scheme and write it to a file

1579 do j = 1, jmax
1580 do i = 1, imax
1581 grid(j, i) = F_LinearIndex(i, j, jmax)

1582 end do
1583 end do

1584

1585 open(unit = 30, file = 'grid.csv', status = 'REPLACE')
1586 do j = jmax, 1, -1

1587 WRITE(30, 400) grid(j, :)
1588 end do
1589 close(30)

1590

1591 !---

1592 !Format statements

1593

1594 2 FORMAT(I, ',', 10000 (E, ','))
1595 10 FORMAT(' ', (i3, ' '), (F10.3, ' ') , F10.6)
1596 111 FORMAT(f9.2)

1597 200 FORMAT (A, (E, ','))
1598 201 FORMAT (A, (I, ','))
1599 300 FORMAT (2 (I, ','), F12.7, ',' , & ! n, numit, maxdif

1600 I, ',' , E, ',' , & ! loc, L2_History

1601 2 (F12.8, ','), (F12.3, ','), 3 (F12.8 ,',')) ! rain,

maxthk, time, Qout, h_imid_j1hist, h_imid_max_hist

1602 400 FORMAT(10000 (I, ','))
1603 401 FORMAT((I, ',') , 2(F12.7, ','))
1604 660 FORMAT(2(I, ','), 2(F12.7, ','))

1605 !--

1606 end program PERFCODE

1607 !==

1608 ! \\\\\\\\\\ E N D P R O G R A M //////////

1609 ! ////////// P E R F C O D E \\\\\\\\\\

1610 !===

152

Source File 2: shared.f95

 1 ! fortran_free_source

 2 !

 3 ! This module is part of PERFCODE, written by Bradley J. Eck.

 4 !

 5 ! File Date: 5 April 2010

 6 !

 7 ! Purpose: This module declares variables to be used globally

 8 !

 9 ! Notes: - Variable organization tries to mirror program

 10 ! the organization of the program

 11 ! - See begining of main program for alphabetical

 12 ! listing of variables with descriptions

 13 ! - Use ONLY statement in subroutines to restrict

 14 ! access to variables in this module

 15 !==

 16 ! \\\\\\\\\\ //////////

 17 MODULE SHARED

 18 ! ////////// \\\\\\\\\\

 19 !==

 20 implicit none
 21 save

 22

 23 !--

 24 !PARAMETERS INPUT FILE

 25 !--

 26 ! PFC Properties

 27 REAL :: K ! Hydraulic Conductivity [m/s]

 28 REAL :: por ! Porosity [--]
 29 REAL :: b_pfc !PFC Thickness [m]
 30 REAL :: n_mann !Manning's n [s / m ̂ (1/3)]

 31 ! Physical constants

 32 REAL :: g ! Gravitational Acceleration [m/s/s]

 33 ! Time Steps

 34 REAL :: dt_pfc, dt_sheet, max_time

 35 ! Grid Spacing

 36 REAL :: dx, dy

 37 !Tolerances

 38 INTEGER :: qmax, maxit
 39 REAL :: eps_matrix, eps_itr, eps_ss
 40 REAL :: relax, relax_tran

 41 !Initial Condition

 42 real :: h0 ! initial depth in meters

 43 !Boundary Conditions

 44 character(len=7) :: north_bc, south_bc, east_bc, west_bc

 45 !Animation Options

 46 logical :: animate ! at all and for this step
 47 real :: dt_ani

 48 !--------------------------

 49 ! OTHER PARAMETERS

 50 !--------------------------

153

 51 INTEGER, PARAMETER :: max_rec = 1000
 52 REAL, PARAMETER :: h_pfc_min = 1.e-10 ! use this instead of TINY

 53

 54 !---------------------------

 55 ! RAINFALL

 56 !---------------------------

 57 INTEGER :: nrr ! Number of rainfall records
 58 REAL, DIMENSION(max_rec) :: rain_time, rain_rate

 59

 60

 61 !---

 62 ! GRID GENERATION

 63 !---

 64

 65 !----------------------

 66 ! Derived data types

 67 type CLSEG !describes a centerline segment
 68 real xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta, arclen

 69 end type CLSEG

 70

 71 type gridcell ! Summary information for a grid cell
 72 integer :: i, j, segment
 73 real :: xi, eta

 74 real :: X , Y
 75 end type gridcell

 76

 77 ! allocatable variables of derived types

 78 type(CLSEG), allocatable, dimension(:) :: seg

 79 type(gridcell) , allocatable, dimension(:) :: CV_Info !17

 80 !-------------------------

 81

 82 !Array sizes

 83 integer :: imax, jmax, vmax

 84

 85 ! Grid numbering scheme

 86 integer, allocatable, dimension(:,:) :: grid

 87

 88 ! Geometric Arrays

 89 REAL, ALLOCATABLE, DIMENSION(:,:) :: lng, wid, area, Z
 90 REAL, ALLOCATABLE, DIMENSION(:,:) :: lng_south, lng_north

 91

 92

 93 !---

 94 ! ELEVATIONS

 95 !--

 96

 97 !CROSS SECTION (Transverse direction)

 98 ! input file

 99 integer :: nr_cs
100 REAL :: slope_cs(10), wid_cs(10)

101

102 ! derived values

103 real, dimension(11) :: eta_cs=0., Z_cs=0.

104

154

105 !LONGITUDINAL PROFILE

106 integer :: nr_lp
107 real, dimension(100) :: dist_lp, Z_lp

108 real :: long_slope !longitudinal slope at each end of domain

109

110

111 ! 1D GRID GENERATION

112 integer, TARGET :: TNE

113 REAL, ALLOCATABLE, DIMENSION(:), TARGET :: EDX, XCV, ZCV, etaCV

114 ! 1D boudary conditions

115 real, allocatable, dimension(:) :: h_old_1d, h_new_1d
116 real, allocatable, dimension(:) :: slope_cs_1D, wid_cs_1d, eta_cs_1D

117

118

119 !--

120 ! INTERMEDIATE VARIABLES

121 !---

122

123 ! ARRAY INDICES AND LIMITING VALUES

124 integer :: i, j, v, q, n
125 integer :: ve
126 integer :: v_in !global index of 'inside' adjacent cell
127 integer :: nmax ! maximum number of time steps

128 integer :: nlast !the last timestep taken

129

130 ! TIME STUFF

131 REAL :: dt
132 REAL, ALLOCATABLE, DIMENSION(:) :: rain !rainfall depth for each time step

133 REAL, ALLOCATABLE, DIMENSION(:) :: time
134 real :: time_simulated = 0.
135 character(len = 9) :: out_time ! Characters to for internal writes to store
136 character(len = 8) :: sim_time ! simulation time w/o floating point error

99999.99

137 character(len = 8) :: sim_time2

138

139 ! FRICTION SLOPES, POROSITY FUNCTIONS, AND CONVEYANCE COEFFICIENTS

140 ! 'old' means time level 'n'

141 ! 'itr' or '1' means time level n+1

142 REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: Sfw_old, Sfe_old, Sfs_old, Sfn_old
143 REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr
144 REAL :: pf, pf1
145 REAL :: Cw , Ce , Cs , Cn
146 REAL :: Cw1, Ce1, Cs1, Cn1

147

148 ! BOUNDARY CONDITION STUFF

149 real :: eta_1D
150 real :: hs1, hs2, ds ! Sheet flow MOC
151 real :: hp1, hp2, dx_moc ! PFC flow MOC

152 real :: h_bound ! depth at boundary (returnd by MOC_KIN or 1D_FLOW
153 real :: eta_0_hp2_max ! max possible value for the MOC BC

154

155 ! CONVERGENCE TESTING

156 logical :: transition

157 real :: relaxation_factor

155

158 REAL :: eps_itr_tol
159 integer :: pf_int, pf1_int ! use integers to detect transition
160 REAL, ALLOCATABLE, DIMENSION(:) :: residual, relchng

161 real :: maxrelchng_ss

162

163 ! LINEAR SYSTEM

164 ! Bands

165 REAL, ALLOCATABLE, DIMENSION(:) :: A, B, C, D, E, Fn, F1, F

166 ! Test for diagonal Dominance

167 logical diagdom

168 ! Square matrix for outputting/use with library solvers

169

170 !---

171 ! THE SOLUTION (at various stages and in various formats)

172 !---

173

174 ! Vector Form

175 REAL, ALLOCATABLE, DIMENSION(:) :: h_itr_vec, h_tmp_vec

176 REAL, ALLOCATABLE, DIMENSION(:) :: h_old_vec, h_new_vec

177

178 ! Vector form, within a timestep (during an iteration)

179 real, allocatable, dimension(:,:) :: h_temp_hist

180

181 ! Vector form, at intervals for animation

182 ! rows --> grid cells

183 ! cols --> times

184 REAL, ALLOCATABLE, DIMENSION(:,:) :: h_vec_ani

185

186 ! Matrix Form

187 REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: h_old, h_itr

188

189 ! Matrix form, at special times

190 real, allocatable, dimension(:,:) :: h_max, h_Q_max

191 real, allocatable, dimension(:,:) :: h_imid_j1_max, h_imid_max

192

193 !--

194 ! SUMMARY INFORMATION

195 !--

196

197 ! Input variables and values

198 character(len=10), dimension(18) :: input_variables
199 real, dimension(18) :: input_values

200

201 ! Information about each timestep

202 INTEGER, ALLOCATABLE, DIMENSION(:) :: numit, loc
203 REAL, ALLOCATABLE, DIMENSION(:) :: maxdiff
204 real, allocatable, dimension(:) :: maxthk
205 integer, allocatable, dimension(:) :: matrix_numits

206 real, allocatable, dimension(:) :: Qout, L2_History
207 integer :: solver_numits, timestep_solver_numits

208

209 ! time history of the depth at i=imax/2 j=1

210 real, allocatable, dimension(:) :: h_imid_j1_hist, h_imid_max_hist

211

156

212 !---

213 ! MISCELLANEOUS (gotta love this category)

214 !--

215

216 integer, dimension(60) :: astat=0 ! for keeping track of allocation statuses
217 integer, dimension(30) :: astat2(0:29) = 0

218

219 CHARACTER(8) FILE_DATE

220 CHARACTER(10) FILE_TIME

221

222 ! Routine timing

223 REAL :: cputime
224 integer :: run_start_time, run_end_time, count_rate, count_max

225

226 integer :: report = 1 ! determine if we should write out the timestep.

227

228 ! For animation output

229

230 integer :: ani = 0 ! use this like 'report'
231 integer :: animax ! maximum value of ani, compute from max_time / ani_step
232 character(len = 10), allocatable, dimension(:) :: ani_lab ! labels for

animtaion output

233 real, allocatable, dimension(:) :: ani_time

234 character(len = 10) :: lab

235

236 !==

237 ! \\\\\\\\\\ //////////

238 END MODULE SHARED

239 ! ////////// \\\\\\\\\\

240 !==

157

Source File 3: pfc2Dfuns.f95

 1 ! fortran_free_source

 2

 3 ! This module holds external procedures (subroutine and functions)

 4 ! for the pfc2D model (PERFCODE).

 5 ! Using module creates an explicit interface for the procedures

 6

 7

 8 module pfc2Dfuns

 9

 10 implicit none

 11

 12 contains

 13

 14 ! 1. F_LinearIndex

 15 ! 2. F_por

 16 ! 3. F_RHS_n

 17 ! 4. F_RHS_n1

 18

 19

 20 !===

 21 Function F_LinearIndex(i, j, jmax)

 22 ! Converts grid index to one-dimensional storage location

 23 implicit none
 24 integer, intent(in) :: i, j, jmax

 25 integer :: F_LinearIndex
 26 F_LinearIndex = (i - 1) * jmax + j

 27 end Function F_LinearIndex

 28 !==

 29

 30

 31 !==

 32 !Function to switch the porosity on/off if the water is in/out of the pavement

 33 FUNCTION F_por(h)

 34 USE shared, only: b_pfc, por

 35 IMPLICIT NONE
 36 REAL h, F_por
 37 if (h >= b_pfc) then
 38 F_por = 1.
 39 ELSEIF (h < b_pfc) then

 40 F_por = 1./por
 41 end if

 42 END Function F_por

 43 !==

 44

 45 Function F_RHS_n(i, j, Cw, Ce, Cs, Cn, rr, pf, dt) Result(Fn)

 46 ! Computes the RHS of the linear system for time level n

 47 use shared, only: h_old, Z, imax, jmax

 48 implicit none

 49 ! Arguments

 50 integer, intent(in) :: i, j
 51 real , intent(in) :: Cw, Ce, Cs, Cn, rr, pf, dt

158

 52 ! Internal variables

 53 ! added a bunch of dummy variables with if statements to have this function

 54 ! also work at the boundaries.

 55 real :: Fn
 56 real :: hw, he, hn, hs, Zw, Ze, Zs, Zn

 57

 58

 59 ! Thicknesses

 60 if(i == 1) then; hw = 0.0; else; hw = h_old(i-1,j); endif
 61 if(j == 1) then; hs = 0.0; else; hs = h_old(i,j-1); endif
 62 if(j == jmax) then; hn = 0.0; else; hn = h_old(i,j+1); endif
 63 if(i == imax) then; he = 0.0; else; he = h_old(i+1,j); endif

 64 ! Elevations

 65 if(i == 1) then; Zw = 0.0; else; Zw = Z(i-1,j); endif
 66 if(j == 1) then; Zs = 0.0; else; Zs = Z(i,j-1); endif
 67 if(j == jmax) then; Zn = 0.0; else; Zn = Z(i,j+1); endif
 68 if(i == imax) then; Ze = 0.0; else; Ze = Z(i+1,j); endif

 69

 70 !Compute the RHS from time level n

 71 Fn = h_old(i,j) + &
 72 pf * dt / 2. * (Cw * hw + Cs * hs &
 73 + Cn * hn + Ce * he &
 74 + Cw * Zw + Cs * Zs &

 75 + Cn * Zn + Ce * Ze &
 76 - (Cw + Cs + Cn + Ce) * h_old(i,j) &
 77 - (Cw + Cs + Cn + Ce) * Z(i,j) &
 78 + rr)

 79 end function F_RHS_n

 80 !===

 81

 82

 83 Function F_RHS_n1(i, j, Cw1, Ce1, Cs1, Cn1, rr, pf, dt) Result (F1)

 84 ! Computes the part of the RHS due to time level n+1

 85 use shared, only: Z, imax, jmax

 86 implicit none

 87 ! Arguments

 88 integer, intent(in) :: i,j
 89 real , intent(in) :: Cw1, Ce1, Cs1, Cn1, rr, pf, dt

 90 ! Internal Variables

 91 real :: F1
 92 real :: Zw, Ze, Zs, Zn

 93

 94 ! Elevations

 95 if(i == 1) then; Zw = 0.0; else; Zw = Z(i-1,j); endif
 96 if(j == 1) then; Zs = 0.0; else; Zs = Z(i,j-1); endif
 97 if(j == jmax) then; Zn = 0.0; else; Zn = Z(i,j+1); endif
 98 if(i == imax) then; Ze = 0.0; else; Ze = Z(i+1,j); endif

 99

100 F1 = pf * dt / 2. * (Cw1 * Zw + Cs1 * Zs &
101 + Cn1 * Zn + Ce1 * Ze &
102 - (Cw1 + Cs1 + Cn1 + Ce1)* Z(i,j) &
103 + rr)

104 end function F_RHS_n1

105 !===

159

106

107

108

109 end module pfc2Dfuns

Source File 4: Utilities.f95

 1 ! fortran_free_source

 2

 3 !==

 4 !==

 5 ! \\\\\\\\\\ B E G I N M O D U L E ///////////

 6 ! ////////// U T I L I T I E S \\\\\\\\\\\

 7 !==

 8 module utilities

 9 implicit none

 10 contains

 11

 12 ! This module holds subroutines and functions for various jobs:

 13 ! 1. Subroutine GET_BANDS

 14 ! 2. Subroutine PUT_BANDS

 15 ! 3. Subroutine UNLINEARIZE

 16 ! 4. Subroutine BILINEAR_INTERP

 17 ! 5. Function F_LINTERP

 18 ! 6. Function F_L2_NORM

 19 ! 7. Function F_PYTHAGSUM

 20 ! 8. Function F_EXTRAPOLATE

 21 !===

 22

 23

 24 !===

 25 ! \\\\\\\\\\ B E G I N F U N C T I O N ///////////

 26 ! ////////// G E T _ B A N D S \\\\\\\\\\\

 27 !===

 28 !

 29 ! PURPOSE: Extracts the five bands from a penta-diagonal matrix.

 30 !

 31 SUBROUTINE GET_BANDS(COEF, N, LB, UB, A, B, C, D, E)

 32 !

 33 ! COEF -- Penta-diagonal coefficient matrix.

 34 ! N -- number of unknowns (size of system)

 35 ! LB -- lower bandwidth

 36 ! UB -- upper bandwidth

 37 ! A,B -- lower bands of the penta-diagonal matrix

 38 ! C -- main diagonal

 39 ! D,E -- upper bands of the penta-diagonal matrix

 40 !--

 41 !VARIABLE DECLARATIONS

 42 ! Arguments

160

 43 integer, intent(in) :: N, LB, UB
 44 real, intent(in) :: COEF(N, N)
 45 real, intent(out) :: A(N), B(N), C(N), D(N), E(N)

 46 ! Internal variables

 47 integer :: i !looping variable

 48 !---

 49

 50 ! Lowermost subdiagonal

 51 do i = LB+1, n
 52 A(i) = coef(i,i-LB)
 53 end do

 54

 55 ! Subdiagonal

 56 do i = 2, n
 57 B(i) = coef(i,i-1)
 58 end do

 59

 60 ! Main Diagonal

 61 do i = 1, n
 62 C(i) = coef(i,i)
 63 end do

 64

 65 ! Super diagonal

 66 do i = 1, n-1
 67 D(i) = coef(i,i+1)
 68 end do

 69

 70

 71 ! Uppermost diagonal

 72 do i = 1, n - UB
 73 E(i) = coef(i,i+ub)
 74 end do

 75 !---

 76 end subroutine GET_BANDS

 77 !==

 78 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

 79 ! ////////// G E T _ B A N D S \\\\\\\\\\\

 80 !==

 81

 82 !==

 83 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 84 ! ////////// P U T _ B A N D S \\\\\\\\\\\

 85 !==

 86 !

 87 ! PURPOSE: Puts the five bands into a square matrix.

 88 !

 89 SUBROUTINE PUT_BANDS(A, B, C, D, E, N, LB, UB, COEF)

 90 !

 91 ! A,B -- lower bands of the penta-diagonal matrix

 92 ! C -- main diagonal

 93 ! D,E -- upper bands of the penta-diagonal matrix

 94 ! N -- number of unknowns (size of system)

 95 ! LB -- lower bandwidth

 96 ! UB -- upper bandwidth

161

 97 ! COEF -- Penta-diagonal coefficient matrix.

 98 !--

 99 !VARIABLE DECLARATIONS

100 ! Arguments

101 integer, intent(in) :: N, LB, UB
102 real, intent(in) :: A(N), B(N), C(N), D(N), E(N)
103 real, intent(out) :: COEF(N, N)

104 ! Internal variables

105 integer :: i !looping variable

106 !---

107 ! Fill coefficient matrix with zeros

108

109 coef(:,:) = 0.0

110

111 ! Lowermost subdiagonal

112 do i = LB+1, n
113 coef(i,i-LB) = A(i)
114 end do

115

116 ! Subdiagonal

117 do i = 2, n
118 coef(i,i-1) = B(i)
119 end do

120

121 ! Main Diagonal

122 do i = 1, n
123 coef(i,i) = C(i)
124 end do

125

126 ! Super diagonal

127 do i = 1, n-1
128 coef(i,i+1) = D(i)
129 end do

130

131

132 ! Uppermost diagonal

133 do i = 1, n - UB
134 coef(i,i+ub) = E(i)

135 end do

136 !---

137 end subroutine PUT_BANDS

138 !==

139 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

140 ! ////////// P U T _ B A N D S \\\\\\\\\\\

141 !==

142

143

144 !==

145 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

146 ! ////////// U N L I N E A R I Z E \\\\\\\\\\\

147 !==

148 subroutine unlinearize(vector, imax, jmax, vmax, matrix)

149

150 ! Puts unknowns in linear (vector) form into matrix form

162

151 ! Assumes column-wise ordering from southwest corner of domain

152 use pfc2Dfuns, only: F_LinearIndex

153 implicit none

154 !Arguments

155 integer, intent(in):: imax, jmax, vmax
156 real, dimension(vmax), intent(in) :: vector
157 real, dimension(imax, jmax), intent(out) :: matrix

158 !Internal Variables

159 integer :: i, j, v

160

161 DO j = 1, jmax
162 DO i = 1, imax
163 v = F_LinearIndex(i, j, jmax)

164 matrix(i,j) = vector(v)
165 end do
166 end do

167

168 end subroutine unlinearize

169 !===

170 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

171 ! ////////// U N L I N E A R I Z E \\\\\\\\\\\

172 !===

173

174 !===

175 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

176 ! ////////// B I L I N E A R _ I N T E R P \\\\\\\\\\

177 !===

178 subroutine BILINEAR_INTERP (X , Y , Z , &

179 x1, y1, z1, &

180 x2, y2, z2, &

181 x3, y3, z3, &

182 x4, y4, z4, &

183 dev, error)

184

185 ! Finds the value of Z at the point X,Y using Finite Element

186 ! style interpolation with a Bi-linear element. The physical

187 ! coordinates (x,y,z) are mapped into ksi, eta space that

188 ! ranges from -1 to 1. The values of ksi and eta for the point

189 ! X, Y are found by solving the non-linear system using the

190 ! Newton-Raphson method.

191 !

192 !

193

194 implicit none

195 !VARIABLE DECLARATIONS

196 ! Arguments

197 real, intent(in) :: X, Y ! Coordinates of point where Z is desired
198 real, intent(out) :: Z ! Unknown function value

199 real, intent(in) :: x1, y1, z1 ! Coordinates of point 1
200 real, intent(in) :: x2, y2, z2 ! " " point 2
201 real, intent(in) :: x3, y3, z3 ! " " point 3
202 real, intent(in) :: x4, y4, z4 ! " " point 4
203 integer, optional :: dev ! output device for writing errors

204 logical, optional :: error

163

205

206 ! Internal variables

207 real :: ksi, eta ! mapped coordinates of XY

208 real :: X_guess, Y_guess ! Values of X and Y computed from ksi and eta
209 real :: delta_ksi, delta_eta ! incremental change in values over iteration
210 real :: J_11, J_12, J_21, J_22 ! elements of the jacobian matrix
211 real :: PSI_1, PSI_2, PSI_3, PSI_4 ! Shape functions for BiLinear element
212 real, parameter :: tolit = 1.e-5 ! iteration tolerance

213 integer, parameter :: qmax = 10 ! maximum number of iterations
214 integer :: q ! looping variable
215 integer :: device ! output device

216

217 !--

218

219 ! Default values for output device

220 if(present(dev) .EQV. .FALSE.) then
221 device = 6
222 else

223 device = dev
224 end if

225

226

227 ! STEP 1: Find the value of ksi and eta that correspond to the point X,Y

228 ! initial guess for ksi and eta is in the middle of the element (0,0)

229 ksi = 0.0
230 eta = 0.0

231

232 Map: do q = 1, qmax

233

234 ! Values of the shape functions at the point (X, Y)

235 PSI_1 = 0.25 * (1. - ksi) * (1. - eta)
236 PSI_2 = 0.25 * (1. + ksi) * (1. - eta)
237 PSI_3 = 0.25 * (1. + ksi) * (1. + eta)

238 PSI_4 = 0.25 * (1. - ksi) * (1. + eta)

239

240 ! figure out value of X and Y using ksi and eta

241 X_guess = x1*PSI_1 + x2*PSI_2 + x3*PSI_3 + x4*PSI_4
242 Y_guess = y1*PSI_1 + y2*PSI_2 + y3*PSI_3 + y4*PSI_4

243

244

245 !compute values of jacobian

246 !J_11 = d X_guess / d ksi

247 J_11 = x1 / 4. * (eta - 1.) &

248 + x2 / 4. * (1. - eta) &
249 + x3 / 4. * (eta + 1.) &
250 - x4 / 4. * (eta + 1.)

251

252 !J_12 = d X_guess / d eta

253 J_12 = x1 / 4. * (ksi - 1.) &
254 - x2 / 4. * (ksi + 1.) &
255 + x3 / 4. * (ksi + 1.) &
256 + x4 / 4. * (1. - ksi)

257

258 !J_21 = d Y_guess / d ksi

164

259 J_21 = y1 / 4. * (eta - 1.) &
260 + y2 / 4. * (1. - eta) &
261 + y3 / 4. * (eta + 1.) &

262 - y4 / 4. * (eta + 1.)

263

264 !J_22 = d Y_guess / d eta

265 J_22 = y1 / 4. * (ksi - 1.) &
266 - y2 / 4. * (ksi + 1.) &

267 + y3 / 4. * (ksi + 1.) &
268 + y4 / 4. * (1. - ksi)

269

270 !Manual solution of 2 x 2 system: J * delta_ksi/eta = X/Y_guess - X/Y

271 delta_ksi = ((X_guess - X)*J_22 &

272 - (Y_guess - Y)*J_12) / &
273 (J_11 * J_22 &
274 - J_12 * J_21)

275

276 delta_eta = ((Y_guess - Y)*J_11 &

277 - (X_guess - X)*J_21) / &
278 (J_11 * J_22 &
279 - J_12 * J_21)

280

281

282 !write(device,*) 'BILINER_INTERP q=', q, 'delta_ksi =', delta_ksi, ' delta_eta',

delta_eta

283

284 ! update vales of ksi and eta

285 ! rembeber delta = ksi_q - ksi_q+1

286 ksi = ksi - delta_ksi
287 eta = eta - delta_eta

288

289 !Convergence Test

290 if(abs(delta_ksi) .LT. tolit .AND. &

291 abs(delta_eta) .LT. tolit) then

292

293 exit Map
294 endif

295

296 end do Map

297

298

299

300 !report mapping result

301 !write(device, *) 'BILINEAR_INTERP: Mapping result: ksi =', ksi, ' eta = ', eta

302

303 ! assume no error and change if there is one

304 if(present(error) .eqv. .TRUE.) then
305 error = .FALSE.

306 end if

307

308 ! Give Error if iteration fails to converge

309 if(q .GT. qmax) then
310 write(device, *) 'BILINEAR_INTERP: Mapping iteration failed. ksi =', ksi, '

eta = ', eta

165

311

312 if(present(error) .eqv. .TRUE.) then !assign an error if the variable was

provided.

313 error = .TRUE.
314 end if
315 end if

316

317

318 ! Confirm that mapped point lies inside the range of the datapoints

319 if(abs(ksi) .GT. 1. + tolit .OR. &
320 abs(eta) .GT. 1. + tolit) then
321 write(device, *) 'BILINEAR_INTERP: Desired point lies outside &

322 & known points: ksi =', ksi, ' eta = ', eta

323 if(present(error) .eqv. .TRUE.) then !assign an error if the variable was

provided.

324 error = .TRUE.
325 end if
326 end if

327

328 ! STEP 2: Having found the values of ksi and eta that correspond

329 ! to the point (X, Y) compute the value of Z at that location.

330

331 ! Values of the shape functions at the point (X, Y)

332 PSI_1 = 0.25 * (1. - ksi) * (1. - eta)
333 PSI_2 = 0.25 * (1. + ksi) * (1. - eta)
334 PSI_3 = 0.25 * (1. + ksi) * (1. + eta)
335 PSI_4 = 0.25 * (1. - ksi) * (1. + eta)

336

337 ! Value of Z at the point (X, Y)

338 Z = z1*PSI_1 + z2*PSI_2 + z3*PSI_3 + z4*PSI_4

339

340 !write(device, *) 'BILINEAR_INTERP: PSI_1=', PSI_1, &

341 ! ' PSI_2=', PSI_2, &

342 ! 'PSI_3=', PSI_3, &

343 ! 'PSI_4=', PSI_4, &

344 ! ' Z=', Z

345

346 !--

347 end subroutine BILINEAR_INTERP

348 !===

349 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

350 ! ////////// B I L I N E A R _ I N T E R P \\\\\\\\\\

351 !==

352

353

354 !==

355 ! \\\\\\\\\\ B E G I N F U N C T I O N ///////////

356 ! ////////// F _ L I N T E R P \\\\\\\\\\\

357 !==

358 ! linear interpolation function

359 function F_linterp(X, known_X, known_Y, n) Result(Y)

360 !VARIABLE DECLARATIONS

361 ! Arguments

362 integer, intent(in) :: n

166

363 real , intent(in) :: X
364 real, dimension(n), intent(in) :: known_X, known_Y

365 ! Internal Variables

366 real :: Y
367 integer :: i1, i2, j, im

368 !--

369 ! bi-section method to find the right place in the table

370 ! initialize indices

371 i1 = 1
372 i2 = n

373

374

375 if(known_X(n) .GT. known_X(1)) then

376 !ASCENDING ORDER

377 do j = 1, 1000
378 if (i2 - i1 .gt. 1) then
379 im = (i1+i2)/2 !midpoint
380 if (X .eq. known_X(im)) then

381 i1 = im
382 i2 = im + 1
383 elseif(X .gt. known_X(im)) then
384 i1 = im
385 elseif(X .lt. known_X(im)) then

386 i2 = im
387 endif
388 else
389 exit
390 end if

391 end do

392

393 elseif(known_X(n) .LT. known_X(1))then

394 !DESCENDING ORDER

395 do j = 1, 1000

396 if (i2 - i1 .gt. 1) then
397 im = (i1+i2)/2 !midpoint
398 if (X .eq. known_X(im)) then
399 i1 = im
400 i2 = im + 1

401 elseif(X .gt. known_X(im)) then
402 i2 = im
403 elseif(X .lt. known_X(im)) then
404 i1 = im
405 endif

406 else
407 exit
408 end if
409 end do

410

411 end if

412

413

414 ! WRITE(*,*) 'j=', j, 'im=', im, 'i1=', i1, 'i2=', i2

415

416 if(j .eq. 1000) then

167

417 write(*,*) 'F_LINTERP: Arrays too large for this routine, &

418 & increase number of searching steps and recompile.'

419 endif

420

421

422 ! bounds found; compute interpolated value

423 Y = (X - Known_X(i1)) / &
424 (Known_X(i2) - Known_X(i1)) * &

425 (Known_Y(i2) - Known_Y(i1)) + Known_Y(i1)

426

427

428 !--

429 end function F_LINTERP

430 !==

431 ! \\\\\\\\\\ E N D F U N C T I O N ///////////

432 ! ////////// F _ L I N T E R P \\\\\\\\\\\

433 !==

434

435

436 !==

437 ! \\\\\\\\\\ B E G I N F U N C T I O N ///////////

438 ! ////////// F _ L 2 _ N O R M \\\\\\\\\\\

439 !==

440 function F_L2_NORM(vector, n) result(L2)

441 ! Computes the L2 norm of a real-valued vector with n elements

442 !

443 ! Variable Declarations

444 implicit none

445 ! Arguments

446 integer, intent(in) :: n
447 real , dimension(n), intent(in) :: vector

448 ! Internal Variables

449 real :: L2

450 real, dimension(n) :: squares
451 integer :: i

452 !---

453 do i = 1, n
454 squares(i) = vector(i) ** 2

455 end do

456

457 L2 = sqrt(sum(squares(:)))

458 !---

459 end function F_L2_NORM

460 !==

461 ! \\\\\\\\\\ E N D F U N C T I O N ///////////

462 ! ////////// F _ L 2 _ N O R M \\\\\\\\\\\

463 !===

464

465

466 !===

467 ! \\\\\\\\\\ B E G I N F U N C T I O N ///////////

468 ! ////////// F _ P y t h a g S u m \\\\\\\\\\\

469 !===

470 Function F_PythagSum(x, y)

168

471 ! Computes the pythagorean sum of twovariables

472 implicit none
473 REAL :: x, y, F_PythagSum

474 F_PythagSum = sqrt(x**2 + y**2)

475 end function F_PythagSum

476 !==

477 ! \\\\\\\\\\ E N D F U N C T I O N ///////////

478 ! ////////// F _ P y t h a g S u m \\\\\\\\\\\

479 !===

480

481

482 !===

483 ! \\\\\\\\\\ B E G I N F U N C T I O N ///////////

484 ! ////////// F _ E X T R A P O L A T E \\\\\\\\\\\

485 !===

486 Function F_Extrapolate(X, x1, y1, x2, y2) RESULT(Y)

487 ! Finds the value of Y corresponding to the location X

488 ! on the line passing through (x1, y1) and (x2, y2)

489 !

490 ! Called from: convcoef@frictionslope

491

492

493 implicit none

494 REAL, intent(in) :: X, x1, y1, x2, y2
495 REAL :: Y
496 REAL :: slope, intercept
497 slope = (y2 - y1) / (x2 - x1)
498 intercept = y1 - slope * x1

499 Y = slope * X + intercept

500 end function F_Extrapolate

501 !==

502 ! \\\\\\\\\\ E N D F U N C T I O N ///////////

503 ! ////////// F _ E X T R A P O L A T E \\\\\\\\\\\

504 !===

505

506

507 !==

508 end module utilities

509 !==

510 ! \\\\\\\\\\ E N D M O D U L E ///////////

511 ! ////////// U T I L I T I E S \\\\\\\\\\\

512 !===

513 !==

169

Source File 5: inputs.f95

 1 ! fortran_free_source

 2

 3 ! Purpose: This module contains subroutines to read input files

 4

 5

 6 module inputs

 7

 8 implicit none

 9

 10 contains

 11

 12 ! 1. GET_PARAMETERS

 13 ! 2. GET_RAINFALL

 14

 15 !===

 16 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 17 ! ////////// G E T _ P A R A M E T E R S \\\\\\\\\\\

 18 !==

 19 !

 20 ! Purpose: This subroutine reads problem parameters

 21 ! from a user selected input file.

 22 subroutine GET_PARAMETERS(K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, &

 23 dx, dy, qmax, maxit, h0, eps_matrix, eps_itr, eps_ss, &

 24 relax,

relax_tran, &

 25 north_bc, south_bc, east_bc, west_bc, &

 26 animate, dt_ani

)

 27 !

 28 ! K -- Darcy Hydraulic Conductivity

 29 ! por -- Effective porosity of the PFC

 30 ! b_pfc-- Thickness of the pfc

 31 ! n_mann-- Manning's n

 32 ! g -- gravitational acceleration

 33 !---

 34 ! VARIABLE DECLARATIONS

 35 !Arguments

 36 REAL, intent(out) :: K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, dx,

dy

 37 integer, intent(out) :: qmax, maxit
 38 real, intent(out) :: h0, eps_matrix, eps_itr, eps_ss, relax, relax_tran
 39 character(7), intent(out) :: north_bc, south_bc, east_bc, west_bc
 40 logical, intent(out) :: animate
 41 real, intent(out) :: dt_ani

 42 ! Internal variables

 43 CHARACTER(20) infile ! the file name to read parameters from
 44 CHARACTER(5) :: dummy_line

 45 !---

 46 ! Executable

 47

 48 ! default value for input file

170

 49 infile = 'parameters.dat'

 50

 51 ! Prompt the user for the input file

 52 WRITE(*,*) 'Enter filename or press / for ', infile
 53 READ(*,*) infile

 54

 55 !read the file

 56 OPEN(UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old')

 57

 58 READ(unit=8, fmt = *) dummy_line
 59 READ(unit=8, fmt = *) dummy_line

 60 ! PFC Properties

 61 READ(unit=8, fmt = *) dummy_line

 62 READ(unit=8, fmt = *) K
 63 READ(unit=8, fmt = *) por
 64 READ(unit=8, fmt = *) b_pfc
 65 READ(unit=8, fmt = *) n_mann

 66

 67 !Physical Constants

 68 READ(unit=8, fmt = *) dummy_line
 69 READ(unit=8, fmt = *) g

 70

 71 !Timesteps

 72 READ(unit=8, fmt = *) dummy_line
 73 READ(unit=8, fmt = *) dt_pfc
 74 READ(unit=8, fmt = *) dt_sheet
 75 READ(unit=8, fmt = *) max_time

 76

 77 ! preliminary grid spacing

 78 READ(unit=8, fmt = *) dummy_line
 79 READ(unit=8, fmt = *) dx
 80 READ(unit=8, fmt = *) dy

 81

 82 ! tolerences

 83 READ(unit=8, fmt = *) dummy_line
 84 READ(unit=8, fmt = *) qmax
 85 READ(unit=8, fmt = *) maxit
 86 READ(unit=8, fmt = *) eps_matrix

 87 READ(unit=8, fmt = *) eps_itr
 88 READ(unit=8, fmt = *) eps_ss
 89 READ(unit=8, fmt = *) relax
 90 READ(unit=8, fmt = *) relax_tran

 91

 92

 93 ! inital depth

 94 READ(unit=8, fmt = *) dummy_line
 95 READ(unit=8, fmt = *) h0

 96

 97 ! Boundary conditions

 98 READ(unit=8, fmt = *) dummy_line
 99 READ(unit=8, fmt = *) north_bc
100 READ(unit=8, fmt = *) south_bc
101 READ(unit=8, fmt = *) east_bc

102 READ(unit=8, fmt = *) west_bc

171

103

104 !Animation options

105 READ(unit=8, fmt = *) dummy_line

106 READ(unit=8, fmt = *) animate
107 READ(unit=8, fmt = *) dt_ani

108

109 close(8)

110

111 !--

112 end subroutine GET_PARAMETERS

113 !===

114 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

115 ! ////////// G E T _ P A R A M E T E R S \\\\\\\\\\\

116 !==

117

118

119

120 !===

121 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

122 ! ////////// G E T _ R A I N F A L L \\\\\\\\\\\

123 !==

124 !

125 ! Purpose: This subroutine reads the rainfall record

126 ! from a user selected input file.

127

128 SUBROUTINE GET_RAINFALL(max_rec, rain_time, rain_rate, nrr)

129

130 INTEGER, intent(in) :: max_rec ! maximum allowable number of rainfall records

131 INTEGER, intent(out) :: nrr !Number of rainfall records
132 REAL, DIMENSION(max_rec), intent(inout) :: rain_time, rain_rate

133

134 ! Internal variables

135 CHARACTER(30) infile ! the file name to read parameters from

136 integer :: i, j ! looping variables

137

138

139 !-------------------------

140 ! read in the rainfall data

141

142 ! default value for input file

143 infile = 'rainfall.dat'

144

145 ! Prompt the user for the input file

146 WRITE(*,*) 'Enter filename or press / for ', infile
147 READ(*,*) infile

148

149 OPEN(UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old')

150

151 ! Rainfall Rate

152 read(unit=8, fmt = *) nrr

153

154 if (nrr .gt. size (rain_time)) then
155 print *, 'GET_RAINFALL: Too many rainfall records--increase array size and

recompile'

172

156 else
157 do i = 1, nrr
158 READ(unit = 8 , fmt = *) j, rain_time(j), rain_rate(j)

159 end do
160 end if

161

162 close(8)

163

164 !--

165 end subroutine GET_RAINFALL

166 !===

167 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

168 ! ////////// G E T _ R A I N F A L L \\\\\\\\\\\

169 !==

170

171

172 end module inputs

Source File 6: Outputs.f95

 1 ! fortran_free_source

 2

 3 ! Purpose: This module contains subroutines to output information

 4

 5 !==

 6 ! \\\\\\\\\\ //////////

 7 MODULE outputs

 8 ! ////////// \\\\\\\\\\

 9 implicit none

 10

 11 contains

 12 !==

 13 ! 1. ECHO_INPUTS

 14 ! 2. WRITE_FLIPPED_MATRIX

 15 ! 3. WRITE_MATRIX

 16 ! 4. WRITE_VECTOR

 17 ! 5. WRITE_SYSTEM

 18

 19 !===

 20 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 21 ! ////////// E C H O _ I N P U T S \\\\\\\\\\\

 22 !==

 23 !

 24 ! Purpose: This subroutine echos the input data to the

 25 ! specified device in comma seperated values format.

 26 subroutine ECHO_INPUTS(dev)

 27 use shared, only: K, por, b_pfc, n_mann, g

173

 28 !---

 29 ! VARIABLE DECLARATIONS

 30 ! Arguments

 31 integer, intent(In) :: dev ! The device number that the output

 32 !integer, intent(in) :: nrr ! number of rainfall records

 33 !REAL, intent(in) :: K, por, b_pfc, n_mann, g

 34 !REAL, intent(in) :: rain_time(:), rain_rate(:)

 35 !real, intent(in) :: dt

 36 ! Internal variables

 37 !integer :: i

 38

 39 !--

 40 write(dev, *) 'SUMMARY OF INPUT DATA,'

 41 write(dev, 200) 'Hydraulic Conductivity (m/s),', K
 42 write(dev, 200) 'Effective Porosity,', por
 43 write(dev, 200) 'PFC Thickness (m),', b_pfc
 44 write(dev, 200) "Manning's n,", n_mann
 45 write(dev, 200) 'Gravitational Acceleration (m/s/s),', g

 46

 47 !--

 48 ! Format Statements

 49 200 FORMAT (' ', A, (F10.6, ','))

 50

 51 !--

 52 end subroutine ECHO_INPUTS

 53 !===

 54 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

 55 ! ////////// E C H O _ I N P U T S \\\\\\\\\\\

 56 !==

 57

 58 !===

 59 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 60 ! ////////// W R I T E _ F L I P P E D _ M A T R I X \\\\\\\\\\\

 61 !==

 62 subroutine write_flipped_matrix(array, imax, jmax, outfile)

 63 ! Writes matrix in 'flipped' form so it corresponds to

 64 ! the physical geometry. This means the (1,1) entry

 65 ! appears at the bottom left corner of the ouput file.

 66 !---

 67 ! VARIABLE DECLARATIONS

 68 ! Arguments

 69 integer imax, jmax
 70 real array(imax, jmax)

 71 character(len=*):: outfile !assumed length specifier *

 72 ! Internal variables

 73 integer :: i, j
 74 integer :: ilist(imax), jlist(jmax)

 75 !---

 76 ! Create lists of indices

 77 do i = 1, imax
 78 ilist(i) = i
 79 end do

 80

 81 do j = 1, jmax

174

 82 jlist(j) = j
 83 end do

 84

 85 print *, 'WRITE_FLIPPED_MATRIX: writing the file ', outfile

 86

 87 ! Write the length array in upside down form so it corresponds to

 88 ! to the physical geometry.

 89 OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')

 90

 91 ! First line

 92 write(9, 1) ' j \ i ', ilist(:)

 93

 94 ! and the rest

 95 do j = jmax, 1, -1
 96 write(9, 2) jlist(j), array(:,j)
 97 end do

 98

 99 close(9)

100

101 !---

102 ! Format statements

103 1 format(A, ',', 10000 (I, ','))
104 2 format(I, ',', 10000 (F12.7, ','))

105

106 !---

107 end subroutine write_flipped_matrix

108 !===

109 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

110 ! ////////// W R I T E _ F L I P P E D _ M A T R I X \\\\\\\\\\\

111 !==

112

113

114 !===

115 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

116 ! ////////// W R I T E _ M A T R I X \\\\\\\\\\\

117 !==

118 subroutine write_matrix(array, imax, jmax, outfile)

119 ! Writes matrix in usual form so the (1,1) entry

120 ! appears at the top left corner of the ouput file.

121 !---

122 ! VARIABLE DECLARATIONS

123 ! Arguments

124 integer imax, jmax

125 real array(imax, jmax)
126 character(len=*):: outfile !assumed length specifier *

127 ! Internal variables

128 integer :: i, j
129 integer :: ilist(imax), jlist(jmax)

130 !---

131 ! Create lists of indices

132 do i = 1, imax
133 ilist(i) = i
134 end do

135

175

136 do j = 1, jmax
137 jlist(j) = j
138 end do

139

140 print *, 'WRITE_MATRIX: writing the file ', outfile

141

142 !

143 OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')

144

145

146 do i = 1, imax
147 write(9, 4) array(i,:)
148 end do

149

150 close(9)

151

152 !---

153 ! Format statements

154 1 format(A, ',', 10000 (I, ','))
155 2 format(I, ',', 10000 (F12.7, ','))
156 3 format(10000 (F12.7, ','))
157 4 format(10000 (E , ','))

158

159 !---

160 end subroutine write_matrix

161 !===

162 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

163 ! ////////// W R I T E _ M A T R I X \\\\\\\\\\\

164 !==

165

166 !===

167 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

168 ! ////////// W R I T E _ V E C T O R \\\\\\\\\\\

169 !==

170 subroutine write_vector(array, imax, outfile)

171 ! Writes matrix in usual form so the (1,1) entry

172 ! appears at the top left corner of the ouput file.

173 !---

174 ! VARIABLE DECLARATIONS

175 ! Arguments

176 integer imax
177 real array(imax)
178 character(len=*):: outfile !assumed length specifier *

179 ! Internal variables

180 integer :: i

181 !---

182 ! Create lists of indices

183

184 print *, 'WRITE_VECTOR: writing the file ', outfile

185

186

187 !

188 OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')

189

176

190 ! and the rest

191 do i = 1, imax
192 write(9, 3) array(i)

193 end do

194

195 close(9)

196

197 !---

198 ! Format statements

199 3 format((E, ','))

200

201 !---

202 end subroutine write_vector

203 !===

204 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

205 ! ////////// W R I T E _ V E C T O R \\\\\\\\\\\

206 !==

207

208

209 !==

210 subroutine WRITE_SYSTEM(A, B, C, D, E, F, n, outfile)

211 integer, intent(in) :: n
212 real, dimension(n), intent(in) :: A, B, C, D, E, F

213 character(len=*) :: outfile

214

215 integer :: i

216

217

218 open(unit = 11, file = outfile, status = 'REPLACE')
219 write(11, *) 'v, A, B, C, D, E, F,'
220 do i = 1, n
221 write(11, 3) i, A(i), B(i), C(i), D(i), E(i), F(i)
222 end do

223 close(11)

224

225

226 !--

227 ! Format statements

228 3 format((I, ','), 6(E, ','))

229 !--

230 end subroutine WRITE_SYSTEM

231 !==

232

233

234 !==

235 ! \\\\\\\\\ ///////////

236 END MODULE outputs

237 ! ///////// \\\\\\\\\\\\

238 !==

177

Source File 7: geom_funcs.f95

 1 ! fortran_free_source

 2

 3 !==

 4 ! \\\\\\\\\\ //////////

 5 MODULE geom_funcs

 6 ! ////////// \\\\\\\\\\

 7 implicit none

 8

 9 contains

 10 !==

 11 ! 1. F_L_xi

 12 ! 2. unmap_x

 13 ! 3. unmap_y

 14

 15 !===

 16 Function F_L_xi(xi, eta, seg) Result(L_xi) !xcc1, ycc1, dx, dy, R1, dR, W, theta1,

dtheta)

 17 ! Computes the METRIC COEFFICIENT for the length mapping.

 18 !Function F_length_xi(xi, eta, xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta)

 19 ! GEOMETRY MAPPING FUNCTIONS from Geometry.xlsb

 20 use shared, only: CLSEG

 21 implicit none

 22 ! Arguments

 23 real xi, eta

 24 type(CLSEG) :: seg

 25 ! Result

 26 real L_xi

 27 ! Internal Variables

 28 real angle, dx_dxi, dy_dxi

 29 real xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta

 30 !--

 31 ! Assign parts of the derived type to local variables

 32 ! to keep the formulas cleaner

 33 xcc1 = seg%xcc1

 34 ycc1 = seg%ycc1
 35 dx = seg%dx
 36 dy = seg%dy
 37 R1 = seg%R1
 38 dR = seg%dR

 39 W = seg%W
 40 theta1 = seg%theta1
 41 dtheta = seg%dtheta

 42

 43 ! compute intermediate variables

 44 Angle = theta1 + xi * dtheta

 45

 46 dx_dxi = dx + dR * Cos(Angle) - dtheta * Sin(Angle) * &
 47 (R1 + W * (eta - 0.5) + xi * dR)

 48

 49 dy_dxi = dx + dR * Sin(Angle) + dtheta * Cos(Angle) * &
 50 (R1 + W * (eta - 0.5) + xi * dR)

178

 51

 52 ! Calculate metric coefficient

 53 L_xi = sqrt((dx_dxi ** 2 + dy_dxi ** 2))

 54

 55 End Function F_L_xi

 56 !===

 57

 58 Function unmap_x(xi, eta, seg) Result(X)

 59 !

 60 use shared, only: CLSEG

 61 implicit none

 62 ! Arguments

 63 real xi, eta

 64 type(CLSEG) :: seg

 65 ! Result

 66 real X

 67 ! Internal Variables

 68 real xcc1, dx, R1, dR, W, theta1, dtheta

 69 !--

 70 ! Assign parts of the derived type to local variables

 71 ! to keep the formulas cleaner

 72 xcc1 = seg%xcc1
 73 dx = seg%dx

 74 R1 = seg%R1
 75 dR = seg%dR
 76 W = seg%W
 77 theta1 = seg%theta1
 78 dtheta = seg%dtheta

 79

 80 ! Compute the X coordinate

 81 X = (xcc1 + xi * dx) + &
 82 (R1 + xi * dR + (eta - 0.5) * W) * Cos(theta1 + xi * dtheta)

 83

 84 end function unmap_x

 85 !===

 86

 87

 88 Function unmap_y(xi, eta, seg) result(Y)

 89

 90 use shared, only: CLSEG

 91 implicit none
 92 real xi, eta
 93 type(CLSEG) :: seg

 94 ! Result

 95 real Y

 96 ! Internal Variables

 97 real ycc1, dy, R1, dR, W, theta1, dtheta

 98 !--

 99 ! Assign parts of the derived type to local variables

100 ! to keep the formulas cleaner

101 ycc1 = seg%ycc1
102 dy = seg%dy
103 R1 = seg%R1

104 dR = seg%dR

179

105 W = seg%W
106 theta1 = seg%theta1
107 dtheta = seg%dtheta

108

109

110 Y = (ycc1 + xi * dy) + &
111 (R1 + xi * dR + (eta - 0.5) * W) * Sin(theta1 + xi * dtheta)

112

113 end function unmap_y

114 !==

115

116

117

118

119

120

121

122

123

124 !==

125 ! \\\\\\\\\ ///////////

126 END MODULE geom_funcs

127 ! ///////// \\\\\\\\\\\\

128 !==

180

Source File 8: ConvCoef.f95

 1 ! fortran_free_source

 2

 3

 4 module ConvCoef

 5

 6 implicit none

 7

 8 contains

 9

 10

 11 ! 1. CONVEYANCE

 12 ! 2. FrictionSlope

 13

 14 !===

 15 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

 16 ! ////////// C O N V E Y A N C E \\\\\\\\\\

 17 !===

 18 !

 19 ! Purpose: This subroutine computes the conveyance coefficient

 20 ! for a given cell face...look out, its fancy!

 21 SUBROUTINE CONVEYANCE(face, sol, i, j, CC)

 22 USE shared, ONLY: Sfw_old, Sfe_old, Sfs_old, Sfn_old, &

 23 Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr, &

 24 h_old, h_itr, wid, Z, K, n_mann, &

 25 b_pfc, lng, lng_south, lng_north, &

 26 h_pfc_min, area

 27 implicit none

 28 !VARIABLE DECLARATIONS

 29 ! Arguments

 30 character(5), intent(in) :: face ! Which face?
 31 character(3), intent(in) :: sol ! Computed based on which solution?
 32 integer, intent(in) :: i, j ! of which cell?
 33 REAL, intent(out) :: CC ! the conveyance coefficient

 34 ! Internal Variables

 35 real :: hp, hs ! the thickness in the pavement and on the surface
 36 REAL :: distin, distout ! size of cells for scaling purposes (will be length or

width depeding on which direction we're going.

 37 REAL :: fluxdist ! the distance (size) of the cell face that the flux applies t
 38 REAL :: hin, hout ! thickness at CV center

 39 REAL :: zin, zout ! elevation at CV center
 40 REAL :: head_at_face, Zface !HEAD and ELEVATION at the face
 41 REAL, POINTER, DIMENSION(:,:) :: h ! pointer to the thickness array
 42 REAL, POINTER, DIMENSION(:,:) :: Sfw, Sfe, Sfs, Sfn ! points to magnitude of

friction slope at compass face.

 43 REAL :: Sf !the friction slope for the particular face that we're working with
 44 logical :: error !make sure the result is reasonable

 45 !---

 46 ! Compute based on the old or iterative thickness?

 47 if (sol .EQ. 'old') then

 48 ! thickness array

 49 h => h_old

181

 50 ! friction slope arrays

 51 Sfw => Sfw_old
 52 Sfe => Sfe_old

 53 Sfs => Sfs_old
 54 Sfn => Sfn_old
 55 elseif(sol .eq. 'itr') then
 56 h => h_itr
 57 Sfw => Sfw_itr

 58 Sfe => Sfe_itr
 59 Sfs => Sfs_itr
 60 Sfn => Sfn_itr
 61 endif

 62

 63 ! set internal/generic variables based on cell face

 64 if (face .EQ. 'west ') then
 65 distin = lng(i, j)
 66 distout= lng(i-1, j)
 67 hin = h(i,j)

 68 hout= h(i-1,j)
 69 zin = Z(i,j)
 70 zout= Z(i-1,j)
 71 fluxdist = wid(i,j)
 72 Sf = Sfw(i, j)

 73 elseif(face .eq. 'east ') then
 74 distin = lng(i, j)
 75 distout= lng(i+1, j)
 76 hin = h(i,j)
 77 hout= h(i+1,j)

 78 zin = Z(i,j)
 79 zout= Z(i+1,j)
 80 fluxdist = wid(i,j)
 81 Sf = Sfe(i, j)
 82 elseif(face .EQ. 'south') then

 83 distin = wid(i, j)
 84 distout= wid(i, j-1)
 85 hin = h(i,j)
 86 hout= h(i,j-1)
 87 zin = Z(i,j)

 88 zout= Z(i,j-1)
 89 fluxdist = lng_south(i,j)
 90 Sf = Sfs(i,j)
 91 elseif(face .EQ. 'north') then
 92 distin = wid(i, j)

 93 distout= wid(i, j+1)
 94 hin = h(i,j)
 95 hout= h(i,j+1)
 96 zin = Z(i,j)
 97 zout= Z(i,j+1)

 98 fluxdist = lng_north(i,j)
 99 Sf = Sfn(i,j)
100 endif

101 !Compute the total head at the cell face

102 head_at_face = ((hin+zin)*distout + (hout+zout)*distin) &

103 / (distin + distout)

182

104 !Elevation at the cell face

105 Zface = (zin*distout + zout*distin) / (distin + distout)

106 !compute the thicknesses

107 hp = MIN (b_pfc, head_at_face - Zface)
108 hs = MAX (0. , head_at_face - Zface - b_pfc)

109

110

111 !Force hp to stay positive

112 if(hp .LT. 0.0) then
113 hp = TINY(h_pfc_min)
114 end if

115

116 ! Compute the Conveyance coefficient

117 ! would really like to just one statement to calc the conv coef

118 ! but sqrt(Sf) sometimes gives problems, even when there is no

119 ! sheet flow, so this if block hopefully avoids the problem

120

121 if(hs .GT. 0.) then

122 !Sheet flow occurs and compute CC as usual

123 CC = (K * hp + 1./n_mann*hs**(5./3.)/sqrt(Sf)) * &
124 (2.*fluxdist / (distout + distin)) / Area(i,j)
125 else

126 !Sheet flow does not occur and CC only depends on subsurface

127 CC = (K * hp) * &
128 (2.*fluxdist / (distout + distin)) / Area(i,j)
129 end if

130

131

132 ! ERROR CHECKING FOR CONVEYANCE COEFS

133 if(CC .GT. HUGE(CC) .OR. CC .LT. -HUGE(CC)) then
134 error = .true.
135 else
136 error = .false.

137 endif

138

139 !Output the parts of the calculation if the error is true

140 if(error .eqv. .true.) then
141 write(*,*) 'Problem with conveyance coefficient!'

142 print *, 'i = ', i, ' j = ', j, ' Face = ', face, ' Soln = ', sol
143 print *, ' K = ', K
144 print *, ' hp = ', hp
145 print *, ' n_mann = ', n_mann
146 print *, ' hs = ', hs

147 print *, ' Sf = ', Sf
148 print *, 'fluxdist = ', fluxdist
149 print *, ' distout = ', distout
150 print *, ' distin = ', distin
151 print *, ' Area = ', Area(i,j)

152 print *, ' CC = ', CC
153 write(*,*) 'Stopping Program'
154 STOP
155 endif

156

157

183

158

159 ! print the inputs for checking

160 ! print *, ''

161 ! print *, 'i = ', i, ' j = ', j, ' Face = ', face, ' Soln = ', sol

162 ! print *, ' K = ', K

163 ! print *, ' hp = ', hp

164 ! print *, ' n_mann = ', n_mann

165 ! print *, ' hs = ', hs

166 ! print *, ' Sf = ', Sf

167 ! print *, 'fluxdist = ', fluxdist

168 ! print *, ' distout = ', distout

169 ! print *, ' distin = ', distin

170 ! print *, ' Area = ', Area(i,j)

171 ! print *, ' CC = ', CC

172 !

173

174

175

176

177

178 END subroutine conveyance

179

180 !===

181 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

182 ! ////////// C O N V E Y A N C E \\\\\\\\\\

183 !===

184

185 !===

186 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

187 ! ////////// F R I C T I O N S L O P E \\\\\\\\\\

188 !===

189 ! Purpose: This subroutine computes the magnitude of the friction

190 ! slope at the cell faces.

191 ! The arguments specifcy whether to use the OLD or ITR

192 ! solution array in the calculations and the arrays for storing the

results.

193 !

194 !

195 ! ---x---|---x--- Key: * is CV Center

196 ! | | | x normal component of friction slope

197 ! | * O * | computed here by central difference

198 ! | | | O the four normal components are

199 ! ---x---|---x--- tangent here and so are averaged

200 !PERFCODE PERFCODE.f95 Main program

201

202 SUBROUTINE FrictionSlope(sol, Sfw, Sfe, Sfs, Sfn)

203 use SHARED, only: h_old, h_itr, Z, lng, wid, imax, jmax

204

205 use outputs, only: write_flipped_matrix

206 use utilities, only: F_PythagSum, F_Extrapolate

207 !---

208 !VARIABLE DECLARATIONS

209 implicit none

210 ! Arguments

184

211 character(3), intent(in) :: sol
212 REAL, DIMENSION(imax,jmax), intent(out), optional :: Sfw, Sfe, Sfs, Sfn

213 ! Internal Variables

214 REAL, DIMENSION(imax, jmax) :: HD ! Total HEAD at cell centers
215 REAL, DIMENSION(:,:), pointer :: h ! Pointer to array of thicknesses
216 REAL, DIMENSION(imax,jmax) :: Sf_norm_west, Sf_norm_east, Sf_norm_south,

Sf_norm_north

217 REAL, DIMENSION(imax,jmax) :: Sf_tan_west, Sf_tan_east, Sf_tan_south, Sf_tan_north

218 REAL, ALLOCATABLE, DIMENSION(:,:), target :: h_dry ! for computing pavement

slopes

219 INTEGER :: i, j !array idices

220

221 !--

222 ! choose which thickness array to use for estimating the friction slope

223 if (sol .EQ. 'old') then
224 h => h_old
225 elseif(sol .eq. 'itr') then
226 h => h_itr

227 elseif(sol .eq. 'dry') then
228 allocate(h_dry(imax, jmax))
229 h_dry = 0.0
230 h => h_dry
231 endif

232

233 ! compute the total head

234 HD = h + z !total head is thickness plus elevation

235

236 !initialize arrays to zero

237 ! Sf_norm_west = 0.0

238 ! Sf_norm_east = 0.0

239 ! Sf_norm_south= 0.0

240 ! Sf_norm_north= 0.0

241 ! Sf_tan_west = 0.0

242 ! Sf_tan_east = 0.0

243 ! Sf_tan_south= 0.0

244 ! Sf_tan_north= 0.0

245 !

246 !--

247 ! C O M P O N E N T N O R M A L T O E A C H F A C E

248 !--

249

250 !

251

252 ! WEST

253 do j = 1, jmax

254 ! Domain interior, by central differences

255 do i = 2, imax
256 Sf_norm_west(i,j) = ((HD(i,j) - HD(i-1,j)) / 0.5 / (lng(i-1,j)

+ lng(i,j)))
257 end do

258 ! Western boundary of domain by extrapolation

259 i = 1
260 Sf_norm_west(i,j) = F_Extrapolate(0., &

261 lng(i,j) , Sf_norm_west(i+1,j), &

185

262 lng(i,j)+lng(i+1,j), Sf_norm_west(i+2,j))
263 end do

264

265 !EAST

266 do j = 1, jmax

267 ! Domain interior, by central differences

268 do i = 1, imax - 1
269 Sf_norm_east(i,j) = ((HD(i+1,j) - HD(i,j)) / 0.5 / (lng(i+1,j)

+ lng(i,j)))
270 end do

271 ! Eastern boundary of domain by extrapolation

272 i = imax
273 Sf_norm_east(i,j) = F_Extrapolate(0., &

274 lng(i,j) , Sf_norm_east(i-1,j), &
275 lng(i,j)+lng(i-1,j), Sf_norm_east(i-2,j))
276 end do

277

278

279 !SOUTH

280 do i = 1, imax

281 ! Domain interior, by central differences

282 do j = 2, jmax
283 Sf_norm_south(i,j) = ((HD(i,j-1) - HD(i,j)) / 0.5 / (wid(i,j-1)

+ wid(i,j)))
284 end do

285 ! Southern boundary of domain by extrapolation

286 j = 1
287 Sf_norm_south(i,j) = F_Extrapolate(0., &

288 wid(i,j) , Sf_norm_south(i,j+1), &
289 wid(i,j)+wid(i,j+1), Sf_norm_south(i,j+2))

290

291 end do

292

293 !NORTH

294 do i = 1, imax

295 ! Domain interior, by central differences

296 do j = 1, jmax - 1
297 Sf_norm_north(i,j) = ((HD(i,j) - HD(i,j+1)) / 0.5 / (wid(i,j+1)

+ wid(i,j)))
298 end do

299 ! Northern oundary of domain by extrapolation

300 j = jmax
301 Sf_norm_north(i,j) = F_Extrapolate(0., &

302 wid(i,j) , Sf_norm_north(i,j-1), &
303 wid(i,j)+wid(i,j-1), Sf_norm_north(i,j-2))
304 end do

305

306 !--

307 ! C O M P O N E N T T A N G E N T T O E A C H F A C E

308 ! A N D M A G N I T U D E A T E A C H F A C E

309 !--

310 ! component of friction slope that is TANGENT to each cell face

311 ! computed by averaging the four nearest locations where the

312 ! component is normal to a face.

186

313 !

314 !WEST

315 do j = 1, jmax

316 do i = 2, imax
317 Sf_tan_west(i,j) = ((Sf_norm_north(i,j) + Sf_norm_south(i,j))*lng(i-

1,j) &

318 +(Sf_norm_north(i-1,j) + Sf_norm_south(i-
1,j))*lng(i,j)) &

319 / (2. * (lng(i,j) + lng(i-1, j)))
320 Sfw(i,j) = F_PythagSum(Sf_norm_west (i,j), Sf_tan_west (i,j))
321 end do
322 end do

323

324 !EAST

325 do j = 1, jmax
326 do i = 1, imax - 1
327 Sf_tan_east(i,j) = ((Sf_norm_north(i,j)
+ Sf_norm_south(i,j))*lng(i+1,j) &

328 +(Sf_norm_north(i+1,j)
+ Sf_norm_south(i+1,j))*lng(i,j)) &
329 / (2. * (lng(i,j) + lng(i+1, j)))
330 Sfe(i,j) = F_PythagSum(Sf_norm_east (i,j), Sf_tan_east (i,j))
331 end do

332 end do

333

334 !SOUTH

335 do i = 1, imax
336 do j = 2, jmax

337 Sf_tan_south(i,j) = ((Sf_norm_east(i,j) + Sf_norm_west(i,j))
* wid(i,j-1) &
338 +(Sf_norm_east(i,j-1)+Sf_norm_west(i,j-
1))* wid(i,j)) &
339 / (2. * (wid(i,j) + wid(i,j-1)))

340 Sfs(i,j) = F_PythagSum(Sf_norm_south(i,j), Sf_tan_south(i,j))
341 end do
342 end do

343

344 !NORTH

345 do i = 1, imax
346 do j = 1, jmax - 1
347 Sf_tan_north(i,j) = ((Sf_norm_east(i,j) + Sf_norm_west(i,j))
* wid(i,j+1) &
348 +(

Sf_norm_east(i,j+1)+Sf_norm_west(i,j+1))* wid(i,j)) &
349 / (2. * (wid(i,j) + wid(i,j+1)))
350 Sfn(i,j) = F_PythagSum(Sf_norm_north(i,j), Sf_tan_north(i,j))
351 end do
352 end do

353

354

355 ! deallocate space for h_dry

356 if(sol .eq. 'dry') then
357 deallocate(h_dry)

358 endif

187

359

360

361

362

363 !

364 ! i = 50; j = 51

365 ! write(100,*) 'i,j=', i, j

366 ! write(100,*) 'Sf_norm_east', Sf_norm_east(i,j)

367 ! write(100,*) 'Sf_tan_east', Sf_tan_east(i,j)

368 ! write(100,*) 'HD(i,j)', HD(i,j)

369 ! write(100,*) 'HD(i+1,j)', HD(i+1,j)

370 ! write(100,*) 'HD(i,j+1)', HD(i,j+1)

371 ! write(100,*) 'HD(i,j-1)', HD(i,j-1)

372 ! write(100,*) 'Sf_norm_north(i,j)', Sf_norm_north(i,j)

373 ! write(100,*) 'Sf_norm_north(i+1,j)', Sf_norm_north(i+1,j)

374 ! write(100,*) 'Sf_norm_south(i,j)', Sf_norm_south(i,j)

375 ! write(100,*) 'Sf_norm_south(i+1,j)', Sf_norm_south(i+1,j)

376 !

377 !

378

379 end subroutine FrictionSlope

380

381 !===

382 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

383 ! ////////// F R I C T I O N S L O P E \\\\\\\\\\

384 !===

385

386

387

388

389

390 end module ConvCoef

391

188

Source File 9: GridGen.f95

 1 ! fortran_free_source

 2 !

 3 ! This module is part of PERFCODE, written by Bradley J. Eck.

 4 !

 5 !

 6 !

 7 ! This module contains subroutines related to generating the computational

 8 ! grid. The subroutines are:

 9 ! 1. Generate_Grid Computes the length, width, and area

 10 ! of each grid cell.

 11 ! 2. Assign_Elevations Gives an elevation to each grid cell center

 12 !

 13 !

 14 !

 15 ! External code required by this module includes the modules

 16

 17 !==

 18 ! \\\\\\\\\\ //////////

 19 MODULE GridGen

 20 ! ////////// \\\\\\\\\\

 21 implicit none

 22

 23 contains

 24 !==

 25

 26 ! 1. GENERATE_GRID

 27 ! 2. SET_ELEVATIONS

 28 !==

 29 ! \\\\\\\\\ ///////////

 30 subroutine Generate_Grid(prelim_dx, prelim_dy)

 31 ! ///////// \\\\\\\\\\\\

 32 !==

 33 ! Purpose: Read entries of a file into a derived data type

 34 ! and print the entries to the screen

 35

 36 USE shared, ONLY: seg, area, lng, lng_south, lng_north, wid, &

 37 imax, jmax, vmax, CV_Info, astat, gridcell

 38 USE outputs, ONLY: WRITE_MATRIX, WRITE_FLIPPED_MATRIX

 39 USE geom_funcs, ONLY: F_L_xi, UNMAP_X, UNMAP_Y

 40 USE pfc2Dfuns, ONLY: F_LinearIndex

 41 !--

 42 implicit none

 43

 44 ! VARIABLE DECLARATIONS

 45 ! Agruments

 46 real, intent(in) :: prelim_dx, prelim_dy

 47 ! Internal Variables

 48 INTEGER, parameter :: max_rec=144 ! maximum allowable number of rainfall records
 49 integer :: N_seg

 50 CHARACTER(len=20) infile ! the file name to read parameters from
 51 integer :: i, j, v ! looping variables

189

 52

 53 character :: TRASH

 54

 55 real :: xi, eta, X, Y
 56 real :: eta_s, eta_n

 57

 58 integer :: N_xi, N_eta, Seg_num

 59

 60

 61 ! for writing border info to file

 62 integer :: factor = 5 ! how many times more border points than CVs?
 63 integer :: ijf ! dummy variable for i or j times the factor
 64 real, allocatable, dimension(:) :: NX, NY, SX, SY, EX, EY, WX, WY

 65

 66 ! for writing grid to a file

 67 integer :: res
 68 real, allocatable, dimension(:,:) :: X_gl_long, Y_gl_long, X_gl_tran, Y_gl_tran

 69

 70

 71 !---

 72 ! read in the geometry data

 73

 74 ! default value for input file

 75 infile = 'CL_Segments.dat'

 76

 77 ! Prompt the user for the input file

 78 WRITE(*,*) 'Enter filename or press / for ', infile
 79 READ(*,*) infile

 80

 81 OPEN(UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old')

 82

 83 ! Rainfall Rate

 84 read(unit=8, fmt = *) N_seg

 85

 86

 87 !if (nrr .gt. size (rain_time)) then

 88 ! print *, 'Too many rainfall records--increase array size and recompile'

 89 !else

 90

 91 read(unit=8, fmt = *) trash

 92

 93

 94

 95 allocate(seg(N_seg))

 96

 97 do i = 1, N_seg
 98 READ(unit = 8 , fmt = *) j, seg(j)%xcc1, seg(j)%ycc1, seg(j)%dx, &

 99 seg(j)%dy, seg(j)%R1, seg(j)%dR, &

100 seg(j)%W, seg(j)%theta1, seg(j)%dtheta

101 ! seg(j) = CLSEG(xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta, 0.) ! use

0. as placeholder for length

102 end do

103

104 close(8)

190

105

106

107 ! estimate the length of each segment by evaluating the metric coefficients

108 do i = 1, N_seg
109 seg(i)%arclen = F_L_xi(0.5, 0.5, seg(i)) * 1.0 ! L_xi * Delta_xi
110 end do

111

112

113 print *, 'Segment ArcLength'
114 do i = 1, N_seg
115 print *, i, seg(i)%arclen
116 end do

117

118 !total length

119 print *, ' Total Length: ', sum(seg(:)%arclen)

120

121 ! average length

122 print *, 'Average Length: ', sum(seg(:)%arclen) / real(N_seg)

123

124

125 ! Number of elements per segment

126 !nint = nearest integer

127 N_xi = nint(sum(seg(:)%arclen) / real(N_seg) / prelim_dx)

128 N_eta= nint(sum(seg(:)%W) / real(N_seg) / prelim_dy)
129 print *, 'N_xi = ', N_xi, ' N_eta = ', N_eta

130

131 ! size of computational domain

132 imax = N_xi * N_seg

133 jmax = N_eta
134 vmax = imax * jmax

135

136

137 !--

138 ! ALLOCATE ARRAYS

139

140 allocate(lng(imax, jmax), STAT = astat(1))
141 allocate(wid(imax, jmax), STAT = astat(2))
142 allocate(area(imax, jmax), STAT = astat(3))

143

144

145 allocate(lng_south(imax, jmax), STAT = astat(6))
146 allocate(lng_north(imax, jmax), STAT = astat(7))

147

148 allocate (CV_Info(vmax), STAT = astat(17))

149 !---

150

151 ! Now compute length, width, and area of each cell

152 ! should confirm that all widths are the same

153

154 do j = 1, jmax

155 ! print *, 'j = ', j

156 ! print *, 'i Segment'

157 do i = 1, imax

158 ! Determine which segment we're in

191

159 ! the intrinic function CEILING is like ROUNDUP in excel

160 Seg_Num = ceiling(real(i) / real(imax) * real(N_seg))

161 ! Compute values of xi for the cell that we're in

162 if (i .LE. N_xi) then
163 xi = i * 1. / N_xi - 1. / N_xi / 2.
164 else
165 xi = (i - (Seg_Num - 1) * N_xi) * 1. / N_xi - 1. / N_xi / 2.
166 end if

167 ! value of eta

168 eta = 1. / N_eta * j - 1. / N_eta / 2.

169 ! Physical Coordinates of CV

170 X = unmap_x(xi = xi, eta = eta, seg = seg(Seg_Num))
171 Y = unmap_y(xi = xi, eta = eta, seg = seg(Seg_Num))

172 ! store the summary information for this cell

173 v = F_LinearIndex(i, j, jmax)
174 CV_Info(v) = gridcell(i, j, Seg_Num, xi, eta, X, Y)

175 ! now compute the quantities of interest for each cell.

176 ! print *, i, Seg_Num

177 lng (i,j) = F_L_xi(xi, eta, seg(Seg_Num)) * 1. / N_xi
178 wid (i,j) = seg(Seg_Num)%W / N_eta
179 area(i,j) = lng(i,j) * wid(i,j)

180 ! compute lengths for north and south faces of cell

181 ! south

182 eta_s = eta - 1./N_eta * 1./2.
183 lng_south(i,j) = F_L_xi(xi, eta_s, seg(Seg_Num)) * 1./N_xi

184 ! north

185 eta_n = eta + 1./N_eta * 1./2.
186 lng_north(i,j) = F_L_xi(xi, eta_n, seg(Seg_Num)) * 1./N_xi

187 end do
188 end do

189

190

191 ! Output the arrays to respective files

192 ! subroutine write_flipped_matrix(array, imax, jmax, outputfile)

193 call write_flipped_matrix(lng, imax, jmax, 'length.csv')

194

195 call write_flipped_matrix(wid, imax, jmax, 'width.csv')

196

197 call write_flipped_matrix(area, imax, jmax, 'area.csv')

198

199 call write_flipped_matrix(lng_south, imax, jmax, 'lng_south.csv')

200

201 !Write the CV info file

202 open(unit=40, file = 'CV_info.csv', status = 'REPLACE')
203 write(40,*) 'v,i,j,segment,xi,eta,X,Y,'
204 do v = 1, vmax
205 WRITE(40,44) v, CV_info(v)
206 end do

207

208 44 format(4(I, ','), 4(E, ','))

209

210

211 !--

212 ! >>>>>>>>>> W R I T E B O U N D A R Y C O O R D S <<<<<<<<<<

192

213 !--

214 ! was going to make this a subroutine, but it seemed easier to add it here

215

216 ! Allocate arrays

217 ijf = imax * factor
218 allocate(NX(ijf))
219 allocate(NY(ijf))
220 allocate(SX(ijf))

221 allocate(SY(ijf))

222

223 ijf = jmax * factor + 1
224 allocate(EX(ijf))
225 allocate(EY(ijf))

226 allocate(WX(ijf))
227 allocate(WY(ijf))

228

229 ! NORTH and SOUTH borders

230 !re-calc N_xi so as not to change the following formula

231 N_xi = N_xi * factor
232 do i = 1, imax * factor
233 Seg_Num = ceiling(real(i) / real(imax * factor) * real(N_seg))

234 ! Compute values of xi

235 if (i .LE. N_xi) then

236 xi = i * 1. / N_xi - 1. / N_xi / 2.
237 else
238 xi = (i - (Seg_Num - 1) * N_xi) * 1. / N_xi - 1. / N_xi / 2.
239 end if

240 ! NORTH -- Physical Coordinates on border

241 eta = 1.0
242 NX(i) = unmap_x(xi = xi, eta = eta, seg = seg(Seg_Num))
243 NY(i) = unmap_y(xi = xi, eta = eta, seg = seg(Seg_Num))

244 ! SOUTH -- Physical Coordinates on border

245 eta = 0.0

246 SX(i) = unmap_x(xi = xi, eta = eta, seg = seg(Seg_Num))
247 SY(i) = unmap_y(xi = xi, eta = eta, seg = seg(Seg_Num))
248 end do

249

250 ! EAST and WEST borders

251 do j = 1, jmax * factor + 1
252 eta = (j - 1.) / (jmax * factor)

253 ! WEST

254 xi = 0.0
255 WX(j) = unmap_x(xi = xi, eta = eta, seg = seg(1))

256 WY(j) = unmap_y(xi = xi, eta = eta, seg = seg(1))

257 ! EAST

258 xi = 1.0
259 EX(j) = unmap_x(xi = xi, eta = eta, seg = seg(N_seg))
260 EY(j) = unmap_Y(xi = xi, eta = eta, seg = seg(N_seg))

261 end do

262

263 ! Write the borders to files

264 open(unit = 40, file = 'NS_borders.csv', status = 'REPLACE')
265 WRITE(40, *) 'NX, NY, SX, SY,'

266 do i = 1, imax * factor

193

267 write(40, 4) NX(i), NY(i), SX(i), SY(i)
268 end do
269 close(40)

270

271 open(unit = 41, file = 'EW_borders.csv', status = 'REPLACE')
272 write(41, *) 'EX, EY, WX, WY,'
273 do j = 1, jmax * factor + 1
274 write(41, 4) EX(j), EY(j), WX(j), WY(j)

275 end do
276 close(41)

277

278 4 format(4 (E, ','))

279

280

281 !--

282 ! >>>>>>>>> WRITE GRID FOR PLOTTING <<<<<<<<<

283 !--

284 !

285 ! envisioning the use of R's MATPLOT command, write a matrix of X coords

286 ! and a matrix of Y coords

287 ! we plot a bunch of points

288

289 res = 4 !parameter to control the resolution of of the plotting

290 ! this is analogous to the variable 'factor' how many

291 ! points do you want per CV?

292

293 allocate(X_gl_long(imax * res, jmax + 1))
294 allocate(Y_gl_long(imax * res, jmax + 1))

295

296 ! redefine N_xi to reflect the amplified number of points for the grid

297 N_xi = imax / N_seg * res

298

299 ! LONGITUDINAL GRID LINES

300 do j = 1, jmax + 1

301 !value of eta is constant for each j

302 eta = (j - 1.) / jmax
303 do i = 1, imax * res

304 ! figure out which segment we're in

305 Seg_Num = ceiling(real(i) / real(imax * res) * real(N_seg))

306 ! Compute values of xi

307 if (i .LE. N_xi) then
308 xi = (i - 1.) / (N_xi)
309 else

310 xi = (i - ((Seg_Num - 1.) * N_xi)) * 1. / N_xi
311 end if
312 X_gl_long(i, j) = unmap_x(xi = xi, eta = eta, seg = seg(Seg_Num))
313 Y_gl_long(i, j) = unmap_y(xi = xi, eta = eta, seg = seg(Seg_Num))
314 end do

315 end do

316

317

318 call WRITE_MATRIX(X_gl_long, imax * res, jmax + 1, 'X_gl_long.csv')
319 call WRITE_MATRIX(Y_gl_long, imax * res, jmax + 1, 'Y_gl_long.csv')

320

194

321

322 !TRANSVERSE GRID LINES (these are just straight and so only require two points)

323 allocate(X_gl_tran(2, imax + 1))

324 allocate(Y_gl_tran(2, imax + 1))

325

326 ! put N_xi back to what its proper value

327 N_xi = imax / N_seg

328

329 do j = 1, 2
330 eta = j - 1.
331 do i = 1, imax + 1

332 ! figure out which segment we're in

333 Seg_Num = ceiling(real(i) / real(imax + 1) * real(N_seg))

334 ! Compute values of xi

335 if (i .LE. N_xi) then
336 xi = (i - 1.) / (N_xi)
337 else
338 xi = (i - 1. - (Seg_Num - 1.) * N_xi) / N_xi

339 end if
340 X_gl_tran(j, i) = unmap_x(xi = xi, eta = eta, seg = seg(Seg_Num))
341 Y_gl_tran(j, i) = unmap_y(xi = xi, eta = eta, seg = seg(Seg_Num))
342 end do
343 end do

344

345

346 call WRITE_MATRIX(X_gl_tran, 2, imax + 1 , 'X_gl_tran.csv')
347 call WRITE_MATRIX(Y_gl_tran, 2, imax + 1, 'Y_gl_tran.csv')

348

349

350

351

352 !--

353 ! Deallocate needed?

354

355 deallocate(NX, NY, SX, SY, EX, EY, WX, WY)
356 deallocate(X_gl_long, Y_gl_long, X_gl_tran, Y_gl_tran)

357

358 !==

359 ! \\\\\\\\\ ///////////

360 end subroutine Generate_Grid

361 ! ///////// \\\\\\\\\\\\

362 !==

363

364

365

366 !==

367 ! \\\\\\\\\ ///////////

368 subroutine Set_Elevations()

369 ! ///////// \\\\\\\\\\\\

370 !===

371 ! Purpose: Gives an elevation to each node of the grid

372 !

373 ! VARIABLE DECLARATIONS

374 ! Arguments

195

375 !

376 !

377 ! Internal Variables

378 !

379 !

380 ! Assign from a cross section: read in the cross section

381 !

382 !

383 !

384 !

385 !

386 !

387

388 use SHARED, only: Z, imax, jmax, lng_south, CV_Info, seg, &

389 nr_cs, slope_cs, wid_cs, eta_cs, Z_cs, nr_lp, dist_lp, Z_lp

390

391 use utilities, only: F_Linterp

392 use outputs, only: write_flipped_matrix

393 use pfc2dfuns, only: F_LinearIndex

394 implicit none

395

396 ! !CROSS SECTION (Transverse direction)

397 ! ! input file

398 ! integer :: nr_cs

399 ! REAL :: slope_cs(10), wid_cs(10)

400 !

401 ! ! derived values

402 ! real, dimension(11) :: eta_cs=0., Z_cs=0.

403 !

404 ! !LONGITUDINAL PROFILE

405 ! integer :: nr_lp

406 ! real, dimension(100) :: dist_lp, Z_lp

407 !

408

409 CHARACTER(20) infile ! the file name to read from
410 CHARACTER(3) dummy_line
411 INTEGER :: i, j, v ! looping variables

412

413

414 !CROSS Section Input File

415

416 real :: tot_wid
417 real :: CL_wid

418 ! Generating elevations

419 real :: dist_along_lp, Z_eta_0, Z_add

420

421

422

423 !--

424 ! C R O S S S E C T I O N

425 !--

426 ! default value for input file

427 infile = 'CrossSection.dat'

428

196

429 ! Prompt the user for the input file

430 WRITE(*,*) 'Enter filename or / for ', infile
431 READ(*,*) infile

432

433 ! Read the file

434 OPEN(UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old')

435

436 !Cross Seection geometry

437 read(unit=8, fmt = *) dummy_line
438 READ(unit=8, fmt = *) nr_cs
439 read(unit=8, fmt = *) dummy_line
440 if(nr_cs .gt. size(slope_cs)) then
441 print *, 'SET_ELEVATIONS: Too many records in', infile, &

442 'increase array size and recompile'

443

444 else
445 do i = 1, nr_cs
446 READ(unit=8, fmt = *) j, slope_cs(j), wid_cs(j)

447 end do
448 end if

449

450 ! Close the input file

451 close(8)

452

453 ! Echo to screen

454 PRINT *, 'CROSS SECTION INPUTS '
455 WRITE(*,*) ' Segment Slope Width '
456 WRITE(*,*) '=================================='

457 ! '----|----|----|----|----|----|----|----|----|----|----|----|

458 ! 5 10 15 20 25 30 35 40 45 50 55 60

459 DO j = 1, nr_cs
460 WRITE(*,10) j, slope_cs(j), wid_cs(j)
461 END DO

462

463

464 ! Compute eta and elevation from widths and slopes

465 ! Given: widths and slopes slope_cs wid_cs, nr_cs

466 ! Find : Z vs eta

467

468 tot_wid = sum(wid_cs(1:nr_cs))

469

470 CL_wid = seg(1) % W

471

472 ! Check tot_wid for consistency with the width given in CL segments

473 if(abs(tot_wid - CL_wid) .GE. 1.e-3) then
474 write(*,*) ' Cross Section Width =', tot_wid
475 write(*,*) ' Centerline Width = ', CL_wid
476 write(*,*) ' SET_ELEVATIONS: Total width specified in '//infile//&

477 &'is inconsistent with the centerine geometry...Stopping Program'

478

479 STOP

480

481 end if

482

197

483

484

485 eta_cs(1) = 0.

486 z_cs(1) = 0. !<---dummy value here, elevations are made relative to eta=0

487

488 ! Compute etas and elevations

489 do i = 2, nr_cs + 1
490 eta_cs(i) = eta_cs(i-1) + wid_cs(i-1) / tot_wid

491 Z_cs(i) = z_cs(i-1) - slope_cs(i-1) * wid_cs(i-1)
492 end do

493

494 ! print the results to confirm

495 print *, ' CROSS SECTION POINTS '

496 WRITE(*,*) ' Point Eta Elevation '
497 WRITE(*,*) '=================================='
498 do i = 1, nr_cs + 1
499 write(*,10) i, eta_cs(i), Z_cs(i)
500 end do

501

502

503 !--

504 ! L O N G I T D I N A L P R O F I L E

505 !--

506 ! default value for input file

507 infile = 'LongProfile.dat'

508

509 ! Prompt the user for the input file

510 WRITE(*,*) ''

511 WRITE(*,*) 'Enter filename or press / for ', infile
512 READ(*,*) infile

513

514 ! Read the file

515 OPEN(UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old')

516

517 read(unit=8, fmt = *) dummy_line
518 read(unit=8, fmt = *) nr_lp !number of rows to define cross section
519 read(unit=8, fmt = *) dummy_line

520

521 if (nr_lp .gt. size (dist_lp)) then
522 print *, 'SET_ELEVATIONS: Too many records in', infile, &

523 'increase array size and recompile'

524 else
525 do i = 1, nr_lp

526 READ(unit = 8 , fmt = *) j, dist_lp(j), Z_lp(j)
527 end do
528 end if

529

530

531 close(8)

532

533 ! Echo to screen

534 PRINT *, 'LONGITUDINAL PROFILE '
535 WRITE(*,*) ' Point Distance Elevation '

536 WRITE(*,*) '=================================='

198

537 ! '----|----|----|----|----|----|----|----|----|----|----|----|

538 ! 5 10 15 20 25 30 35 40 45 50 55 60

539 DO i = 1, nr_lp

540 WRITE(*,10) i, dist_lp(i), Z_lp(i)
541 END DO

542

543 write(*,*) ''

544

545 !--

546 ! I N T E R P O L A T E E L E V A T I O N S

547 !--

548 allocate(Z(imax, jmax)); Z = 0.0 !, STAT = astat(4)

549

550

551 do i = 1, imax

552 ! Compute distance along longitudinal profile at eta = 0

553 dist_along_lp = sum(lng_south(1:i,1)) - lng_south(i,1)/2.

554 ! Compute elevation at eta = 0 for this column of grid cells

555 Z_eta_0 = F_Linterp(x = dist_along_lp , &
556 Known_X = dist_lp , &
557 Known_Y = Z_lp , &
558 n = nr_lp)
559 do j = 1, jmax

560 v = F_LinearIndex(i, j , jmax)
561 Z_add = F_Linterp(X = CV_Info(v)%eta , &
562 known_X = eta_cs , &
563 known_Y = Z_cs , &
564 n = (nr_cs + 1))

565 Z(i,j) = Z_eta_0 + Z_add
566 end do
567 end do

568

569

570 ! Output matrix of cell elevations

571 CALL WRITE_FLIPPED_MATRIX(Z, imax, jmax, 'Z.csv')

572

573 !--

574 ! F O R M A T S T A T E M E N T S

575 !--

576

577 10 FORMAT(' ', (i3, ' '), (F10.3, ' ') , F10.6, i)

578

579 !==

580 ! \\\\\\\\\ ///////////

581 end subroutine Set_Elevations

582 ! ///////// \\\\\\\\\\\\

583 !===

584

588 !===

589 ! \\\\\\\\\ ///////////

590 END MODULE GridGen

591 ! ///////// \\\\\\\\\\\\

592 !==

199

Source File 10: solvers.f95

 1 ! fortran_free_source

 2 !

 3 ! This module contains subroutines for a few linear solvers

 4 !==

 5 ! \\\\\\\\\\ //////////

 6 MODULE solvers

 7 ! ////////// \\\\\\\\\\

 8 implicit none

 9

 10 contains

 11 !==

 12 ! Subroutines related to solving linear systems:

 13 ! 1. DIAGDOM_PENTA checks for diagonal dominance

 14 ! given the bands of a penta-diagonal matrix

 15 ! 2. GAUSS_SEIDEL_PENTA uses the Gauss-Seidel method

 16 ! for iterative solution of a penta-diagonal system

 17 ! of linear equations.

 18 ! 3. THOMAS uses the tri-diagonal matrix algorithm to solve

 19 ! a tri-diagonal linear system

 20

 21

 22

 23 !===

 24 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 25 ! ////////// D I A G D O M _ P E N T A \\\\\\\\\\\

 26 !===

 27 !

 28 ! Purpose: Checks to see if a penta-diagonal matrix is

 29 ! diagonally dominant. Knowing this helps select

 30 ! a solver. The routine operates only on the bands

 31 ! of the coefficent matrix.

 32 subroutine diagdom_penta(A, B, C, D, E, n, LB, UB, diagdom)

 33 ! A,B -- lower bands of the penta-diagonal matrix

 34 ! C -- main diagonal

 35 ! D,E -- upper banks of the penta-diagonal matrix

 36 ! n -- number of unknowns (size of system)

 37 ! LB -- lower bandwidth

 38 ! UB -- upper bandwidth

 39 ! tolit-- iteration tolerence

 40 ! diagdom-- a logical that stores the result.

 41 !---

 42 ! VARIABLE DECLARATIONS

 43

 44 ! Arguments

 45 integer, intent(in) :: n, LB, UB
 46 real, intent(in) :: A(n), B(n), C(n), D(n), E(n)
 47 logical, intent(out) :: diagdom

 48 ! Internal Variables

 49 integer :: k

 50 real :: T1, T2, T4, T5
 51 real :: tot

200

 52

 53

 54 !--

 55

 56 ! set the logical to true, the following loop changes it if

 57 ! a row is not diagonally dominant.

 58 diagdom = .true.

 59

 60 do k = 1, n

 61 ! compute the magnitude of each term in the row of the matrix

 62 if(k-LB .LT. 1) then; T1 = 0. ; else; T1 = abs(A(k)); endif
 63 if(k .EQ. 1) then; T2 = 0. ; else; T2 = abs(B(k)); endif
 64 if(k .EQ. n) then; T4 = 0. ; else; T4 = abs(D(k)); endif

 65 if(k+UB .GT. n) then; T5 = 0. ; else; T5 = abs(E(k)); endif

 66 ! Test for diagonal dominance

 67 tot = T1 + T2 + T4 + T5
 68 if(tot .GT. abs(C(k))) then
 69 write(*,*) 'Row ', k, 'of the matrix is not diagonally dominant'

 70 diagdom = .false.
 71 endif
 72 enddo

 73 !--

 74 end subroutine diagdom_penta

 75 !===

 76 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

 77 ! ////////// D I A G D O M _ P E N T A \\\\\\\\\\\

 78 !===

 79

 80 !===

 81 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 82 ! ////////// G A U S S _ S E I D E L _ P E N T A \\\\\\\\\\\

 83 !===

 84

 85 ! CAUTION -- This routine DOES NOT check convergence criteria

 86 ! so it possible to converge to the wrong answer.

 87

 88

 89 subroutine gauss_seidel_penta(A, B, C, D, E, F, n , LB, UB, &

 90 tolit, maxit, Xold, Xnew, dev, numits)

 91 ! A,B -- lower bands of the penta-diagonal matrix

 92 ! C -- main diagonal

 93 ! D,E -- upper banks of the penta-diagonal matrix

 94 ! F -- right hand side (force vector) of linear system

 95 ! n -- number of unknowns (size of system)

 96 ! LB -- lower bandwidth

 97 ! UB -- upper bandwidth

 98 ! tolit-- iteration tolerence

 99 ! maxit-- maximum number of iterations allowed

100 ! Xold -- initial guess

101 ! Xnew -- converged solution

102 ! dev -- device for outputting information from the solver

103 !numits-- number of iterations required to converge

104 !--

105 !DECLARATIONS

201

106 use utilities, only: F_L2_NORM

107 !arguments

108 integer, intent(IN) :: n, LB, UB

109 real, intent(in) :: A(n), B(n), C(n), D(n), E(n), F(n)
110 real, intent(in) :: tolit
111 integer, intent(in) :: maxit
112 real, intent(in) :: Xold(n)
113 real, intent(out) :: Xnew(n)

114 integer, intent(in) :: dev
115 integer, intent(out):: numits ! number of iterations required

116 ! internal variables

117 integer :: k ! array index
118 integer :: m ! iteration index

119 real :: T1, T2, T4, T5 ! Terms in the equation
120 real :: relchng(n) !relative change between iterations
121 real :: Xtmp(n) !temporary array to store the progressive solutions

122

123 !--

124

125 !store the starting guess in the temporary array

126 Xtmp = Xold

127

128 ! Perform the iterative solution

129 do m = 1, maxit

130 ! write(*,*) ' iteration Number = ', m

131 ! WRITe(*,*) 'Row, T1, T2, T4, T5, Xnew'

132 do k = 1, n

133 ! compute terms in the expression using if statements to

134 ! sort out which terms apply based on the indices

135 if(k-LB .LT. 1) then; T1 = 0. ; else; T1 = A(k)*Xnew(k-LB); endif
136 if(k .EQ. 1) then; T2 = 0. ; else; T2 = B(k)*Xnew(k-1); endif
137 if(k .EQ. n) then; T4 = 0. ; else; T4 = D(k)*Xtmp(k+1); endif
138 if(k+UB .GT. n) then; T5 = 0. ; else; T5 = E(k)*Xtmp(k+UB); endif

139 ! Compute

140 Xnew(k) = 1./C(k) * (F(k) - T1 - T2 - T4 - T5)

141 ! write(*,10) k, T1, T2, T4, T5, Xnew(k)

142 end do

143 !compute relative change for this iteration

144 do k = 1, n
145 relchng(k) = (Xnew(k) - Xtmp(k)) / Xtmp(k)
146 end do

147 ! check for convergence

148 ! write(dev,*) 'GAUSS_SIEDEL_PENTA: Iteration', m, ', Max rel change:',

maxval(abs(relchng))

149 if(maxval(abs(relchng)) .LT. tolit .AND. &
150 F_L2_Norm(relchng, n) .LT. tolit) then

151 ! write(dev,*) 'GAUSS_SIEDEL_PENTA: Iterations required to converge: ',

m

152 numits = m
153 exit ! exit iteration loop

154 ! elseif(maxval(abs(relchng)) .GT. tolit) then

155 else
156 Xtmp = Xnew

157 endif

202

158 !end iteration loop

159 end do

160 ! Print message if maximum number of iterations was exceeded

161 if (m .gt. maxit) then
162 write(*,*) 'GAUSS_SEIDEL_PENTA: maximum number of iterations &

163 &exceeded; program will terminate.'

164 STOP
165 endif

166

167 10 format(I, 10f12.7)

168

169 !---

170 end subroutine gauss_seidel_penta

171 !==

172 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

173 ! ////////// G A U S S _ S E I D E L _ P E N T A \\\\\\\\\\

174 !==

175

176

177

178

179 !==

180 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

181 ! ////////// T H O M A S \\\\\\\\\\

182 !==

183 SUBROUTINE THOMAS(A,B,C,D,X,N)

184 integer :: N
185 REAL A(N), B(N), C(N), D(N), X(N), Q(n+1), G(n+1)

186 REAL :: WI
187 integer :: i,j

188 !

189 ! Purpose: Solve a system of linear equations that appear

190 ! as a tri-diagonal matrix.

191 !

192 ! Source: This algorithm was handed out in class.

193 ! Written By: Brad Eck

194 ! Revision 0: Original coding on 19 Feb 09

195 !

196 ! A -- Main diagonal

197 ! B -- Superdiagonal

198 ! C -- Subdiagonal

199 ! D -- RHS vector

200 ! X -- Solution vector

201 ! N -- number of unknowns

202 !---

203

204 WI=A(1)
205 G(1)=D(1)/WI

206 DO I=2,n
207 Q(I-1) = B(I-1)/WI
208 WI = A(I) - C(I) * Q(I-1)
209 G(I) = (D(I) -C(I) * G(I-1))/WI
210 END DO

211

203

212 X(N) = G(N)

213

214 DO I=2,n

215 J = N - I + 1
216 X(J) = G(J) - Q(J) * X(J+1)
217 END DO

218

219 END SUBROUTINE THOMAS

220

221 !===

222 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

223 ! ////////// T H O M A S \\\\\\\\\\

224 !==

225

226 !==

227 ! \\\\\\\\\\\\\\\\\\ //////////////////////

228 END MODULE solvers

229 ! ////////////////// \\\\\\\\\\\\\\\\\\\\\\

230 !==

231

232

204

Source File 11: pfc1Dfuns2.f95

 1 !fortran_free_source

 2

 3 ! need a seperate module for these last two functions b/c

 4 ! the function F_CC calls both of them, and they cannot be

 5 ! in the same module

 6 module pfc1dfuns2

 7 implicit none

 8 contains

 9

10 !==

11 !function to determine thickness in the pavement at the cell face

12 FUNCTION F_hp_face(dxin, hin, zin, dxout, hout, zout, b)

13 implicit none

14 !INPUTS

15 REAL :: dxin, dxout ! size of cells
16 REAL :: hin, hout ! thickness at CV center
17 REAL :: zin, zout ! elevation at CV center
18 REAL :: b ! pavement thickness
19 REAL :: F_hp_face

20 !DUMMY

21 REAL :: head_at_face, Zface !HEAD and ELEVATION at the face

22 !

23 head_at_face = ((hin+zin)*dxin + (hout+zout)*dxout) &
24 / (dxin + dxout)

25 Zface = (zin*dxin + zout*dxout) / (dxin + dxout)
26 F_hp_face = MIN (b, head_at_face - Zface)

27 END function

28 !===

29 !function to determine the thickness on the surface at the cell face

30 FUNCTION F_hs_face(dxin, hin, zin, dxout, hout, zout, b)

31 implicit none

32 !INPUTS

33 REAL :: dxin, dxout ! size of cells
34 REAL :: hin, hout ! thickness at CV center

35 REAL :: zin, zout ! elevation at CV center
36 REAL :: b ! pavement thickness
37 REAL :: F_hs_face

38 !DUMMY

39 REAL :: head_at_face, Zface !HEAD and ELEVATION at the face

40 !

41 head_at_face = ((hin+zin)*dxin + (hout+zout)*dxout) &
42 / (dxin + dxout)
43 Zface = (zin*dxin + zout*dxout) / (dxin + dxout)
44 F_hs_face = MAX (0., head_at_face - Zface - b)

45 END FUNCTION

46 !===

47

48 end module pfc1dfuns2

49

205

Source File 12: pfc1Dfuns.f95

 1 ! fortran_free_source

 2

 3 module pfc1Dfuns

 4

 5 implicit none

 6

 7 contains

 8

 9

 10

 11 !==

 12 ! function to compute the conveyance coef at the western face

 13 ! the convention used here is that 'in' refers to cell 'i'

 14 ! and 'out' refers to cell 'i-1', which is the western cell

 15

 16 FUNCTION F_CC(xin, dxin, hin, zin, &

 17 xout, dxout, hout, zout) Result(CC)

 18 use shared, only: K, n_mann, b_pfc, h_pfc_min

 19 use pfc1dfuns2

 20 REAL :: xin, xout ! coordinate of the ith cell and the WESTERN cell center
 21 REAL :: dxin, dxout ! cell sizes
 22 REAL :: hin, hout ! thicknesses at cell center
 23 REAL :: zin, zout ! elevations at cell center
 24 REAL :: CC !, F_hp_face, F_hs_face <----these now in a module

 25 ! dummy vars

 26 REAL :: hpw !thickness in the PAVEMENT at the western face
 27 REAL :: hsw !thickness on the SURFACE at the western face
 28 REAL :: Sfw !magnitude of hydraulic gradient at the western face
 29 logical :: error

 30

 31 ! Intermediate quantities

 32 hpw = F_hp_face(dxin, hin, zin, dxout, hout, zout, b_pfc)
 33 hsw = F_hs_face(dxin, hin, zin, dxout, hout, zout, b_pfc)
 34 Sfw = sqrt(((hout + zout - hin - zin) * 2. / &

 35 (dxout + dxin)) ** 2)

 36

 37 ! Set hpw to small but positive and with enough range

 38 ! left to allow further calcs.zero if negative

 39 if(hpw .LT. TINY(hpw)) then

 40 hpw = h_pfc_min
 41 end if

 42

 43 !Conveyance coefficient itself

 44 if(hsw .GT. 0.0) then

 45 CC = 1. / abs(xin - xout) * &
 46 (K * hpw + &
 47 1./ n_mann * hsw ** (5./3.) / sqrt(Sfw))
 48 else

 49 ! only PFC flow

 50 CC = 1. / abs(xin - xout) * &
 51 (K * hpw)

206

 52 end if

 53

 54

 55 ! ERROR CHECKING FOR CONVEYANCE COEFS

 56 if(CC .GT. HUGE(CC) .OR. CC .LT. -HUGE(CC)) then
 57 error = .true.
 58 else
 59 error = .false.

 60 endif

 61

 62 !Output the parts of the calculation if the error is true

 63 if(error .eqv. .true.) then
 64 write(*,*) 'Problem with 1D conveyance coefficient!'

 65 print *, ' K = ', K
 66 print *, ' hp = ', hpw
 67 print *, ' n_mann = ', n_mann
 68 print *, ' hs = ', hsw
 69 print *, ' Sf = ', Sfw

 70 print *, ' xin = ', xin
 71 print *, ' xout = ', xout
 72 print *, ' CC = ', CC
 73 write(*,*) 'Stopping Program'
 74 STOP

 75 endif

 76

 77 END FUNCTION

 78 !==

 79

 80 !==

 81 !Function to switch the porosity on/off if the

 82 ! water is in/out of the pavement

 83 FUNCTION F_por(h)

 84 USE shared, only: b_pfc, por

 85 IMPLICIT NONE
 86 REAL h, F_por
 87 if (h >= b_pfc) then
 88 F_por = 1.
 89 ELSEIF (h < b_pfc) then

 90 F_por = 1./por
 91 end if

 92 END function F_por

 93 !==

 94

 95

 96

 97

 98 !==

 99 ! \\\\\\\\\\ //////////

100 END MODULE pfc1Dfuns

101 ! ////////// \\\\\\\\\\\

102 !==

207

Source File 13: pfc1Dsubs.f95

 1 ! fortran_free_source

 2

 3 module pfc1Dsubs

 4

 5 implicit none

 6

 7 contains

 8

 9

 10

 11

 12

 13

!===

 14 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

 15 ! ////////// S E T U P 1 D S E C T I O N \\\\\\\\\\

 16

!===

 17 SUBROUTINE setup_1D_section()

 18 ! does the setup work for looking at this as a 1D section

 19 USE shared, ONLY: Z_lp, nr_lp, dist_lp, slope_cs_1D, &

 20 wid_cs_1d, eta_cs_1d, nr_cs, long_slope, &

 21 slope_cs, wid_cs

 22 USE utilities, ONLY: F_PythagSum

 23 !--

 24 integer :: i

 25 !--

 26 ! Compute longitudinal slope

 27 ! (assumed to be constant thorought the domain)

 28 long_slope = (Z_lp(nr_lp) - Z_lp(1)) / &
 29 (dist_lp(nr_lp) - dist_lp(1))

 30

 31

 32 ! Using the longitudinal slope and cross slope,

 33 ! compute the slopes and segment widths for the 1D profile

 34

 35 allocate(slope_cs_1d(nr_cs))
 36 allocate(wid_cs_1d(nr_cs))
 37 allocate(eta_cs_1d(nr_cs+1))

 38

 39 write(*,*) ''
 40 write(*,*) ' 1D CROSS SECTION '
 41 write(*,*) ' Segment Slope Width '
 42 write(*,*) '============================'

 43 do i = 1, nr_cs

 44 !For the slope, compute the magnitude of the resultant slope

 45 ! using pythagorean sum and then use the intrinsic SIGN function

 46 ! to give the resultant the same sign as the cross slope.

 47 slope_cs_1D(i) = SIGN (F_PythagSum(long_slope, slope_cs(i)) , &

 48 slope_cs(i))

 49 ! Compute 1D width using similar triangles

208

 50 wid_cs_1D(i) = slope_cs_1D(i) / slope_cs(i) * wid_cs(i)

 51 ! Print the results as we go

 52 write(*,10) i, slope_cs_1D(i), wid_cs_1d(i)

 53 end do
 54 write(*,*) ''

 55

 56

 57

 58 eta_cs_1d(1) = 0.

 59

 60 ! Compute etas and elevations

 61 do i = 2, nr_cs + 1
 62 eta_cs_1d(i) = eta_cs_1d(i-1) + wid_cs_1d(i-1) / sum(wid_cs_1D(1:nr_cs))

 63 end do

 64

 65 ! print the results to confirm

 66 print *, ' 1D CROSS SECTION POINTS '
 67 WRITE(*,*) ' Point Eta '

 68 WRITE(*,*) '=================================='
 69 do i = 1, nr_cs + 1
 70 write(*,10) i, eta_cs_1d(i)
 71 end do

 72

 73

 74 !--

 75 ! Format Statements

 76 10 FORMAT(' ', (i3, ' '), (F10.3, ' ') , F10.6)

 77

 78 !--

 79 end subroutine setup_1D_section

 80 !==

 81 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

 82 ! ////////// S E T U P 1 D S E C T I O N \\\\\\\\\\

 83 !==

 84

 85 !===

 86 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

 87 ! ////////// G R I D 1 D S E C T I O N \\\\\\\\\\

 88 !===

 89 SUBROUTINE grid_1d_section(slope_in, width_in, seg, dx)

 90 !---

 91 use shared, only: TNE, XCV, ZCV, EDX, etaCV

 92 use pfc1Dfuns

 93 use utilities, only: F_Linterp

 94 use outputs, only: WRITE_MATRIX

 95

 96 !Define variables

 97

 98 IMPLICIT NONE

 99

100 !CONSTANTS

101 INTEGER, intent(in) :: seg
102 real, intent(in) :: dx

103

209

104 !ARRAYS

105 REAL, dimension(seg), intent(in) :: slope_in, width_in

106

107

108

109 !calculation variables

110 real, dimension(seg) :: slope, width
111 INTEGER, dimension(seg) :: ne, ir

112

113 INTEGER :: gb

114

115 INTEGER :: i, n, s, start, finish

116

117 REAL, ALLOCATABLE :: xface(:), zface(:)
118 real, allocatable :: seg_X(:), seg_Z(:)

119

120 REAL :: DX1

121

122

123

124

125 !---

126 ! Need to reverse slope and width arrays based on

127 ! the design of this subroutine.

128 ! Indices for Reverse arrays (uses an implied DO loop)

129 ir = (/ (i, i = seg, 1, -1) /)

130

131

132 do i = 1, seg
133 slope(i) = slope_in(ir(i))
134 width(i) = width_in(ir(i))
135 ne(i) = NINT(width(i) / dx)
136 end do

137

138 !---

139 !Compute derivative quanties & allocate remaining arrays

140

141 gb = seg - 1

142 TNE = sum(ne) + gb

143

144 allocate(XFACE(TNE+1), &
145 ZFACE(TNE+1), &

146 XCV(TNE) , &

147 ZCV(TNE) , &

148 EDX(TNE) , &

149 etaCV(TNE))

150

151 !---

152

153 ! compute the points for the boundaries and the CV centers

154

155 XFACE(1) = 0. !could use a different starting point
156 EDX(:) = dx ! all elemnts are the same size

157

210

158 do i = 1, TNE
159 XFACE(i+1) = XFACE(i) + EDX(i)
160 XCV (i) = (XFACE(i) + XFACE(i+1)) / 2.

161 etaCV(i) = 1. - XCV(i) / sum(width(:))
162 end do

163 !--

164 ! interpolate elevations of the points

165

166 allocate (seg_X(seg+1), seg_Z(seg+1))

167

168 seg_x(1) = 0.
169 seg_Z(1) = 10.

170

171 do i = 1, seg
172 seg_x(i+1) = seg_X(i) + width(i)
173 seg_Z(i+1) = seg_Z(i) + width(i) * slope(i)
174 end do

175

176 ! first cross section by interpolation

177 ZFACE(1) = seg_z(1)
178 do i = 1, TNE
179 ZFACE(i+1) = F_linterp(XFACE(i+1) , seg_X, seg_Z, seg+1)
180 ZCV (i) = F_linterp(XCV (i) , seg_X, seg_Z, seg+1)

181 end do

182

183 !--

184 ! output the resulting arrays

185

186 ! VECTOR FORM

187 OPEN(UNIT = 20, FILE = 'grid_1D_section.csv', STATUS = 'REPLACE')
188 WRITE(20,*) 'XFACE, ZFACE, CV, XCV, ZCV, EDX, etaCV'
189 do i = 1, TNE
190 WRITE(20,100) XFACE(i), ZFACE(i), i, XCV(i), ZCV(i), EDX(i),

etaCV(i)

191 end do
192 WRITE(20,99) XFACE(TNE+1), ZFACE(TNE+1)
193 close(20)

194

195 !--

196 !Format statements

197 90 FORMAT(i, F12.6)
198 99 FORMAT(2(F12.6, ','))
199 100 FORMAT(2(F12.6, ','), 1(I, ','), 5(F12.6, ','))

200

201

202 !--

203 end subroutine GRID_1D_SECTION

204 !==

205 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

206 ! ////////// G R I D 1 D S E C T I O N \\\\\\\\\\

207 !==

208

209

210

211

211 !==

212 ! \\\\\\\\\\\\ B E G I N P R O G R A M //////////

213 ! //////////// P F C 1 D I M P \\\\\\\\\\

214 !==

215 ! Purpose: This program computes a 1D solution for unsteady

216 ! drainage through a PFC. The water THICKNESS in each

217 ! cell is used as the primary variable.

218 ! History: Source code revised from previous program that used

219 ! an explicit method, and revised again to use as a

220 ! subroutien within the 2D model

221 ! IC: The depth on input to the subroutine

222 ! BCs: Various

223 ! Linearization: Picard Iteration (lag the coefficients)

224 ! Linear Solver: Thomas Alogorithm used for this 1D case

225 !

226 ! Externals: 1.

227 ! 2.

228

229

230 SUBROUTINE pfc1Dimp(h_old, dt, rain, tolit, qmax, &

231 h_new, imax, eta_0_BC, eta_1_BC)

232 !bring in related modules

233 use shared, only: K, g, b_pfc, n_mann, por, XCV, ZCV, EDX, &

234 etaCV, relax, relax_tran, h_pfc_min, eta_0_hp2_max

235 use utilities, only: F_Linterp, F_L2_NORM

236 use solvers, only: Thomas

237 use pfc1Dfuns

238 use outputs, only: WRITE_MATRIX, write_vector

239

240 !---

241 !VARIABLE DECLARATIONS

242

243 implicit none

244 ! NOTE: Because of ONLY statement for modules, only the names variables

245 ! are used in this subroutine. This allows re-using variables names

246 ! thus the variable 'h_old' in this subroutine is not the same as

247 ! the 'h_old' matrix in PERFCODE.

248

249 ! Arguments

250 integer, intent(in) :: imax ! imax == TNE from 1D gridding
251 real, dimension(imax), intent(in) :: h_old
252 real, intent(in) :: dt
253 real, intent(in) :: rain

254 real, intent(in) :: tolit
255 integer, intent(in) :: qmax
256 real, dimension(imax), intent(out):: h_new
257 character(len = 7) :: eta_0_BC, eta_1_BC

258

259 !SCALERS

260 INTEGER :: i, n, q
261 REAL :: PF, PF1, Cw, Ce, Ce1, Cw1
262 REAL :: hp, hs
263 REAL :: cputime

264 real, dimension(:), pointer :: X, Z, DX

212

265

266

267 !guess values for water thickness in cm

268 REAL :: h_itr(imax)

269 !linear system (tri-diagonal)

270 REAL :: main(imax), super(imax), sub(imax), RHS(imax)

271 !solution

272 REAL :: h_temp (imax) !, h_new (imax)

273 !convergence test

274 REAL :: relchg(imax)

275 !post processing

276 REAL :: head (imax), hygrad (imax) ! head and hydraulic gradient
277 REAL :: q_pav (imax), q_surf (imax), q_tot(imax) !fluxes

278 !summary info

279 integer, parameter :: nmax = 2
280 INTEGER :: numit (nmax), loc(nmax) ! number of iterations at each timestep &

locaiton of max change

281 REAL :: maxdiff(nmax) ! max change and its location

282 !FUNCTIONS

283 ! REAL :: F_por, F_CC

284 !CHARACTERS

285 CHARACTER(8) DATE
286 CHARACTER(10) TIME

287

288

289

290 logical :: transition
291 real, dimension(imax, qmax) :: h_temp_hist, h_itr_hist !for monitoring the

solution through the iteration

292 real :: relaxation_factor ! Relaxation Factor
293 real, dimension(imax) :: residual

294

295 real :: b ! an extra value for b_pfc

296

297

298 real :: hs1, hs2, ds ! Sheet flow MOC
299 real :: hp1, hp2, dx_moc ! PFC flow MOC
300 real :: cross_slope

301 integer, dimension(1) :: i_Zmax !index of point with highest elevation
302 real :: eps_itr_tol

303

304 integer :: nip ! number of interpolation points

305 !--

306 ! Set pointers

307

308 X => XCV
309 Z => ZCV
310 DX => EDX

311

312 b = b_pfc
313 n = 1
314 i_Zmax = maxloc(Z)

315 !---

316 !SPATIAL GRID (from GRID_1D_SECTION

213

317

318

319 ! INITIALIZE ARRAYS

320 !iteration array

321 h_itr = h_old

322

323 ! Linear system

324 main = 0.

325 super = 0.
326 sub = 0.
327 rhs = 0.

328

329 ! Summary arrays

330 numit = 0.
331 maxdiff = 0.
332 loc = 0.

333

334 !--

335 ! Solution using Crank-Nicolson with tri-diagonal matrix algorithm

336 ! main, super & sub are diagonals of the coefficient matrix

337 ! RHS is the right hand side of the linear system

338

339 open(unit = 50, file = 'PF_smry.csv', status = 'REPLACE')

340 write(50,54) 'n/i', (/ (i, i = 1, imax) /)

341

342 open(unit = 110, file = '1DRunDetails.txt', status = 'REPLACE')

343

344 54 format((A, ','), 10000(I, ','))

345

346

347

348 !iteration loop

349 do q = 1, qmax

350

351

352 ! UPSTREAM BOUNDARY

353 i = 1

354 ! First cell

355 PF = F_por(h_old(i))
356 PF1 = F_por(h_itr(i))

357

358 BC1: if(eta_1_BC .EQ. 'NO_FLOW') then

359 ! NO FLOW BOUNDARY Cw ---> 0

360 Cw = 0.
361 Ce = F_CC(X(i), DX(i), h_old(i), Z(i), &
362 X(i+1), DX(i+1), h_old(i+1), Z(i+1))

363 !these coefficints are updated as the iteration progresses

364 Cw1 = 0.

365 Ce1 = F_CC(X(i), DX(i), h_itr(i), Z(i), &
366 X(i+1), DX(i+1), h_itr(i+1), Z(i+1))

367 !Diagonals of coefficient matrix

368 main (i) = 1 + dt / 2 * PF1 * Cw1 / DX(i) &
369 + dt / 2 * PF1 * Ce1 / DX(i)

370 super(i) = - dt / 2 * PF1 * Ce1 / DX(i)

214

371 sub (i) = - dt / 2 * PF1 * Cw1 / DX(i) ! will be zero

372 !Right hand side of linearized system

373 ! part that came from n level

374 RHS (i) = h_old(i) + dt / 2. * PF * &

375 ! (Cw / DX(i) * (h_old(i-1) + Z(i-1) & !enforce BC

376 ! - h_old(i) - Z(i)) & !enforce BC

377 (+ Ce / DX(i) * (h_old(i+1) + z(i+1) &
378 - h_old(i) - Z(i)) &

379 + rain) &

380 ! part from n+1 level

381 + dt / 2. * PF1 * &

382 ! (Cw1 / DX(i) * (Z(i-1) - Z(i)) & !enforce BC

383 (+ Ce1 / DX(i) * (Z(i+1) - Z(i)) &

384 + rain)

385

386 elseif(eta_1_BC .EQ. 'MOC_KIN') then

387 ! METHOD OF CHARCTERISTICS KINEMATIC BOUNDAARY

388 ! cross slope is defined positive for use in SQRT

389 cross_slope = (Z(i+1) - Z(i)) / (X(i+1) - X(i))

390 ! If it comes out negative, a different BC is needed

391 if(cross_slope .LT. 0.0) then
392 write(110,*) 'Different BC needed at eta = 1'
393 endif

394 if(h_old(i) .LE. b_pfc) then

395 ! PFC FLOW MOC BC

396 dx_moc = K * (cross_slope) * dt / por

397 !Interpolate up the drainage slope...make sure we have enough

points

398 nip = NINT(dx_moc / DX(1)) + 2
399 write(110,*) 'eta_1_bc X=', (xcv(1) + dx_moc), &

400 'nip=', nip, &

401 'KX=', XCV(1:nip), &

402 'KY=', h_old(1:nip)

403 hp1 = F_Linterp(X = (xcv(1) + dx_moc), &
404 Known_X = XCV(1:nip) , &
405 Known_Y = h_old(1:nip) , &
406 n = nip)
407 if(hp1 .LT. 0.0) then

408 write(100,*) 'PFC1DIMP: eta_1_bc hp1=', hp1
409 stop
410 endif
411 hp2 = hp1 + rain * dt / por
412 if(rain .LT. TINY (rain)) then

413 ! Rainfall rate is effectively zero

414 hp2 = hp2
415 else

416 ! Rainfall is non-zero, set a maximum value for hp2

417 ! the total drainage distance is the sum from the highest

point in

418 ! the 1D domain to the end, this is why MAXLOC is used.

419 hp2 = min(hp2, sum(DX(i : i_Zmax(1)))*rain/K/cross_slope)
420 endif

421 ! Fill in linear system

422 main(i) = 1.

215

423 RHS (i) = hp2

424 ! write(100,*) 'PFC1DIMP: eta_BC = MOC_KIN i=',i, 'dx_moc=', dx_moc, 'hp1=', hp1,

'hp2=', hp2

425 else

426 !SHEET FLOW MOC BC

427 hs2 = h_old(i) - b_pfc

428 ! Handle zero rainfall

429 if(rain .LT. TINY(rain)) then

430 ! no increase in flow rate along drainge path

431 ! ds is arbitray, so use the PFC value

432 ds = K * (cross_slope) * dt / por
433 else
434 ds = sqrt(cross_slope) / n_mann / rain * &

435 ((hs2 + rain * dt)**(5./3.) - hs2**(5./3.))
436 endif

437 ! Interpolate up the slope to find hs1

438 nip = NINT(ds / DX(1)) + 2
439 write(110,*) 'eta_1_bc X=',(xcv(1) + ds), 'nip=', nip, 'KX=',

XCV(1:nip), 'KY=', h_old(1:nip)

440 hs1 = F_Linterp(X = (xcv(1) + ds), &
441 Known_X = XCV(1:nip) , & !(/ 0. ,

DX(i) /) ,&

442 Known_Y = h_old(1:nip),

& !(/ h_old(i), h_old(i+1) /), &

443 n = nip) - b_pfc

444 ! Handle return to sheet flow

445 if(hs1 .GT. 0.0) then

446 ! we have sheet flow

447 main(i) = 1.
448 RHS (i) = b_pfc + (hs1**(5./3.) + (hs2 + rain*dt)**(5./3.)
- hs2**(5./3.))**0.6
449 else

450 ! upstream point has sheet flow

451 ! use the PFC characteristic

452 main(i) = 1.
453 RHS (i) = hs1 + b_pfc + rain * dt / por
454 end if
455 end if

456 endif BC1

457

458 !Interior of domain

459 do i = 2, imax - 1
460 PF = F_por(h_old(i))

461 PF1 = F_por(h_itr(i))

462 ! FUNCTION F_CC(xin, dxin, hin, zin, &

463 ! xout, dxout, hout, zout)

464 !these coefficients are stationary (time level n)

465 Cw = F_CC(X(i), DX(i), h_old(i), Z(i), &

466 X(i-1), DX(i-1), h_old(i-1), Z(i-1))
467 Ce = F_CC(X(i), DX(i), h_old(i), Z(i), &
468 X(i+1), DX(i+1), h_old(i+1), Z(i+1))

469 !these coefficints are updated as the iteration progresses

470 Cw1 = F_CC(X(i), DX(i), h_itr(i), Z(i), &

471 X(i-1), DX(i-1), h_itr(i-1), Z(i-1))

216

472 Ce1 = F_CC(X(i), DX(i), h_itr(i), Z(i), &
473 X(i+1), DX(i+1), h_itr(i+1), Z(i+1))

474

475

476 !Diagonals of coefficient matrix

477 main (i) = 1 + dt / 2 * PF1 * Cw1 / DX(i) &
478 + dt / 2 * PF1 * Ce1 / DX(i)
479 super(i) = - dt / 2 * PF1 * Ce1 / DX(i)

480 sub (i) = - dt / 2 * PF1 * Cw1 / DX(i)

481 !Right hand side of linearized system

482 ! part that came from n level

483 RHS (i) = h_old(i) + dt / 2. * PF * &
484 (Cw / DX(i) * (h_old(i-1) + z(i-1) &

485 - h_old(i) - Z(i)) &
486 + Ce / DX(i) * (h_old(i+1) + z(i+1) &
487 - h_old(i) - Z(i)) &
488 + rain) &

489 ! part from n+1 level

490 + dt / 2. * PF1 * &
491 (Cw1 / DX(i) * (z(i-1) - z(i)) &
492 + Ce1 / DX(i) * (z(i+1) - Z(i)) &
493 + rain)
494 end do

495

496 ! DOWNSTREAM BOUNDARY

497 i = imax

498 ! use BC from input argument

499 BC0:if(eta_0_BC .EQ. 'NO_FLOW') then

500 !NO FLOW BOUNDARY ---> Ce == 0

501 !these coefficients are stationary (time level n)

502 Cw = F_CC(X(i), DX(i), h_old(i), Z(i), &
503 X(i-1), DX(i-1), h_old(i-1), Z(i-1))
504 Ce = 0.0

505 !these coefficints are updated as the iteration progresses

506 Cw1 = F_CC(X(i), DX(i), h_itr(i), Z(i), &
507 X(i-1), DX(i-1), h_itr(i-1), Z(i-1))
508 Ce1 = 0.0

509 !Diagonals of coefficient matrix

510 main (i) = 1 + dt / 2 * PF1 * Cw1 / DX(i) &
511 + dt / 2 * PF1 * Ce1 / DX(i)
512 super(i) = - dt / 2 * PF1 * Ce1 / DX(i)
513 sub (i) = - dt / 2 * PF1 * Cw1 / DX(i)

514 !Right hand side of linearized system

515 ! part that came from n level

516 RHS (i) = h_old(i) + dt / 2. * PF * &
517 (Cw / DX(i) * (h_old(i-1) + z(i-1) &
518 - h_old(i) - Z(i)) &

519 ! + Ce / DX(i) * (h_old(i+1) + z(i+1) & !enforce BC

520 ! - h_old(i) - Z(i)) & !enforce BC

521 + rain) &

522 ! part from n+1 level

523 + dt / 2. * PF1 * &
524 (Cw1 / DX(i) * (z(i-1) - z(i)) &

525 ! + Ce1 / DX(i) * (z(i+1) - Z(i)) & !enforce BC

217

526 + rain)
527 elseif(eta_0_BC .EQ. 'MOC_KIN') then

528 ! METHOD OF CHARCTERISTICS KINEMATIC BOUNDAARY

529 cross_slope = (Z(i-1) - Z(i)) / (X(i) - X(i-1)) ! cross slope is

positive downwars for use in SQRT

530 if(cross_slope .LT. 0.0) then
531 write(110,*) 'Different BC needed at eta = 0'
532 endif

533 if(h_old(i) .LE. b_pfc) then

534 ! PFC FLOW MOC BC

535 dx_moc = K * (cross_slope) * dt / por !
536 nip = NINT(dx_moc / DX(imax)) + 2
537 write(110,*) 'eta_0_BC X=', (XCV(imax) - dx_moc) , &

538 'nip=', nip, &

539 'KX=', XCV(imax-nip+1:imax) , &
540 'KY=', h_old(imax-nip+1 : imax)

541

542 hp1 = F_Linterp(X = (XCV(imax) - dx_moc) , &

543 Known_X = (XCV(imax-nip+1:imax)), &
544 Known_Y = h_old(imax-nip+1 : imax) , &
545 n = nip)
546 if(hp1 .LT. 0.0) then
547 write(100,*) 'PFC1DIMP: eta_0_bc hp1=', hp1

548 stop
549 endif
550 hp2 = hp1 + rain * dt / por
551 if(rain .LT. TINY (rain)) then

552 ! Rainfall rate is effectively zero

553 hp2 = hp2
554 else

555 ! Rainfall is non-zero, set a maximum value for hp2

556 ! the total drainage distance is the sum from the highest pt

557 ! inthe 1D domain to the end, this is why MAXLOC is used.

558 eta_0_hp2_max = sum(DX(i_Zmax(1) : i))*rain/K/cross_slope
559 hp2 = min(hp2, eta_0_hp2_max)
560 endif

561 ! Fill in linear system

562 main(i) = 1.

563 RHS (i) = hp2
564 else

565 !SHEET FLOW MOC BC

566 hs2 = h_old(i) - b_pfc

567 ! Handle zero rainfall

568 if(rain .LT. TINY(rain)) then

569 ! no increase in flow rate along drainge path

570 ! ds is arbitray, so use the PFC value

571 ds = K * (cross_slope) * dt / por
572 else

573 ds = sqrt(cross_slope) / n_mann / rain * &
574 ((hs2 + rain * dt)**(5./3.) - hs2**(5./3.))
575 endif

576 ! Interpolate up the slope to find hs1

577 nip = NINT(ds / DX(imax)) + 2

578 write(110,*) 'eta_0_BC X=', (XCV(imax) - ds) , &

218

579 'nip=', nip , &

580 'KX=', XCV(imax-nip+1:imax) , &
581 'KY=', h_old(imax-nip+1 : imax)

582

583 hs1 = F_Linterp(X = (XCV(imax) - ds) , &
584 Known_X = (XCV(imax-nip+1:imax)) , &
585 Known_Y = h_old(imax-nip+1 : imax) , &
586 n = nip) - b_pfc

587 ! Handle return to sheet flow

588 if(hs1 .GT. 0.0) then

589 ! we have sheet floe

590 main(i) = 1.
591 RHS (i) = b_pfc + (hs1**(5./3.) + (hs2 + rain*dt)**(5./3.)

- hs2**(5./3.))**0.6
592 else

593 ! upstream point has sheet flow

594 ! use the PFC characteristic

595 main(i) = 1.

596 RHS (i) = hs1 + b_pfc + rain * dt / por
597 end if
598 end if
599 end if BC0

600

601

602

603 ! TRANSITION CHECK

604 ! test to see if there is a transition to or from sheet flow

605 ! happening during this timestep. Use under-relaxtion to

606 ! control oscillations during a transition timestep.

607

608 transition = .false.
609 do i = 1, imax
610 pf = F_por(h_old(i))

611 pf1= F_por(h_itr(i))
612 if(pf .GT. pf1 .OR. pf .LT. pf1) then
613 transition = .true.
614 write(110,*) 'PERFCODE: transition for cell i=', i, 'pf=', pf, 'pf1=', pf1
615 endif

616 end do

617

618 if(transition .eqv. .true.) then
619 relaxation_factor = relax_tran
620 eps_itr_tol = tolit * 10.

621 else
622 relaxation_factor = relax
623 eps_itr_tol = tolit
624 endif

625

626

627 !Solve linear system

628 CALL THOMAS(main, super, sub, RHS, h_temp, imax)

629

630

631

219

632 ! Compute residual and relative change for this iteration. This took

633 ! some careful though to handle both filling and draining cases.

634 ! relative change is used when the solution is far from zero

635 ! and absolute change (residual) is used near zero.

636

637 do i = 1, imax

638

639 if(h_temp(i) .GT. TINY(h_temp(i))) then

640

641 ! Compute residual for this iteration

642 residual(i) = h_temp(i) - h_itr(i)

643

644 ! Handle a result that is effectively zero by

645 ! using an absolute tolerance instead of

646 ! a relative one

647 if(h_temp(i) .LE. h_pfc_min .and. &
648 residual (i) .LE. eps_itr_tol) then

649

650 relchg(i) = 0.0

651

652 else
653 relchg (i) = residual (i) / h_itr(i)
654 endif

655

656 elseif(h_temp(i) .LE. TINY(h_temp(i))) then

657

658 ! the model is saying the cell is empty,

659 ! so force the solution to be zero

660 h_temp(i) = 0.0

661 ! compute the residual

662 residual(i) = h_temp(i) - h_itr(i)

663 ! For the zero case, use an absolute rather than

664 ! relative tolerance by setting the value of relchng

665 ! below the tolerance instead of computing it.

666 if(abs(residual(i)) .LE. eps_itr_tol) then

667

668 relchg(i) = 0.0
669 endif

670 endif

671

672 end do

673

674

675 if(maxval(h_temp) .LT. TINY(h_temp(1))) then
676 write(*,*) 'PFC1DIMP: Zeroed out. Writing system and stopping program'
677 open(unit = 10, file = '1Dsystem.csv', status = 'REPLACE')
678 write(10,*) 'i,sub,main,super,rhs,h_temp,'
679 do i = 1, imax

680 write(10, 10) i, sub(i), main(i), super(i), RHS(i), h_temp(i)
681 end do
682 close(10)

683

684 call write_vector(h_old, imax, 'h_old_1d.csv')

685 STOP

220

686 10 FORMAT ((I, ','), 5(E, ','))

687

688 end if

689

690

691 !perform usual iteration check

692 IF (maxval (ABS(relchg)) .le. eps_itr_tol .AND. &
693 F_L2_NORM(relchg, imax) .le. eps_itr_tol) then

694 ! WRITE(*,*) 'Time step n = ', n,' converged in q = ', q, ' iterations.'

695 EXIT
696 end if

697

698

699

700

701 ! Smith page 32

702

703 h_itr = h_itr + relaxation_factor * residual

704

705 !Store the result of this iteration

706 h_temp_hist(: , q) = h_temp
707 h_itr_hist (: , q) = h_itr

708

709

710

711 WRITE(110,*) 'ITERATION q=', q , &

712 'Max Change of', maxval(abs(relchg)), &

713 'at i=', maxloc(abs(relchg)) , &

714 'h_temp(i)=', h_temp(maxloc(abs(relchg))) , &

715 'L2_Norm=', F_L2_NORM(relchg, imax)

716

717

718

719 !end iteration loop

720 end do

721

722 !update the old and new solutions

723 !At the end of the iteration, we have found values for the

724 !next time step.

725

726 h_new = h_temp

727

728

729 !Store summary info for this timestep

730 numit (n) = q
731 loc (n) = maxloc (abs(relchg), dim=1)
732 maxdiff(n) = relchg (loc (n))

733

734 !Give Error if Iteration fails to converge

735 if (q .gt. qmax) then
736 WRITE(*,*) 'PFC1DIMP: Iteration failed to converge. '
737 write(100,*) 'PFC1DIMP: Iteration failed to converge. '

738 CALL WRITE_MATRIX(h_temp_hist, imax, qmax, 'h_temp_hist_1D.csv')

739 CALL WRITE_MATRIX(h_itr_hist , imax, qmax, 'h_itr_hist_1D.csv')

221

740

741 ! EXIT

742 end if

743

744

745 close(50) ! pf summary file
746 close(110) ! Run details file

747 !--

748 ! POST PROCESSING

749

750 !Compute head

751 head(:) = h_new(:) + Z(:)

752

753 !Compute hydraulic gradient and flux (both positive downwards)

754

755 !Upstream boundary node (using a 1-sided approximation)

756 i = 1
757 hygrad(i) = (head(i) - head(i+1)) / (X(i+1) - X(i))

758 !In the pavement

759 hp = min(h_new(i), b)
760 q_pav (i) = K * hp * hygrad(i)

761 !on the surface

762 hs = max(0., h_new(i) - b)

763 q_surf(i) = 1. / n_mann * hs ** (2./3.) * sqrt(abs(hygrad(i))) * hs
764 q_tot(i) = q_pav(i) + q_surf(i)

765

766 do i = 2, imax - 1

767 !hydrualic gradient

768 hygrad(i) = (head(i-1) - head(i+1)) / (X(i+1) - X(i-1))

769 !thickness in the pavement

770 hp = min(h_new(i), b)
771 q_pav (i) = K * hp * hygrad(i)

772 !thickness on the surface

773 hs = max(0., h_new(i) - b)
774 q_surf(i) = 1. / n_mann * hs**(2./3.) * sqrt(abs(hygrad(i))) * hs

775 ! WRITE(*,*) 'i = ', i, 'hs = ', hs, 'q_surf =', q_surf(i)

776 q_tot(i) = q_pav(i) + q_surf(i)
777 end do

778

779 ! DOWNSTREAM BOUNDARY (1 sided approximation)

780 i = imax

781 !hydrualic gradient

782 hygrad(i) = (head(i-1) - head(i)) / (X(i) - X(i-1))

783 !thickness in the pavement

784 hp = min(h_new(i), b)
785 q_pav (i) = K * hp * hygrad(i)

786 !thickness on the surface

787 hs = max(0., h_new(i) - b)

788 q_surf(i) = 1. / n_mann * hs ** (2./3.) * sqrt(abs(hygrad(i))) * hs
789 q_tot(i) = q_pav(i) + q_surf(i)

790

791 !---

792 !Write results to a file

793

222

794 call DATE_AND_TIME(DATE,TIME)

795 call CPU_TIME(cputime)

796

797 OPEN(UNIT = 10, FILE = 'pfc1Dimp.csv', STATUS='REPLACE')
798 WRITE(10,*) 'Output From pfc1Dimp.f95'
799 WRITE(10,*) 'Timestamp,', DATE,' ', TIME,','
800 WRITE(10,*) 'Upstream Boundary == Fixed Value'
801 WRITE(10,*) 'Downstream Boundary == Sf = So'

802 WRITE(10,200) 'Hydraulic Conductivity (cm/s),', k
803 WRITE(10,200) 'Rainfall Intensity (cm/hr),', rain * 3600.
804 WRITE(10,200) 'PFC Thickness (cm),', b
805 WRITE(10,200) 'Final Time (sec),', (n-1) * dt
806 WRITE(10,200) 'Time step (seconds),', dt

807 WRITE(10,200) 'Grid spacing (cm),', dx(5)
808 WRITE(10,*) 'Number of elements,', imax - 2
809 WRITE(10,200) 'CPU Time (seconds),', cputime
810 WRITE(10,*) '************************** &

811 &MODEL OUTPUT IN [SI] UNITS &

812 &***********************************'

813 WRITE(10,*) 'X, eta, Z, PFC Surface, Thickness, Head,', &

814 'Hydraulic Gradient, Pavement Flux,' , &

815 ' Surface Flux, Total Flux,'

816 do i = 1, imax

817 WRITE(10,100) X(i), etaCV(i), Z(i), Z(i) + b, &

818 h_new(i), Head(i), hygrad(i), &

819 q_pav(i), q_surf(i), q_tot(i)

820 END do
821 CLOSE(10)

822

823 !--

824 !Write calculation summary to file

825

826 OPEN(UNIT = 20, FILE = '1Ddetails.csv', STATUS='REPLACE')

827 WRITE(20,*) 'Timestamp,', DATE, ' ', TIME, ','
828 WRITE(20,*) '-----,'
829 WRITE(20,*) 'Timestep, Iterations, MaxRelChng, MaxLocn'
830 DO n = 1, nmax
831 WRITE(20,300) n, numit(n), maxdiff(n), loc(n)

832 end do
833 close(20)

834

835 !---

836 !Format statements

837

838 100 FORMAT (100 (F14.7, ',')) ! Formatting for the actual output
839 200 FORMAT (A, F10.4)
840 300 FORMAT (2 (I, ','), E, ',', I, ',')

841

842 !---

843 END subroutine pfc1Dimp

844 !==

845 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

846 ! ////////// P F C 1 D I M P \\\\\\\\\\

847 !==

223

848

849

850

851

852

853

854

855 END MODULE pfc1Dsubs

Source File 14: pfc2Dsubs.f95

 1

 2 ! fortran_free_source

 3

 4 ! This module holds external procedures (subroutine and functions)

 5 ! for the pfc2D model (PERFCODE).

 6 ! Using module creates an explicit interface for the procedures

 7

 9 !===

 10 ! \\\\\\\\\\\ B E G I N //////////

 11 MODULE pfc2Dsubs

 12 ! ////////// \\\\\\\\\\

 13 !===

 14

 15 IMPLICIT NONE

 16

 17 CONTAINS

 18

 20 !===

 21 SUBROUTINE set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rr)

 22 ! Fills the arrays of the linear system for Cell v

 23 USE shared, ONLY: A, B, C, D, E, Fn, F1, F, jmax

 24 USE pfc2Dfuns, ONLY: F_LinearIndex, F_RHS_n1

 25 implicit none

 26 ! Arguments

 27 integer, intent(in) :: i, j
 28 real , intent(in) :: Cw1, Ce1, Cs1, Cn1, pf, dt, rr

 29 ! Internal Variables??

 30 integer :: v

 31 !real, external :: F_RHS_n1

 32 !--

 33 ! Linear Index

 34 v = F_LinearIndex(i, j, jmax)

 35

 36 ! Bands of penta-diagonal matrix

 37 A(v) = - dt / 2. * pf * Cw1
 38 B(v) = - dt / 2. * pf * Cs1
 39 C(v) = dt / 2. * pf * (Cw1 + Cs1 + Cn1 + Ce1) + 1.

 40 D(v) = - dt / 2. * pf * Cn1

224

 41 E(v) = - dt / 2. * pf * Ce1

 42 ! Right-hand-side

 43 ! Portion from time level n+1

 44 F1(v) = F_RHS_n1(i, j, Cw1, Ce1, Cs1, Cn1, rr, pf, dt)

 45 !The complete right hand side has contributions from

 46 ! time level n and time level n+1

 47 F(v) = Fn(v) + F1(v)

 48 !---

 49 end subroutine set_ABCDEF

 50 !==

 51 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

 52 ! ////////// S E T _ A B C D E F \\\\\\\\\\\

 53 !===

 54

 55 !==

 56 ! \\\\\\\\\\ B E G I N S U B R O U T I N E //////////

 57 ! ////////// S E T _ X Y H \\\\\\\\\\\

 58 !===

 59 subroutine SET_xyh(i , j, xx, yy , hh)

 60 ! Assigns values to X, Y, and Z for pointing to the bi-linear

 61 ! interpolatoin subroutine

 62 use shared, only: jmax, h_old, Z, CV_Info

 63 use pfc2dfuns, only: F_LinearIndex

 64 !VARIABLE DECLARATIONS

 65 ! Arguments

 66 integer,intent(in) :: i, j ! Grid indices
 67 real, intent(out) :: xx, yy, hh ! physical coordinates

 68 !Internal variables

 69 integer :: v

 70 !---

 71 v = F_LinearIndex(i, j, jmax)
 72 xx = CV_Info(v) % X
 73 yy = CV_Info(v) % Y

 74 hh = h_old(i, j)

 75

 76 !--

 77 end subroutine SET_xyh

 78 !==

 79 ! \\\\\\\\\\ E N D S U B R O U T I N E //////////

 80 ! ////////// S E T _ X Y H \\\\\\\\\\\

 81 !===

 82

 83

 84 !===

 85 ! \\\\\\\\\\\ //////////

 86 END MODULE pfc2Dsubs

 87 ! ////////// \\\\\\\\\\

 88 !===

 89

 90

225

Source File 15: BoundCond.f95

 1 ! fortran_free_source

 2

 3 !==

 4 ! \\\\\\\\\\ //////////

 5 MODULE BoundCond

 6 ! ////////// \\\\\\\\\\

 7 implicit none

 8 contains

 9 !==

 10

 11 !===

 12 ! \\\\\\\\\\ B E G I N S U B R O U T I N E ///////////

 13 ! ////////// M O C _ K I N _ B C \\\\\\\\\\\

 14 !==

 15

 16 ! inputs: everything

 17 ! outputs: the depth in the boundary cell

 18

 20 subroutine MOC_KIN_BC(i, j, rain, dt, side, h_bound, dev)

 21

 22 use shared , only: K, por, b_pfc, n_mann, CV_Info, wid, &

 23 imax, jmax, lng, wid, h_old, Z, eta_0_hp2_max

 24 use pfc2dsubs, only: set_xyh

 25 use pfc2Dfuns, only: F_LinearIndex

 26 use utilities, only: BILINEAR_INTERP, F_PythagSum

 27

 28

 29 integer, intent(in) :: i, j
 30 real, intent (in) :: dt ! timestep

 31 character(5), intent(in) :: side ! which side of the domain are we working on
 32 real, intent(in) :: rain ! rainfall rate for this timestep
 33 real, intent(out) :: h_bound
 34 integer, optional :: dev !device for outputing errors

 35

 36 real, dimension(2) :: ksi_ii1 !vector in the ksi direction from point i to i+1
 37 real, dimension(2) :: eta_jj1 !vector in the eta direction from point j to j+1
 38 real, dimension(2) :: S_ksi ! slope vector in the ksi direction
 39 real, dimension(2) :: S_eta ! slope vector in the eta direction
 40 real, dimension(2) :: S_drain

 41 real, dimension(2) :: S_drain_unit ! slope vector for drainage slope
 42 real :: drain_slope ! magnitude of drainge slope

 43

 44 integer :: v
 45 integer :: vi1 !value of v for the cell i+1

 46 integer :: vj1 !value of v for the cell j+1
 47 integer :: vjm1 !value of v for the cell j-1
 48 integer :: vim1 !value of v for the cell i-1
 49 integer :: v1, v2, v3, v4 ! global index for interpolation points

 50 ! Get a vector that points up the drainage slope from the point i,j

 51

 52

226

 53 ! Bilinear Interpolation

 54 real :: XX, YY ! Coordinates of point where depth is interpolated
 55 real :: x1, y1, h1 ! Coordinates of point 1 Interpolation points

 56 real :: x2, y2, h2 ! " " point 2
 57 real :: x3, y3, h3 ! " " point 3
 58 real :: x4, y4, h4 ! " " point 4

 59

 60 ! Method of Characteristics

 61 ! PFC

 62 real :: dx_moc, hp1, hp2, hp2_max

 63 ! Sheet flow

 64 real :: ds, hs1, hs2

 65

 66

 67 integer :: device
 68 logical :: bilin_err

 69

 70 !---

 71

 72 ! Default values for output device

 73 if(present(dev) .EQV. .FALSE.) then
 74 device = 6
 75 else

 76 device = dev
 77 end if

 78

 80 !--

 81 ! D R A I N A G E S L O P E C A L C U L A T I O N S

 82 !--

 83

 84 ! setup to figure out the slope components in

 85 ! the i (ksi) and j (eta) directions

 86 v = F_LinearIndex(i , j , jmax)

 87 vi1 = F_LinearIndex(i+1, j , jmax)
 88 vj1 = F_LinearIndex(i , j+1, jmax)
 89 vjm1 = F_LinearIndex(i , j-1, jmax)
 90 vim1 = F_LinearIndex(i-1, j , jmax)

 91

 92

 93

 94 !---

 95 ! Compute unit vectors in the longitudinal (ksi)

 96 ! and tranverse (eta) directions. If statements

 97 ! are careful around the boundaries

 98 !---

 99

100

101 ! LONGITUDINAL DIRECTION (ksi)

102 if(side == 'north' .or. side == 'south') then
103 ksi_ii1 = (/ CV_info(vi1)%X - CV_Info(v)%X , &
104 CV_info(vi1)%Y - CV_Info(v)%Y /)

105

106 elseif(side == 'east ') then

107 ksi_ii1 = (/ CV_info(v)%X - CV_Info(vim1)%X , &

227

108 CV_info(v)%Y - CV_Info(vim1)%Y /)

109

110 endif

111

112

113 ! TRANSVERSE DIRECTION (eta)

114

115 if(side == 'south') then

116

117 eta_jj1 = (/ CV_info(vj1)%X - CV_Info(v)%X , &
118 CV_info(vj1)%Y - CV_Info(v)%Y /)

119

120 elseif(side == 'north') then

121

122 eta_jj1 = - (/ CV_info(vjm1)%X - CV_Info(v)%X, &
123 CV_info(vjm1)%Y - CV_Info(v)%Y /)

124

125

126 elseif(side == 'east ') then

127

128 if(j /= jmax) then

129 ! j+1 is OK

130 eta_jj1 = (/ CV_info(vj1)%X - CV_Info(v)%X , &

131 CV_info(vj1)%Y - CV_Info(v)%Y /)
132 elseif(j == jmax) then

133 ! special treatment for jmax

134 eta_jj1 = (/ CV_info(v)%X - CV_Info(vjm1)%X , &
135 CV_info(v)%Y - CV_Info(vjm1)%Y /)

136 endif

137

138 endif

139

140

141 !write(device,*) 'Direction Vectors: ksi_ii1 = ', ksi_ii1, &

142 ! ' eta_jj1 = ', eta_jj1

143

144 !Make the direction vectors of unit length

145 ksi_ii1 = ksi_ii1 / F_PythagSum(ksi_ii1(1), ksi_ii1(2))

146 eta_jj1 = eta_jj1 / F_PythagSum(eta_jj1(1), eta_jj1(2))

147

148 !write(device,*)'Direction UNIT Vectors: ksi_ii1 = ', ksi_ii1, &

149 ! ' eta_jj1 = ', eta_jj1

150

151

152 !---

153 ! Compute a slope vector for each direction by

154 ! estimating the magnitude and using the unit vectors

155 ! obtained above for the directions

156 !---

157

158 ! LONGITUDINAL DIRECTION (ksi)

159 if(side == 'north' .or. side == 'south') then

160

161 S_ksi = ksi_ii1 * (Z(i+1, j) - Z(i, j)) / lng(i, j)

228

162

163 elseif(side == 'east ') then

164

165 S_ksi = ksi_ii1 * (Z(i, j) - Z(i-1, j)) / lng(i, j)

166

167 end if

168

169

170 ! TRANSVERSE DIRECTION (eta)

171 if(side == 'south') then

172

173 S_eta = eta_jj1 * (Z(i , j+1) - Z(i, j)) / wid(i, j)

174

175 elseif(side == 'north') then

176

177 S_eta = - eta_jj1 * (Z(i , j-1) - Z(i, j)) / wid(i, j)

178

179 elseif(side == 'east ') then

180

181 if(j /= jmax) then

182

183 S_eta = eta_jj1 * (Z(i , j+1) - Z(i, j)) / wid(i, j)

184

185 elseif(j == jmax) then

186

187 S_eta = eta_jj1 * (Z(i, j) - Z(i, j-1)) / wid(i, j)

188

189 endif

190

191 end if

192

193

194 !--

195 ! Compute vector for the drainage slope (S_drain)

196 ! and its magnitude, and unit vector for direction

197 !---

198

199

200 ! compute drainage slope vector

201 S_drain = S_ksi + S_eta

202 ! and the magnitude

203 drain_slope = F_PythagSum(S_drain(1), S_drain(2))

204 ! and a drainage slope unit vector

205 S_drain_unit = S_drain / drain_slope

206

207

208 !write(device, *) 'Slope Vectors: S_ksi = ', S_ksi, ' S_eta', S_eta

209

210

211

212 !---

213 ! I N T E R P O L A T I O N P O I N T S

214 !---

215

229

216

217 ! now we can figure out which points to use for the

218 ! bilinear interploation routine. Points must be specified

219 ! counter-clockwise around the perimeter:

220 !

221 ! 4-----3

222 ! | |

223 ! | |

224 ! 1-----2

225

226 if (side == 'south' .AND. S_drain_unit(1) .LE. 0.) then

227 ! This is the southern boundary and

228 ! The domain slopes from left to right

229 !Point 1

230 call set_xyh(i-1, j , x1, y1, h1)

231 !Point 2

232 call set_xyh(i , j , x2, y2, h2)

233 !Point 3

234 call set_xyh(i , j+1, x3, y3, h3)

235 !Point 4

236 call set_xyh(i-1, j+1, x4, y4, h4)

237

238 elseif(side == 'south' .AND. S_drain_unit(1) .GE. 0.0) then

239 ! This is the southern boundary and

240 ! The domain slopes from right to left

241 ! Point 1

242 call set_xyh(i , j , x1, y1, h1)

243 ! Point 2

244 call set_xyh(i+1, j , x2, y2, h2)

245 !Point 3

246 call set_xyh(i+1, j+1, x3, y3, h3)

247 !Point 4

248 call set_xyh(i , j+1, x4, y4, h4)

249

250 elseif(side == 'north' .AND. S_drain_unit(1) .LE. 0.0) then

251 ! This is the northern boundary and

252 ! The domain slopes from left to right

253 call set_xyh(i-1, j-1, x1, y1, h1)

254 call set_xyh(i , j-1, x2, y2, h2)

255 call set_xyh(i , j , x3, y3, h3)

256 call set_xyh(i-1, j , x4, y4, h4)

257

258 elseif(side == 'north' .AND. S_drain_unit(1) .GE. 0.0) then

259 ! This is the northen boundary and

260 ! The domain slopes from right to left

261 call set_xyh(i , j-1, x1, y1, h1)
262 call set_xyh(i+1, j-1, x2, y2, h2)
263 call set_xyh(i+1, j , x3, y3, h3)

264 call set_xyh(i , j , x4, h4, h4)

265

266

267 elseif(side == 'east ' .AND. S_drain_unit(2) .GE. 0.0) then

268 ! This is the eastern boundary and

269 ! and uphill is the positive Y direction

230

270 call set_xyh(i-1, j , x1, y1, h1)

271 call set_xyh(i , j , x2, y2, h2)

272 call set_xyh(i , j+1, x3, y3, h3)

273 call set_xyh(i-1, j+1, x4, y4, h4)

274

275

276 elseif(side == 'east ' .AND. S_drain_unit(2) .LT. 0.0) then

277 ! This is the eastern boundary and

278 ! and uphill is the negative Y direction

279 call set_xyh(i-1, j-1, x1, y1, h1)
280 call set_xyh(i , j-1, x2, y2, h2)

281 call set_xyh(i , j , x3, y3, h3)

282 call set_xyh(i-1, j , x4, y4, h4)

283

284 endif

285

288

289 !--

290 ! M E T H O D O F C H A R A C T E R I S T I C S

291 !--

292

293

294 ! Reset v to confirm we're in the right cell

295 v = F_LinearIndex(i, j, jmax)

296

297

298 MOC:if(h_old(i,j) .LE. b_pfc) then

299 !------------------

300 !PFC FLOW

301 !-----------------

302 ! Sheet flow has not started yet

303 ! use MOC to estimate the solution at the next time step

304 ! figure out how far up the drainage slope to go

305 dx_moc = K * (drain_slope) * dt / por

306 ! write(device, *) 'MOC_KIN_BC: i = ', i, ' j = ', j, 'pfc char len = ',

dx_moc

307 ! and the coordinates of this location

308 XX = CV_Info(v) % X + dx_moc * S_drain_unit(1)

309 YY = CV_Info(v) % Y + dx_moc * S_drain_unit(2)

310 ! use bilinear interpolation to find the

311 ! thickness (hp1) at this location

312 call BILINEAR_INTERP(XX, YY, hp1, &

313 x1, y1, h1 , &

314 x2, y2, h2 , &

315 x3, y3, h3 , &

316 x4, y4, h4 , &

317 device, bilin_err)

318

319 ! value at next time step

320 hp2 = hp1 + rain * dt / por

321 ! set maximum value for hp2 (1D flow)

322 if(rain .LT. TINY (rain)) then

323 ! Rainfall rate is effectively zero

324 hp2 = hp2 ! Eqv to hp2 = hp1

231

325 else

326 ! Rainfall is non-zero, set a maximum value for hp2

327 hp2 = min(hp2, sum(wid(i,:))*rain/K/drain_slope)

328 ! Use hp1 (basically zero rainfall) if there

329 ! is a decrease in depth

330 if(hp2 .LT. hp1) then
331 hp2 = hp1
332 end if

333 endif

334

336 !

337 ! ! Error checking for eastern boundary

338 ! if(i == imax) then

339 ! if(j == jmax -5 .or. j == jmax/2 .or. j == 5) then

340 !

341 ! write(device, *) 'MOC_KIN: i =', i , &

342 ! 'j =', j , &

343 ! 'S_drain =', S_drain, &

344 ! ' drain_slope =', drain_slope, &

345 ! ' S_drain_unit =', S_drain_unit

346 ! write(device,*) 'Bilinear Interpolation'

347 ! write(device,*) ' X, Y, h,'

348 ! write(device,32) 0, XX, YY, hp1

349 ! write(device,32) 1, x1, y1, h1

350 ! write(device,32) 2, x2, y2, h2

351 ! write(device,32) 3, x3, y3, h3

352 ! write(device,32) 4, x4, y4, h4

353 ! end if

354 ! endif

355 !

356

357 ! error checking for interpolation

358 if(bilin_err .eqv. .true.) then

359 write(device,*) 'MOC_KIN_BC: Bilinear interpolation error &

360 & for grid cell i = ', i, ' j = ', j

361 write(device,*) 'S_drain=', S_drain, &

362 ' drain_slope=', drain_slope, &

363 ' S_drain_unit=', S_drain_unit

364 write(device,*) 'hp2=', hp2 , &

365 'dx_moc=', dx_moc, &

366 'hp1=', hp1 , &

367 'rain=', rain , &

368 'dt=', dt , &

369 'por=', por

370

371 write(device,*) 'Interploation points/result:'
372 write(device,*) ' X, Y, h,'
373 write(device,32) 0, XX, YY, hp1

374 write(device,32) 1, x1, y1, h1
375 write(device,32) 2, x2, y2, h2
376 write(device,32) 3, x3, y3, h3
377 write(device,32) 4, x4, y4, h4

378

379 end if

232

380

384

385

386 if(i == imax/2 .OR. j == jmax/2) then
387 write(device,*) 'PFC Flow MOC BC: i=', i , &

388 'j=', j , &

389 'hp2=', hp2 , &

390 'dx_moc=', dx_moc, &

391 'hp1=', hp1 , &

392 'rain=', rain , &

393 'dt=', dt , &

394 'por=', por

395 endif

396 h_bound = hp2
397 else

398 !-----------------

399 !SHEET FLOW

400 !-----------------

401 hs2 = h_old(i,j) - b_pfc

402 ! Handle Zero Rainfall

403 if(rain .LT. TINY(rain)) then

404 ! there is no increase in flow rate along the drainage path

405 ! and ds becomes arbitrary so use the characteristic length for PFC

flow

406 ! b/c you might need it later

407 ds = K * (drain_slope) * dt / por
408 else
409 ds = sqrt(drain_slope) / n_mann / rain * &

410 ((hs2 + rain*dt)**(5./3.) - hs2**(5./3.))
411 end if

412 ! interpolate up the drainage slope to find hs1

413 XX = CV_Info(v) % X + ds * S_drain_unit(1)
414 YY = CV_Info(v) % Y + ds * S_drain_unit(2)

415 ! use bilinear interpolation to find the thickness (hs1) at this location

416 call BILINEAR_INTERP(XX, YY, hs1, &

417 x1, y1, h1 , &

418 x2, y2, h2 , &

419 x3, y3, h3 , &

420 x4, y4, h4 , &

421 device, bilin_err)

422 if(bilin_err .eqv. .true.) then
423 write(device,*) 'MOC_KIN_BC: Bilinear interpolation error &

424 & for grid cell i = ', i, ' j = ', j

425

426 write(device,*) ' X, Y, h,'
427 write(device,32) 0, XX, YY, hs1
428 write(device,32) 1, x1, y1, h1
429 write(device,32) 2, x2, y2, h2

430 write(device,32) 3, x3, y3, h3
431 write(device,32) 4, x4, y4, h4

432

433 end if

434

435 ! subtract off the pavement thickness

233

436 hs1 = hs1 - b_pfc

437 !Handle return to PFC flow

438 if(hs1 .GT. 0.) then

439 !we have sheet flow

440 !Output some summary info

441 if(i == imax/2 .or. j == jmax / 2) then
442 write(device,*) 'Sheet Flow MOC BC: i=', i, &

443 'j=', j, &

444 'hs2=', hs2, &

445 'ds=', ds, &

446 'hs1=', hs1

447 endif

448 !checking for good values of inputs

449 if(hs1 .LT. 0. .OR. hs2 .LT. 0. .OR. rain .LT. 0.) then
450 write(device,*) 'Sheet Flow MOC BC: i=',i, 'j=',j, &

451 'hs1=', hs1, 'hs2=',hs2, 'rain=',rain

452 end if

453 ! return value for the boundary

454 h_bound = b_pfc + (hs1**(5./3.) + &
455 (hs2 + rain*dt)**(5./3.) - &
456 hs2**(5./3.))**0.6
457 else

458 ! the upstream point does not have sheet flow

459 ! use PFC characterisitic

460 h_bound = hs1 + b_pfc + rain * dt / por
461 end if

462

463 end if MOC

464

465

466

467 !--

468 ! Format statements

469 31 format(3(F12.7, ' '))
470 32 format(I3, ' ', 3(F12.7, ' '))

471

472 !---

473 end subroutine MOC_KIN_BC

474 !===

475 ! \\\\\\\\\\ E N D S U B R O U T I N E ///////////

476 ! ////////// M O C _ K I N _ B C \\\\\\\\\\\

477 !==

478

479

480

481

482

483 !==

484 ! \\\\\\\\\ ///////////

485 END MODULE BoundCond

486 ! ///////// \\\\\\\\\\\\

487 !==

234

REFERENCES

Anderson, M.P. and Woessner, W.W. (1992), Applied Groundwater Modeling:

Simulation of Flow and Advective Transport, Academic Press, San Diego.

Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (1960). Transport Phenomena, John Wiley

and Sons, Inc., Madison, WI.

Beavers, G.S., and Joseph, D.D. (1967), Boundary conditions at a naturally permeable

wall. J. Fluid Mech. 30:197–207.

Bear, Jacob. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.

Barrett, Michael (2006). Stormwater Quality Benefits of a Porous Asphalt Overlay.

Center for Transportation Research, Austin, Texas. Report No. FHWA/TX-07/0-

4605-2.

Barrett, M.E., Klenzendorf, J.B., Eck, B. J., and Charbeneau, R.J. (2009), Water Quality

and Hydraulic Properties of the Permeable Friction Course, Proceedings of the

World Environmental and Water ResourcesConference 2009, Kansas City, MO,

May 17-21, 2009.

Berbee, R., G. Rijs, R. de Brouwer, and L. van Velzen (1999), Characterization and

Treatment of Runoff from Highways in the Netherlands Paved with Impervious

and Pervious Asphalt, Water Environment Research, 71(2), 183-190.

Charbeneau, R. J. (2000), Groundwater Hydraulics and Pollutant Transport, Waveland

Press, Long Grove, IL.

Charbeneau, R.J. and Barrett, M.E. (2008), Drainage Hydraulics of Permeable Friction

Courses, Water Resources Research 44, W04417.

Charbeneau, R. J., Jeong, J. and Barrett, M.E. (2009). Physical Modeling of Sheet flow

on Rough Impervious Surfaces, Journal of Hydraulic Engineering, Vol 135.

No. 6.

Chow, V.T., D.R. Maidment, and L.W. Mays (1988), Applied Hydrology, McGraw-Hill,

New York.

235

Eck, B.J., Barrett, M.E. and R.J. Charbeneau (2010), Note on Modeling Surface

Discharge from Permeable Friction Courses, Water Resources Research (Under

Review).

Dabaghmeshin, M. (2008), Modeling the Transport Phenomena within the Arterial Wall:

Porous Media Approach. Thesis for the degree of Doctor of Science.

Lappeenranta University of Technology, Lappeenranta, Finland.

Accessed Online (18 Nov 08): https://oa.doria.fi/bitstream/handle/10024/42280/is

bn9789522146274.pdf?sequence=2

Daluz Vieira, J.H. (1983), Conditions Governing the Use of Approximations for the

Saint-Venant Equations for Shallow Surface Water Flow. Journal of Hydrology,

60: 43-58.

Ergun, S. (1952), Fluid Flow Through Packed Columns, Chemical Engineering Progress,

Vol 48, No.2, pp 89-94.

Ferziger, J.H. and Peric, M. (2002), Computational Methods for Fluid Dynamics,

Springer, Berlin.

Furman, A, (2008), Modeling Coupled Surface-Subsurface Flow Processes: A Review.

Vadose Zone Journal, 7:741-756.

Google Inc. (2010). Google Earth (Version 5.1.3533.1731) [Software]. Available from

http://earth.google.com/

Halek, V. and J. Svec. (1979), Groundwater Hydraulics. Elsevier, New York.

He, Z., Wu, W. and Wang, Sam S. Y. (2008), Coupled Finite-Volume Model for 2D

Surface and 3D Subsurface Flows. Journal of Hydrologic Engineering, Vol. 13

No. 9.

Irmay, S. (1967), On the Meaning of the Dupuit and Pavlovskii Approximations in

Aquifer Flow, Water Resources Research Vol. 3, No. 2, pp 599-608.

Jeong, J. (2008), A Hydrodynamic Diffusion Wave Model for Stormwater Runoff on

Highway Surfaces at Superelevation Transitions. Dissertation. University of

Texas at Austin.

236

Jeong, J. and Charbeneau, R. J., (2010), Diffusion Wave Model for Simulating

Stormwater Runoff on Highway Pavement Surfaces at Superelevation Transition,

Journal of Hydraulic Engineering, (In Press).

Klenzendorf, J. B. (2010), Hydraulic Conductivity Measurement of Permeable Friction

Course (PFC) Experiencing Two-Dimensional Nonlinear Flow Effects.

Dissertation. University of Texas at Austin.

Kreyzig, E. (1999), Advanced Engineering Mathematics, 8
th
 Edition. John Wiley and

Sons, New York.

Kollet, S. J., and Maxwell, R. M. (2006), Integrated surface-groundwater flow modeling:

A free-surface overland flow boundary condition in a parallel groundwater flow

model. Adv. Water Resour.,129, 945–958.

Kovacs, G. (1981), Seepage Hydraulics. Elsevier, New York.

Li, D. and Engler, T.W., (2001), Literature Review on Correlations of the Non-Darcy

Coefficient. SPE 70015, in: Proceedings of the SPE Permian Basin Oil and Gas

Recovery Conference, Midland, Texas, USA, May 15-16.

Liang, D., Falconer, R.A., and Lin, B. (2007), Coupling surface and subsurface flows in a

depth averaged flood wave model. Journal of Hydrology, 337:147-158.

Loaiciga, H. A. (2005), Steady state phreatic surfaces in sloping aquifers, Water

Resources Research 41, W08402, doi:10.1029/2004WR003861.

NCHRP: National Cooperative Highway Research Program (2009), Construction and

Maintenance Practices for Permeable Friction Courses, Report 640,

Transportation Research Board, Washington, D.C..

Ranieri, V. (2002), Runoff Control in Porous Pavements, Transpation Research

Record.1789, pp.46-55.

Refsgaard, J.C., and B. Storm. (1995), MIKE-SHE. p. 809–846. In V.P. Singh (ed.)

Computer models of watershed hydrology. Water Resour. Publ., Highlands

Ranch, CO.

Ruth, D. and Ma, H. (1992), On the Derivation of the Forchheimer Equation by Means

of the Averaging Theorem. Transport in Porous Media 7: 255-264.

237

Simpson, M.J., Clement, T.P. and Gallop, T.A. (2003), Laboratory and Numerical

Investigation of Flow and Transport Near a Seepage-Face Boundary. Ground

water. Vol. 41 No.5 pp690-700.

Stanard, C. E. (2008), Stormwater Quality Benefits of a Permeable Friction Course.

Master’s Thesis. Univeristy of Texas at Austin.

Available Online: http://www.crwr.utexas.edu/reports/2008/rpt08-3.shtml

Street, R.L. (1973), The Analysis and Solution of Partial Differential Equations,

Brooks/Cole, Monterey, California.

Tan, S.A., T.F. Fwa, and K.C. Chai (2004), Drainage consideration for Porous Asphalt

Surface Course Design, in Transportation Research Record 1868, pp 142-149.

Thauvin, R. and Mohanty, K.K. (1998), Network Modeling of Non-Darcy Flow Through

Porous Media, Transport in Porous Media 31: 19-37.

Ward, J.C. (1964), Turbulent Flow in Porous Media, Journal of Hydraulics Division,

ASCE Vol 90 #HY5, pp 1-12.

White, F.M. (1999), Fluid Mechanics, Fourth Edition. WCB/McGraw-Hill.

Woolhiser, D.A. and Liggett, J.A. (1967), Unsteady, One-Dimensional Flow over a

Plane—the Rising Hydrograph, Water Resources Research, Vol. 3 No. 3 753-771.

Yates, S.R., A.W. Warrick, & D.O. Lomen (1985), Hillside Seepage: An Analytical

Solution to a Nonlinear Dupuit-Forchheimer Problem, Water Resources Research

21(3) 331-336.

Zeng, Z and Grigg, R. (2006), A Criterion for Non-Darcy Flow in Porous Media,

Transport in Porous Media 63: 57-69.

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	CHAPTER 1: INTRODUCTION
	1.1 Background and Motivation
	1.2 Research Objectives
	1.3 Organization of the Dissertation
	CHAPTER 2: LITERATURE REVIEW
	2.1 Permeable Friction Course
	2.2 Saturated Porous Media Flow
	2.3 Unsaturated Porous Media Flow
	2.4 Overland Flow
	2.5 The CRWR Approach to Modeling Highway Drainage
	2.6 Coupling Schemes
	2.7 Coupled Surface-Subsurface Models
	2.8 Uniqueness of this Dissertation
	CHAPTER 3: MODEL DEVELOPMENT
	3.1 Problem Statement
	3.2 Physical Processes
	3.3 Mathematical Model Development
	3.4 Mathematical Model Assumptions
	3.5 Computational Grid
	3.6 Numerical Formulation
	3.7 Initial Conditions and Boundary Conditions
	3.8 Solution Procedure and Tolerances
	3.9 Convergence and the Transition to Sheet Flow
	CHAPTER 4: MODEL VALIDATION
	4.1 Linear Section (Straight Roadway)
	4.2 Converging Section (Curved Roadway)
	4.3 Comparison of Linear and Converging Sections
	4.4 Stability
	4.5 Model Convergence
	CHAPTER 5: COMPARISON WITH FIELD DATA
	5.1 Construction of Field Monitoring Site
	5.2 Model Inputs and Parameters
	5.3 Results and Discussion for event of July 20, 2007
	5.4 Loop 360 with and without PFC
	5.5 Storm event of June 3, 2007
	CHAPTER 6: CONCLUSIONS AND FUTURE WORK
	6.1 Project Summary
	6.2 Conclusions
	6.3 Recommendations for Future Work
	APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE
	REFERENCES

