DRAINAGE HYDRAULICS OF POROUS PAVEMENT: COUPLING SURFACE AND SUBSURFACE FLOW

by

Bradley J. Eck, B.S.; M.S.E.
Randall J. Charbeneau, Ph.D.
Michael E. Barrett, Ph.D.

May 2010

Center for Research in Water Resources
The University of Texas at Austin
J.J. Pickle Research Campus

Austin, TX 78712-4497

This document is available online via the World Wide Web at: http://www.crwr.utexas.edu/online.shtml

Drainage Hydraulics of Porous Pavement:

Coupling Surface and Subsurface Flow

Bradley Joseph Eck, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Randall Charbeneau

Permeable friction course (PFC) is a porous asphalt pavement placed on top of a regular impermeable roadway. Under small rainfall intensities, drainage is contained within the PFC layer; but, under higher rainfall intensities drainage occurs both within and on top of the porous pavement. This dissertation develops a computer model-the permeable friction course drainage code (PERFCODE) - to study this two-dimensional unsteady drainage process. Given a hyetograph, geometric information, and hydraulic properties, the model predicts the variation of water depth within and on top of the PFC layer through time. The porous layer is treated as an unconfined aquifer of variable saturated thickness using Darcy's law and the Dupuit-Forchheimer assumptions. Surface flow is modeled using the diffusion wave approximation to the Saint-Venant equations. A mass balance approach is used to couple the surface and subsurface phases. Straight and curved roadway geometries are accommodated via a curvilinear grid. The model is validated using steady state solutions that were obtained independently. PERFCODE was applied to a field monitoring site near Austin, Texas and hydrographs predicted by the model were consistent with field measurements. For a sample storm studied in detail, PFC reduced the duration of sheet flow conditions by 80%. The model may be used to improve the drainage design of PFC roadways.

Acknowledgements

This research was supported by the Texas Department of Transportation under project 0-5220.

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF SYMBOLS ix
CHAPTER 1: INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
1.3 Organization of the Dissertation. 5
CHAPTER 2: LITERATURE REVIEW 6
2.1 Permeable Friction Course 6
2.1.1 Water Depth Predictions 6
2.1.2 Hydraulic Properties of PFC 7
2.2 Saturated Porous Media Flow 8
2.2.1 Darcy's Law 8
2.2.2 Reynolds Number and Porous Media Flow Regimes 9
2.2.3 Relations for Non-Darcy Flow 10
2.2.4 Dupuit-Forchheimer Assumptions 12
2.3 Unsaturated Porous Media Flow 13
2.4 Overland Flow 14
2.5 The CRWR Approach to Modeling Highway Drainage 16
2.6 Coupling Schemes 17
2.7 Coupled Surface-Subsurface Models 18
2.8 Uniqueness of this Dissertation 19
CHAPTER 3: MODEL DEVELOPMENT 20
3.1 Problem Statement 20
3.2 Physical Processes 21
3.2.1 Precipitation and Evaporation 21
3.2.2 Infiltration 22
3.2.3 Unsaturated Porous Media Flow 23
3.2.4 Saturated Porous Media Flow 24
3.2.5 Overland Flow 24
3.2.6 Summary of Physical Processes 25
3.3 Mathematical Model Development 25
3.3.1 Mathematical Model of Saturated Porous Media Flow 27
3.3.2 Mathematical Model of Overland Flow 28
3.4 Mathematical Model Assumptions 30
3.4.1 Dupuit-Forchheimer Assumptions 30
3.4.2 Darcy's Law 31
3.4.3 Diffusion Wave Approximation 36
3.5 Computational Grid 36
3.6 Numerical Formulation 38
3.6.1 Mass Balance on a Grid Cell 39
3.6.2 Formulation using Total Head 45
3.6.3 Depth Formulation, Time Discretization, Linearization 52
3.7 Initial Conditions and Boundary Conditions 54
3.7.1 Initial Conditions 55
3.7.2 No Flow Boundaries 55
3.7.3 Kinematic Boundary Conditions for PFC Flow 55
3.7.4 Kinematic Boundary Conditions for Sheet Flow 63
3.7.5 Combined Kinematic Boundary Condition for PFC and Sheet flow 63
3.8 Solution Procedure and Tolerances 65
3.9 Convergence and the Transition to Sheet Flow 66
CHAPTER 4: MODEL VALIDATION 68
4.1 Linear Section (Straight Roadway) 68
4.1.1 PFC Flow Only 69
4.1.2 Sheet Flow Only 71
4.1.3 Combined Flow 72
4.1.4 Runoff hydrographs 72
4.2 Converging Section (Curved Roadway) 73
4.2.1 Derivation of ODE for PFC Flow on Converging Sections 75
4.2.2 PFC Flow Only 79
4.2.3 Sheet Flow Only 80
4.2.4 Combined Flow 81
4.2.5 Runoff Hydrographs 82
4.3 Comparison of Linear and Converging Sections 82
4.4 Stability 84
4.5 Model Convergence 87
CHAPTER 5: COMPARISON WITH FIELD DATA 90
5.1 Construction of Field Monitoring Site 90
5.2 Model Inputs and Parameters 92
5.3 Results and Discussion for event of July 20, 2007 95
5.4 Loop 360 with and without PFC 100
5.5 Storm event of June 3, 2007 103
CHAPTER 6: CONCLUSIONS AND FUTURE WORK 107
6.1 Project Summary 107
6.2 Conclusions 108
6.3 Recommendations for Future Work 109
APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE 111
REFERENCES. 234

LIST OF TABLES

Table 1: Flow Cases 51
Table 2: Model parameters for simulating a linear section 68
Table 3: Model parameters for simulating a converging section. 74
Table 4: Model Parameters for Loop 360 Monitoring Site 92
Table 5: Summary of statistics of model residuals, all in units of L/s 104
Table 6: Fortran program and module listing 116

LIST OF FIGURES

Figure 1: Photograph of PFC layer on Loop 360, Austin, Texas 2
Figure 2: Cross section of a typical PFC roadway 3
Figure 3: Schematic cross section of a roadway with a PFC overlay 3
Figure 4: Range of applicability for sheet flow models (Daluz Vieira, 1983); used with permission 16
Figure 5: Straight roadway section 21
Figure 6: Travel time though an unsaturated PFC layer having a thickness of 5 cm , irreducible water content of zero, pore size distribution index of 1.7 , and a saturated hydraulic conductivity of $1 \mathrm{~cm} / \mathrm{s}$ 23
Figure 7: Interaction between physical processes in PERFCODE 25
Figure 8: Cross section along drainage path 26
Figure 9: Comparison of Forchheimer coefficients for PFC obtained by Klenzendorf (2010) with the relationships proposed by Ward (1964) and Thauvin and Mohanty (1998). Three of Klenzendorf's data points [(0.047,167); (0.056,64.3); (0.10,29.1)] are excluded for clarity. 34
Figure 10: Contour plot of discharge ratio using Thauvin and Mohanty (1998) with porosity of 0.2 35
Figure 11: Contour plot of discharge ratio using the relationship of Ward (1964) 35
Figure 12: Development of computational grid from roadway geometry 38
Figure 13: Profile view of interior grid cell 39
Figure 14: Isometric View of Interior Grid Cell 40
Figure 15: Top View of Grid in Computational Space 41
Figure 16: Steady state drainage profile for different boundary values; all cases used $\mathrm{K}=1 \mathrm{~cm} / \mathrm{s}, \mathrm{S}_{0}=3 \% ; \mathrm{r}=0.5 \mathrm{~cm} / \mathrm{hr}$. 61
Figure 17: Steady state drainage profile for different boundary values; all cases used $\mathrm{K}=1 \mathrm{~cm} / \mathrm{s}, \mathrm{S}_{0}=3 \% ; \mathrm{r}=1 \mathrm{~cm} / \mathrm{hr}$ 61
Figure 18: Combined algorithm for kinematic boundary condition 64
Figure 19: Flow chart of solution process 66
Figure 20: Linear domain showing elevation contours, grid cell centers, and boundary conditions 69
Figure 21: Depth profile for linear section with drainage by PFC flow only 70
Figure 22: Depth profile for linear section with drainage by sheet flow only 71
Figure 23: Depth profile for linear section with drainage by PFC and sheet flow 72
Figure 24: Runoff hydrographs from a linear section 73
Figure 25: Converging domain showing elevation contours, grid cell centers, and boundary conditions 74
Figure 26: Schematic of converging section 75
Figure 27: Cross section view 76
Figure 28: Drainage depth profiles for a converging section with maximum radius of 55 m , hydraulic conductivity $1 \mathrm{~cm} / \mathrm{s}$, slope of 2%, initial depth of 1 cm at $\mathrm{R}=5000 \mathrm{~cm}$ and range of rainfall rates. 78
Figure 29: Depth profile for converging section with drainage by PFC flow only 79
Figure 30: Depth profile a converging section with sheet flow only 80
Figure 31: Depth profile for a converging section with combined PFC and sheet flow 81
Figure 32: Runoff hydrographs for converging section 82
Figure 33: Comparison of exact solutions for steady state flow thickness on linear and converging sections, other parameters given in Table 2 and Table 3 83
Figure 34: Hydrograph comparison for linear and converging sections, PFC thickness was 0.05 m 84
Figure 35: Steady state depth profile for various grid sizes 88
Figure 36: Residual with respect to 5 cm grid by location, all residuals for 10 cm grid were zero 88
Figure 37: Grid refinement study 89
Figure 38: Aerial map of Loop 360 monitoring site (Google 2010) 91
Figure 39: Photograph of H-flume and drainage pipe at Loop 360 monitoring site 91
Figure 40: Simulation domain for Loop 360 monitoring site showing elevation contours (m) and location of grid cell centers 93
Figure 41: Measured rainfall and model input function for Loop 360 monitoring site on July 20, 2007 94
Figure 42: Comparison of modeled and measured hydrographs for storm of July 20, 2007 96
Figure 43: Water depth above impervious layer (m) for Loop 360 during maximum depth conditions on July 20, 2007. The PFC thickness was 0.05 m ; contours correspond to sheet flow conditions 97
Figure 44: Profile through maximum depth section; the horizontal coordinate is 94.42 m 98
Figure 45: Solution history for an interior point (grid cell 2138) with and without under- relaxing the non-linear iteration 99
Figure 46: Comparison of modeled hydrographs with and without a PFC layer for Loop 360 on July 20, 2007. Plotted flow rates are five minute averages 101
Figure 47: Comparison of sheet flow depths with and without a PFC layer horizontal coordinate of 94.42 m at Loop 360 on July 20, 2007 102
Figure 48: Comparison of modeled and measured hydrographs for June 3, 2007 104
Figure 49: Water depth above impervious layer (m) for Loop 360 during maximum depth conditions on June 3, 2007. The PFC thickness was 0.05 m ; contours correspond to sheet flow conditions. 105
Figure 50: Profile through maximum depth section; the horizontal coordinate is 94.42 m 106
Figure 51: Calling tree for PERFCODE 121

LIST OF SYMBOLS

Symbol	Definition
A	Area
b	PFC thickness
C	Conveyance coefficient
d	Mean grain size of a porous medium OR characteristic
g	length scale
H	Gravitational acceleration
h	Total head above datum
h_{p}	Flow depth
h_{s}	Saturated thickness in the PFC layer
I	Sheet flow thickness
i	Hydraulic gradient
j	Longitudinal index of grid cells
K	Transverse index of grid cells
$K_{u s}$	Saturated hydraulic conductivity
k	Unsaturated hydraulic conductivity
L	Intrinsic Permeability
l	Depth to water table, Flow length
n	Length of grid cell in the longitudinal direction
	Porosity of a porous medium OR Manning's roughness
n_{e}	coefficient
P	Effective porosity of a porous medium
$p f$	Pressure
Q	Porosity function
q	Volumetric Flow Rate
q_{F}	Darcy velocity
R	Specific discharge predicted by Forchheimer equation
r	Hydraulic radius or radius of curvature at roadway
S	centerline
S_{0}	Rainfall rate
S_{f}	Slope
t	Bed slope
U	Friction slope
V	Time
v	Overland flow velocity
W	Volume
w	Velocity
x	Width of roadway
	Width of a grid cell
	Cartesian coordinate direction

Greek Symbol

α
$\hat{\alpha}$
β
Dimensionless Number
$R e$
F
F_{o}
N_{k}

Abbreviation
MOC
PERFCODE
PFC
RHS

Cartesian coordinate direction
Elevation above datum
Cartesian coordinate or elevation above datum

Definition

First Forchheimer coefficient
Inverse of hydraulic conductivity
Non-linear coefficient in Forchheimer's equation
Forchheimer coefficient or non-Darcy coefficient for pressure gradient formulation of Forchheimer equation
Darcy's law modification factor that depends on Reynold's number
Partial differentiation operator
Transverse roadway coordinate in computational space
Longitudinal roadway coordinate in computational space
Dynamic viscosity
Fluid density
Kinematic viscosity
Water content of porous medium or angular position of roadway centerline point
Irreducible water content
Cappilary pressure head (m)
Pore size distribution index
Ratio comparing discharge predicted by Darcy's law and Forchheimer's equation

Definition

Reynold's number
Froude number
Forchhiemer number
Kinematic wave number

Definition

Method of characteristics
PERmeable Friction COurse Drainage codE, the name of the numerical model developed in this dissertation
Permeable friction course
Right hand side of an equation

CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

New roadway materials are changing the wet weather driving experience. One exciting and innovative material is a porous pavement that allows water to drain through the roadway rather than across it. The porous pavement-also called permeable friction course (PFC)—is placed in a 50 mm layer on top of conventional, impermeable, pavement. During rain events, water seeps into the porous layer and flows to the side of the road by gravity. By removing water from the road surface, PFC improves safety by reducing splashing and hydroplaning (Berbee et al., 1999). In addition to safety benefits, PFC has also been shown to reduce pollutants commonly observed in highway runoff (Barrett, 2006).

Although usually placed in a 50 mm layer, the PFC thickness may be selected so that all of the rainfall for a design event drains within the pavement. However, structural and cost concerns prevent the use of an arbitrarily thick porous layer. Additionally, PFC has been shown to clog over time, resulting in lower subsurface drainage capacity (NCHRP, 2009). Therefore, some storms will exceed the installed capacity, forcing drainage to occur both on the pavement surface and within the porous matrix. Understanding this coupled flow process is the goal of this research.

A precise description of PFC's response to rainfall events is needed for several reasons including driver safety, water quality, and basic science. From a safety perspective, flow over traffic lanes can cause vehicles to hydroplane. Hydroplaning is especially hazardous when right and left tires encounter different water depths-the difference in resistance imposes a torque on the vehicle, potentially causing the driver to lose control. A detailed runoff model for PFC could identify areas of excessive sheet flow depth so that additional drainage can be provided. Such a model also has implications for water quality. Field studies of runoff from PFC have shown that runoff concentrations of pollutants are lower for PFC than conventional pavement, but the mechanisms responsible for lower concentrations have not been identified (Stanard,
2008). Possible mechanisms include reduced wash-off from vehicles, filtration and absorption within the pavement, and even biological activity. Studying these mechanisms in detail requires an accurate hydraulic model. Finally, the proposed model is of general scientific interest because the problem of flow over porous media appears in numerous applications. Civil engineering applications include surface irrigation, watershed modeling, and sediment transport. The concept of flow over porous media has also been applied to biological systems such as blood flow within the arterial wall (Dabaghmeshin, 2008). A better technical understanding of flow in PFC will contribute to a diverse scientific field and promote wider use of the material, thereby improving driver safety and the environment.

Figure 1 shows a photograph of a PFC layer. The PFC overlay is very thin compared to the length and width of the roadway section. A cross section of typical PFC roadway is shown in Figure 2 and a more detailed schematic of the PFC layer is shown in Figure 3.

Figure 1: Photograph of PFC layer on Loop 360, Austin, Texas

Figure 2: Cross section of a typical PFC roadway

Figure 3: Schematic cross section of a roadway with a PFC overlay

1.2 Research Objectives

The goal of this research is to understand the coupling between overland flow and porous media flow in roadway applications. In this context, understanding the coupling means predicting water depths at a fine enough scale to assess the risk of hydroplaning. To accomplish this goal, a numerical model that predicts water surface elevations on roads overlain with PFC has been developed and validated. The model has as inputs the roadway geometry, rainfall intensity, and porous media properties. The model has been
formulated to accommodate roadway geometries where the horizontal alignment may be straight or curved and to accommodate variable rainfall intensity.

Based on these inputs, the goal of understanding coupled flow between the surface and subsurface will be pursued through the following research objectives:

1. Identify governing equations for surface and subsurface flow for the geometry of interest
2. Develop a scheme to couple flow between the surface and subsurface
3. Implement the coupling scheme and numerical methods in a computer model that represents roadway geometry using a coordinate transformation
4. Validate the model using analytical solutions
5. Compare model predictions of runoff rates with values measured at an existing monitoring site

During the preparation of this dissertation, the National Cooperative Highway Research Program (NCHRP) issued Report 640 entitled "Construction and Maintenance Practices for Permeable Friction Courses" (NCHRP, 2009). The report signifies the growing popularity and importance PFC layers for highways in the USA. Several of the future research needs listed in the report are addressed in part by this dissertation:

- Field work to document how water flows within a PFC layer
- Methods for selecting the minimum PFC thickness
- Consideration for water sheets on the PFC surface

Field work included constructing a monitoring site to measure runoff hydrographs from a PFC roadway. The dynamic simulation model developed in this dissertation accounts for sheet flow on the PFC surface and seepage through the porous layer; it can be used to evaluate methods for selecting the thickness of a PFC layer. Another important and related research need identified in the report is a method to determine the permeability of PFC layers. The work of Klenzendorf (2010) addresses the hydraulic conductivity of PFC and this dissertation uses his results to simulate PFC flow on highways.

1.3 Organization of the Dissertation

This document is organized into six chapters. Chapter 1 has introduced the work and defined the research objectives. Chapter 2 reviews selected literature that bears on the work. A method for developing a predictive model for PFC drainage is given in Chapter 3. The proposed model is essentially a specialized hydrologic model so Chapters 2 and 3 are organized around hydrologic processes. The methods of Chapter 3 have been implemented in a Fortran computer model called PERFCODE, the structure of which is described in Appendix A. Chapter 4 validates the model's numerics by comparing model results with independently obtained solutions for simplified cases. Chapter 4 also discusses the model's stability and convergence properties. Chapter 5 applies the model to a field monitoring site, facilitating a comparison of modeled results with field measurements. Chapter 6 concludes the dissertation with a summary of the findings and possible avenues for future work.

CHAPTER 2: LITERATURE REVIEW

This review summarizes the literature that provides the theoretical foundation for this research. Developments related specifically to permeable friction course (PFC) are given first. A general discussion of subsurface flow is given next and readers who are unfamiliar with flow in porous media may prefer to review it prior to the section on PFC. A section on overland flow is given next, followed by a discussion of coupling schemes and models of coupled surface/subsurface systems. The final section identifies gaps in the literature that are addressed by this research.

2.1 Permeable Friction Course

2.1.1 Water Depth Predictions

Three authors have published predictions of water depth in PFC for straight roadway sections under constant rainfall. Ranieri (2002) gives a numerical solution to the governing equation. Tan et al. (2004) use a commercially available finite element program to model flow through PFC. Both Ranieri (2002) and Tan et al. (2004) provide charts to find the required thickness of PFC from slope information and rainfall intensity. Charbeneau and Barrett (2008) provide an analytical solution for the saturated thickness along the flow path.

These three papers consider the same roadway geometry: a straight road with a longitudinal slope and a cross slope. The drainage slope is the Pythagorean sum of the longitudinal slope and the cross slope. In these papers, the drainage slope is a constant, making the problem one dimensional-that is the saturated thickness only varies along the drainage path. Under the assumption of constant rainfall intensity the system reaches a steady state. It is this one-dimensional steady state solution that these authors present.

A comparison of their predictions for a single point reveals that Charbeneau and Barrett (2008) and Ranieri (2002) have essentially identical results. Tan et al. obtain a different result, predicting a thinner porous layer than the other workers. The reasons for
this discrepancy are difficult to uncover because Tan et al. used a commercial finite element program for analysis.

The problem of drainage within a PFC layer of constant slope and under steady rainfall is analogous the problem of hillslope seepage under constant recharge. Most solutions make the Dupuit-Forchheimer assumptions of horizontal flow with the local discharge proportional to the slope of the water table. Equivalent results to those of Charbeneau and Barrett (2008) and Ranieri (2002) have been presented by Yates, Warrick and Lomen (1985) and also by Loaiciga (2005).

Very little has been mentioned in the literature regarding the coupling between surface and subsurface flow in PFCs. Charbeneau and Barrett (2008) address the issue briefly and provide an estimate of sheet flow thickness based on the Darcy-Weisbach equation. Eck et al. (2010) refined the coupling between PFC and sheet flow by using a different boundary condition for the PFC equation. The idea was to compute the location that sheet flow begins based on the principle of continuity and use that location and the pavement thickness as the initial point to integrate the first order ODE that governs the PFC part of the problem.

2.1.2 Hydraulic Properties of PFC

Hydraulic properties of PFC have been investigated by several authors, which have been summarized by Standard et al. (2008). Reported values for hydraulic conductivity range from $5^{*} 10^{-4} \mathrm{~cm} / \mathrm{s}$ to $3 \mathrm{~cm} / \mathrm{s}$. Ongoing research by Klenzendorf (2010) investigates the porosity and the hydraulic conductivity of PFC. Porosity was measured from core samples and found to range from 0.12 to 0.23 . Hydraulic conductivity was also measured from core samples and ranged from 0.1 to $3 \mathrm{~cm} / \mathrm{s}$. A new field method for measuring the in-situ hydraulic conductivity of PFC was developed and compared to the laboratory measurements.

2.2 Saturated Porous Media Flow

Saturated porous media flow refers to the movement of fluid through a porous medium when the pore space is filled with fluid. The boundary between saturated and unsaturated zones of a porous medium is the water table. The water table is at atmospheric pressure. Below the water table the media is saturated. Above the water table the media is considered unsaturated, though a small area of saturated pores may exist above the water table due to capillary effects. Quantitative predictions of saturated porous media flow apply Darcy's law or the Forchheimer equation to relate the hydraulic gradient and the specific discharge.

2.2.1 Darcy's Law

The usual way of characterizing flow through porous media is Darcy's law. Darcy's law states that the relationship between the hydraulic gradient and seepage velocity is linear when velocities are low enough to neglect inertia (Charbeneau, 2000). A simple statement of Darcy's law is:

$$
\begin{equation*}
Q=K I A \tag{2.1}
\end{equation*}
$$

where Q is the volumetric flow rate, I is the hydraulic gradient, A is the cross sectional area of the flow, and K is a parameter called the hydraulic conductivity that depends on the properties of the porous medium and the fluid. Darcy's law is frequently presented in terms of the velocity obtained by dividing the flow rate by the area:

$$
\begin{equation*}
q=K I \tag{2.2}
\end{equation*}
$$

where q is the fictitious velocity known as the Darcy velocity, or the specific discharge. The relative contributions of the porous medium and the fluid to the hydraulic conductivity can be seen by expressing the hydraulic conductivity as:

$$
\begin{equation*}
K=\frac{\rho g k}{\mu} \tag{2.3}
\end{equation*}
$$

where ρ is the fluid density, g is the constant of gravitational acceleration, μ is the dynamic viscosity of the fluid, and k is a property of the medium called the intrinsic permeability which is related to the grain size distribution of the medium. From an
analysis of the Fanning friction factor, one relationship between permeability and grain size is (Charbeneau, 2000):

$$
\begin{equation*}
k=\frac{d^{2}}{2000} \tag{2.4}
\end{equation*}
$$

Bear (1972) gives several correlations between the mean or effective grain size and the intrinsic permeability. The hydraulic conductivity is typically preferred in groundwater hydrology because water is the only fluid of interest. In contrast, the petroleum industry uses the intrinsic permeability because several fluids are often of interest.

2.2.2 Reynolds Number and Porous Media Flow Regimes

Although Darcy's law neglects inertial effects, the inertial terms are physically real and do not disappear from the equations. In fluid mechanics the relative importance of inertial and viscous effects is quantified using the Reynolds number (Re), which expresses the ratio of these effects (White, 1999):

$$
\begin{equation*}
R e=\frac{\rho v d}{\mu} \tag{2.5}
\end{equation*}
$$

In the expression for Reynolds number, d is a length scale of the problem, v is the fluid velocity, and other terms are defined previously. At low values of Reynolds number, the numerator (inertial effects) is small compared to the denominator (viscous effects). As Re increases, inertial effects become more important. In porous media applications Reynolds number is formulated using the seepage velocity and a representative length scale. Several length scales have been used including the median grain size $\left(d_{50}\right)$ and $k^{\frac{1}{2}}$ (Ward, 1964).

As the value of Re increases, inertial effects become important and Darcy's law ceases to apply. This behavior suggests the identification of flow regimes in a porous media based on the Reynolds number. Bear (1972) identifies three such regimes:
(1) A linear regime where the Reynolds number is lower than a limit somewhere between 1 and 10 and Darcy's law applies.
(2) A non-linear regime where inertial effects are important, but the flow remains laminar. An upper limit of $\mathrm{Re}=100$ has been suggested for this regime.
(3) A turbulent regime where Reynolds number is high.

Darcy's law applies in the first regime only.

2.2.3 Relations for Non-Darcy Flow

PFC drainage under highway drainage conditions is expected to fall in the Darcy regime of flow. However, experimental efforts to estimate the hydraulic conductivity of PFC have observed non-Darcy flow regimes (Ranieri 2002; Barrett et al. 2009). In this section, relations for non-Darcy flow are reviewed to provide a basis for estimating the error of the Darcy approximation and to identify methods of including a non-Darcy effect in future versions of the model.

Forchheimer's Equation

One approach for describing non-Darcy flow is Forchheimer's equation, which is written either in terms of the hydraulic gradient:

$$
\begin{equation*}
I=\alpha q+\beta q^{2} \tag{2.6}
\end{equation*}
$$

or equivalently in terms of the pressure gradient:

$$
\begin{equation*}
-\frac{d P}{d x}=\hat{\alpha} q+\hat{\beta} \rho q^{2} \tag{2.7}
\end{equation*}
$$

where the hat symbol distinguishes the coefficients between the equations. If $\beta=\hat{\beta}=0$ and $\alpha=\frac{1}{K}$ then Forchheimer's equation reduces to Darcy's law. The coefficient $\hat{\beta}$ is often called the Forchheimer coefficient (Ruth and Ma, 1992) or the non-Darcy coefficient (Li and Engler, 2001). It is related to β of the hydraulic gradient formulation by the constant of gravitational acceleration:

$$
\begin{equation*}
\beta=\frac{\hat{\beta}}{g} \tag{2.8}
\end{equation*}
$$

Many correlations for the Forchheimer coefficient have been developed. Ergun (1952) measured the pressure drop of gases through columns packed with granular material. He gives an empirical correlation for the energy loss based on a least squares treatment of the experimental data. Ergun partitioned the total energy loss between viscous and kinetic energy losses. Ergun's work was presented in the form of Forchheimer's equation by Bird et al. (1960):

$$
\begin{equation*}
I=\frac{150(1-n)^{2} \mu}{n^{3} d^{2} \rho g} q+\frac{1.75(1-n)}{g n^{3} d} q^{2} \tag{2.9}
\end{equation*}
$$

where d is the mean grain diameter, n is the porosity of the medium, the values of $a=1.75$ and $b=150$ were obtained by Ergun, and other terms are defined previously. More recently Thauvin and Mohanty (1998) presented, but did not derive, an expression for the Forchheimer coefficient by dimensional analysis of Forchheimer's equation based on Ergun's work:

$$
\begin{equation*}
\hat{\beta}=a b^{-1 / 2}\left(10^{-8} k\right)^{-1 / 2} n^{-3 / 2} \tag{2.10}
\end{equation*}
$$

where $\hat{\beta}$ is the non-Darcy coefficient in $1 / \mathrm{cm}$ and k is the permeability in units of darcy. Equation (2.10) is a different result than Equation (2.9). Ward (1964) also gives a correlation for the coefficients of Forchheimer's equation:

$$
\begin{equation*}
I=\frac{\mu}{k \rho g} q+\frac{0.55}{g \sqrt{k}} q^{2} \tag{2.11}
\end{equation*}
$$

Whereas Ergun's experimental work used gases, Ward's experiments were performed with water. In the Ward formula, the linear term is consistent with Darcy's law, and no estimate of the porosity is required. Many other correlations for the Forchheimer coefficient are reviewed by Li and Engler (2001).

So far this review has used the Reynolds number to distinguish between linear and non-linear flow regimes in porous media. This usage is not entirely consistent because Darcy's law and Forchheimer's equation pertain to the macroscopic flow parameters of hydraulic or pressure gradient and seepage velocity, but the Reynolds number applies to the microscopic velocity. In order to avoid confusion, a dimensionless
group similar to the Reynolds number, but called the Forchheimer number has been proposed by Zeng and Grieg (2006):

$$
\begin{equation*}
F_{o}=\frac{\rho q k \hat{\beta}}{\mu} \tag{2.12}
\end{equation*}
$$

This proposal amounts to suggesting another representative length scale $(k \hat{\beta})$ for a porous medium. Ruth and Ma (1992) also define a Forchheimer number. Their formulation holds that the permeability depends on the velocity. Because this principle is not widely held, the Zeng and Grieg formulation is used in this work. A Forchheimer number of 0.11 corresponds to a 10% non-Darcy effect, and is recommended as a critical value for the transition to non-Darcy flow (Zeng and Grieg 2006).

Kovac's Hyperbola

Another approach to characterizing non-Darcy flow is given by Kovacs (1981). Kovacs reviews many correlations for porous media flow in the transition and turbulent regimes. He proposes a hyperbola to describe all of the flow regimes through porous media. Relations for the different regimes may be developed by approximating the hyperbola in that regime. The approximation proposed for the transition regime is of the form:

$$
\begin{equation*}
q=K I \beta^{*} \tag{2.13}
\end{equation*}
$$

where q is the specific discharge, K is the Darcy hydraulic conductivity, I is the hydraulic gradient, and β^{*} is a function of the Reynolds number. Ranieri (2002) determined values for β^{*} from experimental data.

2.2.4 Dupuit-Forchheimer Assumptions

So far, this review has discussed several ways to predict how the hydraulic gradient (or pressure gradient) in a porous medium varies in space, but has not directly addressed the pressure distribution through the medium. In the case of flow through a PFC, the porous medium flow is always bounded above by a free surface so the flow is said to be unconfined. If the velocities are essentially horizontal, then the hydraulic head
will be the same on any vertical line and the pressure distribution will be hydrostatic (Bear, 1972). In this case, the discharge is proportional to the hydraulic gradient. The assumptions that the head is independent of depth, and that the discharge is proportional to the hydraulic gradient are the Dupuit-Forchheimer assumptions (Charbeneau, 2000).

Irmay (1967) studied the error in predicting the hydraulic head using the DupuitForchheimer assumptions. He gives formulas for computing the relative error at different depths for flat and inclined aquifers. For a flat aquifer, the maximum error occurs at mid depth and depends mostly on the hydraulic gradient. A hydraulic gradient of 10% caused a maximum error of 0.25% in the hydraulic head. As most roadways have a drainage slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good approximation.

2.3 Unsaturated Porous Media Flow

Unsaturated porous media flow occurs when the pore space is not completely filled with a single fluid. Unsaturated flow is more difficult to describe than saturated flow because the hydraulic conductivity and capillary pressure change with the water content. Richard's equation governs unsaturated flow and considers the variation of hydraulic conductivity and capillary pressure with water content:

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\operatorname{div}\left(-K_{u s}(\theta) \frac{d \Psi}{d \theta} \operatorname{grad}(\theta)\right)+\frac{\partial K_{u s}(\theta)}{\partial z} \tag{2.14}
\end{equation*}
$$

In Richard's equation θ is the water content, Ψ is the capillary pressure head, and $K_{u s}$ is the unsaturated hydraulic conductivity (Charbeneau, 2000).

For PFC drainage, unsaturated flow is essentially vertical and the primary effect of interest is the travel time through the unsaturated zone. For this purpose, Richard's equation may be simplified by considering only vertical flow and neglecting capillary pressure gradients. This leads to the kinematic form of Darcy's law:

$$
\begin{equation*}
q=K_{u s}(\theta) \tag{2.15}
\end{equation*}
$$

where q is the specific discharge and $K_{u s}$ is the unsaturated hydraulic conductivity which depends on the water content, θ. This form of Darcy's law applies specifically to vertical flow so the hydraulic gradient is unity.

In order to apply the kinematic form of Darcy's law a relationship between the hydraulic conductivity and water content must be obtained. One such relationship is the power law model of Brooks and Corey (Charbeneau, 2000):

$$
\begin{equation*}
K_{u s}=K \Theta^{3+2 / \lambda} \tag{2.16}
\end{equation*}
$$

where $K_{u s}$ is the unsaturated hydraulic conductivity, K is the saturated hydraulic conductivity, Θ is the water content assuming zero field capacity, and λ is the pore size distribution index.

Using Equations (2.15) and (2.16), Charbeneau (2000) estimates the average pore-water velocity using an average value of the water content:

$$
\begin{equation*}
v=\frac{G}{\theta_{r}+\left(n-\theta_{r}\right)\left(\frac{G}{K}\right)^{\frac{\lambda}{3 \lambda+2}}} \tag{2.17}
\end{equation*}
$$

where G is net recharge rate (assumed equal the rainfall rate for the PFC), θ_{r} is the irreducible water content, K is the saturated hydraulic conductivity, and λ is the pore size distribution index. With this average velocity, the travel time through the unsaturated zone can be estimated:

$$
\begin{equation*}
t=\frac{L}{v} \tag{2.18}
\end{equation*}
$$

where L is the depth to the water table. The equations presented in this section are used in Section 3.2.3 to evaluate the effect of unsaturated flow in the model.

2.4 Overland Flow

Overland flow is governed by a simplification of the Navier-Stokes equations first presented by Saint-Venant in 1871 (Chow et al., 1988). The full Saint-Venant equations retain all of the terms of the Navier-Stokes equations including terms for inertial, viscous, and gravitational forces, along with convective accelerations. For the purpose of predicting flow at shallow depths, various levels of approximation to the Saint-Venant
equations have been applied (Chow et al., 1988). The kinematic wave approximation retains only the gravitational and viscous terms. The diffusion wave approximation adds the pressure term. The full Saint-Venant equations, with no simplifications, are known as the dynamic wave model.

Three non-dimensional parameters are important in characterizing the overland flow problem: (1) Reynolds number, (2) Froude number, (3) Kinematic wave number. Reynolds number is defined in Equation (2.5). The Froude number is defined as:

$$
\begin{equation*}
F=\frac{v}{\sqrt{g h}} \tag{2.19}
\end{equation*}
$$

where v is the velocity, g is the gravitational constant, and h is the flow depth. The Froude number compares the speed of the flow with the speed of a gravity wave (White, 1999).

The kinematic wave number is defined as:

$$
\begin{equation*}
N_{k}=\frac{S L}{h F^{2}} \tag{2.20}
\end{equation*}
$$

where S is the slope, L is the length, h is the depth and F is the Froude number. The symbol N_{k} is used here instead of the usual symbol K to avoid confusion with the saturated hydraulic conductivity. The kinematic wave number reflects the length and slope of the plane as well as the normal flow variables (Woolhiser and Liggett, 1967).

The ranges of applicability for the levels of approximation to the Saint-Venant equations are studied in terms of the Froude number and kinematic wave number by Daluz Vieira (1983). The author produced a plot showing the range of applicability for the kinematic wave, diffusion wave, and full Saint-Venant equations (Figure 4).

Figure 4: Range of applicability for sheet flow models (Daluz Vieira, 1983); used with permission

On smooth urban slopes the kinematic wave number lies between 5 and 20 (Daluz Vieira, 1983) so the diffusion wave approximation is appropriate for the full range of Froude numbers.

2.5 The CRWR Approach to Modeling Highway Drainage

The research presented in this dissertation is the latest advance in a long tradition of work in highway drainage hydraulics conducted at the Center for Research in Water Resources (CRWR) at The University of Texas at Austin. The present sub-section describes how different aspects of the previous research have been incorporated into the present work.

Previous highway drainage research at CRWR has included both experimental measurements and numerical modeling. Experimental work included measuring the sheet flow thickness on a laboratory roadway section under simulated rainfall. The
roadway section is rectangular and situated so that the elevation of three corners can be adjusted to achieve a range of longitudinal and cross slopes. Sheet flow thicknesses and unit discharge were measured on three surfaces having different roughness under a range of slopes and rainfall conditions. Charbeneau et al. (2009) analyzed this data and evaluated depth-discharge relationships. They concluded that Manning's equation had equivalent accuracy to logarithmic boundary layer theory, and that the hydraulic effects of rainfall on sheet flow were negligible.

Previous research at CRWR in the area of numerical modeling developed a hydrodynamic diffusion wave model for sheet flow in superelevation transitions (Jeong, 2008). Beyond implementing the diffusion wave model for sheet flow, this work developed a curvilinear grid generation scheme that is well suited for highway drainage hydraulics. The idea of the grid generation scheme is that each point along a roadway centerline lies on the circumference of a circle. The coordinates of the center of the circle may be given explicitly, or estimated from neighboring points. The radius of curvature is assumed to vary linearly along the centerline between known points. The radius of curvature is very large for straight sections and smaller for curved sections. This approach to grid generation accommodates a wide range of roadway geometry, and gives models developed from it a consistent basis.

The superelevation transition study also formulated kinematic boundary conditions for a 2D diffusion wave model using the method of characteristics. Boundary conditions for highway drainage can be quite complicated, especially in unsteady conditions. Making the kinematic approximation is often reasonable and provides at least some dynamic behavior at drainage boundaries. Applying the method of characteristics along the drainage path allows the boundary condition to be physically reasonable, and to vary in time.

2.6 Coupling Schemes

The need to couple fluid behavior on the surface with that in the subsurface comes from the hydrologic cycle. Rain falls on the earth's surface as precipitation and infiltrates
the soil to become groundwater. Various approaches to coupling surface and subsurface flow have been proposed. An early study by Beavers and Joseph (1967) investigated the interface region and detected a slip velocity at the interface. In hydrologic models the conductance method (Anderson and Woessner, 1992) is widely used. In this method, the flux between the phases is the gradient times the conductance. This approach is acceptable for a distinct boundary between phases, but the high surface roughness of PFC blurs this boundary. Recently, Kollet and Maxwell (2006) proposed coupling the surface and subsurface by requiring the pressure to be constant right at the land surface.

2.7 Coupled Surface-Subsurface Models

There many examples of hydrologic models that couple surface and subsurface flow processes. Most models focus on flow in only one phase, and use the other phase as a boundary condition. For example, in an irrigation system, the detailed solution of the groundwater system is not terribly important; the objective is a good representation of surface flow and infiltration. In the same way, subsurface flow models such as MODFLOW focus on the solution to the groundwater system, which is usually unaffected by the sheet flow dynamics. In contrast, models of entire watersheds do attempt to represent surface flow, infiltration, and subsurface flow. However, a detailed solution for overland flow is rarely found along with a detailed groundwater solution. Two notable exceptions are discussed below.

Researchers at the University of Mississippi recently published a paper entitled "Coupled Finite-Volume Model for 2D Surface and 3D Subsurface Flows" (He et al., 2008). This model couples a diffusion wave model on the surface with Richard's equation in the subsurface. The coupling is accomplished by requiring the pressure to be continuous right at the land surface. This formulation treats overland flow as a boundary to subsurface flow. The model predicts the variation of surface water depth through time over the watershed.

The MIKE-SHE model—maintained by the Danish Hydrologic Institute, Inc (DHI) -is a commercial software package for watershed simulation. The model
simulates the major hydrological processes that occur in the land phase of the hydrologic cycle, including surface flow and groundwater flow (Refsgaard and Storm, 1995). For coupling between surface and subsurface phases, the program calculates the exchange flux from Darcy's law. The MIKE-SHE model has been used widely to model many watersheds and is often used to evaluate new models (e.g. He et al., 2008).

Numerous models that couple surface and subsurface processes have been reviewed by Furman (2008). In his review, Furman categorizes models according to the type of surface flow and subsurface flow that the model uses. In his summary of 26 models, there are seven models that deal with surface flow in two dimensions-of these only one deals with the subsurface as a groundwater problem instead of only infiltration or partial saturation. The one model that does both is a unique application by Liang et al. (2007) where buildings in the floodplain are modeled as a porous medium. In their formulation, Liang et al. (2007) restrict the solution at any point in the system to either surface flow or subsurface flow. The coupling is horizontal; water from the flood wave flows laterally into the buildings.

2.8 Uniqueness of this Dissertation

This research shares many attributes with previous studies-predicting water depth and runoff from rainfall is essentially a hydrologic model. The original contribution of this work comes from several areas:

- The model predicts the transient response of PFC, which has yet to be addressed in the literature.
- The work examines a surface/subsurface flow system at the fine spatial scale of a roadway, in contrast to the watershed scale studies identified above.
- In the PFC system, subsurface flow drives overland flow. This forcing contrasts with the natural process of ponding from overland flow causing infiltration.

CHAPTER 3: MODEL DEVELOPMENT

This chapter describes the development of the permeable friction course drainage code (PERFCODE). A statement of the research problem is given first along with a discussion of the physical processes involved. With this basis, a mathematical formulation is developed for each physical process. A discussion of major assumptions is provided next. The mathematical models are applied on a control volume to formulate the numerical model that will provide the predictions of interest. The chapter concludes with a discussion of model tolerances and the technique used for the transition between sheet flow and PFC flow.

3.1 Problem Statement

The research problem is predicting the elevation of the water surface throughout a PFC roadway during a rainstorm. PFC is a permeable pavement placed in a 50 mm layer on top of regular, impermeable pavement. During rain events, water seeps into the porous layer and flows to the side of the road by gravity. When the rainfall intensity is small, all of the drainage is contained within the pavement. Under higher rainfall intensities drainage occurs both within and on top of the pavement. The model predicts depths in both cases.

For the straight roadway shown in Figure 5, the road has a longitudinal slope and a cross slope. The resultant of these slopes is the drainage slope, along which water particles move to the edge of the pavement. For straight roadway sections without shoulders the problem is one dimensional along the drainage slope. However, the drainage problem becomes two-dimensional when shoulders have a different slope than the traffic lanes or when the roadway is curved. PFC is frequently used to improve driving conditions in these cases. Some specific configurations of interest are:

- Roadways with shoulders
- Curved sections
- Superelevation transitions
- \quad Sag vertical curves

Figure 5: Straight roadway section

3.2 Physical Processes

In order to achieve the model aims, several physical processes must be considered. Modeling drainage from a PFC roadway can be considered as a specialized watershed model. As such, the physical processes may be categorized in terms of the hydrologic cycle. The hydrologic processes that occur in this system are: precipitation, evaporation, infiltration, unsaturated porous media flow, saturated porous media flow, and overland flow. One of these processes is important for the present work if it has a meaningful effect on the mass of water in the system or affects the travel time of a water particle moving through the system. The significance of each hydrologic process with respect to the model is evaluated in the following sub-sections.

3.2.1 Precipitation and Evaporation

Precipitation is the process by which water that has condensed in the atmosphere falls to earth. Precipitation can take the form of rain, sleet, snow or hail depending on atmospheric conditions. For the purposes of this research, rain is the only form of
precipitation considered. The rainfall rate is a model input, assumed to be a known function of time.

Evaporation is the process of water changing from the liquid phase to the vapor phase. Key factors in determining the evaporation potential are the solar radiation and relative humidity (Charbeneau, 2000). In this work evaporation is neglected because most drainage occurs during or immediately following rainfall events while the relative humidity is high.

3.2.2 Infiltration

Infiltration is the process of rainfall entering the porous medium. Infiltration is governed by hydraulic conductivity, porosity and moisture content of the medium. For infiltration to be an important process with respect to PFC drainage, the process of water entering the pavement would have to cause a meaningful delay in the travel time of a water particle. Such a delay would cause water to pond on the pavement surface before the pore space was filled. According to the Green-Ampt method for calculating infiltration, ponding will not occur unless the rainfall intensity exceeds the hydraulic conductivity (Charbeneau, 2000). As an example, consider a five minute rainfall of one inch $(2.54 \mathrm{~cm})$, which exceeds the 100 -year 5 -minute rainfall event for the entire eastern United States (Chow et al. 1988, pg 447). Such an event corresponds to a rainfall rate of $0.0085 \mathrm{~cm} / \mathrm{s}-$-far below the $1 \mathrm{~cm} / \mathrm{s}$ order of PFC hydraulic conductivity. Since the hydraulic conductivity of PFC is much higher than rainfall rates, infiltration is not expected to play an important role in this problem and is neglected in the model formulation.

3.2.3 Unsaturated Porous Media Flow

Although infiltration occurs very quickly for a PFC, unsaturated porous media flow from the pavement surface to the water table may play an important role. To quantify the effect of this process an estimate of the travel time for a range of rainfall intensities was made using Equations (2.17) and (2.18) and the results plotted in Figure 6.

Figure 6: Travel time though an unsaturated PFC layer having a thickness of 5 cm , irreducible water content of zero, pore size distribution index of 1.7, and a saturated hydraulic conductivity of $1 \mathrm{~cm} / \mathrm{s}$

Figure 6 shows that travel times are longer at lower rainfall intensities, but that the travel time is on the order of minutes. The significance of this delay depends on the model time step. Model time steps for this work are on the order of seconds, suggesting that the delay may be important. However, rainfall measurements necessarily report rainfall accumulation over a time period, frequently five or fifteen minutes. Considering the reporting period for rainfall data compared to the expected travel time, flow through the unsaturated PFC is neglected in this model.

3.2.4 Saturated Porous Media Flow

Saturated porous media flow refers to the movement of fluid through a porous medium when the pore space is filled with fluid. The boundary between saturated and unsaturated zones of a porous medium is the water table. At the water table, the pressure is atmospheric. Below the water table the media is saturated. Above the water table the media is considered unsaturated, though a small area of saturated pores may exist above the water table due to capillary effects. Saturated porous media flow is an essential process for the model because drainage to the edge of pavement occurs horizontally. This model treats all of the drainage through the PFC as saturated porous media flow.

Quantitative predictions of saturated porous media flow apply Darcy's law or Forchheimer's equation to relate the hydraulic gradient and the specific discharge. This model assumes that Darcy's law characterizes PFC drainage. The validity of this assumption is investigated in Section 3.4.2.

3.2.5 Overland Flow

Overland flow is the process of water flowing on the land surface, usually in a thin layer. Hydrologists categorize overland flow as either Hortonian overland flow or saturation overland flow (Chow et al., 1988). The distinction is the source of the flow. Hortonian overland flow occurs when the rainfall rate exceeds the infiltration capacity of the surface. Saturation overland flow occurs when the subsurface becomes saturated and discharges flow onto the land surface, usually at the bottom of a hill. In PFC drainage, overland flow occurs through the latter mechanism.

Overland flow velocities are generally much higher than subsurface flow velocities because viscous forces are smaller due to differences in surface area. Because of the higher velocities, overland flow drains water more quickly from the roadway than subsurface flow. The high drainage capacity of overland flow makes it an important process for modeling drainage from PFC roadways.

3.2.6 Summary of Physical Processes

The physical processes that occur during drainage from a PFC roadway have been identified and evaluated. The processes of precipitation, saturated porous media flow, and overland flow were found to be important for the current work. The interaction between these processes is shown in Figure 7.

Figure 7: Interaction between physical processes in PERFCODE

3.3 Mathematical Model Development

Now that the important physical processes for PFC drainage have been identified, a mathematical description of each process is needed. For the precipitation process, the variation of rainfall over time is assumed to be known so no further description is required. Models for saturated porous media flow and overland flow are developed in the following sections. A sketch of the dimensional variables used to represent different physical quantities is shown in Figure 8.

Figure 8: Cross section along drainage path

The rainfall rate $r(t)$ is assumed to be spatially uniform, but variable in time. The elevation of the bottom of the PFC layer with respect to a datum is $Z(x, y)$. The PFC layer has a thickness b, which is taken as constant throughout the domain. The saturated thickness of water in the PFC layer is $h_{p}(x, y)$ where the subscript refers to the pavement. The specific discharge through the PFC is $q(x, y)$. On the pavement surface, the thickness of sheet flow is h_{s} and the average velocity is $v(x, y)$. The total head of water at any point in the domain is $H(x, y)$.

3.3.1 Mathematical Model of Saturated Porous Media Flow

The equations of motion for saturated flow in a porous media consist of the continuity equation and the momentum equation. This development follows Halek and Svec (1979). Consider first the equation of continuity:

$$
\begin{equation*}
\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}+\frac{\partial q_{z}}{\partial z}=0 \tag{3.1}
\end{equation*}
$$

where q is the Darcy velocity in each of the coordinate directions. If the drainage slope is small enough, the only vertical fluxes are from rainfall or movement of the free surface. In the present problem, rainfall is prescribed and the free surface position is of interest. Integrating the continuity equation over the saturated thickness gives:

$$
\begin{equation*}
\int_{0}^{h_{p}}\left(\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}+\frac{\partial q_{z}}{\partial z}\right) d z=\frac{\partial}{\partial x}\left(q_{x} h_{p}\right)+\frac{\partial}{\partial y}\left(q_{y} h_{p}\right)+q_{h_{p}}-q_{0} \tag{3.2}
\end{equation*}
$$

This integration makes use of Leibnitz's rule to interchange the order of differentiation and integration. By assuming that the PFC has no resistance to flow in the vertical direction, the effects free surface movement and rainfall may be separated into $q_{h p}$ and q_{0}, respectively. The movement of the free surface (within the PFC) in time is given by $q_{h_{p}}=n_{e} \frac{\partial h_{p}}{\partial t}$ and the rainfall may be expressed as $q_{0}=r(t)$. Making these substitutions and rearranging:

$$
\begin{equation*}
n_{e} \frac{\partial h_{p}}{\partial t}=-\frac{\partial}{\partial x}\left(q_{x} h_{p}\right)-\frac{\partial}{\partial y}\left(q_{y} h_{p}\right)+r(t) \tag{3.3}
\end{equation*}
$$

For the case of non-inertial flow, the momentum equation reduces to Darcy's law for each coordinate direction.

$$
\begin{equation*}
q_{x}=-K_{x} \frac{\partial H}{\partial x}, \quad q_{y}=-K_{y} \frac{\partial H}{\partial y} \tag{3.4}
\end{equation*}
$$

where q and K are the Darcy velocity and hydraulic conductivity in the coordinate directions. For the present case, horizontal anisotropy will be neglected so that $K_{x}=$ $K_{y}=K$. Substituting Darcy's law into the vertically integrated continuity equation gives:

$$
\begin{equation*}
n_{e} \frac{\partial h_{p}}{\partial t}=K\left[\frac{\partial}{\partial x}\left(\frac{\partial H}{\partial x} h_{p}\right)+\frac{\partial}{\partial y}\left(\frac{\partial H}{\partial x} h_{p}\right)\right]+r(t) \tag{3.5}
\end{equation*}
$$

Equation (3.5) is known as the Boussinesq equation. It describes unsteady twodimensional flow in an unconfined porous medium with spatially uniform recharge.

3.3.2 Mathematical Model of Overland Flow

The following development of the mathematical model for overland flow follows that of Jeong (2008), except that the velocity is used as the primary variable rather than unit discharge. The dynamics of shallow water flow over the pavement surface are described by the Saint-Venant equations, which comprise a continuity equation and a momentum equation for each component direction. The continuity equation is expressed as:

$$
\begin{equation*}
\frac{\partial h_{s}}{\partial t}+\frac{\partial\left(v_{x} h_{s}\right)}{\partial x}+\frac{\partial\left(v_{y} h_{s}\right)}{\partial y}=r(t) \tag{3.6}
\end{equation*}
$$

where h_{s} is the thickness of water on the surface, v is the average velocity in each coordinate direction, and $r(t)$ is the rainfall rate. The two full momentum equations are:

$$
\begin{align*}
& \frac{\partial\left(v_{x} h_{s}\right)}{\partial t}+\frac{\partial\left(v_{x}^{2} h_{s}\right)}{\partial x}+\frac{\partial\left(v_{x} v_{y} h_{s}\right)}{\partial y}+g h_{s}\left(S f_{x}+\frac{\partial H}{\partial x}\right)=0 \\
& \frac{\partial\left(v_{y} h_{s}\right)}{\partial t}+\frac{\partial\left(v_{y}^{2} h_{s}\right)}{\partial y}+\frac{\partial\left(v_{x} v_{y} h_{s}\right)}{\partial x}+g h_{s}\left(S f_{y}+\frac{\partial H}{\partial y}\right)=0 \tag{3.7}
\end{align*}
$$

This system of three partial differential equations may be reduced to a single equation by applying the diffusion wave approximation-neglecting local and convective accelerations. Neglecting inertial terms and dividing by $g h_{s}$ gives the simplified momentum equations:

$$
\begin{equation*}
S_{f_{x}}=-\frac{\partial H}{\partial x} \quad S_{f_{y}}=-\frac{\partial H}{\partial y} \tag{3.8}
\end{equation*}
$$

To combine continuity and momentum into a single equation, the velocity components (v_{x} and v_{y}) must be expressed in terms of the friction slope. Manning's equation relates the velocity and friction slope as follows:

$$
\begin{equation*}
v=\frac{1}{n} R^{2 / 3} S_{f}^{1 / 2} \tag{3.9}
\end{equation*}
$$

Where v is the velocity, n is the Manning roughness coefficient, R is the hydraulic radius, and S_{f} is the friction slope. Manning's equation is a scalar equation that applies in the direction of flow. In order to apply the Manning's equation to this problem it needs to be formulated using the vector components of Equation (3.7). Inserting these components and approximating the hydraulic radius as the depth as is common for shallow flows yields:

$$
\begin{equation*}
\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2}=\frac{1}{n} h_{s}^{2 / 3}\left(S_{f_{x}}^{2}+S_{f_{y}}^{2}\right)^{1 / 2} \tag{3.10}
\end{equation*}
$$

The friction slope term may also be expressed in terms of both vector components and the magnitude:

$$
\begin{equation*}
\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2}=\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S f}}\left(S_{f_{x}}^{2}+S_{f_{y}}^{2}\right) \tag{3.11}
\end{equation*}
$$

This formulation shows that Manning's equation can be written as the vector sum of the velocity components. Using the momentum result of Equation (3.8), the friction slope may also be written in terms of the hydraulic gradient.

$$
\begin{align*}
& v_{x}=\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} S_{f_{x}}=-\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} \frac{\partial H}{\partial x} \tag{3.12}\\
& v_{y}=\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} S_{f_{y}}=-\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} \frac{\partial H}{\partial y}
\end{align*}
$$

Substituting these velocity components into the continuity equation yields a single partial differential equation that contains the essential physics of the overland flow problem.

$$
\begin{equation*}
\frac{\partial h_{s}}{\partial t}+\frac{\partial}{\partial x}\left(-\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} \frac{\partial H}{\partial x} h_{s}\right)+\frac{\partial}{\partial y}\left(-\frac{1}{n} \frac{h_{s}^{2 / 3}}{\sqrt{S_{f}}} \frac{\partial H}{\partial y} h_{s}\right)=r(t) \tag{3.13}
\end{equation*}
$$

This equation may be simplified by lumping the non-differential terms within the spatial derivatives into a single coefficient, $D\left(h_{s}\right)$. Additionally, the time derivative must be converted from depth to elevation above datum. From Figure 8 the variables are related by $H=Z+h_{p}+h_{s}$. Taking the time derivative, $d z / d t$ is zero and $\frac{\partial}{\partial t} h_{p}$ is zero when there is flow on the surface. That is, during surface flow, the saturated depth of the PFC will be equal to the pavement thickness. Making these substitutions gives the desired PDE:

$$
\begin{equation*}
\frac{\partial H}{\partial t}+\frac{\partial}{\partial x}\left(-D\left(h_{s}\right) \frac{\partial H}{\partial x}\right)+\frac{\partial}{\partial y}\left(-D\left(h_{s}\right) \frac{\partial H}{\partial y}\right)=r(t) \tag{3.14}
\end{equation*}
$$

where $D\left(h_{s}\right)=\frac{1}{n} \frac{h_{s}^{5 / 3}}{\sqrt{S_{f}}}$ and other terms are defined previously. This approach to describing surface flow is a two-dimensional diffusion wave model.

3.4 Mathematical Model Assumptions

The forgoing development made simplifying assumptions about the physical system. In particular it was assumed that the saturated subsurface varies hydrostatically, that porous media flow is slow enough to neglect inertial effects, and that inertial effects can also be neglected for overland flow. Each of these assumptions is discussed in the following sections.

3.4.1 Dupuit-Forchheimer Assumptions

In developing the mathematical model for saturated porous media flow, it was assumed that pressure varied hydrostatically and that the subsurface discharge was proportional to the hydraulic gradient. These are the Dupuit-Forchheimer assumptions.

Irmay (1967) studied the error made in predicting the hydraulic head using the Dupuit-Forchheimer assumptions. He gives formulas for computing the relative error at different depths for flat and inclined aquifers. For a flat aquifer, the maximum error
occurs at mid depth and depends mostly on the hydraulic gradient. A hydraulic gradient of 10% caused a maximum error of 0.25% in the hydraulic head. As most roadways have a drainage slope smaller than 10%, the Dupuit-Forchheimer assumptions provide a good approximation.

3.4.2 Darcy's Law

Along with the Dupuit-Forchheimer assumptions, the model development assumed that Darcy's law applies for flow through PFC. However, experimental efforts to estimate the hydraulic conductivity of PFC have shown that Darcy's law does not apply once hydraulic gradients become sufficiently large (Klenzendorf, 2010). Forchheimer's equation is frequently used to describe flow in this case:

$$
\begin{equation*}
I=\alpha q_{F}+\beta q_{F}^{2} \tag{3.15}
\end{equation*}
$$

In Equation (3.15), I is the hydraulic gradient taking a downward slope as positive, q_{F} is the specific discharge of the fluid as predicted by the Forchheimer equation, and α and β are coefficients. In the case that β is zero, Forchheimer's equation reduces to Darcy's law with the coefficient α equal to the inverse of the hydraulic conductivity K. To facilitate a comparison with Darcy's law, the Forchheimer specific discharge q_{F} is obtained using the quadratic formula. The positive radical is taken since a negative discharge is not meaningful in this case.

$$
\begin{equation*}
q_{F}=\frac{-\alpha+\sqrt{\alpha^{2}+4 \beta I}}{2 \beta}=\frac{\alpha}{2 \beta}\left[\sqrt{1+\frac{4 \beta I}{\alpha^{2}}}-1\right] \tag{3.16}
\end{equation*}
$$

Using this form of Forchheimer's equation, a vector form comparable to Darcy's law may be obtained:

$$
\begin{equation*}
\bar{q}_{F}=\bar{I} \frac{\alpha}{2 \beta I}\left[\sqrt{1+\frac{4 \beta I}{\alpha^{2}}}-1\right] \tag{3.17}
\end{equation*}
$$

Since Darcy's law is $\bar{q}=K \bar{I}$, the specific discharge predicted by the two equations can be compared using a ratio, termed the Discharge Ratio (Φ).

$$
\begin{equation*}
\Phi=\frac{q_{F}}{q_{D}}=\frac{\alpha^{2}}{2 \beta I}\left[\sqrt{1+\frac{4 \beta I}{\alpha^{2}}}-1\right] \tag{3.18}
\end{equation*}
$$

The value of Φ ranges from 0 to 1 . At a value of 1 the Forchheimer specific discharge matches the Darcy specific discharge. At values less than 1, the Forchheimer specific discharge is less than the Darcy specific discharge. The value of Φ depends upon the hydraulic gradient I and the coefficients α and β. A change in one of these variables that results in a higher velocity pushes the flow away from the Darcy regime toward Forchheimer flow.

For the present purposes, the region of applicability of Darcy's law is of interest. To determine this region, the value of Φ over a range of values for $I, \alpha \& \beta$ is investigated. The hydraulic gradient can be estimated as the roadway slope. A reasonable slope range might be 0% to 10%. Values of α can be approximated by taking the inverse of the hydraulic conductivity. The hydraulic conductivity of PFC is an area of ongoing research. Preliminary results indicate that values range from 0 to $5 \mathrm{~cm} / \mathrm{s}$.

Values of β are estimated using equations from the literature and compared to recent experimental results.

Li and Engler (2001) give a literature review of correlations for the Non-Darcy coefficient. Of the correlations they give, an extension of the work of Ergun (1952) given by Thauvin and Mohanty (1998) appeared relevant to this research:

$$
\begin{equation*}
\hat{\beta}=a b^{-1 / 2}\left(10^{-8} k\right)^{-1 / 2} \phi^{-3 / 2} \tag{3.19}
\end{equation*}
$$

where $\hat{\beta}$ is the non-Darcy coefficient in $1 / \mathrm{cm}, k$ is the permeability in units of Darcy, ϕ is the porosity. The values of $a=1.75$ and $b=150$ were obtained by Ergun (1952) using a least squares fit to experimental data. This correlation was chosen because the experimental data come from columns packed with porous materials (e.g. sand, pulverized coke) rather than geologic formations. The non-Darcy coefficient is related to β by the constant of gravitational acceleration:

$$
\begin{equation*}
\beta=\frac{\hat{\beta}}{g} \tag{3.20}
\end{equation*}
$$

Another correlation for the coefficients of the Forchheimer equation is given by Ward (1964):

$$
\begin{equation*}
I=\frac{\mu}{k \rho g} q+\frac{0.55}{g \sqrt{k}} q^{2} \tag{3.21}
\end{equation*}
$$

In Ward's equation, the linear term is consistent with Darcy's law and no estimate of the porosity is required.

Recent work by Klenzendorf (2010) has used a combination of numerical modeling and laboratory experiments to determine the Forchheimer coefficients for PFC. Comparing the coefficients obtained by Klenzendorf to the relationships proposed by Ward and Thauvin and Mohanty suggests that Ward's equation provides better estimates for PFC flow (Figure 9). This result applies especially at higher values of hydraulic conductivity, where non-linear effects are more pronounced.

A comparison of the value of β with the hydraulic conductivity shows that the variables are inversely related (Figure 9). Conceptually, this relationship says that smaller values of hydraulic conductivity have higher values of β. The meaning of this trend is that inertial effects reduce the drainage capacity of PFC. Darcy's law will underpredict the water depth.

Figure 9: Comparison of Forchheimer coefficients for PFC obtained by Klenzendorf (2010) with the relationships proposed by Ward (1964) and Thauvin and Mohanty (1998). Three of Klenzendorf's data points [(0.047,167); $(0.056,64.3) ;(0.10,29.1)]$ are excluded for clarity.

Invoking either relationship for the Forchhiemer coefficients reduces the discharge ratio to a function of two variables. By establishing a threshold value for Φ, we can get a sense of which PFC roadways can be reasonably represented by Darcy's law. A 10% non-Darcy effect-corresponding to $\Phi=0.9$-has been suggested as reasonable (Zeng and Grigg, 2006) and is adopted here. Using this criterion, a surface plot of the discharge ratio shows that Darcy's law provides acceptable predictions at low hydraulic gradients (small slopes) and small hydraulic conductivities (Figure 10). Furthermore, this figure shows that even modest roadway slopes can lead to non-Darcy flow.

Figure 10: Contour plot of discharge ratio using Thauvin and Mohanty (1998) with porosity of 0.2 .

Figure 11: Contour plot of discharge ratio using the relationship of Ward (1964)

The contour plot of the discharge ratio using Ward's formula (Figure 11) shows the same general trends as Figure 10, but Ward's formula—which agrees more closely with experimental data for PFC—gives a larger region where Darcy's law is acceptable.

3.4.3 Diffusion Wave Approximation

The reasons for selecting the diffusion wave approximation are discussed more thoroughly in the literature review. Briefly, the diffusion wave model provides a balance between accuracy and computational efficiency. The kinematic wave approximation is too simplified because it cannot deal with adverse slopes or backwater effects. The dynamic wave model would be ideal, but comes at a high computational cost and is not expected to give substantially different results than the diffusion wave model.

3.5 Computational Grid

In order to implement the mathematical models of the physical processes for real roadways, a computational grid for the roadway must be developed. This research uses the same grid generation employed by Jeong (2008), which is summarized below.

The idea of the grid generation scheme is that each point along a roadway centerline lies on the circumference of a circle. The coordinates of the center of the circle may be given explicitly, or estimated from neighboring points. The radius of curvature is assumed to vary linearly along the centerline between known points. The radius of curvature is very large for straight sections and smaller for curved sections.

The center and radius of curvature can be obtained by specifying them directly as was done in this work, or by analyzing a digital elevation model as was done by Jeong (2008). In either approach, a point along the roadway centerline has the following attributes:

- Cartesian X,Y coordinates (input)
- Coordinates of center of curvature, $\left(x_{c c}, y_{c c}\right)$ (output)
- Radius of curvature, R (output)
- Angle (from positive horizontal axis) of ray from center of curvature to centerline point, Θ (output)
Considering adjacent DEM points, the difference in radius of curvature and angular position are ΔR and $\Delta \Theta$, respectively. Using these quantities the curvilinear roadway can be mapped to a rectangular representation through the coordinate transformation functions (Jeong 2008):

$$
\begin{align*}
& x(\xi, \eta)=\left(\mathrm{x}_{\mathrm{cc} 1}+\xi\left(\mathrm{x}_{\mathrm{cc} 2}-\mathrm{x}_{\mathrm{cc} 1}\right)\right)+\left(\mathrm{R}_{1}+\xi \Delta \mathrm{R}+(\eta-0.5) \mathrm{W}\right) \cos \left(\Theta_{1}+\xi \Delta \Theta\right) \tag{3.22}\\
& y(\xi, \eta)=\left(\mathrm{y}_{\mathrm{cc} 1}+\xi\left(\mathrm{y}_{\mathrm{cc} 2}-\mathrm{y}_{\mathrm{cc} 1}\right)\right)+\left(\mathrm{R}_{1}+\xi \Delta \mathrm{R}+(\eta-0.5) \mathrm{W}\right) \sin \left(\Theta_{1}+\xi \Delta \Theta\right)
\end{align*}
$$

In Equation (3.22), ξ and η are parameters that range from 0 to $1 ; W$ is the width of the roadway. This equation only applies between adjacent DEM points.

The length ℓ, and width w of a line segment centered at the point (ξ, η) are computed using the partial derivatives of the coordinate transformation functions:

$$
\begin{gather*}
\ell(\xi, \eta)=\Delta \xi \sqrt{\left(\frac{\partial x}{\partial \xi}\right)^{2}+\left(\frac{\partial y}{\partial \xi}\right)^{2}} \tag{3.23}\\
w(\xi, \eta)=W \Delta \eta
\end{gather*}
$$

with $\Delta \xi=1 / N_{\xi}$ and $\Delta \eta=1 / N_{\eta}, N$ being the number of elements between DEM points in each direction.

The area of a grid cell is computed from the Jacobian of the transformation functions:

$$
\Delta A=J(\xi, \eta)=\left|\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \tag{3.24}\\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right|
$$

Equations (3.23) and (3.24) provide the information needed to develop a numerical formulation in the computational space. The coordinate transformation process is depicted visually in Figure 12.

Figure 12: Development of computational grid from roadway geometry

3.6 Numerical Formulation

The major goal of this research is the development of a numerical model for the drainage of water from a PFC. The Boussinesq equation and the diffusion wave model developed above provide the theoretical basis for the system of interest. However, predicting flow behavior in a real system requires that the surface and subsurface behaviors interact.

The numerical formulation uses the finite volume method with central differencing in space and the Crank-Nicolson method in time. A mass balance is developed for an interior grid cell with flux components for rainfall, subsurface flow, and surface flow. The flux across each face of the grid cell is estimated using Darcy's law
and the diffusion wave model. The mass balance is initially expressed in terms of the total head at adjacent cells and then re-expressed in terms of the depth at adjacent cells.

3.6.1 Mass Balance on a Grid Cell

An interior grid cell is shown in Figure 14 and Figure 14 with horizontal dimensions in computational space. The total head for the center of the grid cell is:

$$
\begin{equation*}
H=z+h_{p}+h_{s} \tag{3.25}
\end{equation*}
$$

where z is the elevation above the datum, h_{p} is the saturated thickness in the pavement and h_{s} is the thickness on the pavement surface. The volume of the grid cell is:

$$
\begin{equation*}
V=\text { Area } * \text { Depth }=\Delta \mathrm{A}(H-z)=\Delta \mathrm{A}\left(h_{p}+h_{s}\right) \tag{3.26}
\end{equation*}
$$

The volume of water in the grid cell must account for the porosity, and is given by:

$$
\begin{equation*}
V_{H_{2} O}=\Delta A h_{p} n_{e}+\Delta \mathrm{A} h_{s} \tag{3.27}
\end{equation*}
$$

where n_{e} is the effective porosity of the pavement.

Figure 13: Profile view of interior grid cell

Figure 14: Isometric View of Interior Grid Cell

The change in volume of water in the cell over time is found from the partial derivative of Equation (3.27). This derivative must consider the physical constraint that either $\frac{\partial h_{p}}{\partial t}$ or $\frac{\partial h_{s}}{\partial t}$ will be zero at all times according to the location of the free surface with respect to the pavement surface.

$$
\frac{\partial V_{H_{2} O}}{\partial t}= \begin{cases}\Delta \mathrm{A} n_{e} \frac{\partial h_{p}}{\partial t} & \text { for } h_{p}<b \tag{3.28}\\ \Delta \mathrm{~A} \frac{\partial h_{s}}{\partial t} & \text { for } h_{p} \geq b\end{cases}
$$

The principle of continuity states that the time rate of change of volume is equal to the net flow rate, which can be expressed mathematically as:

$$
\begin{equation*}
\frac{\partial V_{\mathrm{H}_{2} \mathrm{O}}}{\partial t}=Q_{\text {in }}-Q_{\text {out }} \tag{3.29}
\end{equation*}
$$

The volume of water in the cell changes by rainfall, subsurface flow, and surface flow. Flow into the grid cell is considered positive. To estimate the flow rate due to each component, consider an interior control volume and its adjacent cells as in Figure 15. The central cell in the figure has node i, j at the center. The faces of the center cell are identified with the compass directions.

Note that the grid in computational space is uniform-each cell has the same value of $\Delta \eta$ and $\Delta \xi$ and the grid is situated so that the cell faces lie halfway between the cell centers. The grid in physical space is not uniform because cells have different lengths in the longitudinal direction according their radial position. In the figure, the subscripts of $\Delta \eta$ and $\Delta \xi$ refer to the metric coefficients, which do vary in space.

In the indexing scheme for the model, the i index changes longitudinally through the domain and the j index changes transversely. These indices are related to the compass directions within a grid cell for convenience. In terms of coordinate directions, the local north and south compass directions correspond to the positive and negative η directions.

Figure 15: Top View of Grid in Computational Space

For cell i, j the flow rate due to rainfall is given by the rainfall intensity and the cell area:

$$
\begin{equation*}
Q_{\text {rain }}=r(t) * \Delta \mathrm{~A} \tag{3.30}
\end{equation*}
$$

The flow rate due to subsurface flow can be estimated using Darcy's law, ($Q=K I A$), where K is the hydraulic conductivity, I is the hydraulic gradient, and A is the cross sectional area. The hydraulic gradient and cross sectional area must be estimated using the physical lengths of the cells. Considering Figure 15, the head gradient with respect to ξ at location w can be approximated as:

$$
\begin{equation*}
\left.\frac{\partial H}{\partial \xi}\right|_{w}=\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\Delta \xi_{\mathrm{i}-1}+\Delta \xi_{\mathrm{i}}\right)} \tag{3.31}
\end{equation*}
$$

Since ξ is dimensionless, this equation does not have the dimensions of hydraulic gradient. In order to estimate the hydraulic gradient at cell face w, cell size computed in Equation (3.23) must be used. Applying the transformation gives an estimate for the hydraulic gradient:

$$
\begin{equation*}
\left.\frac{\partial H}{\partial \ell}\right|_{w}=\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} \tag{3.32}
\end{equation*}
$$

Using this formulation for the hydraulic gradient, the subsurface flow into the each face of cell i, j is expressed:

$$
\begin{align*}
Q_{p, w} & =K \frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} h_{p, w} w_{i, j} \\
Q_{p, e} & =K \frac{H_{i+1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}+1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} h_{p, e} w_{\mathrm{i}, \mathrm{j}} \\
Q_{p, s} & =K \frac{H_{i, j-1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}\right)} h_{p, s} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{~s}} \tag{3.33}\\
Q_{p, n} & =K \frac{H_{i, j+1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}+1}+w_{\mathrm{i}, \mathrm{j}}\right)} h_{p, n} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{n}}
\end{align*}
$$

Here the hydraulic gradient at the cell boundary is estimated as the difference in head divided by the distance between nodes. The cross sectional area is the saturated thickness times the length of the cell boundary. The length of the cell boundary has the
same value for the east and west faces $\left(w_{i, j}\right)$, but differs for the north and south faces ($\ell_{i, j, s}$ or $\ell_{i, j, n}$) because the radius of curvature is different.

The flow rates due to surface flow can be estimated using the diffusion wave model according to the equation:

$$
\begin{equation*}
Q=V * A=\frac{1}{n} \frac{h_{s}^{\frac{2}{3}}}{\sqrt{S_{f}}} \frac{\partial H}{\partial x} * h_{s} \Delta \mathrm{y} \tag{3.34}
\end{equation*}
$$

Here, h_{s} is the thickness on the pavement surface and S_{f} is the magnitude of the slope of the water surface. Using the same estimate of the hydraulic gradient as for subsurface flow gives the following estimates for the flow rate into cell i, j at each of the cell boundaries.

$$
\begin{align*}
Q_{s, w} & =\frac{1}{n} \frac{h_{s, w}^{\frac{2}{3}}}{\sqrt{S_{f, w}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, w} w_{i, j} \\
Q_{s, e} & =\frac{1}{n} \frac{h_{s, e}^{\frac{2}{3}}}{\sqrt{S_{f, e}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}+1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, e} w_{i, j} \\
Q_{s, s} & =\frac{1}{n} \frac{h_{s, s}^{\frac{2}{3}}}{\sqrt{S_{f, s}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, s} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{~s}} \tag{3.35}\\
Q_{s, n} & =\frac{1}{n} \frac{h_{s, n}^{\frac{2}{3}}}{\sqrt{S_{f, n}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}+1}+w_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, n} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{n}}
\end{align*}
$$

Now that flow rates for each cell boundary have been developed, the water balance on a grid cell can be expressed in terms of the flow rates. All of the flow rates are formulated as being positive because of the arrangement of the $H_{i, j}$ term. If the head in cell i, j is lower than the cell it is subtracted from, water will flow into cell i, j. The flow rates were formulated this way to make it easier to check the equations. For the 2D case, the mass balance has nine flow components:

$$
\begin{gather*}
\frac{\partial V_{H_{2} O}}{\partial t}=Q_{p, w}+Q_{s, w}+Q_{p, e}+Q_{s, e}+Q_{p, s}+Q_{s, s}+Q_{p, n}+Q_{s, n}+Q_{r a i n} \\
\quad \text { or } \tag{3.36}\\
\frac{\partial V_{H_{2} O}}{\partial t}=Q_{p, w}+Q_{s, w}+Q_{p, e}+Q_{s, e}+Q_{\text {rain }}
\end{gather*}
$$

Substituting the flow rates for rainfall, subsurface, and surface flow into the continuity equation gives a mass balance for an interior grid cell:

$$
\begin{align*}
& \frac{\partial V_{H_{2} O}}{\partial t}= \\
& \quad K \frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} h_{p, w} w_{i, j}+\frac{1}{n} \frac{h_{s, w}^{\frac{2}{3}}}{\sqrt{S_{f, w}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, w} w_{i, j} \\
& +K \frac{H_{i+1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}+1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} h_{p, e} w_{\mathrm{i}, \mathrm{j}}+\frac{1}{n} \frac{h_{s, e}^{3}}{\sqrt{S_{f, e}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}+1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)}\right) * h_{s, e} w_{i, j} \\
& \quad+K \frac{H_{i, j-1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}\right)} h_{p, s} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{~s}}
\end{aligned} \begin{aligned}
& \quad+\frac{1}{n} \frac{h_{s, s}^{\frac{2}{3}}}{\sqrt{S_{f, s}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}\right)}\right) \tag{3.37}\\
& \quad * h_{s, s} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{~s}}
\end{aligned} \quad \begin{aligned}
& +K \frac{H_{i, j+1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}+1}+w_{\mathrm{i}, \mathrm{j}}\right)} h_{p, n} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{n}}+\frac{1}{n} \frac{h_{s, n}^{3}}{\sqrt{S_{f, n}}}\left(\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}+1}+w_{\mathrm{i}, \mathrm{j}}\right)}\right) \\
& \quad * h_{s, n} \ell_{\mathrm{i}, \mathrm{j}, \mathrm{n}}
\end{align*}
$$

Equation (3.37) contains four dependent variables: $V_{H_{2} O}, H, h_{p}$, and h_{s}. A fifth variable, the total thickness h, may be formed as the sum of the thickness in the pavement and the thickness on the surface.

$$
\begin{equation*}
h=h_{p}+h_{s} \tag{3.38}
\end{equation*}
$$

So the total head is:

$$
\begin{equation*}
H=z+h \tag{3.39}
\end{equation*}
$$

In order to solve the problem, Equation (3.37) must be expressed in terms of the total head or total thickness. Choosing the total head is perhaps more intuitive, and makes the equations simpler, but the total thickness is a better choice numerically because it avoids subtracting two large numbers (the elevation being much larger than the total thickness). The equation will be expressed first in terms of the head, and then expressed again in terms of the thickness.

3.6.2 Formulation using Total Head

To express the equations in terms of the head, h_{s}, h_{p} and S_{f} must be expressed at the cell center and the boundaries in terms of H. Each of these terms will be examined in turn, starting with those on right hand side of Equation (3.37). In the development, it will also be convenient to define conveyance coefficients and a porosity function.

Saturated Thickness and Sheet Flow Depth

The saturated thickness at the grid cell boundaries- $h_{p, *}$ - can be estimated from the total head at the cell centers by linear interpolation. Since the computational grid is evenly spaced, the interpolation is just the average of the head values. To find the saturated thickness at the boundary, the total head at the cell boundary is estimated from the adjacent nodes, and the elevation at the boundary is subtracted to give the saturated thickness:

$$
\begin{align*}
& h_{p, w}=\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w} \\
& h_{p, e}=\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i+1, j}+H_{i+1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i+1, j}}-z_{e} \\
& h_{p, s}=\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} w_{i, j-1}+H_{i, j-1} w_{i, j}}{w_{i, j}+w_{i, j-1}}-z_{s} \tag{3.40}\\
& h_{p, n}=\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} w_{i, j+1}+H_{i, j+1} w}{w_{i, j}+w_{i, j+1}}-z_{n}
\end{align*}
$$

The surface flow thickness at the grid cell boundaries- $h_{s, *}$-is estimated in the same way as the saturated thickness. The elevation at the cell boundary and the PFC thickness are subtracted from the interpolated total head at the boundary to give an estimate of the thickness of sheet flow:

$$
\begin{align*}
h_{s, w} & =\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w}-b \\
h_{s, e} & =\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i+1, j}+H_{i+1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i+1, j}}-z_{e}-b \tag{3.41}\\
h_{s, s} & =\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} w_{i, j-1}+H_{i, j-1} w_{i, j}}{w_{i, j}+w_{i, j-1}}-z_{s}-b \\
h_{s, n} & =\frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} w_{i, j+1}+H_{i, j+1} w}{w_{i, j}+w_{i, j+1}}-z_{n}-b
\end{align*}
$$

The approximations given in Equations (3.40) and (3.41) must consider the physical constraints on and interdependence of the saturated thickness and surface thickness. The saturated thickness must be greater than or equal to zero and less than or equal to the thickness of the PFC layer. The surface thickness must be positive, and must be zero when the saturated thickness is less than the thickness of the PFC layer. These constraints are expressed mathematically as:

$$
\begin{gather*}
0 \leq h_{p} \leq b \\
h_{s}=0 \text { for }_{p}<b \tag{3.42}
\end{gather*}
$$

These constraints are imposed on the estimates of thickness at the cell boundaries using minimum and maximum functions. Examples of how these functions are used are given for the western boundary. The other boundaries are calculated in a similar way.

$$
\begin{gather*}
h_{p, w}=\min \left(b ; \frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w}\right) \\
h_{s, w}=\max \left(0 ; \frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w}-b\right) \tag{3.43}
\end{gather*}
$$

Use of these functions means that the overall mass balance equation is no longer smooth in the mathematical sense; however the physical system under consideration is not smooth either. There is a shift in the behavior of the system when the PFC layer becomes saturated and sheet flow begins, or when sheet flow disappears into the pavement because the rainfall intensity decreased. The minimum and maximum functions have the advantages of ease implementation in a numerical scheme and of facilitating the use of a single equation to describe subsurface flow and combined surface/subsurface flow.

Friction Slope

By the Dupuit-Forchheimer assumptions, the friction slope is the same as the hydraulic gradient. This is a vector quantity, so the component in each coordinate direction will be estimated. Estimates of the component in the proper direction and the overall magnitude are needed for the sheet flow part of the problem.

The ξ-component of the friction slope at the middle of the west and east faces are computed from the node values of neighboring cells.

$$
\begin{align*}
S_{f \xi, w} & =\frac{H_{i-1, j}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}-1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} \\
S_{f \xi, e} & =\frac{H_{i+1, \mathrm{j}}-H_{i, j}}{1 / 2\left(\ell_{\mathrm{i}+1, \mathrm{j}}+\ell_{\mathrm{i}, \mathrm{j}}\right)} \tag{3.44}
\end{align*}
$$

Similarly, the η-component of the friction slope at the middle of the south and north faces are computed from the node values of neighboring cells.

$$
\begin{align*}
S_{f \eta, s} & =\frac{H_{i, j-1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}\right)} \\
S_{f \eta, n} & =\frac{H_{i, j+1}-H_{i, j}}{1 / 2\left(w_{\mathrm{i}, \mathrm{j}+1}+w_{\mathrm{i}, \mathrm{j}}\right)} \tag{3.45}
\end{align*}
$$

The other friction slope component for each face is found from a weighted average of the component in that direction from the nearest four faces where it was computed. This means the η-component at the western face is estimated as the weighted average of the η-component at the north and south faces of the central cell and its western neighbor.

$$
\begin{align*}
& S_{f \eta, w}=\frac{\left(S_{f \eta, n}+S_{f \eta, s}\right) \ell_{i-1, j}+\left(S_{f \eta, n}+S_{f \eta, s}\right)_{i-1} \ell_{i, j}}{2\left(\ell_{i, j}+\ell_{i-1, j}\right)} \\
& S_{f \eta, e}=\frac{\left(S_{f \eta, n}+S_{f \eta, s}\right) \ell_{i+1, j}+\left(S_{f \eta, n}+S_{f \eta, s}\right)_{i+1} \ell_{i, j}}{2\left(\ell_{i, j}+\ell_{i+1, j}\right)} \tag{3.46}
\end{align*}
$$

The ξ-component of the friction slope at the southern and northern faces is estimated in a similar way:

$$
\begin{equation*}
S_{f \xi, n}=\frac{\left(S_{f \xi, e}+S_{f \xi, w}\right) w_{i, j+1}+\left(S_{f \xi, e}+S_{f \xi, w}\right)_{i, j+1} w_{i, j}}{2\left(w_{i, j}+w_{i, j+1}\right)} \tag{3.47}
\end{equation*}
$$

Note that Equations (3.46) and (3.47) could equivalently use the metric coefficients corresponding to each cell face rather than the actual lengths and widths. The magnitude of the total friction slope at any location is the Pythagorean sum of the components.

$$
\begin{equation*}
S_{f, w}=\sqrt{S_{f \xi, w}^{2}+S_{f \eta, w}^{2}} \tag{3.48}
\end{equation*}
$$

Conveyance Coefficients

Now that all of the terms on the right hand side of the mass balance given in (3.37) are expressed in terms of the total head, we return to the overall equation. Collecting collecting like terms and dividing by the cell area gives the model equation where terms in square brackets are defined to be conveyance coefficients:

$$
\begin{align*}
\frac{1}{\Delta A} \frac{\partial \forall_{H_{2} O}}{\partial t}= & {\left[\left(K * h_{p, w}+\frac{1}{n} \frac{h_{s, w}^{\frac{5}{3}}}{\sqrt{S_{f, w}}}\right)\left(\frac{2 w_{i, j}}{\ell_{i-1, j}+\ell_{i, j}}\right)\left(\frac{1}{\Delta A}\right)\right] } \\
& *\left(H_{i-1, j}-H_{i, j}\right) \\
& +\left[\left(K * h_{p, e}+\frac{1}{n} \frac{h_{s, e}^{\frac{5}{3}}}{\sqrt{S_{f, e}}}\right)\left(\frac{2 w_{i, j}}{\ell_{i+1, j}+\ell_{i, j}}\right)\left(\frac{1}{\Delta A}\right)\right] \\
& *\left(H_{i+1, j}-H_{i, j}\right) \\
& +\left[\left(K * h_{p, s}+\frac{1}{n} \frac{h_{s, s}^{\frac{5}{3}}}{\sqrt{S_{f, s}}}\right)\left(\frac{2 l_{i, j}}{w_{\mathrm{i}, \mathrm{j}-1}+w_{\mathrm{i}, \mathrm{j}}}\right)\left(\frac{1}{\Delta A}\right)\right] \tag{3.49}\\
& *\left(H_{i, j-1}-H_{i, j}\right) \\
& +\left[\left(K * h_{p, n}+\frac{1}{n} \frac{h_{s, n}^{3}}{\sqrt{S_{f, n}}}\right)\left(\frac{2 l_{i, j}}{w_{i, j+1}+w_{\mathrm{i}, \mathrm{j}}}\right)\left(\frac{1}{\Delta A}\right)\right] \\
& *\left(H_{i, j+1}-H_{i, j}\right)
\end{align*}
$$

In Equation (3.49) the terms in square brackets are conveyance coefficients.
There is a conveyance coefficient for each face of the grid cell. The thickness estimates at the cell boundary appear only in the conveyance coefficient. Substituting the thickness estimates of Equation (3.43) yields the final conveyance coefficients for the faces. The conveyance coefficient for the western boundary is:

$$
\begin{equation*}
C_{w}=\binom{K * \min \left(b ; \frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i 1, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w}\right)}{+\frac{1}{n} \frac{\max \left(0 ; \frac{\mathrm{H}_{\mathrm{i}, \mathrm{j}} \ell_{i-1, j}+H_{i-1, j} \ell_{i 1, j}}{\ell_{i, j}+\ell_{i-1, j}}-z_{w}-b\right)^{\frac{5}{3}}}{\sqrt{S_{f, w}}}}\left(\frac{2 w_{i, j}}{\ell_{i-1, j}+\ell_{i, j}}\right)\left(\frac{1}{\Delta A}\right) \tag{3.50}
\end{equation*}
$$

Conveyance coefficients allow the mass balance equation to be expressed more concisely:

$$
\begin{align*}
\frac{1}{\Delta A} \frac{\partial \forall_{H_{2} O}}{\partial t}= & C_{w} *\left(H_{i-1, j}-H_{i, j}\right)+C_{e} *\left(H_{i+1, j}-H_{i, j}\right)+C_{s} \tag{3.51}\\
& *\left(H_{i, j-1}-H_{i, j}\right)+C_{n} *\left(H_{i, j+1}-H_{i, j}\right)+r(t)
\end{align*}
$$

Porosity Function

With the right hand side of the mass balance expressed in terms of the total head we turn to the left hand side of Equation (3.51) and recall that the volume of water in a grid cell must consider the porosity of the PFC. Considering Equation (3.28), the left hand side of Equation (3.51) can be expressed as:

$$
\frac{1}{\Delta A} \frac{\partial \forall_{H_{2} O}}{\partial t}= \begin{cases}n_{e} \frac{\partial h_{p}}{\partial t} & \text { for } h_{p}<b \tag{3.52}\\ \frac{\partial h_{s}}{\partial t} & \text { for } h_{p} \geq b\end{cases}
$$

The constraints on h_{p} and h_{s} are imposed by the physical system are that either $\frac{\partial h_{p}}{\partial t}$ or $\frac{\partial h_{s}}{\partial t}$ will be zero at all times. In other words the time derivative of the total head, $\frac{\partial H}{\partial t}$, will be completely given by $\frac{\partial h_{p}}{\partial t}$ when the flow is contained within the pavement. For the case of combined surface/subsurface flow, the pavement is saturated, therefore the saturated thickness is constant and $\frac{\partial h_{p}}{\partial t}$ is zero, leaving changes in the total head to the surface component. Table 1 summarizes these cases.

Table 1: Flow Cases

	Flow Condition	Time Derivative of Total Head	Left Hand Side of Mass Balance
Case 1	Flow completely within	$\frac{\partial H}{\partial t}=\frac{\partial h_{p}}{\partial t}$	$n_{e} \frac{\partial h_{p}}{\partial t}$
Case 2	pavement	Combined	$\frac{\partial H}{\partial t}=\frac{\partial h_{s}}{\partial t}$

The difference between these flow conditions is reflected in the mass balance equation through the porosity. When the water is contained in the pavement, changes in the volume of water in the grid cell are reflected in the head through the porosity. Consider for example, a cell having an area of 1 square meter that receives 1 mm of rainfall and has no other fluxes. In either case 1 or case 2 the volume of water in the cell increases by 1 liter. In case 1 the total head increases by $1 \mathrm{~mm} / \mathrm{n}_{\mathrm{e}}$, while in case 2 the head increases by only 1 mm .

To combine the time derivatives into a single term, we must apply the porosity to the right hand side based on the flow condition. For this purpose a "porosity function" is defined to accomplish switching between the phases. This function says to divide by the porosity if the flow is contained within the pavement, but not change anything if the pavement is saturated.

$$
p f\left(H, z, b, n_{e}\right)=\left\{\begin{array}{lr}
1 & \text { for } H-z \geq b \tag{3.53}\\
1 / n_{e} & \text { for } H-z<b
\end{array}\right.
$$

Model Equation in terms of Total Head

With the use of the porosity function, we can combine the time derivatives of thickness into the time derivative of total head, and express the mass balance for a grid cell in terms of the total head and problem parameters. The equation is arranged in order of the bands that appear in the coefficient matrix.

$$
\begin{gather*}
\frac{\partial H}{\partial t}=p f *\left[C_{w} H_{i-1, j}+C_{s} H_{i, j-1}-\left(C_{w}+C_{s}+C_{n}+C_{e}\right) H_{i, j}+C_{n} H_{i, j+1}\right. \tag{3.54}\\
\left.+C_{e} H_{i+1, j}+r(t)\right]
\end{gather*}
$$

Equation (3.54) accomplishes the goals set out for this numerical formulation. The mass balance is expressed in terms of the total head at the center of a grid cell and a single equation applies for both subsurface flow and combined surface/subsurface flow. When the saturated thickness $\left(h_{p}\right)$ is less than the thickness of the PFC layer, the porosity function is active, the max function removes the surface flow part of the conveyance coefficient, and Equation (3.54) reduces to the Boussinesq equation. When the saturated thickness is equal to or greater than the thickness of the PFC layer, the porosity function turns off, the minimum function forces the saturated thickness to the PFC layer thickness, and the surface flow part of the conveyance coefficient is non-zero.

3.6.3 Depth Formulation, Time Discretization, Linearization

As mentioned earlier, the discretized equations will now be re-expressed in terms of the thickness rather than the total head. This is accomplished by making the substitution $H=h+z$. The time derivative converts directly because the elevation does not change in time.

$$
\begin{align*}
\frac{\partial h_{i, j}}{\partial t}=p f *[& C_{w}(h+z)_{i-1, j}+C_{s} H(h+z)_{i, j-1} \\
& -\left(C_{w}+C_{s}+C_{n}+C_{e}\right)(h+z)_{i, j}+C_{n}(h+z)_{i, j+1} \tag{3.55}\\
& \left.+C_{e}(h+z)_{i+1, j}+r(t)\right]
\end{align*}
$$

To solve Equation (3.55) the time dimension is discretized using the CrankNicolson method. The resulting non-linear system is linearized by lagging the conveyance coefficients using an inner iteration loop. The Crank-Nicolson method is summarized as follows, using the superscript n as the time level (Ferziger and Peric, 2002).

$$
\begin{equation*}
\frac{h_{i, j}^{n+1}-h_{i, j}^{n}}{\Delta t}=\frac{1}{2}[R H S]^{n+1}+\frac{1}{2}[R H S]^{n} \tag{3.56}
\end{equation*}
$$

Now the system is arranged for solving as a linear system by moving the unknowns-the depths at time level $n+1$-to the left side of the equation and moving the known quantities to the right.

$$
\begin{equation*}
h_{i, j}^{n+1}-\frac{\Delta t}{2}[R H S]^{n+1}=\frac{\Delta t}{2}[R H S]^{n}+h_{i, j}^{n} \tag{3.57}
\end{equation*}
$$

Let A, B, C, D, E be the bands of the penta-diagonal coefficient matrix and F be the right side of the linear system, or force vector. A linear index is needed to relate grid points using i, j indices to a single index for the matrix system. The linear index is formed by numbering the grid cells consecutively along the columns starting in the southwest corner of the domain. Taking the largest value of the domain column index as $j_{\text {max }}$ the linear index k for any grid cell is computed from:

$$
\begin{equation*}
k(i, j)=(i-1) * j_{\max }+j \tag{3.58}
\end{equation*}
$$

Using the linear index, the system can be written as:

$$
\begin{equation*}
A_{k} h_{k-j_{\max }}^{n+1}+B_{k} h_{k-1}^{n+1}+C_{k} h_{k}^{n+1}+D_{k} h_{k+1}^{n+1}+E_{k} h_{k+j_{\text {max }}}^{n+1}=F_{k} \tag{3.59}
\end{equation*}
$$

where the expressions for the matrix coefficients are (with the conveyance coefficients at the $\mathrm{n}+1$ level):

$$
\begin{align*}
& A_{k}=-\frac{\Delta t}{2} * p f * C_{w}{ }^{n+1} \\
& B_{k}=-\frac{\Delta t}{2} * p f * C_{s}^{n+1} \\
& C_{k}=\frac{\Delta t}{2} * p f *\left(C_{w}{ }^{n+1}+{C_{s}}^{n+1}+C_{n}{ }^{n+1}+C_{e}{ }^{n+1}\right)+1 \tag{3.60}\\
& D_{k}=-\frac{\Delta t}{2} * p f * C_{n}{ }^{n+1} \\
& E_{k}=-\frac{\Delta t}{2} * p f * C_{e}{ }^{n+1}
\end{align*}
$$

The right hand side of the system is:

$$
\begin{align*}
F_{k}= & p f^{n} \frac{\Delta t}{2}\left\{\begin{array}{c}
C_{w} h_{i-1, j}+C_{s} h_{i, j-1}- \\
\left(C_{w}+C_{s}+C_{n}+C_{e}\right) h_{i, j}+ \\
C_{n} h_{i, j+1}+C_{e} h_{i+1, j}+ \\
C_{w} z_{i-1, j}+C_{s} z_{i, j-1}- \\
\left(C_{w}+C_{s}+C_{n}+C_{e}\right) z_{i, j}+ \\
C_{n} z_{i, j+1}+C_{e} z_{i+1, j}+r(t)
\end{array}\right\}^{n}+h_{i, j}^{n} \tag{3.61}\\
& +p f^{n+1} \frac{\Delta t}{2}\left\{\begin{array}{c}
C_{w} z_{i-1, j}+C_{s} z_{i, j-1}- \\
\left(C_{w}+C_{s}+C_{n}+C_{e}\right) z_{i, j}+ \\
C_{n} z_{i, j+1}+C_{e} z_{i+1, j}+r(t)
\end{array}\right\}^{n+1}
\end{align*}
$$

Note that the value of in each band for an interior grid cell depends upon the four cells on its borders and on itself so the computational molecule is comprised of five cells and the coefficient matrix is penta-diagonal.

The values of the coefficient matrix ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$) depend on the conveyance coefficients, which in turn depend on the unknown thicknesses so the system of equations is non-linear. Linearization is accomplished using the fixed point method-conveyance coefficients are computed using old values of the depths and these coefficients are then used to compute new depths (Ferziger and Peric, 2002). The new depths are used to update the conveyance coefficients and this process is repeated until values of the depths stop changing within the iteration. At each iteration, the linearized system of equations is solved using the Gauss-Seidel method for solving linear systems of equations.

3.7 Initial Conditions and Boundary Conditions

Solution of the governing equations requires suitable initial conditions and boundary conditions. In the following sections initial conditions are discussed first, followed by the no-flow boundary condition. The subsequent section proposes a new boundary condition for PFC flow-the kinematic condition. A formulation for kinematic
boundary conditions in the case of sheet flow is also given, followed by an algorithm combining the kinematic condition for PFC and sheet flow.

3.7.1 Initial Conditions

The initial condition for the entire system is that of zero depth, corresponding to a PFC roadway that is completely dry at the onset of rainfall. Any known depth could theoretically be used as an initial condition, but the zero depth condition arises frequently in practice.

3.7.2 No Flow Boundaries

A no flow boundary is a Neumann type condition because the derivative is specified at the boundary. For a no-flow boundary, the conveyance coefficient for the cell face corresponding to the boundary is set to zero, effectively enforcing the condition of a zero head gradient.

$$
\begin{equation*}
\frac{d H}{d \eta}=0 \tag{3.62}
\end{equation*}
$$

Considering Equation (3.49), which shows the conveyance coefficients in brackets, setting the conveyance coefficient equal to zero is equivalent to the zero gradient condition. Note that this approach works for PFC flow and sheet flow.

3.7.3 Kinematic Boundary Conditions for PFC Flow

Boundary conditions other than no-flow boundaries are difficult to formulate for PFC roadways. Boundary conditions are classified as Dirichlet type when the solution is prescribed at the boundary, Neumann type when the first derivative is specified at the boundary and as Robin type when some combination of the solution and its derivative are specified at the boundary (Kreyszig, 1999). Formulating boundary conditions for PFC flow-especially under unsteady conditions-is difficult because the solution at the boundary varies according to the external forcing (rainfall), the solution within the
domain, and the geometry of the domain itself. In addition, the boundary condition should be able to transition back and forth between sheet flow conditions.

Strictly speaking, the edge of a PFC is a seepage face because the pressure at any point along the edge is atmospheric. Treating the edge of pavement as a seepage surface is problematic for at least two reasons: (1) the velocity field near a seepage face has a strong vertical component (see the experiments of Simpson et al. 2003) but the model equation excludes vertical velocities; and (2) the Dupuit-Forchheimer assumptions on which the model is based do not allow for a seepage surface since they require the pressure to vary along a vertical line.

As a way to overcome these challenges it is desirable to specify the saturated thickness at the center of a boundary grid cell based on the forcing, geometry, and solution from the previous time step. The center of a boundary cell is a nodal unknown, the value of which is referred to by the adjacent cells. Specifying the value at such a location is a Dirichlet condition because the value of the solution is prescribed.

The following formulation develops a new method for specifying boundary conditions to a Dupuit-Forchheimer flow model. The principle assumption is that of kinematic flow. In the following three subsections, the algorithm is developed for a linear roadway; the effect of the algorithm on the steady state solution is investigated; and the applicability to curved roads is assessed.

Linear Roadways

The saturated thickness at the center of a boundary cell may be estimated by applying the method of characteristics (MOC) to the PDE for one-dimensional flow under kinematic conditions. The MOC is a mathematical solution technique for PDEs of first-order and for hyperbolic PDEs of second-order (Street, 1973). The concept of kinematic flow refers to the case where pressure and acceleration are neglected in the momentum equation.

The continuity equation for flow in a porous medium under unsteady conditions and with a free surface is given by Equation (3.3); considering only the x direction the equation becomes

$$
\begin{equation*}
n_{e} \frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(q * h)=r \tag{3.63}
\end{equation*}
$$

where n_{e} is the effective porosity, h is the saturated thickness, r is the rainfall rate and the Darcy velocity is

$$
\begin{equation*}
q=-K \frac{\partial H}{\partial x}=-K \frac{\partial h}{\partial x}-K S_{0} \tag{3.64}
\end{equation*}
$$

Making this substitution and expanding the terms gives

$$
\begin{equation*}
n_{e} \frac{\partial h}{\partial t}-K h \frac{\partial^{2} h}{\partial x^{2}}-K\left(\frac{\partial h}{\partial x}\right)^{2}-K S_{0} \frac{\partial h}{\partial x}=r \tag{3.65}
\end{equation*}
$$

The assumption of kinematic conditions means that the depth gradient is neglected in the Darcy velocity, which removes the higher order terms in Equation (3.65) and gives

$$
\begin{equation*}
n_{e} \frac{\partial h}{\partial t}-K S_{0} \frac{\partial h}{\partial x}=r \tag{3.66}
\end{equation*}
$$

Removing the higher order terms destroys the parabolic nature of the PDE. This is not a typical approximation for porous media flow and does introduce some error in the solution. However, neglecting these terms allows the formulation of a boundary algorithm that considers the problem parameters and can transition smoothly to sheet flow conditions.

The MOC procedure given by Street (1973) is followed here. The solution of Equation (3.66) can be considered as a surface in $x, t, h(x, t)$ space. The tangent plane to the surface is given by the total differential

$$
\begin{equation*}
d h=\frac{\partial h}{\partial t} d t+\frac{\partial h}{\partial x} d x \tag{3.67}
\end{equation*}
$$

and the normal vector to this tangent plane is $\left(\frac{\partial h}{\partial t}, \frac{\partial h}{\partial x},-1\right)$. This normal vector is tangent to the vector $\left(n_{e},-K S_{0}, r\right)$ because their dot product is zero by Equation (3.66).

$$
\begin{equation*}
\left(\frac{\partial h}{\partial t}, \frac{\partial h}{\partial x},-1\right) \cdot\left(n_{e},-K S_{0}, r\right)=n_{e} \frac{\partial h}{\partial t}-K S_{0} \frac{\partial h}{\partial x}-r=0 \tag{3.68}
\end{equation*}
$$

The vector ($n_{e},-K S_{0}, r$) must be tangent to the solution surface because it is orthogonal to the surface normal. A position vector for a point on the solution surface can also be represented parametrically as $(x(s), t(s), h(s))$. Its tangent vector is $\left(\frac{d x}{d s}, \frac{d t}{d s}, \frac{d h}{d s}\right)$. The fact that components of the tangent vectors must be proportional leads to the MOC formulation of the problem:

$$
\begin{equation*}
\frac{(d x / d s)}{n_{e}}=\frac{(d t / d s)}{-K S_{0}}=\frac{(d h / d s)}{r} \tag{3.69}
\end{equation*}
$$

This formulation is usually presented after $d s$ has been eliminated from the equations:

$$
\begin{equation*}
\frac{d t}{n_{e}}=\frac{d x}{-K S_{0}}=\frac{d h}{r} \tag{3.70}
\end{equation*}
$$

To obtain a Dirichlet type boundary condition for the domain, we need to estimate the saturated thickness in the boundary cell at the new time level based on the solution from the previous time-step. Since the solution travels along characteristic curves, the idea is to figure out how far the solution will move along a characteristic during a time-step. In this way the solution at time level $n+1$ is estimated by going up the characteristic by the proper distance. In other words, if A and B are points along the characteristic curve, the solution at point A and time level n can be used to find the solution at point B for time level $n+1$. The problem now is to find the distance from point B to point A. This estimate comes from integrating Equation (3.70).

Integrating the second and third terms of (3.70) gives an estimate of the boundary value in terms of the distance up the characteristic curve

$$
\begin{equation*}
\frac{x_{2}-x_{1}}{-K S_{0}}=\frac{h_{2}-h_{1}}{r} \rightarrow h_{2}=h_{1}-\frac{r}{K S_{0}}\left(x_{2}-x_{1}\right) \tag{3.71}
\end{equation*}
$$

Integrating the first and second terms of (3.70) yields an estimate of the distance in terms of the time-step:

$$
\begin{equation*}
\frac{t_{2}-t_{1}}{n_{e}}=\frac{x_{2}-x_{1}}{-K S_{0}} \rightarrow \Delta x=-\frac{K S_{0} \Delta t}{n_{e}} \tag{3.72}
\end{equation*}
$$

Substituting (3.72) into (3.71) gives the desired estimate:

$$
\begin{equation*}
h_{2}=h_{1}+\frac{\mathrm{r} \Delta t}{n_{e}} \tag{3.73}
\end{equation*}
$$

The value of h_{1} is estimated as the solution at time level n a distance Δx up the drainage slope from point h_{2}.

The kinematic approximation implies a maximum value for the saturated thickness that is not reflected in the algorithm of Equations (3.72) and (3.73). At steady state there is no change with time so $\Delta t=0$, which makes $\Delta x=0$ and puts h_{1} and h_{2} at the same location. Since the hydraulic gradient was approximated as the pavement slope, the Darcy velocity is constant (see Equation (3.64)) and the saturated thickness is determined by the flow rate per unit width. For the one dimensional case, the steady state flow rate per unit width is given by the rainfall rate, r, and length of the drainage path, L.

$$
\begin{equation*}
h_{s s}=\frac{r L}{K S_{0}} \tag{3.74}
\end{equation*}
$$

When the kinematic condition is applied to a 1D problem, the boundary is the edge of pavement and the approximation gives a maximum depth as just described. A 2D problem has boundaries at both the edge of pavement and the ends of the domain, where the road continues beyond the modeled area. The kinematic boundary condition can also be applied at the end of the domain, but the boundary values-having neglected the depth gradient in Darcy's law-will be inconsistent with the domain interior. This inconsistency results in a boundary effect. The model domain should be expanded so that this effect does not influence the area of interest. One approach is to ensure the drainage path for a water particle starting at the boundary exits the model domain rather than entering the area of interest, thereby "washing out" the error. The required distance is found from the longitudinal and cross slopes and the width.

Effect on Steady State Solution

The steady state solution for 1D drainage in PFC is given by an ODE and an initial point along the solution curve is needed to integrate the equation (Charbeneau and Barrett, 2008). The kinematic approximation described above is one approach to specifying such an initial point based on the problem parameters. Figure 16 shows that the shape of the solution curve, especially near the boundary, depends upon the value that was specified at the boundary (hL). The solution curves show that the kinematic approximation does not allow the solution to 'draw down' near the boundary as is usual near a seepage face (Simpson et al., 2003). This draw down is required because the phreatic surface must be tangent to the seepage face (Bear, 1972). This draw-down decreases the saturated thickness but increases the hydraulic gradient. In contrast, the approximation over-estimates the saturated thickness and reduces the hydraulic gradient. Which one of the curves is closest to the true physical solution is unknown, but a range of possible solutions has now been established.

In Figure 16, the solutions collapse to a single curve away from the downstream boundary, but this behavior depends on the problem parameters. Doubling the rainfall rate for example pushes the point at which the curves collapse to the left, provided that the thickness of the PFC layer is sufficient to contain the additional flow (Figure 17). If the PFC thickness is 5 cm , then doubling the rainfall rate to $1 \mathrm{~cm} / \mathrm{hr}$ causes sheet flow and the boundary condition for the region of PFC flow is given by the pavement thickness (Eck et al., 2010). In general, a finite pavement thickness means that the uncertainty in the boundary value matters most for low rainfall rates. Together, these examples illustrate that:

- the predicted value of the saturated thickness depends on the boundary value;
- the boundary value is unknown only for low rainfall rates; and
- the solution is less sensitive to the boundary value in this case.

Figure 16: Steady state drainage profile for different boundary values; all cases used
$\mathrm{K}=1 \mathrm{~cm} / \mathrm{s}, \mathrm{S}_{0}=3 \% ; \mathrm{r}=0.5 \mathrm{~cm} / \mathrm{hr}$

Figure 17: Steady state drainage profile for different boundary values; all cases used

$$
\mathrm{K}=1 \mathrm{~cm} / \mathrm{s}, \mathrm{~S}_{0}=3 \% ; \mathrm{r}=1 \mathrm{~cm} / \mathrm{hr}
$$

Kinematic Boundary for Curved Roadways

The algorithm outlined in Equations (3.72) and (3.73) was developed under the assumption of a straight roadway section and not a curved one. An order of magnitude approach is used to assess the applicability of the linear algorithm for curved sections.

The continuity equation for radial flow is

$$
\begin{equation*}
n_{e} \frac{\partial h}{\partial t}+\frac{1}{R} \frac{\partial}{\partial R}\left(R q_{R}\right)=r \tag{3.75}
\end{equation*}
$$

where R is the radial coordinate and r is the rainfall rate. Darcy's law for radial flow is

$$
\begin{equation*}
q_{R}=-K h \frac{\partial h}{\partial R}+K h S_{o} \tag{3.76}
\end{equation*}
$$

Neglecting depth gradients in Darcy's law and using the continuity equation for onedimensional radial flow gives a PDE in $h(R, t)$.

$$
\begin{equation*}
n_{e} \frac{\partial h}{\partial t}+\frac{K h S_{o}}{R}+K S_{o} \frac{\partial h}{\partial R}=r \tag{3.77}
\end{equation*}
$$

Using the method of characteristics approach described above gives the formulation:

$$
\begin{equation*}
\frac{d t}{n_{e}}=\frac{d R}{K S_{o}}=\frac{d h}{r-\frac{K h S_{o}}{R}} \tag{3.78}
\end{equation*}
$$

The order of magnitude for the quantities in Equation (3.78) can be estimated as $\mathrm{r}=5 \mathrm{~cm} / \mathrm{hr} \sim 10^{-3} \mathrm{~cm} / \mathrm{s} ; \mathrm{h} \sim 1 \mathrm{~cm} ;$ So $\sim 0.03 ; \mathrm{R}=10^{4} \mathrm{~cm}$. Using these values, $\mathrm{KhS}_{0} / \mathrm{R}=3(10)^{6} \mathrm{~cm} / \mathrm{s}$, which is much less than the rainfall rate of $10^{-3} \mathrm{~cm} / \mathrm{s}$. This result suggests that the linear domain kinematic approximation should be adequate for calculating boundary conditions to curved domains of interest.

3.7.4 Kinematic Boundary Conditions for Sheet Flow

Kinematic boundary conditions for sheet flow were derived by Jeong (2008). The resulting algorithm is repeated here for completeness. The distance up the drainage path is estimated in terms of the time-step and the boundary depth, h_{2}, at time level n.

$$
\begin{equation*}
\Delta s=\frac{\sqrt{S_{0}}}{n r}\left(\left(h_{2}^{n}+r \Delta t\right)^{\frac{5}{3}}-\left(h_{2}^{n}\right)^{\frac{5}{3}}\right) \tag{3.79}
\end{equation*}
$$

The solution at the upstream point is obtained using bi-linear interpolation, and the value of the boundary depth at time level $n+1$ is

$$
\begin{equation*}
h_{2}^{n+1}=\left(\left(h_{1}^{n}\right)^{\frac{5}{3}}+\left(h_{2}^{n}+r \Delta t\right)^{\frac{5}{3}}-\left(h_{2}^{n}\right)^{\frac{5}{3}}\right)^{0.6} \tag{3.80}
\end{equation*}
$$

3.7.5 Combined Kinematic Boundary Condition for PFC and Sheet flow

The algorithms for kinematic boundary conditions for sheet flow and PFC flow have been developed separately, but need to be combined so that the appropriate condition is used within the model. The combined algorithm must select between the PFC and sheet flow equations, handle the case of zero rainfall, and provide for a transition between PFC and sheet flow. This is accomplished through nested if-then statements as depicted in Figure 18.

When the flow depth is less than the pavement thickness, the PFC algorithm is used. The distance up the drainage slope is computed from Equation (3.72) and the solution at this location is estimated using bi-linear interpolation. Then the boundary value for the next time-step is computed from Equation (3.73). No modification to the algorithm is required for zero rainfall. The computed boundary value is compared to the maximum depth of Equation (3.74).

Figure 18: Combined algorithm for kinematic boundary condition

Implementation of the sheet flow algorithm is more complex due to the possibilities of zero rainfall and transition back to PFC flow. If the rainfall rate is zero, the distance to interpolate up the drainage path becomes arbitrary; the PFC distance is used in case a transition back to PFC flow is indicated. If the rainfall rate is greater than zero the interpolation distance is computed according to Equation (3.79) and the solution is estimated using bi-linear interpolation. If the interpolated value suggests PFC flow then the boundary value is estimated using the PFC equations, otherwise the sheet flow equation is used.

3.8 Solution Procedure and Tolerances

The numerical formulation and boundary conditions described in this chapter have been implemented in a Fortran computer code. The general solution procedure can is outlined as follows and depicted in flow chart form (Figure 19):

- Read model parameters, geometry information and rainfall from input files
- Create a curvilinear grid for the domain. The grid includes the coordinates, length, width and area of each grid cell.
- Assign elevations to the center of each grid cell.
- Loop through the time steps, recording details of the solution at each step
- Within a time-step, iteratively compute the depths using the fixed point method.
- Within each iteration, solve the linearized system of equations using the Gauss-Seidel method.

A vector of errors or residuals is calculated at each iteration in order to determine when the non-linear iteration loop has converged. Absolute errors are computed when the solution is near zero and relative errors are computed when the solution is away from zero. Two norms of the error vector are checked; the L_{∞} norm is simply the largest value in the error vector, and the L_{2} norm is the square root of the sum of the squared errors (Kreyzig, 1999). Both the L_{2} norm and the L_{∞} norm must be less than the tolerance for the loop to converge. A typical tolerance value of 10^{-3} was used for simulations.

Figure 19: Flow chart of solution process

3.9 Convergence and the Transition to Sheet Flow

Trial runs during the model development process revealed numerical difficulties regarding the transition from PFC flow to sheet flow. During the time step that a grid cell transitioned from PFC flow to sheet flow the solution frequently oscillated between the PFC and sheet flow states, never reaching a solution. Physically, this transition represents a change in the character of the flow. Mathematically, there is a change in the governing equations. Given these changes, some oscillatory behavior was not wholly unexpected.

Several schemes were tried in order to overcome the numerical difficulties but the most successful approach was using an under-relaxation factor. This approach is based on the method of successive over relaxation for solving linear systems (Ferziger and Peric, 2002). The idea in successive over relaxation is to reduce the number of iterations by amplifying the change at each step using an over-relaxation factor. The underrelaxation approach aims to increase the number of iterations by making smaller changes
at each step. In this way, only part of a large oscillation is taken, thus reducing the overshoot of the actual solution.

Under relaxation was found to reduce the errors by an order of magnitude, but even still a looser iterative tolerance was needed for convergence. During a simulation, the model detects a transition time-step, loosens the tolerance by a factor of 10 (changes the tolerance from 10^{-3} to 10^{-2}) and applies under-relaxation. When no grid cells are switching between PFC and sheet flow no relaxation factor is applied and the usual tolerance is imposed. An example of the relaxation factor's effect is given at the end of Section 5.3.

CHAPTER 4: MODEL VALIDATION

This chapter presents modeling results from PERFCODE for two simplified geometries: a linear section or straight road and a converging section or curved road. The purpose of the chapter is to demonstrate that solutions obtained by simulating the domain through time agree with steady state solutions, which were obtained independently of the model. Three simulations are presented for each geometric configuration: (1) PFC flow only, (2) sheet flow only, and (3) combined PFC and sheet flow. The unsteady simulations provide runoff hydrographs, which are also discussed.

4.1 Linear Section (Straight Roadway)

The linear section selected for testing is 10 m wide and 20 m long with a 3% cross slope. Other parameters common to all simulations were a hydraulic conductivity, porosity and rainfall rate (Table 2). Holding these parameters constant, the PFC thickness was set to $15 \mathrm{~cm}, 0 \mathrm{~cm}$, and 5 cm to simulate PFC flow only, sheet flow only, and combined PFC/sheet flow.

Table 2: Model parameters for simulating a linear section

Parameter	Unit	Value
Roadway width	m	10
Domain length	m	20
Cross Slope	$\%$	3
Hydraulic Conductivity	cm / s	1
Porosity	--	0.2
Rainfall Rate	$\mathrm{cm} / \mathrm{hr}$	1

A plan view of the model domain for the linear section (Figure 20) shows elevation contours, locations of grid cell centers and boundary conditions imposed on the model. Because the objective of these simulations was a comparison with analytical solutions, the domain and boundary conditions were chosen to make the flow onedimensional.

Figure 20: Linear domain showing elevation contours, grid cell centers, and boundary conditions

4.1.1 PFC Flow Only

This first simulation sets the PFC thickness at 15 cm so that the steady state drainage profile will stay within the pavement. The model starts from an initial condition of zero depth and continues until steady state is reached. The model converged to a steady state solution after 20,480 seconds of rainfall. In computing the steady state solution, the initial point for integrating the ODE was found from

$$
\begin{equation*}
h_{L}=\frac{r x}{K s}=\frac{1 \frac{c m}{h r} * 1000 \mathrm{~cm}}{1 \frac{c m}{s} * 3 \%}=9.26 \mathrm{~cm} \tag{4.1}
\end{equation*}
$$

This value corresponds to the kinematic boundary condition used in the model-the hydraulic gradient is only due to the slope of the pavement.

Modeled values of the saturated thickness along the drainage path agreed closely with the analytical solution (Figure 21). In the figure, the normalized width variable η is plotted on the abscissa. For the linear section a value of $\eta=1$ corresponds to the no flow boundary at the edge of pavement and a value of $\eta=0$ corresponds to the kinematic drainage boundary at the edge of pavement. The scale on the figure has been plotted in reverse order so that drainage occurs from left to right.

Figure 21: Depth profile for linear section with drainage by PFC flow only

4.1.2 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurs as sheet flow. The sheet flow simulation converged to a steady state solution after 252 seconds of rainfall. The flow thickness along the drainage path compares well with the analytical solution from the kinematic model (Figure 22). Sheet flow reaches steady state much faster PFC flow. The difference in time scales for transport via sheet flow versus PFC flow foreshadows some challenges of modeling the coupled flow process.

Figure 22: Depth profile for linear section with drainage by sheet flow only

4.1.3 Combined Flow

For the combined flow simulation, the PFC thickness was set to 5 cm . Steady state was reached after 5,128 seconds of rainfall. Good agreement was again obtained between the numerical and analytical solutions.

Figure 23: Depth profile for linear section with drainage by PFC and sheet flow

4.1.4 Runoff hydrographs

For each simulation the discharge from the outflow boundary was tracked through time. These rising hydrographs are plotted on a logarithmic scale on account of the wide range of times required to reach steady state (Figure 24). Several points of interest are noted on the hydrographs.

- The presence of a PFC layer delays the initial discharge from the roadway, in this case by about 1 minute from when rainfall begins.
- PFC delays the peak flow by nearly 10,000 seconds-much longer than most actual storms.
- For the combined case, the transition to sheet flow is evidenced as a sharp increase in the slope of the hydrograph.
- For the PFC flow only, the break in slope corresponds to the time when the outflow boundary reaches the maximum depth allowed by the kinematic condition.

Figure 24: Runoff hydrographs from a linear section

4.2 Converging Section (Curved Roadway)

The next geometry investigated in the validation process was a fully superelevated roadway section with a constant radius of curvature. For the purposes of this discussion such a geometry is called a converging section. This roadway geometry is of interest for evaluating the model's ability to simulate flow on a curved road. Keeping the cross-slope and radius of curvature constant makes the problem one-dimensional.

The converging section selected for testing is similar to the linear section, except that the radius of curvature at the roadway center is 60 m . Simulation parameters are summarized in Table 3. A plan view of the model domain for the converging section (Figure 20) shows elevation contours, locations of grid cell centers and boundary
conditions imposed on the model. Holding these parameters constant, the PFC thickness was set to $15 \mathrm{~cm}, 0 \mathrm{~cm}$, and 5 cm to simulate PFC flow only, sheet flow only, and combined PFC/sheet flow.

Table 3: Model parameters for simulating a converging section

Parameter	Unit	Value
Roadway width	m	10
Domain length	m	20
Cross Slope	$\%$	3
Radius of curvature at roadway center	m	60
Hydraulic Conductivity	cm / s	1
Porosity	--	0.2
Rainfall Rate	$\mathrm{cm} / \mathrm{hr}$	1

Figure 25: Converging domain showing elevation contours, grid cell centers, and boundary conditions

4.2.1 Derivation of ODE for PFC Flow on Converging Sections

The steady state solution for PFC flow on a linear domain is given by Charbeneau and Barrett (2008). Steady-state solutions for sheet flow on linear and converging sections are given by Eck et al. (2010), and also Jeong et al. (2010). What is missing is the solution for PFC flow on a converging section, which is the topic of the present subsection.

Consider a section of roadway having a constant radius of curvature and constant cross-slope as shown in Figure 26. Geometrically, this shape is equivalent to an inverted cone. A cross section view along the radius is shown in Figure 27. It is important to realize the coordinate system is arranged so that flow moves from a large radial position to a smaller radial position as it moves down the slope.

At steady state, the volumetric flow-rate into an area equals the flow-rate out of that area. For a converging section, the discharge is radial. The flow rate is the rainfall rate times the contributing area. The area is found by subtracting the area of the sector at radius R from the area of the sector at $R_{\max }$.

Figure 26: Schematic of converging section

Figure 27: Cross section view

For the discharge through station R , the area is:

$$
\begin{equation*}
A(R)=\frac{\theta}{2 \pi} \pi R \max ^{2}-\frac{\theta}{2 \pi} \pi R^{2}=\frac{\theta}{2} *\left(R_{\max }^{2}-R^{2}\right) \tag{4.2}
\end{equation*}
$$

where θ is the included angle. The flow rate is given by:

$$
\begin{equation*}
Q(R)=r * A(R)=\frac{r \theta}{2}\left(R_{\max }^{2}-R^{2}\right) \tag{4.3}
\end{equation*}
$$

The unit flux past radius R is the flow rate divided by the arc length at R :

$$
\begin{equation*}
U(R)=\frac{Q(R)}{\theta R}=\frac{r}{2 R}\left(R_{\max }^{2}-R^{2}\right) \tag{4.4}
\end{equation*}
$$

Because flow through a PFC is the problem of interest, Darcy's law is the appropriate form of the momentum equation:

$$
\begin{equation*}
U=K * h * \frac{d H}{d R} \tag{4.5}
\end{equation*}
$$

The hydraulic gradient decomposes as:

$$
\begin{equation*}
\frac{d H}{d R}=\frac{d h}{d R}+\frac{d z}{d R}=\frac{d h}{d R}+s \tag{4.6}
\end{equation*}
$$

where s is the slope, which due to the choice of coordinate system is positive for a downslope flux.

In order to agree with this convention, a positive hydraulic gradient in Darcy's law should cause a down-slope flux. This requirement is satisfied because the coordinate
system for this problem is reversed from our usual system-the origin is at the down-hill end of the domain rather than the uphill end.

Combining Equations (4.4), (4.5) and (4.6) gives the ODE for PFC flow on a converging section:

$$
\begin{gather*}
K h\left(\frac{d h}{d R}+s\right)=\frac{r}{2 R}\left(R_{\max }^{2}-R^{2}\right) \\
\text { or } \tag{4.7}\\
\frac{d h}{d R}=-s+\frac{r}{2 K h}\left(\frac{R_{\max }^{2}-R^{2}}{R}\right)
\end{gather*}
$$

This ODE is first-order, but non-linear, and an analytical solution is not known at this time. The same general features of the ODE for the linear section (see Charbeneau and Barrett, 2008) also apply to the ODE for the converging section:

1. The location of maximum radius, $\mathrm{R}_{\max }$, is automatically a no-flow boundary because for $R=R_{\max }, \frac{d h}{d R}=-s$, and from (4.6) this implies $\frac{d H}{d R}=0$.
2. The thickness initially increases as the radius decreases because $s>0$.
3. At the location of maximum depth $\frac{d h}{d R}=0$ and the variables are related by

$$
\begin{equation*}
h_{\max }=\frac{r}{K s} \frac{R_{\max }^{2}-R^{2}}{2 R} \tag{4.8}
\end{equation*}
$$

The ODE of (4.7) applies on a domain where flow is completely contained within the PFC. To integrate the ODE, an initial point is needed somewhere on the solution curve. The appropriate initial point depends on problem conditions. When flow is completely contained in the PFC the saturated thickness at the edge of the domain can be specified; in the case of combined PFC and sheet flow the appropriate point is the PFC thickness taken at the location where sheet flow begins. This location is found by equating (4.4) and (4.5) and setting the hydraulic gradient to the pavement slope. Note
that a hydraulic gradient equal to the pavement slope is a requirement for sheet flow to occur.

$$
\begin{equation*}
r *\left(\frac{R_{\max }^{2}-R^{2}}{2 R}\right)=K * b * s \tag{4.9}
\end{equation*}
$$

Applying the quadratic formula gives the location where sheet flow begins:

$$
\begin{gather*}
R_{\text {sheet }}=\frac{1}{2}\left(-\frac{2 K b s}{r}\right)+\frac{1}{2} \sqrt{\left(\frac{2 K b s}{r}\right)^{2}+4 R_{\max }^{2}} \\
\text { or } \tag{4.10}\\
R_{\text {sheet }}=\left(-\frac{K b s}{r}\right)+\sqrt{\left(\frac{K b s}{r}\right)^{2}+R_{\max }^{2}}
\end{gather*}
$$

As an analytical solution is not known at this time, a numerical solution was developed using a fourth order Runge-Kutta scheme (Figure 28). Comparisons between linear and converging sections are discussed in Section 4.3 of this dissertation.

Figure 28: Drainage depth profiles for a converging section with maximum radius of 55 m , hydraulic conductivity $1 \mathrm{~cm} / \mathrm{s}$, slope of 2%, initial depth of 1 cm at $\mathrm{R}=5000 \mathrm{~cm}$ and range of rainfall rates.

4.2.2 PFC Flow Only

The first simulation of the converging section set the PFC thickness to 15 cm so that all of the drainage would be contained in the pavement. The model reached a steady state solution after 21,760 seconds of rainfall and showed good agreement with the steady state ODE (Figure 29). The linear kinematic boundary condition of Equation (4.1) was applied to the converging section. An order of magnitude analysis suggests that this approximation is appropriate (see Section 3.7.3).

Figure 29: Depth profile for converging section with drainage by PFC flow only

4.2.3 Sheet Flow Only

The next simulation set the PFC thickness to zero so that all drainage occurred as sheet flow. Steady state was reached in 196 seconds and had good agreement with the analytical solution (Figure 30).

Figure 30: Depth profile a converging section with sheet flow only

4.2.4 Combined Flow

This simulation set the PFC thickness to 5 cm so that drainage occurred both within the pavement and on the surface. The model reached a steady state solution in 5,398 seconds, and showed generally good agreement with the analytical solution (Figure 31).

Figure 31: Depth profile for a converging section with combined PFC and sheet flow

4.2.5 Runoff Hydrographs

For each simulation the discharge from the outflow boundary was tracked through time. These rising hydrographs are plotted on a logarithmic scale on account of the wide range of times required to reach steady state (Figure 24). Hydrographs from the converging section show the same general trends as the linear section (see page 72). A comparison of the linear and converging cases is presented in the next section.

Figure 32: Runoff hydrographs for converging section

4.3 Comparison of Linear and Converging Sections

So far, this chapter has considered two extremes of roadway geometry: perfectly straight and perfectly curved. Most real roads fall into neither category, but these extreme cases are useful for bounding the range of problems likely to be encountered in practice.

A converging section has the effect of increasing the flow depth along the drainage path. This increase occurs because the width available for drainage decreases as the flow moves toward the center of a curve. How much the depth increases compared to a linear section depends on the radius of curvature and on the road width.

Depth profiles for the combined flow scenarios (10m width, 3% cross slope, 1 $\mathrm{cm} / \mathrm{hr}$ rainfall, 5 cm PFC thickness, $1 \mathrm{~cm} / \mathrm{s}$ PFC hydraulic conductivity, 60 m radius of curvature at center) are shown in Figure 33. As expected, the flow thickness for the converging section is slightly higher than the linear section and the difference increases as the effect of convergence becomes more pronounced moving down the slope. The difference drops sharply near the transition to sheet flow because the porosity no longer amplifies the depth. Sheet flow also begins slightly higher on the converging section.

Figure 33: Comparison of exact solutions for steady state flow thickness on linear and converging sections, other parameters given in Table 2 and Table 3.

The effect of a converging section on flow depth can be determined from the steady state ODEs, but the influence on the outflow hydrograph requires numerical simulation. The hydrographs for the combined PFC/Sheet Flow scenarios from Figure 24 and Figure 32 are plotted together in Figure 34 to illustrate the effect of convergence on the outflow hydrograph. Unlike previous the figures, an arithmetic scale is used because the relevant time range is smaller. The converging section begins sheet flow earlier than the linear section by 110 seconds. The figure also shows the evolution of the
depth at the domain boundary. Adding this line to the plot emphasizes that the sharp increase in the flow rate is associated with the transition to sheet flow.

Figure 34: Hydrograph comparison for linear and converging sections, PFC thickness was 0.05 m

4.4 Stability

A numerical method is considered to be stable if errors introduced into the solution are not amplified by the method (Ferziger and Peric, 2002). An amplification factor for a method may be computed by introducing a small error into the solution (as a Fourier component) at time level n and seeing how the error grows by time level $n+1$. The amplification factor is the ratio of these errors. An amplification factor of less than unity is required for a method to be stable. This analysis of stability is called the von Neumann stability analysis. The von Neumann approach applies only to linear problems; there are no comprehensive methods for assessing stability of non-linear
problems (Ferziger and Peric, 2002). The non-linear coefficients are frozen here so that the von Neumann approach may be used.

The model equation for stability this analysis is formulated in terms of the total head (see Equation (3.49)) rather than the depth for simplicity. With reference to Equation (3.49), the substitutions $\ell=\Delta x ; w=\Delta y ; \Delta A=\Delta x \Delta y ; \quad D=K * h+\frac{h^{\frac{5}{3}}}{n \sqrt{s_{0}}}$ give a simplified expression of the model equation

$$
\begin{gather*}
\frac{\partial H_{i, j}}{\partial t}=\frac{D}{\Delta x^{2}}\left(H_{i-1, j}-2 H_{i, j}+H_{i+1, j}\right)+\frac{D}{\Delta y^{2}}\left(H_{i, j-1}-2 H_{i, j}+H_{i, j+1}\right) \tag{4.11}\\
+r
\end{gather*}
$$

In this formulation the diffusion coefficient D is assumed to be a constant so the equation is linear. Applying Crank-Nicolson to the time dimension gives

$$
\begin{align*}
\frac{H_{i, j}^{n+1}-H_{i, j}^{n}}{\Delta t}= & \frac{1}{2} \frac{D}{\Delta x^{2}}\left(H_{i-1, j}^{n}-2 H_{i, j}^{n}+H_{i+1, j}^{n}\right) \\
& +\frac{1}{2} \frac{D}{\Delta y^{2}}\left(H_{i, j-1}^{n}-2 H_{i, j}^{n}+H_{i, j+1}^{n}\right) \tag{4.12}\\
& +\frac{1}{2} \frac{D}{\Delta x^{2}}\left(H_{i-1, j}^{n+1}-2 H_{i, j}^{n+1}+H_{i+1, j}^{n+1}\right) \\
& +\frac{1}{2} \frac{D}{\Delta y^{2}}\left(H_{i, j-1}^{n+1}-2 H_{i, j}^{n+1}+H_{i, j+1}^{n+1}\right)+r
\end{align*}
$$

The value of the solution at $H_{i, j}^{n}$ can be expressed as a Fourier component

$$
\begin{equation*}
H_{i, j}^{n}=A^{n} e^{I p i \Delta x} e^{I q j \Delta y} \tag{4.13}
\end{equation*}
$$

where A is the amplitude at time level $n, I=\sqrt{-1}$, and p and q are the wave numbers in the x and y directions and i, j are the indices of the grid cell. The details of the substitution of (4.13) into (4.12) are shown for the first term on the right side of (4.12).

$$
\begin{equation*}
\frac{1}{2} \frac{D}{\Delta x^{2}}\left(A^{n} e^{I p(i-1) \Delta x} e^{I q j \Delta y}-2 A^{n} e^{I p i \Delta x} e^{I q j \Delta y}+A^{n} e^{I p(i+1) \Delta x} e^{I q j \Delta y}\right) \tag{4.14}
\end{equation*}
$$

Making similar substitutions for the remaining terms and dividing by $A^{n} e^{I p i \Delta x} e^{I q j \Delta y}$ gives

$$
\begin{align*}
\frac{1}{\Delta t}\left(\frac{A^{n+1}}{A^{n}}-1\right) & \\
& =\frac{1}{2} \frac{D}{\Delta x^{2}}\left(e^{-I p \Delta x}-2+e^{I p \Delta x}\right) \\
& +\frac{1}{2} \frac{D}{\Delta y^{2}}\left(e^{-I q \Delta y}-2+e^{I q \Delta y}\right) \tag{4.15}\\
& +\frac{1}{2} \frac{D}{\Delta x^{2}}\left(\frac{A^{n+1}}{A^{n}} e^{-I p \Delta x}-\frac{2 A^{n+1}}{A^{n}}+\frac{A^{n+1}}{A^{n}} e^{I p \Delta x}\right) \\
& ++\frac{1}{2} \frac{D}{\Delta y^{2}}\left(\frac{A^{n+1}}{A^{n}} e^{-I q \Delta y}-\frac{2 A^{n+1}}{A^{n}}+\frac{A^{n+1}}{A^{n}} e^{I q \Delta y}\right)
\end{align*}
$$

Making use of the identity:

$$
\begin{equation*}
e^{-I p \Delta x}+e^{I p \Delta x}=2 \cos (p \Delta x) \tag{4.16}
\end{equation*}
$$

and defining the amplification factor $G=\frac{A^{n+1}}{A^{n}}$ the linearized model equation can be written as an equation for the amplification factor

$$
\begin{align*}
\frac{1}{\Delta t}(G-1)= & \frac{D}{\Delta x^{2}}(\cos (p \Delta x)-1)+\frac{D}{\Delta y^{2}}(\cos (q \Delta y)-1) \\
& +G\left(\frac{D}{\Delta x^{2}}\right)(\cos (p \Delta x)-1)+G\left(\frac{D}{\Delta y^{2}}\right)(\cos (p \Delta y)-1) \tag{4.17}
\end{align*}
$$

Solving this expression for the amplification factor gives

$$
\begin{equation*}
G=\frac{1}{1+4\left(\frac{D}{\Delta x^{2}}\right) \sin ^{2}\left(\frac{p \Delta x}{2}\right)+4\left(\frac{D}{\Delta x^{2}}\right) \sin ^{2}\left(\frac{p \Delta y}{2}\right)} \tag{4.18}
\end{equation*}
$$

Equation (4.18) shows that the amplification factor will always be less than unity because the coefficient D is always positive and $\sin ^{2}$ is also always positive. This stability analysis has shown that the Crank-Nicolson method is unconditionally stable for a linear diffusion problem. The actual model equations however are non-linear and so may exhibit some stability problems.

4.5 Model Convergence

A numerical solution is said to converge if the errors in the solution decrease as the grid is refined. This model was developed using central differencing scheme. Based on a Taylor series expansion, central differencing schemes can be shown to have a second-order truncation error (Ferziger \& Peric, 2002). This means that the largest term in the neglected part of the Taylor series expansion contains the grid spacing term raised to the second power. The observed order of the truncation error for a model can be obtained by comparing model runs for different grid sizes.

The model domain selected for the convergence study is the same domain studied in Section 4.2 - -10 m width, 3% cross slope, $1 \mathrm{~cm} / \mathrm{hr}$ rainfall, 5 cm PFC thickness, 1 cm / s PFC hydraulic conductivity, 60 m radius of curvature at the roadway centerline. Double precision variables were used for the convergence study to assure that differences in the solution at the various grid sizes were due to truncating the Taylor series approximations for derivatives and not due to floating point errors. Even with double precision variables, the solutions using a 10 cm grid was indistinguishable from the solution using a 5 cm grid. A plot of the solution for various grid sizes shows that the model converges to the same solution independent of the grid size (Figure 35).

For the purposes of this convergence study, the model solution for a nominal grid spacing of 5 cm was used as the exact solution. The difference between the model solution and the exact (5 cm) solution, or the residual, was computed for each point. The portion of the domain in PFC flow had higher residuals than the sheet flow part of the domain (Figure 36). That the sheet flow and PFC flow parts of the domain would have different behaviors is not completely unexpected because the governing equations differ. What should be consistent though, is the rate at which the errors change with grid size.

The observed convergence rate of the model was investigated by computing the residual with respect to the 5 cm grid at several locations along a cross section in the center of the domain (at different points along the cross-section for the longitudinal station in the middle of the domain). The grid refinement study (Figure 37) shows that the model gives second order behavior as the grid is refined.

Figure 35: Steady state depth profile for various grid sizes

Figure 36: Residual with respect to 5 cm grid by location, all residuals for 10 cm grid were zero

Figure 37: Grid refinement study

CHAPTER 5: COMPARISON WITH FIELD DATA

This chapter compares model results with field data from a monitoring site constructed on Loop 360, near Austin, Texas. The variable of interest remains the water depth on the highway, but measurements of this quantity are difficult to make. Indeed, one motivation for developing a model is to estimate quantities that are difficult to measure. What has been measured is the rainfall depth and runoff hydrograph at the monitoring site. The measured rainfall is taken as input and the variation of water depth through the storm is computed along with the runoff hydrograph. Reasonable agreement between the modeled and measured hydrographs lends credibility to the associated depth predictions.

5.1 Construction of Field Monitoring Site

The monitoring site, located on southbound Loop 360 near Austin, Texas (Figure 38), was initially established as a monitoring site for stormwater runoff in 2004. Later that year, the highway was repaved with PFC. Lower concentrations of total suspended solids and total heavy metals were observed in the runoff, which generated interest in additional research.

In the autumn of 2006 equipment for automatic sample collection was installed at the Loop 360 monitoring site. The field site was designed to measure the runoff hydrograph and to collect water quality samples. A drainage system was constructed using 4-inch PVC pipe to collect runoff from an $18 \mathrm{~m}(60 \mathrm{ft})$ length of roadway and direct it to the sampler. A 6-inch H-flume was used to measure the flow rate from the drainage pipe. An ISCO 4230 bubbler flow meter measured the water depth in the H -flume and calculated the flow rate. An ISCO 3700 portable sampler used the flow rate to collect flow-weighted water samples. An ISCO 674 tipping bucket rain gage recorded rainfall. Both rainfall and runoff were recorded in five-minute intervals, rainfall as the total depth and runoff as the average flow rate. Refer to Stanard (2008) for additional details on the construction of the monitoring site and programming of the equipment.

Figure 38: Aerial map of Loop 360 monitoring site (Google 2010)

Figure 39: Photograph of H-flume and drainage pipe at Loop 360 monitoring site

5.2 Model Inputs and Parameters

At the location of the monitoring site, Loop 360 is a four-lane divided highway. The monitoring site is situated on the right-hand shoulder of the south-bound traffic lanes. The traffic lanes (24 ft) and right hand shoulder (10ft) slope to the driver's righthand side at cross-slopes of 2% and 4%, respectively. The left shoulder (6 ft) drains to the left at a cross-slope of 4%. The entire section has a longitudinal slope of 2.3%.

The roadway geometry for Loop 360 was used to develop input files for the model. The model domain was extended beyond the 60ft length monitored so that errors in the kinematic condition on the east and west boundaries would not influence the solution in the domain of interest. Kinematic boundary conditions were used on all four sides of the domain. In Figure 40, the middle third of the domain corresponds to the location of the drainage pipe at the monitoring site.

The storm event of July 20, 2007 was selected for simulation because it was a large enough to cause substantial sheet flow. The hydraulic conductivity and porosity for this simulation correspond to values measured by Klenzendorf (2010) for a nearby location on the same highway. Values of Manning's n have not been measured for PFC, but a value of $0.015 \mathrm{~s} / \mathrm{m}^{1 / 3}$ appears appropriate considering the analysis of Charbeneau et al. (2009). Table 4 summarizes the model parameters.

Table 4: Model Parameters for Loop 360 Monitoring Site

Parameter	Unit	Value
Roadway width	m	12.2
Domain length	m	36.6
Cross Slope	$\%$	various
Hydraulic Conductivity	cm / s	3
PFC Thickness	cm	5
Porosity	--	0.2
Manning's n	$\mathrm{s} / \mathrm{m}^{1 / 3}$	0.015
Rainfall Rate	$\mathrm{cm} / \mathrm{hr}$	various

The storm of July 20, 2007 occurred during an unusually wet summer, and was a particularly large storm. A total of 48 mm (1.9 in) of rainfall were recorded at the monitoring site over a 5.6 hour period. The peak rainfall depths on a five, fifteen and sixty minute basis were $6.6 \mathrm{~mm} \mathrm{18mm}$, and 39 mm ($0.26 \mathrm{in}, 0.71 \mathrm{in}, 1.56 \mathrm{in}$), respectively. On a sixty minute basis, the storm corresponded to a return period of about 2 years (Chow et al., 1988 pg. 450) The highest five-minute rainfall intensity was $80 \mathrm{~mm} / \mathrm{hr}$.

The field measurements provided the time at the end of five-minute periods for which the rainfall total was reported. This information was prepared for use in the model by computing the rainfall intensity ($\mathrm{mm} / \mathrm{hr}$ or m / s) and inserting points at the beginning of each five-minute interval (Figure 41). The purpose of this approach was to facilitate use of a linear interpolation routine for selecting the proper rainfall rate for any time during the model simulation.

Figure 41: Measured rainfall and model input function for Loop 360 monitoring site on July 20, 2007

5.3 Results and Discussion for event of July 20, 2007

The rainfall function and other parameters were used as inputs for a simulation over 20,000 seconds. During the simulation, the runoff through the domain's southern boundary and was computed for each time step. The overall maximum depth and the maximum depth in the middle of the domain were also tracked throughout the simulation. This distinction in the depths was necessary due to oscillations near the boundary.

A model time step of 5 s was used when the all of the drainage was contained within the pavement, but a step of 0.1 s was needed during sheet flow for the model to remain stable. In order to make a fair comparison with the field measurements, the calculated flow rates were averaged over five minute intervals. A weighted average flow rate was used so that a five-minute interval containing two sizes of time step has the proper flow rate. These averaged flow rates showed generally good agreement with the field measurements (Figure 42). The model predicted peak flows of the proper time and magnitude, and the shape of the hydrograph generally matches the field observations.

The model predicted a peak flow $3.7 \mathrm{~L} / \mathrm{s}$, which is 97% of the measured value of $3.8 \mathrm{~L} / \mathrm{s}$. The difference between the modeled and measured flow rates (residual) had a mean $-0.029 \mathrm{~L} / \mathrm{s}$, median $0.021 \mathrm{~L} / \mathrm{s}$, standard deviation $0.24 \mathrm{~L} / \mathrm{s}$ and standard error of the mean $0.029 \mathrm{~L} / \mathrm{s}$. The largest residuals were associated with high flow rates. This comparison suggests that the model parameters were consistent with field conditions and lends credibility to the associated depth predictions.

A plot of the model solution for maximum depth conditions shows sheet flow occurring in both traffic lanes and on the right hand shoulder (Figure 43). Within the domain of interest, the depth contours are parallel to the roadway centerline. This result is consistent with a straight road and constant slopes. Some oscillations in the depth contours appear outside of the domain of interest, especially near the western boundary. It is believed that these oscillations are related to using the kinematic outflow boundary condition from the east end of the domain on the inflow boundary at the west end.

During this simulation, maximum depth in the domain of interest was 0.05142 m above the impervious layer, which represents a sheet flow depth of 1.4 mm . This
maximum occurred near the edge of the right traffic lane (Figure 44). The exact location was 3.2 m from the southern edge of the domain; since the shoulder width is 3.05 m , the maximum depth occurred 15 cm from the shoulder. This peak occurred 1 hour after rainfall began (3599.9 s) and during the peak rainfall intensity of $80 \mathrm{~mm} / \mathrm{hr}$.

The model results show that sheet flow begins 1.6 m due south of the grade break for the left hand shoulder (Figure 44). Under most conditions, this break in slope acts as a no-flow boundary within the domain; the no flow condition is assumed here for purposes of comparison with the analytical model even though some flow does occur. At the peak rainfall rate for this storm, the analytical model (see Charbeneau \& Barrett 2008 and Eck et al. 2010) predicts sheet flow at 2 m down the drainage slope or 1.4 m due south of the grade break (2% cross slope, 2.3% longitudinal slope; 3.048% drainage slope). This seems a reasonable match, considering that the numerical model is not at steady state, and that boundary condition is approximate.

Figure 42: Comparison of modeled and measured hydrographs for storm of July 20, 2007

Figure 44: Profile through maximum depth section; the horizontal coordinate is 94.42 m

In addition to examining water depths during an actual rainstorm, this example also provides an opportunity to illustrate the effect of using an under-relaxation factor in the non-linear iteration loop. Figure 45 shows how the solution at a grid cell just on the right shoulder evolves during a time step shortly after peak rainfall has started (time 2821.9 s). At the previous time-step the traffic lanes have sheet flow and the shoulder is in PFC flow. The model is trying to determine if the shoulder is also now in sheet flow or if it remains in PFC flow. Without the under-relaxation, the solution bounces between inside and outside of the PFC surface, the grid cell shown has the largest error, and the solution does not converge for the time step. This 'hunting' behavior does not occur with the relaxation factor and the model concludes that the depth at this location remains in the PFC for this time-step.

Figure 45: Solution history for an interior point (grid cell 2138) with and without underrelaxing the non-linear iteration

5.4 Loop 360 with and without PFC

One opportunity afforded by the simulation model is to compare results with and without PFC for the same storm event. Such an analysis gives direct insight about how PFC changes the drainage hydraulics as compared to conventional pavement and is the topic of this section. The same roadway geometry and simulation parameters used for the comparison with field measurements were used in this simulation, except that the thickness of the PFC layer was set to zero so that all drainage occurred as sheet flow.

The simulated hydrograph for Loop 360 without PFC is shown in Figure 46 along with the simulated hydrograph corresponding with a 5 cm PFC layer. Both hydrographs have been time averaged over the reporting period for rainfall measurements (5 minutes). The absence of a PFC layer appears to make the hydrograph rise and fall faster, especially later in the storm $(10,000 \mathrm{~s})$ when flow would be contained within the PFC. The PFC layer reduced the magnitude of this small peak by about 70% and delayed it five minutes, or one averaging period.

A PFC layer might be expected to delay the runoff hydrograph due to storage within the pavement, but that effect is not observed in this case. The high rainfall intensity quickly overwhelmed the capacity of the PFC layer, causing most of the drainage to occur as sheet flow so the hydrographs exhibit a similar shape.

The presence of a PFC layer reduced the sheet flow thickness during this event (Figure 47). The PFC layer prevented sheet flow entirely for the left part of the left lane and also on the left shoulder. In regions where sheet flow occurred over PFC, the PFC layer reduced the depth by an average of 0.35 mm . Some small oscillations are noted in the sheet flow profile near the right shoulder and were associated with sharp change in cross slope.

In addition to reducing the magnitude of sheet flow on the highway, PFC also reduced the duration that sheet flow was present. Simulation results showed that sheet flow depths in excess of 0.1 mm were present for about 1600 seconds when the PFC layer was present and for 8580 seconds without the PFC layer.

Figure 46: Comparison of modeled hydrographs with and without a PFC layer for Loop 360 on July 20, 2007. Plotted flow rates are five minute averages.

5.5 Storm event of June 3, 2007

A comparison between model results and field measurements was made for a second storm event to confirm that the results obtained for July 20, 2007 were not coincidental. The event of June 3, 2007 was selected for analysis because the total rainfall depth was around 1-inch and because 90% of the rainfall was measured as runoff, a reasonable mass balance for field sampling. The measured rainfall data was prepared for simulation as outlined previously; all other simulation parameters remained the same.

The modeled hydrograph again shows reasonable agreement with the measured one (Figure 48). The model predicted a peak discharge of $2.6 \mathrm{~L} / \mathrm{s}$, which is 76% of the measured peak discharge of $3.4 \mathrm{~L} / \mathrm{s}$. Statistics of the residuals (the differences between modeled and measured values) are reported in Table 5. Compared to the July 20 event, the peak discharge was not modeled as well, but the statistics of the residuals were comparable between the events, suggesting that the model performed consistently in both cases.

A contour plot of the model domain during maximum depth conditions shows that sheet flow occurred over most of the roadway and that sheet flow depths were on the order of 1 mm (Figure 49). The onset of sheet flow occurred 2.2 m from the left hand shoulder and the maximum sheet flow depth of 1.3 mm occurred near the right shoulder (Figure 50). These values compare favorably to the steady state model, which predicts sheet flow 3.4 m from the left shoulder and a maximum sheet flow depth of 1.3 mm .

Table 5: Summary of statistics of model residuals, all in units of L/s

Statistic	July 20, 2007	June 3, 2007
Mean	-0.029	0.016
Median	0.021	0.035
Standard Deviation	0.24	0.16
Standard Error of the Mean	0.029	0.02

Figure 48: Comparison of modeled and measured hydrographs for June 3, 2007

Figure 49: Water depth above impervious layer (m) for Loop 360 during maximum depth conditions on June 3, 2007. The PFC thickness was 0.05 m ; contours correspond to sheet flow conditions.

Figure 50: Profile through maximum depth section; the horizontal coordinate is 94.42 m

CHAPTER 6:CONCLUSIONS AND FUTURE WORK

6.1 Project Summary

This project has developed, validated, and applied a numerical model that couples the dynamics of overland flow with porous media flow for PFC roadways. The model represents overland flow using the 2-D diffusion wave approximation to the Saint-Venant equations. Porous media flow is described by the Boussinesq equation. Coupling these equations together facilitated water depth predictions at a fine spatial scale. This work has addressed the research objectives which were established in Chapter 1 and are repeated here for reference:

1. Identify governing equations for surface and subsurface flow for the geometry of interest
2. Develop a scheme to couple flow between the surface and subsurface
3. Implement the coupling scheme and numerical methods in a computer model that represents roadway geometry using a coordinate transformation
4. Validate the model using analytical solutions
5. Compare model predictions of runoff with values measured at an existing monitoring site

The governing equations for surface and subsurface flow have been identified and applied to roadway geometry. A scheme to couple the surface and subsurface flow components has been developed. The proposed scheme uses a mass balance approach and adjusts conveyance coefficients based on the flow conditions. A computer model has been developed and validated against steady state solutions that were obtained independently. Predictions of the runoff hydrograph were compared to measured values for the field monitoring site.

Several aspects of this work represent new and unique contributions to the fields of hydraulics and porous media flow:

- The model itself—PERFCODE—is a unique tool for understanding highway drainage. It builds on a long tradition of research in highway drainage hydraulics at The University of Texas at Austin.
- The way in which PFC flow and sheet flow are coupled within the model led to a better understanding of the interaction between PFC flow and sheet flow (see Eck et al. 2010).
- The ODE for PFC flow on a converging section has been derived and a numerical solution provided. The solution is useful for understanding how roadway geometry influences drainage behavior and for validating more comprehensive numerical treatments.
- A new boundary condition-the kinematic condition-for PFC flow has been developed and found to have reasonable agreement with field measurements.

6.2 Conclusions

Developing the simulation model and applying it to linear sections, converging sections, and the field monitoring site provided insight into the drainage behavior of PFC highways. Conclusions from this work are as follows:

- The kinematic boundary condition developed for PFC flow addresses an important gap in the literature of porous pavement hydraulics: the depth at the boundary can now be estimated for steady state or transient conditions. At the edge of pavement this condition gives a maximum depth in the PFC layer; but at the ends of the domain depth estimates are inconsistent with the domain interior, resulting in a boundary effect. The model domain should therefore be expanded to remove this effect from the area of interest. Use of this boundary condition yielded hydrographs that were consistent with field measurements.
- Predictions of runoff hydrographs for PFC roadways are available for the first time. These hydrographs show that PFC delays the initial discharge from the roadway compared to conventional pavement and that flow in a PFC layer requires a long time to reach steady state. For a constant rainfall case, PFC
delayed the initial discharge by 60 seconds and required 50 times more rainfall to reach steady state, though these values depend on problem parameters.
- One dimensional steady state equations remain a powerful tool for engineering design. For the storm investigated in Chapter 5, the 1D steady state equations predicted the location that sheet flow begins within 20cm of the PERFCODE's prediction. The location and magnitude of the maximum sheet flow depth were also closely predicted by the 1D steady state equations. This result confirms that the steady state equations (Charbeneau and Barrett, 2008 and Eck et al., 2010) are suitable for designing the PFC thickness on straight roads.
- The presence of a PFC layer did not affect the timing or magnitude of the peak discharge for the storm that was analyzed, but a later and smaller peak in the runoff hydrograph was delayed and reduced by the PFC layer. This result suggests that PFC has a negligible effect on the hydrology of large events, but can reduce the peak discharge of smaller events.
- During intense storms a PFC layer cannot prevent sheet flow altogether, but it can reduce the time during which sheet flow conditions persist. In the example studied, PFC reduced the duration of sheet flow conditions by about 80% and reduced the maximum sheet flow depth by 25%.

6.3 Recommendations for Future Work

Based on the research reported in this dissertation, several areas that should be considered for future research are as follows:

- The model required very small time-steps to simulate the measured rainfall. An infinite number of rainfall patterns are consistent with the five-minute rainfall data that was measured. Future work could include using a smoother rainfall function to see if the model's stability properties could be improved (e.g. take larger time-steps).
- Measured values of the hydraulic conductivity for PFC are at the high end of the acceptable range for Darcy's law on typical roadway slopes. Related
experimental and modeling efforts conducted by Klenzendorf (2010) used the Forchheimer equation to model flow through PFC and found the Forchheimer coefficients. Future work could update the model developed here to use Forchheimer's equation in place of Darcy's law. Such an update need only modify the subroutine for computing conveyance coefficients. Since the Darcy's law problem is already non-linear, the non-linearity introduced from Forchheimer's equation would be handled within the existing non-linear iteration loop.
- Small time steps (0.1s) were needed for non-smooth rainfall functions and high rainfall intensities. This small time step dramatically increased the time required for a model run. It also is based on the lowest common denominator-it is likely that larger time steps would be stable for part of the simulation time. An adaptive time stepping scheme could improve the run time while maintaining stability.
- The statistics of the residuals (modeled minus measured discharges) were similar for the two storms investigated. Future work should simulate additional storm events to further quantify the uncertainty in the model predictions.
- The model formulation is intended to allow simulations of more complex roadway geometry such as a superelevation transition or sag vertical curves. Although it is believed that major changes would not be required to deal with such geometries, they have not been attempted.

APPENDIX A: SUMMARY OF FORTRAN SOURCE CODE

The model described in this dissertation-PERFCODE—was implemented for computation in the Fortran 90/95 language and compiled for Microsoft Windows with the Lahey/Fujitsu Fortran compiler v5.5. The program runs as a console mode application (i.e. from the command prompt). This appendix describes (1) how to use model and (2) model limitations through a discussion of the model input files. A summary of the Fortran source code is given next, followed by a listing of the source code. The interested reader is encouraged to contact the author of this dissertation for an electronic copy of the model.

A. 1 Model Limitations

PERFCODE has been designed to simulate highway drainage for a wide variety of conditions within certain limitations:

- The structure of the input files does not allow for a cross section that varies longitudinally (e.g. superelvation transition)
- Boundary conditions have not been developed for PFC on curbed sections

A. 2 Running PERFCODE: Developing Input Files

PERFCODE is designed to simulate roadway drainage under a variety of conditions. Inputs to the model have been arranged into text files so that parameters can be changed without recompilation. In order apply the model to a situation of interest, input files must be developed. Model inputs and calculations use SI units.

The first input file contains basic simulation parameters and requires the most explanation. These parameters are read from Data File 1: Parameters.dat. As shown below, this file has several sections.

- PFC properties are listed first and these four properties are the only parameters of the mathematical model-these values must be accurate in
order for simulation results to be consistent with physical observations. For the work of this dissertation, the hydraulic conductivity, porosity and pavement thickness were measured from core samples and the Manning's n value was inferred from an experimental study.
- The model uses different time steps for sheet flow and PFC flow conditions. The time of a model run must also be specified and care should be taken to select a simulation time that is consistent with the rainfall input.
- The grid spacing is controlled by selecting an approximate grid cell size. The size is approximate because the grid is creating using 'equal increments' see (Jeong et al. 2010). The size is also approximate because the user may specify a value that is not an exact divisor of the domain size (e.g. dy $=0.4 \mathrm{~m}$ when the domain width is 5 m). The quantities dx and dy should probably be called dxi and deta because the correspond to the cell size in the longitudinal and transverse directions (respectively).
- Several tolerances are needed including the maximum number of iterations, the required accuracy (eps is short for epsilon), and the relaxation factors for the non-linear iteration.
- The initial condition is simply the depth at the beginning of a simulation. A small value is used instead of zero because zero is a difficult number in floating point calculations.
- The boundary condition for each edge of the domain must also be specified
- NO_FLOW is simply a no flow boundary
- MOC_KIN means to use the method of characteristics to implement a kinematic boundary condition for PFC flow and sheet flow.
- eastKIN means to use the MOC_KIN boundary from the east edge of the domain on the west end of the domain. This only makes
sense if the solutions on the east and west faces should be the same.
- 1D_FLOW means to use the one dimensional unsteady model as the boundary condition for the two dimensional domain. This boundary condition is experimental and not recommended for use.

Data File 1: Parameters.dat

```
Parameter Input file for PERFCODE
PFC Properties
    0.01 <---- Hydraulic Conductivity [m/s]
    0.2 <----- Porosity
    0.05 <---- Pavement Thickness [m]
    0.015 <---- Manning's n [ sec / m ^ (1/3) ]
Physical Constants
    9.81 <---- Gravitational Acceleration [m/s/s]
Time Steps
            5. <---- time step for PFC flow [s]
            1. <---- time step for sheet flow [s]
            8000 <---- Time to simulate [s]
Grid Spacing
    0.10 <----- preliminary value of dx [m]
    0.10 <----- preliminary value of dy [m]
Tolerances
    200 <---- qmax (maximum number of non-linear iterations)
    5000 <---- maxit ( maximum number of solver iterations)
    1.e-4 <----- eps_matrix
    1.e-3 <----- eps_itr
    1.e-3 <----- eps_ss
    1. <---- Relaxation Factor for non-linear iteration
    0.2 <---- Relaxation factor for transition
Initial Condition
    1.e-10 <----- Initial depth [m]
Boundary Conditions ( legal values are: MOC_KIN, NO_FLOW, 1D_FLOW, eastKIN )
    NO_FLOW <---- NORTH boundary of domain
    MOC_KIN <---- SOUTH boundary of domain
    NO_FLOW <----- EAST boundary of domain
    NO_FLOW <----- WEST boundary of domain
```

Rainfall information is read from Data File 2: Rainfall.dat. The first line of the file is the number of rainfall records, which the program needs in order to read in the proper number of values. Note that the times move in 300s increments, consistent with the field monitoring data. The remaining lines of the file are not shown for brevity. A
technical computing platform—such as the R Environment for Statistical Computing and Graphics or MATLAB—is useful for generating this file from a record of measured rainfall. In order to simulate a constant rainfall rate, only two records are required: time zero and some large time both with the same rainfall rate.

```
Data File 2: Rainfall.dat
208 <----- Number of rainfall records 20 July }200
1,0,1.693333e-06 <--- Record, Time[s], Rainfall Rate [m/s]
2,299.99,1.693333e-06
3,300,0.000000e+00
4,599.99,0.000000e+00
5,600,8.466667e-07
6,899.99,8.466667e-07
7,900,0.000000e+00
8,1199.99,0.000000e+00
9,1200,0.000000e+00
.....
.....
```

Information about the horizontal alignment of the roadway is read from Data File 3: CL_Segments.dat. The information in this file pertains to the geometry of the roadway centerline. The variables correspond to Equation (3.22). This information can be specified directly as was done in this dissertation, or obtained by processing an output file from roadway design software such as GEOPACK as done by Jeong (2008).

Data File 3: CL_Segments.dat
1 <---- Number of Segments
Segment, $x c c 1, y c c 1, d x, d y, R 1, d R, W$, theta1, dtheta, $1,89.14400,-1000000,0,0,1000040 ., 0.0,12.192,1.57080547,-1.82873 \mathrm{E}-05$,

The vertical alignment of the roadway is specified by two different files. Cross section information is read from Data File 4: CrossSection.dat. Note that this file specifies relative elevations in the form of slopes, but not absolute elevations. The sum of the segment widths specified here should match the overall roadway width (W) that is given in Data File 3: CL_Segments.dat.

Data File 4: CrossSection.dat

```
Roadway Cross Section Input file for PERFCODE
    3 <----- Number of segments to define cross section
Segment Slope Width[m]
    1, -0.04, 3.0480
    2, -0.02, }7.315
    3, 0.04, 1.8288
Note: SLOPE is defined left to right with a negative slope
        corresponding to a loss of elevation moving from left to right.
    SEGMENTS are numbered from eta = 0 to eta = 1 so segment 1 is
    on the right end of the domain.
```

Elevations are obtained from Data File 5: LongProfile.dat. The elevations in this file correspond to the right edge of the pavement $(\eta=0)$. The structure of this file allows for more variations in longitudinal slope than were considered in this dissertation. By including more points in this file, different longitudinal geometries such as sag vertical curves can be represented.

Data File 5: LongProfile.dat

```
Longitudinal Profile Input file for PERFCODE
    2 <----- Number of points to define longitudinal profile
    Point No. Distance(m) and Elevation(m) ALONG ETA == 0
    1, 0.000000, 10.0000000 <--- West boundary of domain
    2, 18.28800, 9.579376 <--- East boundary of domain 2.3%
```

Once these data files have been formulated for the problem of interest, model runs can begin. Several output files are written during each model run and the content of these files is the subject of the next section.

A. 3 PERFCODE Output Files

Output files are mostly formatted as .csv (comma separated values) so that results can be opened by a spreadsheet program or read into a technical computing environment. The primary output files are:

- details.csv contains summary information for each time step including the outflow hydrograph and other time history data.
- max_depth.csv contains the model solution for maximum depth conditions encountered during the simulation. The file is in vector form.
- params.csv is an echo of the model parameters used in the simulation
- PERFCODE_Run.txt is a log file with information about each iteration and each time step of the model run. Most warning messages during the simulation are directed to this file. If the simulation failed for some reason, this file is the first place to look for an explanation.

A. 4 Fortran Source Code

In writing the code for the model, extensive use was made of Fortran modules for storing common variables and grouping procedures (functions and subroutines) thematically. Each module comprises its own source file, but may contain several procedures provided the procedures do not reference each other. Each module is compiled separately. When the main program is compiled, links to the requisite modules are made and the product is a single executable file. Table 6: shows the name and contents of each programming unit. The order of the source files in the table (after the main program) reflects the order in which the files must be compiled for proper linking. This table also serves as an index to the code listing. The interaction between the procedures is depicted graphically in Figure 51 on page 121.

Table 6: Fortran program and module listing

Program or Module Name	Source file and Page No.	
PERFCODE	PERFCODE.f95	Main program (compiled last)
	122	
shared	shared.f95	Variables shared between different programming units
	152	

Program or Module Name	Source file and Page No.	Contents
pfc2Dfuns	$\begin{gathered} \hline \text { pfc2Dfuns.f95 } \\ 157 \end{gathered}$	Function subprograms used in the 2D PFC drainage model: F_LinearIndex computes the linear index for each grid cell F_por computes the porosity factor $(p f)$ for each grid cell F_RHS_n computes the contribution to the right hand side of the linear system due to time level n F_RHS_n1 computes the contribution to the right hand side of the linear system due to time level $n+1$
utilities	$\begin{gathered} \hline \text { utilities.f95 } \\ 159 \end{gathered}$	Functions and subroutines for general use UNLINEARIZE converts the solution from the linear form used in the matrix system into a two-dimensional array BILINEAR_INTERP performs bi-linear interpolation F_LINTERP Performs linear interpolation F_L2_NORM Computes the L2 norm of a vector F_PYTHAGSUM Computes the Pythagorean sum of two numbers F_EXTRAPOLATE Performs linear extrapolation
inputs	$\begin{gathered} \text { inputs.f95 } \\ 169 \end{gathered}$	Subroutines for reading the simulation parameters and rainfall information GET_PARAMETERS and GET_RAINFALL

Program or Module Name	Source file and Page No.	Contents
outputs	outputs.f95 172	Subroutines for generating selected outputs ECHO_INPUTS prints selected input parameters to the screen WRITE_FLIPPED_MATRIX creates comma seperated values (.csv) file of a matrix that has been 'flipped' to match the model domain (e.g. the 1,1 location is in the southwest corner) WRITE_MATRIX creates a .csv file of a matrix
		WRITE_VECTOR creates a .csv file of a vector WRITE_SYSTEM creates a .csv file of the bands and right hand side of the penta-diagonal matrix
geom_funcs	geom_funcs.f95	system
		Function sub-programs related to the curvilinear grid generation
F_L_xi computes the metric coefficient for the length		
mapping		
UNMAP_X computes the x coordinate of a point in		
physical space from its coordinates in computational		
space		
UNMAP_Y computes the y coordinate of a point in		
physical space from its coordaintes in computational		
space		

Program or Module Name	Source file and Page No.	Contents
ConvCoef	ConvCoef.f95 180	Subroutines related to computing the conveyance coefficients: CONVEYANCE computes the conveyance coefficient for a cell face FrictionSlope computes the friction slope at the center of each grid cell face
GridGen	$\begin{gathered} \hline \text { GridGen.f95 } \\ 188 \end{gathered}$	Subroutines related to the grid generation scheme GENERATE_GRID reads the centerline geometry file and creates a curvilinear grid (horizontal coordinates) based on a given approximate grid spacing SET_ELEVATIONS reads the longitudinal profile from a file and assigns an elevation to each grid cell
Solvers	$\begin{gathered} \hline \text { Solvers.f95 } \\ 199 \end{gathered}$	Subroutines related to solving linear systems: DIAGDOM_PENTA checks for diagonal dominance given the bands of a penta-diagonal matrix GAUSS_SEIDEL_PENTA uses the Gauss-Seidel method for iterative solution of a penta-diagonal system of linear equations. THOMAS uses the tri-diagonal matrix algorithm to solve a tri-diagonal linear system
pfc1Dfuns	$\begin{gathered} \hline \text { pfc1Dfuns.f95 } \\ 204 \end{gathered}$	Functions used the 1D pfc flow model: F_CC computes the conveyance coefficient F_por computes the porosity function for a grid cell

Program or Module Name	Source file and Page No.	Contents
pfc1Dfuns2	pfc1Dfuns2.f95 205	Lower level functions used in the 1D pfc flow model: F_hp_face computes the saturated thickness at the cell face F_hs_face computes the sheet flow thickness at the cell face
pfc1Dsubs	pfc1Dsubs.f95	Subroutines used for the 1D flow model: GRID_1D_SECTION creates a grid for the 1D
	207	drainage path pfc1Dimp solves the 1D pfc drainge problem using the crank-nicolson implicit method. The routine only takes a single time-step.
pfc2Dsubs	pfc2Dsubs.f95 223	Subroutines related to the 2D pfc flow model: SET_ABCDEF fills the coefficients of the linear
		system for a single grid cell SET_XYH assigns values of x,y, and h for use in the bi-linear interpolation routine
BoundCond	BoundCond.f95 225	The subroutine MOC_KIN, which uses the method of characteristics to implement a kinematic boundary condition.

Figure 51: Calling tree for PERFCODE

Source File 1: PERFCODE.f95

52	Cs1	at time level $\mathrm{n}+1$
53	CV_Info	-- information about each grid cell (aka Control Volume)
54	Cw	-- conv coef for the WESTern cell face at time level n
55	Cw1	'' '' '' at time level $\mathrm{n}+1$
56	D	-- superdiagonal band of penta diagonal matrix
57	dist_lp	-- distance along longitudinal profile
58	diagdom	-- logical flag for test of diagonal dominance
59	ds	-- distance up characteristic in sheet flow moc bc
60	dt	-- time step for the simulation
61	dt_pfc	-- time step for PFC flow
62	dt_sheet	-- time step for sheet flow
63	dx	-- prelim. grid size for longitudinal direction
64	dx_moc	-- distance up drainage path in pfc moc bc
65	dy	- prelim. grid size for transverse direction
66	E	- uppermost band of penta diagonal matrix
67	east_loc	-- condition for east boundary
68	eps_matrix	-- tolerance (epsilon) for matrix solver
69	eps_itr	-- tolerance for an iteration
70	eps_itr_to	--- selected tolerance for the iteration (based on transition)
71	eps_ss	-- tolerance for steady state (not used)
72	eta_cs	-- values of eta along the cross slope
73	eta_0_hp2	max-- max possible value for pfc moc bc
74	eta_cs_1D	-- values of eta for 1D model
75	eta1D	-- value of eta at each point in 1D domain
76	etaCV	-- value of eta at CV center for 1D grid
77	F_{-}	-- the letter F with an underscore (F_{-}) denotes a
78		function call and NOT an array
79	F	-- right hand side of linear system in pentadiagonal matrix
80	F1	contribution to F from time level n+1
81	Fn	-- contribution to F from time level n
82	g	-- constant of gravitational acceleration
83	grid	-- number of each grid cell
84	h0	-- initial depth (m)
85	h_bound	-- depth at boundary (returned by MOC_KIN or 1D_FLOW)
86	h_imid_j1	max-- solution when depth at middle of south boundary is max
87	h_imid_j1	max_hist
88	h_imid_max	-- solution when depth in middle of domain is max
89	h_imid_max	x_hist
90	h_itr	-- matrix form of solution at level $\mathrm{n}+1$
91	h_itr_vec	-- vector form of solution at time level n+1
92	h max	-- solution at maximum depth
93	h_new_1d	-- solution at time level n+1 for 1D problem
94	h_old	-- solution at time level n
95	h_old_1d	-- solution at time level n for 1D problem
96	h_old_vec	--
97	h_pfc_min	-- minimum value for pfc flow thickness
98	h_O_max	-- solution at maximum flow
99	h_temp_his	st -- history of solution during an iteration
100	h_tmp_vec	--
101	hp1	-- depth at point 1 in pfc MOC bc
102	hp2	- depth at point 2 in pfc MOC bc
103	hs1	-- sheet flow depth at point 1 in sheet flow moc bc
104	hs2	-- sheet flow depth at point 2 in sheet flow moc bc
105	i	-- array index (longitudinally in the domain)

106	input_values-- array of values of the input variables
107	input_variables -- character array of input variables
108	imax -- maximum value of the array index i
109 !	$j--$ array index (transverse in the domain)
110	jmax -- maximum value of the array index j
111	K -- the saturated hydraulic conductivity of the PFC
112	L2_history -- value of the L2 norm for each timestep
113	lng -- curvilinear length of a grid cell at its center
114	lng_north -- curvilinear length of the northern face
115	lng_south -- curvilinear length of the southern face
116	loc -- the location of the largest relative change in a time step
117	long_slope -- overall longitudinal slope
118	max_rec -- maximum number of records (for pre-allocating arrays
119	where values are read in from a file)
120	max_time -- longest time to simulate
121 !	maxdiff -- the change in head at location LOC for timestep n
122	maxit -- maximum number of matrix iterations
123	maxrelchng_ss-- maximum relative change for a timestep, for stdy state check
124	maxthk -- maximum thickness fot the timestep
125 !	matrix_numits-- number of iterations to solve the matrix
126	$n \quad$-- index for time stepping
127 !	n_mann -- Manning's roughness coefficient
128	north_bc -- condition for north boundary
129	nlast -- last timestep taken
130 !	nmax -- maximum number of time steps in the simulation
131 !	numit -- the number of iterations required for a timestep to converge
132	nr cs $\quad-\mathrm{n}$ nuber of records in the cross slope file
133	$n r$ _lp -- number of records in the longitudinal profile file
134	nrr -- number of rainfall records
135	out_time
136	pf -- porosity factor (includes effect of porosity
137	when pavement is not saturated)
138	pf_int -- porosity factor as an integer
139	pf1 -- porosity factor for time level n+1
140	pf1_int -- " " "" as integer
141	por -- the effective porosity of the PFC
142	q -- iteration index
143	qmax -- maximum number of iterations
144	rain -- rainfall rate for each timestep of the simulation
145	Qout -- flow rate out the southern boundary for a timestep
146	rain_rate -- rainfall rate for each time increment in the
147	rainfall input file
148	rain_time -- time column of rainfall input file
149	relax -- relaxation factor for non-transition iterations
150	relaxation_factor -- underrelaxation factor for non-linear iteration
151	relax_tran -- relaxation factor for transition
152	relchng -- the relative change between solns for an iteration or timestep
153	residual -- difference between old and itr solutions
154	seg -- properties of a centerline segment
155	Sfe_itr -- friction slope at center of east face at time level n+1
156	Sfe_old -- friction slope at center of east face at time level n
157	Sfn_itr -- friction slope at center of north face at time level n+1
158	Sfn_old -- friction slope at center of north face at time level n
159	Sfs_itr -- friction slope at center of south face at time level n+1

```
160 ! Sfs_old -- friction slope at center of south face at time level n
161 ! Sfw_itr -- friction slope at center of west face at time level n+1
162 ! Sfw_old -- friction slope at center of west face at time level n
163 ! slope_cs -- slope column of cross section file
164 ! slope_cs_1d -- slope of 1D segment
165 ! sim_tim -- character variable for time simulated
166 ! solver_numits-- number of iterations for the solver
167 ! south_bc -- condition for south boundary
168 ! time -- time at each timestep
169 ! time_simulated-- the time simulated
170 ! timestep_solver_numits --
171 ! transition -- logical to see if we're in a transition timestep
172 ! tolit -- tolerence for iterations, used for relative (fractional) changes
173 ! TNE -- total number of elements for 1D grid
174 ! v -- linear index for domain
175 ! ve -- linear index for cell to the east
176 ! v_in -- linear index of adjacent inside cell
177 ! vmax -- number of unknowns in the domain
178 ! west_bc -- condition for west boundary
179 ! wid -- curvilinear width of a grid cell at its center
180 ! wid_cs -- width column of cross slope file
181 ! wid_cs_1d -- width of 1D segment
182 ! XCV -- coordinate of CV center for 1D grid
183 ! Z -- elevation at the cell center
184 ! Z_cs -- elevation along the cross slope
185 ! Z_lp -- elevation along longitudinal profile
186 ! ZCV -- elevation of CV center for 1D grid
187
188
!= llll
1 9 1
192 program PERFCODE
1 9 3
194
195
196
197 ! Refer to the modules that are referred to by this code
198
199 USE SHARED ! SHARED is used to store VARIABLES
200 USE INPUTS ! INPUTS has subroutines
201 USE OUTPUTS ! OUTPUTS has subroutines
202 USE ConvCoef ! computes conveyance coefficinnts
203 USE SOLVERS ! linear solvers
204 USE Utilities
205 USE gridgen
206 use pfc1Dsubs
2 0 7 \text { use pfc2Dsubs}
2 0 8 \text { use pfc2Dfuns}
2 0 9 \text { use BoundCond}
210
2 1 1
```

```
!---------------------------------------------------------------------------------------
! >>>>>>>>>>> V ARIAB LES <<<<<<<<<<
implicit none
! All variables are declared in module SHARED
```



```
! >>>>>>>>>>> P R O B L E M S E T U P <<<<<<<<<<<
```



```
!Create a file to store details of the run
open( unit = 100, file = 'PERFCODE_Run.txt', status = 'REPLACE' )
```



```
! Problem parameters file
!-------------------------------------
CALL GET_PARAMETERS( K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, &
dx, dy, qmax, maxit, h0, eps_matrix, eps_itr, eps_ss, &
relax, relax_tran,
&
north_bc, south_bc, east_bc, west_bc, &
animate, dt_ani
```



```
! Rainfall file & maximum number of timesteps
```



```
call GET_RAINFALL( max_rec, rain_time, rain_rate, nrr )
nmax = ( maxval( rain_time(1:nrr) ) / min( dt_pfc, dt_sheet ) ) !* 100
249 ! This subroutine takes the centerline geometry file that is generated
250 ! mannualy and creates a curvilinear grid.
251 ! INPUTS: Preliminary grid spacing
252 ! OUTPUTS: Size of computational domain (imax & jmax )
253 ! Length, width and area of each grid cell ( module SHARED)
254 ! Coordinates of each CV center
255 call GENERATE_GRID( prelim_dx = dx , prelim_dy = dy )
258 ! Reads in cross section and longitudinal files and computes elevations
259 ! of CV Centers
261 CALL SET_ELEVATIONS()
```

244
245
246
247
248
256
257
260
262
263

```
264 ! Creates a grid for a 1D section in case a 1D boundary condition is used
265 call setup_1d_section()
266 CALL grid_1d_section( slope_in = slope_Cs_1D , &
267 width_in = wid_cs_1D , &
    seg = nr_cs , &
    dx = (( dx+dy ) / 2.) )
```



```
! inputs summary
```



```
! make a list of input variables and values
input_variables = (/ 'K ', &
'por ', &
    'b_pfc ', &
    'n_mann ', &
        'g ', &
        'dt_pfc ', &
        'dt_sheet ', &
        'max_time ', &
        'dx ', &
        'dy ', &
        'qmax ', &
        'maxit ', &
        'h0 ', &
        'eps_matrix', &
        'eps_itr ', &
        'eps_ss ', &
        'relax ', &
        'relax_tran' /)
    !also collect and store values of input variales
    input_values = (/ K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, &
        max_time, dx, dy, real(qmax), real(maxit), &
        h0, eps_matrix, eps_itr, eps_ss, relax, relax_tran /)
    ! Echo inputs to the screen, unit 6 by default
    CALL ECHO_INPUTS( dev = 6 )
    !also echo to log file
    CALL ECHO_INPUTS( dev = 100 )
```



```
    ! Animation setup
```



```
if( animate .eqv. .TRUE. ) then
    animax = int( floor(max_time / dt_ani) )
    allocate( h_vec_ani ( vmax, animax ) )
    allocate( ani_lab ( animax ) )
    allocate( ani_time( animax ) )
endif
```

```
318
319
320
3 2 1
3 2 2
323 ! inialize as we go
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

```

allocate(h_itr_vec(vmax), stat = astat2(9)); h_itr_vec = 0.0
allocate(h_tmp_vec(vmax), stat = astat2(10)); h_tmp_vec = 0.0
allocate(h_old_vec(vmax), stat = astat2(11)); h_old_vec = 0.0
allocate(h_new_vec(vmax), stat = astat2(12)); h_new_vec = 0.0
allocate(relchng (vmax), stat = astat2(13)); relchng =0.0
allocate(numit(nmax), stat = astat2(14)); numit = 0
allocate(loc(nmax), stat = astat2(15)); loc =0
allocate(maxdiff(nmax), stat = astat2(16)); maxdiff = 0.0
allocate(Qout(nmax)); Qout = 0.0
allocate(matrix_numits(nmax))
allocate(L2_History(nmax)); L2_History = 0.0
! Set indices for rain so that n-1 always works. This is b/c
! in Crank-Nicolson half of the rainfall rate is from time level
! n and half is from time level n-1
allocate(rain(0 : nmax-1), stat = astat2(0))
allocate(time(nmax), stat = astat2(17))
allocate(grid(jmax, imax), stat = astat2(19))
allocate(maxthk(nmax), stat = astat2(20)); maxthk = 0.0
allocate(residual(vmax), stat = astat2(21)); residual = 0.0
allocate(h_temp_hist(vmax, qmax)); h_temp_hist = 0.0
allocate(h_imid_j1_hist(nmax), stat = astat(22))
! Check allocation statuses
do i = 1, 29
if(astat2(i) .NE. 0) then
WRITE (100,*) 'PERFCODE: allocation problem in main \&
\& program!!, check variable:', i
end if
end do
if(maxval(astat2) .eq. 0) then
WRITE(100,*) 'PERFCODE: allocation of main program variables sucessful'
endif
421 ! INITIAL CONDITIONS
422 ! set all all arrays to the initial depth value
423 h_old = h0
4 2 4 ~ h \sim i t r ~ = ~ h 0 ~ ! ~ a d d e d ~ t h i s ~ a f t e r ~ b / c ~ t h e ~ f i r s t ~ i t e r a t i o n ~ k e p t ~ f a i l i n g ~
425 h_old_vec = h0

```
415
416
417
418
419
420
```

426 h_itr_vec = h0
4 2 7
428 h_old_1D = h0 ! initial depth for 1D boundary condition
429 h_new_1D = h0
4 3 0
4 3 1
4 3 2
4 3 3
4 3 4
435 CALL SYSTEM_CLOCK(RUN_START_TIME, count_rate, count_max)
4 3 6
4 3 7
4 3 8
439 ! !open a file to store each timestep
440 ! open(unit = 50, file = 'timesteps.csv', status = 'REPLACE')
441 ! write(50,5) ' n / v,', (v, v=1, vmax) !implied DO loop
4 4 2
443!
444
4 4 5
446 ! Set rainfall rate for begining of simulation
447 n=0
448 rain(n) = F_Linterp(0.0 , \&
499 rain_time(1:nrr), \&
450 rain_rate(1:nrr), \&
4 5 1
4 5 2
4 5 3
454 ! BEGIN TIME STEPPING
455
4 5 6
457 time_stepping: do while (time_simulated .IT. max_time)
4 5 8
459 !increment n and store the largest n we've gotten so far
460 n = n + 1
4 6 1 ~ n l a s t ~ = ~ n ~
4 6 2
463
4 6 4
4 6 5
4 6 6
467 dt = dt_pfc
4 6 8 endif
4 6 9
4 7 0
471 ! Do the accumulation with an internal write/read to
472 ! avoid accumulating the floating point errors
4 7 3
4 7 4 write(sim_time, 123) time_simulated
4 7 5 read(sim_time, *) time_simulated
4 7 6
477 123 format(F8.2)
4 7 8
479 time_simulated = time_simulated + dt

```
```

4 8 0
4 8 1
4 8 2
4 8 3
4 8 4
4 8 5
486
4 8 7
4 8 8
4 8 9
4 9 0
4 9 1
4 9 2
4 9 3
4 9 4
4 9 5
4 9 6
4 9 7
503
504
5 0 5
507
508
509
5 1 0
5 1 1
5 1 2
513
514
515
516
517
518
5 1 9
520
5 2 1
5 2 2
523
524
525
526
527
528
529
530
531
532

```
```

促

```
促
498 !PART OF NON-LINEAR SYSTEM FROM TIME LEVEL n
498 !PART OF NON-LINEAR SYSTEM FROM TIME LEVEL n
499 ! FRICTION SLOPE
499 ! FRICTION SLOPE
500 ! Compute friction slope magnitudes based on the converged thicknesses
500 ! Compute friction slope magnitudes based on the converged thicknesses
501 ! from the previous time step
501 ! from the previous time step
502 CALL FrictionSlope( 'old', Sfw_old, Sfe_old, Sfs_old, Sfn_old )
502 CALL FrictionSlope( 'old', Sfw_old, Sfe_old, Sfs_old, Sfn_old )
506 ! Compute solution for 1D model to use as a boundary condition
506 ! Compute solution for 1D model to use as a boundary condition
```

time(n) = time_simulated

```
time(n) = time_simulated
    if ( nint (real ( n )/2.) .gt. report ) then
    if ( nint (real ( n )/2.) .gt. report ) then
        report \(=\) report +1
        report \(=\) report +1
        write (*,*) ' \(\mathrm{n}=\) ', n , ' time = ', time_simulated, \&
        write (*,*) ' \(\mathrm{n}=\) ', n , ' time = ', time_simulated, \&
            'L_inf_norm = ', maxrelchng_ss, \&
            'L_inf_norm = ', maxrelchng_ss, \&
                            'L2_norm = ', F_L2_Norm(relchng, vmax), \&
                            'L2_norm = ', F_L2_Norm(relchng, vmax), \&
                                'Qout = ', Qout ( \(\mathrm{n}-1\) )
                                'Qout = ', Qout ( \(\mathrm{n}-1\) )
    endif
    endif
    !Come up with the rainfall rate for this timestep
    !Come up with the rainfall rate for this timestep
    \(\operatorname{rain}(\mathrm{n})=\) F_Linterp( time_simulated , \&
    \(\operatorname{rain}(\mathrm{n})=\) F_Linterp( time_simulated , \&
            rain_time(1:nrr), \&
            rain_time(1:nrr), \&
            rain_rate(1:nrr), \&
            rain_rate(1:nrr), \&
                            nrr )
                            nrr )
                            )
                            )
! only invoke the 1D solver if called for by the boundary conditions
! only invoke the 1D solver if called for by the boundary conditions
if ( west_bc .eq. '1D_FLOW' .or. \&
if ( west_bc .eq. '1D_FLOW' .or. \&
        east_bc .eq. '1D_FLOW'
        east_bc .eq. '1D_FLOW'
                                ) then
                                ) then
            h_old_1d = h_new_1d
            h_old_1d = h_new_1d
            CALL PFC1DIMP ( h_old = h_old_1d, \&
            CALL PFC1DIMP ( h_old = h_old_1d, \&
                    \(d t=d t \quad, \&\)
                    \(d t=d t \quad, \&\)
                    rain \(=\operatorname{rain}(\mathrm{n}), \& \quad!\) Should probably add rain \((\mathrm{n}-1)\)
                    rain \(=\operatorname{rain}(\mathrm{n}), \& \quad!\) Should probably add rain \((\mathrm{n}-1)\)
                    tolit \(=\) eps_itr , \&
                    tolit \(=\) eps_itr , \&
                    qmax \(=\) qmax , \&
                    qmax \(=\) qmax , \&
                    h_new = h_new_1d, \&
                    h_new = h_new_1d, \&
                    imax \(=\) TNE , \&
                    imax \(=\) TNE , \&
                    eta_0_BC = south_bc, \&
                    eta_0_BC = south_bc, \&
                            eta_1_BC = north_bo )
                            eta_1_BC = north_bo )
            ! Vet the solution to avoid a weird problem
            ! Vet the solution to avoid a weird problem
            if( maxval ( h_new_1d) .LT. TINY (h_new_1d(1) ) ) then
            if( maxval ( h_new_1d) .LT. TINY (h_new_1d(1) ) ) then
                write(100,*) 'PERFCODE: 1D Model zeroed out....stopping program'
                write(100,*) 'PERFCODE: 1D Model zeroed out....stopping program'
                    call write_vector( h_old_1d, TNE, 'h_old_1D.cSv' )
                    call write_vector( h_old_1d, TNE, 'h_old_1D.cSv' )
                    call write_vector( h_new_1d, TNE, 'h_new_1D.cSv' )
                    call write_vector( h_new_1d, TNE, 'h_new_1D.cSv' )
                    stop
                    stop
            end if
```

 end if
    ```
533
```

endif

```


```

! put east first so that west bc 'eastKIN' could copy it
!EASTERN BOUNDARY
i = imax
if(east_bc .eq. 'NO_FLOW') then
do j = 2, jmax - 1
pf = F_por(h_old(i, j))
CALL Conveyance('west ', 'old', i, j, Cw)
Ce = 0.0 !<---- NO FLOW BOUNDARY
CALL Conveyance('south', 'old', i, j, Cs)
CALL Conveyance('north', 'old', i, j, Cn)
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
end do
elseif(east_bc .eq. '1D_FLOW') then
!open(unit = 66, file = 'eta_mapping.CSv', status = 'REPLACE')
!write(66, *) 'i,j,eta,eta_1D'
do j = 1, jmax
v = F_LinearIndex(i, j, jmax)
eta_1D = F_LINTERP(X = CV_Info(v) % eta , \&
known_X = eta_cs , \&
known_Y = eta_cs_1D , \&
n = nr_cs + 1)
h_bound= F_LINTERP(X = eta_1D , \&
known_X = etaCV , \&
known_Y = h_new_1D , \&
n = TNE
C(v) = 1.0
F(v) = h_bound
write(66, 660) i, j, CV_Info(v) % eta, eta_1D
end do
!close(66)
580 elseif(east_bc .eq. 'MOC_KIN') then
587 ! write(100,*) 'PERFCODE: east bc i=',i, 'j=',j, 'h_bound=',h_bound

```
578
579
581
582
583
584
585
586
```

 end do
 endi

```
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
```

642
6 4 3
6 4 4
645
6 4 6
6 4 7
6 4 8
6 4 9
6 5 0
6 5 1
6 5 2
6 5 3
654
6 5 5
6 5 6
6 5 7
658
659
660
6 6 1
6 6 2
6 6 3
6 6 4
66
666
6 6 7
6 6 8
6 6 9
6 7 0
6 7 1
6 7 2
6 7 3
6 7 4
676! C
677 ! F(v) = F(v_in)
678 ! i = imax - 1
679 ! v = F_LinearIndex(i, j, jmax)
680 ! v_in = F_LinearIndex(i-1, j, jmax)
681 ! C(v) = 1.
6 8 2
6 8 3
6 8 4
6 8 5
6 8 6
6 8 7
6 8 8
6 8 9
6 9 0
6 9 1
6 9 2
6 9 3
6 9 4
6 9 5
\NORTHERN BOUNDARY
j = jmax
if(north_bc .eq. 'NO_FLOW') then
do i = 2, imax - 1
! Set porosity factor for this cell
pf = F_por(h_old(i, j))
! Set the conveyance coefficients
CALL Conveyance('west ', 'old', i, j, Cw)
CALL Conveyance('east ', 'old', i, j, Ce)
CALL Conveyance('south', 'old', i, j, Cs)
Cn = 0.0 ! <---- NO FLOW BOUNDARY
! Compute the part if the right-hand-side that is from
! time level n
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
end do
elseif(north_bc .eq. 'MOC_KIN') then
do i = 2, imax - 1
CALL MOC_KIN_BC(i, j, rain(n), dt, 'north', h_bound, 100)
v = F_LinearIndex(i, j, jmax)
C(v) = 1.
F(v) = h_bound
end do
! ! Use the value of the next inside cell for cells
! ! second from the end of the domain
i = 2
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i+1, j, jmax)
! F(v) = F(v_in)
! -
elseif(north_bc .eq. '1D_FLOW') then
write(*,*) 'PERFCODE: Boundary condition ', north_bc, \&
'not supported for northern boundary'
elseif(north_bc .eq. 'west_1D' .and. \&
west_bc .eq. '1D_FLOW') then
! Put the answer for the northern most cell on the west end (i=1, j=jmax)
! in all of the northern cells
do i = 2, imax - 1
v = F_LinearIndex(i, j, jmax)

```
```

 v_in = F_LinearIndex(1, jmax, jmax)
 C(v) = 1.
 F(v) = F(v_in)
 end do
 end if
!SOUTHERN BOUNDARY
j = 1
if(south_bc .eq. 'NO_FLOW') then
do i = 2, imax - 1
pf = F_por(h_old(i, j))
CALL Conveyance('west ', 'old', i, j, Cw)
CALL Conveyance('east ', 'old', i, j, Ce)
Cs = 0.0 !<------- NO FLOW BOUNDARY
CALL Conveyance('north', 'old', i, j, Cn)
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
end do
elseif(south_bc .eq. 'MOC_KIN') then
do i = 2, imax - 1
CALL MOC_KIN_BC(i, j, rain(n), dt, 'south', h_bound, 100)
v = F_LinearIndex(i, j, jmax)
C(v) = 1.
F(v) = h_bound
end do
! ! Use the value of the next inside cell for cells
! ! second from the west end of the domain
i = 2
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i+1, j, jmax)
C(v) = 1.
F(v) = F(v_in)
! second from east end of domain
i = imax - 1
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i-1, j, jmax)
C(v) = 1.
F(v) = F(v_in)
elseif(south_bc .eq. '1D_FLOW') then
write(*,*) 'PERFCODE: Boundary condition ', south_bc, \&
'not supported for southern boundary'
elseif(south_bc .eq. 'west_1D' .AND. \&
west_bc .eq. '1D_FLOW') then
! Put the answer for the southern most cell on the west end (v=1)
! in all of the southen cells
do i = 2, imax - 1
v = F_LinearIndex(i, j, jmax)

```
```

 v_in= F_LinearIndex(1, 1, jmax)
 C(v) = 1.
 F(v) = F(v_in)
 end do
 end if

```

```

! CORNER POINTS
!-___________________________
! only the 1D_FLOW condition is already handled for the corner points
! NORTH EAST CORNER
i = imax; j = jmax
if(north_bc .eq. 'NO_FLOW' .AND. east_bc .eq. 'NO_FLOW') then
! Set porosity factor for this cell
pf = F_por(h_old(i, j))
! Set the conveyance coefficients
CALL Conveyance('west ', 'old', i, j, Cw)
Ce = 0.0 ! <---- NO FLOW BOUNDARY
CALL Conveyance('south', 'old', i, j, Cs)
Cn = 0.0 ! <---- NO FLOW BOUNDARY
! Compute the part of the right-hand-side that is from
! time level n
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
elseif(north_lbc .eq. 'MOC_KIN' .AND. east_bc .eq. 'NO_FLOW') then
! use the depth in the adjacent MOC_KIN cell
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i-1, j, jmax)
C(v) = 1.0
F(v) = F(v_in)
elseif(north_bc .eq. 'NO_FLOW' .AND. \&
east_bc .eq. 'MOC_KIN'
! is a problem when there are no grade breaks
! just value of adjacent no flow cell ??
v = F_LinearIndex(i, j, jmax)
A(v) = -1.
C(v) = 1.
F(v) = 0.
elseif(Z(imax, jmax) .GE. Z(imax, jmax-1) .AND. \&
north__bc .NE. 'NO_FLOW'
write(100, *) ' North east corner drains to the south \&
\&consider NO_FLOW boundary for the north \&
\&side of the domain. '
elseif(Z(imax, jmax) .LT. Z(imax, jmax-1) .AND. \&

```
            east_bc .eq. 'MOC_KIN'
                                    then
        ! drainage is to the north and MOC KIN will work
        call MOC_KIN_BC( i, j, rain(n), dt, 'east ', h_bound, 100 )
        \(\mathrm{v}=\mathrm{F} \_\)LinearIndex ( \(i, j\), jmax )
        \(C(v)=1\).
        \(F(v)=h \_\)bound
end if
! NORTH WEST CORNER POINTS
\(i=1 ; ~ j=j \max\)
if ( north_bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW' ) then
    ! Set porosity factor for this cell
    pf = F_por ( h_old (i, j ) )
    ! Set the conveyance coefficients
    \(\mathrm{Cw}=0.0\) ! <---- NO FLOW BOUNDARY
    CALL Conveyance ( 'east ', 'old', i, j, Ce )
    CALL Conveyance( 'south', 'old', i, j, Cs )
    \(\mathrm{Cn}=0.0\) ! <---- NO FLOW BOUNDARY
    ! Compute the part if the right-hand-side that is from
    ! time level n
    \(\mathrm{v} \quad=\) F_LinearIndex ( i, j, jmax)
    Fn \((v)=\) F_RHS_n( i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt )
elseif ( north_bc .eq. 'MOC_KIN' .AND. West_bc .eq. 'NO_FLOW' ) then
    ! use the depth from the adjaent MOC_KIN cell
    v = F_LinearIndex ( i, j, jmax )
    v_in = F_LinearIndex (i+1, j, jmax )
    \(C(v)=1.0\)
    \(F(\mathrm{v})=\mathrm{F}(\mathrm{v}\) _in \()\)
elseif( west_lbc .eq. 'eastKIN' ) then
    \(\mathrm{v}=\mathrm{F}\) _LinearIndex ( i, j, jmax )
            ! index of corresponding eastern cell
            ve = F_LinearIndex ( imax, j, jmax )
            ! Use solutions from east side on the west side
            \(C(v)=C(v e)\)
            \(F(\mathrm{v})=\mathrm{F}(\mathrm{ve})\)
end if
! SOUTH EAST CORNER
\(i=\) imax; \(j=1\)
if( south_bc .eq. 'NO_FLOW' .and. east_bc .eq. 'NO_FLOW' ) then
    pf = F_por (h_old (i, j ) )
    ! Set the conveyance coefficients
    CALL Conveyance( 'west ', 'old', i, j, Cw )
    \(C e=0.0\) ! <---- NO FLOW BOUNDARY
```

 CS = 0.0 ! <---- NO FLOW BOUNDARY
 CALL Conveyance('north', 'old', i, j, Cn)
 ! Compute the part of the right-hand-side that is from
 ! time level n
 v = F_LinearIndex(i, j, jmax)
 Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
 elseif(south_bbc .eq. 'MOC_KIN' .AND. east__bc .eq. 'NO_FLOW') then
! use the depth in the adjacent MOC_KIN cell
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i-1, j, jmax)
C(v)}=1.
F(v) = F(v_in)
elseif(south_bcc .eq. 'MOC_KIN' .AND. east__bc .eq. 'MOC_KIN') then
call MOC_KIN_BC(i, j, rain(n), dt, 'east ', h__bound, 100)
v = F_LinearIndex(i, j, jmax)
C(v) = 1.
F(v) = h__bound
end if
! SOUTHWEST CORNER
i = 1; j = 1
if(south__bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW') then
pf = F_por(h_oold(i, j))
! Set the conveyance coefficients
Cw = 0.0 ! <--- NO FLOW BOUNDARY
CALL Conveyance('east ', 'old', i, j, Ce)
Cs = 0.0 ! <---- NO FLOW BOUNDARY
CALL Conveyance('north', 'old', i, j, Cn)
! Compute the part of the right-hand-side that is from
! time level n
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
elseif(south_bbc .eq. 'MOC_KIN' .AND. west__bc .eq. 'NO_FLOW') then
! use the depth in the adjacent MOC_KIN cell
v = F_LinearIndex(i, j, jmax)
v_in = F_LinearIndex(i+1, j, jmax)
C(v)}=1.
F(v) = F(v_in)
elseif(west_]bc .eq. 'eastKIN') then
v = F_LinearIndex(i, j, jmax)
! index of corresponding eastern cell
ve = F_LinearIndex(imax, j, jmax)
! Use solutions from east side on the west side
C(v) = C(ve)
F(v) = F(ve)

```
```

end if
920 ! change as the iteration progresses)
do j = 2, jmax -1; do i = 2, imax - 1
! Set porosity factor for this cell
pf = F_por(h_old(i, j))
! Set the conveyance coefficients
CALL Conveyance('west ', 'old', i, j, Cw)
CALL Conveyance('east ', 'old', i, j, Ce)
CALL Conveyance('south', 'old', i, j, Cs)
CALL Conveyance('north', 'old', i, j, Cn)
! Compute the part of the right-hand-side that is from
! time level n
v = F_LinearIndex(i, j, jmax)
Fn(v) = F_RHS_n(i, j, Cw, Ce, Cs, Cn, rain(n-1), pf, dt)
end do; end do

```

```

!ITERATIVE (LAGGED) PART OF NON-LINEAR SYSTEM
!-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
!zero out matrix iteration counter
timestep_solver_numits = 0
945 iteration: do q = 1, qmax
947 ! FRICTION SLOPE
! compute friction slope magnitudes based on the thickness
! from the previous iteration
CALL FrictionSlope('itr', Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr)
53 ! BOUNDARY CELLS
!WESTERN BOUNDARY
if(west_bc .eq. 'NO_FLOW') then
i = 1
do j = 2, jmax - 1
pf = F_por(h_itr(i, j))
Cw1 = 0.0 !<-------------------No flow boundary
CALL Conveyance('east ', 'itr', i, j, Ce1)
CALL Conveyance('south', 'itr', i, j, Cs1)
CALL Conveyance('north', 'itr', i, j, Cn1)
CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))
end do
end if

```
913
914
915
916
917
918
944
946
951
952
```

966
967 !EASTERN BOUNDARY
if(east_bc .eq. 'NO_FLOW') then
i = imax
do j = 2, jmax - 1
pf = F_por(h_itr(i, j))
CALL Conveyance('west ', 'itr', i, j, Cw1)
Ce1 = 0.0 !<---------------No flow boundary
CALL Conveyance('south', 'itr', i, j, Cs1)
CALL Conveyance('north', 'itr', i, j, Cn1)
CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))
end do
end if
!SOUTHERN BOUNDARY
if(south_bc .eq. 'NO_FLOW') then
j = 1
do i = 2, imax - 1
! Set porosity factor for this cell
pf = F_por(h_itr(i, j))
! Set the conveyance coefficients
CALL Conveyance('west ', 'itr', i, j, Cw1)
CALL Conveyance('east ', 'itr', i, j, Ce1)
Cs1 = 0.0 ! <---- NO FLOW BOUNDARY
CALL Conveyance('north', 'itr', i, j, Cn1)
! Fill in the linear system
CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))
end do
end if
!NORTHERN BOUNDARY
if(north_bc .eq. 'NO_FLOW') then
j = jmax
do i = 2, imax - 1
! Set porosity factor for this cell
pf = F_por(h_itr(i, j))
! Set the conveyance coefficients
CALL Conveyance('west ', 'itr', i, j, Cw1)
CALL Conveyance('east ', 'itr', i, j, Ce1)
CALL Conveyance('south', 'itr', i, j, Cs1)
Cn1 = 0.0 ! <---- NO FLOW BOUNDARY
! Fill in the linear system
CALL set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rain(n))
end do
end if
1 0 1 2
1 0 1 3
1014 !NORTH WEST CORNER
1015 if(north_bc .eq. 'NO_FLOW' .AND. west_bc .eq. 'NO_FLOW') then
1016 i = 1; j = jmax
1 0 1 7 ~ ! ~ S e t ~ p o r o s i t y ~ f a c t o r ~ f o r ~ t h i s ~ c e l l ~
1018 pf = F_por(h_itr(i, j))
1019 ! Set the conveyance coefficients

```
1043 ! SOUTH WEST CORNER
1044
```

1074
do j = 2, jmax - 1; do i = 2, imax - 1
1 0 7 5
1076 ! set porosity factor for this cell
1077 pf = F_por(h_itr(i, j))
1078 ! These things Do change as the iteration progresses
1079 CALL Conveyance('west ', 'itr', i, j, Cw1)
1080 CALL Conveyance('east ', 'itr', i, j, Ce1)
1081 CALL Conveyance('south', 'itr', i, j, Cs1)
1082 CALL Conveyance('north', 'itr', i, j, Cn1)
1083 ! Fill in the linear system
1 0 8 4
1085
1086
1087
1088
1 0 8 9
1090 ! test to see if there is a transition to or from sheet flow
1091 ! happening during this timestep. Use under-relaxtion to
1092 ! control oscillations during a transition timestep.
1093
1094 transition = .false.
1095 do j = 1, jmax
1096
1 0 9 7
1098
1 0 9 9
1 1 0 0
1 1 0 1
1 1 0 2
1103
1104
1105
1106
1 1 0 7
1108
1 1 0 9
1 1 1 0
1 1 1 1
1112
1 1 1 3
1 1 1 4
1115
1116
1117 ! 'Is matrix diagonally dominant?', diagdom
1118
1 1 1 9
1120 ! Confirm that there is a value of C for all of the rows
1121 ! this is mostly a check to see that the corner points of
1122 ! the domain had values put in.
1123 do v = 1, vmax
1124
1 1 2 5
1126
1 1 2 7
if(abs(C(v)) .IT. TINY(C(v))) then
write(100,*) ' No value of C: v = ', v, 'C(v)=', C(v)
write(*,*) 'STOPPING PROGRAM'
STOP

```

1128 end if
1129 end do
1130
1131
1132
1133
1134 ! gauss_seidel_penta(A, B, C, D, E, F, n, LB, UB, tolit, maxit, Xold, Xnew)
1135 CALL GAUSS_SEIDEL_penta( A, B, C, D, E, F, vmax, jmax, jmax, eps_matrix, maxit,\&
h_itr_vec, h_tmp_vec, 100, solver_numits )

1137
1138
1139
1140
1141 ! Relative change is used when the solution is far from zero
1142 ! and absolute change (residual) is used near zero.
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
```

 if(h_tmp_vec(v)
 .GT. TINY(h_tmp_vec(v)))
 then
    ```
                    ! Compute residual for this iteration
            residual(v) = h_tmp_vec(v) - h_itr_vec(v)
            ! Handle a result that is effectively zero by
            ! using an absolute tolerance instead of
            ! a relative one
            if ( h_tmp_vec (v) . IE. h_pfc_min .and. \&
            residual (v) .IE. eps_itr_tol
                                    ) then
                    relchng (v) \(=0.0\)
            else
                relchng (v) = residual (v) / h_itr_vec(v)
            endif
                elseif( h_tmp_vec (v) .LE. TINY ( h_tmp_vec (v) ) ) then
            ! the model is saying the cell is empty,
            ! so force the solution to be zero
            h_tmp_vec (v) \(=0.0\)
            ! compute the residual
            residual (v) = h_tmp_vec(v) - h_itr_vec(v)
            ! For the zero case, use an absolute rather than
            ! relative tolerance by setting the value of relchng
            ! below the tolerance instead of computing it.
            if( abs( residual (v) ) .LE. eps_itr_tol ) then
                relchng (v) \(=0.0\)
            endif
                endif

1182
1183
1184
1185
1186 ! the model fails to converge
1187 h_temp_hist ( :, q ) = h_tmp_vec
1188
1189
1190
1191
. Exit iteration loop if this timestep has converged
1200 if( maxval( abs (relchng ) ) .le. eps_itr_tol .AND. \&
1201 F_L2_NORM ( relchng, vmax) .le. eps_itr_tol ) then
1202
1203
1204
1205
1206
h_new_1D)
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
.
1218
1219
1220
1221 ! un-linearize the thicknesses back to a matrix h_itr_vec ---> h_itr
1222 call unlinearize( h_itr_vec, imax, jmax, vmax, h_itr )
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
end do
! Store solution history during iteration in case
h_temp_hist ( :, q ) = h_tmp_vec
!Output the biggest change for this iteration
\(\operatorname{WRITE}(100, *)\) 'PERFCODE: Iteration \(q=1\), \(q\), \&
    'Solver Interations =', solver_numits , \&
    'L_inf_norm =', maxval( abs( relchng ) ) , \&
    'At Cell \(\mathrm{v}=\) ', maxloc( abs( relchng ) ) , \&
    ' L2 Norm =', F_L2_NORM ( relchng, vmax ) , \&
    'eps_itr_tol =', eps_itr_tol
    WRITE ( \(100, *\) ) 'Time step \(\mathrm{n}=\) ', n , time( n\()\), 'sec ' , \&
                    \(\operatorname{rain}(\mathrm{n})=\) ', rain \((\mathrm{n}) \quad\), \&
                ' converged in \(q=\) ', \(q\), ' iterations.' , \&
                ' maxdepth=', maxval( h_tmp_vec ), \&
                ' max 1D =', maxval( h_new_1D ) , 'min 1D =', minval(
    _1D)
    WRITE (100,*)' '
    !output results for each timestep for checking purposes
    ! write \((50,2) \mathrm{n}\), h_itr_vec (:)
    EXIT iteration
endif
!update iteration variables
h_itr_vec = h_itr_vec + relaxation_factor * residual

end do iteration
!Give Error if Iteration fails to converge and write some diagnostics
if (q .gt. qmax) then
    \(\operatorname{WRITE}(\boldsymbol{*}, \boldsymbol{*})\) ' Iteration failed to converge for time level \(n=\) ', \(n\)
    !output the coefficient matrix and main diagonal
    call write_system ( A, B, C, D, E, F, vmax, 'ABCDEF.cSv' )
    call write_flipped_matrix( h_old, imax, jmax, 'h_old.csv' )
    call write_matrix( h_temp_hist, vmax, qmax, 'h_temp_hist.csv')
```

1235 call WRITE_VECTOR(residual, vmax, 'residual_iteration.cSv')
1236 call WRITE_VECTOR(relchng, vmax, 'relchng_iteration.cSV')
1237 ! call put_bands(a, b, c, d, e, vmax, lb, ub, amatrix)
1238 ! call write_matrix(amatrix, vmax, vmax, 'amatrix.csv')
1239 EXIT time_stepping
1240
1 2 4 1
1242
1243 ! Compute Change for this time step
1244 !Time stepping residual (re-uses the arrays)
1245 residual = h_tmp_vec - h_old_vec
1246
1247 ! compute relative change for this timestep
1248 do v = 1, vmax
1249 if(abs(residual(v)) .LT. TINY(residual(v))) then
1250 ! The converged solution is zero
1 2 5 1
1252
1 2 5 3
1 2 5 4
1 2 5 5
1256
1257
1258 maxrelchng_ss = maxval (ABS(relchng))
1259
1260 !call WRITE_VECTOR(relchng, vmax, 'relchng_time.cSv')
1 2 6 1
1 2 6 2
1 2 6 3
1264 !Update the old and new solutions
1265 !At the end of the iteration, we have found values for the
1266 !next time step.
1267 h_new_vec = h_tmp_vec
1268
1269 !but when we go back to the top of the loop, the old is what we just found
1270 h_old_vec = h_new_vec
1271 !and now we need to unlinearize the h_old values
1272 call unlinearize(h_old_vec, imax, jmax, vmax, h_old)
1 2 7 3
1 2 7 4
1 2 7 5
1276
1 2 7 7
1278

```

```

1280 ! Summary Info for this timestep
1 2 8 1
1282
1283 numit (n) = q
1284 loc (n) = maxloc (abs(relchng), dim = 1)
1285 maxdiff (n) = relchng (loc (n))
1286 maxthk (n) = maxval(h_old_vec)
1287 L2_History (n) = F_L2_Norm(relchng, vmax)
1288 h_imid_j1_hist(n) = h_old(imax/2, 1)

```
```

1289 h_imid_max_hist(n) = maxval(h_old(imax/2 , :))
1 2 9 0
1291 ! Compute the flow into the southern boundary for this time step
1292 ! (assume that we can neglect the drainage area of the last row)
1293 j = 2
1294 do i = 1, imax
1295 CALL Conveyance('south', 'itr', i, j, Cs1)
1296 Qout(n) = Qout(n) + Cs1 * area(i,j) * \&
1297 ((h_itr(i, j-1) - h_itr(i,j)) \&
1 2 9 8
1 2 9 9
1 3 0 0
1 3 0 1
1302
1303
1304 ! Check to see if this was the maximum time-step and store if so
1305 if(maxval(h_old_vec) .GT. maxval(h_max)) then
1306 call unlinearize(h_old_vec, imax, jmax, vmax, h_max)
1307
1308
1 3 0 9
1310
1311
1312
1 3 1 3
1314
1315
1 3 1 6
1 3 1 7
1318
1319
1320
1 3 2 1
1322
1 3 2 3
1 3 2 4
1325
1326 ! Decide if the results from this timestep should be stored for
1327 ! animation output. Take the time, divide by the animation step,
1328 ! round to the lowest integer and then convert to integer
lu
1330
1 3 3 1
1332
1 3 3 3
1334
1335
1 3 3 6
1 3 3 7
1338
1 3 3 9
1340
1 3 4 1

```
1342
```

end do
!SELECTIVELY STORE MODEL RESULTS
! MAXIMUM DEPTH
endif
! MAXIMUM DISCHARGE
if(Qout(n) .Gr. maxval(Qout(1:n-1))) then
call unlinearize(h_old_vec, imax, jmax, vmax, h_@max)
endif
! MAXIMUM MID DOMAIN DISCHARGE DEPTH
if(h_imid_j1_hist(n) .GT. maxval(h_imid_j1_hist(1:n-1))) then
call unlinearize(h_old_vec, imax, jmax, vmax, h_imid_j1_max)
endif
! MAXIMUM MID DOMAIN DISCHARGE DEPTH
if(h_imid_max_hist(n) .GT. maxval(h_imid_max_hist(1:n-1))) then
call unlinearize(h_old_vec, imax, jmax, vmax, h_imid_max)
endif
if(int(floor(time(n) / dt_ani)) .gt. ani) then
! set the value of ani
ani = ani + 1
print *, 'n = ', n, 'ani=', ani
! store the solution for this step
h_vec_ani(:, ani) = h_old_vec
! also store a label
write(sim_time2, 123) time_simulated
ani_lab(ani) = 'h'//sim_time2//'s'
ani_time(ani) = time_simulated
endif

```
```

1343
1 3 4 4
1345
1346
1347 !STEADY-STATE CHECK (disabled in favor of setting
1348 ! the time for the simulation to run)
1349 !IF (maxrelchng_ss .le. eps_ss .AND. \&
1350 ! F_L2_NORM(relchng, v) .le. eps_ss) then
1351 ! WRITE(*,*) 'Simulation reached steady state after', n, \&
1352 ! \&'time steps or', time_simulated, 'seconds'
1353 ! EXIT time_stepping
1354 !end if
1355
1356 end do time_stepping
1 3 5 7
1358 !for outputting each timestep
1359 ! close(50)
1 3 6 0
1361 !close log file
1362 close(100)
1 3 6 3
1 3 6 4
1365! >>>>>>>>>>> P OS T P ROCES S ING <<<<<<<<<<<
1366
1 3 6 7
1 3 6 8
1 3 6 9
1 3 7 0
1371! >>>>>>>>>>> WRI T E O UTPUT F I L E S < <<<<<<<<<<
1372
1373 !Set date and time stamps
1 3 7 4
1375 CALL SYSTEM_CLOCK(RUN_END_TIME, COUNT_RATE, COUNT_MAX)
1376 call DATE_AND_TIME (FILE_DATE,FILE_TIME)
1 3 7 7 call CPU_TIME (cputime)
1 3 7 8
1 3 7 9
1380 ! file to show 1D solution along i = imax / 2; j = 1:jmax
1 3 8 1
1 3 8 2
1383
1 3 8 4
1385
1386
1387 end do
1388 write(10,*) 'north_lbc,', north_boc
1389 write(10,*) 'south_bc,', south_bc
1390 write(10,*) 'east_bc,r', east__bc
1391 write(10,*) 'west__bc,', west__bc
1 3 9 2
1 3 9 3
1 3 9 4
1 3 9 5
1396 sum(rain(1:nlast)) / time_simulated * 3600. * 100.

```
```

1397 WRITE (10,200) 'Final Time (sec),', time_simulated
1398 WRITE(10,201) 'Number of cells longitudinally,', imax
1399 WRITE (10,201) 'Number of cells transversly,' , jmax
1400 WRITE (10,201) 'Total Number of Grid Cells,', vmax
1401 WRITE (10,200) 'CPU Time (seconds),', cputime
1402 WRITE (10,200) 'Run Time (seconds),', \&
1 4 0 3 ~ r e a l (r u n _ e n d _ t i m e ~ - ~ r u n _ s t a r t _ t i m e) / r e a l ~ (c o u n t _ r a t e) ~
1404 WRITE (10, *) '**************************** \&
1405 \&1D MODEL OUTPUT IN [SI] UNITS \&
1406 \&*************************************,'
1407 i = imax / 2
1408 write(10,*) ' i = ', i,','
1409 write(10, *) 'j,eta, Z,PFC_Surf,h,Head,Surf_Thk.mm,'
1410 do j = 1, jmax
1411 v = F_LinearIndex(i, j, jmax)
1412
1 4 1 3
1414
1415
1416
1 4 1 7
1418
1419
1420 ! 3d plotting output for maximum depth
1421 ! (contour plots of the resuls are made from this file)
1422 open(unit = 10, file = 'max_depth.cSv', status = 'replace')
1 4 2 3
1424
1425
1426
1 4 2 7
1440 ! (contour plots of the resuls are made from this file)

```

```

1442
1 4 4 3
1 4 4 4
1445
1446
1447
1448
1449
1 4 5 0
end do

```

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
format (22(A, , ') )
1497156 format ( \(18(\mathrm{E}, \mathrm{\prime}, '), 4\) ( A, ',') )
1498
1499
1500 ! ( hydrographs and anything else time-dependant
1501 ! is plotted from this file )
1502
1503 OPEN( UNIT \(=20\), FILE \(=\) 'details.CSv', STATUS='REPLACE')
1504 WRITE \((20, *)\) 'Timestamp, ', FILE_DATE, ' ', FILE_TIME, ','
```

1505 DO i = 1, 18
END DO
write(20,*) 'north__bc,', north_bc
write(20,*) 'south__bc,', south_boc
write(20,*) 'east__bc,', east_bc
write(20,*) 'west__bc,', west_boc
WRITE(20,*) 'imax,', imax, ','
WRITE (20,*) 'jmax,', jmax, ','
WRITe(20,*) 'vmax,', vmax, ','
WRITE(20,*) '-----,'
WRITE(20,*) 'Timestep,Iterations,MaxRelChng,MaxLocn,' , \&
'L2_Norm, Rain.mmphr,' , \&
'MaxThk.cm, Time,Qout.Lps,' , \&
'h_imid_j1_hist,' , \&
'h_imid_max_hist,'
DO n = 1, nlast
WRITE (20,300) n, numit(n), maxdiff(n), loc(n) , \&
L2_History(n), rain(n)*1000.*3600. , \&
maxthk(n)*100., time(n), -Qout(n)*1000. , \&
h_imid_j1_hist(n), h_imid_max_hist(n)
end do
close(20)
1528
1529
1 5 3 0
1531
1532
1533 ! an internal write statement to store the value of the REAL variable
1534 ! "time_simulated" in the CHARACTER variable "out_time"
1535 write(out_time, 111) time_simulated
1536
1537 call write_flipped_matrix(h_old, imax, jmax, 'h_old'//out_time//' sec.csv')
1 5 3 8
1539
1 5 4 0 ! Output iteration history for the last time-step
1 5 4 1
1542 call write_matrix(h_temp_hist, vmax, qmax, 'h_temp_hist'//out_time//' sec.csv')
1 5 4 3
1544
1545 ! Animation output
1546
1 5 4 7
1548
1549
1550 open(unit = 70, file = 'animate.csv', status = 'REPLACE')
1551 write(70, 700) 'V,X,Y,Z,', ani_lab(:)
1552
1 5 5 3
1 5 5 4
1555
1556
1 5 5 7
1 5 5 8

```

1506
1507
1508 ite
```

 WRITE(20, *) input_variables(i), ',', input_values(i), ','
    ```

```

! Output depth grid for last timestep

```


```

if(animate .eqv. .TRUE.) then
!Animation results
do j = 1, jmax
do i = 1, imax
v = F_LinearIndex(i, j, jmax)
write(70, 2) v, CV_Info(v) % X,
CV_Info(v) % Y, Z(i,j), h_vec_ani(v, :)
end do
end do

```
```

1 5 5 9
close(70)
1 5 6 0
1561 700 format((A, 10000(A, ',')))
1562
1563 !Also sperately output the list of animation lables
1564 open(unit = 71, file = 'ani_labs.CSV', status = 'REPLACE')
1565 write(71, *) 'ani,lab,time,'
1566 do ani = 1, animax
1567 write(71, 711) ani, ani_lab(ani), ani_time(ani)
1568 end do
1569 close(}71\mathrm{)
1 5 7 0
1571 end if
1 5 7 2
1 5 7 3
1574
1 5 7 5
1576
1577 ! Output grid numbering scheme to a file
1578 ! store grid numbering scheme and write it to a file
1579 do j = 1, jmax
1 5 8 0
1581
1582
1 5 8 3
1 5 8 4
1585 open(unit = 30, file = 'grid.CSv', status = 'REPLACE')
1586 do j = jmax, 1, -1
1587 WRITE(30, 400) grid(j, :)
1588 end do
1589 close(30)
1 5 9 0
1 5 9 1
1592 !Format statements
1593
15942 FORMAT(I, ',', 10000 (E, ','))
1595 10 FORMAT(' ', (i3, ' '), (F10.3, ' ') , F10.6)
1596 111 FORMAT(f9.2)
1597200 FORMAT (A, (E, ','))
1598 201 FORMAT (A, (I, ','))
1599300 FORMAT (2 (I, ','), F12.7, ',' , \& ! n, numit, maxdif
1600 I, ',' , E, ',' , \& ! loc, L2_History
1601 2 (F12.8, ','), (F12.3, ','), 3 (F12.8 ,',')) ! rain,
maxthk, time, Qout, h_imid_j1hist, h_imid_max_hist
1602400 FORMAT(10000 (I, ','))
1603401 FORMAT((I, ',') , 2(F12.7, ','))
1604660 FORMAT(2(I, ','), 2(F12.7, ','))
1605 !--------------------
1607!= llll

```

\section*{Source File 2: shared.f95}
```

fortran_free_source
!
This module is part of PERFCODE, written by Bradley J. Eck.
File Date: 5 April }201
Purpose: This module declares variables to be used globally
Notes: - Variable organization tries to mirror program
the organization of the program
- See begining of main program for alphabetical
listing of variables with descriptions
- Use ONLY statement in subroutines to restrict
access to variables in this module

```

```

 MODULE SHARED
 ! //////////

implicit none
save
!------------------
!---
! PFC Properties
REAL :: K ! Hydraulic Conductivity [m/s]
REAL : : por ! Porosity [--]
REAL :: b_pfc !PFC Thickness [m]
REAL :: n_mann !Manning's n [s / m ^(1/3)]
! Physical constants
REAL :: g ! Gravitational Acceleration [m/s/s]
! Time Steps
REAL :: dt__pfc, dt_sheet, max_time
! Grid Spacing
REAL :: dx, dy
!Tolerances
INIEGER : : qmax, maxit
REAL :: eps_matrix, eps_itr, eps_ss
REAL :: relax, relax_tran
!Initial Condition
real :: h0 ! initial depth in meters
!Boundary Conditions
character(len=7) :: north_lbc, south_]bc, east_bbc, west_bcc
!Animation Options
logical :: animate ! at all and for this step
real :: dt_ani
!---------------------------
OTHER PARAMETERS
!-----------------------------

```
```

INIEGER, PARAMETER :: max_rec = 1000
REAL, PARAMEIER :: h_pfc_min = 1.e-10 ! use this instead of TINY
!---_-_-_-_-_--_-_-_-_-_-_-_
! RAINFALL
!-_-__-___-__________________-_
INIEGER :: nrr ! Number of rainfall records
REAL, DIMENSION(max_rec) :: rain_time, rain_rate

```

```

GRID GENERATION
!-_--_----_-----_-------
! Derived data types
type CLSEG !describes a centerline segment
real xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta, arclen
end type CLSEG
type gridcell ! Summary information for a grid cell
integer :: i, j, segment
real :: xi, eta
real :: X, Y
end type gridcell
! allocatable variables of derived types
type(CLSEG), allocatable, dimension(:) :: seg
type(gridcell), allocatable, dimension(:) :: CV_Info !17
!---------------------------
!Array sizes
integer :: imax, jmax, vmax
! Grid numbering scheme
integer, allocatable, dimension(:,:) :: grid
! Geometric Arrays
REAL, ALIOCATABLE, DIMENSION(:,:) :: lng, wid, area, z
REAL, ALIOCATABLE, DIMENSION(:,:) :: lng_south, lng_north
!----_
ELEVATIONS
!--_
!CROSS SECTION (Transverse direction)
! input file
integer :: nr_cs
REAL :: slope_CS(10), wid_CS(10)
! derived values
real, dimension(11) :: eta_cs=0., Z_cs=0.

```
```

1 0 5
106
1 0 7
108
1 0 9
1 1 0
1 1 1
112
1 1 3
1 1 4
115
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0
1 2 1
122
1 2 3
1 2 4
1 2 5
126
127
128
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
136
9999
1 3 7
1 3 8
1 3 9
1 4 0
1 4 1
142
1 4 3
1 4 4
1 4 5
1 4 6
1 4 7
148
1 4 9
1 5 0
1 5 1
1 5 2
153
1 5 4
155
156
1 5 7
!LONGITUDINAL PROFILE
integer :: nr_lp
real, dimension(100) :: dist_lp, Z_lp
real :: long_slope !longitudinal slope at each end of domain
! 1D GRID GENERATION
integer, TARGET :: TNE
REAL, ALIOCATABLE, DIMENSION(:), TARGET :: EDX, XCV, ZCV, etaCV
! 1D boudary conditions
real, allocatable, dimension(:) :: h_old_1d, h_new_1d
real, allocatable, dimension(:) :: slope_cs_1D, wid_cs_1d, eta_cs_1D
!-------------------------

```

```

! ARRAY INDICES AND LIMITING VALUES
integer :: i, j, v, q, n
integer :: ve
integer :: v_in !global index of 'inside' adjacent cell
integer :: nmax ! maximum number of time steps
integer :: nlast !the last timestep taken
! TIME STUFF
REAL :: dt
REAL, ALIOCATABLE, DIMENSION(:) :: rain !rainfall depth for each time step
REAL, ALIOCATABLE, DIMENSION(:) :: time
real :: time_simulated = 0.
character(len = 9) :: out_time ! Characters to for internal writes to store
character(len = 8) :: sim_time ! simulation time w/o floating point error
9.99
character(len = 8) :: sim_time2
! FRICTION SLOPES, POROSITY FUNCTIONS, AND CONVEYANCE COEFFICIENTS
! 'old' means time level 'n'
! 'itr' or '1' means time level n+1
REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: Sfw_old, Sfe_old, Sfs_old, Sfn_old
REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr
REAL :: pf, pf1
REAL :: Cw , Ce , Cs , Cn
REAL :: Cw1, Ce1, Cs1, Cn1
! BOUNDARY CONDITION STUFF
real :: eta_1D
real :: hs1, hs2, ds ! Sheet flow MOC
real :: hp1, hp2, dx_moc ! PFC flow MOC
real :: h_bound ! depth at boundary (returnd by MOC_KIN or 1D_FLOW
real :: eta_0_hp2_max ! max possible value for the MOC BC
! CONVERGENCE TESTING
logical :: transition
real :: relaxation_factor

```
```

REAL :: eps_itr_tol
integer :: pf_int, pf1_int ! use integers to detect transition
REAL, ALLOCATABLE, DIMENSION(:) :: residual, relchng
real :: maxrelchng_ss
! LINEAR SYSTEM
! Bands
REAL, ALLOCATABLE, DIMENSION(:) :: A, B, C, D, E, Fn, F1, F
! Test for diagonal Dominance
logical diagdom
Square matrix for outputting/use with library solvers
!---
! THE SOLUTION (at various stages and in various formats)

```

```

! Vector Form
REAL, ALLOCATABLE, DIMENSION(:) :: h_itr_vec, h_tmp_vec
REAL, ALLOCATABLE, DIMENSION(:) :: h_old_vec, h_new_vec
! Vector form, within a timestep (during an iteration)
real, allocatable, dimension(:,:) :: h_temp_hist
! Vector form, at intervals for animation
! rows --> grid cells
! cols --> times
REAL, ALIOCATABLE, DIMENSION(:,:) :: h_vec_ani
! Matrix Form
REAL, ALLOCATABLE, DIMENSION(:,:), TARGET :: h_old, h_itr
! Matrix form, at special times
real, allocatable, dimension(:,:) :: h_max, h_Q_max
real, allocatable, dimension(:,:) :: h_imid_j1_max, h_imid_max

```

```

 SUMMARY INFORMATION
    ```

```

! Input variables and values
character(len=10), dimension(18) :: input_variables
real, dimension(18) :: input_values
! Information about each timestep
INIEGER, ALIOCATABLE, DIMENSION(:) :: numit, loc
REAL, ALLOCATABLE, DIMENSION(:) :: maxdiff
real, allocatable, dimension(:) :: maxthk
integer, allocatable, dimension(:) :: matrix_numits
real, allocatable, dimension(:) :: Qout, L2_History
integer :: solver_numits, timestep_solver_numits
! time history of the depth at i=imax/2 j=1
real, allocatable, dimension(:) :: h_imid_j1_hist, h_imid_max_hist

```
```

!---
MISCELLANEOUS (gotta love this category)
!--
integer, dimension(60) :: astat=0 ! for keeping track of allocation statuses
integer, dimension(30) :: astat2(0:29) = 0
CHARACIER(8) FILE_DATE
CHARACIEER(10) FILE_TIME
! Routine timing
REAL :: cputime
integer :: run_start_time, run_end_time, count_rate, count_max
integer :: report = 1 ! determine if we should write out the timestep.
! For animation output
integer :: ani = 0 ! use this like 'report'
integer :: animax ! maximum value of ani, compute from max_time / ani_step
character(len = 10), allocatable, dimension(:) :: ani_lab ! labels for
mtaion output
real, allocatable, dimension(:) :: ani_time
character(len = 10) :: lab

```

```

END MODULE SHARED
! /////////|


```

\section*{Source File 3: pfc2Dfuns.f95}
```

! fortran_free_source
! This module holds external procedures (subroutine and functions)
! for the pfc2D model (PERFCODE).
! Using module creates an explicit interface for the procedures
module pfc2Dfuns
implicit none
contains
! 1. F_LinearIndex
! 2. F_por
! 3. F_RHS_n
! 4. F_RHS_n1

```

```

Function F_LinearIndex(i, j, jmax)
! Converts grid index to one-dimensional storage location
implicit none
integer, intent(in) :: i, j, jmax
integer :: F_LinearIndex
F_LinearIndex = (i - 1) * jmax + j
end Function F_LinearIndex
!=______=_=_=_=_=_=_

```

```

!Function to switch the porosity on/off if the water is in/out of the pavement
FUNCTION F_por (h)
USE shared, only: b_pfc, por
IMPLICIT NONE
REAL h, F_por
if (h >= b_pfc) then
F_por = 1.
ETSEIF (h < b_pfc) then
F_por = 1./por
end if
END Function F_por
!=-10
Function F_RHS_n(i, j, Cw, Ce, Cs, Cn, rr, pf, dt) Result(Fn)
! Computes the RHS of the linear system for time level n
use shared, only: h_old, Z, imax, jmax
implicit none
! Arguments
integer, intent(in) :: i, j
real , intent(in) :: Cw, Ce, Cs, Cn, rr, pf, dt

```
```

 Internal variables
 added a bunch of dummy variables with if statements to have this function
 also work at the boundaries.
 real :: Fn
real :: hw, he, hn, hs, Zw, Ze, Zs, Zn
! Thicknesses
if(i == 1) then; hw = 0.0; else; hw = h_old(i-1,j); endif
if(j == 1) then; hs = 0.0; else; hs = h_old(i,j-1); endif
if(j == jmax) then; hn = 0.0; else; hn = h_old(i,j+1); endif
if(i == imax) then; he = 0.0; else; he = h_old(i+1,j); endif
! Elevations
if(i == 1) then; Zw = 0.0; else; Zw = Z(i-1,j); endif
if(j == 1) then; Zs = 0.0; else; Zs = Z(i,j-1); endif
if(j == jmax) then; Zn = 0.0; else; Zn = Z(i,j+1); endif
if(i = imax) then; Ze = 0.0; else; Ze = Z(i+1,j); endif
!Compute the RHS from time level n
Fn = h_old(i,j) + * \&w * hw + Cs * hs \&
pf * dt / 2. * (Cw * hw + Cs * hs \&
+Cn * hn + Ce * he \&
+ Cw * Zw + Cs * Zs \&
+Cn * Zn + Ce * Ze \&
- (Cw + Cs + Cn + Ce) * h_old(i,j) \&
- (Cw + Cs + Cn + Ce) * Z(i,j) \&
+rr
)
end function F_RHS_n

```

```

Function F_RHS_n1(i, j, Cw1, Ce1, Cs1, Cn1, rr, pf, dt) Result (F1)
! Computes the part of the RHS due to time level n+1
use shared, only: Z, imax, jmax
implicit none
! Arguments
integer, intent(in) :: i,j
real , intent(in) :: Cw1, Ce1, Cs1, Cn1, rr, pf, dt
! Internal Variables
real :: F1
real :: Zw, Ze, Zs, Zn
! Elevations
if(i = 1) then; Zw = 0.0; else; Zw = Z(i-1,j); endif
if(j == 1) then; Zs = 0.0; else; Zs = Z(i,j-1); endif
if(j == jmax) then; Zn = 0.0; else; Zn = Z(i,j+1); endif
if(i == imax) then; Ze = 0.0; else; Ze = Z(i+1,j); endif
F1 = pf * dt / 2. * (Cw1 * Zw + Cs1 * Zs \&
+Cn1 * Zn + Ce1 * Ze \&
- (Cw1 + Cs1 + Cn1 + Ce1)* Z(i,j) \&
rrr)
104 end function F_RHS_n1

```
105

\section*{Source File 4: Utilities.f95}
```

! fortran free source

```


```

!

\ B E G I N M O D U L E ///////////
! ////////// U T I L I T I E S

\
!=========
module utilities
implicit none
contains
This module holds subroutines and functions for various jobs:
1. Subroutine GET_BANDS
2. Subroutine PUT_BANDS
3. Subroutine UNLINEARIZE
4. Subroutine BILINEAR_INTERP
5. Function F_LINTERP
6. Function F_L2_NORM
7. Function F_PYTHAGSUM
8. Function F_EXTRAPOLATE

```


```

!

\ BEGIN F UNCT I ON ///////////
////////// GET_BANDS

\
PURPOSE: Extracts the five bands from a penta-diagonal matrix.
!
SUBROUTINE GET_BANDS(COEF, N, LB, UB, A, B, C, D, E)
!
! COEF -- Penta-diagonal coefficient matrix.
! N -- number of unknowns (size of system)
LB -- lower bandwidth
UB -- upper bandwidth
! A,B -- lower bands of the penta-diagonal matrix
! C -- main diagonal
! D,E -- upper bands of the penta-diagonal matrix

```

```

!VARIABLE DECLARATIONS
Arguments

```
```

integer, intent (in) :: N, LB, UB
real, intent (in) :: $\operatorname{COEF}(\mathrm{N}, \mathrm{N})$
real, intent (out) :: $A(N), B(N), C(N), D(N), E(N)$
! Internal variables
integer :: i !looping variable

```

```

! Lowermost subdiagonal
do $i=L B+1$, n
$A(i)=\operatorname{coef}(i, i-L B)$
end do
! Subdiagonal
do $i=2$, n
$B(i)=\operatorname{coef}(i, i-1)$
end do
! Main Diagonal
do $i=1$, n
$C(i)=\operatorname{coef}(i, i)$
end do
! Super diagonal
do $i=1, n-1$
$D(i)=\operatorname{coef}(i, i+1)$
end do
! Uppermost diagonal
do $i=1, n-U B$
$E(i)=\operatorname{coef}(i, i+u b)$
end do

```

```

end subroutine GET_BANDS
$!===1$
$\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \ \quad$ END SUBROUTINE///////////
////////// GET_BANDS

\}
$!==$

```

```

! $\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \quad$ B E GIN S UBROUTINE ///////////
////////// PUT_BANDS \quad — $1 \backslash \backslash \backslash \backslash \backslash \backslash \backslash$
PURPOSE: Puts the five bands into a square matrix.
SUBROUTINE PUT_BANDS (A, B, C, D, E, N, LB, UB, COEF)
!
! A, B -- lower bands of the penta-diagonal matrix
C -- main diagonal
D,E -- upper bands of the penta-diagonal matrix
N -- number of unknowns (size of system)
LB -- lower bandwidth
UB -- upper bandwidth

```
```

! COEF -- Penta-diagonal coefficient matrix.
!
!VARIABLE DECLARATIONS
! Arguments
integer, intent(in) :: N, LB, UB
real, intent(in) :: A (N), B(N), C(N), D(N), E(N)
real, intent(out) :: COEF(N, N)
! Internal variables
integer :: i !looping variable

```

```

Fill coefficient matrix with zeros
coef(:,:) = 0.0
! Lowermost subdiagonal
do i = LB+1, n
coef(i,i-LB) = A(i)
end do
! Subdiagonal
do i = 2, n
coef(i,i-1) = B(i)
end do
! Main Diagonal
do i = 1, n
coef(i,i) = C(i)
end do
! Super diagonal
do i = 1, n-1
coef(i,i+1) = D(i)
end do
132 ! Uppermost diagonal
do i = 1, n - UB
coef(i,i+ub) = E(i)
end do

```

```

end subroutine PUT_BANDS
!=

 END S U B ROUTINE ///////////
! ////////// P UT_BANDS

\

```

```

148 subroutine unlinearize(vector, imax, jmax, vmax, matrix)
150 ! Puts unknowns in linear (vector) form into matrix form

```
130
131
142
143
144
145
146
147
149
```

151 ! Assumes column-wise ordering from southwest corner of domain
152 use pfc2Dfuns, only: F_LinearIndex
153 implicit none
154 !Arguments
155 integer, intent(in):: imax, jmax, vmax
156 real, dimension(vmax), intent(in) :: vector
1 5 7 real, dimension(imax, jmax), intent(out) :: matrix
158 !Internal Variables
1 5 9
1 6 0
1 6 1
162
1 6 3
1 6 4
1 6 5
1 6 6
1 6 7
168
1 6 9
170
172
1 7 3
1 7 4
175!

 BEGIN SUBROUTINE //////////
176 ! ////////// B I L I N E AR_IN T ERP

177
1 7 8
1 7 9
1 8 0
1 8 1
1 8 2
1 8 3
184
185
187 ! coordinates (x,y,z) are mapped into ksi, eta space that
188 ! ranges from -1 to 1. The values of ksi and eta for the point
189 ! X, Y are found by solving the non-linear system using the
190 ! Newton-Raphson method.
1 9 1
192 !
1 9 3
194
195 !VARIABLE DECLARATIONS
196 ! Arguments
197 real, intent (in) :: X, Y ! Coordinates of point where Z is desired
1 9 8 real, intent(out) :: Z ! Unknown function value
1 9 9 real, intent(in) :: x1, y1, z1 ! Coordinates of point 1
200
201
202
203
204
integer :: i, j, v
DO j = 1, jmax
DO i = 1, imax
v = F_LinearIndex(i, j, jmax)
matrix(i,j) = vector(v)
end do
end do
end subroutine unlinearize
!=

\ END S U B ROUT INNE///////////
! ////////// U N L I NEARI Z E

!=___________________=_=_=_
subroutine BILINEAR_INTERP (X , Y , Z , \&
x1, y1, z1, \&
x2, y2, z2, \&
x3, y3, z3, \&
x4, y4, z4, \&
dev, error)
! Finds the value of Z at the point X,Y using Finite Element
! style interpolation with a Bi-linear element. The physical
!
!
implicit none
real, intent(in) :: x2, y2, z2 ! " " point 2
real, intent (in) :: x3, y3, z3 ! " " point 3
real, intent(in) :: x4, y4, z4 ! " " point 4
integer, optional :: dev ! output device for writing errors
logical, optional :: error

```
```

205
206
207
229 ksi = 0.0
230 eta = 0.0
2 3 1
232 Map: do q = 1, qmax
2 3 3
234
2 3 5
236
2 3 7
238
2 3 9
240
241
242
243
244
245 !compute values of jacobian
246 !J_11 = d X_guess / d ksi
247 J_11 = x1 / 4. * (eta-1.) \&
248 + x2 / 4.* (1. - eta) \&
249 + x3 / 4.* (eta + 1.) \&
250
251
252
253
254
255
256
257
258

```
```

! Internal variables
real :: ksi, eta ! mapped coordinates of XY
real :: X_guess, Y_guess ! Values of X and Y computed from ksi and eta
real :: delta_ksi, delta_eta ! incremental change in values over iteration
real :: J_11, J_12, J_21, J_22 ! elements of the jacobian matrix
real :: PSI_1, PSI_2, PSI_3, PSI_4 ! Shape functions for BiLinear element
real, parameter :: tolit = 1.e-5 ! iteration tolerance
integer, parameter :: qmax = 10 ! maximum number of iterations
integer :: q ! looping variable
integer :: device ! output device
!
! Default values for output device
if(present(dev) .EQV. .FALSE.) then
device = 6
else
device = dev
end if
! STEP 1: Find the value of ksi and eta that correspond to the point X,Y
! initial guess for ksi and eta is in the middle of the element (0,0)
! Values of the shape functions at the point (X, Y)
PSI_1 = 0.25 * (1. - ksi) * (1. - eta)
PSI_2 = 0.25 * (1. + ksi) * (1. - eta)
PSI_3 = 0.25 * (1. + ksi) * (1. + eta)
PSI_4 = 0.25 * (1. - ksi) * (1. + eta)
! figure out value of X and Y using ksi and eta
X_guess = x1*PSI_1 + x2*PSI_2 + x3*PSI_3 + x4*PSI_4
Y_guess = y1*PSI_1 + y2*PSI_2 + y3*PSI_3 + y4*PSI_4

+ x2 / 4.* (1. - eta) \&
- x4 / 4.* (eta + 1.)
!J_12 = d X_guess / d eta
J_12 = x1 / 4. * (ksi - 1.) \&
- x2 / 4. * (ksi + 1.) \&
+ x3 / 4.* (ksi + 1.) \&
+ x4 / 4.* (1. - ksi)
!J_21 = d Y_guess / d ksi

```
282 !write(device,*) 'BILINER_INTERP q=', q, 'delta_ksi =', delta_ksi, ' delta_eta',
delta_eta
283
285 ! rembeber delta = ksi_q - ksi_q+1
286 ksi \(=\) ksi - delta_ksi
287 eta \(=\) eta - delta_eta
301 !write( device, * ) 'BILINEAR_INTERP: Mapping result: ksi =', ksi, ' eta = ', eta
302
303 ! assume no error and change if there is one
304 if( present( error) .eqv. .TRUE. ) then
305 error \(=\).FALSE.
306 end if
307
308 ! Give Error if iteration fails to converge
309 if( q .GT. qmax ) then
310 write( device, * ) 'BILINEAR_INTERP: Mapping iteration failed. ksi =', ksi, '
eta \(=\) ', eta
```

3 1 1
312 if(present(error) .eqv. .TRUE.) then !assign an error if the variable was
provided.
313 error = .TRUE.
314 end if
315 end if
316
317
318 ! Confirm that mapped point lies inside the range of the datapoints
319 if(abs(ksi) .GT. 1. + tolit .OR. \&
320 abs(eta).Gr. 1. + tolit) then
321 write(device, *) 'BILINEAR_INTERP: Desired point lies outside \&
322 \& known points: ksi =', ksi, ' eta = ', eta
323 if(present(error) .eqv. .TRUE.) then !assign an error if the variable was
provided.
324 error = .TRUE.
325 end if
326 end if
327
328 ! STEP 2: Having found the values of ksi and eta that correspond
329 ! to the point (X, Y) compute the value of Z at that location.
330
331 ! Values of the shape functions at the point (X, Y)
332 PSI_1 = 0.25 * (1. - ksi) * (1. - eta)
333 PSI_2 = 0.25 * (1. + ksi) * (1. - eta)
334 PSI_3 = 0.25 * (1. + ksi) * (1. + eta)
335 PSI_4 = 0.25 * (1. - ksi) * (1. + eta)
336
337 ! Value of Z at the point (X, Y)
338 Z = z1*PSI_1 + z2*PSI_2 + z3*PSI_3 + z4*PSI_4
339
340 !write(device, *) 'BILINEAR_INTERP: PSI_1=', PSI_1, \&
341 ! ' PSI_2=', PSI_2, \&
342 ! 'PSI_3=', PSI_3, \&
343 ! 'PSI_4=', PSI_4, \&
344!
' Z=', Z
345
346
347 end subroutine BILINEAR_INTERP
348 !==________________=_=_=_
349!

 EN D S U B ROUTINE //////////
350! ////////// B I L I NEAR_INTERP

351
352
353
354
355
BEGIN NGNCTIONO/N/////N
356
357
358 ! linear interpolation function
359 function F_linterp(X, known_X, known_Y, n) Result(Y)
360 !VARIABLE DECLARATIONS
! Arguments
integer, intent(in) :: n

```
```

real , intent(in) :: X
real, dimension(n), intent(in) :: known_X, known_Y
! Internal Variables
real :: Y
integer :: i1, i2, j, im
! bi-section method to find the right place in the table
! initialize indices
i1 = 1
i2 = n
375 if(known_X(n) .GT. known_X(1)) then
376 !ASCENDING ORDER
377 do j = 1, 1000
414 ! WRITE(*,*) 'j=', j, 'im=', im, 'i1=', i1, 'i2=', i2
416 if(j .eq. 1000) then

```
373
374
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
415
```

 write(*,*) 'F_LINTERP: Arrays too large for this routine, &
 & increase number of searching steps and recompile.'
 endif
bounds found; compute interpolated value
= (X - Known_X(i1)) / \&
(Known_X(i2) - Known_X(i1)) * \&
(Known_Y(i2) - Known_Y(i1)) + Known_Y(i1)

```

```

end function F_LINTERP

\ END FUNCTION ///////////
! ////////// F_L I N T ERP

!=________________________=_=_=_=_
!=_________________________=_=_=_=_
l

\ BEGIN FUNCTION l//////////
function F_L2_NORM(vector, n) result(L2)
! Computes the L2 norm of a real-valued vector with n elements
! Variable Declarations
implicit none
! Arguments
integer, intent(in) :: n
real , dimension(n), intent(in) :: vector
! Internal Variables
real :: L2
real, dimension(n) :: squares
integer :: i
do i = 1, n
squares(i) = vector(i) ** 2
end do
L2 = sqrt(sum(squares(:)))

```

```

end function F_L2_NORM
!==_

 END F U NC T I ON ///////////
////////// F_L 2_NORM

!

 BEGIN FUNCTION ///////////
! /////////l F_PythagSum

\
Function F_PythagSum(x, y)

```
```

! Computes the pythagorean sum of twovariables
implicit none
REAL :: x, y, F_PythagSum
F_PythagSum = sqrt (x**2 + y**2)
end function F_PythagSum
!=

 END F UNC T ION ///////////
////////// F_Pyth a gS um

\

```

```

!

 B E G I N F U N C T I O N ///////////
! /////////| F_EXTRAPOLATE

\
Function F_Extrapolate(X, x1, y1, x2, y2) RESULT (Y)
Finds the value of Y corresponding to the location X
on the line passing through (x1, y1) and (x2, y2)
Called from: convcoef@frictionslope
implicit none
REAL, intent(in) :: X, x1, y1, x2, y2
REAL :: Y
REAL :: slope, intercept
slope = (y2 - y1) / (x2 - x1)
intercept = y1 - slope * x1
Y = slope * X + intercept
end function F_Extrapolate
!==_
ll////////
!==_____=_=_=_=_=_
!===
!==_
! ////////// U T I L I T I E S

\
!===============

```

\section*{Source File 5: inputs.f95}
```

fortran_free_source
! Purpose: This module contains subroutines to read input files
module inputs
implicit none
contains
! 1. GET_PARAMETERS
2. GET_RAINFALL
!= \ B EG INN S U B R O U T I N E ///////////
////////// G E T _ P A R A M E T E R S

\
!
! Purpose: This subroutine reads problem parameters
! from a user selected input file.
subroutine GET_PARAMETERS(K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, \&
dx, dy, qmax, maxit, h0, eps_matrix, eps_itr, eps_ss, \&
relax,
north__bc, south_loc, east_loc, west_loc, \&
animate, dt_ani
!
K -- Darcy Hydraulic Conductivity
por -- Effective porosity of the PFC
b_pfc-- Thickness of the pfc
n_mann-- Manning's n
g -- gravitational acceleration
! VARIABLE DECLARATIONS
!Arguments
REAL, intent (out) :: K, por, b_pfc, n_mann, g, dt_pfc, dt_sheet, max_time, dx,
integer, intent (out) :: qmax, maxit
real, intent (out) :: h0, eps_matrix, eps_itr, eps_ss, relax, relax_tran
character(7), intent(out) :: north_bbc, south_lbc, east_]bc, west_]bc
logical, intent(out) :: animate
real, intent(out) :: dt_ani
! Internal variables
CHARACIER(20) infile ! the file name to read parameters from
CHARACIERR(5) :: dummy_line
!
! Executable
default value for input file

```
```

infile = 'parameters.dat'
5 0
! Prompt the user for the input file
WRITE(*,*) 'Enter filename or press / for ', infile
READ(*,*) infile
!read the file
OPEN(UNIT=8, FIIE = infile, ACIION = 'read', STATUS = 'old')
READ(unit=8, fmt = *) dummy_line
READ(unit=8, fmt = *) dummy_line
! PFC Properties
READ (unit=8, fmt = *) dummy_line
READ (unit=8, fint = *) K
READ(unit=8, fint = *) por
READ(unit=8, fmt = *) b_pfc
READ (unit=8, fimt = *) n_mann
!Physical Constants
READ (unit=8, fint = *) dummy_line
READ (unit=8, fmt = *) g
!Timesteps
READ (unit=8, fmt = *) dummy_line
READ (unit=8, fmt = *) dt_pfc
READ(unit=8, fmt = *) dt_sheet
READ(unit=8, fmt = *) max time
! preliminary grid spacing
READ (unit=8, fmt = *) dummy_line
READ (unit=8, fmt = *) dx
READ (unit=8, fmt = *) dy
! tolerences
READ(unit=8, fmt = *) dummy_line
READ (unit=8, fmt = *) qmax
READ(unit=8, fmt = *) maxit
READ (unit=8, fmt = *) eps_matrix
READ (unit=8, fmt = *) eps_itr
READ (unit=8, fmt = *) eps_ss
READ (unit=8, fmt = *) relax
READ(unit=8, fmt = *) relax_tran
inital depth
READ(unit=8, fmt = *) dummy_line
READ (unit=8, fmt = *) h0
! Boundary conditions
READ (unit=8, fmt = *) dummy_line
READ (unit=8, fmt = *) north__bc
READ (unit=8, fmt = *) south_lbc
READ(unit=8, fmt = *) east__bc
READ(unit=8, fmt = *) west__bc

```
```

1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
108
1 0 9
1 1 0
1 1 1
112
1 1 3
1 1 4
115
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0
1 2 1
122
123
124
125
126
1 2 7
128
1 2 9
130 INIEGFR, intent(in) :: max_rec ! maximum allowable number of rainfall records
131 INTEGER, intent(out) :: nrr !Number of rainfall records
132 REAL, DIMENSION(max_rec), intent(inout) :: rain_time, rain_rate
1 3 3
1 3 4
135
1 3 6
1 3 7
1 3 8
1 3 9
140
141
142
143
1 4 4
145
146
147
1 4 8
1 4 9
1 5 0
1 5 1
152
1 5 3
1 5 4
1 5 5
recompile

```
```

else
do i $=1$, nrr
READ (unit $=8$, fint $=$ *) j, rain_time (j), rain_rate (j)
end do
end if
close(8)
165 end subroutine GET_RAINFALL
172 end module inputs

```
163
164
166
167
169
170
171

Source File 6: Outputs.f95
```

! fortran_free_source
! Purpose: This module contains subroutines to output information

```

```

!

\ //////////
MODULE outputs
implicit none
contains
!= 1. ECHO TMPUTS
! 2. WRITE_FLIPPED_MATRIX
3. WRITE_MATRIX
4. WRITE_VECTOR
5. WRITE_SYSTEM

```

```

 \\\\\\\\\\\ B E G I N S U B ROUT I N E ///////////
 //|/|/|/|/ ECHO_INPUTS \\\\\\\\\\\
 !=___________________________________
!
Purpose: This subroutine echos the input data to the
specified device in comma seperated values format.
subroutine ECHO_INPUTS(dev)
use shared, only: K, por, b_pfc, n_mann, g

```
```

VARIABLE DECLARATIONS
Arguments
integer, intent(In) :: dev ! The device number that the output
!integer, intent(in) :: nrr ! number of rainfall records
!REAL, intent(in) :: K, por, b_pfc, n_mann, g
!REAL, intent(in) :: rain_time(:), rain_rate(:)
!real, intent(in) :: dt
! Internal variables
!integer :: i
write(dev, *) 'SUMMARY OF INPUT DATA,'
write(dev, 200) 'Hydraulic Conductivity (m/s),', K
write(dev, 200) 'Effective Porosity,', por
write(dev, 200) 'PFC Thickness (m),', b_pfc
write(dev, 200) "Manning's n,", n_mann
write(dev, 200) 'Gravitational Acceleration (m/s/s),', g
!----------------
FO0 FORMAT (' ', A, (F10.6, ','))
!-
end subroutine ECHO_INPUTS

```

```

 ! \\\\\\\\\\\ END (/l/ S E E B ROUT I N E ///////////
 !=________________________=_=_=_=_=_

```

```

 \\\\\\\\\\ B EGIN S U B ROUT I N E ///////////
 ! //////////WRIT E_FLIPPE D_MATRIX

\
subroutine write_flipped_matrix(array, imax, jmax, outfile)
Writes matrix in 'flipped' form so it corresponds to
the physical geometry. This means the (1,1) entry
appears at the bottom left corner of the ouput file.
! VARIABLE DECLARATIONS
Arguments
integer imax, jmax
real array(imax, jmax)
character(len=*):: outfile !assumed length specifier *
Internal variables
integer :: i, j
integer :: ilist(imax), jlist(jmax)
! Create lists of indices
do i = 1, imax
ilist(i) = i
end do
do j = 1, jmax

```
```

 jlist(j) = j
 end do
print *, 'WRITE_FLIPPED_MATRIX: writing the file ', outfile
! Write the length array in upside down form so it corresponds to
! to the physical geometry.
OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')
! First line
write(9, 1) ' j \ i ', ilist(:)
! and the rest
do j = jmax, 1, -1
write(9, 2) jlist(j), array(:,j)
end do
close(}9\mathrm{)
! ---
Format statements
format(A, ',', 10000 (I, ','))
format(I, ',', 10000 (F12.7, ','))

```

```

end subroutine write_flipped_matrix

```

```

 \\\\\\\\\\ END S U B ROUT INNE ///////////
 ////////// WRI TE_F L I P P E D _ MA T R I X \\\\\\\\\\\\
    ```

```

!=________________=_=_=_=_=_=_=_

\ B EGIN S UBROUTINE / ///////////
! ////////// WRI TE_MATRIX

subroutine write_matrix(array, imax, jmax, outfile)
! Writes matrix in usual form so the (1,1) entry
! appears at the top left corner of the ouput file.

```

```

! VARIABLE DECLARATIONS
! Arguments
integer imax, jmax
real array(imax, jmax)
character(len=*):: outfile !assumed length specifier *
Internal variables
integer :: i, j
integer :: ilist(imax), jlist(jmax)
!------------------------
do i = 1, imax
ilist(i) = i
end do

```
```

do j = 1, jmax
jlist(j) = j
end do
print *, 'WRITE_MATRIX: writing the file ', outfile
OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')
do i = 1, imax
write(9, 4) array(i,:)
end do
close(9)

```

```

 Format statements
 format(A, ',', 10000 (I, ','))
 format(I, ',', 10000 (F12.7, ','))
 format(10000 (F12.7, ','))
 format(10000 (E , ','))
 160 end subroutine write_matrix
164!=_W R I T E_M A T R I X
170 subroutine write_vector(array, imax, outfile)
171 ! Writes matrix in usual form so the (1,1) entry
172 ! appears at the top left corner of the ouput file.
174 ! VARIABLE DECLARATIONS
175 ! Arguments
176 integer imax
real array(imax)
character(len=*):: outfile !assumed length specifier *
! Internal variables
integer :: i

```

```

! Create lists of indices
print *, 'WRITE_VECTOR: writing the file ', outfile
188 OPEN(UNIT=9, FILE = outfile, STATUS = 'REPLACE')

```
158
159
161
162
165
166
167
168
169
173
185
186
187 !
189
```

190 ! and the rest
do i = 1, imax
write(9, 3) array(i)
end do
close(9)
1 9 6
197
198 ! Format statements
1993 format((E, ','))
2 0 0
201
202
203
2 0 4
205
206
207
208
209
210
subroutine WRITE_SYSTEM(A, B, C, D, E, F, n, outfile)
integer, intent(in) :: n
real, dimension(n), intent (in) :: A, B, C, D, E, F
character(len=*) :: outfile
integer :: i
open(unit = 11, file = outfile, status = 'REPLACE')
write(11, *) 'V, A, B, C, D, E, F,'
do i = 1, n
write(11, 3) i, A(i), B(i), C(i), D(i), E(i), F(i)
end do
close(11)
2 2 4
2 2 5
226
227
2283 format((I, ','), 6(E, ','))
229
230 end subroutine WRITE_SYSTEM
231
232
2 3 3
2 3 4
235
236
237
238
end subroutine write_vector
!=____________________=_

 EN D S U B ROUTINE ///////////
! ////////|/| WRITE_VEECTOR

\
2 1 6
2 1 7
2 1 8
2 1 9
2 2 0
2 2 1
2 2 2
2 2 3
! Format statements

```

```

!=
!

\ END MODULE outputs ///////////
!

\ /ND MODULE outputs //////////
/////////

Source File 7: geom_funcs. 995

```
fortran_free_source
```



```
! \\\\\\\\\\ //////////
    MODULE geom_funcs
    implicit none
    contains
!==
! 2. unmap_x
! 3. unmap_y
```



```
Function F_L_xi(xi, eta, seg) Result(L_xi) !xccl, ycc1, dx, dy, R1, dR, W, thetal,
! Computes the METRIC COEFFICIENT for the length mapping.
!Function F_length_xi(xi, eta, xccl, yccl, dx, dy, R1, dR, W, thetal, dtheta)
! GEOMETRY MAPPING FUNCTIONS from Geometry.xlsb
use shared, only: CLSEG
implicit none
! Arguments
real xi, eta
type (CLSEG) :: seg
! Result
real L_xi
! Internal Variables
real angle, dx_dxi, dy_dxi
real xccl, yccl, dx, dy, R1, dR, W, thetal, dtheta
!-------------------------------------------------------------------------------------
! Assign parts of the derived type to local variables
! to keep the formulas cleaner
xccl = seg%xccl
yccl = seg%yccl
dx = seg%dx
dy = seg%dy
R1 = seg%R1
dR = seg%dR
W = seg%W
thetal = seg%thetal
dtheta = seg%dtheta
! compute intermediate variables
Angle = thetal + xi * dtheta
dx_dxi = dx + dR * Cos(Angle) - dtheta * Sin(Angle) * &
            (R1 + W * (eta - 0.5) + xi * dR)
dy_dxi = dx + dR * Sin(Angle) + dtheta * Cos(Angle) * &
    (R1 + W * (eta - 0.5) + xi * dR)
```

dtheta)

```
5 1
 ! Calculate metric coefficient
L_xi = sqrt( (dx_dxi ** 2 + dy_dxi ** 2) )
End Function F_L_xi
!=
Function unmap_x(xi, eta, seg) Result( X )
!
use shared, only: CLSEG
implicit none
! Arguments
real xi, eta
type (CLSEG) : : seg
! Result
real X
! Internal Variables
real xcc1, dx, R1, dR, W, theta1, dtheta
!-------------------------------------------------------------------------------------
! Assign parts of the derived type to local variables
! to keep the formulas cleaner
xcc1 = seg%xcc1
dx = seg%dx
R1 = seg%R1
dR = seg%dR
W = seg%W
thetal = seg%thetal
dtheta = seg%dtheta
! Compute the X coordinate
X = (xccl + xi * dx) + &
    (R1 + xi * dR + (eta - 0.5) * W) * Cos(thetal + xi * dtheta)
end function unmap_x
!=__________________=_=_
Function unmap_y(xi, eta, seg) result( Y )
use shared, only: CLSEG
implicit none
real xi, eta
type (CLSEG) : : seg
! Result
real Y
! Internal Variables
real ycc1, dy, R1, dR, W, theta1, dtheta
```



```
    Assign parts of the derived type to local variables
! to keep the formulas cleaner
ycc1 = seg%ycc1
dy = seg%dy
03 R1 = seg*R1
104 dR = seg%dR
```

```
105 W = seg%W
106 thetal = seg%thetal
107 dtheta = seg%dtheta
108
1 0 9
110 Y = (ycc1 + xi * dy) + &
111 (R1 + xi * dR + (eta - 0.5) * W) * Sin(thetal + xi * dtheta)
112
113 end function unmap_y
```



```
115
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
```



```
125
126
127 ! ///////// \\\\\\\\\\\\
128
\begin{tabular}{lll} 
! \(\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash\) & \(/ / / / / / / / / / /\) \\
\(!\) & \(/ / / / / / / / /\) & \\
\(!\)
\end{tabular}
```


Source File 8: ConvCoef.f95

```
! fortran_free_source
4 \text { module ConvCoef}
implicit none
contains
! 1. CONVEYANCE
! 2. FrictionSlope
!=
! ////////// CON VEY A NCE \\\\\\\\\\
!
! Purpose: This subroutine computes the conveyance coefficient
! for a given cell face...look out, its fancy!
SUBROUTINE CONVEYANCE( face, sol, i, j, CC )
USE shared, ONLY: Sfw_old, Sfe_old, Sfs_old, Sfn_old, &
    Sfw_itr, Sfe_itr, Sfs_itr, Sfn_itr, &
    h_old, h_itr, wid, Z, K, n_mann, &
    b_pfc, lng, lng_south, lng_north, &
    h_pfc_min, area
implicit none
!VARIABLE DECLARATIONS
! Arguments
character(5), intent( in ) :: face ! Which face?
character(3), intent ( in) :: sol ! Computed based on which solution?
integer, intent ( in ) :: i, j ! of which cell?
REAL, intent (out) :: CC ! the conveyance coefficient
! Internal Variables
real :: hp, hs ! the thickness in the pavement and on the surface
REAL :: distin, distout ! size of cells for scaling purposes (will be length or
h depeding on which direction we're going.
REAL :: fluxdist ! the distance (size) of the cell face that the flux applies t
REAL :: hin, hout ! thickness at CV center
REAL :: zin, zout ! elevation at CV center
REAL :: head_at_face, Zface !HEAD and ELEVATION at the face
REAL, POINIER, DIMENSION(:,:) :: h ! pointer to the thickness array
REAL, POINIER, DIMENSION(:,:) :: Sfw, Sfe, Sfs, Sfn ! points to magnitude of
ction slope at compass face.
REAL :: Sf !the friction slope for the particular face that we're working with
logical :: error !make sure the result is reasonable
!----------------------------------------------
if ( sol .EQ. 'old' ) then
    ! thickness array
    h => h_old
```

2
3

```
    ! friction slope arrays
    Sfw => Sfw_old
    Sfe => Sfe_old
    Sfs => Sfs_old
    Sfn => Sfn_old
elseif( sol .eq. 'itr' ) then
    h => h_itr
    Sfw => Sfw_itr
    Sfe => Sfe_itr
    Sfs => Sfs_itr
    Sfn => Sfn_itr
    endif
    ! set internal/generic variables based on cell face
    if ( face .EQ. 'west ' ) then
    distin = lng( i, j)
    distout= lng(i-1, j)
    hin = h(i,j)
    hout= h(i-1,j)
    zin = Z(i,j)
    zout= Z(i-1,j)
    fluxdist = wid(i,j)
    Sf = Sfw( i, j)
    elseif( face .eq. 'east ' ) then
    distin = lng( i, j)
    distout= lng( i+1, j)
    hin = h(i,j)
    hout=h(i+1,j)
    zin = Z(i,j)
    zout= Z(i+1,j)
    fluxdist = wid(i,j)
    Sf = Sfe( i, j)
elseif( face .EQ. 'south' ) then
    distin = wid( i, j)
    distout= wid( i, j-1)
    hin = h(i,j)
    hout=h(i,j-1)
    zin = Z(i,j)
    zout= Z(i,j-1)
    fluxdist = lng_south(i,j)
    Sf = Sfs(i,j)
elseif( face .EQ. 'north' ) then
    distin = wid( i, j)
    distout= wid( i, j+1)
    hin = h(i,j)
    hout= h(i,j+1)
    zin = Z(i,j)
    zout= Z(i,j+1)
    fluxdist = lng_north(i,j)
    Sf=Sfn(i,j)
endif
!Compute the total head at the cell face
head_at_face = ( (hin+zin)*distout + (hout+zout)*distin ) &
                        / ( distin + distout)
```

```
!Elevation at the cell face
Zface = ( zin*distout + zout*distin ) / ( distin + distout)
!compute the thicknesses
hp = MIN ( b_pfc, head_at_face - Zface )
hs = MAX ( 0. , head_at_face - Zface - b_pfc)
111 !Force hp to stay positive
if( hp .LT. 0.0 ) then
    hp = TINY(h_pfc_min)
end if
    Compute the Conveyance coefficient
    would really like to just one statement to calc the conv coef
        but sqrt(Sf) sometimes gives problems, even when there is no
        sheet flow, so this if block hopefully avoids the problem
    if( hs .GT. O.) then
        !Sheet flow occurs and compute CC as usual
        CC = ( K * hp + 1./n_mann*hs**(5./3.)/sqrt(Sf) ) * &
            ( 2.*fluxdist / ( distout + distin ) ) / Area(i,j)
else
        !Sheet flow does not occur and CC only depends on subsurface
        CC = ( K * hp ) * &
            ( 2.*fluxdist / ( distout + distin ) ) / Area(i,j)
    end if
    ! ERROR CHECKING FOR CONVEYANCE COEFS
    if( CC .GT. HUGE (CC) .OR. CC .LT. -HUGE (CC) ) then
        error = .true.
else
    error = .false.
endif
!Output the parts of the calculation if the error is true
if( error .eqv. .true. ) then
    write(*,*) 'Problem with conveyance coefficient!'
    print *, 'i = ', i, ' j = ', j, ' Face = ', face, ' Soln = ', sol
    print *, ' K = ', K
    print *, ' hp = ', hp
    print *, ' n_mann = ', n_mann
    print *, ' hs = ', hs
    print *, ' Sf = ', Sf
    print *, 'fluxdist = ', fluxdist
    print *, ' distout = ', distout
    print *, ' distin = ', distin
    print *, ' Area = ', Area(i,j)
    print *, ' CC = ', CC
    write(*,*) 'Stopping Program'
    STOP
    endif
```

109
110
156
157

```
1 5 8
159 ! print the inputs for checking
160 ! print *, ''
161 ! print *, 'i = ', i, ' j = ', j, ' Face = ', face, ' Soln = ', sol
162 ! print *, ' K = ', K
163 ! print *, ' hp = ', hp
164 ! print *, ' n_mann = ', n_mann
165 ! print *, ' hs = ', hs
166 ! print *, ' Sf = ', Sf
167 ! print *, 'fluxdist = ', fluxdist
168 ! print *, ' distout = ', distout
169 ! print *, ' distin = ', distin
170 ! print *, ' Area = ', Area(i,j)
171 ! print *, ' CC = ', CC
172!
1 7 3
1 7 4
175
1 7 6
1 7 7
178 END subroutine conveyance
1 7 9
180 !=______________________=_
181 ! \\\\\\\\\\ EN D S U B R O U T I N E //////////
182! ////////// C ONVEYANCE \\\\\\\\\\
```



```
184
1 8 5
186! \\\\\\\\\\ B EGIN S U B ROUT INE //////////
187! ////////// F R I C T I O N S L O P E \\\\\\\\\\\
188
189 ! Purpose: This subroutine computes the magnitude of the friction
190 ! slope at the cell faces.
191 ! The arguments specifcy whether to use the OLD or ITR
192 ! solution array in the calculations and the arrays for storing the
results.
193 !
194!
195
196
197
198
199
200
201
202 SUBROUTINE FrictionSlope( sol, Sfw, Sfe, Sfs, Sfn )
2 0 3 ~ u s e ~ S H A R E D , ~ o n l y : ~ h \_ o l d , ~ h \_ i t r , ~ Z , ~ l n g , ~ w i d , ~ i m a x , ~ j m a x ~
204
205 use outputs, only: write_flipped_matrix
206 use utilities, only: F_PythagSum, F_Extrapolate
207
207 !----_-----------------
209 implicit none
210
! ---x------x--- Key: * is CV Center
! ! | * * | clll
x normal component of friction slope
                                    computed here by central difference
                                    O the four normal components are
                                    tangent here and so are averaged
!PERFCODE PERFCODE.f95
    Main program
        Arguments
```

```
character(3), intent( in ) :: sol
REAL, DIMENSION(imax, jmax), intent (out), optional :: Sfw, Sfe, Sfs, Sfn
! Internal Variables
REAL, DIMENSION(imax, jmax) :: HD ! Total HEAD at cell centers
REAL, DIMENSION(:,:), pointer :: h ! Pointer to array of thicknesses
REAL, DIMENSION(imax, jmax) :: Sf_norm_west, Sf_norm_east, Sf_norm_south,
norm_north
REAL, DIMENSION(imax, jmax) :: Sf_tan_west, Sf_tan_east, Sf_tan_south, Sf_tan_north
REAL, ALIOCATABLE, DIMENSION(:,:), target :: h_dry ! for computing pavement
es
INIEGER :: i, j !array idices
222 ! choose which thickness array to use for estimating the friction slope
223 if ( sol .EQ. 'old' ) then
    h => h_old
elseif( sol .eq. 'itr' ) then
    h => h_itr
elseif( sol .eq. 'dry' ) then
    allocate( h_dry( imax, jmax ) )
    h_dry = 0.0
    h => h_dry
endif
! compute the total head
HD = h + z !total head is thickness plus elevation
!initialize arrays to zero
! Sf_norm_west = 0.0
Sf_norm_east = 0.0
Sf_norm_south= 0.0
Sf_norm_north= 0.0
Sf_tan_west = 0.0
Sf_tan_east = 0.0
Sf_tan_south= 0.0
    Sf_tan_north= 0.0
    COMPONENT NORMAL TO EACH FACE
!-_-_-_-_
!
    ! WEST
do j = 1, jmax
    ! Domain interior, by central differences
    do i = 2, imax
            Sf_norm_west (i,j) = ( ( HD (i,j) - HD (i-1,j) ) / 0.5 / ( lng(i-1,j)
+ lng(i,j) ) )
257 end do
258 ! Western boundary of domain by extrapolation
259 i = 1
    Sf_norm_west (i,j) = F_Extrapolate( 0., % li,j) , Sf_norm_west(i+1,j), &
```

220
221
260

```
262
3 end do
!EAST
do j = 1, jmax
        ! Domain interior, by central differences
        do i = 1, imax - 1
            Sf_norm_east(i,j) = ( ( HD(i+1,j) - HD(i,j) ) / 0.5 / ( lng(i+1,j)
lng(i,j) ) )
270 end do
271 ! Eastern boundary of domain by extrapolation
272 i = imax
273 Sf_norm_east (i,j) = F_Extrapolate( 0., ( &
274 lng(i,j) , Sf_norm_east(i-1,j), &
2 7 5 ~ l n g ( i , j ) + l n g ( i - 1 , j ) , ~ S f \_ n o r m \_ e a s t ( i - 2 , j ) ~ ) ,
end do
2 7 7
278
279 !SOUTH
280 do i = 1, imax
    ! Domain interior, by central differences
    do j = 2, jmax
                    Sf_norm_south(i,j) = ( ( HD(i,j-1) - HD(i,j) ) / 0.5 / ( wid(i,j-1)
+ wid(i,j) ) )
284 end do
285 ! Southern boundary of domain by extrapolation
286 j = 1
    Sf_norm_south(i,j) = F_Extrapolate( 0., &
    wid(i,j) , Sf_norm_south(i,j+1), &
    wid(i,j)+wid(i,j+1), Sf_norm_south(i,j+2) )
end do
!NORTH
do i = 1, imax
    ! Domain interior, by central differences
        do j = 1, jmax - 1
297 Sf_norm_north(i,j) = ( ( HD (i,j) - HD(i,j+1) ) / 0.5 / (wid(i,j+1)
+ wid(i,j) ) )
298 end do
299 ! Northern oundary of domain by extrapolation
300 j = jmax
301 Sf_norm_north(i,j) = F_Extrapolate( 0., &
302 wid(i,j) , Sf_norm_north(i,j-1), &
303
304
305
306
307! COMPONENT TANGENT T O EACH F ACE
308! AND MAGNITUDEAT EACH FACE
309
310 ! component of friction slope that is TANGENT to each cell face
311 ! computed by averaging the four nearest locations where the
312 ! component is normal to a face.
```

!
!WEST
do $j=1$, jmax do $i=2$, imax

Sf_tan_west $(i, j)=\left(\left(S f _n o r m _n o r t h(i, j)+S f _n o r m _s o u t h(i, j)\right) * \operatorname{lng}(i-\right.$ \&
318 +(Sf_norm_north $(i-1, j)+$ Sf_norm_south (i-
$1, j)) * \operatorname{lng}(i, j)$) \&
319 / (2.* ($\operatorname{lng}(i, j)+\operatorname{lng}(i-1, j))$) $\operatorname{Sfw}(i, j)=$ F_PythagSum(Sf_norm_west (i,j), Sf_tan_west (i,j))
end do
end do
!EAST
do $j=1$, $j \max$ do $i=1$, imax -1

Sf_tan_east $(i, j)=($ (Sf_norm_north (i, j)
$327 \quad$ Sf_tan_east $(i, j)=$

+ Sf_norm_south $(i, j)) * \operatorname{lng}(i+1, j) \quad(S f$
328 +(Sf_norm_north $(i+1, j)$
+ Sf_norm_south $(i+1, j)) * \operatorname{lng}(i, j))$ \&
329 / (2.* ($\operatorname{lng}(i, j)+\operatorname{lng}(i+1, j))$)
Sfe(i,j) = F_PythagSum (Sf_norm_east (i,j), Sf_tan_east (i,j))
end do
end do
! SOUTH
do $i=1$, imax
336 do $j=2$, jmax
337 Sf_tan_south $(i, j)=\left(\quad\left(\operatorname{Sf} _\right.\right.$norm_east $\left.(i, j)+\operatorname{Sf_ norm_ west(i,j)}\right)$
* wid(i,j-1) \&

338 +(Sf_norm_east(i,j-1)+Sf_norm_west (i,j-
1))* $\operatorname{wid}(i, j$)) \&

339 / (2. * ($\operatorname{wid}(i, j)+w i d(i, j-1)) ~)$
Sfs(i,j) $=$ F_PythagSum(Sf_norm_south(i,j), Sf_tan_south(i,j)) end do
end do
343
344

* wid(i, j+1) \&

348 +(
Sf_norm_east $(i, j+1)+$ Sf_norm_west $(i, j+1)) *$ wid(i,j)) \&
349 / (2.* ($\operatorname{wid}(i, j)+\operatorname{wid}(i, j+1))$)
350 Sfn(i,j) = F_PythagSum (Sf_norm_north(i,j), Sf_tan_north(i,j))
351 end do
end do
353
354
355 ! deallocate space for h_dry
356 if(sol .eq. 'dry') then
357 deallocate(h_dry)
endif
366 ! write(100,*) 'Sf_norm_east', Sf_norm_east (i,j)
367 ! write (100,*) 'Sf_tan_east', Sf_tan_east(i,j)
373 ! write(100,*) 'Sf_norm_north(i+1,j)', Sf_norm_north(i+1,j)
374 ! write(100,*) 'Sf_norm_south(i,j)', Sf_norm_south(i,j)
375 ! write(100,*) 'Sf_norm_south $(i+1, j)$ ', Sf_norm_south $(i+1, j)$
376 !
377 !
378
379 end subroutine FrictionSlope
380
381 ! $=\quad$ _ \quad _
382 ! $\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash$ END S B R OUT I NE //////////
383 ! ////////// FRICTION S L O P E
384
386
387
388
389
390 end module ConvCoef
391

Source File 9: GridGen.f95

```
fortran_free_source
    This module is part of PERFCODE, written by Bradley J. Eck.
    This module contains subroutines related to generating the computational
        grid. The subroutines are:
            1. Generate_Grid Computes the length, width, and area
            of each grid cell.
            2. Assign_Elevations Gives an elevation to each grid cell center
        External code required by this module includes the modules
```



```
    \\\\\\\\\\\\
            MODULE GridGen
    ////////// \\\\\\\\\\
            implicit none
                    contains
!=
!= ///////////
            subroutine Generate_Grid( prelim_dx, prelim_dy )
! ///////// \\\\\\\\\\\\\
! Purpose: Read entries of a file into a derived data type
! and print the entries to the screen
USE shared, ONLY: seg, area, lng, lng_south, lng_north, wid, &
                    imax, jmax, vmax, CV_Info, astat, gridcell
USE outputs, ONLY: WRITE_MATRIX, WRITE_FLIPPED_MATRIX
USE geom_funcs, ONLY: F_L_xi, UNMAP_X, UNMAP_Y
USE pfc2Dfuns, ONLY: F_LinearIndex
!
implicit none
    VARIABLE DECLARATIONS
! Agruments
real, intent(in) :: prelim_dx, prelim_dy
! Internal Variables
INIEGER, parameter :: max_rec=144 ! maximum allowable number of rainfall records
integer :: N_seg
CHARACIER(len=20) infile ! the file name to read parameters from
integer :: i, j, v ! looping variables
```

```
5 2
character :: TRASH
real :: xi, eta, X, Y
real :: eta_s, eta_n
integer :: N_xi, N_eta, Seg_num
! for writing border info to file
integer :: factor = 5 ! how many times more border points than CVs?
integer :: ijf ! dummy variable for i or j times the factor
real, allocatable, dimension(:) :: NX, NY, SX, SY, EX, EY, WX, WY
! for writing grid to a file
integer :: res
real, allocatable, dimension(:,:) :: X_gl_long, Y_gl_long, X_gl_tran, Y_gl_tran
! read in the geometry data
! default value for input file
infile = 'CL_Segments.dat'
! Prompt the user for the input file
WRITE(*,*) 'Enter filename or press / for ', infile
READ(*,*) infile
OPEN( UNIT=8, FILE = infile, ACIION = 'read', STATUS = 'old' )
! Rainfall Rate
read( unit=8, fmt = * ) N_seg
!if ( nrr .gt. size ( rain_time ) ) then
    print *, 'Too many rainfall records--increase array size and recompile'
!else
read( unit=8, fmt = * ) trash
allocate( seg( N_seg ) )
do i = 1, N_seg
    READ( unit = 8 , fmt = * ) j, seg(j)%xcc1, seg(j)%ycc1, seg(j)%dx, &
                                    seg(j)%dy, seg(j)%R1, seg(j)%dR, &
                                    seg(j) %W, seg(j)%theta1, seg(j)%dtheta
                                    ! seg(j) = CLSEG(xcc1, ycc1, dx, dy, R1, dR, W, theta1, dtheta, 0. ) ! use
as placeholder for length
end do
1 0 3
104 close( 8 )
```

155 ! print *, 'j = ', j
156 ! print *, 'i Segment'
! estimate the length of each segment by evaluating the metric coefficients
do $i=1, N _s e g$
$\operatorname{seg}(i) \% a r c l e n=F _L _x i(0.5,0.5, \operatorname{seg}(i)) * 1.0$! L_xi * Delta_xi
end do
print *, 'Segment ArcLength'
do $i=1, N _$seg
print *, i, seg(i)\%arclen
end do
!total length
print *, ' Total Length: ', sum(seg(:)\%arclen)
! average length
print *, 'Average Length: ', sum(seg(:) \%arclen) / real(N_seg)
! Number of elements per segment
!nint = nearest integer
N_xi = nint($\left.\operatorname{sum}(\operatorname{seg}(:) \% a r c l e n) ~ / ~ r e a l\left(~ N _s e g ~\right) ~ / ~ p r e l i m _d x ~\right) ~$
N_eta= nint(sum(seg(:) \%W) / real(N_seg) / prelim_dy)
print *, 'N_xi = ', N_xi, ' N_eta $=$ ', N_eta
! size of computational domain
imax $=$ N_xi * N_seg
jmax $=$ N_eta
vmax $=$ imax * jmax

ALLOCATE ARRAYS
allocate(lng(imax, jmax), STAT = astat(1))
allocate(wid(imax, jmax), STAT $=\operatorname{astat}(2)$)
allocate(area(imax, jmax), STAT $=\operatorname{astat}(3)$)
allocate(lng_south(imax, jmax), STAT = astat (6))
allocate(lng_north(imax, jmax), STAT = astat(7))
allocate (CV_Info(vmax), STAT $=\operatorname{astat}(17)$)
! Now compute length, width, and area of each cell
should confirm that all widths are the same
do $j=1, \quad j \max$
print *, 'j= ', j
print *, 'i
do i $=1$, imax
! Determine which segment we're in
193 call write_flipped_matrix(lng, imax, jmax, 'length.csv')
194
195 call write_flipped_matrix(wid, imax, jmax, 'width.csv')
196
197 call write_flipped_matrix(area, imax, jmax, 'area.csv')
198
199 call write_flipped_matrix(lng_south, imax, jmax, 'lng_south.csv')
200
201 !Write the CV info file
open(unit=40, file = 'CV_info.CSV', status = 'REPLACE')
write(40 , *) ' $\mathrm{v}, \mathrm{i}, j$, segment, $x i$, eta, X, Y, '
do $\mathrm{v}=1$, vmax
WRITE $(40,44)$ v, CV_info (v)
end do
44 format (4(I, ','), 4(E, ','))
209
210
211
212 ! >>>>>>>>>> W R I T E O U N D ARY COORDS <<<<<<<<<<<

```
213
214 ! was going to make this a subroutine, but it seemed easier to add it here
215
216 ! Allocate arrays
217 ijf = imax * factor
allocate( NX( ijf) )
allocate( NY( ijf) )
allocate( SX( ijf) )
allocate( SY( ijf) )
ijf = jmax * factor + 1
allocate( EX( ijf ) )
allocate( EY( ijf ) )
allocate( WX( ijf ) )
allocate( WY( ijf ) )
! NORTH and SOUTH borders
!re-calc N_xi so as not to change the following formula
N_xi = N_xi * factor
do i = 1, imax * factor
    Seg_Num = ceiling( real(i) / real( imax * factor ) * real( N_seg ) )
    ! Compute values of xi
    if ( i .LE. N_xi ) then
                xi = i * 1. / N_xi - 1. / N_xi / 2.
    else
                xi = ( i - ( Seg_Num - 1 ) * N_xi ) * 1. / N_xi - 1. / N_xi / 2.
    end if
        ! NORTH -- Physical Coordinates on border
        eta = 1.0
        NX(i) = unmap_x( xi = xi, eta = eta, seg = seg( Seg_Num ) )
        NY(i) = unmap_y( xi = xi, eta = eta, seg = seg( Seg_Num ) )
        ! SOUTH -- Physical Coordinates on border
        eta = 0.0
        SX(i) = unmap_x( xi = xi, eta = eta, seg = seg( Seg_Num ) )
        SY(i) = unmap_y( xi = xi, eta = eta, seg = seg( Seg_Num ) )
    end do
    ! EAST and WEST borders
do j = 1, jmax * factor + 1
    eta = ( j - 1. ) / ( jmax * factor )
    ! WEST
    xi = 0.0
    WX(j) = unmap_x( xi = xi, eta = eta, seg = seg( 1 ) )
    WY(j) = unmap_y( xi = xi, eta = eta, seg = seg( 1 ) )
        ! EAST
        xi = 1.0
        EX(j) = unmap_x( xi = xi, eta = eta, seg = seg( N_seg ) )
        EY(j) = unmap_Y( xi = xi, eta = eta, seg = seg( N_seg ) )
end do
! Write the borders to files
open( unit = 40, file = 'NS_borders.CSv', status = 'REPLACE')
WRITE(40, *) 'NX, NY, SX, SY,'
do i = 1, imax * factor
```

```
            write(40, 4) NX(i), NY(i), SX(i), SY(i)
end do
close(40)
open( unit = 41, file = 'EW_borders.CSv', status = 'REPLACE')
write( 41, * ) 'EX, EY, WX, WY,'
do j = 1, jmax * factor + 1
    write(41, 4) EX(j), EY(j), WX(j), WY(j)
    end do
    close(41)
    format(4 (E, ',') )
```



```
! >>>>>>>>> WRITE GRID FOR PLOTTING <<<<<<<<<<
!
    envisioning the use of R's MATPLOT command, write a matrix of X coords
    and a matrix of Y coords
    we plot a bunch of points
res = 4 !parameter to control the resolution of of the plotting
                    ! this is analogous to the variable 'factor' how many
                            ! points do you want per CV?
allocate( X_gl_long( imax * res, jmax + 1 ) )
allocate( Y_gl_long( imax * res, jmax + 1 ) )
! redefine N_xi to reflect the amplified number of points for the grid
N_xi = imax / N_seg * res
! LONGITUDINAL GRID LINES
do j = 1, jmax + 1
    !value of eta is constant for each j
    eta = ( j - 1. ) / jmax
    do i = 1, imax * res
            ! figure out which segment we're in
            Seg_Num = ceiling( real(i) / real( imax * res ) * real( N_seg ) )
            ! Compute values of xi
            if ( i .LE. N_xi ) then
                xi = ( i - 1. ) / ( N_xi )
            else
                    xi = ( i - ( ( Seg_Num - 1. ) * N_xi ) ) * 1. / N_xi
            end if
            X_gl_long(i, j) = unmap_x( xi = xi, eta = eta, seg = seg( Seg_Num ) )
            Y_gl_long(i, j) = unmap_y( xi = xi, eta = eta, seg = seg( Seg_Num ) )
        end do
end do
3 1 8 \text { call WRITE_MATRIX( X_gl_long, imax * res, jmax + 1, 'X_gl_long.CSV' )}
call WRITE_MATRIX( Y_gl_long, imax * res, jmax + 1, 'Y_gl_long.cSv' )
```

316
317

321
322
323
324 325
326
327
328
329
!TRANSVERSE GRID LINES (these are just straight and so only require two points)
allocate (X_gl_tran (2, imax + 1))
allocate(Y_gl_tran (2, imax + 1))
! put N_xi back to what its proper value
N_xi $=$ imax / N_seg
do $j=1,2$
eta $=j-1$.
do $i=1$, $i \max +1$
! figure out which segment we're in
Seg_Num = ceiling (real(i) / real (imax + 1) * real (N_seg))
! Compute values of xi
if (i .LE. N_xi) then
$x i=(i-1) /.\left(N _x i\right)$
else
xi $=\left(i-1 . \quad-\left(S e g _N u m-1.\right)\right.$ * N_xi) / N_xi
end if
X_gl_tran(j, i) $=$ unmap_x(xi $\left.=x i, ~ e t a=e t a, ~ s e g=s e g\left(S e g _N u m\right) ~\right)$
Y_gl_tran(j, i) $=$ unmap_y (xi $=x i$, eta $=$ eta, $\operatorname{seg}=\operatorname{seg}($ Seg_Num $)$)
end do
end do
call WRITE_MATRIX(X_gl_tran, 2, imax + 1 , 'X_gl_tran.CSV')
call WRITE_MATRIX(Y_gl_tran, 2, imax + 1, 'Y_gl_tran.CSV')
! Deallocate needed?
deallocate(NX, NY, SX, SY, EX, EY, WX, WY)
deallocate(X_gl_long, Y_gl_long, X_gl_tran, Y_gl_tran)


```
375!
376!
377 ! Internal Variables
378!
379!
380 ! Assign from a cross section: read in the cross section
381 !
382!
383!
384!
385!
386!
387
388 use SHARED, only: Z, imax, jmax, lng_south, CV_Info, seg, &
389 nr_cS, slope_cs, wid_cS, eta_cs, Z_cs, nr_lp, dist_lp, Z_lp
390
3 9 1 ~ u s e ~ u t i l i t i e s , ~ o n l y : ~ F \_ L i n t e r p ~
3 9 2 \text { use outputs, only: write_flipped_matrix}
3 9 3 ~ u s e ~ p f c 2 d f u n s , ~ o n l y : ~ F \_ L i n e a r I n d e x ~
394 implicit none
395
396 ! !CROSS SECTION ( Transverse direction)
397 ! ! input file
398 ! integer :: nr_cs
399 ! REAL :: slope_cs(10), wid_cs(10)
400
401
402!
403!
404 ! !LONGITUDINAL PROFILE
405 ! integer :: nr_lp
406 ! real, dimension(100) :: dist_lp, Z_lp
407!
4 0 8
4 0 9
4 1 0
4 1 1
4 1 2
4 1 3
4 1 4
4 1 5
4 1 6
4 1 7
4 1 8
4 1 9
4 2 0
4 2 1
4 2 2
4 2 3
424 ! CROS S S E C T I ON
425
426 ! default value for input file
427 infile = 'CrossSection.dat'
4 2 8
```

```
! Prompt the user for the input file
WRITE(*,*) 'Enter filename or / for ', infile
READ(*,*) infile
! Read the file
OPEN( UNIT=8, FILE = infile, ACTION = 'read', STATUS = 'old' )
!Cross Seection geometry
read( unit=8, fmt = * ) dummy_line
READ( unit=8, fmt = * ) nr_CS
read( unit=8, fmt = * ) dummy_line
if( nr_cs .gt. size( slope_cs) ) then
    print *, 'SET_ELEVATIONS: Too many records in', infile, &
                            'increase array size and recompile'
else
        do i = 1, nr_cs
            READ( unit=8, fmt = * ) j, slope_cS(j), wid_CS(j)
        end do
end if
! Close the input file
close(8)
! Echo to screen
PRINT *, 'CROSS SECTION INPUTS '
MRITE(*,*) 'Segment Slope Width ' 
```



```
DO j = 1, nr_cs
    WRITE(*,10) j, slope_cs(j), wid_cs(j)
END DO
Compute eta and elevation from widths and slopes
        Given: widths and slopes slope_cs wid_cs, nr_cs
        Find : Z vs eta
tot_wid = sum( wid_cs(1:nr_cs) )
CL_wid = seg(1) % W
! Check tot_wid for consistency with the width given in CL segments
if( abs( tot_wid - CL_wid) .GE. 1.e-3 ) then
    write( *,*) ' Cross Section Width =', tot_wid
    write( *,*) ' Centerline Width = ', CL_wid
    write(*,*) ' SET_ELEVATIONS: Total width specified in '//infile//&
                    &'is inconsistent with the centerine geometry...Stopping Program'
        STOP
end if
```

```
4 8 3
4 8 4
85 eta_cs(1) = 0.
    z_cs(1) = 0. !<---dummy value here, elevations are made relative to eta=0
! Compute etas and elevations
do i = 2, nr_cs + 1
    eta_cs(i) = eta_cs(i-1) + wid_cs(i-1) / tot_wid
        Z_cs(i) = z_cs(i-1) - slope_cs(i-1) * wid_cs(i-1)
end do
! print the results to confirm
print *, ' CROSS SECTION POINTS '
WRITE(*,*) ' Point Eta Elevation '
WRITE (*,*) '= '
do i = 1, nr_cs + 1
        write(*,10) i, eta_CS(i), Z_CS(i)
end do
```



```
! LONGITDINAL PROFILE
```



```
! default value for input file
infile = 'LongProfile.dat'
! Prompt the user for the input file
WRITE(*,*) ''
WRITE(*,*) 'Enter filename or press / for ', infile
READ (*,*) infile
! Read the file
OPEN( UNIT=8, FILE = infile, ACIION = 'read', STAIUS = 'old' )
read( unit=8, fmt = * ) dummy_line
read( unit=8, fmt = * ) nr_lp !number of rows to define cross section
read( unit=8, fint = * ) dummy_line
if ( nr_lp .gt. size ( dist_lp ) ) then
        print *, 'SET_ELEVATIONS: Too many records in', infile, &
            'increase array size and recompile'
else
        do i = 1, nr_lp
            READ( unit = 8 , fmt = * ) j, dist_lp(j), Z_lp(j)
        end do
end if
close( 8 )
5 3 2
533 ! Echo to screen
34 PRINT *, 'LONGITUDINAL PROFIIE '
WRITE(*,*) ' Point Distance Elevation '
WRITE (*,*) '=
```

```
537! \
DO i = 1, nr_lp
    WRITE(*,10) i, dist_lp(i), Z_lp(i)
END DO
write(*,*) ''
544
545
546
547
548
549
550
5 5 1
570 ! Output matrix of cell elevations
7 1 ~ C A L L ~ W R I T E \& F L I P P E D \_ M A T R I X ( ~ Z , ~ i m a x , ~ j m a x , ~ ' Z . C S v ' )
5 7 2
5 7 3
5 7 4
575
576
577
5 7 8
5 7 9
500
581
582
583
5 8 4
5 8 8
589
590
5 9 1
592
```

```
! FORMAT STATEMENTS
```

```
! FORMAT STATEMENTS
```



```
FORMAT(' ', ( i3, ' '), ( F10.3, ' ') , F10.6, i )
```

```
FORMAT(' ', ( i3, ' '), ( F10.3, ' ') , F10.6, i )
```



```
! \\\\\\\\\\ ///////////
```

!

 ///////////
end subroutine Set_Elevations
end subroutine Set_Elevations
/////////
/////////


```
    \\\\\\\\\\\\\\
```



```
!=_________=_=_
```

!=_________=_=_
!

\ ///////////
!

\ ///////////
END MODULE GridGen
END MODULE GridGen
!= ///////// \=-

```
!= ///////// \=-
```


Source File 10: solvers.f95

```
fortran_free_source
!
This module contains subroutines for a few linear solvers
```



```
! \\\\\\\\\\\ //////////
    MODULE solvers
implicit none
contains
!= Subroutines related to solving linear systems:
    1. DIAGDOM_PENTA checks for diagonal dominance
                given the bands of a penta-diagonal matrix
    2. GAUSS_SEIDEL_PENTA uses the Gauss-Seidel method
        for iterative solution of a penta-diagonal system
        of linear equations.
    3. THOMAS uses the tri-diagonal matrix algorithm to solve
        a tri-diagonal linear system
        \\\\\\\\\\\ B EGIN S UBROUTINNE///////////
        ////////// D I AGDOM_PENTA \\\\\\\\\\\\
        Purpose: Checks to see if a penta-diagonal matrix is
                diagonally dominant. Knowing this helps select
                a solver. The routine operates only on the bands
                of the coefficent matrix.
subroutine diagdom_penta( A, B, C, D, E, n, LB, UB, diagdom)
    A,B -- lower bands of the penta-diagonal matrix
    C -- main diagonal
    D,E -- upper banks of the penta-diagonal matrix
    n -- number of unknowns (size of system)
    LB -- lower bandwidth
    UB -- upper bandwidth
tolit-- iteration tolerence
diagdom-- a logical that stores the result.
!--------------------
| Arguments
integer, intent(in) :: n, LB, UB
real, intent( in ) :: A(n), B(n), C(n), D(n), E(n)
logical, intent(out) :: diagdom
Internal Variables
integer :: k
real :: T1, T2, T4, T5
real :: tot
```

```
5 2
5 3
54
5 5
56
57 ! a row is not diagonally dominant.
diagdom = .true.
do k = 1, n
    ! compute the magnitude of each term in the row of the matrix
    if( k-LB .LT. 1 ) then; T1 = 0. ; else; T1 = abs( A (k) ); endif
    if( k .EQ. 1 ) then; T2 = 0. ; else; T2 = abs( B (k) ); endif
    if( k .EQ. n ) then; T4 = 0. ; else; T4 = abs( D (k) ); endif
    if( k+UB .GT. n ) then; T5 = 0. ; else; T5 = abs( E (k) ); endif
    ! Test for diagonal dominance
    tot = T1 + T2 + T4 + T5
    if( tot .GT. abs( C(k) ) ) then
            write(*,*) 'Row ', k, 'of the matrix is not diagonally dominant'
            diagdom = .false.
        endif
enddo
!
end subroutine diagdom_penta
!=_=___________=__=_=__=___=_=_=_=_=_
! \\\\\\\\\\\ END SUBROUT INE ///////////
    ////////// D I AGDOM_PENTA \\\\\\\\\\\\
!==_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_=_
!=__________________=_=_=_=_=_
! \\\\\\\\\\ BEGIN S UBROUTINE///////////
! ////////// GAUSS_SEIDEL_PENTA \\\\\\\\\\\
    C CAUTION -- This routine DOES NOT check convergence criteria
    so it possible to converge to the wrong answer.
subroutine gauss_seidel_penta( A, B, C, D, E, F, n , LB, UB, &
                                    tolit, maxit, Xold, Xnew, dev, numits )
    A,B -- lower bands of the penta-diagonal matrix
        C -- main diagonal
        D,E -- upper banks of the penta-diagonal matrix
! F -- right hand side (force vector) of linear system
! n -- number of unknowns (size of system)
    LB -- lower bandwidth
    UB -- upper bandwidth
    tolit-- iteration tolerence
    maxit-- maximum number of iterations allowed
    Xold -- initial guess
! Xnew -- converged solution
! dev -- device for outputting information from the solver
!numits-- number of iterations required to converge
```



```
!DECLARATIONS
```

```
106 use utilities, only: F_L2_NORM
107 !arguments
integer, intent(IN) :: n, LB, UB
real, intent(in ) :: A(n), B(n), C(n), D(n), E(n), F(n)
real, intent(in ) :: tolit
integer, intent(in) :: maxit
real, intent(in) :: Xold(n)
real, intent (out) :: Xnew(n)
integer, intent(in) :: dev
integer, intent(out):: numits ! number of iterations required
! internal variables
integer :: k ! array index
integer :: m ! iteration index
real :: T1, T2, T4, T5 ! Terms in the equation
real :: relchng(n) !relative change between iterations
real :: Xtmp(n) !temporary array to store the progressive solutions
122
123
124
125 !store the starting guess in the temporary array
126 Xtmp = Xold
127
128 ! Perform the iterative solution
129 do m= 1, maxit
130 ! write(*,*) ' iteration Number = ', m
131 ! WRITe(*,*) 'Row, T1, T2, T4, T5, Xnew'
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
140
1 4 1
142
1 4 3 ~ ! c o m p u t e ~ r e l a t i v e ~ c h a n g e ~ f o r ~ t h i s ~ i t e r a t i o n ~
144 do k=1, n
145 relchng(k) = ( Xnew (k) - Xtmp (k) ) / Xtmp (k)
146 end do
147 ! check for convergence
148 ! write(dev,*) 'GAUSS_SIEDEL_PENTA: Iteration', m, ', Max rel change:',
maxval (abs (relchng))
149 if( maxval( abs( relchng ) ) .LT. tolit .AND. &
150 F_L2_Norm( relchng, n) .IT. tolit ) then
151 ! write(dev,*) 'GAUSS_SIEDEL_PENTA: Iterations required to converge: ',
m
152 numits = m
1 5 3 ~ e x i t ~ ! ~ e x i t ~ i t e r a t i o n ~ l o o p
154 ! elseif( maxval( abs(relchng) ) .GT. tolit ) then
155 else
156 Xtmp = Xnew
157 endif
```

```
1 5 8
1 5 9
1 6 0
1 6 1
1 6 2
1 6 3
1 6 4
1 6 5
1 6 6
1 6 8
1 6 9
1 7 0
1 7 1
1 7 2
173
1 7 4
175
1 7 6
1 7 7
1 7 8
1 7 9
180
181
182
1 8 3
184
1 8 5
1 8 6
187
188
189
190
191
192
193
194
195
196
197
198
1 9 9
202
2 0 3
204 WI=A(1)
2 1 1
```

```
167 10 format( I, 10f12.7 )
```

167 10 format(I, 10f12.7)
200 ! X -- Solution vector
200 ! X -- Solution vector
201 ! N -- number of unknowns
201 ! N -- number of unknowns
G(1)=D(1)/WI
G(1)=D(1)/WI
DO I=2,n
DO I=2,n
Q(I-1) = B(I-1)/WI
Q(I-1) = B(I-1)/WI
WI = A(I) - C(I) * Q(I-I)
WI = A(I) - C(I) * Q(I-I)
G(I) = (D(I) -C(I) * G(I-I))/WI
G(I) = (D(I) -C(I) * G(I-I))/WI
END DO
END DO

```
!end iteration loop
```

!end iteration loop
end do
end do
! Print message if maximum number of iterations was exceeded
! Print message if maximum number of iterations was exceeded
if (m .gt. maxit) then
if (m .gt. maxit) then
write(*,*) 'GAUSS_SEIDEL_PENTA: maximum number of iterations \&
write(*,*) 'GAUSS_SEIDEL_PENTA: maximum number of iterations \&
\&exceeded; program will terminate.'
\&exceeded; program will terminate.'
STOP
STOP
endif

```
endif
```



```
end subroutine gauss_seidel_penta
```

```
end subroutine gauss_seidel_penta
```



```
    \\\\\\\\\\ EN D S U B ROUT I NE //////////
```

 \\\\\\\\\\ EN D S U B ROUT I NE //////////
 ////////// GAUSS_S E I DEL__PENTA \\\\\\\\\\
 ////////// GAUSS_S E I DEL__PENTA \\\\\\\\\\
 !=__________________=_=_
!=__________________=_=_
!

 BEGIN SUBROUTINE //////////
!

 BEGIN SUBROUTINE //////////
! ////////// THOMAS

\
! ////////// THOMAS

\
SUBROUTINE THOMAS(A, B, C,D,X,N)
SUBROUTINE THOMAS(A, B, C,D,X,N)
integer :: N
integer :: N
REAL A(N), B(N), C(N), D(N), X(N), Q(n+1), G(n+1)
REAL A(N), B(N), C(N), D(N), X(N), Q(n+1), G(n+1)
REAL :: WI
REAL :: WI
integer :: i,j
integer :: i,j
Purpose: Solve a system of linear equations that appear
Purpose: Solve a system of linear equations that appear
as a tri-diagonal matrix.
as a tri-diagonal matrix.
Source: This algorithm was handed out in class.
Source: This algorithm was handed out in class.
Written By: Brad Eck
Written By: Brad Eck
Revision 0: Original coding on 19 Feb 09
Revision 0: Original coding on 19 Feb 09
A -- Main diagonal
A -- Main diagonal
B -- Superdiagonal
B -- Superdiagonal
C -- Subdiagonal
C -- Subdiagonal
D -- RHS vector

```
            D -- RHS vector
```



```
212 X(N)}=\textrm{G}(\textrm{N}
2 1 3
214 DO I=2,n
215 J = N - I + I
216 X(J) = G(J) - Q(J) * X(J+1)
217 END DO
218
219 END SUBROUTINE THOMAS
2 2 0
2 2 1
222
223
224
225
226
2 2 7
228
229
230
2 3 1
2 3 2
!=_llll
```


Source File 11: pfc1Dfuns2.f95

```
!fortran_free_source
! need a seperate module for these last two functions b/c
! the function F_CC calls both of them, and they cannot be
! in the same module
module pfcldfuns2
implicit none
contains
!function to determine thickness in the pavement at the cell face
FUNCTION F_hp_face(dxin, hin, zin, dxout, hout, zout, b)
implicit none
! INPUTS
REAL :: dxin, dxout ! size of cells
REAL :: hin, hout ! thickness at CV center
REAL :: zin, zout ! elevation at CV center
REAL :: b ! pavement thickness
REAL :: F_hp_face
!DUMMY
REAL :: head_at_face, Zface !HEAD and ELEVATION at the face
!
head_at_face = ( (hin+zin)*dxin + (hout+zout)*dxout ) &
    / ( dxin + dxout)
Zface = ( zin*dxin + zout*dxout ) / ( dxin + dxout)
F_hp_face = MIN ( b, head_at_face - Zface )
END function
!=_=_=_=_=_=_=_=_=_=_=_
!function to determine the thickness on the surface at the cell face
FUNCTION F_hs_face(dxin, hin, zin, dxout, hout, zout, b)
implicit none
! INPUTS
REAL :: dxin, dxout ! size of cells
REAL :: hin, hout ! thickness at CV center
REAL :: zin, zout ! elevation at CV center
REAL :: b ! pavement thickness
REAL :: F_hs_face
!DUMMY
REAL : : head_at_face, Zface !HEAD and ELEVATION at the face
!
head_at_face = ( (hin+zin)*dxin + (hout+zout)*dxout ) &
    / ( dxin + dxout)
Zface = ( zin*dxin + zout*dxout ) / ( dxin + dxout)
F_hs_face = MAX ( 0., head__at_face - Zface - b )
END FUNCTION
```



```
end module pfcldfuns2
```


Source File 12: pfc1Dfuns.f95

```
! fortran_free_source
2
3 module pfc1Dfuns
implicit none
contains
1
! function to compute the conveyance coef at the western face
! the convention used here is that 'in' refers to cell 'i'
! and 'out' refers to cell 'i-1', which is the western cell
FUNCTION F_CC( xin, dxin, hin, zin, &
    xout, dxout, hout, zout ) Result( CC )
use shared, only: K, n_mann, b_pfc, h_pfc_min
use pfc1dfuns2
REAL :: xin, xout ! coordinate of the ith cell and the WESTERN cell center
REAL :: dxin, dxout ! cell sizes
REAL :: hin, hout ! thicknesses at cell center
REAL :: zin, zout ! elevations at cell center
REAL :: CC !, F_hp_face, F_hs_face <----these now in a module
! dummy vars
REAL :: hpw !thickness in the PAVEMENT at the western face
REAL :: hsw !thickness on the SURFACE at the western face
REAL :: Sfw !magnitude of hydraulic gradient at the western face
logical :: error
! Intermediate quantities
hpw = F_hp_face(dxin, hin, zin, dxout, hout, zout, b_pfc)
hsw = F_hs_face(dxin, hin, zin, dxout, hout, zout, b_pfc)
Sfw = sqrt( ( ( hout + zout - hin - zin ) * 2. / &
    (dxout + dxin) ) ** 2 )
! Set hpw to small but positive and with enough range
! left to allow further calcs.zero if negative
if( hpw .LT. TINY( hpw ) ) then
    hpw = h_pfc_min
end if
!Conveyance coefficient itself
if( hsw .GT. 0.0 ) then
    CC = 1. / abs( xin - xout ) * &
                            ( K * hpw + &
                    1./ n_mann * hsw ** (5./3.) / sqrt(Sfw) )
else
    only PFC flow
        CC = 1. / abs( xin - xout ) * &
        ( K * hpw )
```

8
9
10

```
end if
! ERROR CHECKING FOR CONVEYANCE COEFS
if( CC .GT. HUGE(CC) .OR. CC .LT. -HUGE (CC) ) then
    error = .true.
else
    error = .false.
endif
!Output the parts of the calculation if the error is true
if( error .eqv. .true.) then
    write(*,*) 'Problem with 1D conveyance coefficient!'
    print *, ' K = ', K
    print *, ' hp = ', hpw
    print *, ' n_mann = ', n_mann
    print *, ' hs = ', hsw
    print *, ' Sf = ', Sfw
    print *, ' xin = ', xin
    print *, ' xout = ', xout
    print *, ' CC = ', CC
    write(*,*) 'Stopping Program'
    STOP
endif
END FUNCTION
```



```
!=_____________________=_=_=_
!Function to switch the porosity on/off if the
! water is in/out of the pavement
FUNCTION F_por (h)
USE shared, only: b_pfc, por
IMPLICIT NONE
REAL h, F_por
if ( h >= b_pfc ) then
    F_por = 1.
ELSEIF ( h < b_pfc ) then
            F_por = 1./por
end if
END function F_por
```



```
4
```



```
! ////////// \\\\\\\\\\\\
```

95
96
97

Source File 13: pfc1Dsubs.f95

```
! fortran_free_source
2
3 module pfc1Dsubs
implicit none
contains
\begin{tabular}{|c|c|c|c|c|}
\hline 14 ! & \(\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash\) & B EGIN & S UBROUTINE & / ///////// \\
\hline 15 ! & ////////// & S E T U P & 1 D S ECTION & \(\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash\) \\
\hline 16 & & & & \\
\hline
\end{tabular}
```

```
SUBROUTINE setup_1D_section( )
```

SUBROUTINE setup_1D_section()
! does the setup work for looking at this as a 1D section
! does the setup work for looking at this as a 1D section
USE shared, ONLY: Z_lp, nr_lp, dist_lp, slope_cs_1D, \&
USE shared, ONLY: Z_lp, nr_lp, dist_lp, slope_cs_1D, \&
wid_cS_1d, eta_cs_1d, nr_cS, long_slope, \&
wid_cS_1d, eta_cs_1d, nr_cS, long_slope, \&
slope_cs, wid_cs
slope_cs, wid_cs
USE utilities, ONLY: F_PythagSum
USE utilities, ONLY: F_PythagSum
!--
!--
integer :: i
integer :: i
!
!
! Compute longitudinal slope
! Compute longitudinal slope
! (assumed to be constant thorought the domain)
! (assumed to be constant thorought the domain)
long_slope = (Z_lp(nr_lp) - Z_lp(1)) / \&
long_slope = (Z_lp(nr_lp) - Z_lp(1)) / \&
(dist_lp(nr_lp) - dist_lp(1))
(dist_lp(nr_lp) - dist_lp(1))
! Using the longitudinal slope and cross slope,
! Using the longitudinal slope and cross slope,
! compute the slopes and segment widths for the 1D profile
! compute the slopes and segment widths for the 1D profile
allocate(slope_cs_1d(nr_cs))
allocate(slope_cs_1d(nr_cs))
allocate(wid_cs_1d(nr_cs))
allocate(wid_cs_1d(nr_cs))
allocate(eta_cs_1d(nr_cs+1))
allocate(eta_cs_1d(nr_cs+1))
write(*,*) ''
write(*,*) ''
write(*,*) ' 1D CROSS SECTION '
write(*,*) ' 1D CROSS SECTION '
write(*,*) ' Segment Slope Width '
write(*,*) ' Segment Slope Width '
write(*,*) '=
write(*,*) '=
do i = 1, nr_CS
do i = 1, nr_CS
!For the slope, compute the magnitude of the resultant slope
!For the slope, compute the magnitude of the resultant slope
! using pythagorean sum and then use the intrinsic SIGN function
! using pythagorean sum and then use the intrinsic SIGN function
! to give the resultant the same sign as the cross slope.
! to give the resultant the same sign as the cross slope.
slope_cS_1D(i) = SIGN (F_PythagSum(long_slope, slope_cS(i)) , \&
slope_cS_1D(i) = SIGN (F_PythagSum(long_slope, slope_cS(i)) , \&
slope_cs(i))
slope_cs(i))
! Compute 1D width using similar triangles

```
        ! Compute 1D width using similar triangles
```

8
9
10
11
12
13

```
    wid_cs_1D(i) = slope_Cs_1D(i) / slope_cS(i) * wid_cs(i)
    ! Print the results as we go
    write(*,10) i, slope_cs_1D(i), wid_cs_1d(i)
end do
write(*,*) ''
    eta_cs_1d(1) = 0.
    ! Compute etas and elevations
    do i = 2, nr_cs + 1
    eta_cs_1d(i) = eta_cs_1d(i-1) + wid_cs_1d(i-1) / sum( wid_cs_1D(1:nr_cs) )
end do
! print the results to confirm
print *, ' 1D CROSS SECTION POINTS '
WRITE(*,*) ' Point Eta '
WRITE (*,*) '=
do i = 1, nr_cs + 1
    write(*,10) i, eta_cs_1d(i)
end do
```



```
    Format Statements
FORMAT(' ', ( i3, ' '), ( F10.3, ' ') , F10.6 )
```



```
end subroutine setup_1D_section
!=_=_=_
! \\\\\\\\\\ EN D S UBROUT INE //////////
! ////////| SET UP I D SECT I ONN \\\\\\\\\\
```



```
! \\\\\\\\\\\ BEGIN S UBROUTINE //////////
! ////////|/ GRID 1 D SECTION \\\\\\\\\
SUBROUTINE grid_1d_section( slope_in, width_in, seg, dx )
```



```
use shared, only: TNE, XCV, ZCV, EDX, etaCV
use pfclDfuns
use utilities, only: F_Linterp
use outputs, only: WRITE_MATRIX
!Define variables
    IMPLICIT NONE
            !CONSTANTS
            INTEGER, intent(in) :: seg
            real, intent(in) :: dx
```

```
        !ARRAYS
    REAL, dimension( seg ), intent(in) :: slope_in, width_in
!calculation variables
    real, dimension(seg) :: slope, width
    INIEGER, dimension( seg ) :: ne, ir
    INTEGER : : gb
    INIEGFR :: i, n, s, start, finish
    REAL, ALLOCATABLE :: xface(:), zface(:)
    real, allocatable :: seg_X(:), seg_Z(:)
    REAL :: DX1
128 ! Indices for Reverse arrays (uses an implied DO loop )
!--_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Need to reverse slope and width arrays based on
! the design of this subroutine.
ir = (/ ( i, i = seg, 1, -1 ) /)
    do i = 1, seg
        slope(i) = slope_in( ir(i) )
        width(i) = width_in( ir(i) )
            ne(i) = NINT( width(i) / dx )
    end do
```



```
Compute derivative quanties & allocate remaining arrays
    gb = seg - 1
    TNE = sum(ne) + gb
    allocate( XFACE(TNE+1), &
            ZFACE (TNE+1), &
                XCV(TNE) , &
                ZCV(TNE) , &
                    EDX(TNE) , &
            etaCV(TNE) )
```



```
compute the points for the boundaries and the CV centers
    XFACE( 1 ) = 0. !could use a different starting point
    EDX(:) = dx ! all elemnts are the same size
```

123
125
126
127
129
130
131
132
135
138
139
140
141
147
149
152
155
156
157

```
    do i = 1, TNE
        XFACE( i+1 ) = XFACE( i ) + EDX( i )
        XCV ( i ) = ( XFACE( i ) + XFACE( i+1 ) ) / 2.
        etaCV( i ) = 1. - XCV( i ) / sum( width(:) )
    end do
! interpolate elevations of the points
    allocate ( seg_X(seg+1), seg_Z(seg+1) )
    seg_x(1) = 0.
    seg_Z(1) = 10.
    do i = 1, seg
    seg_x(i+1) = seg_X(i) + width(i)
        seg_Z(i+1) = seg_Z(i) + width(i) * slope(i)
    end do
    ! first cross section by interpolation
    ZFACE( 1 ) = seg_z( 1 )
    do i = 1, TNE
        ZFACE( i+1 ) = F_linterp( XFACE( i+1 ) , seg_X, seg_Z, seg+1 )
        ZCV ( i ) = F_linterp( XCV ( i ), seg_X, seg_Z, seg+1 )
    end do
! output the resulting arrays
VECTOR FORM
    OPEN( UNIT = 20, FILE = 'grid_1D_section.CSV', STATUS = 'REPLACE' )
    WRITE(20,*) 'XFACE, ZFACE, CV, XCV, ZCV, EDX, etaCV'
    do i = 1, TNE
        WRITE(20,100) XFACE( i ), ZFACE( i ), i, XCV( i ), ZCV( i ), EDX(i),
191 end do
192 WRITE (20,99) XFACE( TNE+1 ), ZFACE( TNE+1)
196 !Format statements
197 90 FORMAT( i, F12.6 )
198 99 FORMAT( 2( F12.6, ',' ) )
199100 FORMAT( 2( F12.6, ',' ), 1(I, ','), 5( F12.6, ',') )
```

190
etaCV(i)
193
194
195 !
200
201
202
203
204
205
206
207
208
209
210


```
2 6 5
266
2 6 7
268
2 6 9
270
271
272
2 7 3
2 7 4
275
276
277
278
2 7 9
280
loc
2 8 1
282
283
2 8 4
285
286
287
288
2 8 9
290
2 9 1
sol
292
293
2 9 4
295
2 9 6
297
298
2 9 9
3 0 0
3 0 1
302
303
304
305
306
307
308 X => XCV
3 0 9 ~ Z ~ = > ~ Z C V ~
310
3 1 1
312 b = b_pfc
313 n = 1
314 i_Zmax = maxloc( Z )
315
316
!guess values for water thickness in cm
REAL :: h_itr(imax)
!linear system (tri-diagonal)
REAL :: main(imax), super(imax), sub(imax), RHS(imax)
!solution
REAL :: h_temp (imax) !, h_new (imax)
! convergence test
REAL :: relchg(imax)
!post processing
REAL :: head (imax), hygrad (imax) ! head and hydraulic gradient
REAL :: q_pav (imax), q_surf (imax), q_tot(imax) !fluxes
!summary info
integer, parameter :: nmax = 2
INTEGER :: numit (nmax), loc(nmax) ! number of iterations at each timestep &
iton of max change
REAL :: maxdiff(nmax) ! max change and its location
!FUNCTIONS
! REAL :: F_por, F_CC
!CHARACTERS
CHARACTER(8) DATE
CHARACIER(10) TIME
logical :: transition
real, dimension( imax, qmax) :: h_temp_hist, h_itr_hist !for monitoring the
ution through the iteration
real :: relaxation_factor ! Relaxation Factor
real, dimension( imax ) :: residual
real :: b ! an extra value for b_pfc
real :: hs1, hs2, ds ! Sheet flow MOC
real :: hp1, hp2, dx_moc ! PFC flow MOC
real :: cross_slope
integer, dimension(1) :: i_Zmax !index of point with highest elevation
real :: eps_itr_tol
integer :: nip ! number of interpolation points
```



```
! Set pointers
DX => EDX
```



```
!SPATIAL GRID (from GRID_1D_SECTION
```

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335 ! Solution using Crank-Nicolson with tri-diagonal matrix algorithm
336 ! main, super \& sub are diagonals of the coefficient matrix
! RHS is the right hand side of the linear system

```
open( unit = 50, file = 'PF_smry.CSV', status = 'REPLACE')
```

write $(50,54)$ ' n / i ', (/ (i, $i=1, ~ i m a x) ~ /) ~$
open(unit $=110$, file $=$ '1DRunDetails.txt', status $=$ 'REPLACE')
54 format ((A, ', '), 10000 (I, ','))
345
346
347
348 !iteration loop
do $q=1$, q max
350
351
352
353 i = 1
354 ! First cell
355 PF = F_por(h_old(i))
356 PF1 = F_por (h_itr(i))
357
358 BC1: if(eta_1_BC .EQ. 'NO_FLOW') then
359 ! NO FLOW BOUNDARY Cw ---> 0
$360 \mathrm{Cw}=0$.
361
362
363
364
365
366
367
368
369
370
! INITIALIZE ARRAYS
!iteration array
h_itr = h_old
! Linear system
main $=0$.
super $=0$.
sub $=0$.
rhs $=0$.
! Summary arrays
numit $=0$.
maxdiff $=0$.
loc $=0$.
UPSTREAM BOUNDARY
$C e=F _C C(X(i)), D X(i), h _o l d(i), Z(i), \quad \&$
$\left.X(i+1), D X(i+1), h _o l d(i+1), Z(i+1)\right)$
!these coefficints are updated as the iteration progresses
$\mathrm{Cw} 1=0$.
Ce1 = F_CC (X(i), DX(i), h_itr(i), Z(i), \&
X(i+1), DX(i+1), h_itr(i+1), Z(i+1))
!Diagonals of coefficient matrix
main (i) $=1+d t / 2 * P F 1 * C w 1 / D X(i) \&$
+ dt / 2 * PF1 * Ce1 / DX(i)
super (i) $=\quad-d t / 2 *$ PF1 * Ce1 / DX(i)

371 sub (i) = - dt / 2 * PF1 * Cw1 / DX(i) ! will be zero

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
points
398 nip $=$ NINT (dx_moc / DX(1)) + 2
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
point in
418
419
420
421
422
!Right hand side of linearized system
! part that came from n level
RHS (i) $=$ h_old(i) + dt / 2. *PF * \&
$\left(+C e / D X(i) *\left(h _o l d(i+1)+z(i+1) \quad\right.\right.$ \&
+ rain)
! part from n+1 level
+ dt / 2. * PF1 *
$(+\mathrm{Ce} 1 / \mathrm{DX}(\mathrm{i}) *(\mathrm{Z}(\mathrm{i}+1)-\mathrm{Z}(\mathrm{i}))$) \&
+ rain)
elseif (eta_1_BC .EQ. 'MOC_KIN') then
! METHOD OF CHARCTERISTICS KINEMATIC BOUNDAARY
! cross slope is defined positive for use in SQRT
cross_slope $=(Z(i+1)-Z(i)) /(X(i+1)-X(i))$
! If it comes out negative, a different BC is needed
if (cross_slope .LT. 0.0) then
write(110,*) 'Different BC needed at eta $=1$ '
endif
if(h_old(i) .IE. b_pfc) then
! PFC FLOW MOC BC
$d x$ moc $=K$ * (cross_slope) * dt / por
nip $=\operatorname{NINT}\left(d x _m o c / D X(1)\right)+2$
write (110,*) 'eta_1_bc $X=$ ', ($\mathrm{xcv}(1)+\mathrm{dx}$ moc), \&
hp1 $=$ F_Linterp $\left(\quad X=\left(x C V(1)+d x _m o c\right), \quad \&\right.$
if (hp1 .LT. 0.0) then
stop
endif
hp2 = hp1 + rain * dt / por
if (rain .LT. TINY (rain)) then
! Rainfall rate is effectively zero
$\mathrm{hp} 2=\mathrm{hp} 2$
else
endif
! Fill in linear system
$\operatorname{main}(i)=1$.
! (Cw / DX(i) * (h_old(i-1) + Z(i-1) \& !enforce BC
! - h_old(i) - Z(i)) \& !enforce BC
- h_old(i) - Z(i)) \&
! (Cw1 / DX(i) * (Z(i-1) - Z(i)) \& !enforce BC
! Interpolate up the drainage slope...make sure we have enough
'nip=', nip, \&
'KX=', XCV(1:nip), \&
'KY=', h_old(1:nip)
Known_X $=$ XCV (1:nip) , \&
Known_Y = h_old(1:nip) , \&
$\mathrm{n}=\mathrm{nip} \quad$)
write($100, *)$ 'PFC1DIMP: eta_1_bc hp1=', hp1
! Rainfall is non-zero, set a maximum value for hp2
! the total drainage distance is the sum from the highest
! the 1D domain to the end, this is why MAXLOC is used.
hp2 $=\min \left(h p 2, \operatorname{sum}\left(\operatorname{DX}\left(i \quad: i _Z \max (1)\right.\right.\right.$))*rain/K/Cross_slope)

RHS (i) $=\mathrm{hp} 2$
424 ! write (100,*) 'PFC1DIMP: eta_BC = MOC_KIN i=',i, 'dx_moc=', dx_moc, 'hp1=', hp1, 'hp2=', hp2
425 else
426
427
429 if(rain .LT. TINY (rain)) then
430
! no increase in flow rate along drainge path
! ds is arbitray, so use the PFC value
$d s=k *$ (cross_slope) * dt / por
432
433
434
435
436
437
438
else
ds $=$ sqrt (cross_slope $)$ / n_mann / rain * \&
((hs2 + rain * dt) **(5.13.) - hs2**(5./3.))
endif
! Interpolate up the slope to find hs1 nip $=$ NINT (ds / DX(1)) + 2
write(110,*) 'eta_1_bc X=',(xcv(1) + ds), 'nip=', nip, 'KX=',
439 XCV (1:nip), 'KY=', h_old(1:nip)

- hs2**(5.13.)) **0.6

449
450
451
452
453
454
455
456
457
458 ! Interior of domain
459 do $i=2$, $i m a x-1$
460
461
462
463
464
465
466
467
468
469
470
471

```
PF = F_por( h_old(i) )
```

 PF1 = F_por (h_itr (i))
 FUNCTION F_CC(xin, dxin, hin, zin, \&
 xout, dxout, hout, zout)
 !these coefficients are stationary (time level n)
 \(C W=F _C C\left(X(i), D X(i), h _o l d(i), Z(i), \quad \&\right.\)
 X(i-1), DX(i-1), h_old(i-1), Z(i-1))
 \(C e=F _C C(X(i)\), DX(i), h_old(i), Z(i), \&
 X(i+1), DX(i+1), h_old(i+1), Z(i+1))
 !these coefficints are updated as the iteration progresses
 Cw1 = F_CC(X(i) , DX(i), h_itr(i), Z(i), \&
 X(i-1), DX(i-1), h_itr(i-1), Z(i-1))
    ```
    Ce1 = F_CC( X(i ), DX(i ), h_itr(i ), Z(i), &
            X(i+1), DX(i+1), h_itr(i+1), Z(i+1) )
    !Diagonals of coefficient matrix
    main (i) = 1 + dt / 2 * PF1 * Cw1 / DX(i) &
        + dt / 2 * PF1 * Ce1 / DX(i)
    super(i) = - dt / 2 * PF1 * Ce1 / DX(i)
    sub (i) = - dt / 2 * PF1 * Cw1 / DX(i)
    !Right hand side of linearized system
        ! part that came from n level
    RHS (i) = h_old(i) + dt / 2. * PF * &
        ( Cw / DX(i) * ( h_old(i-1) + z(i-1) &
            - h_old(i ) - Z(i ) )
        + Ce / DX(i) * ( h_old(i+1) + z(i+1)
        - h_old(i ) - Z(i ) )
        + rain )
        ! part from n+1 level
        + dt / 2. * PF1 *
        ( Cw1 / DX(i) * ( z(i-1) - z(i) ) &
            + Ce1 / DX(i) * ( z(i+1) - Z(i) ) &
end do
    DOWNSTREAM BOUNDARY
    = imax
! use BC from input argument
BCO:if( eta_0_BC .EQ. 'NO_FLOW') then
    !NO FLOW BOUNDARY ---> Ce == 0
    !these coefficients are stationary (time level n)
    Cw = F_CC( X(i ), DX(i ), h_old(i ), Z(i), &
        X(i-1), DX(i-1), h_old(i-1), Z(i-1) )
    Ce = 0.0
    !these coefficints are updated as the iteration progresses
    Cw1 = F_CC( X(i ), DX(i ), h_itr(i ), Z(i), &
        X(i-1), DX(i-1), h_itr(i-1), Z(i-1) )
    Ce1 = 0.0
    !Diagonals of coefficient matrix
    main (i) = 1 + dt / 2 * PF1 * Cw1 / DX(i) &
        + dt / 2 * PF1 * Ce1 / DX(i)
    super(i) = - dt / 2 * PF1 * Ce1 / DX(i)
    sub (i) = - dt / 2 * PF1 * Cw1 / DX(i)
    !Right hand side of linearized system
        ! part that came from n level
    RHS (i) = h_old(i) + dt / 2. * PF * &
        ( Cw / DX(i) * ( h_old(i-1) + z(i-1)
                                - h_old(i ) - Z(i ) ) &
    ! + Ce / DX(i) * ( h_old(i+1) + z(i+1) & !enforce BC
    ! - h_old(i ) - Z(i ) ) & !enforce BC
        + rain )
        ! part from n+1 level
        + dt / 2. * PF1 *
            ( Cw1 / DX(i) * ( z(i-1) - z(i) )
            + Ce1 / DX(i) * ( z(i+1) - Z(i) ) &
```

positive downwars for use in SQRT
530 if(cross_slope .LT. 0.0) then
531 write(110,*) 'Different BC needed at eta = 0'
532 endif
533 if(h_old(i) .IE. b_pfc) then
534 ! PFC FLOW MOC BC
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
5 7 1
5 7 2
573
574
575
576
577
578

```

```

```
526 + rain )
```

```
526 + rain )
527 elseif( eta_0_BC .EQ. 'MOC_KIN') then
527 elseif( eta_0_BC .EQ. 'MOC_KIN') then
528 ! METHOD OF CHARCTERISTICS KINEMATIC BOUNDAARY
528 ! METHOD OF CHARCTERISTICS KINEMATIC BOUNDAARY
529 cross_slope = ( Z(i-1) - Z(i) ) / ( X(i) - X(i-1) ) ! cross slope is
```

529 cross_slope = (Z(i-1) - Z(i)) / (X(i) - X(i-1)) ! cross slope is

```
```

 dx_moc = K * (cross_slope) * dt / por !
 nip = NINT(dx_moc / DX(imax)) + 2
 write(110,*) 'eta_0_BC X=', (XCV (imax) - dx_moc) , &
 'nip=', nip, &
 'KX=', XCV(imax-nip+1:imax) , &
 'KY=', h_old(imax-nip+1 : imax)
 hp1 = F_Linterp(}\quad\textrm{X}=(\textrm{XCV}(\textrm{imax})-dx_moc) , &
 Known_X = (XCV (imax-nip+1:imax)), &
 Known_Y = h_old(imax-nip+1 : imax) , &
 n = nip)
 if(hp1 .LT. 0.0) then
 write(100,*) 'PFC1DIMP: eta_0_bc hp1=', hp1
 stop
 endif
 hp2 = hp1 + rain * dt / por
 if(rain .LT. TINY (rain)) then
 ! Rainfall rate is effectively zero
 hp2 = hp2
 else
 ! Rainfall is non-zero, set a maximum value for hp2
 ! the total drainage distance is the sum from the highest pt
 ! inthe 1D domain to the end, this is why MAXLOC is used.
 eta_0_hp2_max = sum(DX(i_Zmax(1) : i))*rain/K/cross_slope
 hp2 = min(hp2, eta_0_hp2_max)
 endif
 ! Fill in linear system
 main(i) = 1.
 RHS (i) = hp2
 else
 !SHEET FLOW MOC BC
 hs2 = h_old(i) - b_pfc
 ! Handle zero rainfall
 if(rain .LT. TINY(rain)) then
 ! no increase in flow rate along drainge path
 ! ds is arbitray, so use the PFC value
 ds = K * (cross_slope) * dt / por
 else
 ds = sqrt(cross_slope) / n_mann / rain * &
 ((hs2 + rain * dt)**(5.13.) - hs2**(5./3.))
 endif
 ! Interpolate up the slope to find hs1
 nip = NINT(ds / DX(imax)) + 2
 write(110,*) 'eta_0_BC X=', (XCV (imax) - ds) , &
    ```
```

579
580
581
582
58
584
585
586
587
588
599
590
591
592
593
594
5 9 5
596
597
598
5 9 9
600
6 0 1
6 0 2
6 0 3
6 0 4
6 0 5
6 0 6
6 0 7
6 0 8
6 0 9
610
6 1 1
6 1 2
6 1 3
6 1 4
6 1 5
616
6 1 7
6 1 8
6 1 9
6 2 0
6 2 1
6 2 2
6 2 3
6 2 4
6 2 5
6 2 6
6 2 7
6 2 8
6 2 9
6 3 0
6 3 1

```
```

-hs2**(5.13.))**0.6

```
-hs2**(5.13.) )**0.6
```

 'nip=', nip , &
    ```
        'nip=', nip , &
    'KX=', XCV( imax-nip+1:imax) , &
    'KX=', XCV( imax-nip+1:imax) , &
    'KY=', h_old( imax-nip+1 : imax)
    'KY=', h_old( imax-nip+1 : imax)
        hs1 = F_Linterp( X = (XCV (imax) - ds) , &
        hs1 = F_Linterp( X = (XCV (imax) - ds) , &
    Known_X = (XCV ( imax-nip+1:imax)) , &
    Known_X = (XCV ( imax-nip+1:imax)) , &
    Known_Y = h_old( imax-nip+1 : imax) , &
    Known_Y = h_old( imax-nip+1 : imax) , &
                                    n = nip ) - b_pfc
                                    n = nip ) - b_pfc
        ! Handle return to sheet flow
        ! Handle return to sheet flow
        if( hs1 .GT. 0.0 ) then
        if( hs1 .GT. 0.0 ) then
            ! we have sheet floe
            ! we have sheet floe
            main(i) = 1.
            main(i) = 1.
            RHS (i) = b_pfc + (hs1**(5./3.) + ( hs2 + rain*dt )**(5./3.)
            RHS (i) = b_pfc + (hs1**(5./3.) + ( hs2 + rain*dt )**(5./3.)
            else
            else
                        ! upstream point has sheet flow
                        ! upstream point has sheet flow
                        ! use the PFC characteristic
                        ! use the PFC characteristic
                        main(i) = 1.
                        main(i) = 1.
                        RHS (i) = hs1 + b_pfc + rain * dt / por
                        RHS (i) = hs1 + b_pfc + rain * dt / por
            end if
            end if
        end if
        end if
    end if }\textrm{BCO
    end if }\textrm{BCO
    TRANSITION CHECK
    TRANSITION CHECK
! test to see if there is a transition to or from sheet flow
! test to see if there is a transition to or from sheet flow
    happening during this timestep. Use under-relaxtion to
    happening during this timestep. Use under-relaxtion to
    control oscillations during a transition timestep.
    control oscillations during a transition timestep.
transition = .false.
transition = .false.
do i = 1, imax
do i = 1, imax
    pf = F_por( h_old(i) )
    pf = F_por( h_old(i) )
    pf1= F_por( h_itr(i) )
    pf1= F_por( h_itr(i) )
    if( pf .GT. pf1 .OR. pf .LT. pf1) then
    if( pf .GT. pf1 .OR. pf .LT. pf1) then
        transition = .true.
        transition = .true.
        write(110,*) 'PERFCODE: transition for cell i=', i, 'pf=', pf, 'pf1=', pf1
        write(110,*) 'PERFCODE: transition for cell i=', i, 'pf=', pf, 'pf1=', pf1
        endif
        endif
end do
end do
if( transition .eqv. .true. ) then
if( transition .eqv. .true. ) then
    relaxation_factor = relax_tran
    relaxation_factor = relax_tran
    eps_itr_tol = tolit * 10.
    eps_itr_tol = tolit * 10.
else
else
    relaxation_factor = relax
    relaxation_factor = relax
    eps_itr_tol = tolit
    eps_itr_tol = tolit
endif
endif
            !Solve linear system
            !Solve linear system
            CALL THOMAS (main, super, sub, RHS, h_temp, imax)
```

 CALL THOMAS (main, super, sub, RHS, h_temp, imax)
    ```
```

6 3 2
6 3 3 ! some careful though to handle both filling and draining cases.
634 ! relative change is used when the solution is far from zero
635 ! and absolute change (residual) is used near zero.
6 3 6
637 do i = 1, imax
6 3 8
6 3 9
6 4 0
6 4 1
6 4 2
6 4 3
6 4 4
6 4 5
6 4 6
6 4 7
6 4 8
6 4 9
6 5 0
6 5 1
6 5 2
6 5 3
6 5 4
6 5 5
6 5 6
6 5 7
6 5 8
6 5 9
6 6 0
6 6 1
6 6 2
6 6 3
6 6 4
6 6 5
6 6 6
6 6 7
6 6 8
6 6 9
6 7 0
6 7 1
6 7 2
6 7 3
6 7 4
6 7 5
6 7 6
6 7 7
6 7 8
6 7 9
6 8 0
6 8 1
6 8 2
6 8 3
6 8 4
6 8 5

```
```

 if(h_temp(i) .GT. TINY(h_temp(i))) then
    ```
    if( h_temp(i) .GT. TINY( h_temp(i) ) ) then
            ! Compute residual for this iteration
            ! Compute residual for this iteration
            residual(i) = h_temp(i) - h_itr(i)
            residual(i) = h_temp(i) - h_itr(i)
            ! Handle a result that is effectively zero by
            ! Handle a result that is effectively zero by
            ! using an absolute tolerance instead of
            ! using an absolute tolerance instead of
            ! a relative one
            ! a relative one
            if( h_temp(i) .LE. h_pfc_min .and. &
            if( h_temp(i) .LE. h_pfc_min .and. &
                    residual (i) .LE. eps_itr_tol ) then
                    residual (i) .LE. eps_itr_tol ) then
                    relchg(i) = 0.0
                    relchg(i) = 0.0
            else
            else
                    relchg (i) = residual (i) / h_itr(i)
                    relchg (i) = residual (i) / h_itr(i)
            endif
            endif
        elseif( h_temp(i) .LF. TINY( h_temp(i) ) ) then
        elseif( h_temp(i) .LF. TINY( h_temp(i) ) ) then
            ! the model is saying the cell is empty,
            ! the model is saying the cell is empty,
            ! so force the solution to be zero
            ! so force the solution to be zero
            h_temp(i) = 0.0
            h_temp(i) = 0.0
            ! compute the residual
            ! compute the residual
            residual(i) = h_temp(i) - h_itr(i)
            residual(i) = h_temp(i) - h_itr(i)
            ! For the zero case, use an absolute rather than
            ! For the zero case, use an absolute rather than
            ! relative tolerance by setting the value of relchng
            ! relative tolerance by setting the value of relchng
            ! below the tolerance instead of computing it.
            ! below the tolerance instead of computing it.
            if( abs( residual(i) ) .LE. eps_itr_tol ) then
            if( abs( residual(i) ) .LE. eps_itr_tol ) then
                relchg(i) = 0.0
                relchg(i) = 0.0
            endif
            endif
        endif
        endif
end do
end do
if( maxval( h_temp) .LT. TINY( h_temp(1) ) ) then
if( maxval( h_temp) .LT. TINY( h_temp(1) ) ) then
write(*,*) 'PFC1DIMP: Zeroed out. Writing system and stopping program'
write(*,*) 'PFC1DIMP: Zeroed out. Writing system and stopping program'
open( unit = 10, file = '1Dsystem.csv', status = 'REPLACE' )
open( unit = 10, file = '1Dsystem.csv', status = 'REPLACE' )
write(10,*) 'i,sub,main, super,rhs,h_temp,'
write(10,*) 'i,sub,main, super,rhs,h_temp,'
do i = 1, imax
do i = 1, imax
            write(10, 10) i, sub(i), main(i), super(i), RHS(i), h_temp(i)
            write(10, 10) i, sub(i), main(i), super(i), RHS(i), h_temp(i)
                end do
                end do
                close( 10 )
                close( 10 )
                    call write_vector( h_old, imax, 'h_old_1d.csv')
                    call write_vector( h_old, imax, 'h_old_1d.csv')
                    STOP
```

 STOP
    ```
```

10 FORMAT ((I, ','), 5(E, ','))
end if
692 IF (maxval (ABS(relchg)) .le. eps_itr_tol .AND. \&
F_L2_NORM(relchg, imax) .le. eps_itr_tol) then
! WRITE(*,*) 'Time step n = ', n,' converged in q = ', q, ' iterations.'
EXIT
end if
! Smith page 32
h_itr = h_itr + relaxation_factor * residual
!Store the result of this iteration
h_temp_hist(: , q) = h_temp
h_itr_hist (: , q) = h_itr
729 !Store summary info for this timestep
7 3 0 numit (n) = q
7 3 1 ~ l o c ~ (~ n ~) ~ = ~ m a x l o c ~ (~ a b s (~ r e l c h g ~) , ~ d i m = 1 ~) ,
7 3 2 maxdiff(n) = relchg (loc (n))
734 !Give Error if Iteration fails to converge
7 3 8 CALL WRITE_MATRIX(h_temp_hist, imax, qmax, 'h_temp_hist_1D.cSv')
739 CALL WRITE_MATRIX(h_itr_hist , imax, qmax, 'h_itr_hist_1D.CSV')

```
689
690
691
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
733
735
736
737
q_pav (i) \(=\mathrm{K}\) * hp * hygrad(i)
!on the surface
hs \(=\max \left(0 ., h \_n e w(i)-b\right)\)
q_surf(i) \(=1\). / n_mann * hs ** (2./3.) * sqrt( abs(hygrad(i) ) ) * hs
q_tot(i) = q_pav(i) + q_surf(i)
765
781 !hydrualic gradient
782 hygrad(i) \(=(\) head \((i-1)-\) head(i) \() /(X(i)-X(i-1))\)
783 !thickness in the pavement
\(784 \mathrm{hp}=\min \left(\mathrm{h} \_\right.\)new (i), b )
785 q_pav (i) \(=\mathrm{K}\) * hp * hygrad(i)
786 !thickness on the surface
787 hs \(=\max (0 .\), h_new (i) -b\()\)
788 q_surf(i) = 1. / n_mann * hs ** (2./3.) * sqrt(abs(hygrad(i) ) ) * hs
789 q_tot(i) \(=q \_p a v(i)+q \_\operatorname{surf}(i)\)
790
791
792
793
close(50) ! pf summary file
close(110) ! Run details file

!Compute head
head \((:)=\) h_new \((:)+Z(:)\)
!Compute hydraulic gradient and flux ( both positive downwards)
!Upstream boundary node (using a 1-sided approximation)
\(i=1\)
hygrad(i) \(=(\) head \((i)-\) head(i+1) \() /(X(i+1)-X(i))\)
! In the pavement
hp \(=\min \left(h \_n e w(i), b\right.\) )
do \(i=2, i \max -1\)
        !hydrualic gradient
        hygrad(i) \(=(\) head \((i-1)-\) head(it1) \() /(X(i+1)-X(i-1))\)
        !thickness in the pavement
        hp \(=\min \left(h \_n e w(i), ~ b ~\right)\)
        q_pav (i) \(=\mathrm{K} * \mathrm{hp}\) * hygrad(i)
        !thickness on the surface
        hs \(=\max (0 .\), h_new(i) \(-b\) )
        q_surf(i) \(=1\). / n_mann * hs**(2./3.) * sqrt( abs(hygrad(i) ) ) * hs
            WRITE(*,*) 'i = ', i, 'hs = ', hs, 'q_surf =', q_surf(i)
        \(q \_t o t(i)=q \_p a v(i)+q \_s u r f(i)\)
end do
! DOWNSTREAM BOUNDARY ( 1 sided approximation)
i = imax

!Write results to a file
```

 call DATE_AND_TIME(DATE,TIME)
 call CPU_TIME(cputime)
 OPEN(UNIT = 10, FIIE = 'pfc1Dimp.CSv', STATUS='REPLACE')
 WRITE(10,*) 'Output From pfc1Dimp.f95'
 WRITE(10,*) 'Timestamp,', DATE,' ', TIME,','
 WRITE (10,*) 'Upstream Boundary == Fixed Value'
 WRITE (10,*) 'Downstream Boundary == Sf = So'
 WRITE (10,200) 'Hydraulic Conductivity (cm/s),', k
 WRITE (10,200) 'Rainfall Intensity (cm/hr),', rain * 3600.
 WRITE (10,200) 'PFC Thickness (cm),', b
 WRITE (10,200) 'Final Time (sec),', (n-1) * dt
 WRITE(10,200) 'Time step (seconds),', dt
 WRITE (10,200) 'Grid spacing (cm),', dx (5)
 WRITE (10,*) 'Number of elements,', imax - 2
 WRITE(10,200) 'CPU Time (seconds),', cputime
 WRITE (10,*) '**************************** &
 &MODEL OUTPUT IN [SI] UNITS &
 &*************************************'
 WRITE(10,*) 'X, eta, Z, PFC Surface, Thickness, Head,', &
 'Hydraulic Gradient, Pavement Flux,' , &
 ' Surface Flux, Total Flux,'
 do i = 1, imax
 WRITE(10,100) X(i), etaCV(i), Z(i), Z(i) + b, &
 h_new(i), Head(i), hygrad(i), &
 q_pav(i), q_surf(i), q_tot(i)
 END do
 CLOSE (10)
 !
!Write calculation summary to file
OPEN(UNIT = 20, FIIE = '1Ddetails.CSV', STATUS='REPLACE')
WRITE(20,*) 'Timestamp,', DATE, ' ', TIME, ','
WRITE (20,*) '-----,'
WRITE (20,*) 'Timestep, Iterations, MaxRelChng, MaxLocn'
DO n = 1, nmax
WRITE (20,300) n, numit(n), maxdiff(n), loc(n)
end do
close(20)
!-----------------
100 FORMAT (100 (F14.7, ',')) ! Formatting for the actual output
200 FORMAT (A, F10.4)
FOOMMAT (2 (I, ','), E, ',', I, ',')

```

```

 END subroutine pfc1Dimp
 !=

 END S U B ROUTINE //////////
! ////////// PEC1 DIMPP


```

\section*{Source File 14: pfc2Dsubs.f95}
```

1
! fortran_free_source
! This module holds external procedures (subroutine and functions)
! for the pfc2D model (PERFCODE).
! Using module creates an explicit interface for the procedures

```

```

!

 B E G I N //////////
MODULE pfc2Dsubs
! //////////

\

```

```

IMPLICIT NONE
CONTAINS
SUBROUTINE set_ABCDEF(i, j, Cw1, Ce1, Cs1, Cn1, pf, dt, rr)
! Fills the arrays of the linear system for Cell v
USE shared, ONLY: A, B, C, D, E, Fn, F1, F, jmax
USE pfc2Dfuns, ONLY: F_LinearIndex, F_RHS_n1
implicit none
! Arguments
integer, intent(in) :: i, j
real , intent(in) :: Cw1, Ce1, Cs1, Cn1, pf, dt, rr
! Internal Variables??
integer :: v
!real, external :: F_RHS_n1

```

```

Linear Index
= F_LinearIndex(i, j, jmax)
! Bands of penta-diagonal matrix
A(v) = - dt / 2. * pf * Cw1
B(v) = - dt / 2. * pf * Cs1
C(v) = dt / 2. * pf * (Cw1 + Cs1 + Cn1 + Ce1) + 1.
D(v) = - dt / 2. * pf * Cn1

```
! Right-hand-side
! Right-hand-side
! Portion from time level n+1
! Portion from time level n+1
F1(v) = F_RHS_n1( i, j, Cw1, Ce1, Cs1, Cn1, rr, pf, dt )
F1(v) = F_RHS_n1( i, j, Cw1, Ce1, Cs1, Cn1, rr, pf, dt )
!The complete right hand side has contributions from
!The complete right hand side has contributions from
! time level n and time level n+1
! time level n and time level n+1
F(v) = Fn (v) + F1(v)
F(v) = Fn (v) + F1(v)
!-
!-
end subroutine set_ABCDEF
end subroutine set_ABCDEF


    \\\\\\\\\\ E ND S U B R OUTINE //////////
    \\\\\\\\\\ E ND S U B R OUTINE //////////
    ////////// SET_ABCDEF \\\\\\\\\\\
    ////////// SET_ABCDEF \\\\\\\\\\\
!=_______=_=_=_=_=_
!=_______=_=_=_=_=_
!=_______________=_=_=_=_=_=_=_=_=_=_
!=_______________=_=_=_=_=_=_=_=_=_=_
    \\\\\\\\\\\ B EGIN S UBROUTINE //////////
    \\\\\\\\\\\ B EGIN S UBROUTINE //////////
    ////////// SE T_XYH
    ////////// SE T_XYH
subroutine SET_xyh ( i , j, xx, yy , hh)
! Assigns values to \(\mathrm{X}, \mathrm{Y}\), and Z for pointing to the bi-linear
! interpolatoin subroutine
use shared, only: jmax, h_old, Z, CV_Info
use pfc2dfuns, only: F_LinearIndex
!VARIABLE DECLARATIONS
! Arguments
integer,intent ( in ) : : i, j ! Grid indices
real, intent (out ) : : xx, yy, hh ! physical coordinates
! Internal variables
integer : : v

\(\mathrm{v}=\mathrm{F}\) _LinearIndex ( i, j, jmax )
\(\mathrm{xx}=\mathrm{CV}\) _Info( v ) \(\% \mathrm{X}\)
\(y y=C V \_\operatorname{Info}(\mathrm{v}) \div Y\)
hh = h_old (i, j )

end subroutine SET_xyh
\(!=1\) SUBROUTINE //////////
    ////////// S ET_XYH \\\\\\\\\\\}

\(!=1\)
! \(\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \quad / / / / / / / / /\)
END MODULE pfc2Dsubs
! ////////// \(\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash\)

\section*{Source File 15: BoundCond.f95}
```

! fortran_free_source

```


```

!

 //////////
MODULE BoundCond
implicit none
contains
!
!

 B E G I N S U B R O U T I N E ///////////
////////// MOC_KIN_BC

\
M
! inputs: everything
outputs: the depth in the boundary cell
subroutine MOC_KIN_BC(i, j, rain, dt, side, h_bound, dev)
use shared , only: K, por, b_pfc, n_mann, CV_Info, wid, \&
imax, jmax, lng, wid, h__old, Z, eta_0_hp2_max
use pfc2dsubs, only: set_xyh
use pfc2Dfuns, only: F_LinearIndex
use utilities, only: BILINEAR_INTERP, F_PythagSum
integer, intent(in) :: i, j
real, intent (in) :: dt ! timestep
character(5), intent(in) :: side ! which side of the domain are we working on
real, intent(in) :: rain ! rainfall rate for this timestep
real, intent(out) :: h__bound
integer, optional :: dev !device for outputing errors
real, dimension(2) :: ksi_iil !vector in the ksi direction from point i to i+1
real, dimension(2) :: eta_jjl !vector in the eta direction from point j to j+1
real, dimension(2) :: S_ksi ! slope vector in the ksi direction
real, dimension(2) :: S_eta ! slope vector in the eta direction
real, dimension(2) :: S_drain
real, dimension(2) :: S_drain_unit ! slope vector for drainage slope
real :: drain_slope ! magnitude of drainge slope
integer :: v
integer :: vil !value of v for the cell i+1
integer :: vjl !value of v for the cell j+1
integer :: vjm1 !value of v for the cell j-1
integer :: viml !value of v for the cell i-1
integer :: v1, v2, v3, v4 ! global index for interpolation points
! Get a vector that points up the drainage slope from the point i,j

```
```

! Bilinear Interpolation
real :: XX, YY ! Coordinates of point where depth is interpolated
real :: x1, y1, h1 ! Coordinates of point 1 Interpolation points
real :: x2, y2, h2 ! " " point 2
real :: x3, y3, h3 ! " " point 3
real :: x4, y4, h4 ! " " point 4
! Method of Characteristics
! PFC
real :: dx_moc, hp1, hp2, hp2_max
! Sheet flow
real :: ds, hs1, hs2
integer :: device
logical :: bilin_err

```

```

! Default values for output device
if(present(dev) .EQV. .FALSE.) then
device = 6
else
device = dev
end if

```

```

! DRAINAGE SLOPE CALCULATIONS
! setup to figure out the slope components in
! the i (ksi) and j (eta) directions
= F_LinearIndex(i , j , jmax)
vi1 = F_LinearIndex(i+1, j , jmax)
vj1 = F_LinearIndex(i , j+1, jmax)
vjm1 = F_LinearIndex(i , j-1, jmax)
vim1 = F_LinearIndex(i-1, j , jmax)

```

```

! Compute unit vectors in the longitudinal (ksi)
and tranverse (eta) directions. If statements
are careful around the boundaries
!--_
! LONGITUDINAL DIRECTION (ksi)
if(side == 'north' .or. side == 'south') then
ksi_ii1 = (/ CV_info(vi1)%X - CV_Info(v)%X , \&
CV_info(vil)%Y - CV_Info(v)%Y /)
elseif(side == 'east ') then
ksi_ii1 = (/ CV_info(v)%X - CV_Info(vim1)%X , \&

```
2
```

1 0 8 ~ C V _ i n f o (v) \% Y ~ - ~ C V _ I n f o (v i m 1) \% Y ~ /) ~
1 0 9
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0
1 2 1
122
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
128
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 0
1 4 1 ~ ! w r i t e (d e v i c e , *) ~ ' D i r e c t i o n ~ V e c t o r s : ~ k s i _ i i 1 ~ = ~ ' , ~ k s i _ i i 1 , ~ \& ~
142 ! ' eta_jj1 = ', eta_jj1
1 4 3
144
145 ksi_ii1 = ksi_ii1 / F_PythagSum(ksi_ii1(1), ksi_ii1(2))
146 eta_jj1 = eta_jj1 / F_PythagSum(eta_jj1(1), eta_jj1(2))
1 4 7
148 !write(device,*)'Direction UNIT Vectors: ksi_ii1 = ', ksi_ii1, \&
149 ! ' eta_jj1 = ', eta_jj1
150
1 5 1
152
153 ! Compute a slope vector for each direction by
154 ! estimating the magnitude and using the unit vectors
155
156
1 5 7
1 5 8
1 5 9
1 6 0
1 6 1
endif
! TRANSVERSE DIRECTION (eta)
if(side == 'south') then
eta_jj1 = (/ CV_info(vj1)%X - CV_Info(v)%X , \&
CV_info(vj1)%Y - CV_Info(v)%Y /)
elseif(side == 'north') then
eta_jj1 = - (/ CV_info(vjml)%X - CV_Info(v)%X, \&
CV_info(vjml)%Y - CV_Info(v)%Y /)
elseif(side == 'east ') then
if(j /= jmax) then
! j+1 is OK
eta_jj1 = (/ CV_info(vj1)%X - CV_Info(v)%X , \&
CV_info(vj1)%Y - CV_Info(v)%Y /)
elseif(j == jmax) then
! special treatment for jmax
eta_jj1 = (/ CV_info(v)%X - CV_Info(vjm1)%X , \&
CV_info(v)%Y - CV_Info(vjm1)%Y /)
endif
endif
!Make the direction vectors of unit length

```

```

 obtained above for the directions
    ```

```

! LONGITUDINAL DIRECTION (ksi)
if(side = 'north' .or. side == 'south') then
S_ksi = ksi_ii1 * (Z(i+1, j) - Z(i, j)) / lng(i, j)

```
```

162
1 6 3
1 6 4
1 6 5
1 6 6
1 6 7
1 6 8
1 6 9
1 7 0
1 7 1
1 7 2
1 7 3
174
175
1 7 6
1 7 7
1 7 8
1 7 9
180
1 8 1
182
183
184
185
186
187
188
189
1 9 0
1 9 1
1 9 2
1 9 3
194
195
196
1 9 7
198
199
200
206
207
208
2 0 9
2 1 0
2 1 1
212
213
214
215

```
```

! compute drainage slope vector

```
! compute drainage slope vector
201 S_drain = S_ksi + S_eta
201 S_drain = S_ksi + S_eta
202 ! and the magnitude
202 ! and the magnitude
203 drain_slope = F_PythagSum( S_drain(1), S_drain(2) )
203 drain_slope = F_PythagSum( S_drain(1), S_drain(2) )
204 ! and a drainage slope unit vector
204 ! and a drainage slope unit vector
205 S_drain_unit = S_drain / drain_slope
205 S_drain_unit = S_drain / drain_slope
```

elseif(side == 'east ') then

```
elseif( side == 'east ' ) then
    S_ksi = ksi_iil * ( Z( i, j ) - Z( i-1, j ) ) / lng( i, j )
    S_ksi = ksi_iil * ( Z( i, j ) - Z( i-1, j ) ) / lng( i, j )
end if
end if
! TRANSVERSE DIRECTION (eta)
! TRANSVERSE DIRECTION (eta)
if( side == 'south') then
if( side == 'south') then
    S_eta = eta_jj1 * ( Z( i , j+1 ) - Z( i, j ) ) / wid( i, j )
    S_eta = eta_jj1 * ( Z( i , j+1 ) - Z( i, j ) ) / wid( i, j )
elseif( side == 'north' ) then
elseif( side == 'north' ) then
    S_eta = - eta_jj1 * ( Z( i , j-1 ) - Z( i, j ) ) / wid( i, j )
    S_eta = - eta_jj1 * ( Z( i , j-1 ) - Z( i, j ) ) / wid( i, j )
elseif( side == 'east ' ) then
elseif( side == 'east ' ) then
    if( j /= jmax ) then
    if( j /= jmax ) then
            S_eta = eta_jj1 * ( Z( i , j+1 ) - Z( i, j ) ) / wid( i, j )
            S_eta = eta_jj1 * ( Z( i , j+1 ) - Z( i, j ) ) / wid( i, j )
    elseif( j == jmax ) then
    elseif( j == jmax ) then
        S_eta = eta_jj1 * ( Z( i, j) - Z( i, j-1) ) / wid( i, j )
        S_eta = eta_jj1 * ( Z( i, j) - Z( i, j-1) ) / wid( i, j )
    endif
    endif
end if
```

end if

```


```

 Compute vector for the drainage slope (S_drain)
    ```
    Compute vector for the drainage slope ( S_drain )
    and its magnitude, and unit vector for direction
```

 and its magnitude, and unit vector for direction
    ```


```

!write(device, *) 'Slope Vectors: S_ksi = ', S_ksi, ' S_eta', S_eta

```
```

!write(device, *) 'Slope Vectors: S_ksi = ', S_ksi, ' S_eta', S_eta

```


```

 INTERROOLATION POINTS
    ```
```

 INTERROOLATION POINTS
    ```


```

216
217 ! now we can figure out which points to use for the
218 ! bilinear interploation routine. Points must be specified
219 ! counter-clockwise around the perimeter:
220!
!
if
2 2 7
228
2 2 9
2 3 0
2 3 1
232
233
234
235
236
2 3 7
238
2 3 9
240
241

```
    call set_xyh( i-1, j , x1, y1, h1 )
    call set_xyh( i , j , x2, y2, h2 )
    call set_xyh( i , j+1, x3, y3, h3 )
    call set_xyh( i-1, j+1, x4, y4, h4 )
elseif( side == 'east ' .AND.S_drain_unit(2) .IT. 0.0 ) then
        ! This is the eastern boundary and
        ! and uphill is the negative Y direction
        call set_xyh( i-1, j-1, x1, y1, h1 )
        call set_xyh( i , j-1, x2, y2, h2 )
        call set_xyh( i , j , x3, y3, h3 )
        call set_xyh( i-1, j , x4, y4, h4 )
endif
```



```
    METHOD OF CHARACTERISTICS
    Reset v to confirm we're in the right cell
v = F_LinearIndex( i, j, jmax )
MOC:if( h_old(i,j)
        .IE. b_pfc) then
!------------------
!PFC FLOW
!----_-_-_-_-_-_-_
            ! Sheet flow has not started yet
            ! use MOC to estimate the solution at the next time step
            ! figure out how far up the drainage slope to go
            dx_moc = K * (drain_slope) * dt / por
            write( device, * ) 'MOC_KIN_BC: i = ', i, ' j = ', j, 'pfc char len = ',
            ! and the coordinates of this location
            XX = CV_Info( v ) % X + dx_moc * S_drain_unit( 1 )
            YY = CV_Info( v ) % Y + dx_moc * S_drain_unit( 2 )
            ! use bilinear interpolation to find the
            ! thickness (hpl) at this location
            call BILINEAR_INTERP ( XX, YY, hp1, &
                x1, y1, h1 , &
                x2, y2, h2 , &
                    x3, y3, h3 , &
                    x4, y4, h4, &
                device, bilin_err )
            ! value at next time step
            hp2 = hp1 + rain * dt / por
            ! set maximum value for hp2 (1D flow)
            if( rain .LT. TINY ( rain )) then
                ! Rainfall rate is effectively zero
                hp2 = hp2 ! Eqv to hp2 = hp1
```

```
325 else
326
327
328
329
330
331
332
333
334
336 !
338!
339!
340 !
341!
342!
343!
344!
345!
346!
347!
348!
349!
350!
351 !
352!
353!
354
355!
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
3 7 9
```

```
337 ! ! Error checking for eastern boundary
```

337 ! ! Error checking for eastern boundary

```
            ! Rainfall is non-zero, set a maximum value for hp2
```

 ! Rainfall is non-zero, set a maximum value for hp2
 hp2 = min(hp2, sum(wid(i,:))*rain/K/drain_slope)
 hp2 = min(hp2, sum(wid(i,:))*rain/K/drain_slope)
 ! Use hp1 (basically zero rainfall) if there
 ! Use hp1 (basically zero rainfall) if there
 ! is a decrease in depth
 ! is a decrease in depth
 if(hp2 .LT. hp1) then
 if(hp2 .LT. hp1) then
 hp2 = hp1
 hp2 = hp1
 end if
 end if
 endif
 endif
 if(i = imax) then
if(i = imax) then
if(j = jmax -5 .or. j = jmax/2 .or. j == 5) then
if(j = jmax -5 .or. j = jmax/2 .or. j == 5) then
write(device, *) 'MOC_KIN: i =', i , \&
write(device, *) 'MOC_KIN: i =', i , \&
'j =', j , \&
'j =', j , \&
'S_drain =', S_drain, \&
'S_drain =', S_drain, \&
' drain_slope =', drain_slope, \&
' drain_slope =', drain_slope, \&
' S_drain_unit =', S_drain_unit
' S_drain_unit =', S_drain_unit
write(device,*) 'Bilinear Interpolation'
write(device,*) 'Bilinear Interpolation'
write(device,*) ' X, Y, h,
write(device,*) ' X, Y, h,
write(device,32) 0, XX, YY, hp1
write(device,32) 0, XX, YY, hp1
write(device,32) 1, x1, y1, h1
write(device,32) 1, x1, y1, h1
write(device,32) 2, x2, y2, h2
write(device,32) 2, x2, y2, h2
write(device,32) 3, x3, y3, h3
write(device,32) 3, x3, y3, h3
write(device,32) 4, x4, y4, h4
write(device,32) 4, x4, y4, h4
end if
end if
endif
endif
! error checking for interpolation
! error checking for interpolation
if(bilin_err .eqv. .true.) then
if(bilin_err .eqv. .true.) then
write(device,*) 'MOC_KIN_BC: Bilinear interpolation error \&
write(device,*) 'MOC_KIN_BC: Bilinear interpolation error \&
\& for grid cell i = ', i, ' j = ', j
\& for grid cell i = ', i, ' j = ', j
write(device,*) 'S_drain=', S_drain, \&
write(device,*) 'S_drain=', S_drain, \&
' drain_slope=', drain_slope, \&
' drain_slope=', drain_slope, \&
' S_drain_unit=', S_drain_unit
' S_drain_unit=', S_drain_unit
write(device,*) 'hp2=', hp2 , \&
write(device,*) 'hp2=', hp2 , \&
'dx_moc=', dx_moc, \&
'dx_moc=', dx_moc, \&
'hp1=', hp1 , \&
'hp1=', hp1 , \&
'rain=', rain , \&
'rain=', rain , \&
'dt=', dt , \&
'dt=', dt , \&
'por=', por
'por=', por
write(device,*) 'Interploation points/result:'
write(device,*) 'Interploation points/result:'
write(device,*) ' X, Y, h,'
write(device,*) ' X, Y, h,'
write(device,32) 0, XX, YY, hp1
write(device,32) 0, XX, YY, hp1
write(device,32) 1, x1, y1, h1
write(device,32) 1, x1, y1, h1
write(device,32) 2, x2, y2, h2
write(device,32) 2, x2, y2, h2
write(device,32) 3, x3, y3, h3
write(device,32) 3, x3, y3, h3
write(device,32) 4, x4, y4, h4
write(device,32) 4, x4, y4, h4
end if

```
end if
```

```
        if( i == imax/2 .OR. j == jmax/2 ) then
        write(device,*) 'PFC Flow MOC BC: i=', i , &
            'j=', j , &
                                'hp2=', hp2 , &
                                    'dx_moc=', dx_moc, &
                            'hp1=', hp1 , &
                            'rain=', rain , &
                            'dt=', dt , &
                                'por=', por
        endif
        h_bound = hp2
else
!--_-_-_-_-_______
!SHEET FLOW
!----------------
                    hs2 = h_old(i,j) - b_pfc
            ! Handle Zero Rainfall
    if( rain .LT. TINY( rain ) ) then
            ! there is no increase in flow rate along the drainage path
            ! and ds becomes arbitrary so use the characteristic length for PFC
            ! b/c you might need it later
            ds = K * ( drain_slope ) * dt / por
        else
            ds = sqrt( drain_slope ) / n_mann / rain * &
                ( ( hs2 + rain*dt )**(5./3.) - hs2**(5.13.) )
    end if
    ! interpolate up the drainage slope to find hs1
    XX = CV_Info( v ) % X + ds * S_drain_unit( 1 )
    YY = CV_Info( v ) % Y + ds * S_drain_unit( 2 )
    ! use bilinear interpolation to find the thickness (hsl) at this location
    call BILINEAR_INTERP( XX, YY, hs1, &
                    x1, y1, h1 , &
                    x2, y2, h2 , &
                    x3, y3, h3 , &
                    x4, y4, h4, &
                            device, bilin_err )
    if( bilin_err .eqv. .true. ) then
        write(device,*) 'MOC_KIN_BC: Bilinear interpolation error &
                        & for grid cell i = ', i, ' j = ', j
            write(device,*) ' X, Y, h,'
            write(device,32) 0, XX, YY, hs1
            write(device,32) 1, x1, y1, h1
            write(device,32) 2, x2, y2, h2
            write(device,32) 3, x3, y3, h3
            write(device,32) 4, x4, y4, h4
            end if
        ! subtract off the pavement thickness
```

```
436 hs1 = hs1 - b_pfc
4 3 7 ~ ! H a n d l e ~ r e t u r n ~ t o ~ P F C ~ f l o w ~
        if( hs1 .GT. 0. ) then
            !we have sheet flow
            !Output some summary info
            if( i == imax/2 .or. j == jmax / 2 ) then
            write(device,*) 'Sheet Flow MOC BC: i=', i, &
                'j=', j, &
                                    'hs2=', hs2, &
                                    'ds=', ds, &
                                    'hs1=', hs1
        endif
        !checking for good values of inputs
        if( hs1 .LT. 0. .OR. hs2 .LT. 0. .OR. rain .IT. 0.) then
        write(device,*) 'Sheet Flow MOC BC: i=',i, 'j=',j, &
                            'hs1=', hs1, 'hs2=',hs2, 'rain=',rain
    end if
    ! return value for the boundary
    h_bound = b_pfc + ( hs1**(5.13.) + &
            ( hs2 + rain*dt )**(5./3.) - &
                hs2**(5./3.) )**0.6
        else
            ! the upstream point does not have sheet flow
            ! use PFC characterisitic
            h__bound = hs1 + b_pfc + rain * dt / por
        end if
end if MOC
! Format statements
31 format ( 3(F12.7, ' ') )
    format( I3, ' ', 3(F12.7, ' ') )
```



```
end subroutine MOC_KIN_BC
!=__=_______=_=_=_=_=_=_=_=_=_=_
! \\\\\\\\\\\ END S U B ROUT INE ///////////
! ////////// MOC_K I N_BC \\\\\\\\\\\
\begin{tabular}{lll}
\(!=\) & & \\
\(!\) & END MODULE BoundCond & \(/ / / / / / / / / / /\) \\
\(!\) & & \\
\end{tabular}
```

481
482
483
484
485
486

REFERENCES

Anderson, M.P. and Woessner, W.W. (1992), Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, San Diego.

Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (1960). Transport Phenomena, John Wiley and Sons, Inc., Madison, WI.

Beavers, G.S., and Joseph, D.D. (1967), Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30:197-207.

Bear, Jacob. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
Barrett, Michael (2006). Stormwater Quality Benefits of a Porous Asphalt Overlay. Center for Transportation Research, Austin, Texas. Report No. FHWA/TX-07/0-4605-2.

Barrett, M.E., Klenzendorf, J.B., Eck, B. J., and Charbeneau, R.J. (2009), Water Quality and Hydraulic Properties of the Permeable Friction Course, Proceedings of the World Environmental and Water ResourcesConference 2009, Kansas City, MO, May 17-21, 2009.

Berbee, R., G. Rijs, R. de Brouwer, and L. van Velzen (1999), Characterization and Treatment of Runoff from Highways in the Netherlands Paved with Impervious and Pervious Asphalt, Water Environment Research, 71(2), 183-190.

Charbeneau, R. J. (2000), Groundwater Hydraulics and Pollutant Transport, Waveland Press, Long Grove, IL.

Charbeneau, R.J. and Barrett, M.E. (2008), Drainage Hydraulics of Permeable Friction Courses, Water Resources Research 44, W04417.

Charbeneau, R. J., Jeong, J. and Barrett, M.E. (2009). Physical Modeling of Sheet flow on Rough Impervious Surfaces, Journal of Hydraulic Engineering, Vol 135. No. 6.

Chow, V.T., D.R. Maidment, and L.W. Mays (1988), Applied Hydrology, McGraw-Hill, New York.

Eck, B.J., Barrett, M.E. and R.J. Charbeneau (2010), Note on Modeling Surface Discharge from Permeable Friction Courses, Water Resources Research (Under Review).

Dabaghmeshin, M. (2008), Modeling the Transport Phenomena within the Arterial Wall: Porous Media Approach. Thesis for the degree of Doctor of Science. Lappeenranta University of Technology, Lappeenranta, Finland. Accessed Online (18 Nov 08): https://oa.doria.fi/bitstream/handle/10024/42280/is bn9789522146274.pdf?sequence $=2$

Daluz Vieira, J.H. (1983), Conditions Governing the Use of Approximations for the Saint-Venant Equations for Shallow Surface Water Flow. Journal of Hydrology, 60: 43-58.

Ergun, S. (1952), Fluid Flow Through Packed Columns, Chemical Engineering Progress, Vol 48, No.2, pp 89-94.

Ferziger, J.H. and Peric, M. (2002), Computational Methods for Fluid Dynamics, Springer, Berlin.

Furman, A, (2008), Modeling Coupled Surface-Subsurface Flow Processes: A Review. Vadose Zone Journal, 7:741-756.

Google Inc. (2010). Google Earth (Version 5.1.3533.1731) [Software]. Available from http://earth.google.com/
Halek, V. and J. Svec. (1979), Groundwater Hydraulics. Elsevier, New York.
He, Z., Wu, W. and Wang, Sam S. Y. (2008), Coupled Finite-Volume Model for 2D Surface and 3D Subsurface Flows. Journal of Hydrologic Engineering, Vol. 13 No. 9.

Irmay, S. (1967), On the Meaning of the Dupuit and Pavlovskii Approximations in Aquifer Flow, Water Resources Research Vol. 3, No. 2, pp 599-608.

Jeong, J. (2008), A Hydrodynamic Diffusion Wave Model for Stormwater Runoff on Highway Surfaces at Superelevation Transitions. Dissertation. University of Texas at Austin.

Jeong, J. and Charbeneau, R. J., (2010), Diffusion Wave Model for Simulating Stormwater Runoff on Highway Pavement Surfaces at Superelevation Transition, Journal of Hydraulic Engineering, (In Press).
Klenzendorf, J. B. (2010), Hydraulic Conductivity Measurement of Permeable Friction Course (PFC) Experiencing Two-Dimensional Nonlinear Flow Effects. Dissertation. University of Texas at Austin.
Kreyzig, E. (1999), Advanced Engineering Mathematics, $8^{\text {th }}$ Edition. John Wiley and Sons, New York.

Kollet, S. J., and Maxwell, R. M. (2006), Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour.,129, 945-958.

Kovacs, G. (1981), Seepage Hydraulics. Elsevier, New York.
Li, D. and Engler, T.W., (2001), Literature Review on Correlations of the Non-Darcy Coefficient. SPE 70015, in: Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, USA, May 15-16.

Liang, D., Falconer, R.A., and Lin, B. (2007), Coupling surface and subsurface flows in a depth averaged flood wave model. Journal of Hydrology, 337:147-158.

Loaiciga, H. A. (2005), Steady state phreatic surfaces in sloping aquifers, Water Resources Research 41, W08402, doi:10.1029/2004WR003861.

NCHRP: National Cooperative Highway Research Program (2009), Construction and Maintenance Practices for Permeable Friction Courses, Report 640, Transportation Research Board, Washington, D.C..
Ranieri, V. (2002), Runoff Control in Porous Pavements, Transpation Research Record.1789, pp.46-55.

Refsgaard, J.C., and B. Storm. (1995), MIKE-SHE. p. 809-846. In V.P. Singh (ed.) Computer models of watershed hydrology. Water Resour. Publ., Highlands Ranch, CO.

Ruth, D. and Ma, H. (1992), On the Derivation of the Forchheimer Equation by Means of the Averaging Theorem. Transport in Porous Media 7: 255-264.

Simpson, M.J., Clement, T.P. and Gallop, T.A. (2003), Laboratory and Numerical Investigation of Flow and Transport Near a Seepage-Face Boundary. Ground water. Vol. 41 No. 5 pp690-700.

Stanard, C. E. (2008), Stormwater Quality Benefits of a Permeable Friction Course. Master's Thesis. Univeristy of Texas at Austin. Available Online: http://www.crwr.utexas.edu/reports/2008/rpt08-3.shtml

Street, R.L. (1973), The Analysis and Solution of Partial Differential Equations, Brooks/Cole, Monterey, California.

Tan, S.A., T.F. Fwa, and K.C. Chai (2004), Drainage consideration for Porous Asphalt Surface Course Design, in Transportation Research Record 1868, pp 142-149.
Thauvin, R. and Mohanty, K.K. (1998), Network Modeling of Non-Darcy Flow Through Porous Media, Transport in Porous Media 31: 19-37.

Ward, J.C. (1964), Turbulent Flow in Porous Media, Journal of Hydraulics Division, ASCE Vol 90 \#HY5, pp 1-12.

White, F.M. (1999), Fluid Mechanics, Fourth Edition. WCB/McGraw-Hill.
Woolhiser, D.A. and Liggett, J.A. (1967), Unsteady, One-Dimensional Flow over a Plane-the Rising Hydrograph, Water Resources Research, Vol. 3 No. 3 753-771.

Yates, S.R., A.W. Warrick, \& D.O. Lomen (1985), Hillside Seepage: An Analytical Solution to a Nonlinear Dupuit-Forchheimer Problem, Water Resources Research 21(3) 331-336.

Zeng, Z and Grigg, R. (2006), A Criterion for Non-Darcy Flow in Porous Media, Transport in Porous Media 63: 57-69.

