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 Permeable Friction Course (PFC) is a layer of porous asphalt pavement with a 

thickness of up to 50 millimeters overlain on a conventional impervious hot mix asphalt 

or Portland cement concrete roadway surface.  PFC is used for its driver safety and 

improved stormwater quality benefits associated with its ability to drain rainfall runoff 

from the roadway surface.  PFC has recently been approved as a stormwater best 

management practice in the State of Texas.  The drainage properties of PFC are typically 

considered to be governed primarily by two hydraulic properties: porosity and hydraulic 

conductivity.  Both of these hydraulic properties are expected to change over the life of 

the PFC layer due to clogging of the pore space by trapped sediment.  Therefore, proper 

measurement of the hydraulic properties can be problematic.  Laboratory and field tests 

are necessary for accurately determining the hydraulic conductivity of the PFC layer in 

order to ensure whether the driver safety and water quality benefits will persist in the 

future.  During testing, PFC experiences a nonlinear flow relationship which can be 

modeled using the Forchheimer equation.  Due to the two-dimensional flow patterns 

created during testing, the hydraulic conductivity cannot be directly measured.  

Therefore, numerical modeling of the two-dimensional nonlinear flow relationship is 



 vii 

required to convert the measureable flow characteristics into the theoretical flow 

characteristics in order to properly determine the isotropic hydraulic conductivity.  This 

numerical model utilizes a new scalar quantity, defined as the hydraulic conductivity 

ratio, to allow for proper modeling of nonlinear flow in two-dimensional cylindrical 

coordinates. 

 PFC core specimens have been extracted from three different roadway locations 

around Austin, Texas for the past four years (2007 to 2010).  Porosity values of the core 

specimens range from 12% to 23%, and the porosity data suggest a statistical decrease 

over time due to trapped sediment in the pore space.  A series of constant head tests used 

in the laboratory and a falling head test used in the field are recommended for 

measurement of PFC hydraulic characteristics using a modified Forchheimer equation.  

Through numerical modeling, regressions equations are presented to estimate the 

hydraulic conductivity and nonlinear Forchheimer coefficient from the measureable 

hydraulic characteristics determined during experimental testing.  Hydraulic conductivity 

values determined for laboratory core specimens range from 0.02 centimeters per second 

(cm/s) to nearly 3 cm/s.  Field measurements of in-situ hydraulic conductivity vary over a 

range from 0.6 cm/s to 3.6 cm/s.  The results of this research provide well-defined 

laboratory and field methods for measurement of the isotropic hydraulic conductivity of 

PFC experiencing two-dimensional nonlinear flow and characterized by the Forchheimer 

equation.  This methodology utilizes a numerical model which presents a proper solution 

for nonlinear flow in two-dimensions. 
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Chapter One 

Introduction 
 

 

1.1 Background and Motivation 
 Urbanization and the development of land result in the natural land cover being 

replaced by impervious surfaces.  Roadways, parking lots, sidewalks, and buildings are 

among the typical structures that result in impervious surfaces and prevent rainfall from 

naturally infiltrating into the ground and recharging groundwater supplies.  The effects of 

urbanization on the hydrologic processes of an area include, but are not limited to, 

increased peak flows and increased flow velocities during rainfall events.  This can result 

in stream erosion and increased likelihood of flooding.  In addition, various pollutants are 

washed off of impervious surfaces and enter the surrounding waterways degrading the 

water quality of the area and adversely impacting the local ecosystem (ASCE, 1992).  

The source of pollutants come from a range of anthropogenic effects including but not 

limited to: oil and grease from vehicles, nutrients from fertilizers, waste from 

construction sites, and general trash or floatable debris.  In order to alleviate the negative 

impacts of urbanization on the hydrologic cycle, a variety of stormwater best 

management practices (BMPs) can be used.  These practices typically include 

detention/retention ponds, wet ponds, constructed wetlands, and sand filters (ASCE, 

1992).  BMPs are designed to retain stormwater runoff and release the water slowly after 

the storm event has passed.  This helps to decrease the peak flow rates and decrease the 

likelihood of flooding.  In addition, the stormwater quality improves while the water is 

retained through the settling of particles and infiltration into the ground.  More recently, 

various low impact development (LID) practices have gained popularity and interest in 

order to improve the adverse impacts of urbanization.  LID methods include the use of 

green roofs, bioretention cells, rain gardens, rain barrels, and porous pavement systems.  
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The focus of this dissertation and research study deals with one type of porous pavement 

which is described below. 

 Field et al. (1982) provide an overview of the advantages and disadvantages of 

using a completely porous pavement system.  Completely porous pavement systems 

consist of a porous asphalt or porous concrete surface course as well as a porous reservoir 

base course and subgrade.  The goal of porous pavement is to drain all the rainfall runoff 

into the reservoir base course and then allow the water to slowly infiltrate into the 

surrounding natural soil.  This reduces the peak runoff flow rate and improves the water 

quality by removing pollutants from the road surface through filtering of sediment 

particles and the pollutants associated with sediment.  In addition, porous pavement 

removes runoff from the surface which helps to improve driver safety.  Less surface 

runoff reduces the potential for hydroplaning and reduces splash and spray from vehicles, 

which allows for better visibility.  However, there have been concerns with respect to the 

structural integrity of a completely porous pavement system.  In the use of traditional 

impervious roadways, the subgrade is designed for a specified compaction strength and to 

remain free of water in order to maintain adequate structural strength.  With the use of 

completely porous pavements, water is allowed to infiltrate into the subgrade.  This 

suggests that the structural strength of the roadway may be adversely impacted during 

rainfall events. 

 In an effort to avoid the structural concerns of completely porous pavement 

systems, a different approach is needed.  Recently, many state departments of 

transportation have begun using only a porous surface course in order to take advantage 

of the driver safety benefits.  A porous asphalt surface course serves as a sacrificial 

overlay in that it is expected to degrade and be replaced more frequently than 

conventional pavements with a typical design life of roughly 10 years (TRB, 2009).  Void 

space in the porous asphalt is created by removing the fine aggregate from traditional 

asphalt mixes and increasing the volume of asphalt binder.  This results in a porous 

matrix of large angular aggregate, on the order of one centimeter (cm) in diameter, held 

together by asphalt binder.  The lack of fine aggregate allows for increased void space 
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between the large aggregates.  A porous surface course consists of a porous asphalt layer 

up to 50 millimeter (mm) thick with roughly 20% effective porosity on top of a 

conventional impervious hot mix asphalt concrete (HMAC) or Portland cement concrete 

roadway surface.  Conventional roadway surfaces typically have a porosity of less than 

5%.  During a rainfall event, the water enters the pore space of the surface course and is 

removed from the surface.  Water then flows laterally along the underlying impervious 

asphalt layer to the roadway shoulder.  The water resurfaces at the shoulder where it 

flows into a ditch or drainage swale running parallel to the road.  Figure 1.1 shows a 

schematic view of a typical porous surface course overlay. 

 
 

 
Figure 1.1 – Porous surface course overlay schematic 

 

 The decreased surface runoff provides numerous benefits which include better 

traction and decreased hydroplaning, a reduction of splash and spray from vehicles, 

increased visibility due to the decreased spray, and decreased light reflection from water 

on the road surface.  These benefits are expected to reduce the number of accidents 

during rainfall events.  Such a porous surface course has also been shown to reduce noise 

(Bendtsen and Andersen, 2005), increase skid resistance, and improve the quality of 

stormwater runoff by capturing pollutants in the pore space (Stotz and Krauth, 1994; 

Berbee et al., 1999; Pagotto et al, 2000; Barrett et al., 2006).  In addition, porous surface 

courses are typically a few degrees cooler than conventional pavements and have been 
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used to combat the urban heat island effect.  However, the volume of runoff and peak 

flow rate are not drastically reduced as in a completely porous pavement system.  

Conversely, the structural strength of the roadway remains high because water is not 

allowed to enter the underlying roadway subgrade.  The porous surface course system is 

the focus of this research study.  This surface course is typically referred to as a 

permeable friction course (PFC) or previously referred to as open-graded friction course 

(OGFC).  The PFC asphalt mix design that is being investigated for this research study is 

described in TxDOT (1993). 

 The advantages of the use of PFC also come with disadvantages, such as greater 

initial costs and shorter service life when compared to conventional pavements.  The 

additional initial cost of PFC can be offset due to the improved water quality benefits.  In 

general, a structural BMP is required to clean the stormwater runoff from a new 

development.  The traditional BMPs, such as a sand filter, require the additional cost of 

land, concrete forms, and piping in order to treat the stormwater runoff, as well as 

scheduled maintenance.  In certain cases, the additional initial cost of PFC is offset 

because a structural BMP is no longer required.  Over time, clogging of the void space 

occurs due to the trapping of pollutants and suspended solids from the stormwater runoff 

(Fwa et al., 1999).  This clogging is expected to reduce the impacts of the advantages 

associated with the drainage characteristics of the PFC.  Therefore, understanding the 

hydraulic characteristics of PFC and the impact that clogging has on these characteristics 

is necessary in order to fully take advantage of the benefits associated with the use of 

PFC. 

 Currently, PFC is used primarily on roadways in order to take advantage of its 

driver safety benefits.  PFC is not currently used solely for its benefits associated with 

improved water quality, although this is an area of on-going research.  The Texas 

Commission on Environmental Quality (TCEQ) recently approved the use of PFC as a 

new stormwater BMP in the State of Texas on uncurbed roadways with a design speed of 

80 kilometers per hour (km/hr) or greater.  This allows for designers to utilize the water 

quality benefits of PFC when planning new projects.  In order to take full advantage of 
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the benefits of PFC, we must gain a better understanding of the hydraulic characteristics 

of the porous asphalt.  A review of previous research conducted on PFC documented in 

the literature is provided in Chapter Two.  The hydraulic characteristics of PFC are 

influenced by its porosity and hydraulic conductivity.  It is expected that these two 

hydraulic characteristics are positively correlated.  These parameters are, in general, not 

constant in space or time.  The porosity and hydraulic conductivity of a PFC layer can 

change along the length and width of the roadway, but in general, we will assume 

homogeneous characteristics of these parameters.  Furthermore, over time the pore space 

in the PFC can become clogged with sediment resulting in a decrease in porosity, and 

ultimately an expected decrease in hydraulic conductivity.  Therefore, these parameters 

are not constant in time.  Accurate measurement of these hydraulic characteristics is 

necessary to ensure adequate drainage of surface runoff and maintain the benefits of PFC.  

Related research is currently being conducted on the water quality improvements from a 

section of PFC compared to conventional HMAC.  The smaller concentration in 

suspended solids observed in runoff from the PFC surface when compared to a 

conventional HMAC surface suggest that sediment is trapped in the pore space of the 

PFC over time.  This is expected to result in a decrease in hydraulic conductivity and 

porosity over time.  Being able to measure the in-situ hydraulic conductivity of a PFC 

layer at any given time is necessary to determine whether too much clogging has 

occurred and if the drainage benefits will persist for the next rainfall event. 

 This dissertation and related experimental and numerical research is a portion of 

the research study “Investigation of Stormwater Quality Improvements Utilizing 

Permeable Pavement and/or the Porous Friction Course (PFC)” funded by the Texas 

Department of Transportation (TxDOT) through research project number 0-5220.  

Researchers at the Center for Research in Water Resources (CRWR) at The University of 

Texas at Austin have been investigating both the hydraulic characteristics and stormwater 

quality improvements of PFC over the past several years (beginning in 2004).  TxDOT 

currently uses PFC on several roadways around the City of Austin, as well as various 

other cities across the state.  Creating a well defined methodology for the accurate 
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measurement of the hydraulic characteristics of PFC both in the laboratory and in the 

field is one objective of the TxDOT research study which will be addressed in this 

dissertation.  A second objective is the development of a numerical model to predict flow 

within PFC.  The majority of this objective is addressed in the dissertation written by Eck 

(2010).  However, the present dissertation will address numerical modeling of the 

nonlinear flow characteristics which have been observed to occur during hydraulic 

conductivity testing. 

 

 

1.2 Research Objectives 
 This research study defines a methodology for measuring the hydraulic 

conductivity and porosity of a PFC overlay.  PFC core specimens can be extracted from 

the roadway surface and analyzed in the laboratory to determine hydraulic conductivity 

and porosity.  In addition, a field test can be used to determine the in-situ hydraulic 

conductivity of the PFC overlay.  Hydraulic data collected over the past four years is 

analyzed to determine the changes in porosity and hydraulic conductivity at three 

different roadways around Austin, Texas (TX).  Obtaining accurate measurements of the 

hydraulic characteristics and analyzing the change in these characteristics over time gives 

necessary information as to how the water quality and driver safety benefits of PFC will 

persist through time, and when maintenance or replacement of the PFC layer is needed.  

In addition, numerical modeling of the nonlinear flow regime observed in PFC during 

testing provides a better understanding of how these effects impact the flow of water 

through PFC.  The objectives of this research can be divided into four major categories: 

evaluate hydraulic properties of PFC in the laboratory, evaluate hydraulic conductivity of 

PFC in the field, develop a numerical model of the nonlinear head distribution through a 

PFC core specimen, and analyze the change in hydraulic properties of PFC over time and 

at different locations. 
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1.2.1 Evaluate Hydraulic Properties in the Laboratory 

 The first objective, addressed in Chapter Three, is to evaluate both the hydraulic 

conductivity and porosity of PFC core specimens.  This is accomplished through 

laboratory testing on the PFC core specimens using a series of constant head tests to 

determine the hydraulic conductivity, and a submerged unit weight method to determine 

the porosity.  PFC core specimens were extracted from three roadways near Austin, TX 

(Loop 360, FM 1431, and RR 620) over the past four years (March 2007, February 2008, 

February 2009, and February 2010).  Core specimens were not collected at FM 1431 in 

2010 due to recent realignment of the roadway and abandonment of the previous coring 

location.  A methodology for determination of the hydraulic conductivity for two-

dimensional flow is described, and data collected from each core specimen is reported.  

Understanding of the hydraulic properties in a controlled laboratory setting is useful with 

respect to modeling of flow through the PFC layer for design purposes, such as the 

required thickness of PFC necessary to avoid surface runoff. 

 

1.2.2 Evaluate Hydraulic Conductivity in the Field 

 Determination of hydraulic conductivity in the lab can be time consuming and 

may disturb the core specimen during the extraction process.  Therefore, a quick, accurate 

field method for determination of hydraulic conductivity is necessary.  This field test 

must be non-destructive so that the hydraulic properties of the PFC can be easily 

measured throughout the life cycle of the overlay.  The field test will provide information 

on the extent of clogging that has occurred, as well as whether or not the benefits of PFC 

are likely to persist in the near future.  Current field testing conducted by TxDOT is not 

sufficient to determine the hydraulic conductivity of the PFC overlay as mentioned in 

Section 2.3.2 and described in detail in Section 4.1.  The second objective, addressed in 

Chapter Four, describes the test methodology and a new test apparatus developed at 

CRWR for determination of in-situ hydraulic conductivity using a falling head test.  This 

allows for quick measurement of hydraulic conductivity using the principles established 

during lab testing for nonlinear flow.  This information will help to determine the rate at 
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which clogging occurs since the test can easily be conducted in the field at regular 

intervals. 

 

1.2.3 Numerical Modeling of Hydraulic Characteristics 

 The third objective of this research, addressed in Chapter Five, is to develop a 

finite difference numerical model to analyze the nonlinear flow characteristics through 

PFC.  During both lab and field testing, a nonlinear flow relationship exists between the 

flow rate and change in head for two-dimensional flow conditions.  Therefore, the typical 

linear Darcy flow that occurs in most porous media is not sufficient to describe flow 

through PFC under testing conditions.  This objective will determine the difference 

between the typical linear approximation to flow in porous media compared to the 

nonlinear flow observed in PFC cores.  This is of particular interest due to the two-

dimensional flow in PFC which has not been analyzed in detail in the past.  The initial 

concern with nonlinear flow is to model the flow conditions that occur during the 

laboratory core tests used to determine hydraulic conductivity.  The results of the 

numerical model will relate the measureable flow characteristics in the lab and field to 

the theoretical flow characteristics, which cannot be directly measured in two-

dimensional flow, thereby determining a true hydraulic conductivity. 

 

1.2.4 Analyze Hydraulic Properties based on Location and Time 

 Over time the hydraulic conductivity and porosity are expected to decrease due to 

the entrapment of sediment in the PFC pore space.  The final objective, addressed in 

Chapter Six, will analyze the laboratory results and determine any statistical differences 

in the hydraulic properties of the PFC core specimens over time and from each roadway 

location.  This information, together with water quality data collected at a PFC site, will 

help to determine when water quality benefits are no longer persistent based on changes 

in hydraulic conductivity.  The experimentally obtained coefficients used to describe the 

nonlinear flow through PFC will be compared to empirical equations presented in the 

literature.  This will help determine which previous work, if any, applies to flow through 
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PFC.  Finally, analysis of the amount of trapped sediment in a PFC core specimen will 

help to determine if the improved water quality benefits are a result of filtering of the 

stormwater runoff or simply a decrease in source pollutants from the surface of vehicles 

due to decreased splash/spray. 

 

 

1.3 Dissertation Organization 
 This dissertation describes the details of various testing protocols together with 

the data collected to date.  The details of the numerical modeling techniques are 

presented as well.  Chapter Two provides a review of related literature pertaining to 

previous research conducted on PFC, and a summary of flow equations through porous 

media describing both the linear and nonlinear flow relationships.  Chapter Three 

provides the details of the laboratory testing conducted on PFC core specimens both for 

porosity and hydraulic conductivity measurements.  Chapter Four provides the details of 

the field testing conducted on the PFC overlay for measurement of in-situ hydraulic 

conductivity.  Chapter Five provides the details of the numerical modeling of nonlinear 

flow through porous media and describes the relationships between the measureable and 

theoretical coefficients needed to characterize the nonlinear flow properties.  Chapter Six 

presents statistical analysis of the porosity and hydraulic conductivity data to determine 

any changes in hydraulic properties based on time and location.  In addition, the 

hydraulic characteristics are compared to empirical equations in the literature.  Finally, an 

estimate for the volume of sediment removed from the stormwater runoff and trapped 

within the PFC overlay is presented.  Chapter Seven provides a summary of the research 

study and conclusions to each of the research objectives. 
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Chapter Two 

Literature Review 
 

 

 A review of previous literature conducted on applicable porous media flow is 

summarized here.  This will cover the typical linear Darcy flow through porous media at 

low velocity.  Next, nonlinear flow at higher velocities is reviewed together with different 

models with which to characterize nonlinear flow.  This includes theoretical development 

of nonlinear flow, estimation of nonlinear model coefficients, and experimental results 

for parallel and converging boundaries.  Literature pertaining specifically to PFC is also 

reviewed.  This includes the solution of steady state flow equations which model PFC 

flow as an unconfined aquifer, previous research results on methods for determination of 

hydraulic conductivity in porous asphalt, and additional literature pertaining to the water 

quality benefits of PFC.  Finally, a short review of other issues addressed in this research 

is provided as well as how this research will expand the current literature. 

 

 

2.1 Linear Flow Through Porous Media 
 Flow through porous media is typically characterized by the linear Darcy’s law 

(Darcy, 1856).  This is a well known law used in the field of groundwater, hydrogeology, 

engineering, and other fields of hydraulics.  Virtually any textbook on these subjects will 

discuss Darcy’s law (see for example Bear, 1972; Muskat, 1982; Fetter, 1994; and 

Charbeneau, 2000; among others).  Darcy’s law defines a linear relationship between 

flow rate and hydraulic gradient as given in Equation (2.1): 

         (2.1) KIAQ −=

In Equation (2.1), Q is the volumetric flow rate with units [L3/T], K is the hydraulic 

conductivity [L/T], I is the hydraulic gradient [L/L], and A is the cross-sectional area of 

flow [L2], where [L] represents units of length and [T] represents time.  The negative sign 
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is necessary because water flows from high hydraulic head to low hydraulic head, which 

is in the negative direction of the hydraulic gradient.  The hydraulic conductivity is a 

measure of the ease with which a fluid flows through the porous medium. 

 Darcy’s law is applicable to flow through most natural porous media systems.  

However, in general, it is only applicable for laminar flow and/or low velocity flow.  The 

velocity can be found by first looking at the specific discharge, q: 

 KI
A
Qq −==         (2.2) 

In Equation (2.2), q is the specific discharge or Darcy velocity [L/T], which is simply the 

volumetric flow rate per unit area.  The actual fluid velocity through the porous media is 

greater than the specific discharge.  This is due to the fact that the entire area is not 

available for flow due to the presence of solid material.  Therefore, the average fluid 

velocity can be approximated using the effective porosity, ne, of the porous media: 

 
en

qv =          (2.3) 

In Equation (2.3), v is the average fluid velocity [L/T] and ne is the effective porosity of 

the porous media.  The value of ne is always less than unity, and for typical PFC overlays 

the effective porosity is approximately 0.2 or 20%. 

 The hydraulic gradient, I, is the change in hydraulic head with respect to each 

direction.  Therefore, Darcy’s law is actually a vector equation for multiple directions of 

flow.  The hydraulic head is related to the elevation head, pressure head, and velocity 

head of the fluid.  In most cases, the velocity head is relatively small and assumed to be 

equal to zero: 

 
g
pzh
ρ

+=         (2.4) 

Equation (2.4) defines the hydraulic head h [L] as the summation of the elevation head z 

[L] and pressure head, where p is the fluid pressure [M/L/T2], ρ is the fluid density 

[M/L3], g is the gravitational acceleration constant [L/T2], where [M] represents units of 

mass.  The hydraulic gradient is equal to the spatial change in hydraulic head.  In 

Cartesian coordinates this is represented as: 
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x
hI x ∂
∂

= , 
y
hI y ∂
∂

= , and 
z
hI z ∂
∂

=      (2.5) 

Equation (2.5) gives the hydraulic gradient in the x-, y-, and z-directions.  Similarly, the 

hydraulic gradient can be given in two-dimensional cylindrical coordinates as: 

 
r
hI r ∂
∂

=  and 
z
hI z ∂
∂

=        (2.6) 

Where r is the radial direction and z is the vertical direction.  The third dimension in 

cylindrical coordinates is the θ-direction.  However, for the purposes of this research 

study, there is no flow in the θ-direction. 

 The hydraulic conductivity K represents the ease with which water flows through 

the porous media and depends on both the fluid properties and porous media properties.  

The intrinsic permeability, given the symbol k, depends solely on the porous media 

properties and is related to the hydraulic conductivity as follows: 

 kgK
μ
ρ

=         (2.7) 

In Equation (2.7), μ is the fluid dynamic (absolute) viscosity [M/L/T] and k is the 

intrinsic permeability of the porous medium [L2].  If k is known for a given porous 

medium, then the hydraulic conductivity can be calculated for any fluid properties.  

However, for this research study, we are only concerned with water as the fluid, so use of 

the intrinsic permeability is not necessary during testing.  The intrinsic permeability can 

be estimated based on properties of the porous media such as porosity or grain size 

through various empirical equations.  The following equation for k is calculated for the 

mean grain diameter d50 (Charbeneau, 2000): 

 
360

2
50d

k =         (2.8) 

In general, k can be represented by some appropriate length squared, divided by an 

empirically determined constant (Bear, 1972). 

 Since Darcy’s law is actually a vector equation, the hydraulic conductivity is a 

tensor quantity for each direction.  Therefore, in an anisotropic case, K will have a 

different value for each direction.  However, for the purposes of this research, it is 
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assumed that the hydraulic conductivity of PFC is isotropic, which results in K being a 

constant in space with only one value. 

 Finally, it should be noted that although the hydraulic conductivity is a constant 

when Darcy’s law is applicable, the hydraulic conductivity represents the relationship 

between specific discharge and hydraulic gradient as the specific discharge approaches 

zero.  This means that the hydraulic conductivity is the slope of the relationship between 

specific discharge and hydraulic gradient at zero.  This is an important distinction 

necessary for nonlinear flow.  We shall refer to the hydraulic conductivity as the specific 

discharge approaches zero as the “true hydraulic conductivity”.  In nonlinear flow, we 

can consider an “effective hydraulic conductivity,” which is not a constant and changes 

as a function of the hydraulic gradient.  This concept will be introduced in Chapter Five. 

 

 

2.2 Nonlinear Flow Through Porous Media 
 The phenomenon of a nonlinear flow regime has been observed in numerous 

porous media experiments in the past.  A clear understanding as to the cause of deviation 

from the linear Darcy’s law has not been fully achieved.  The causes of nonlinear flow 

have been debated in the literature and will be discussed here briefly.  However, before 

the causes of nonlinear flow are discussed, two models used to characterize the nonlinear 

flow relationship are described, in addition to the transition between linear and nonlinear 

flow. 

 

2.2.1 Forchheimer Equation 

 One of the most common equations used to characterize nonlinear flow is the 

Forchheimer equation (c.f. Reynolds, 1900; Forchheimer, 1901; Bear, 1972; and 

Charbeneau, 2000).  Numerous attempts have been made to derive the Forchheimer 

equation and a discussion of these efforts is provided in Section 2.2.5.  The Forchheimer 

equation relates the hydraulic gradient as a nonlinear function of specific discharge: 

         (2.9) 2bqaqI +=
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In Equation (2.9), I is the hydraulic gradient and q is the specific discharge as defined 

above; the negative sign has been omitted for simplicity, but it is understood that the 

direction of flow is opposite the direction of increasing head.  a [T/L] is the linear 

Forchheimer coefficient and b [T2/L2] is the nonlinear Forchheimer coefficient. 

 In the case of linear Darcy flow, b = 0 and a = 1/K.  Therefore, at small specific 

discharge or low velocity, the q2 term will be negligible and Darcy’s law will be a good 

approximation to the Forchheimer equation.  In this case, the hydraulic conductivity is 

equal to 1/a, which is the slope of the nonlinear relationship as the specific discharge 

approaches zero.  This agrees with our definition of “true hydraulic conductivity” given 

in Section 2.1.  Interestingly, in the original writings of Darcy (1856), previous work 

cited by de Prony uses a very similar form of the Forchheimer equation to describe pipe 

flow.  Although this equation was not applied to nonlinear flow in porous media, it is 

important to note its use prior to its application in porous media flow by Forchheimer. 

 The Forchheimer equation can also be represented in the following transformed 

form: 

 ⎟
⎠
⎞

⎜
⎝
⎛ +=

n
q

K
qI 1         (2.10) 

Equation (2.10) gives the Forchheimer equation as a function of the hydraulic 

conductivity K and transformed nonlinear Forchheimer coefficient n [L/T], where n is 

related to the previously described Forchheimer coefficients using the following relation: 

 
b
an =          (2.11) 

This form of the Forchheimer equation is useful because if the value of n is known, then 

the ratio q/n can be compared to a value of one to determine if the nonlinear effects are 

significant for a given specific discharge. 

 In most cases in the literature, the Forchheimer equation is applied only to one-

dimensional flow.  However, in general it is applicable in multiple dimensions as a vector 

equation.  The quadratic term creates some difficulty in representing the Forchheimer 

equation as a vector equation.  Therefore, many researchers (Giorgi, 1997; Ewing et al., 
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1999; Moutsopoulos and Tsihrintzis, 2005; among others) have proposed the following 

representation of the vector Forchheimer equation in Cartesian coordinates: 

 qqbqaI rrr
+=         (2.12) 

In this case, the quadratic term is simply the magnitude of the specific discharge vector 

times the directional specific discharge vector.  This allows both a and b to be tensor 

quantities for the anisotropic case.  Wang et al. (1999) investigate numerical simulations 

of a model porous medium for the Forchheimer equation in three-dimensional Cartesian 

coordinates.  They found that the tensor for both the linear and nonlinear coefficients can 

be represented as a diagonal matrix with two of the three values being the same 

magnitude.  Therefore, they were only able to simulate two-dimensional anisotropic 

conditions.  For the assumption of isotropic conditions, both a and b are constant scalars.  

In cylindrical coordinates, the vector Forchheimer equation is more complex and will be 

discussed in Chapter Five as used for the purposes of this research study. 

 The Forchheimer equation can also be expressed based on a pressure gradient 

instead of a hydraulic gradient.  The pressure is related to the hydraulic head by p = ρgh.  

Taking the gradient of the pressure term and relating it to the Forchheimer equation gives 

the following one-dimensional Forchheimer equation based on pressure: 

 2* qb
k
q

dx
dp ρμ

+=−        (2.13) 

In Equation (2.13), b* has dimensions [1/L] and the Forchheimer coefficients can be 

related to the Forchheimer equation based on hydraulic gradient as follows: 

 
Kgk

a 1
==

ρ
μ  and 

g
bb

*

=       (2.14) 

This form of the Forchheimer equation is useful when measuring the fluid pressure and 

also for determining the transition to nonlinear flow, as described in Section 2.2.3. 

 The linear Forchheimer coefficient, a, depends on both the properties of the 

porous media as well as the properties of the fluid.  As expected, this is similar to the 

properties which are known to influence the hydraulic conductivity.  The nonlinear 
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Forchheimer coefficient, b, depends only on the properties of the porous medium.  It is 

related to the inertial forces which depend on the pore geometry of the porous medium. 

 

2.2.2 Izbash Equation 

 The Izbash equation is another common equation used to describe the nonlinear 

flow relationship for high velocity (Izbash, 1931; Bordier and Zimmer, 2000).  Also 

known as the power law, the Izbash equation is an empirical equation for which no 

formal derivation has been provided.  The Izbash equation is as follows: 

         (2.15) mKIq =

In Equation (2.15), the specific discharge is represented as a power function of the 

hydraulic gradient with power m.  For low velocity laminar flow, Darcy’s law applies and 

m = 1.0.  For fully turbulent flow m = 0.5.  In most nonlinear flow cases, m has a value 

between 1.0 and 0.5.  Clearly, if the Izbash equation is solved for the hydraulic gradient 

in the turbulent flow case, the hydraulic gradient is related to the specific discharge 

squared, as in the Forchheimer equation.  Use of the Izbash equation is not directly 

considered in this research study.  However, several previous research studies use this 

equation instead of the Forchheimer equation. 

 Although the Izbash equation can be shown to fit experimental data for nonlinear 

flow quite well, there is no theoretical derivation of the Izbash equation from first 

principles (i.e. conservation of mass and momentum).  Therefore, the use of the Izbash 

equation is not an ideal situation.  Furthermore, the Izbash equation assumes nonlinear 

flow for all values of specific discharge.  As the specific discharge approaches zero, the 

Forchheimer equation approaches the linear Darcy’s law relationship better than the 

Izbash equation.  For these reasons, the Forchheimer equation is used in this research 

study. 

 

2.2.3 Transition to Nonlinear Flow 

 The nonlinear flow relationship occurs for high velocity flows, but the transition 

to this nonlinear flow relationship is not well defined.  Nonlinear flow occurs as a result 
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of increased inertial forces, which are negligible for linear laminar flow conditions.  

Laminar flow may exist in many of the flow conduits of the porous media even if the 

overall flow is nonlinear.  Therefore, nonlinear flow is not necessarily a result of fluid 

turbulence in the porous media but simply an increase in inertial effects which can no 

longer be neglected.  Many researchers have attempted to provide a guideline as to when 

the onset of nonlinear flow occurs based on characteristics of the flow.  The most 

common transition point is based on the value of the Reynolds number. 

 
μ
ρqd

=Re         (2.16) 

Equation (2.16) defines the Reynolds number Re as a function of the specific discharge, 

the fluid properties, and a characteristic length dimension, d.  The Reynolds number is a 

nondimensional number that relates the ratio of microscopic inertial forces to viscous 

forces.  In pipe flow, the Reynolds number can be used to determine the transition 

between laminar and turbulent flow based on the pipe diameter.  However, in porous 

media flow, there is no uniform length dimension for which to characterize the flow due 

to the multiple flow paths, particle size distribution, etc. associated with the porous 

medium. 

 A common choice for the length dimension is to use some representative grain 

diameter size.  The diameter of the grains in porous media is related to the size of the 

flow channels between the grains.  Therefore, the mean grain diameter, d50, is expected to 

represent the average flow channel diameter and will be used in this research study.  In 

addition, a smaller grain size, d10, is sometimes used and represents the smallest 10% of 

particle diameters.  The reasoning behind this choice is that the smallest flow channels 

will govern the flow through the porous media.  This suggests that the smallest flow 

channels will be the ones that restrict the overall flow through the media.  Collins (1961) 

suggests the use of d = (k/ne)1/2, where k is the intrinsic permeability [L2] and ne is the 

porosity.  Ward (1964) suggests the use of d = k1/2.  Therefore, there are many 

possibilities for the length dimension to be used in determining the Reynolds number.  
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The most common length dimension is to use d50 due to the ease with which it can be 

determined. 

 It is expected that in coarse grained media, linear flow conditions will exist for a 

Reynolds number less than some value between 1 and 10, when the Reynolds number is 

calculated based on the mean grain diameter, d50 (Bear, 1972).  Laminar flow typically 

still exists until Re = 100 or larger, but a nonlinear flow relationship occurs prior to the 

onset of turbulence.  This nonlinear relationship results either due to the flow properties 

or the material properties.  The flow properties that produce nonlinear flow are a large 

specific discharge or hydraulic gradient.  The material properties that create nonlinear 

flow are a large porosity or hydraulic conductivity (Sen, 1990).  More specifically, the 

nonlinear relationship arises due to either large microscopic inertial forces or microscopic 

interfacial drag (viscous) forces (Hassanizadeh and Gray, 1987). 

 The use of the Reynolds number as an indicator for the presence of inertial 

effects, which result in nonlinear flow, has been debated in the literature.  The reasoning 

behind this debate is that the Reynolds number represents microscopic flow conditions.  

It can be shown that even when microscopic inertial effects are significant, the 

macroscopic flow can remain linear, as in Darcy’s law, for certain flow conditions.  

Therefore, Ruth and Ma (1992) suggest the use of a specific Reynolds number which 

they call the Forchheimer number.  The length dimension in the Forchheimer number is 

equal to b*k0. 

 
μ

ρ 0
*kqb

Fo =         (2.17) 

In Equation (2.17), Fo is the Forchheimer number which is essentially a specific value of 

the Reynolds number. k0 is the intrinsic permeability [L2] as the specific discharge 

approaches zero.  Ruth and Ma (1992) suggest that the intrinsic permeability is velocity 

dependant and the Forchheimer number can be used to determine if the nonlinear effects 

are negligible.  When the Forchheimer number becomes experimentally significant with 

respect to a value of one, the nonlinear flow effects can no longer be ignored.  The 
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Forchheimer equation based on pressure as represented by Equation (2.13) can be written 

in terms of the Forchheimer number as: 

 ( qFo
kdx

dp
+=− 1 )μ        (2.18) 

From this representation of the Forchheimer equation, it can be seen that when the 

Forchheimer number becomes significant with respect to a value of one, nonlinear flow 

conditions will exist.  Zeng and Grigg (2006) suggest a critical Forchheimer number for 

which the nonlinear effects become significant.  They define the nonlinear effect, E, as 

the ratio of the pressure gradient consumed in overcoming liquid-solid interactions to the 

total pressure gradient as: 

 
Fo

Fo
dxdp

qbE
+

=
−

=
1/

2*ρ       (2.19) 

Equation (2.19) relates the Forchheimer number to the nonlinear effects, E.  E can be 

associated with the error of ignoring the nonlinear effects.  Therefore, Zeng and Grigg 

(2006) show that if ten percent error is an acceptable limit of the nonlinear effects, the 

corresponding critical Forchheimer number would be Fo = 0.11.  The use of the 

Forchheimer number, as opposed to the typical Reynolds number, provides a better 

estimate of when nonlinear effects become significant but requires knowledge of the 

material properties of the porous media. 

 

2.2.4 Estimation of Forchheimer Coefficients 

 Many researchers have attempted to estimate the two Forchheimer coefficients 

from either a theoretical standpoint or a purely empirical development from experimental 

data.  Sidiropoulou et al. (2007) provide a review of multiple empirical equations in the 

literature for estimating the Forchheimer coefficients, a and b.  In addition, Li and Engler 

(2001) provide a literature review of empirical correlations for estimating the nonlinear 

Forchheimer coefficient only.  A complete summary of all the equations will not be 

provided here.  In Section 6.5 the numerical results obtained from this study will be 

compared with several empirical equations for estimating the Forchheimer coefficients.  

At this point, the empirical equations will be presented and briefly discussed.  The typical 
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factors used in many of these empirical equations are the fluid properties, porosity of the 

porous medium, and particle diameter of the porous medium.  The majority of these 

empirical equations are based on laboratory experiments.  Kelkar (2000) estimates the 

nonlinear coefficient for observations in the field and determined that the nonlinear 

coefficient is significantly greater when measured in the field compared to lab 

measurements.  This claim is based on gas flow to a well and does not agree with the 

experimental data obtained in this research study and presented in Section 5.5. 

 There are several important empirical equations that will be discussed here due to 

their common reference in the literature.  Ergun (1952) was among the first researchers to 

thoroughly investigate nonlinear flow effects through porous media.  He claims the linear 

term of the Forchheimer equation represents viscous energy losses and the nonlinear term 

represents kinetic energy losses.  Ergun expanded on the Kozeny-Carman equation and 

developed the following equations for the two Forchheimer coefficients: 

 
( )
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=        (2.20) 
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b 3

175.1 −
=        (2.21) 

where Dp is the diameter of the particles which make up the porous media.  From these 

relationships, Ergun also derived two friction factors representing the relative viscous 

energy losses and kinetic energy losses, with respect to the total pressure drop for the 

flow, as a function of Reynolds number. 

 Ward (1964) conducted a dimensional analysis for nonlinear flow and determined 

the following empirical Forchheimer coefficients: 

 2

360
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a

ρ
μ

=         (2.22) 
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b 44.10
=         (2.23) 
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Ward uses the square root of intrinsic permeability as a length scale, where the intrinsic 

permeability is given in Equation (2.8).  This length scale is used to define the Reynolds 

number: 

 
μ

ρ kq
k =Re         (2.24) 

The symbol Rek in Equation (2.24) means the Reynolds number is determined from the 

intrinsic permeability.  Similar to Ergun, Ward determined a dimensionless friction factor 

as a function of Reynolds number for the porous media.  The general friction factor is 

given as: 

 w
k

k cf +=
Re

1        (2.25) 

In Equation (2.25), fk is the friction factor, and cw is a constant that is a function of the 

porous media.  For the porous media Ward conducted experiments on, he found cw = 

0.550.  Ward also showed that at low values of Rek where Darcy’s law applies, cw = 0.0 

resulting in a linear relationship between fk and Rek on a log-log plot.  As Rek increases 

at the onset of nonlinear flow, a transition occurs and the full Equation (2.25) applies.  

Finally, at large Rek, the friction factor is a constant equal to cw.  This type of graph is 

similar to the common Moody diagram for friction losses in pipe flow.  Many subsequent 

research studies have referenced the work of Ergun and Ward and expanded on these 

models. 

 

2.2.5 Causes of Nonlinear Flow 

 Darcy’s law describes the specific discharge as a linear function of the hydraulic 

gradient given in Equation (2.2).  This equation is only applicable for laminar flow at low 

velocities.  Initially, it was thought that the onset of turbulent flow within the flow 

channels of a porous medium caused a deviation from Darcy’s law.  However, 

Hassanizadeh and Gray (1987) point out that deviations from Darcy’s law are not caused 

by turbulence, as experimental data have shown nonlinear flow to occur for a Reynolds 

number near 10.  Turbulence does not occur until the Reynolds number approaches a 
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value of 300, suggesting that turbulence does not exist at the onset of nonlinear flow.  

Ergun (1952) states that pressure losses (or hydraulic head losses) are caused by kinetic 

energy losses and viscous energy losses.  In linear flow, the kinetic energy losses are 

negligible and Darcy’s law is applicable for low velocity where laminar flow typically 

occurs.  Ward (1964) pointed out that there is no sharp division between laminar, 

transition, and turbulent flows in porous media due to the varying sizes of the flow 

channels.  If turbulent flow occurs in some parts of the media, laminar flow may still 

exist in other parts of the porous media.  In general, deviations from Darcy’s law are 

typically attributed to increased microscopic inertial forces. 

 When investigating the causes of nonlinear flow, it is important to differentiate 

between the microscopic flow conditions and the macroscopic flow conditions.  This 

distinction has been the focus of many developments in the literature which have 

attempted to derive the Forchheimer equation starting from the Navier-Stokes equations 

for conservation of momentum.  Irmay (1958) was among the first to attempt a derivation 

of the Forchheimer equation from the Navier-Stokes equations for a model of spheres 

representing a homogeneous isotropic porous medium.  Hassanizadeh and Gray (1987) 

suggest there are three possible mechanisms which cause nonlinear flow: turbulence, 

microscopic inertial forces, and increased microscopic drag or viscous forces.  As 

previously mentioned, they rule out turbulence based on the value of the Reynolds 

number.  By using an averaging technique on the Navier-Stokes equations, they conclude 

that the growth of microscopic viscous forces, or drag forces, on the pore walls at high 

velocity give rise to the nonlinear effects observed at the macroscopic scale.  Ruth and 

Ma (1992) investigate the momentum equation at the microscopic scale and use an 

averaging theorem to obtain a macroscopic equation.  They suggest that “as the Reynolds 

number is increased, inertial effects lead to secondary flow patterns” which cause 

circulation as the fluid flows past a particle.  This secondary flow pattern is then 

dissipated due to viscosity.  Ruth and Ma (1992) suggest that this viscous dissipation 

leads to a nonlinear increase in the pressure drop observed on the macroscopic scale and 

is a function of the Reynolds number.  Ma and Ruth (1993) expand on the previous work 
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and show that the microscopic inertial forces lead to a distorted velocity and pressure 

field which results in the onset of nonlinear flow effects.  They go on to suggest that at 

high Reynolds number, both the inertial forces and viscous forces contribute equally to 

balancing the pressure gradient of the fluid. 

 Various other methods at deriving the Forchheimer equation have been attempted 

aside from averaging the Navier-Stokes equations.  Giorgi (1997) attempts to derive the 

Forchheimer equation using the method of matched asymptotic expansions.  The 

Forchheimer equation is constructed by using a permeability tensor which is a function of 

the fluid velocity and retaining the first two terms of the expansion, thereby deriving the 

quadratic term in the Forchheimer equation.  Thauvin and Mohanty (1998) created a 

numerical model of a porous media network that allowed them to change various 

properties of the media such as porosity, tortuosity, pore size, pore throat radius, etc. and 

determine how those changes impact the Forchheimer coefficients.  They then used 

regression to develop empirical equations useful for predicting the Forchheimer 

coefficients and compared those values with other equations in the literature.  One 

finding of Thauvin and Mohanty (1998) relevant to PFC is the relationships they found 

for a decrease in pore size.  As PFC becomes clogged with sediment it is expected that 

the pore size is decreasing.  Thauvin and Mohanty (1998) showed that a decrease in pore 

size results in a decrease in porosity and permeability, and an increase in the nonlinear 

Forchheimer coefficient.  Chen et al. (2001) use a homogenization method to derive the 

Forchheimer equation.  In summary, the Forchheimer equation has been derived using 

various approaches, methods, and taking advantage of a range of approximations.  There 

still appears to be a debate as to the actual causes of the deviation from Darcy’s law, but 

it is generally believed that increased inertial forces result in nonlinear flow.  Finally, in 

general, there is very little literature available which derives the Izbash equation for 

modeling nonlinear flow from a theoretical standpoint.  Therefore, the Forchheimer 

equation is preferred over the Izbash equation as a better representation of nonlinear flow. 
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2.2.6 Nonlinear Flow Solution in a Confined Aquifer 

 For this research study, many of the flow equations are presented in cylindrical 

coordinates to match the experimental laboratory setup.  The majority of the literature 

describing nonlinear flow in a radial direction is related to groundwater wells in confined 

aquifers.  Bear (1979) gives a steady state solution for Forchheimer flow in a confined 

aquifer around a discharge well.  The solution gives the head profile at any radial distance 

r from the well.  The radius of the well is RRw and the thickness of the aquifer is a constant 

ta: 
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Therefore, the purely radial condition of Forchheimer flow in a confined aquifer has been 

solved, but no literature is available on a combination of radial and vertical Forchheimer 

flow or for an unconfined aquifer. 

 The previous derivation of the radial Forchheimer flow assumes steady state 

conditions.  This assumption is not always applicable, resulting in the need for a transient 

solution.  A transient solution has been developed for Darcy radial flow in a confined 

aquifer as described by the Theis equation (Theis, 1935).  This equation relates the 

drawdown (change in head) to the Theis well function, which is a function of time.  The 

Theis equation describes the development of the drawdown cone that results due to 

pumping as a function of time and radial distance for a linear flow relationship. 

 For nonlinear flow, an exact analytic solution for transient Forchheimer flow does 

not currently exist.  However, some approximate transient solutions have been attempted 

by Sen (1988), Wu (2002), and Mathias et al. (2008) for radial Forchheimer flow to a 

well in a confined aquifer.  Sen (1988) developed a transient solution similar to the Theis 

equation for linear flow applied to a well with a zero radius.  A similarity solution was 

found through the use of the Boltzmann transformation, which results in a Bernoulli 

differential equation.  However, it should be noted that Camacho-V. and Vasquez-C. 

(1992) suggest this transformation only applies to the linear flow case and is not valid for 

the nonlinear flow case.  Sen (1992) replied to this comment and suggests that the 

  24 



transformation is valid but depends on the nonlinear Forchheimer coefficient.  In either 

case, the solution by Sen (1988) consists of a modified well function that changes with 

time and with the nonlinear Forchheimer coefficient, b.  For b = 0, the modified well 

function becomes the Theis well function for linear Darcy flow.  It was shown that the 

drawdown for nonlinear flow increases more rapidly during a certain time interval when 

compared to the linear flow drawdown.  When compared to the linear flow case, near the 

well location, the drawdown is always smaller for nonlinear flow, but farther away from 

the well, the drawdown is greater for nonlinear flow (Sen, 1987).  Sen (1990) expanded 

on this original model and applied it to a well with a finite radius. 

 Wu (2002) uses the Warren-Root model, which treats fracture and matrix flow 

interactions using a double-porosity concept.  Mathias et al. (2008) present a set of 

approximate solutions which include: a large time approximation derived from matched 

asymptotic expansions, a Laplace transform approximation for significant well-bore 

storage in turbulent flow, and a simple heuristic function for when the flow is very 

turbulent and the well radius is infinitesimally small.  These approximations are then 

compared to equivalent finite difference solutions.  The developments are useful in 

comparing the nonlinear transient flow conditions to the linear transient flow conditions.  

However, they only exist for the radial flow conditions observed in a confined aquifer. 

 

2.2.7 Nonlinear Flow Investigation of Converging Boundaries 

 The experimental laboratory test setup used in this research study involves two-

dimensional radial flow.  Therefore, the flow paths will be diverging as flow exits the 

core specimen in the radial direction.  Although there is no literature on two-dimensional 

diverging flows experiencing nonlinear flow conditions, there have been experimental 

tests in the past for flows with converging boundary conditions.  Thiruvengadam and 

Pradip Kumar (1997) conducted experimental tests on a coarse grain porous media in a 

test setup with converging boundaries.  They determined an exponential expression for 

the hydraulic gradient under radial flow conditions.  The experimental tests, when 

corrected for porosity and wall effects, matched the theoretical equation for the hydraulic 
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gradient suggesting that the flow can be modeled as radial flow.  Venkataraman and 

Rama Mohan Rao (2000) expanded on the work by Thiruvengadam and Pradip Kumar 

(1997), and compared nonlinear flow in parallel boundaries to flow in converging 

boundaries.  They mention that in the case of parallel flow, the hydraulic gradient is the 

same in the direction of flow.  However, for converging boundaries, the cross-sectional 

area decreases in the direction of flow, resulting in a change in velocity, and a subsequent 

change in hydraulic gradient with the flow.  It is typically assumed that the linear 

Forchheimer coefficient, a, is constant for both parallel boundaries and converging 

boundaries.  However, it is possible that the nonlinear Forchheimer coefficient, b, 

changes for flows with converging boundaries.  Therefore, Venkataraman and Rama 

Mohan Rao (2000) conducted experimental tests with porous media flow in converging 

boundaries using the empirical equations developed by Ward (1964) to determine the 

Forchheimer coefficients.  They derived an altered Forchheimer equation for converging 

boundaries and determined two convergence factors which are useful for converting a 

and b for converging flow to the corresponding a and b for parallel flow.  They 

determined that both the linear and nonlinear Forchheimer coefficients are, in fact, 

constants for converging flow when the convergence factor is used.  Furthermore, they 

developed a graph of friction factor (determined empirically from Ward, 1964) versus 

Reynolds number for the Forchheimer equation which resembles the typical Moody 

diagram used for pipe flow (c.f. Hwang and Houghtalen, 1996).  This graph uses 

Equations (2.24) and (2.25) determined by Ward (1964).  Figure 2.1 shows the results of 

their experiments for various porous materials with converging boundaries once the 

Forchheimer coefficients were converted back to those for parallel boundaries.  Both 

Ergun (1952) and Ward (1964) developed a similar graph as shown in Figure 2.1 for a 

single porous media experiencing parallel flow. 
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Figure 2.1 – Relationship between friction factor and Reynolds number for 

nonlinear parallel flow (source: Venkataraman and Rama Mohan Rao, 2000) 

 

 A similar relationship for the friction factor versus Reynolds number was 

previously presented by Venkataraman and Rama Mohan Rao (1998) for nonlinear flow 

conditions modeled with the Forchheimer equation.  In this work, they analyzed 

experimental data presented in the literature for parallel flow and used the empirical 

relationships developed by Ward (1964).  Reddy and Rama Mohan Rao (2006) continued 

the work on nonlinear flow with converging boundaries using a slightly different 

experimental setup.  They suggest that the Forchheimer coefficients vary not only along 
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the direction of flow, but also in the radial direction due to convergence.  This contradicts 

the previous findings and Srivastava (2009) provides a discussion on this issue.  

Srivastava shows that the Forchheimer coefficients do not change because Reddy and 

Rama Mohan Rao (2006) are using an average hydraulic gradient.  Furthermore, if the 

Forchheimer coefficients do change with the flow, then it would be expected that the 

hydraulic conductivity of a homogeneous isotropic porous medium changes if the flow is 

converging or diverging.  Therefore, it can be shown that the Forchheimer coefficients 

are constant for both parallel and converging/diverging flows.  This is an important 

aspect of the current research study since we will be investigating a diverging flow 

condition. 

 Goggin et al. (1988) developed a minipermeameter which uses air flow to 

determine the permeability of rock materials.  The device essentially measures the 

pressure change as gas leaves a standpipe sealed on the rock surface.  Flow is assumed to 

be a combination of vertical and diverging radial flow which is similar to the flow 

conditions used in this research, as described in Chapter Three.  However, the no flow 

boundary conditions in this research study are not present in the analysis of the 

minipermeameter.  Goggin et al. claim to have solved the Forchheimer equation for this 

two-dimensional flow problem, but they provide no details of the methods with which the 

equation is solved.  As will be shown in Chapter Five, the solution of the Forchheimer 

equation in two-dimensions can be problematic and requires special consideration to 

solve.  The problem setup proposed by Goggin et al. (1988) appears to be the most 

similar solution to what is considered in this research study.  However, as mentioned, no 

information is provided on how this solution was obtained. 

 

 

2.3 Permeable Friction Course Review 
 Previous research in the literature has been specifically conducted on PFC.  These 

studies describe the analytic solutions of water depth profiles within a PFC layer, 

methodology for measuring hydraulic conductivity, and water quality improvements.  An 
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overview of additional benefits of porous pavements is provided briefly in Chapter One.  

These benefits include reduced splash/spray during rainfall events, improved traction, 

reduced chance of hydroplaning, improved stormwater runoff quality, and noise 

reduction.  A recent report by the Transportation Research Board (TRB, 2009) provides 

an overview of construction and maintenance practices of PFC as well as the driver safety 

and environmental benefits of the use of PFC. 

 

2.3.1 Water Depth Solutions 

 There have been several studies which have modeled flow through PFC under 

constant rainfall intensity in order to determine the water depth profile within the PFC.  

These studies have assumed linear flow utilizing Darcy’s law and have only addressed 

one-dimensional flow at steady state.  Essentially, the PFC layer can be modeled as an 

unconfined aquifer on a sloping impervious surface.  It is assumed that there are small 

slopes in the water surface such that the Dupuit-Forchheimer assumptions apply.  The 

Dupuit-Forchheimer assumptions state that the head in the unconfined aquifer is 

independent of the water depth such that only horizontal flow occurs.  In addition, the 

assumption is made that the discharge is proportional to the slope of the water surface 

elevation (Charbeneau, 2000).  The result of applying the Dupuit-Forchheimer 

assumptions is to convert the governing partial differential equation for flow to a first 

order nonlinear ordinary differential equation. 

 Jackson and Ragan (1974) were among the first to model flow through an entirely 

porous pavement.  They developed numerical solutions to the Dupuit-Forchheimer 

assumptions which leads to the Boussinesq equation assuming Darcy flow conditions.  

The use of Darcy’s law is only applicable when resistive forces dominate over inertial 

forces.  Jackson and Ragan used an explicit central difference scheme (CDS) finite 

difference model to solve the Boussinesq equation for a pavement with zero slope in 

order to determine the effect of underdrain spacing on discharge rates.  Yates et al. 

(1985a) develop an analytic solution for flow down a sloping unconfined aquifer under 

constant rainfall intensity.  The Dupuit-Forchheimer assumptions are applied resulting in 
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a second order nonlinear differential equation.  The authors investigate a solution to this 

equation for two possible cases of boundary conditions.  The first case is for a known 

downstream head and flux boundary, and the second is both a known downstream and 

upstream head boundary.  They also determine the location of a groundwater drainage 

divide if it exists.  Yates et al. (1985b) adds to the previous work by using a finite 

difference scheme to solve the governing nonlinear differential equation and then making 

additional assumptions to linearize the governing equation and comparing the results.  

Loaiciga (2005) solves essentially the same problem as Yates et al. for flow down an 

unconfined sloping aquifer.  However, after applying the Dupuit-Forchheimer 

assumptions, Loaiciga uses a transformed variable to linearize the equations. 

 Ranieri (2002) was the first researcher to model water depths specifically within 

PFC.  He developed a runoff model to determine the required PFC thickness necessary to 

contain the entire runoff within the pore space based on the roadway geometry, rainfall 

intensity, and PFC hydraulic conductivity.  Ranieri starts with the Boussinesq equation 

and investigates two forms of the solution which essentially correspond to subcritical and 

supercritical flow conditions, as defined based on the magnitude of the rainfall intensity, 

hydraulic conductivity, and roadways slope.  The theoretical model is validated with a 

laboratory experiment that simulated rainfall on PFC and measured the water depth 

within the pore space.  Ranieri recognized that the flow regime within the PFC layer is 

nonlinear, and therefore introduced a factor which is multiplied by the hydraulic 

conductivity to account for nonlinear flow.  The introduction of the factor follows the 

Lindquist-Kovacs theory which defines multiple flow regimes between laminar and 

turbulent flow conditions (Kovacs, 1981).  The original Lindquist-Kovacs theory 

multiples the hydraulic conductivity by a factor which is a function of the Reynolds 

number.  The Reynolds number for flow within a PFC layer changes along the flow path 

due to the continuous addition of water from the rainfall.  Therefore, instead of altering 

the factor along the length of the flow path, Ranieri suggests the use of an empirical 

factor which depends on the rainfall rate, roadway inclination, and hydraulic 

conductivity.  Ranieri (2007) expands on the earlier work and provides some minor 
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corrections to the original model.  A correction is made for the case when the upstream 

boundary condition is not impervious.  In addition, it was recognized that in certain cases 

there exists a drainage divide within the PFC layer.  Finally, the model is solved with a 

fourth order Runge-Kutta method in order to investigate how changes in roadway slope, 

rainfall intensity, PFC depth, and other design parameters effect the maximum water 

depth within the PFC. 

 Tan et al. (2004) use a commercially available three-dimensional finite element 

model to determine the effects of various roadway geometries on the drainage 

performance of PFC for both saturated and unsaturated flow conditions.  They consider 

an anisotropic porous medium and developed design curves to determine the necessary 

PFC thickness based on longitudinal slope, cross slope, rainfall intensity, and pavement 

width.  Charbeneau and Barrett (2008) provide analytic solutions to the governing 

equations of flow through PFC.  These solutions expand on the previous work by Yates et 

al. (1985) and Loaiciga (2005) by investigating three ranges of rainfall intensity and a 

variety of boundary conditions which influence the analytic solutions.  In addition, 

Charbeneau and Barrett address the issue of saturated PFC flow with the addition of 

overland sheet flow, which is not addressed in the previous works, and suggest a method 

for determining the spacing of underdrains.  Figure 2.2 depicts a typical water depth 

profile within the PFC layer. 

 

 
Figure 2.2 – Water depth profile in PFC (source: Charbeneau and Barrett, 2008) 
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Eck et al. (in press) provide a correction to Charbeneau and Barrett (2008) by addressing 

the criteria for the onset of surface overland sheet flow.  In summary, the majority of the 

work conducted on water depth solutions within PFC are typically for steady state, 

constant rainfall conditions, with a known hydraulic conductivity assuming Darcy’s law 

applies.  Therefore, since the hydraulic conductivity is one of the major influencing 

factors for these models, accurate measurement of the hydraulic conductivity is needed. 

 

2.3.2 Hydraulic Conductivity Measurements 

 Previous studies have been conducted on methods to measure the hydraulic 

conductivity of porous asphalt mixes.  Tan et al. (1997) describe a falling head test to 

measure the one-dimensional hydraulic conductivity under a nonlinear flow relationship.  

They use a pressure transducer to measure the water depth as it falls through a porous 

asphalt sample which is formed to fit the test apparatus.  The nonlinear flow conditions 

are modeled from the Izbash equation and a one-dimensional hydraulic conductivity is 

measured.  Fwa et al. (1998) investigate additional materials as well as measure both 

horizontal and vertical hydraulic conductivity.  The resulting hydraulic conductivity in 

both directions are very similar, suggesting the media they tested is isotropic.  Tan et al. 

(1999) develop an automatic field permeameter utilizing a falling head test to determine 

the three-dimensional hydraulic conductivity.  The three-dimensional hydraulic 

conductivity is then converted to an effective isotropic hydraulic conductivity using a 

correction factor based on the wetted zone of the PFC during testing as determined from 

a commercially available finite element model.  However, this finite element model does 

not account for surface runoff which is observed during field testing as a result of 

improper modeling of the underlying impervious boundary.  One-dimensional laboratory 

tests were then conducted in order to determine the anisotropy of the porous asphalt by 

comparing to the effective isotropic hydraulic conductivity.  The anisotropy ratio of 

horizontal to vertical hydraulic conductivity is reported to range from 1.1 to 2.5 for 

various porous asphalt mix designs.  Fwa et al. (2001a) provide results for in-situ 

hydraulic conductivity using their automatic field permeameter and found a range in 
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hydraulic conductivity from 0.5 centimeters per second (cm/s) to 4.5 cm/s.  These studies 

all utilize the Izbash equation for nonlinear flow and do not directly measure the 

hydraulic gradient for three-dimensional flow conditions.  In order to solve this problem, 

they use a finite element model which does not accurately simulate the flow conditions 

observed due to the lack of surface runoff. 

 Clogging of the porous asphalt with sediment from stormwater runoff is expected 

to decrease the hydraulic conductivity over time.  Therefore, Fwa et al. (1999) define a 

test methodology to compare the relative clogging potential of multiple porous media mix 

designs.  Tan et al. (2000) improve on this test procedure and compare the clogging 

results to the theoretical Giroud model developed for sediment retention and clogging of 

geotextile fibers.  The theoretical model defines the hydraulic conductivity as a function 

of the mass of sediment trapped for a given thickness of porous media.  Tan et al. (2003) 

compare the experimentally determined decrease in hydraulic conductivity to the 

theoretical Kozeny-Carmen equation and introduce an empirical constant which can be 

used to characterize the clogging potential of the porous medium.  In order to combine all 

the work on measurement of hydraulic conductivity and clogging potential of porous 

asphalt, Fwa et al. (2001b) present a rational method for designing a porous pavement 

drainage layer.  Chai et al. (2004) incorporate this methodology and simulate flow 

conditions on a porous pavement for both short-term and long-term urban drainage 

control using a finite element model for both saturated and unsaturated porous media 

flow. 

 There are several documented testing devices used in the field to estimate the 

relative drainage capacity of a porous asphalt surface course.  The method described by 

Tan et al. (2002) provides the best estimate of hydraulic conductivity.  However, as 

previously mentioned, this method uses the Izbash equation and assumes a three-

dimensional permeability based on a finite element method, which does not account for 

surface runoff.  This device has a standpipe radius of 7.5 cm centered on a base plate with 

a radius of 25 cm.  In addition, there are several other devices currently being used which 

estimate drainage capacity but do not give any indication of the actual hydraulic 
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conductivity that is necessary for modeling flow through PFC.  Isenring et al. (1990) 

describe a field test developed by the Institute for Transportation, Traffic, Highway and 

Railway Engineering (IVT) of the Switzerland Institute of Technology called the IVT 

permeameter.  The IVT permeameter is essentially a vertical pipe which is placed on the 

porous asphalt surface and sealed with putty at the base.  A falling head test is conducted 

and the drainage capacity is expressed as the time needed to drain 2.27 liters (L) of water 

through the PFC.  A similar test procedure described in TxDOT (2004a) is used in the 

State of Texas.  The drainage capacity is reported as the time to drain 5.1 L of water.  

Van Heystraeten and Moraux (1990) investigate porous asphalt in Belgium and show an 

outflow meter used to measure in-situ drainage capacity.  Although they give little 

information on this device, it appears to work as a double-ring infiltrometer.  Finally, in 

the State of California, drainage capacity is determined by creating a circular trough in 

the surface of the porous asphalt and expressing drainage capacity as the time needed for 

water to flow out of the trough (see Caltrans, 2004).  Although there are a variety of 

testing procedures currently being used, none of these give an actual estimate of the 

hydraulic conductivity of the porous asphalt.  These methods are best suited during 

construction when the porous asphalt is being compacted.  After each pass of the 

compaction vehicle, the falling head test can be easily conducted.  Once the drainage 

capacity reaches a specified level, compaction of the layer is complete and construction 

of the PFC layer is finished.  Although useful during the construction process, these 

methods provide no useful information for modeling of flow through PFC for design or 

maintenance purposes. 

 

2.3.3 Water Quality Benefits 

 The use of porous pavements has been shown to decrease the concentration of 

multiple contaminants typically found in stormwater runoff.  Although the pollutant 

removal process has not been determined, it is generally thought that the porous 

pavement either acts as a filter to remove pollutants, or rather pollutants are simply not 

washed off vehicles due to the reduction in splash/spray on the roadway.  Stotz and 
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Krauth (1994) were among the first to document the water quality benefits of porous 

asphalt.  They monitored a porous asphalt overlay in Germany for one year and compared 

pollutant loadings to those from a nearby impervious roadway.  It was shown that there 

was a reduction in filterable solids by approximately 50% when comparing porous 

asphalt to the impervious roadway.  Ranchet (1995) studied porous asphalt overlays in 

France with impervious stone-matrix roads and found the greatest pollutant reductions 

were for zinc, copper, and hydrocarbons.  Berbee et al. (1999) monitored both impervious 

and porous asphalt surfaces in the Netherlands and found significant pollutant reductions 

for lead, copper, zinc, and suspended solids.  A similar study by Pagotto et al. (2000) in 

France showed a reduction in suspended solids and heavy metals when comparing 

impervious roadways to porous asphalt roadways.  Barrett et al. (2006) investigate the 

pollutant concentrations from an impervious roadway to those from the same roadway 

after it is overlain with a layer of PFC in the State of Texas.  Pollutant removal is then 

compared to removal from a vegetated buffer strip.  Barrett and Shaw (2007) report an 

additional years worth of data to these findings.  Stanard et al. (2008) provide a more in-

depth description of the monitoring site as well as updated results.  Stanard (2008) and 

Frasier (2009) also present details on the construction of multiple monitoring sites and 

provide the water quality data to support the use of PFC as a stormwater BMP in the 

State of Texas. 

 

 

2.4 Hydraulic Characteristics of Conventional Pavements 
 A quick review of literature on conventional impervious pavements is useful to 

get an idea of the relative magnitude of values for hydraulic characteristics of various 

pavements types.  Masad et al. (1999) investigate methods for determining the porosity of 

conventional impervious asphalt mix designs.  Multiple porosity measurement methods 

were used, including the specific gravity (submerged unit weight) method, optical image 

analysis method, and x-ray tomography analysis method.  All three methods compared 

favorably.  Porosity measurements on PFC core specimens reported in this dissertation 
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will use both the submerged unit weight method and image analysis method.  Masad et 

al. (1999) report a range of porosity in conventional asphalt from 1.5% to 11% depending 

on the amount of compaction, with most samples having a porosity of less than 3%.  

Similarly, Krishnan and Rao (2001) report porosity values of 2-3% for conventional 

asphalts.  Therefore, porosity values in PFC are significantly larger than for conventional 

asphalt. 

 Comparing values of hydraulic conductivity between conventional asphalt and 

PFC is also useful.  The assumption is made that the underlying conventional pavement 

surface is impervious when modeling flow through PFC.  Masad et al. (2004) report an 

average hydraulic conductivity of up to 5×10-3 cm/s.  Tarefder et al. (2005) provide a 

range of hydraulic conductivity values for different conventional asphalt mix designs.  

Most values are on the order of 10-5 cm/s.  Hassan et al. (2008) report hydraulic 

conductivity values for conventional hot mix asphalt on the order of 10-6 cm/s.  Finally, 

Wiles and Sharp (2008) investigate what they call the secondary permeability of 

impervious cover.  This refers to the hydraulic conductivity of cracks, fractures, and 

construction joints in conventional pavements.  They report a range of hydraulic 

conductivity values from 10-3 cm/s to 10-6 cm/s.  Therefore, the hydraulic conductivity of 

conventional pavements can range over several orders of magnitude.  However, the 

hydraulic conductivity of PFC will be shown to be on the order of 1 cm/s on average, 

with a minimum hydraulic conductivity of 0.02 cm/s.  Since the average value is multiple 

orders of magnitude greater than for conventional pavements, the assumption of a 

completely impervious underlying boundary is sufficient for the purposes of this research 

study. 

 

 

2.5 Contribution of Research Study 
 The research study and results described in this dissertation will help to expand 

the current understanding and measurement of the hydraulic properties of PFC.  This will 

be accomplished by the development of both a laboratory and field hydraulic 
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conductivity measurement tests.  Current methods for measurement of PFC hydraulic 

conductivity are well defined only for one-dimensional flow.  In order to measure the in-

situ hydraulic conductivity, a two-dimensional flow test in cylindrical coordinates must 

be conducted due to the relatively small thickness of the PFC layer (roughly 50 mm).  

Previous work avoided this complication by attempting to numerically model the flow 

conditions.  However, the results of this model do not accurately represent the flow 

conditions which occur during a field test. 

 The use of a two-dimensional measurement test creates additional complications 

in that the flow paths are diverging.  Therefore, the hydraulic gradient and specific 

discharge of the flow cannot be directly measured for use in the Forchheimer equation.  

Previous work avoided this problem by calculating an average hydraulic gradient.  This 

research study will instead apply a modified Forchheimer equation for the overall flow 

conditions in which the hydraulic gradient and specific discharge do not need to be 

measured.  This model is described in Section 3.3.2.  The use of the modified 

Forchheimer equation allows for accurate measurement of the hydraulic characteristics 

describing the two-dimensional flow through PFC. 

 In order to properly relate the modified Forchheimer coefficients for the overall 

flow conditions to the true Forchheimer coefficients, the use of a numerical model is 

needed.  This research study has developed a finite difference numerical model from 

which a relationship between the modified Forchheimer coefficients and true coefficients 

is simulated based on the geometry of the test setup.  Using this information, we are able 

to determine the actual hydraulic conductivity of the PFC layer.  Previous research has 

attempted to make approximations when calculating the hydraulic conductivity for two-

dimensional flow. 

 Finally, four years worth of data for the hydraulic properties of PFC have been 

collected at three different roadways around Austin, TX.  Statistical analyses of these 

data will determine whether the porosity and hydraulic conductivity have changed over 

time and between each roadway location.  Comparison of these potential changes with 

stormwater quality monitoring data being collected at two of the roadway locations will 
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help to determine when a reduction in hydraulic conductivity will adversely impact the 

water quality benefits of PFC.  This will provide a guideline for when 

maintenance/cleaning of the PFC layer is required, or possibly when replacement of the 

PFC layer is needed.  Currently, no scientific guidelines exist that demonstrate how to 

properly maintain a PFC layer. 
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Chapter Three 

Laboratory Experimentation 
 

 

 In order to properly measure the PFC hydraulic conductivity and gain a better 

understanding of the nonlinear flow properties of PFC, laboratory experimental tests must 

be conducted.  This is accomplished through a series of constant head permeability tests.  

This chapter describes the extraction process of PFC core specimens which have been 

tested, and the laboratory methodology for determining core specimen porosity and 

Forchheimer coefficients. 

 

 

3.1 PFC Core Specimen Extraction 
3.1.1 Coring Process 

 Laboratory experiments to determine porosity and hydraulic conductivity were 

conducted on PFC core specimens taken from three roadways around Austin, TX.  PFC 

core specimens can be extracted by saw-cutting the road surface.  A typical core 

specimen consists of the approximately 50 mm thick layer of PFC on the surface together 

with the underlying thicker impermeable HMAC.  Prior to any testing, the layer of 

HMAC must be removed from the PFC layer.  The coring process was organized by Gary 

Lantrip of TxDOT.  Two TxDOT crash trucks were utilized to divert traffic from the 

travel lane in which the coring was taking place.  This helped to avoid traffic accidents 

and protect the workers during the coring process.  Additional details on the coring 

process are provided by Candaele (2008). 

 The cylindrical core specimens are extracted by a drill press attached to a truck.  

The drill press is operated by a subcontractor and is shown in Figure 3.1.  During the 

coring process and removal of the HMAC layer, water is continuously applied to the saw 

blades in order to reduce any increases in temperature due to cutting friction.  Therefore, 
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temperature effects on the asphalt binder material are not expected to be significant.  

However, the addition of water may have an impact on the transport of fine particles 

created by the cutting process as well as the fine particles previously trapped in the void 

space of the PFC.  Fine particles can either be washed out of the void space with the 

water, or can be drawn into the void space due to capillary forces.  Visual inspection of 

the core specimens show that fine particles are washed out of the PFC during the coring 

processes.  This suggests the core specimen has been disturbed and may create error 

between the core specimens and the in-situ PFC layer.  Such disturbances cannot be 

avoided but are expected to be minor. 

 

 
Figure 3.1 – Drill press used for core extraction 

 

 In March 2007, a total of nine 15.2 cm diameter cores were extracted from north 

Loop 360, east FM 1431, and north RR 620.  Porosity and hydraulic conductivity tests 

were conducted by Candaele (2008).  In February 2008, twelve 20.3 cm diameter PFC 

core specimens were extracted near the same sites.  The change in core diameter was 

done to determine whether the core size had a significant effect on the resulting porosity 
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or hydraulic conductivity measurements.  In February 2009, an additional twelve 20.3 cm 

diameter cores were extracted.  However, for this extraction, cores were taken from south 

RR 620 roughly 1.6 km away from the previous extraction site.  The change in extraction 

site was made in order to take core specimens near a new stormwater quality monitoring 

site that had been recently installed.  Finally, in February 2010, an additional nine 15.2 

cm diameter cores were extracted.  Six core specimens were taken from Loop 360 and 

three cores were taken from south RR 620.  No cores were extracted from FM 1431 due 

to the recent realignment of the road and abandonment of the previous coring location.  

Figure 3.2 shows a typical 20.3 cm diameter PFC core specimen immediately after 

extraction. 

 

 
Figure 3.2 – Extracted PFC core with porous layer and impermeable base 

 

3.1.2 Loop 360 Site 

 The PFC overlay on Loop 360 was installed in October 2004.  The average annual 

daily traffic count for the year 2005 was 48,000 vehicles per day (CAMPO, 2009).  The 

coring location at Loop 360 is on the northbound lane, north of the intersection with 

Lakewood Drive.  Three cores were extracted from the travel lane in 2007.  In 2008, 

2009, and 2010, three cores were extracted from the travel lane and an additional three 
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cores were extracted from the roadway shoulder.  All cores were extracted just north of 

the bridge over Bull Creek.  Figure 3.3 shows the relative location of the core extraction 

site, which has a latitude of 30° 22’ 22” North (N) and longitude of 97° 47’ 03” West 

(W).  There are two stormwater quality monitoring sites near this location.  Stanard 

(2008) and Frasier (2009) discuss the water quality results obtained at this location. 

 

 
Figure 3.3 – Loop 360 core extraction site (courtesy: Google Earth) 

 

3.1.3 FM 1431 Site 

 The PFC overlay on FM 1431 was installed in February 2004.  The average 

annual daily traffic count for the year 2005 was 18,200 vehicles per day (CAMPO, 2009).  

The coring location on FM 1431 is on the eastbound lane just east of the intersection with 

Hur Industrial Boulevard.  Three cores were extracted from the travel lane in each of the 

three study years at this site (2007, 2008, and 2009).  As previously mentioned, no cores 

were extracted in 2010 due to realignment of the roadway and abandonment of the 
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previous coring location.  There is no roadway shoulder at this location.  Figure 3.4 

shows the relative location of the core extraction site, which has a latitude of 30° 31’ 00” 

N and longitude of 97° 52’ 20” W.  The realignment of the roadway under construction 

can be seen in this figure. 

 

 
Figure 3.4 – FM 1431 core extraction site (courtesy: Google Earth) 

 

3.1.4 RR 620 Site 

 The PFC overlay on RR 620 was installed in June 2004.  The average annual 

daily traffic count for the year 2005 was 32,000 vehicles per day (CAMPO, 2009).  There 

are two coring locations on RR 620.  The first location is for the cores extracted in 2007 

and 2008, on the northbound travel lane just north of the intersection with O’Connor 

Drive.  Figure 3.5 shows the relative location of the first coring site, which has a latitude 

of 30° 30’ 06” N and longitude of 97° 43’ 12” W.  The second location is for the cores 

extracted in 2009 and 2010.  A new stormwater monitoring site was installed near 
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Cornerwood Drive; therefore, the cores were extracted near this site to gain information 

on the PFC layer at that location.  The second site is roughly 1.6 km south of the first site, 

and is located just north of the intersection with Cornerwood Drive in the southbound 

travel lane.  Figure 3.6 shows the relative location of the second coring site, which has a 

latitude of 30° 29’ 18” N and longitude of 97° 43’ 48” W. 

 

 
Figure 3.5 – First RR 620 core extraction site (courtesy: Google Earth) 
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Figure 3.6 – Second RR 620 core extraction site (courtesy: Google Earth) 

 

3.1.5 Core Specimen Naming System 

 The cores are distinguished from one another by a three character naming system.  

The first character in the core name corresponds to the site, or roadway, from which the 

core was extracted.  Site 1 corresponds to Loop 360, site 2 is FM 1431, and site 3 is RR 

620.  The second character refers to the core location along that site.  For each site, the 

core locations are relatively close to each other, and each site had three core locations.  

For the cores extracted in March 2007, the core locations are given capital letters (A, B, 

or C); for the cores extracted in February 2008, the core locations are given numbers (1, 

2, or 3); for the cores extracted in February 2009, the core locations are given Roman 

numerals (i, ii, or iii); and for the cores extracted in February 2010, the core locations are 

given lower case letters (a, b, or c).  Finally, the third character in the core name refers to 

whether that core was extracted from the travel lane (T) or shoulder (S).  Only Loop 360 

(site 1) has a large enough shoulder from which to extract cores, and only the 2008, 2009, 
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and 2010 cores were taken from both the travel lane and the shoulder.  For example, core 

2-A-T is a core from FM 1431 (site 2), the first core location (A) which was from the 

travel lane (T).  Since the core location is a letter (A), this is a core extracted in 2007.  

Core 1-2-S is from Loop 360 (site 1), the second core location (2), from the shoulder (S).  

Since the core location is a number (2), this is a core extracted in 2008.  Core 3-iii-T is 

from RR 620 (site 3), the third core location (iii), from the travel lane (T).  Since the core 

location is a Roman numeral (iii), this is a core extracted in 2009.  Finally, core 1-a-T is 

from Loop 360 (site 1), the first core location (a), from the travel lane (T) in the year 

2010. 

 

 

3.2 Porosity Measurements 
 Porosity measurements were conducted at the TxDOT Asphalt Laboratory in 

Cedar Park, TX.  Preparation included cutting the impermeable HMAC base material 

from the bottom of the core specimen so that the entire core consists of only PFC 

material.  Therefore, the thickness of the core may be slightly less than the actual PFC 

thickness in-situ.  Candaele (2008) determined the porosity for the 2007 cores using a 

submerged unit weight water displacement method (Regimand and James, 2004) and a 

destructive image analysis method.  Both methods gave very similar results.  In the image 

analysis method, fluorescent epoxy is injected into the pore space of the specimen.  The 

epoxy is allowed to harden and the core is sliced vertically.  Each slice is scanned, and 

computer software is used to count the number of pixels representing the epoxy and the 

number of pixels representing the PFC aggregate.  With these two values, the porosity 

can be determined.  This method is a destructive method and does not allow for further 

testing on the core specimens.  Therefore, the submerged unit weight method is preferred 

as it is non-destructive.  Candaele (2008) gives additional details on each of these 

methods. 

 Due to the favorable agreement between porosity values obtained from each 

method for the first set of cores, only the submerged unit weight method was used for the 
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subsequent core specimens.  There are several steps necessary to determine the porosity 

from the submerged unit weight method.  Once the impermeable base is removed from 

the specimen, the PFC core is vacuum sealed in a plastic bag as shown in Figure 3.7. 

 

 
Figure 3.7 – PFC core vacuum sealed in plastic bag for porosity measurement 

 

 The submerged weight of the vacuum sealed core specimen is measured, and then 

the core is removed from the bag and the submerged weight of only the core is measured.  

Finally, the core is allowed to oven dry overnight and the dry weight of the core is 

measured.  With these three measurements, the total volume of the core and volume of 

the solids be calculated using the following equations: 

 b
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In Equations (3.1) and (3.2), Vt is the total volume of the core (solid volume plus void 

volume), Vs is the volume of the solids in the specimen, Wb is the weight of the plastic 

bag, Vb is the volume of the plastic bag, Ws is the oven dry weight of the solids, Wsub,total 

is the submerged weight of the core vacuum sealed in the bag, Wsub,solid is the submerged 
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weight of only the core specimen, and ρ is the density of water.  The effective porosity 

can then be calculated as: 
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−
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 Tables 3.1 through 3.4 give the porosity measurements of the PFC core specimens 

for each of the past four years.  In addition, the radius of the core, RRc, and the thickness of 

the core specimen, bc, are included.  Chapter Six provides a statistical analysis of these 

data to determine the changes in porosity both in time and at different locations. 

 

Table 3.1 – Porosity of 2007 core specimens (source: Candaele, 2008) 

Core ID Porosity, ne (%) RRc (cm) bc (cm) 

1-A-T 22.78 7.51 4.45 

1-B-T 21.64 7.54 3.74 

1-C-T 20.36a N/A N/A 

2-A-T 23.17 7.52 3.56 

2-B-T 20.51 7.52 4.08 

2-C-T 20.98a N/A N/A 

3-A-T 20.30a N/A N/A 

3-B-T 19.44 7.54 4.02 

3-C-T 19.55 7.54 3.95 
a Porosity determined from destructive image analysis method. 
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Table 3.2 – Porosity of 2008 core specimens 

Core ID Porosity, ne (%) RRc (cm) bc (cm) 

1-1-T 22.97 10.92 4.66 

1-1-S 21.68 10.96 3.99 

1-2-T 22.77 10.97 4.81 

1-2-S 20.28 10.91 3.75 

1-3-T 18.54 10.95 4.08 

1-3-S 21.52 10.92 3.50 

2-1-T 15.77 10.93 3.25 

2-2-T 16.62 10.89 3.53 

2-3-T 16.18 10.90 3.05 

3-1-T 12.38 10.91 3.41 

3-2-T 12.82 10.88 2.79 

3-3-T 14.50 10.93 3.54 
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Table 3.3 – Porosity of 2009 core specimens 

Core ID Porosity, ne (%) RRc (cm) bc (cm) 

1-i-T 17.00 10.92 4.24 

1-i-S 20.49 10.92 3.47 

1-ii-T 18.14 10.92 4.34 

1-ii-S 19.20 10.92 3.18 

1-iii-T 18.78 10.97 4.51 

1-iii-S 19.74 10.92 3.27 

2-i-T 15.57 10.93 3.24 

2-ii-T 16.23 10.90 3.39 

2-iii-T 15.90 10.93 3.44 

3-i-T 12.96 10.93 3.68 

3-ii-T 13.45 10.91 3.86 

3-iii-T 17.96 10.92 3.76 

 

Table 3.4 – Porosity of 2010 core specimens 

Core ID Porosity, ne (%) RRc (cm) bc (cm) 

1-a-T 18.25 7.616 4.709 

1-a-S 20.96 7.603 3.825 

1-b-T 22.67 7.639 4.599 

1-b-S 19.95 7.511 3.980 

1-c-T 16.60 7.521 4.860 

1-c-S 19.69 7.522 3.870 

3-a-T 13.34 7.507 4.214 

3-b-T 13.60 7.512 4.109 

3-c-T 13.95 7.533 4.190 
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3.3 Laboratory Measurements 
3.3.1 Laboratory Setup and Constant Head Test Procedure 

 Measurement of the hydraulic conductivity of the PFC core specimens is 

problematic for two reasons: the two-dimensional flow paths which occur in PFC and the 

nonlinear flow regime observed during testing.  In most typical hydraulic conductivity 

measurements of porous media, the flow path is only in one dimension (vertical or 

horizontal), and the flow regime is typically linear such that Darcy’s law applies.  In the 

laboratory, a series of constant head tests are conducted to determine the hydraulic 

conductivity of each core specimen.  The test apparatus and test procedure used to 

measure the hydraulic conductivity were developed for this research study and are 

described in detail by Candaele (2008).  A preliminary method for determining the 

hydraulic conductivity is provided by Charbeneau et al. (in press).  However, the 

methodology presented does not fully incorporate the nonlinear flow effects.  A brief 

overview of the experimental setup is provided here.  A constant head is established from 

a constant flow rate produced by a peristaltic pump to an inflow standpipe centered on 

the PFC core specimen.  The standpipe has a radius of RRs = 1.878 cm for this setup.  

Water flows downward vertically at the inflow area and turns to exit the core radially at 

the circumference of the core.  This creates a two-dimensional flow pattern in cylindrical 

coordinates.  The reason for this unique flow setup is to mimic the flow conditions for the 

field test described in Chapter Four. 

 The testing procedure consists of placing a PFC core specimen between two 

pliable rubber membranes, each roughly one cm thick.  Holes have been drilled into the 

membranes, where appropriate, to allow for an inflow boundary on the top surface at the 

location of a standpipe, and to allow for the measurement of hydraulic head at various 

radial distances from the center of the core both on the top surface and bottom surface of 

the core specimen.  The rubber membranes and PFC core specimen are then placed 

between two metal plates which are tightened with threaded rods to compress the rubber 

membranes.  This compression is applied to allow the membranes to enter the surface 

void space of the PFC core and create a no flow boundary on the upper and lower 
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surfaces of the core.  Similarly, the metal plates have appropriate holes drilled in them to 

allow water to enter the PFC core through a standpipe attached to the top plate, and tubes 

are attached to the radial hydraulic head measurement positions and connected to a 

slanted manometer board.  The core, rubber membranes, and metal plates are placed in a 

Plexiglas tank and submerged in water.  Figure 3.8 shows the experimental setup during 

testing and Figure 3.9 provides a schematic view of the setup with several important 

dimensions.  RRc is the radius of the core specimen, bc is the thickness of the core 

specimen, and hs is the head in the standpipe measured from the constant water level in 

the tank.  Therefore, hs is actually the change in head throughout the core. 

 

 
Figure 3.8 – Laboratory experimental setup 
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Figure 3.9 – Schematic of laboratory setup 

 

 Prior to testing, water is flushed through the core specimen in order to remove any 

air bubbles that may be present.  The core is allowed to sit submerged overnight so that 

any additional air may leave the pore space.  This will ideally create a saturated core 

specimen, which simplifies the mathematical equations derived below.  In addition, the 

tubes on the manometer board must be flushed out to remove any air bubbles, which can 

only be accomplished by flushing the air bubbles into the core specimen.  Therefore, the 

ability to create a completely saturated core specimen can be difficult. 

 Hydraulic conductivity testing consists of taking two measurements: volumetric 

flow rate and water depth in the standpipe.  A constant flow rate is provided by one of 

two peristaltic pumps.  The first pump (VWR mini-pump variable flow) is a low flow 

pump and can produce flow rates from 1.0 to 8.0 cm3/s.  The second pump (Heidolph 

pumpdrive 5106) can produce higher flow rates and has a range of flow from 2.0 to 40.0 

cm3/s.  The volumetric flow rate is measured with a stopwatch and graduated cylinder.  

  53 



The water depth in the standpipe is measured with an ISCO bubble flow meter (model 

#4230) shown in Figure 3.10.  Prior to testing, the bubbler is set to a value of zero for the 

water depth in the tank.  This establishes the hydraulic head on the outflow boundary as 

the datum. 

 

 
Figure 3.10 – ISCO bubbler used to measure standpipe head 

 

 Prior to starting the pump and creating an inflow, the head at each radial position 

is measured on the slanted manometer board shown in Figure 3.11.  This establishes the 

zero head elevation for each radial head position as well as the zero elevation at the 

standpipe.  The peristaltic pump is turned on at a desired flow rate and steady state 

conditions are achieved.  Typically, steady state is achieved in 15 minutes, but for PFC 

core specimens that appear to be considerably clogged with sediment, steady state can 
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take considerably longer.  Steady state is achieved when the reading on the ISCO bubbler 

does not change after roughly 10 minutes.  At steady state, the bubble reading gives the 

head in the standpipe, and the manometer board gives the head reading at various radial 

positions on the top and bottom surface of the core specimen.  The flow rate is then 

determined with a stopwatch and graduated cylinder.  Both the head values and flow rate 

are measured twice and the average of the two is taken as the head and flow rate value for 

that test.  This procedure completes one test and is repeated for a different flow rate until 

a curve of head in the standpipe as a function of flow rate is created. 

 

 
Figure 3.11 – Slanted manometer board for radial head measurements 

 

3.3.2 Modified Forchheimer Equation 

 The data collected for a series of constant head tests gives the head in the 

standpipe as a function of flow rate.  The data show that this relationship is nonlinear.  

Therefore, Darcy’s law is not applicable and the use of the Forchheimer equation is 

required.  However, the original Forchheimer equation relates the hydraulic gradient as a 

function of specific discharge.  Neither the hydraulic gradient nor specific discharge can 

be measured precisely for this experimental setup due to the fact that the flow is two-
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dimensional and the streamlines within the core specimen are diverging.  The use of a 

Forchheimer-type equation is necessary to analyze the data.  Equation (3.4) gives the 

empirical modified Forchheimer equation used for the purposes of this research: 

        (3.4) 2QQhs βα +=

where hs is the head on the standpipe, Q is the volumetric flow rate, and α [T/L2] and β 

[T2/L5] are the modified Forchheimer coefficients.  The modified Forchheimer equation 

replaces the hydraulic gradient in the original Forchheimer equation with the head in the 

standpipe, which is actually the change in head through the core specimen since the 

datum is taken as the head on the outflow boundary.  The specific discharge in the 

original Forchheimer equation is replaced with the volumetric flow rate in the modified 

Forchheimer equation.  These two changes result in a change to the two Forchheimer 

coefficients.  The modified Forchheimer equation defines the nonlinear relationship for 

the global conditions of the core. 

 The volumetric flow rate is related to the specific discharge through Q = Aq.  Q 

can be measured, but the area for flow changes as water moves through the core 

specimen.  The inflow value of A is the area of the standpipe, πRRs
2.  The outflow value of 

A is the circumference of the core times the thickness, 2πRcR bc.  Therefore, A is not 

constant as flow passes through the core.  Similarly, the hydraulic gradient for the overall 

core specimen is equal to the change in head, hs, divided by the length over which this 

change occurs.  However, the flow path length is also not constant for flow through the 

core.  The shortest possible flow path length is RRc – RsR , which occurs at the upper no flow 

boundary.  The longest flow length is RRc + bc, which occurs at the lower no flow 

boundary.  Since the flow path length and area are not known, these variables have been 

lumped into the modified Forchheimer coefficients.  As will be shown in Chapter Five, 

the original Forchheimer coefficients can be related to the modified Forchheimer 

coefficients through the results of numerical simulations.  Therefore, the modified 

Forchheimer equation is an empirical equation for the overall global conditions of the 

core specimen. 
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 The use of Equation (3.4) to model the nonlinear flow through a PFC core 

specimen is useful and provides a good method for determining the modified 

Forchheimer coefficients.  However, it is also useful to rearrange the modified 

Forchheimer Equation (3.4) to the following transformed form: 

 ⎟⎟
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QQ
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h
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The transformed modified Forchheimer equation represented in Equation (3.5) is useful 

because hs/RRc represents an average hydraulic gradient through the core.  Although this is 

not the actual hydraulic gradient, it does serve to nondimensionalize the equation.  

Furthermore, representing the nonlinear term as shown suggests that the value of Q/η can 

be compared to the value of one in order to determine whether the nonlinear effects are 

significant.  The two transformed modified Forchheimer coefficients of Equation (3.5), ξ 

and η, can be compared to the two coefficients of Equation (3.4), α and β, through the 

following relationships: 

 
α

ξ cR
=         (3.6) 

 
β
αη =          (3.7) 

In Equations (3.6) and (3.7), ξ has units of [L3/T] and can be calculated from the core 

radius and the linear modified Forchheimer coefficient α through Equation (3.6).  η also 

has units of [L3/T] and is related to both the modified Forchheimer coefficients, α and β, 

through Equation (3.7).  As discussed below, the use of Equation (3.4) as the modified 

Forchheimer equation is desirable for determination of the two coefficients from the 

experimental data.  Once the two coefficients are determined, the use of Equation (3.5) as 

the transformed modified Forchheimer equation is desirable due to its nondimensional 

form, the units of ξ and η are the same as the flow rate, and the magnitude of Q/η can be 

compared to a value of one to determine the relative magnitude of the nonlinear effect. 

 The modified Forchheimer coefficients (α and β) can be determined 

experimentally from a series of constant head tests.  Figure 3.12 shows a typical graph of 

hs as a function of Q with the model fit for the modified Forchheimer Equation (3.4). 
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Figure 3.12 – Typical constant head data (Core 1-2-S) 

 

The modified Forchheimer coefficients are determined by minimizing the standard error 

between the measured standpipe head data, hsd, and the modeled standpipe head, hsm, 

determined from the modified Forchheimer Equation (3.4).  The standard error can be 

calculated as: 

 ( )∑
=

−=
N

i
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N
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1

21..       (3.8) 

In Equation (3.8), S.E. is the standard error between the data and the modified 

Forchheimer equation for N observed data points.  The standard error is minimized by 

simultaneously changing the value of α and β so that the model results closely match the 

observed data.  This is accomplished using the Solver tool in Microsoft Excel.  The use of 

Equation (3.4) as opposed to Equation (3.5) for calculating the standard error is due to the 

form of the equations.  If Equation (3.5) is used, the Solver tool will minimize the 

standard error by simply increasing the value of η to be so large such that the nonlinear 
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term is negligible.  Therefore, Equation (3.4) is the most useful for determining the 

modified Forchheimer coefficients from the experimental data. 

 Although we can experimentally determine the modified Forchheimer coefficients 

(α and β or ξ and η), this gives us no indication of the values of the original Forchheimer 

coefficients (a and b or K and n) without further investigation.  In order to address this 

issue and determine the true hydraulic conductivity, we must conduct numerical 

simulations of flow through the PFC core specimen as described in Chapter Five.  For 

now, we will simply report the values of the modified Forchheimer coefficients and 

determined the hydraulic conductivity once the numerical model has been explained and 

results have been presented. 

 

3.3.3 Falling Head Lab Test Procedure 

 Although a series of constant head tests is the preferred method for determining 

the modified Forchheimer coefficients, a falling head test can also be conducted in the 

laboratory.  Comparison of the falling head test to the constant head test results is useful 

for determining whether the same nonlinear curve can be measured from both methods.  

This is a necessary concern as the field test for measuring in-situ hydraulic conductivity 

is based on the falling head principle. 

 In order to conduct the falling head test in the lab, the same test setup for the 

constant head tests is used with the core specimen submerged in water and compressed 

between the two rubber membranes.  The water level in the tank is drained so that the 

surface of the water is near the top surface of the PFC core specimen.  Therefore, this 

essentially means the top of the PFC surface is taken as the head datum.  During a falling 

head test, the source head hs varies with time.  Assuming nonlinear flow conditions, the 

head-discharge relationship using the modified Forchheimer Equation (3.4) may be 

inverted to give Q as a function of hs.  Combined with the continuity equation for the 

water level in a standpipe with radius RRs one finds: 
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Equation (3.9) may be integrated to give the time for the standpipe head to decrease from 

the initial level hs(0) to an arbitrary level hs(t) as follows: 
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 (3.10) 

With Equation (3.10), three readings of time-depth pairs [t, hs(t)] = [0, hs(0)], [t1, hs(t1)], 

and [t2, hs(t2)] are sufficient to determine the two unknown coefficients α and β, where 

the third time-depth measurement is used for an initial condition. 

 The constant head test, while more time-consuming, allows one to better define 

the entire head-discharge curve, and thus obtain a more reliable estimate of the hydraulic 

conductivity.  That notwithstanding, the variation between the constant head and falling 

head tests is much less than the natural variation expected at field sites and among 

laboratory core specimens as described in Section 3.4.2.  Both the constant head and 

falling head test methodologies provide useful and reproducible information on the 

hydraulic characteristics of PFC. 

 

3.3.4 Establishment of No Flow Boundaries 

 One possible concern with this experimental test setup is whether the rubber 

membranes are actually creating a no flow boundary on the surface of the PFC core by 

simply compressing the core.  When the core specimens are extracted, the specimen 

contains the PFC layer together with the underlying impervious asphalt.  Prior to the 

porosity measurements, the impervious asphalt layer is removed.  In order to test whether 

the rubber membranes are creating a no flow boundary, one of the remaining impervious 

asphalt layer specimens was placed in the test setup and compressed in an identical way 

as the PFC cores.  A falling head test was conducted on the impervious core to determine 

if there is a significant amount of flow due to the presence of the rubber membranes.  A 

period of roughly 24 hours was allowed to pass with water in the standpipe, and the water 

level dropped only by a couple of centimeters within that time.  Therefore, it can be 

assumed that any flow that may occur due to the rubber membranes is negligible 

compared to the much larger flow rates through the PFC pore space.  Furthermore, this 

  60 



test shows that simply compressing the core specimen with the arm strength of a typical 

engineering graduate student is sufficient to create the required no flow boundary, and no 

special tools are needed to compress the core under a greater load. 

 

 

3.4 Lab Test Results 
3.4.1 Constant Head Lab Results 

 The PFC core specimens extracted from the three different roadways in the years 

2007, 2008, and 2009 were all tested in the laboratory using the series of constant head 

tests described in Section 3.3.1.  From these tests, the modified Forchheimer coefficients 

were determined by minimizing the standard error between the constant head data and the 

modified Forchheimer Equation (3.4).  The collected data used to determine the modified 

Forchheimer coefficients are provided in Appendix B.  Tables 3.5 through 3.7 give the 

modified Forchheimer coefficients and resulting standard error for each of the core 

specimens tested. 

 

Table 3.5 – Modified Forchheimer coefficients of 2007 core specimen (source: 

Candaele, 2008) 

Core ID α (s/cm2) β (s2/cm5) ξ (cm3/s) η (cm3/s) S.E. (cm) 

1-A-T 0.7016 0.0143 10.74 49.07 0.5860 

1-B-T 0.0477 0.0028 158.06 16.98 0.1253 

2-A-T 0.1883 0.0093 39.98 20.26 0.2118 

2-B-T 0.4035 0.0154 18.63 26.18 0.3604 

3-B-T 0.2965 0.0390 25.45 7.61 0.4659 

3-C-T 0.2860 0.0141 26.52 20.28 0.3330 

 

 

 

 

  61 



Table 3.6 – Modified Forchheimer coefficients of 2008 core specimens 

Core ID α (s/cm2) β (s2/cm5) ξ (cm3/s) η (cm3/s) S.E. (cm) 

1-1-T 0.1520 0.0092 71.88 16.51 0.3578 

1-1-S 0.0551 0.0052 198.93 10.53 0.0459 

1-2-T 0.1454 0.0115 75.42 12.64 0.1188 

1-2-S 0.1172 0.0088 93.11 13.36 0.1226 

1-3-T 0.0916 0.0066 119.57 13.97 0.1039 

1-3-S 0.0735 0.0050 148.70 14.73 0.0405 

2-1-T 0.2892 0.0188 37.80 15.39 0.3171 

2-2-T 0.1392 0.0103 78.25 13.56 0.1175 

2-3-T 0.2985 0.0187 36.54 15.92 0.2313 

3-1-T 2.4007 0.2887 4.55 8.31 0.7898 

3-2-T 3.0288 0.7882 3.59 3.84 0.1884 

3-3-T 0.5850 0.0699 18.69 8.37 0.5957 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  62 



Table 3.7 – Modified Forchheimer coefficients of 2009 core specimens 

Core ID α (s/cm2) β (s2/cm5) ξ (cm3/s) η (cm3/s) S.E. (cm) 

1-i-T 0.0686 0.0082 159.21 8.35 0.0807 

1-i-S 0.0468 0.0039 233.50 11.96 0.0527 

1-ii-T 0.2245 0.0151 48.62 14.89 0.3434 

1-ii-S 0.0655 0.0074 166.53 8.89 0.1528 

1-iii-T 0.0924 0.0053 118.77 17.45 0.0634 

1-iii-S 0.1434 0.0141 76.17 10.21 0.1731 

2-i-T 0.7067 0.204 15.46 34.58 1.3659 

2-ii-T 0.3092 0.0097 35.26 31.78 0.3686 

2-iii-T 0.1356 0.0090 80.58 15.08 0.1174 

3-i-T 1.2954 0.1283 8.44 10.10 0.9058 

3-ii-T 0.7192 0.0539 15.17 13.35 0.5381 

3-iii-T 0.5424 0.0761 20.13 7.13 0.4604 

 

 As previously mentioned, these values give no indication of the hydraulic 

conductivity without further numerical modeling.  However, it is interesting to note some 

general trends.  One would expect that the linear modified Forchheimer coefficient would 

be related to the hydraulic conductivity.  A large hydraulic conductivity is expected to 

occur for small values of α and large values of ξ.  The data suggest that in general, the 

Loop 360 cores have a larger hydraulic conductivity than the cores from FM 1431 and 

RR 620.  Further investigation of these relationships is provided in Chapter Six. 

 The nonlinear modified Forchheimer coefficient, particularly the η coefficient, 

can be used to determine when nonlinear flow effects are significant.  As previously 

mentioned, if the value Q/η is large compared to a value of one, then the nonlinear flow 

effects cannot be ignored.  Therefore, the larger the value of η, the more likely that Q/η 

will be small and nonlinear flow effects will be negligible.  In general, the value of η is 

on the order of 10 cm3/s, meaning that if the flow rate approaches a value of 10 cm3/s, the 

nonlinear flow effects will become significant.  It is interesting to note from Figure 3.12 
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that for flow rates less than roughly 10 cm3/s, the experimental data could be fairly 

closely approximated with a linear relationship. 

 In addition to determining the modified Forchheimer coefficients by minimizing 

the standard error, we can also conduct a multiple linear regression on the model in order 

to obtain the two coefficients.  The resulting values of α and β are the same for both 

methods, but the regression provides additional information that is worth noting.  The p-

values for each coefficient are very small, suggesting that the model is statistically 

significant.  The regression results also provide 95% confidence intervals for both 

coefficients to give an indication of the precision of each coefficient.  For the linear 

coefficient, the 95% confidence interval is roughly plus/minus 10% of the actual value.  

For the nonlinear coefficient, the 95% confidence interval is roughly 5% of the actual 

value.  The relatively small confidence intervals, together with the small p-values, 

suggest this is an appropriate model to use in order to represent the experimental data. 

 

3.4.2 Falling Head Lab Results 

 Several of the 2008 and 2009 core specimens were also tested in the laboratory 

using the falling head approach.  The falling head test was conducted simply for 

verification that both methods would produce similar results.  In general, it was assumed 

that the series of constant head tests will produce more reliable results. 

The same core specimen (1-2-S) shown in Figure 3.12 was also tested using the 

falling head approach.  The initial, intermediate, and final head values are as follows: 

hs(0) = 40.6 cm, hs(t1) = 20.3 cm, and hs(t2) = 2.54 cm.  The average of three sets of time 

measurements are taken with results (plus/minus one standard deviation): t1 = 4.04 ± 0.10 

sec and t2 = 11.41 ± 0.21 sec.  Using the mean time values in Equation (3.10), one finds α 

= 0.153 s/cm2 and β = 0.00675 s2/cm5.  Similarly, α and β can be determined using the 

plus/minus one standard deviation to determine the variability in the falling head results.  

Figure 3.13 shows the curve of hs versus Q for the averaged falling head test as well as its 

uncertainty from plus/minus one standard deviation together with the constant head test 

results.  Good agreement exists between the constant head and falling head tests, 
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suggesting that both methods are acceptable for determining the modified Forchheimer 

coefficients. 
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Figure 3.13 – Falling head test results (Core 1-2-S) 

 

 Table 3.8 provides the modified Forchheimer coefficients for the select cores 

tested using the falling head approach.  In addition, the percent difference (P.D.) of the 

modified Forchheimer coefficients from the falling head test when compared to the 

constant head tests is provided in order to give an indication of the error that may be 

involved with the falling head test. 
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Table 3.8 – Modified Forchheimer coefficients for falling head tests on 2008 and 

2009 core specimens 

Core ID α (s/cm2) β (s2/cm5) ξ (cm3/s) η (cm3/s) P.D. in α P.D. in β 

1-1-S 0.1505 0.0050 72.50 30.35 -173.2 5.2 

1-2-T 0.1480 0.0135 74.13 10.94 -1.7 -17.6 

1-2-S 0.1188 0.0110 91.86 10.84 -1.4 -25.0 

2-1-T 0.4161 0.0516 26.27 8.06 -43.9 -174.6 

2-i-T 0.4057 0.0405 26.94 10.01 42.6 -98.2 

2-iii-T 0.1873 0.0064 58.33 29.38 -38.1 29.1 

3-i-T 0.9443 0.1799 11.57 5.25 27.1 -40.3 

3-ii-T 0.5112 0.0715 21.34 7.15 28.9 -32.8 

3-iii-T 0.5413 0.0836 20.17 6.47 0.2 -9.9 

 

 The same general trends observed in the constant head tests are seen here as well.  

Furthermore, there can be some large differences between the constant head and falling 

head tests.  Many of the falling head tests are within acceptable levels of error when 

compared to the constant head tests, but there are several cases where the percent 

difference is very large.  For this reason, the series of constant head tests is preferred in 

the laboratory. 

 In addition, all of the 2010 core specimens were tested only using the falling head 

approach.  Although the constant head test method is the preferred method for 

determining the modified Forchheimer coefficients of a core specimen, the 2010 cores 

were not tested using the constant head method due to time constraints.  Table 3.9 

provides the modified Forchheimer coefficients for the 2010 core specimens using the 

falling head approach. 
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Table 3.9 – Modified Forchheimer coefficients for falling head tests on 2010 core 

specimens 

Core ID α (s/cm2) β (s2/cm5) ξ (cm3/s) η (cm3/s) 

1-a-T 0.2997 0.0576 25.41 5.20 

1-a-S 0.0868 0.0038 87.54 22.86 

1-b-T 0.0524 0.0049 145.88 10.78 

1-b-S 0.0750 0.0030 100.13 25.09 

1-c-T 0.1804 0.0176 41.69 10.23 

1-c-S 0.0737 0.0022 102.02 33.13 

3-a-T 0.5464 0.1627 13.74 3.36 

3-b-T 5.7616 3.0130 1.30 1.91 

3-c-T 1.2329 0.6265 6.11 1.97 

 

 The linear modified Forchheimer coefficients for Loop 360 core specimens are 

greater than those from RR 620, again suggesting a greater hydraulic conductivity on 

Loop 360.  Furthermore, in general, the nonlinear coefficient η is smaller for RR 620.  All 

core specimens have a significant nonlinear effect, but the cores from RR 620 are 

significant at smaller flow rates due to the smaller η coefficients. 
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Chapter Four 

Field Experimentation 
 

 

 In order to properly measure the in-situ hydraulic conductivity of PFC, field 

experimental tests must be conducted.  This is accomplished through a falling head 

permeability test.  In-situ hydraulic conductivity measurements are necessary to properly 

determine the extent of clogging the PFC layer has experienced.  As the PFC layer 

becomes clogged over time, it is expected that the porosity and hydraulic conductivity 

will decrease and drainage benefits of the PFC will be lost.  Therefore, a well defined 

field test is necessary to determine whether the drainage benefits of PFC will persist in 

the future.  This chapter describes a new field test apparatus developed specifically for 

this research study as well as the test procedure for determining the in-situ modified 

Forchheimer coefficients. 

 

 

4.1 Need for Improved Field Test 
 A field test method in the State of Texas currently exists for measuring the 

drainage capacity of PFC, and is described in detail by TxDOT (2004a).  The current 

TxDOT method measures the time it takes to drain 27.9 cm of water from a 15.2 cm 

diameter pipe into the PFC layer.  Plumbers putty is used to seal the interface between the 

pipe and the PFC surface.  The current TxDOT test apparatus is shown in Figure 4.1.  

Although this test is useful for determining adequate compaction of the PFC layer 

between passes of the compaction vehicle during the construction process, it gives no 

indication of the hydraulic conductivity of the PFC layer.  TxDOT provides a guideline 

of 20 sec as the minimum drainage capacity for newly constructed PFC layers.  Based on 

the dimensions of the TxDOT test apparatus, a drainage time of 20 sec corresponds to an 

average minimum flow rate of 255 cm3/s. 
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Figure 4.1 – Current TxDOT PFC drainage capacity test 

 

 Although the current TxDOT method can be used to compare the relative 

drainage capacity of a PFC layer, it cannot provide the actual hydraulic conductivity.  

One of the major reasons this is not possible is because as the water flows out of the pipe 

and into the PFC, the water immediately resurfaces after it moves out from under the 

plumbers putty.  This results in very little actual porous media flow during the test, and so 

there is not adequate information from which to determine the hydraulic conductivity.  

Other traditional permeameters, such as a double-ring infiltrometer, typically assume 
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vertical flow paths into the porous media.  Although these devices work well for natural 

soils, they are not effective for PFC due to the impervious boundary roughly 5 cm or less 

from the surface.  Because of the presence of this boundary, the method for determining 

the hydraulic conductivity from traditional permeameters is no longer valid.  Therefore, 

there is a need for a new test apparatus from which to measure the hydraulic conductivity 

of PFC that accounts for two specific flow features, namely forcing water to flow through 

the PFC layer and accounting for the underlying impervious boundary near the surface. 

 A new field test apparatus developed at CRWR has been designed and 

constructed specifically for this research study which forces water to flow through the 

PFC layer; analysis of the results take into account the underlying impervious boundary.  

The new field test apparatus is shown in Figure 4.2.  This apparatus consists of a solid 

metal base plate of radius RRc = 22.9 cm.  A standpipe is centered on the plate with a 

radius RsR  = 5.1 cm.  A layer of vacuum grease (Dow Corning high vacuum grease) is 

placed on the bottom side of the base plate and is allowed to enter the surface void space 

of the PFC in order to create a no flow boundary along the surface of the plate.  This 

helps to eliminate any flow that may occur between the PFC surface and the base plate 

surface.  Water flows vertically into the PFC layer from the standpipe and turns to flow 

radially away from the standpipe and out from under the base plate.  As water flows out 

from under the base plate, surface runoff tends to occur.  This test apparatus mimics the 

boundary conditions imposed on the core specimens in the laboratory and can therefore 

be analyzed in the same way. 
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Figure 4.2 – CRWR field test apparatus 

 

 

4.2 Field Measurements 
4.2.1 Falling Head Test Procedure 

 The results of the laboratory experiments are used to determine the modified 

Forchheimer coefficients for a PFC core specimen.  Although the laboratory method is 

effective in determining these coefficients, it is not ideal due to the destructive nature of 

the coring process and time restraints associated with conducting a series of constant 

head tests.  Therefore, a need exists for a nondestructive field test in which the modified 

Forchheimer coefficients can be easily measured in-situ.  This can be accomplished with 

a falling head test in the field, as opposed to a series of constant head tests in the lab.  A 
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falling head test in the field is necessary due to the large flow rates and large volume of 

water required for constant head field tests.  The falling head test is conducted using the 

new CRWR test apparatus described above.  As mentioned in Section 3.3.3, during a 

single falling head test, three time-depth measurements are taken.  These three 

measurements are used to determine the two modified Forchheimer coefficients, with the 

third measurement used for the initial condition.  The use of Equation (3.10) in Section 

3.3.3 is used to determine the two modified Forchheimer coefficients and is repeated here 

for convenience. 
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 (4.1) 

A similar test procedure as described in Section 3.3.3 is used in the field.  Charbeneau et 

al. (in press) also describe the test methodology needed to conduct the field test.  The 

following outlines the necessary materials needed to conduct the field test as well as a 

step-by-step procedure to properly obtain the required measurements. 

 The following materials are needed to conduct the falling head field test: 

• Proposed CRWR field test apparatus: used to channel water into the PFC 

surface and create radial flow without surface runoff; the standpipe should be 

graduated in divisions of 0.3 cm (see Figure 4.2). 

• Stopwatch: used to record the time for water to drain in divisions of 0.01 sec; 

must have a split function to record an intermediate time during the test. 

• Vacuum grease: used to seal the PFC surface under the base plate of the test 

apparatus; Dow Corning silicon high vacuum grease works well, and typically 

200 to 230 mL (one and a half tubes) is sufficient to cover the base plate 

surface during dry conditions. 

• Water: roughly 45 L of water is sufficient to conduct one falling head test. 

 The following steps represent the CRWR test procedure for determining the in-

situ modified Forchheimer coefficients: 

1) Select an area of the existing PFC surface to test.  Remove any debris on the 

surface and choose a sufficiently flat area so that the base plate of the test 
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apparatus can sit flat on the roadway surface and create a good seal with the 

PFC. 

2) Place roughly 200 to 230 mL of vacuum grease on the underneath side of the 

base plate.  Spread the vacuum grease by hand to create a uniform 

distribution. 

3) Place the test apparatus onto the PFC pavement surface.  Use enough force 

(typically standing on the base plate is sufficient) to create a water-tight seal 

between the base plate and the pavement surface such that the vacuum grease 

enters the surface voids of the PFC. 

4) Flush an initial volume of water though the test apparatus to saturate the pore 

space.  Typically about 19 L of water is necessary for sufficient saturation. 

5) Fill the test apparatus with water to the top of the standpipe. 

6) Start the timing device when the water level reaches the marking of 36.6 cm 

on the standpipe.  This corresponds to a water depth of 40.4 cm above the 

PFC surface. 

7) Use the split function on the timing device when the water level reaches the 

marking of 18.3 cm on the standpipe.  This corresponds to a water depth of 

22.1 cm above the PFC surface. 

8) Stop the timing device when the water level reaches the marking of 0.0 cm on 

the standpipe.  This corresponds to a water level of 3.8 cm above the PFC 

surface. 

9) Record the three time-depth measurements. 

10) Repeat steps 5 through 9 until a total of three falling head tests are completed.  

Average the three time measurements to get the average time-depth 

measurement necessary to calculate the modified Forchheimer coefficients 

using Equation (4.1). 

 An additional concern with the field test is the existing moisture content of the 

roadway itself, particularly after recent rainfall events.  It is assumed that the pore space 

in the PFC layer is saturated for testing conditions.  This suggests that if there was a 
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recent rainfall event and the PFC layer had not fully dried then the assumption of 

saturated conditions would be more likely.  However, experience has shown that when 

the PFC surface is moist, the vacuum grease does not create a good bond with the PFC 

surface.  After rainfall events, there is a possibility that the testing apparatus may float 

during the test due to the poor bond.  Therefore, a larger amount of vacuum grease may 

be needed in order to create the upper no flow boundary, and standing on the device 

during testing is recommended to avoid the possibility of floating.  The test can be 

conducted properly after rainfall events, but additional care is needed in order to ensure 

that the upper no flow boundary is created.  When the test is completed and the test 

apparatus is moved, the vacuum grease should cause the apparatus to stick to the PFC 

surface.  If the apparatus did not stick to the surface when removed, then more vacuum 

grease should be added and the test procedure should be repeated. 

 

4.2.2 Investigation of Saturated Pore Space 

 One of the assumptions in the theoretical development of the test process is that 

the pore space must be completely saturated.  Due to the slope of the roadway in the 

field, water is constantly flowing down gradient toward the roadway shoulder by gravity.  

This suggests that the pore space may not be entirely saturated despite the initial volume 

of water allowed to drain through the test apparatus prior to testing.  In the event that the 

pore space is not completely saturated, the hydraulic conductivity measurement would 

most likely result in an artificially high hydraulic conductivity.  This increase in hydraulic 

conductivity is a result of some of the water acting to fill the pore space of the PFC.

 An initial volume of 19 L of water is allowed to flow into the PFC layer prior to 

testing in order to saturate the pore space.  In order to determine whether saturated 

conditions are actually achieved by the initial drainage prior to conducting the falling 

head test, a diffuser was built which allows water to drip into the PFC layer upslope from 

the test location.  The diffuser consists of a 1.5 meter (m) long piece of PVC pipe 

attached to a 189 L water supply tank.  The diffuser and water supply tank are shown in 

Figures 4.3 and 4.4, respectively.  The diffuser has nine 0.64 cm diameter holes drilled 
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through the PVC, and are spaced 15.2 cm apart and allow water to drip out.  The flow 

rate from the diffuser can be controlled by a valve attached upstream of the diffuser.  

Prior to using the diffuser, an initial falling head test is conducted using the test procedure 

described above.  Then 75.7 L of water is dripped into the PFC over a time of 15 minutes.  

With this volume of water in the pore space, it appears that the pores have become 

completely saturated.  A second falling head test is conducted resulting in the same 

modified Forchheimer coefficients within the experimental error, verifying that saturated 

conditions are achieved with only the initial drainage volume of 19 L.  This confirms our 

assumption of saturated conditions. 

 

 
Figure 4.3 – Testing prior to using diffuser upslope 
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Figure 4.4 – 189 L water supply tank 

 

4.2.3 Comparison with Constant Head Field Test 

 Although a falling head test is preferred in the field, a limited number of constant 

head tests were measured in the field as well.  A falling head test serves to theoretically 

represent an infinite number of constant head tests.  In order to determine whether a 

series of constant head tests is equivalent to a falling head test, several constant head tests 

were attempted in the field.  The conduction of these tests requires a large amount of 

water due to the ease of flow through the PFC as well as the time required to reach steady 

state conditions.  The head is measured as a constant in the standpipe, and the flow rate is 

measured with a stopwatch and graduated bucket.  In addition, it is difficult to obtain 

precise measurements due to the large flow rates needed.  Figure 4.5 shows a constant 

head field test with water flowing by gravity from the water supply tank, which must be 

continuously refilled with water from smaller buckets during the test in order to maintain 

a constant water level in the tank.  The constant water level in the tank is necessary to 

obtain a constant flow rate. 
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Figure 4.5 – Constant head field test 

 

 Four constant head tests were conducted in the field, followed by one falling head 

test.  The results are shown in Figure 4.6.  The modified Forchheimer coefficients can be 

determined by fitting a curve to the four constant head tests by minimizing the standard 

error similar to the method used for the laboratory constant head data.  There is good 

consistency between the constant head and falling head data, though more constant head 

measurements are necessary, especially at small discharge values, in order to better 

estimate the linear modified Forchheimer coefficient α.  The similar shape between the 

constant head and falling head test results suggest that the falling head test serves as a 

good comparison to a series of constant head tests.  However, the difference between the 

two curves can be attributed to the uncertainty associated with each of the constant head 

tests.  The large flow rates needed to conduct a constant head test in the field make it 

difficult to obtain a constant flow rate and accurately measure that rate.  In addition, 

obtaining steady state conditions are not guaranteed in the field.  Furthermore, the large 

  77 



flow rates sustained during the constant head test may have flushed particles out of the 

flow paths in the PFC pore space, which will alter the Forchheimer coefficients. 
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Figure 4.6 – Comparison between constant and falling head field tests 

 

4.2.4 Effect of Roadway Slope 

 The final assumption that was investigated in this research study is the impact of 

gravity on the flow conditions due to the effect of the roadway slope.  The longitudinal 

slope and cross slope of the roadway surface create a constant conveyance of water 

through the PFC overlay due to gravity alone.  Therefore, gravity may have an effect on 

the field conditions, which would most likely result in an artificially high hydraulic 

conductivity measurement.  This is because water will be transported through the porous 

media by the established head in the standpipe as well as by gravity.  Since gravity is not 

included in any of the falling head equations, the transport of water by gravity would be 

attributed to the head difference, resulting in a high hydraulic conductivity estimate. 
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 This is addressed by considering the following equation for the change in head 

through the test apparatus, i.e. the change in head from the inflow area to the outflow 

area: 

 ( ) ( )θθ coscss sRhh +=       (4.2) 

In Equation (4.2), θ = 0 corresponds to the downslope direction and s is the slope of the 

roadway; hs is the change in head as before, but now corresponds specifically for a flat 

surface, i.e. θ = π/2.  Now, if we assume each flow path leading from the standpipe is 

independent, then the incremental discharge in the θ-direction can be given as: 
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Equation (4.3) gives the incremental discharge δQ(θ) as a function of the change in head.  

The total discharge from the standpipe can be found by integrating Equation (4.3) as 

follows: 
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Equation (4.4) can be solved numerically with a simple finite difference code.  Of 

primary interest is the impact of the roadway slope for the smallest head value measured 

during testing.  At the end of the falling head test, the final time measurement is taken for 

a value of hs = 3.8 cm, and it should be expected that gravity will have the largest impact 

on the flow rate for this change in head.  Table 4.1 calculates the flow rate from Equation 

(4.4) for multiple values of the roadway slope and then determines the percent error 

produced by the roadway slope when compared to zero slope.  The modified Forchheimer 

coefficients used are α = 0.0204 s/cm2 and β = 1.57×10-4 s2/cm5, as determined from a 

falling head test conducted on Loop 360. 
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Table 4.1 – Numerical results for effect of roadway slope 

Slope, s (cm/cm) Q (cm3/s) Percent Error (%) 

0.00 104.00 0.00 

0.02 103.89 0.11 

0.04 103.56 0.43 

0.06 102.98 0.98 

0.08 102.16 1.78 

 

 As can be seen in Table 4.1, the effect of the roadway slope is less than one 

percent error for slopes less than 6%.  On the roadways for which the field test has been 

conducted, the roadway slope is roughly 4%, which will result in a percent error of 

roughly half a percent.  Therefore, it can be assumed that the roadway slope has very 

little impact on the falling head test results, and Equation (4.1) can be used without any 

modification to calculate the modified Forchheimer coefficients. 

 

4.2.5 Establishment of No Flow Boundary 

 The two main assumptions made in analyzing the falling head test are saturated 

pore space and the upper and lower no flow boundary conditions.  The assumption of 

saturated pore space is addressed in Section 4.2.2.  The lower no flow boundary is 

assumed to be created due to the underlying impervious pavement surface and cannot be 

verified through testing.  However, there is no reason to believe that the lower no flow 

boundary is not established.  Therefore, the main concern is whether the upper no flow 

boundary is properly established between the PFC surface and the metal base plate.  

Vacuum grease is used to create this no flow surface.  As mentioned in Section 4.2.1, the 

vacuum grease will cause the metal base plate to stick to the surface if properly used.  In 

this event, it is assumed that a good bond was obtained during testing and the no flow 

boundary was subsequently created.  In order to confirm the creation of a no flow 

boundary, the test apparatus was used on conventional impervious asphalt and 

impervious concrete surfaces.  The same test procedure outlined above was used on these 
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two surfaces in order to determine whether there was significant flow between the 

impervious surfaces and the metal base plate.  The falling head test was conducted and on 

the concrete surface, the total drainage time was nearly 11 minutes; on the asphalt 

surface, the total drainage time was nearly 30 minutes.  Therefore, although this does not 

create a perfect no flow boundary, the flow is small enough that it can be considered 

negligible.  When compared to the longest drainage time observed in the field on PFC, 

this drainage accounts for less than 5% error.  Furthermore, this test helped to confirm 

that roughly 200 to 230 mL of vacuum grease is sufficient to create the no flow boundary 

under dry testing conditions. 

 

 

4.3 Field Test Results 
4.3.1 TxDOT Field Test Results 

 The current TxDOT field test described in Section 4.1 does not give any 

indication of the hydraulic conductivity of the PFC, but instead reports the drainage time 

for the falling head test.  TxDOT guidance suggests that the typical drainage time is 

normally less than 20 sec for newly constructed PFC mixtures.  Several TxDOT falling 

head tests have been conducted in the field during the core extraction process, and the 

TxDOT results are reported in Table 4.2 below. 
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Table 4.2 – TxDOT field test results 

Roadway Location Date Drainage Time (sec) 

Loop 360 Shoulder 6-29-08 17.84 

Loop 360 Shoulder 6-29-08 19.81 

Loop 360 Shoulder 2-2-09 14.28 

Loop 360 Travel Lane 2-2-09 16.45 

Loop 360 Shoulder 2-5-10 12.62 

Loop 360 Travel Lane 2-5-10 19.82 

FM 1431 Travel Lane 2-2-09 112.61 

RR 620 Travel Lane 2-2-09 69.73 

RR 620 Travel Lane 2-5-10 44.98 

 

 The results from the TxDOT field test suggest that Loop 360 has retained 

relatively good drainage capacity throughout its life.  None of the drainage times exceed 

20 sec for all Loop 360 tests.  However, for both FM 1431 and RR 620, drainage times 

were significantly greater than the 20 sec guideline, suggesting that these two roadways 

have experienced significant clogging.  Although this test provides information on the 

drainage capacity of the PFC, it does not indicate whether the drainage capacity is 

sufficient for providing proper drainage benefits.  The minimum average flow rate which 

is considered acceptable under the TxDOT procedure is 255 cm3/s.  This average flow 

rate will be compared to average flow rates determined from the CRWR test procedure in 

the following section. 

 

4.3.2 CRWR Field Test Results 

 In order to better measure the in-situ hydraulic conductivity of PFC, the new 

CRWR field test described in Section 4.2.1 can be used to determine the modified 

Forchheimer coefficients, which give an indication of the hydraulic conductivity as 

described in Chapter Five.  Table 4.3 below provides the results of the CRWR field 

falling head test.  The middle and final times are reported with plus/minus one standard 
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deviation together with the resulting modified Forchheimer coefficients calculated using 

Equation (4.1). 

 

Table 4.3 – CRWR field test results 

Roadway Location Date t1 (sec) t2 (sec) α (s/cm2) β (s2/cm5)

Loop 360 Shoulder 6-29-08 3.92±0.14 11.12±0.22 0.0204 1.57×10-4 

Loop 360 Shoulder 6-29-08 4.28±0.13 12.36±0.30 0.0254 1.81×10-4 

Loop 360 Shoulder 9-25-08 4.07±0.18 11.75±0.16 0.0238 1.65×10-4 

Loop 360 Shoulder 9-25-08 4.17±0.19 11.90±0.41 0.0216 1.80×10-4 

Loop 360 Shoulder 11-9-08 3.88±0.15 10.63±0.01 0.0093 1.84×10-4 

Loop 360 Shoulder 11-23-08 3.27±0.00 9.05±0.05 0.0100 1.26×10-4 

Loop 360 Shoulder 2-2-09 4.46±0.14 12.88±0.21 0.0262 1.97×10-4 

Loop 360 Travel Lane 2-2-09 4.30±0.22 12.17±0.46 0.0197 2.00×10-4 

Loop 360 Shoulder 2-5-10 3.97±0.11 11.33±0.14 0.0206 1.64×10-4 

Loop 360 Travel Lane 2-5-10 3.47±0.19 10.11±0.16 0.0223 1.15×10-4 

FM 1431 Travel Lane 2-2-09 17.35±1.15 52.16±3.13 0.1430 2.50×10-3 

RR 620 Travel Lane 2-2-09 9.17±0.02 25.86±0.40 0.0403 9.17×10-4 

RR 620 Travel Lane 2-5-10 10.89±0.30 32.12±0.19 0.0784 1.07×10-3 

 

 The results of the new field test also show that FM 1431 and RR 620 are more 

clogged than Loop 360 due to the longer drainage times.  In addition, it appears that the 

modified nonlinear Forchheimer coefficients are significantly smaller than what was 

determined from the constant head laboratory tests on the core specimens report in 

Section 3.4.1.  This can be attributed to the larger testing apparatus used in the field.  The 

numerical model described in Chapter Five will show that we expect smaller coefficients 

as the standpipe and/or core radii increase. 

 On Loop 360 there are several hydraulic conductivity tests that were conducted 

with both the TxDOT and CRWR field tests at the same location.  A correlation was 

attempted to relate the two results for these paired tests; however, no relationship could 
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be found between the two tests.  The final drainage time and average flow rate during the 

test were analyzed for comparison, but again no relationships were found.  Therefore, test 

results from the TxDOT test cannot be used to estimate the results of the CRWR test in 

order to obtain a value for the hydraulic conductivity. 

 A final assessment of the field data is to compare the average flow rates obtained 

from the CRWR test to the minimum recommended flow rate based on the TxDOT 

guideline of 255 cm3/s.  As with the TxDOT field test results, both FM 1431 and RR 620 

had smaller average flow rates when conducted with the CRWR field test.  However, on 

Loop 360, half of the test results from the CRWR test have average flow rates less than 

the minimum suggested TxDOT guideline.  Therefore, although the TxDOT test showed 

that the flow rates observed on Loop 360 were greater than the minimum suggested flow 

rate, the CRWR test shows that half of the flow rates are smaller than the guideline flow 

rate.  The CRWR field tests result in very similar in-situ hydraulic conductivity values, 

signifying that the TxDOT guideline is not applicable for other testing devices. 

 

4.3.3 Sensitivity of Time Measurement 

 The use of a stopwatch for measuring time during the falling head test in the field 

is useful as it provides a simple measuring device that is inexpensive and readily 

available.  However, the use of such a device can result in some discrepancy due to 

possible human error.  For this reason, it is recommended that the time measurements 

from three falling head tests be averaged in order to reduce any human error.  To 

determine the uncertainty which can result from human error, a sensitivity analysis on the 

time measurements is provided here.  Sensitivity is quantified by incrementally 

increasing or decreasing the actual time measurements observed in the field and 

determining the resulting change to the modified Forchheimer coefficients calculated 

from Equation (4.1). 

 A falling head field test conducted on Loop 360 has the following averaged time-

depth measurements with plus/minus one standard deviation: hs(t0) = 40.4 cm, hs(t1) = 

22.1 cm, hs(t2) = 3.8 cm, t0 = 0 sec, t1 = 3.89 ± 0.14 sec, and t2 = 11.12 ± 0.22 sec.  This 
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results in the following modified Forchheimer coefficients: α = 0.0204 s/cm2 and β = 

1.57×10-4 s2/cm5.  The sensitivity analysis will be conducted by either increasing or 

decreasing the two time measurements by ∆t = 0.1 sec or 0.2 sec and determining the 

resulting percent change of the modified Forchheimer coefficients when compared to the 

above reported values. 

 Figures 4.7 and 4.8 show the sensitivity on the linear and nonlinear modified 

Forchheimer coefficients, respectively.  The four curves correspond to changes to the 

middle time (t1), final time (t2), both times in the same direction (both times increased or 

decreased), and both times in the opposite direction (middle time increased with final 

time decreased and vice versa).  Clearly small changes in the time measurements can 

result in large changes to the calculated modified Forchheimer coefficients.  The 

sensitivity to the linear coefficient is greater than that of the nonlinear coefficient, which 

is unfortunate because it is the linear coefficient that will be used to determine the in-situ 

hydraulic conductivity.  However, the field tests conducted to date have resulted in very 

reliable and repeatable data when the average of three time measurements is used.  

Therefore, when conducted properly, the proposed field test is considered reliable.  The 

in-situ hydraulic conductivity data reported in Section 5.5.5 show very little variability, 

suggesting sensitivity in time measurements is not a major source of error. 
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Figure 4.7 – Time sensitivity of linear modified Forchheimer coefficient 
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Figure 4.8 – Time sensitivity of nonlinear modified Forchheimer coefficient 
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 It should be noted that the above sensitivity analysis was conducted on data 

obtained from Loop 360, which has the best drainage properties of all three roadways and 

will therefore have the largest sensitivity to small changes in time.  The sensitivity 

analysis can be conducted on the other roadways with larger drainage times and it can be 

shown that for FM 1431, for example, the change in modified Forchheimer coefficients is 

less than ±10% error.  Consequently, the larger the drainage times, the less sensitive the 

result is to small changes in the time measurements.  As shown in Section 4.3.2, the 

larger drainage times tend to have more variability than the shorter times, which suggests 

that although the time measurements can be very sensitive to small changes in time, in 

general, we would not expect to see significant errors from our field measurements.  This 

simply provides a method to quantify the possible uncertainty in the measurements. 

 

4.3.4 Comparison to Video Results 

 In an effort to determine how accurate the field test results are at fully defining 

the falling head test by only reporting three time-depth measurements, a video of the 

falling head test was recorded.  From the video, multiple points can be measured instead 

of the suggested three points during the test.  A graph of head versus time can be 

accurately determined from the video.  This curve can then be compared to the 

corresponding times calculated from Equation (4.1) for each of the head values using the 

modified Forchheimer coefficients determined from the average of three falling head 

tests.  The goal is to show that the three time-depth measurements taken during the falling 

head test are sufficient to fully characterize the results of the falling head test. 

 Two videos were taken of the falling head test at Loop 360 and RR 620 on 

February 5, 2010.  Prior to taking these videos, the falling head test procedure defined in 

Section 4.2.1 was conducted in order to determine the modified Forchheimer coefficients.  

Figures 4.9 and 4.10 show the curves of standpipe head versus time for RR 620 and Loop 

360, respectively. 
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Figure 4.9 – Comparison of falling head test to video on RR 620 
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Figure 4.10 – Comparison of falling head test to video on Loop 360 
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 The hydraulic conductivity on RR 620 is much lower than Loop 360, resulting in 

a longer time scale on RR 620 and the head in the standpipe decreasing at a slower rate.  

Because of this, it was easier to view the change in head on RR 620 from the video.  On 

Loop 360, not only was the standpipe head falling faster, but the video was not zoomed in 

enough in order to accurately determine the change in time for less than a second.  

Because of the inability to decipher the change in time for less than a second, the “Video” 

curve in Figure 4.10 is not smooth.  However, both videos produce a curve very similar 

to what was observed from the falling head test using Equation (4.1).  Furthermore, the 

standard error can be calculated between the two curves in order to quantify the error 

involved in the falling head test.  The standard error corresponds to the difference 

between the observed time in the video compared to the calculated time from the falling 

head test.  The standard error on RR 620 for this test is 0.43 sec; the standard error on 

Loop 360 is 0.31 sec.  Both tests produce reliable results, and this comparison shows that 

simply taking three time-depth measurements for the falling head test is sufficient to fully 

characterize the results of the falling head test. 
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Chapter Five 

Numerical Modeling 
 

 

5.1 Purpose of Numerical Model 
 Experimental studies have shown that under the large hydraulic gradients imposed 

during testing conditions, flow through PFC exhibits a nonlinear flow relationship which 

can be modeled using the Forchheimer equation.  However, due to the two-dimensional 

flow paths observed in both lab tests of PFC core specimens and field tests, the use of a 

modified Forchheimer equation for the global conditions of the PFC was introduced.  

Experimental testing will result in determination of the two modified Forchheimer 

coefficients (α and β or ξ and η), but give no indication of the original Forchheimer 

coefficients (a and b or K and n).  In order to determine a relationship between the 

modified and original Forchheimer coefficients, a numerical model is needed.  The 

proposed numerical model solves the continuity equation in two-dimensional cylindrical 

coordinates using a finite difference scheme. 

 The purpose of this numerical model is to solve the continuity equation using the 

original Forchheimer equation for various assumed values of a and b.  The result will 

give the head distribution through a core specimen for a specified value of the head on 

the standpipe, hs.  With this head distribution, the flow rate Q through the core specimen 

can be calculated based on the outflow hydraulic gradient.  Simulating multiple values of 

hs and calculating the corresponding flow rate will create a curve of hs versus Q.  From 

this curve the values of the modified Forchheimer coefficients can be determined by 

regression.  Therefore, the inputs to the model are the core geometry (RRs, RcR , and bc), the 

original Forchheimer coefficients (a and b), and the head on the standpipe (hs).  The 

output from the model is the flow rate (Q) and ultimately the modified Forchheimer 

coefficients (α and β) when multiple values of hs are simulated.  Essentially, this 

numerical model is analogous to the constant head tests conducted in the laboratory.  The 
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goal of the model is to relate the original Forchheimer coefficients to the modified 

Forchheimer coefficients so that we are able to determine the hydraulic conductivity from 

the modified Forchheimer coefficients.  The numerical model was written in FORTRAN 

using a finite difference scheme.  The FORTRAN code is provided in Appendix A. 

 

 

5.2 Modeling of Linear Flow 
 Prior to modeling the Forchheimer equation we will investigate a simpler case for 

linear flow through a PFC core specimen using Darcy’s law.  The modeling of the linear 

case is beneficial in order to compare to the nonlinear case and therefore determine where 

the nonlinear effects have the greatest impact on the head distribution through the core, as 

well as to test whether the nonlinear solution approaches the linear solution for small 

values of hs or b.  The method shown below is similar in approach to that presented by 

Charbeneau et al. (in press).  However, the nonlinear effects will be fully incorporated by 

the numerical model developed for the present research study, which is an improvement 

over the Charbeneau et al. approach. 

 

5.2.1 Approximate Analytical Solution 

 As previously mentioned, the PFC core specimen is cylindrical with a radius of RRc 

and thickness bc.  The coordinate system can be taken as cylindrical coordinates with the 

origin centered on the top surface of the core and the vertical z-direction positive 

downward.  The flow during a constant head test has vertical flow from the standpipe 

with radius RsR  centered on the top of the specimen and radial flow along the edges of the 

core radius RRc.  The setup is shown schematically in Figure 5.1.  The established head in 

the standpipe, hs, is uniform over the source disk 0,0 =≤≤ zRr s

r

.  The constant head 

along the outflow boundary is taken as the datum, so that h = 0 on cc bzR ≤≤= 0, . 
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Figure 5.1 – Coordinate system and core dimensions 

 

 As mentioned in Section 2.1, flow through most typical porous media generally 

follows Darcy’s law, so this linear relationship will be examined for the time being as a 

first approximation to the nonlinear case.  Darcy’s law as a vector function is given as: 

 IKq
rr

−=         (5.1) 

For the PFC core setup described above, Equation (5.1) can be used in the continuity 

equation in cylindrical coordinates to determine the governing equation for Darcy flow.  

In two-dimensional cylindrical coordinates, the continuity equation can be written as: 
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The general continuity equation assumes a constant fluid density, as well as no flow in 

the θ-direction.  Assuming an isotropic hydraulic conductivity, Kr = Kz = K, and 

substituting the change in head for each hydraulic gradient results in the governing two-

dimensional continuity equation for an isotropic hydraulic conductivity using Darcy’s 

law: 
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 The continuity equation in cylindrical coordinates for linear flow has been solved 

analytically by Carslaw and Jaeger (1959, pg. 215) through the use of Bessel functions.  

The Carslaw and Jaeger solution is for an infinite medium and has the following solution: 
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In Equation (5.5) the head h*(r,z) represents the head distribution with boundary 

conditions that apply to an infinite core (RR

]

c and bc approach infinity).  However, the 

boundary conditions for the laboratory core specimens used in this research study are 

finite.  Therefore, the applicable boundary conditions for the experimental setup are as 

follows: 

 [ 0;0)(),( =≤≤= zRrthzrh ss      (5.6) 
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 The first boundary condition, Equation (5.6), states that the head on the source 

disk is equal to the head in the standpipe, which can change as a function of time.  For 

testing purposes, the head on the standpipe is allowed to reach steady state such that it is 

a constant with respect to time.  Equation (5.7) defines a no flow boundary on the top 

surface of the core for a radius greater than the radius of the standpipe.  Equation (5.8) is 

the constant head at the outflow boundary, which is taken as the datum and set to a value 
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of zero.  Equation (5.9) defines a no flow boundary along the entire bottom surface of the 

core. 

 The volumetric flow rate can be determined from the head distribution through 

the following relation based on a linear flow relationship: 
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The first part of Equation (5.10) calculates the flow rate that occurs across the inflow 

boundary, while the second part of the equation is the flow rate across the outflow 

boundary.  The flow rate is not necessarily uniform over either the inflow or outflow 

boundary, but both equations should result in the same value to maintain continuity when 

Darcy’s law is applicable. 

 Carslaw and Jaeger (1959) provide the solution to Equation (5.10) using the flow 

across the inflow boundary as follows: 

         (5.11) ss RKhQ 4=

Equation (5.11) has assumed an isotropic porous medium such that Kz is replaced with 

the generic hydraulic conductivity, K. 

 In order to determine the flow rate from the outflow boundary in Equation (5.10), 

a different approach is necessary.  The effects of the finite vertical and radial dimensions 

are approximately addressed through the introduction of a linear shape factor F in 

Equation (5.11), which is changed to: 

         (5.12) FRKhQ ss4=

Setting Equation (5.12) equal to the second part of Equation (5.10) shows that the linear 

shape factor is defined by: 
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 The practical issue becomes how to evaluate Equation (5.13) while taking into 

account the finite size of the PFC core specimen.  The effects of the finite vertical 

dimension of the core are approximately addressed using the method of images in order 

to establish the no flow boundary conditions.  However, the addition of each image (or 
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image pair) alters the head both across the inflow and outflow boundaries.  Head values 

are calculated using: 
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In Equation (5.14), h(r,z;Ni) is the approximate solution to the Darcy continuity equation 

using the method of images, is a function of the r- and z-directions, and also depends on 

the number of image pairs, Ni.  The image j = 0 corresponds to the basic solution given 

by Equation (5.5).  The image j = 1 corresponds to a source disk located a distance z = 

2bc below the surface (z = 0).  This image attempts to make the plane z = bc a no flow 

boundary according to Equation (5.9); however, it causes an upward gradient across the z 

= 0 surface.  The image j = -1 attempts to cancel this upward gradient, etc.  This image 

solution satisfies the continuity Equation (5.4), and as the number of images is increased, 

the no flow boundary conditions are more closely met.  The question remains of how well 

this approximate solution can satisfy the constant uniform head conditions along the 

inflow and outflow boundaries. 

 The effects of the finite radial dimension of the core can be addressed by 

nondimensionalizing the head distribution h(r,z;Ni) for a unit head difference given the 

variable Hu(r,z;Ni).  This is accomplished by nondimensionalizing with respect to the 

head difference between the inflow and outflow areas.  For the inflow area, the 

approximate head value can be described as the head at the location of mid-area within 

the standpipe.  This mid-area location occurs at 2sRr = , z = 0.  The head at the 

outflow boundary is given as );,( iccb NbRrh = : 
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Therefore, the normalized unit head difference, Hu, can be calculated as: 
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This results in a head distribution with a value of one at the standpipe inflow area and a 

value of zero at the outflow boundary.  The contours of the head along the core are shown 

in Figures 5.2 and 5.3.  These figures are normalized to the core radius, RRc, with Figure 

5.2 having a vertical dimension of bc/RcR  = 1 and Figure 5.3 having bc/RRc = 0.5.  The 

inflow boundary for both figures occurs for r/RcR  < 0.25, z/bc = 0.  The inflow is initially 

entirely vertical flow.  The outflow boundary occurs at r/RRc = 1, and is purely radial.  

Furthermore, the comparison of the two figures shows that for a smaller relative core 

thickness, the head distribution becomes purely radial at a much faster rate. 

 The actual head distribution is equal to the head on the standpipe times the unit 

head distribution: 

 h(r,z;Ni) = hsHu(r,z;Ni)      (5.17) 

Because this is a linear problem, the head can be nondimensionalized in this manner and 

the use of Equation (5.17) is appropriate.  This will not be the case for nonlinear flow as 

shown in Section 5.3.7. 
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Figure 5.2 – Contour plot of normalized unit head distribution for linear flow using 

method of images analytic solution with RRs/RcR  = 0.25 and bc/RRc = 1 
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Figure 5.3 – Contour plot of normalized unit head distribution for linear flow using 

method of images analytic solution with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 The method of images used in the solution shown in Equation (5.14) and the 

normalized solution in Equation (5.16) is used to create the no flow boundary at the top 

and bottom of the PFC core.  However, this method has an impact on the constant head 

boundaries at the inflow and outflow areas.  For the inflow area, the solution with Ni = 0 

provides the exact constant head required by the boundary condition in Equation (5.6).  

As the value of Ni is increased, the head is no longer constant along this inflow boundary.  

On the other hand, for the outflow area, the solution with Ni = 0 does not provide a 

constant head at the outflow boundary as specified in Equation (5.8).  As the value of Ni 

increases, the head approaches the required constant head at the outflow boundary.  To 

summarize, as the number of images is increased, the solution better approximates the 

two no flow boundaries and the outflow constant head boundary, yet deviates from the 

required constant head inflow boundary. 

 The unit head difference approximate solution is evaluated in Figure 5.4.  Figure 

5.4(a) shows the calculated radial distribution of head across the inflow boundary for an 

example with RRs/RcR  = 0.25 and bc/RRc = 0.5, which is the same head distribution shown in 
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Figure 5.3.  The solution without images (Ni = 0) exactly satisfies the boundary condition 

across the inflow surface.  Addition of image pairs result in an increase in head at the 

center of the source area and a corresponding decrease in head near the boundary of the 

inflow area.  However, with just a few images, the overall error is less than one-half 

percent from the unit value imposed.  The use of 2sRr =  for determining the head on 

the inflow boundary is the location where Hu = 1 in Figure 5.4(a) with the addition of 

image pairs.  Figure 5.4(b) shows the head distribution across the outflow boundary.  

Addition of source images improves the approximate solution accuracy for a constant 

head along this boundary, with use of only a few images giving a solution within about 

0.1 percent accuracy.  The overall solution behavior is shown in Figure 5.4(c) with Ni = 

100.  This figure shows the vertical head distribution at different radial stations from the 

center of the specimen to the edge.  The first two stations are within the source zone such 

that the head at the upper boundary is unity.  The vertical gradient beneath the source 

region is greater towards the sides of the inflow boundary than in the middle of the inflow 

boundary.  The radial gradient is largest along the upper no flow boundary, but the radial 

gradient becomes fairly uniform near the outflow boundary.  Both vertical and horizontal 

flow components are important. 
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Figure 5.4 – Normalized unit head difference solution using method of images: 

(a) inflow boundary, (b) outflow boundary, (c) overall solution behavior for Ni = 100 
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 The shape factor definition from Equation (5.13) and the approximate image 

solution from Equation (5.14) show that the linear shape factor is a function of the size of 

the core (specimen volume) and the radius of the standpipe under linear flow conditions.  

This may be expressed and calculated through a dimensionless form: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

c

c

c

s

R
b

R
RFF ,        (5.18) 

The shape factor typically has a magnitude near unity for the linear flow conditions.  For 

example, with the geometry used to calculate results shown in Figure 5.4, one can 

calculate F(0.25,0.5) = 1.08.  Values for the shape factor F are presented in Table 5.1 for 

varying RRs/RcR  and bc/RRc.  F is designated as a linear shape factor because it is determined 

from an approximate solution using the method of images of the linear Darcy-type flow 

equation.  The linear shape factor cannot be used once nonlinear flow effects are taken 

into account. 

 

Table 5.1 – Linear shape factor values using method of images 

           bc/RRc 

RRs/Rc               . R

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 

0.05 0.911 0.956 0.985 1.004 1.017 1.027 1.034 1.039 1.042 

0.10 0.826 0.900 0.950 0.985 1.010 1.029 1.042 1.052 1.060 

0.15 0.765 0.856 0.922 0.970 1.006 1.032 1.052 1.067 1.079 

0.20 0.722 0.824 0.901 0.960 1.005 1.039 1.065 1.084 1.100 

0.25 0.693 0.802 0.888 0.955 1.008 1.048 1.080 1.104 1.123 

0.30 0.675 0.789 0.882 0.956 1.015 1.062 1.099 1.127 1.150 

0.35 0.666 0.784 0.883 0.963 1.028 1.080 1.122 1.155 1.181 

0.40 0.664 0.787 0.891 0.977 1.047 1.104 1.150 1.186 1.216 

0.45 0.670 0.797 0.906 0.997 1.072 1.134 1.184 1.224 1.256 

0.50 0.682 0.814 0.928 1.024 1.104 1.170 1.224 1.268 1.303 
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 If flow through the PFC core specimen experienced linear flow, the hydraulic 

conductivity could be determined from Equation (5.12) once a relationship between hs 

and Q is determined.  The use of this equation takes into account flow in two-dimensional 

cylindrical coordinates as well as the core geometry.  However, this solution only applies 

to linear flow which follows Darcy’s law.  Therefore, although this is a valid solution, it 

does not apply to the nonlinear flow relationship observed in PFC.  It is useful to provide 

an analytic solution in order to gain an understanding of how flow moves through the 

PFC core specimen which can be used to validate the more advanced numerical models 

which are described below. 

 

5.2.2 Overview of Linear Numerical Model 

 The previous section describes an approximate analytical solution for two-

dimensional linear flow through a core specimen using Darcy’s law.  The solution gives 

the head distribution throughout the core and the hydraulic conductivity can be calculated 

based on the relationship between the head on the standpipe hs and the flow rate Q, as 

well as the core dimensions.  A finite difference numerical model can be used to solve for 

the head distribution through the core with more precise inflow and outflow boundary 

conditions.  The method of images used in the approximate analytical solution does not 

accurately meet the inflow and outflow boundary conditions.  Therefore, a finite 

difference solution to the two-dimensional flow can be used to precisely meet these 

boundary conditions. 

 The finite difference model solves the same continuity equation given in Equation 

(5.4) with boundary conditions provided in Equations (5.6) through (5.9).  Furthermore, 

since the flow problem is symmetric about the center of the core, only half of the flow 

domain needs to be modeled.  Symmetry introduces an additional boundary condition: 

 [ cbzr ]
r

zrh
≤≤==

∂
∂ 0;00),(      (5.19) 

Equation (5.19) states that the change in head in the radial direction is zero at the center 

of the core.  Therefore, there is no radial flow across the center of the core.  The finite 
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difference model solves the continuity equation together with the five boundary 

conditions. 

 The following subsections describe the grid generation used in the finite 

difference model, the method used to address the singularity at r = 0 in the continuity 

equation, the differencing scheme used to approximate the partial differential equation, 

and finally some results for the linear head distribution through the core specimen. 

 

5.2.3 Grid Generation 

 The numerical model uses a finite difference scheme to solve the partial 

differential continuity equation in two-dimensional cylindrical coordinates.  The finite 

difference grid used to solve this equation is described in detail in this section.  Of 

particular interest in this finite difference model is to accurately model the core specimen 

geometry.  Therefore, the grid must have nodes located precisely at the locations of the 

boundary conditions.  This forces a node to be created at the center of the core r = 0.  In 

addition, the boundary conditions change at the location of the standpipe radius, so a 

node must exist precisely at r = RRs.  Finally, the core radius and core thickness also must 

be modeled correctly.  As a result, the domain of the grid extends in the r-direction until r 

= RcR  and in the z-direction until z = bc. 

 The largest hydraulic gradients are located directly under the standpipe.  As the 

flow moves away from the standpipe, the gradients decrease in the vertical direction due 

to the no flow boundary.  Also, as flow exits the core, the gradients are smaller due to the 

diverging nature of the flow.  Because the highest gradients are located immediately 

under the standpipe, it is beneficial to refine the grid in this area.  This is accomplished in 

the vertical direction by using an expansion ratio.  The expansion ratio in the vertical 

direction is denoted as rez, and a vertical expansion ratio of rez = 1.1 is used for this finite 

difference scheme.  This means that the difference between nodes is 10% larger than the 

previous difference for increasing z. 

 As previously mentioned, it is necessary to precisely model the radius of the 

standpipe.  Therefore, a node is created at r = RRs, in addition to nodes at r = 0 and r = RcR .  

  103 



The nodes placed between these three points are also spaced with an expansion factor.  

The number of elements is explicitly stated for sRr ≤≤0  and for cs RrR ≤≤ .  Instead 

of using constant spacing in each of these domains, an expansion ratio is used in order to 

maintain the second order scheme described in Section 5.2.5 (Ferziger and Peric, 2002).  

Two separate expansion ratios are necessary in the radial direction: rer1 is the expansion 

ratio from r = RRs to r = 0, and rer2 is the expansion ratio from r = RsR  to r = RRc. 

 The expansion ratios are calculated based on the initial element size around r = 

RRs.  The radial elements on either side of the node at r = RsR  have a specified spacing of ∆r 

= 0.15 cm.  Both radial expansion ratios are calculated by this initial spacing and the 

remaining length of the domain (either RRs or RcR  – RRs depending on the direction in 

question).  The initial spacing is given as: 
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       (5.20) 

L in Equation (5.20) is either RRs or RcR  – RRs depending on the direction in question, ni is 

the number of elements in that direction, and rer is either rer1 or rer2 depending on the 

direction.  The only unknown in Equation (5.20) is rer and it can be determined from a 

Newton-Raphson method (c.f. Ferziger and Peric, 2002).  The Newton-Raphson method 

uses the function f(rer) and its derivative f’(rer) to extend a tangent line at the current 

guess of rer until it crosses zero, and uses that location as the second guess of rer.  The 

method is repeated until the change in rer values is very small.  The function and its 

derivative used for this root-finding technique are: 
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The change in rer values is designated as drer and is equal to: 
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The initial guess value of rer used is 1.1.  This value can then be used in f(rer) and f’(rer) 

to determine drer, from which the second guess value can be determined.  The process is 

repeated until drer becomes nearly zero.  At this point, the root to Equation (5.20) has 

been found. 

 A typical grid generated from this numerical model is shown in Figure 5.5.  The 

domain of this grid is RRc = 10.922 cm and bc = 3.468 cm.  This is the typical domain of a 

PFC core specimen and RsR  = 1.878 cm, which is the same value used during experimental 

testing.  This grid has 40 elements in the z-direction, 10 elements for , 30 elements 

for , and the following expansion ratios: r

sRr ≤

cs RrR ≤≤ ez = 1.1, rer1 = 1.049, and rer2 = 

1.044. 
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Figure 5.5 – Typical grid generation 
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5.2.4 Singularity Removal for Linear Model 

 The continuity equation in cylindrical coordinates as written in Equation (5.4) has 

a singularity at r = 0.  In other words, the equation cannot be solved for r = 0 due to the 

1/r term approaching infinity.  Therefore, this singularity must be removed in order to 

properly model the equation at r = 0.  In order to accomplish this we can follow a similar 

procedure outlined by Smith (1965, pg. 44).  The continuity equation written in Equation 

(5.4) can be expanded as follows: 
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The singularity exists in the first term only and results in a value of 0/0 for r = 0 due to 

the symmetry boundary condition in Equation (5.19). 

 As described by Smith (1965), the first derivative can be expanded using a 

Maclaurin expansion to obtain: 
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The first term on the right hand side of Equation (5.25) is equal to zero due to the 

symmetry boundary condition.  If we drop the higher order terms, we can approximate 

the first derivative as: 
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Putting the above equation into the continuity Equation (5.24) and canceling the r terms 

gives the following continuity equation for r = 0: 
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The use of Equation (5.27) removes the singularity at r = 0 and can be used in the finite 

difference model to determine the head at the center of the core. 

 

5.2.5 Linear Model Differencing Scheme 

 The differencing scheme used to solve the partial differential equation is a second 

order, five point central difference scheme (CDS).  The computational node is shown in 
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Figure 5.6 for node i,j where i represents the radial direction and j represents the vertical 

direction.  Node i,j is located at radial location ri and vertical location zj. 

 

 
Figure 5.6 – Computational node schematic for linear model 

 

 The equation being solved for the linear solution is the two-dimensional 

continuity equation in cylindrical coordinates.  However, the Crank-Nicolson method will 

be used to solve the equation in pseudo-time.  This is essentially the time dependent 

solution, except the hydraulic conductivity has been removed from the equation.  

Therefore, the equation being solved for the linear solution is: 
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Equation (5.28) can be discretized using the computation node discussed above.  The 

three terms on the right hand side are approximated using the equations presented below 

with a CDS.  Due to the use of an expansion ratio, the approximation depends on the 

location of the computational node.  However, as described by Ferziger and Peric (2002), 

the CDS with the use of an expansion ratio results in a second order approximation. 
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 The Crank-Nicolson method is an implicit method used to approximate the time 

derivative for the head distribution at time level n+1 from the average of the head 

distributions at time levels n and n+1.  The time derivative is approximated as follows: 
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Equation (5.32) is the Crank-Nicolson approximation of the time derivative where the 

terms in braces {-} refer to the three terms on the right hand side (RHS) approximated 

using Equations (5.29) through (5.31) at time levels n and n+1.  A similar approach is 

used at the center of the core for r = 0.  However, instead, the equation being solved is 

described in Equation (5.27).  Only a slight modification is necessary to the discretization 

scheme in order to solve this equation at the centerline.  The initial condition for the head 

distribution is taken as 10-6 throughout the entire core except at the inflow and outflow 

boundaries. 

 The result of the Crank-Nicolson method is an implicit system of equations which 

must be solved as a system of linear equations in matrix form.  A penta-diagonal matrix 

is formed from this system of equations as shown in Figure 5.7 where E, W, P, S, and N 

are the coefficients associated with the east node, west node, computational node, south 

node, and north node, respectively.  These coefficients can be determined from the 

approximations of the derivatives in Equations (5.29) through (5.31).  The matrix of 

coefficients is multiplied times the vector of unknown head values at time level n+1.  The 

RHS is a vector of known head values times the corresponding coefficients.  The system 

of equations can be easily solved with a banded LU decomposition solver.  The time step 

used in this model is Δt = 0.01 sec and the computational time needed to reach steady 

state conditions is on the order of one minute. 
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Figure 5.7 – System of linear equations 

 

 Using the described Crank-Nicolson method, the penta-diagonal matrix has a 

bandwidth equal to the number of elements in the radial direction.  The five coefficients 

corresponding to the interior node calculations can be determined as: 
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Slight modifications to the above coefficients are needed for the nodes on the boundaries 

due to the various boundary conditions.  It is interesting to note that the above 

coefficients do not depend on the value of hydraulic conductivity.  Furthermore, the head 

distribution is unchanged for the same nondimensional core geometry (RRs/RcR  and bc/RRc) 

and a normalized head value.  This is useful because it allows for scaling of the head 

distribution if the core geometry is known.  This will not be the case for nonlinear flow, 

as shown in Section 5.3.7. 

 Steady-state is achieved based on the value of the maximum relative change in 

head at each node.  Therefore, the convergence criterion is determined from the L∞-norm.  

The L∞-norm is given as: 
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Convergence is achieved when the L∞-norm is less than ε  = 10-6.  The Crank-Nicolson 

method is unconditionally stable meaning that the selection of Δt will not result in an 

unstable solution. 

 As previously mentioned, the input to the model is the core geometry (RRs, RcR , and 

bc), the standpipe head (hs), and the hydraulic conductivity (1/a).  Once the continuity 

equation is solved and the head distribution through the core determined, the flow rate 

can be calculated based on the outflow gradient.  The flow rate is found from Q = qA, 

where q = I/a from Darcy’s law and A = 2πRRcdz.  The result is the second part of 

Equation (5.10).  The flow rate can be approximated from the head distribution as 

follows: 

 
( )

∑
−

=

+−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+−

−

−
=

1

1

11

1

,,1

1
2 z

r

rr
n

j ez

jjjjez

nc

jnjnc

r
zzzzr

rR
hh

a
R

Q
π

  (5.40) 

Equation (5.40) gives the approximation of the flow rate for all internal nodes.  A slight 

modification to the above equation is needed for the two nodes on the edge of the 

domain.  nz is the number of elements in the vertical direction and nr is the number of 

elements in the radial direction. 
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5.2.6 Linear Numerical Model Results 

 The linear numerical model using the above described discretization scheme and 

Crank-Nicolson method can be used to solve for the head distribution through a core 

specimen with a given core geometry.  The grid refinement analysis presented in Section 

5.4.1 suggests a domain of 40×40 elements as used here will produce accurate results.  

Figure 5.8 shows the normalized head distribution for a core with RRs = 2.5 cm, RcR  = 10 

cm, and bc = 5 cm.  This head distribution is comparable to the method of images 

solution shown in Figure 5.3. 

 

 Radial Direction, r/Rc

Ve
rt

ic
al

 D
ire

ct
io

n,
 z

/R
c

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.8 – Contour plot of normalized unit head distribution for linear flow using 

Darcy numerical model solution with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 The boundary conditions, particularly the inflow and outflow known head 

boundaries, are more accurately represented for the linear numerical model.  A 

comparison between the method of images solution and the linear numerical model 

solution can be conducted by calculating the difference between the head values at each 

node.  The relative difference, or percent difference, is not desirable for this comparison 

because the method of images solutions calculates very small head values near the 
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outflow boundary which cause the percent difference values to increase drastically.  

Therefore, a contour plot of the method of images head minus the linear numerical model 

head is shown in Figure 5.9.  Clearly, the largest difference between the two models is 

near the location of the standpipe.  At this location, the boundary conditions change from 

a known head boundary to a no flow boundary.  For this reason, the grid used is refined 

near the standpipe location as mentioned in Section 5.2.3 using the expansion ratios. 
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Figure 5.9 – Contour plot of head difference between method of images solution and 

linear numerical model solution with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 Finally, a comparison of the outflow rates for both the method of images solution 

and the linear numerical model solution can be compared.  The outflow rate can be 

determined in one of two ways: from the Carslaw and Jaeger equation modified for a 

finite core geometry using the linear shape factor as described in Equation (5.12), or from 

the outflow hydraulic gradient as determined from the head distribution assuming purely 

radial flow as described in Equation (5.40).  For the method of images solution, the two 

outflow rates are approximately the same, to within less than one percent error.  The 

reason for this slight difference is due to the minimal error in the boundary conditions of 
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the method of images solution.  For the linear numerical model based on Darcy’s law, the 

two outflow rates are exactly the same.  There is a small error between the method of 

images flow rate and linear numerical model flow rate, again due to the improper 

boundary conditions of the method of images.  Figure 5.10 shows the standpipe head as a 

function of flow rate for both solutions using a core geometry of RRs = 2.5 cm, RcR  = 10 

cm, and bc = 5 cm.  Two values of the hydraulic conductivity are specified to determine 

the flow rates: K = 1 cm/s and K = 0.5 cm/s. 
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Figure 5.10 – Comparison of flow rates determined from method of images and 

linear numerical model solutions with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 Clearly, the calculated flow rates for both solutions are approximately the same, 

meaning our linear numerical model produces the results we would expect.  Furthermore, 

the relationship between the standpipe head and flow rate is linear, also as anticipated.  

The two hydraulic conductivity values shown in Figure 5.10 also behave as predicted.  

Specifically, the slopes of the lines are a function of 1/K.  The line corresponding to K = 

0.5 cm/s is exactly twice the slope of the line for K = 1 cm/s. 
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5.3 Modeling of Nonlinear Flow 
5.3.1 Overview of Nonlinear Numerical Model 

 Section 5.2.5 describes the finite difference model that was created to solve the 

linear flow problem using Darcy’s law.  Although this model provides information on the 

general head distribution through the core, it is not applicable for flow through a PFC 

core.  Experimental tests have shown a nonlinear relationship through PFC core 

specimens which can be modeled with the Forchheimer equation.  The objective of the 

nonlinear numerical model is the same as before: to solve the two-dimensional continuity 

equation in cylindrical coordinates.  However, now instead of using Darcy’s law to 

determine the fluid specific discharge in the continuity Equation (5.2), the Forchheimer 

equation must be used.  The specific discharge as given by the Forchheimer equation is: 
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Equation (5.41) is the specific discharge as determined from the nonlinear Forchheimer 

equation.  Similar to the linear case using Darcy’s law, the specific discharge is input into 

the continuity equation in order to get a partial differential equation in terms of head.  As 

shown in the following subsection, the resulting equation does not have the proper 

invariance properties to simply substitute Equation (5.41) into the continuity equation and 

solve.  Therefore, a more advanced approach is needed to properly model the continuity 

equation using the Forchheimer equation. 

 The nonlinear numerical model has the same domain as the linear model; namely, 

the radius of the core specimen and the thickness of the PFC layer.  Due to symmetry it is 

only necessary to model half of the core.  The same boundary conditions apply in the 

nonlinear flow case as were used in the linear model.  The five boundary conditions are 

given in Equations (5.6) through (5.9) and the symmetry boundary condition Equation 

(5.19).  The objective of the nonlinear model is to input the core geometry (RRs, RcR , and 

bc) for a known standpipe head (hs) and assumed porous media properties (a and b), and 

calculate the outflow rate (Q).  For multiple values of hs, a curve of hs versus Q can be 

created which will be nonlinear.  From this curve the two modified Forchheimer 
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coefficients (α and β) can be determined and compared to laboratory results.  With the 

assumed values of the original Forchheimer coefficients, the values of the modified 

Forchheimer coefficients can be calculated.  This relationship can be used to estimate the 

original Forchheimer coefficients from the known modified Forchheimer coefficients 

obtained through experimental testing.  Because the finite difference model is based on 

the original Forchheimer equation, an assumed value of the original Forchheimer 

coefficients must be made. 

 The finite difference model used to solve the continuity equation based on the 

Forchheimer equation requires a grid to approximate the partial differential equation.  

The same grid generation described in Section 5.2.3 for the linear model is used for the 

nonlinear model as well.  As previously mentioned, this grid creates a node at the 

location of the standpipe in order to properly model the standpipe radius boundary.  

Expansion ratios are used in all directions in order to have a fine mesh on the upper core 

surface near the standpipe. 

 

5.3.2 Invariance Properties of Forchheimer Equation 

 The Forchheimer equation does not have the proper invariance properties to be 

used in two-dimensional cylindrical coordinates without some additional investigation.  

As mentioned in Section 2.2.1 the Forchheimer equation has been used in two-

dimensional flow problems, but the quadratic term is typically taken as the magnitude of 

the specific discharge times its vector.  The source of the invariance problems is outlined 

below, followed by the suggested method for avoiding the problem and the proper 

approach used in the numerical model. 

 The Forchheimer equation is given as: 

          (5.42) 2bqaqI +=

from which the specific discharge is given in Equation (5.41).  For two-dimensional flow 

in cylindrical coordinates, there is flow in both the radial and vertical directions.  The 

hydraulic gradient in the radial and vertical directions, respectively, is given as: 

        (5.43) 2
rrr bqaqI +=
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        (5.44) 2
zzz bqaqI +=

In Equations (5.43) and (5.44), Ir is the radial hydraulic gradient and qr is the radial 

specific discharge, and similarly for Iz and qz.  For two-dimensional flow, the local 

hydraulic gradient is the sum of the squares of the radial and vertical gradients, which can 

be found using Equations (5.43) and (5.44): 

 ( ) ( ) ( ) ( )2232223222 22 zzzrrrzr bqabqaqbqabqaqIII +++++=+=  (5.45) 

Similarly, the local specific discharge is the sum of the squares of the radial and vertical 

specific discharges.  The radial and vertical specific discharges are found using Equation 

(5.41) with the appropriate direction for q and I.  The local specific discharge is: 
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If the local hydraulic gradient and local specific discharge given in Equations (5.45) and 

(5.46) are substituted into the Forchheimer Equation (5.42), an identity is not achieved 

which illustrates the source of the invariance problem.  Therefore, using the specific 

discharge in Equation (5.41) in the continuity equation is not sufficient because the 

equation cannot be rotated to another system of coordinates and maintain the same value.  

This requires further investigation to create another representation of the Forchheimer 

equation which is rotational. 

 

5.3.3 Governing Continuity Equation for Forchheimer Flow 

 For the linear Darcy’s law, the hydraulic conductivity is considered the slope of 

the linear relationship.  For the nonlinear case, the hydraulic conductivity is considered 

the slope of the nonlinear relationship for a zero specific discharge.  As the specific 

discharge increases, the slope increases as well resulting in the nonlinear relationship.  

We can consider the slope (which is a function of specific discharge) to be an effective 

Forchheimer hydraulic conductivity, which is not a constant and is given the symbol KF.  

Using this approach, the Forchheimer equation can be rewritten in vector notation as: 

         (5.47) IKq F

rr
=
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where the scalar effective Forchheimer hydraulic conductivity is: 
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Equation (5.47) is a rotational vector representation of the Forchheimer equation and can 

be modeled in any coordinate system.  However, for low Reynolds number (small 

hydraulic gradient), this equation does not approximate Darcy’s law.  Therefore, we need 

to find a representation of the Forchheimer specific discharge that represents Darcy’s law 

as the hydraulic gradient approaches zero.  This can be accomplished by looking at the 

ratio of the Forchheimer specific discharge in Equation (5.41) to the Darcy specific 

discharge in Equation (5.1), where K = 1/a: 
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Ф(r,z) in Equation (5.49) is a dimensionless quantity called the hydraulic conductivity 

ratio, and is the ratio of the effective Forchheimer hydraulic conductivity to the true 

Darcy hydraulic conductivity.  The true hydraulic conductivity (K = 1/a) is a constant for 

Darcy flow, but the effective Forchheimer hydraulic conductivity is not constant and 

depends on the magnitude of the hydraulic gradient.  In cylindrical coordinates, the 

hydraulic gradient depends on both the r- and z-directions, so that the hydraulic 

conductivity ratio is a function of both directions. 

 The Forchheimer specific discharge can now be determined from Equation (5.49) 

as follows: 

        (5.50) IKIKq F

rrr
Φ==

Equation (5.50) is rotational for any system of coordinates, K is a constant that can either 

be isotropic or anisotropic, and Ф is a scalar which depends on the magnitude of the 

hydraulic gradient and is a function of both the r- and z-directions.  Using Equation 

(5.50) in the continuity equation is the proper method to model nonlinear flow in two-

dimensions.  Additional investigation of the hydraulic conductivity ratio is required to 

ensure that the Forchheimer equation approaches Darcy’s law for low hydraulic gradients 

and is discussed in the next subsection. 
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 The objective of the nonlinear numerical model is to solve the continuity equation 

now using Equation (5.50) for the specific discharge.  Plugging this into the continuity 

Equation (5.2) gives: 
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     (5.51) 

Since K is assumed to be a constant, it can be taken out of the derivatives and dropped 

out of the equation for the isotropic case.  Representing the gradients as the change in 

head for the corresponding direction, Equation (5.51) can be rewritten as: 
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Equation (5.52) is the governing partial differential equation for the head distribution for 

two-dimensional Forchheimer flow in cylindrical coordinates.  Notice that the term in 

parentheses is the continuity equation for Darcy flow multiplied by the scalar hydraulic 

conductivity ratio.  However, this term is not equal to zero (as in Darcy flow) because the 

head distribution does not match that produced by Darcy flow.  The finite difference 

model will solve Equation (5.52) in order to determine the head distribution through the 

core. 

 

5.3.4 Analysis of Hydraulic Conductivity Ratio 

 Now that the Forchheimer equation has been rewritten with proper invariance 

properties, we must determine whether this form of the Forchheimer equation approaches 

Darcy’s law for small hydraulic gradients.  This can be accomplished by taking the limit 

of the hydraulic conductivity ratio as the hydraulic gradient approaches zero.  It can be 

shown that this limit is: 
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Therefore, the limit of the Forchheimer Equation (5.50) is: 

       (5.54) IKIKq
II
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→→ 00
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This is equivalent to Darcy’s law, satisfying the requirement that the Forchheimer 

equation approaches Darcy’s law for small hydraulic gradients. 

 A graphical approach can be used to show that the hydraulic conductivity ratio 

approaches a value of one for low hydraulic gradients.  Using Equation (5.49) with a = 

0.3 s/cm and b = 0.2 s2/cm2 results in Figure 5.11.  This shows that for low hydraulic 

gradient (or low Re), the hydraulic conductivity ratio approaches a value of one, 

representing Darcy flow. 
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Figure 5.11 – Hydraulic conductivity ratio Ф as a function of hydraulic gradient 

 

 The hydraulic conductivity ratio is a scalar which is a function of both the r- and 

z-directions so that the hydraulic gradient used to calculate Ф is the local gradient given 

as the sum of the squares of the gradient in both directions.  Ф can be found as follows: 
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where Ir and Iz are the partial derivates of the head in the r- and z-directions, respectively. 
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5.3.5 Singularity Removal for Nonlinear Model 

 The nonlinear model also has a singularity at r = 0 in the governing Equation 

(5.52).  In order to remove the singularity, a similar approach to that used in Section 5.2.4 

is needed.  The first radial derivative can be approximated as before: 
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Substituting this into Equation (5.52) and recalling that the first radial derivative at r = 0 

is equal to zero results in the following partial differential equation: 
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Equation (5.57) is the governing partial differential equation for nonlinear flow at r = 0. 

 

5.3.6 Nonlinear Model Differencing Scheme 

 The differencing scheme used to solve the governing nonlinear partial differential 

equation is the same as for the linear case: a second-order, five point CDS using the 

computational node in Figure 5.12.  However, due to the addition of the hydraulic 

conductivity ratio, additional nodes are needed in order to properly determine Ф as it 

depends on additional nodes to find the hydraulic gradient.  The suggested computational 

node for the nonlinear model is shown in Figure 5.12. 
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Figure 5.12 – Computational node schematic for nonlinear model 

 

 The simplest way to model the governing partial differential equation is in the 

following form: 
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The terms in parentheses in Equation (5.58) can be taken as a new variable and the first 

derivative can be approximated at the half nodes shown in Figure 5.12 and designated as 

e, w, s, and n.  The first derivative is approximated using the same method as before, 

described by Equation (5.29).  However, instead of using hi-1,j and hi+1,j, we will use hw 

and he, which can be found as the average of hi,j and hi-1,j or hi+1,j.  Using the half node 

method requires an approximation for Ф at each half node location.  Since Ф is 

determined based on the magnitude of the local hydraulic gradient, the four additional 

nodes are needed.  For example, in order to approximate Фw, both the radial and vertical 

hydraulic gradients are needed.  The radial hydraulic gradient is determined from hi-1,j 

and hi,j, while the vertical hydraulic gradient is determined from the average of the two 

surrounding hydraulic gradients.  The first vertical gradient is approximated using hi-1,j-1, 

hi-1,j, and hi-1,j+1, and the second vertical gradient is approximated using hi,j-1, hi,j, and 

hi,j+1.  A similar approach is needed to find the hydraulic conductivity ratio at the other 

three half nodes. 
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 The solution of the resulting approximation to the partial differential equation is 

found using the Gauss-Seidel iterative method (c.f. Smith, 1965).  Time is not considered 

for this case due to the nonlinear nature of the problem.  Therefore, the Gauss-Seidel 

iterative method is useful for simply finding the steady state solution.  This method uses a 

known value of the head to calculate a new value of the head for a given node.  That new 

value is then used to update the following node value and the solution is updated across 

the grid.  Of particular interest is the initial guess at the head distribution needed to start 

the iterative process.  For the nonlinear model, the initial guess used is the head 

distribution obtained from the linear model.  Therefore, our initial guess is the solution 

for Darcy’s law presented in Section 5.2.6, and is used to iterate upon in order to solve 

the continuity equation based on the Forchheimer equation.  The Gauss-Seidel method is 

relatively quick at determining a solution, and the iteration is stopped based on the 

relative change in head at each node.  The same convergence criterion described in 

Equation (5.39) is used for the nonlinear case.  The L∞-norm is used to determine 

convergence so that the relative change in head at all nodes is less than ε  = 10-6 when a 

solution is found.  Computational time to run the model is on the order of approximately 

two minutes. 

 The Gauss-Seidel iterative method updates the current head value at a node of 

interest based on the surrounding nodes.  Due to the numbering scheme used, the updated 

value (n+1) is calculated based on the updated values for the western and northern nodes, 

and the previous values (n) for the eastern and southern nodes.  This is represented in 

Equation (5.59) below with the following coefficient values determined from the 

differencing scheme: 
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When solving the system of equations using the Gauss-Seidel iterative method, the 

hydraulic conductivity ratio Ф remains at the previous iterative value.  Therefore, Ф is 

not updated as the calculations proceed through the grid.  The reason for lagging the 

calculation of Ф is that it depends on the hydraulic gradient at a point.  So on one side of 

the computational node, the head value will be updated, but on the other side, the head 

will not be updated.  Therefore, this would give an incorrect value of Ф since it depends 

on both values of the head.  The lagging behind for Ф does not appear to produce any 

additional error or result in a significant increase in computational time. 

 It is interesting to note that the Forchheimer coefficients are included in the Ф 

term as shown in Equation (5.55).  The nondimensional ratio b/a2 is needed to calculate 

Ф, so the head distribution should be the same for a constant core geometry and any 

combination of b and a such that the b/a2 ratio remains constant.  Therefore, although the 

head distribution cannot be normalized for a unit head as in the linear case, the head 

distribution is a function of only one nondimensional parameter: b/a2. 

 As before, the input to the model is the core geometry (RRs, RcR , and bc), the 

standpipe head (hs), and the original Forchheimer coefficients (a and b).  Once the 
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continuity equation is solved and the nonlinear head distribution through the core is 

determined, the flow rate can be calculated based on the outflow gradient.  The flow rate 

is found from Q = qA, where A = 2πRRcdz and q is found from the Forchheimer equation 

given in Equation (5.41).  The outflow rate can be approximated from the head 

distribution for all internal nodes as follows: 
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Equation (5.65) gives the approximation of the flow rate for all internal nodes.  A slight 

modification to the above equation is needed for the two nodes on the edge of the 

domain.  nz is the number of elements in the vertical direction and nr is the number of 

elements in the radial direction. 

 

5.3.7 Nonlinear Numerical Model Results 

 The nonlinear numerical model using the above described discretization scheme 

and Gauss-Seidel iterative method can be used to solve for the head distribution through a 

core specimen with a given core geometry.  The grid refinement analysis presented in 

Section 5.4.1 suggests a domain of 40×40 elements as used here will produce accurate 

results.  Figure 5.13 shows the unit head distribution for a core with RRs = 2.5 cm, RcR  = 10 

cm, bc = 5 cm, a = 1 s/cm, and b = 10 s2/cm2.  This head distribution is comparable to the 

linear numerical model solution shown in Figure 5.8.  It should be noted that although 

this figure is presented with the vertical and radial directions normalized to the core 

radius, the nonlinear solution does not scale in this way.  As shown below, the nonlinear 

head distribution cannot be normalized.  The following figures are presented in this way 

solely for comparison purposes to the linear numerical model results. 
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Figure 5.13 – Contour plot of unit head distribution for nonlinear flow using 

Forchheimer numerical model solution with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 A comparison between the linear numerical model and nonlinear numerical model 

solutions can be conducted by calculating the percent difference between the head values 

at each node.  A contour plot of the linear numerical model head minus the nonlinear 

numerical model head divided by the linear head is shown in Figure 5.14 expressed as a 

percent.  The largest percent difference between the two models is near the outflow 

boundary.  At this location, the head values are very nearly zero.  The general trend in 

percent difference follows the contour plot for the head distribution, with the exception of 

zero percent difference at the known outflow boundary.  For this core geometry, the 

nonlinear head distribution can be up to 45% lower than the linear head distribution. 
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Figure 5.14 – Contour plot of percent difference between unit head distribution for 

linear and nonlinear numerical model solutions with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 The outflow rate can be determined for both the linear and nonlinear numerical 

models from Equations (5.40) and (5.65), respectively.  A graph of the two models shows 

that the nonlinear flow rate approaches the linear flow rate as the flow rate decreases.  

This characteristic is discussed in more detail in the next section.  Figure 5.15 shows how 

the nonlinear flow rate approaches the linear flow rate for the above core geometry with a 

= 1 s/cm and b = 1 s2/cm2.  The nonlinear numerical model results show that the 

relationship between hs and Q can be fully defined using the quadratic modified 

Forchheimer equation. 
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Figure 5.15 – Comparison of flow rates determined from linear and nonlinear 

numerical model solutions with RRs/RcR  = 0.25 and bc/RRc = 0.5 

 

 In addition to comparing the nonlinear flow rate to the linear flow rate for the 

same hydraulic conductivity, it is also interesting to compare two nonlinear flow rates 

with the same hydraulic conductivity but different nonlinear terms.  Figure 5.16 shows 

the same core geometry as in Figure 5.15, but now the nonlinear term has been changed 

from b = 1 s2/cm2 to 10 s2/cm2.  As expected, the greater nonlinear term results in more 

curvature in the flow rate relationship.  Furthermore, the modified linear Forchheimer 

coefficient α is the same for both curves because a is the same. 
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Figure 5.16 – Comparison of flow rates determined from nonlinear numerical model 

solutions with RRs/RcR  = 0.25, bc/RRc = 0.5, a = 1 s/cm, and b = 1 or 10 s /cm2 2 

 

 As previously mentioned, the nonlinear numerical model cannot be represented in 

a nondimensional way, meaning the head distribution is not the same for a normalized 

unit head and normalized vertical and radial dimensions.  To illustrate this point, we can 

graph the head distribution along the radial direction for a constant vertical coordinate for 

various values of hs.  Figure 5.17 shows the head distribution along the top and bottom 

surfaces of a PFC core with RRs = 2.5 cm, RcR  = 10 cm, bc = 5 cm, a = 1 s/cm, and b = 10 

s2/cm2.  The head distribution is normalized to the standpipe head.  As seen in the figure, 

the head distributions do not collapse to a single line as in the linear case.  For this 

reason, the nonlinear flow case cannot be nondimensionalized with respect to the 

standpipe head. 
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Figure 5.17 – Lack of nondimensionalization for nonlinear numerical model 

 

 The final result to investigate is the value of the hydraulic conductivity ratio Ф, 

determined from the nonlinear numerical model.  Ф can be calculated at each node once 

the nonlinear head distribution is determined.  A typical distribution of the hydraulic 

conductivity ratio is shown in Figure 5.18, with RRs = 2.5 cm, RcR  = 10 cm, bc = 5 cm, a = 

1 s/cm, b = 10 s2/cm2, and hs = 1 cm. 
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Figure 5.18 – Distribution of hydraulic conductivity ratio Ф 

 

 The smaller values of Ф correspond to where the nonlinear effect is greatest.  As 

Ф approaches a value of one, it is expected that the nonlinear hydraulic conductivity 

approaches the true value of the hydraulic conductivity (for the linear case).  Therefore, 

we can see that Ф is smallest near the location of the standpipe and under the inflow 

boundary, and generally typically increases towards the outflow boundary.  This result is 

expected because as the flow reaches the outflow boundary, the specific discharge is 

decreasing and the Forchheimer equation is approaching Darcy’s law.  The largest value 

of Ф actually occurs at the center of the core on the lower boundary.  At this location, 

there is both a no flow boundary in the radial direction (due to symmetry) and a no flow 

boundary in the vertical direction.  Because of this, we expect to see virtually no flow and 

the Forchheimer equation should be approximately equal to Darcy’s law.  This 

distribution gives an idea of where, within the core, the nonlinear effects are dominant.  It 

should be noted that this distribution of Ф is for hs = 1 cm.  As hs increases, the 

distribution of Ф will have a similar shape, but the values will decrease, meaning the 

nonlinear effects are more dominant and cover more of the domain. 
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5.4 Model Characteristics 
5.4.1 Grid Refinement 

 The goal of the numerical model used in this research study is primarily to 

determine the outflow rate for a given core geometry, original Forchheimer coefficients, 

and standpipe head.  Therefore, grid refinement is based on a comparison of outflow rate 

as the number of elements in the grid increases.  Because the grid is based on an 

expansion ratio, it is difficult to compare head values at various locations within the core 

specimen since the nodes are not calculated at the same radial and vertical positions as 

the number of elements increases.  For this reason, an overall model result, in this case 

outflow rate, is used for grid refinement purposes.  Figure 5.19 shows the grid refinement 

results. 

 

0

2

4

6

8

10

12

14

0.1 1

Fl
ow

 R
at
e,
 Q

(c
m

3 /
s)

Average Grid Spacing, Rc/n (cm)

Darcy

Forchheimer

 
Figure 5.19 – Grid refinement for outflow rate 

 

 The model inputs used to investigate the grid refinement are as follows: RRs = 2.5 

cm, Rc R = 10 cm, bc = 5 cm, a = 1 s/cm, b = 10 s2/cm2, and hs = 1 cm.  The outflow rate is 

graphed as a function of average grid spacing.  Due to the expansion ratio, the average 
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grid spacing does not represent the actual grid spacing, but is instead the core radius 

divided by the number of elements in the radial direction.  The domain of the model has 

the same number of elements in both the radial and vertical directions. 

 The maximum number of elements for which the model will successfully 

converge in a reasonable amount of time is 50 elements in both the radial and vertical 

directions, for a total of 2,500 elements.  This was conducted using an Intel Core 2 Duo 

CPU at 2.2 GHz with 3.5 GB of RAM.  When the number of elements is decreased to 36 

elements, the percent error in flow rate is less than one percent.  The model results 

described in the previous sections used 40 elements in each direction, for a total of 1,600 

elements, or 1,681 nodes.  This number of elements results in a percent error in the flow 

rate of 0.6% for the linear model and 0.3% for the nonlinear model.  The smaller percent 

error for the nonlinear model is desirable since we are primarily interested in the 

nonlinear results.  Not only does a model using 40 elements produce accurate results, but 

computation times are also relatively small.  The typical computation time to run the 

model for a given value of standpipe head is on the order of approximately two minutes. 

 Another typical concern in grid refinement is the observed convergence rate of the 

model.  Since a CDS was used for model development, it is expected that the 

convergence rate should be approximately second-order.  This can be tested by using the 

Richardson extrapolation method (Ferziger and Peric, 2002).  The convergence rate p can 

be found by comparing the head values at similar nodes with differing number of 

elements: 

 ( )2log

log
2

42
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= nn

nn

hh
hh

p        (5.66) 

Equation (5.66) estimates the convergence rate of the model by comparing the head value 

as determined from grids with n, 2n, and 4n elements.  For this analysis, n = 12 so that 

grids of 12×12, 24×24, and 48×48 elements were analyzed.  Due to the model grid 

generation based on expansion ratios, the locations of the nodes change as the number of 

elements increases.  Therefore, the only nodes that are constant for all three grids are at 
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the following locations: r = 0, z = bc = 5 cm and r = RRs = 2.5 cm, z = bc = 5 cm.  The 

convergence rate was calculated for these two nodes for both the linear head distribution 

and nonlinear head distribution.  For the linear head distribution, p = 1.74 at both nodes; 

for the nonlinear head distribution, p = 1.89 at both nodes.  Both these values are 

relatively close to the theoretical convergence rate of p = 2.  Therefore, it can be assumed 

that the model is achieving nearly the desired convergence rate. 

 

5.4.2 Nonlinear Solution Limits 

 One of the primary reasons for choosing the Forchheimer equation to model the 

nonlinear flow effects observed in PFC is that the Forchheimer equation should approach 

Darcy’s law for either low hydraulic gradients or small values of the nonlinear 

Forchheimer coefficient.  These two limiting cases were investigated in order to 

determine if the nonlinear model is working properly.  Figure 5.20 shows the maximum 

percent difference between the linear and nonlinear head distributions as a function of 

standpipe head.  The core dimensions used for this analysis are RRs = 2.5 cm, RcR  = 10 cm, 

and bc = 5 cm.  For different core dimensions, the curves will shift, but the same general 

trends are observed. 

 As the standpipe head decreases, the percent difference between the two models 

decreases as well, so that the nonlinear head distribution approaches the linear head 

distribution as desired.  Furthermore, as mentioned in Section 5.3.6, the nonlinear head 

distribution is solely a function of the value of the nondimensional parameter b/a2.  So the 

different curves correspond to different relative magnitudes of this nondimensional 

parameter.  Finally, for smaller values of b/a2, the nonlinear head distribution approaches 

the linear head distribution at a greater rate.  This is expected because as the nonlinear 

Forchheimer coefficient decreases, one would expect the resulting nonlinear head 

distribution to approach the linear head distribution. 
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Figure 5.20 – Maximum percent difference in head distribution between linear and 

nonlinear models versus standpipe head for varying magnitudes of nonlinear effect 

 

 Another way to investigate how the nonlinear model approaches the linear model 

is by examining the outflow rate.  Figure 5.21 is a similar graph to that shown in Figure 

5.20 and shows the percent difference between the linear outflow rate and nonlinear 

outflow rate.  Again, as the standpipe head and/or nonlinear effect decrease, the nonlinear 

outflow rate approaches the linear outflow rate as expected.  A positive percent difference 

in flow rate is observed when the linear flow rate is greater than the nonlinear flow rate.  

This means that for the same standpipe head, the nonlinear model will produce a smaller 

flow rate. 
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Figure 5.21 – Percent difference in outflow rate between linear and nonlinear 

models versus standpipe head for varying magnitudes of nonlinear effect 

 

 As with the change in percent difference for the head distribution, the percent 

difference in flow rate is solely dependent on the value of b/a2.  This result does not seem 

immediately obvious because the flow rate is not constant for a given value of b/a2 (as 

shown in Equation (5.65)).  However, the ratio of the linear flow rate to the nonlinear 

flow rate (Equation (5.40) divided by Equation (5.65)) is a function of b/a2.  Therefore, 

this ratio governs the relative magnitudes of the two flow rates such that the curves in 

Figure 5.21 can also be characterized by the magnitude of the nonlinear effect. 

 One final method to determine whether the nonlinear numerical model is 

behaving as we would expect is to compare the results to the Thiem equation for linear 

flow to a well.  The Thiem equation is a solution for steady flow to a well in a confined 

aquifer for purely radial flow.  Although the nonlinear numerical model applies to two-

dimensional (vertical and radial) flow, we can compare the model results to the Thiem 

equation by using a core geometry with RRs << RcR  and bc << RRc.  In this case, we would 

expect to see radial flow in the majority of the domain (see comparison of Figures 5.2 
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and 5.3).  Due to the upper and lower no flow boundaries imposed in the numerical 

model, flow through the PFC core resembles flow through a confined aquifer. 

 In general, the Thiem equation provides a solution for the head difference 

between two points as a function of the pumping flow rate out of the well, the 

transmissivity of the aquifer (hydraulic conductivity times aquifer thickness), and the 

radial position of the two points being compared.  The Thiem equation is given as: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

1

2
12 ln

2 r
r

Kb
Qhh

cπ
      (5.67) 

Equation (5.67) compares the head at radial positions r1 and r2 from the center of the 

pumping well.  For comparison to the nonlinear numerical model, we will take r1 = RRc 

and r2 = RsR  so that h1 = 0 and h2 = hs.  The flow rate must be negative because the Thiem 

equation is for a pumping well, whereas in our model, the addition of water on the 

standpipe can be considered an injection well.  Therefore, the form of the Thiem equation 

used for comparison purposes is: 
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The Thiem equation can be compared to the modified Forchheimer equation for a small 

nonlinear term.  We have already shown that the Forchheimer solution approaches the 

Darcy solution for low hydraulic gradient and/or specific discharge.  Therefore, we would 

expect in that case that the modified Forchheimer equation will approach the Thiem 

Equation (5.68).  In this limit, the linear modified Forchheimer coefficient could be 

approximated by: 

 ⎟⎟
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 In order to make the comparison, the following core geometry was modeled:  RRs = 

2.5 cm, RcR  = 25 cm, bc = 2.5 cm, and b = 1 s2/cm2; a varies from 1 s/cm to 7 s/cm.  The 

nonlinear numerical model is run and the resulting α value is obtained for each value of a.  

Figure 5.22 shows a graph of the obtained α value from the numerical model compared to 

the expected α value obtained from the Thiem equation as given in Equation (5.69). 
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Figure 5.22 – Comparison of nonlinear numerical model with Thiem equation 

 

 As the numerical data points approach the 1:1 line shown in Figure 5.22, the α 

value is approaching the value predicted by the Thiem equation, suggesting that the 

nonlinear numerical model is behaving as we would expect a confined aquifer to respond.  

The minimum percent difference between the numerical model α and the Thiem equation 

α is 7% for the data shown above.  This analysis again confirms our assumption that the 

Forchheimer equation should approach Darcy flow results. 

 

 

5.5 Impact of Core Specimen Geometry 
5.5.1 Methodology for Investigating Impact of Core Geometry 

 The nonlinear numerical model requires the following inputs: core geometry (RRs, 

RcR , and bc), original Forchheimer coefficients (a and b), and standpipe head (hs).  From 

these inputs, the outflow rate Q is determined and a curve of hs versus Q is developed for 

multiple values of hs.  From this curve, the two modified Forchheimer coefficients (α and 
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β) can be determined using a simple regression equation.  This allows for a relationship 

between the modified Forchheimer coefficients and the original Forchheimer coefficients.  

As shown in the following subsections, the modified and original Forchheimer 

coefficients are linearly related.  Therefore, in order to determine the impact of the core 

geometry on these linear relationships, a range of core dimensions were simulated.  Four 

values each of RRs, RcR , and bc were simulated for a total of 64 total combinations.  For 

each core geometry combination, a total of 10 values of a and b were simulated to 

determine the relationship between the modified and original Forchheimer coefficients.  

For each combination of a and b, 10 values of hs were simulated in order to determine the 

two modified Forchheimer coefficients from regression.  Therefore, a total of 6,400 

model simulations were conducted in order to investigate the impact of core geometry.  

The values tested were RRs = 1.5, 2, 2.5, and 3 cm; RcR  = 7.5, 10, 15, and 20 cm; and bc = 

2.5, 3.25, 4, and 5 cm.  The core specimens collected have a thickness that ranges from 

2.8 to 4.8 cm, and radii of roughly 7.5 and 10.9 cm.  The standpipe radius used during 

testing is 1.9 cm.  Therefore, it is expected that the range of simulated core dimensions 

should include the range of core specimens that were extracted from the roadways.  

Finally, additional simulations will be determined specifically for the CRWR field test 

apparatus used to measure in-situ hydraulic conductivity because the field test apparatus 

has core dimensions that lie outside the above mentioned range of core dimensions. 

 There are two versions of the Forchheimer equation that are of interest.  The 

original Forchheimer equation can be written in one of two ways: 

         (5.70) 2bqaqI +=

 ⎟
⎠
⎞

⎜
⎝
⎛ +=

n
q

K
qI 1         (5.71) 

where the linear terms are related by a = 1/K and the nonlinear terms are related by n = 

a/b.  The modified Forchheimer equation can also be written in one of two ways: 
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where the linear terms are related by ξ = RRc/α and the nonlinear terms are related by η = 

α/β.  These relationships are important in the following regression results to ensure that a 

conversion between the two forms of the Forchheimer equation exists. 

 

5.5.2 Regression of Linear Forchheimer Coefficients 

 The linear Forchheimer coefficients (a and α) are expected to be linearly related 

to each other.  This relationship cannot be determined analytically and depends on the 

core geometry.  For a core with dimensions RRs = 2.5 cm, RcR  = 10 cm, and bc = 5 cm, 

Figure 5.23 shows the resulting relationship between a and α.  The two linear 

Forchheimer coefficients are linearly related, and the relationship is perfectly correlated 

from the numerical simulations. 
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Figure 5.23 – Relationship between modified and original linear Forchheimer 

coefficient for RRs/RcR  = 0.25 and bc/RRc = 0.5 
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 It can be shown that as any of the three core dimensions change, the slope of the 

line will shift.  But in general, the following relationship exists between the two linear 

Forchheimer coefficients: 

 ( )αccs bRRca ,,1=        (5.74) 

Equation (5.74) says that the original linear Forchheimer coefficient is linearly related to 

the modified linear Forchheimer coefficient, where the slope of that relationship c1 is a 

function of the core dimensions.  The slope c1 has units of [L].  Using the 64 core 

geometry combinations described above, the following regression equation was 

developed for the linear Forchheimer coefficients: 

 α
33.0

8.5 ⎟⎟
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⎞
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⎝

⎛
≈

c

c
s R

b
Ra        (5.75) 

Equation (5.75) assumes that the slope c1 of the line relating a to α depends on a power 

relationship for the three core dimensions.  In addition, the grouping of the three core 

dimensions results in a combination with units of [L].  Therefore, the constant 5.8 is 

dimensionless and the above equation can be used under any system of units. 

 The accuracy of the approximation for determining the slope c1 can be addressed 

by graphing the slope obtained from Equation (5.75) as a function of the slope obtained 

from the numerical model.  If the regression equation gives a good approximation to the 

numerical results, the data will plot as a straight line with unit slope.  Figure 5.24 shows 

the comparison between c1 obtained from regression to c1 obtained from the numerical 

simulations.  The standard error between the two values of c1 is 0.422 cm.  The average 

percent difference from the regression equation is nearly 4%, but the maximum percent 

difference is nearly 18%.  This suggests that for the majority of the core dimensions 

tested, the regression equation produces a very good approximation. 
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Figure 5.24 – Regression results for c1 (cm) 

 

 As mentioned in Section 5.5.1, we can express the Forchheimer equation in one of 

two ways.  Looking at the transformed form of the equation, we would expect a linear 

relationship between the transformed coefficients K and ξ.  This equation can be written 

in a general form as: 

 ( )ξccs bRRcK ,,3=        (5.76) 

The slope c3 in Equation (5.76) has units of [1/L2].  (Note: The symbol c3 is used here 

because c2 is reserved for the slope relating to the nonlinear coefficients.  Slopes c1 and 

c2 will correspond to the first form of the Forchheimer equation, and slopes c3 and c4 

correspond to the transformed form of the equation.)  Conducting a power law regression 

on the core dimensions results in the following relationship: 

 ξ33.067.0

175.0

ccs bRR
K ≈        (5.77) 

The power terms on each of the core dimensions in Equation (5.77) can be determined 

from the powers obtained in Equation (5.75) due to the conversions between the two 

forms of the Forchheimer equation.  Therefore, only the constant 0.175 was changed in 
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order to find the correct regression equation.  Again, the powers on the core dimensions 

result in units of [1/L2] so that the constant 0.175 is dimensionless. 

 Figure 5.25 shows a plot of the value of the slope c3 obtained from the numerical 

simulation to that obtained from the regression Equation (5.77).  The resulting standard 

error is 5.8×10-4 1/cm2, with an average percent difference of 4.5%, and a maximum 

percent difference of nearly 17%.  Therefore, we see very good agreement from the 

regression equation and the numerical modeling results, suggesting that the regression 

equation provides a good approximation to the numerical model. 
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Figure 5.25 – Regression results for c3 (1/cm2) 

 

 One last comment should be made on the choice of a power law regression 

equation and the resulting errors from these equations.  The power law produces desirable 

results in that the regression equation can be nondimensionalized and used with respect to 

any system of dimensions.  However, errors are produced from this method.  For 

example, we can take a closer look at the slope c1 and specifically on the power term for 

the dimension RRs.  Equation (5.75) says that the power term on RsR  for slope c1 has a value 
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of one.  One way of looking at the error produced by this value is to do a power law 

regression analysis on the four values of RRs simulated while keeping RcR  and bc constant.  

The results of this analysis are shown in Figure 5.26. 
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Figure 5.26 – Analysis of power law term as function of core dimensions 

 

 Figure 5.26 shows that the power on the RRs term is not a constant value of one, 

but instead changes with the values of RcR  and bc.  For this reason, the power law 

regression will result in error.  Due to the trends seen in Figure 5.26, perhaps a more 

complex regression could be conducted so that the power on one core dimension are 

functions of the other two core dimensions.  However, the complexity of such a model 

would negate the benefit of having a simple approximation between the original and 

modified Forchheimer coefficients.  Furthermore, the errors produced by the proposed 

power law relation are typically minimal for most core geometries.  These trends can be 

observed for all the power terms determined from the regression equation and will result 

in greater errors when conducting regression equations for the nonlinear coefficients. 
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5.5.3 Regression of Nonlinear Modified Forchheimer Coefficients 

 The nonlinear Forchheimer coefficients (b and β) are also expected to be linearly 

related to each other.  This relationship cannot be determined analytically and depends on 

the core geometry.  For a core with dimensions RRs = 2.5 cm, RcR  = 10 cm, and bc = 5 cm, 

Figure 5.27 shows the resulting relationship between b and β.  The two nonlinear 

Forchheimer coefficients are linearly related, and the relationship is perfectly correlated 

from the numerical simulations. 
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Figure 5.27 – Relationship between modified and original nonlinear Forchheimer 

coefficient for RRs/RcR  = 0.25 and bc/RR

)
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 The following relationship exists between the two nonlinear Forchheimer 

coefficients: 

 ( βccs bRRcb ,,2=        (5.78) 
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Equation (5.78) says that the original nonlinear Forchheimer coefficient is linearly related 

to the modified nonlinear Forchheimer coefficient, where the slope of that relationship c2 

is a function of the core dimensions and has units of [L3].  The following regression 

equation was developed for the nonlinear Forchheimer coefficients: 

       (5.79) ( ) β25.05.26.18 ccs bRRb ≈

Equation (5.79) makes the same assumptions of a power law relation as before.  In 

addition, the grouping of the three core dimensions results in a combination with units of 

[L3] so that the constant 18.6 is dimensionless and the above equation can be used under 

any system of units. 

 The accuracy of the approximation for determining the slope c2 is addressed by 

graphing the slope obtained from Equation (5.79) as a function of the slope obtained from 

the numerical model.  Figure 5.28 shows this comparison.  The standard error between 

the two values of c2 is 67 cm3.  This value is much larger than the standard error reported 

for the linear coefficients in part due to the significantly larger values of c2.  The average 

percent difference from the regression equation is 9%, and the maximum percent 

difference is 25%.  This suggests that for the nonlinear coefficient, there is much more 

uncertainty involved in the regression equation.  The cause of this uncertainty follows the 

error as shown in Figure 5.26.  For the nonlinear coefficients, the change in power terms 

with respect to each dimension varies to a greater extent, causing more error.  This is a 

concern, and a more complex model could be developed to reduce this error.  However, 

as shown in the following sections, the error involved when compared to experimental 

data is within an acceptable range.  In addition, the precise value of the nonlinear 

coefficient is of secondary concern.  The nonlinear coefficient is used primarily to 

determine when and where nonlinear effects are significant.  For the purposes of 

measuring the hydraulic conductivity of PFC, nonlinear effects will always be significant.  

Therefore, the precise value of the nonlinear coefficient will not provide any significant 

information and only an acceptable estimate is needed. 
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Figure 5.28 – Regression results for c2 (cm3) 

 

 Looking at the transformed form of the Forchheimer equation, we would expect a 

linear relationship between the transformed coefficients n and η.  This equation can be 

written in a general form as: 

 ( )ηccs bRRcn ,,4=        (5.80) 

The slope c4 in Equation (5.80) has units of [1/L2].  Conducting a power law regression 

on the core dimensions results in the following relationship: 

 η58.05.1

08.03.0

cs

c

RR
b

n ≈        (5.81) 

The power terms on each of the core dimensions in Equation (5.81) can be determined 

from the powers obtained in Equations (5.75) and (5.79) due to the conversions between 

the two forms of the Forchheimer equation.  Therefore, only the constant 0.3 was 

changed in order to find the correct regression equation.  Again, the powers on the core 

dimensions result in units of [1/L2] so that the constant 0.3 is dimensionless. 
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 Figure 5.29 shows a plot of the value of the slope c4 obtained from the numerical 

simulation to that obtained from the regression Equation (5.81).  The resulting standard 

error is 4.2×10-3 1/cm2, with an average percent difference of 11%, and a maximum 

percent difference of 30%.  The standard error is very small due to the small values of c4.  

The percent difference is considerably larger than that obtained for the linear coefficients.  

As previously mentioned, this is of lesser concern and as shown in the following section, 

the regression equation produces acceptable results. 
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Figure 5.29 – Regression results for c4 (1/cm2) 

 

5.5.4 Determination of Hydraulic Conductivity for Core Specimens 

 Now that we have established a method to relate the original Forchheimer 

coefficients (a and b) to the modified Forchheimer coefficients (α and β), we can estimate 

the original coefficients from the measured modified coefficients reported in Section 3.4.  

Tables 5.2 through 5.5 report the estimated original Forchheimer coefficients (K = 1/a 

and b) obtained from Equations (5.75) and (5.79) for each core specimens tested in the 

laboratory.  In addition, the resulting modified Forchheimer coefficients obtained from 
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the nonlinear numerical model for the estimated original coefficients are provided.  

Finally, the percent difference (P.D.) in the modified Forchheimer coefficients obtained 

from the model when compared to the coefficients obtained from laboratory testing is 

reported.  This is the final step necessary in obtaining the hydraulic conductivity for each 

core specimen. 

 

Table 5.2 – Results of numerical simulations for 2007 core specimens 

Core ID K (cm/s) b (s2/cm2) α (s/cm2) β (s2/cm5) P.D. in α P.D. in β 

1-A-T 0.180 2.785 0.7036 0.0125 0.29 -12.84 

1-B-T 2.427 0.584 0.0485 0.0024 1.67 -13.35 

2-A-T 0.668 1.812 0.1906 0.0080 1.21 -14.38 

2-B-T 0.308 3.034 0.4062 0.0132 0.67 -14.16 

3-B-T 0.455 7.206 0.3069 0.0344 3.52 -11.74 

3-C-T 0.457 2.679 0.2916 0.0122 1.96 -13.19 

 

Table 5.3 – Results of numerical simulations for 2008 core specimens 

Core ID K (cm/s) b (s2/cm2) α (s/cm2) β (s2/cm5) P.D. in α P.D. in β 

1-1-T 0.801 2.216 0.1530 0.0090 0.66 -2.14 

1-1-S 2.328 1.213 0.0547 0.0050 -0.69 -4.22 

1-2-T 0.829 2.797 0.1466 0.0113 0.79 -1.39 

1-2-S 1.115 2.000 0.1168 0.0083 -0.28 -5.11 

1-3-T 1.389 1.529 0.0912 0.0063 -0.36 -4.03 

1-3-S 1.820 1.118 0.0734 0.0047 -0.13 -5.59 

2-1-T 0.474 4.136 0.2907 0.0176 0.55 -6.07 

2-2-T 0.957 2.306 0.1390 0.0097 -0.14 -5.61 

2-3-T 0.468 4.060 0.3008 0.0176 0.77 -5.83 

3-1-T 0.056 64.297 02.3938 0.2735 -0.29 -5.29 

3-2-T 0.048 166.832 3.0816 0.7476 1.74 -5.15 

3-3-T 0.228 15.720 0.5850 0.0660 0.01 -5.54 
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Table 5.4 – Results of numerical simulations for 2009 core specimens 

Core ID K (cm/s) b (s2/cm2) α (s/cm2) β (s2/cm5) P.D. in α P.D. in β 

1-i-T 1.831 1.932 0.0683 0.0079 -0.39 -3.50 

1-i-S 2.868 0.875 0.0467 0.0037 -0.17 -5.63 

1-ii-T 0.555 3.567 0.2250 0.0146 0.19 -3.33 

1-ii-S 2.106 1.613 0.0657 0.0069 0.30 -5.88 

1-iii-T 1.334 1.266 0.0927 0.0052 0.29 -2.59 

1-iii-S 0.954 3.096 0.1437 0.0132 0.22 -5.87 

2-i-T 0.194 4.496 0.7066 0.0193 -0.01 -5.34 

2-ii-T 0.437 2.162 0.3090 0.0092 -0.05 -5.69 

2-iii-T 0.992 2.007 0.1356 0.0085 0.02 -5.75 

3-i-T 0.102 29.132 1.2910 0.1217 -0.34 -5.12 

3-ii-T 0.180 12.368 0.7167 0.0513 -0.36 -4.70 

3-iii-T 0.241 17.371 0.5413 0.0722 -0.19 -5.14 

 

Table 5.5 – Results of numerical simulations for 2010 core specimens 

Core ID K (cm/s) b (s2/cm2) α (s/cm2) β (s2/cm5) P.D. in α P.D. in β 

1-a-T 0.359 12.721 0.3139 0.0521 4.74 -9.68 

1-a-S 1.327 0.795 0.0884 0.0033 1.82 -12.97 

1-b-T 2.074 1.067 0.0545 0.0044 4.17 -10.02 

1-b-S 1.510 0.630 0.0767 0.0026 2.21 -12.76 

1-c-T 0.588 3.909 0.1903 0.0160 5.46 -9.31 

1-c-S 1.551 0.466 0.0752 0.0019 1.96 -13.03 

3-a-T 0.203 34.789 0.5626 0.1433 2.97 -11.90 

3-b-T 0.019 640.386 5.8899 2.6548 2.23 -11.89 

3-c-T 0.090 133.903 1.2685 0.5518 2.88 -11.92 

 

 From Tables 5.2 through 5.5, we now have a value of the hydraulic conductivity 

for each core specimen.  It is necessary to investigate the error associated with this value 
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of hydraulic conductivity.  This is addressed in the comparison between modified 

Forchheimer coefficients obtained in the lab and from the numerical model.  The linear 

modified Forchheimer coefficient α obtained from the numerical model is at most 3.5% 

greater than the value obtained in the lab (Core 3-B-T).  The majority of the core 

specimens have a percent difference in the linear modified Forchheimer coefficient of 

less than one percent.  Therefore, the regression equations used to estimate the original 

linear Forchheimer coefficients are producing very reliable estimates. 

 The nonlinear modified Forchheimer coefficient has a much greater error 

associated with it.  The maximum percent difference in β is roughly 14% (Core 2-A-T).  

The smaller diameter cores which were extracted in 2007 and 2010 tend to result in a 

larger percent difference in the nonlinear term, on the order of over 10% error.  This 

begins to show the limitations of the regression equations presented in Section 5.5.3 for 

the nonlinear coefficients.  However, for the larger diameter cores, the nonlinear term has 

a percent error of typically less than 5%.  In general, the regression equations used to 

estimate the original nonlinear Forchheimer coefficients result in more error to the 

experimental data.  This is of minimal concern because the nonlinear term is typically 

only necessary to determine when nonlinear effects can be ignored.  Clearly, for the 

hydraulic conductivity test methodology developed for this research study, nonlinear 

effects will never be negligible.  Therefore, we have no need to be extremely precise in 

our estimates of the nonlinear Forchheimer coefficient. 

 The above estimates for the original Forchheimer coefficients (a and b) were 

made using regression Equations (5.75) and (5.79).  Similarly, we can use estimates for 

the transformed original Forchheimer coefficients (K and n) using regression Equations 

(5.77) and (5.81) in order to determine the percent difference between the modeled and 

measured modified Forchheimer coefficients.  The purpose of this analysis is to 

determine which set of regression equations provides a more accurate estimate of the 

measured modified Forchheimer coefficients.  Using either set of regression equations 

results in roughly the same percent difference in the calculated modified Forchheimer 

coefficients.  For example, the percent different in α when determined using the 
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regression equation for a ranges from -0.69% to 5.46%; whereas the percent difference 

using the regression equation for K ranges from -2.26% to 3.97%.  Therefore, although 

these values shift slightly, the overall range of percent difference for both equations is 

roughly 6.2%.  Similarly, for the nonlinear coefficients, the range of percent difference in 

β when determined using the equation for b is 15.7%; whereas, the range using the 

equation for n is 13.3%.  Again, both sets of regression equations result in nominally the 

same precision to the measured lab or field data. 

 

5.5.5 Determination of Hydraulic Conductivity for Field Test Apparatus 

 The dimensions of the CRWR field test apparatus extend beyond the limitations 

of the dimensions discussed in the previous sections due to the large standpipe and core 

radii.  For this reason, a regression equation was developed specifically for the 

dimensions of the CRWR field test apparatus with varying PFC thicknesses.  The CRWR 

field test apparatus has dimensions RRs = 5.08 cm and RcR  = 22.86 cm.  The resulting 

regression equations based on six different core thicknesses ranging from 2.5 to 5 cm are 

as follows: 

         (5.82) α75.05 cba =

         (5.83) β25.1482 cbb =

        (5.84) ξ75.03108.8 −−×= cbK

        (5.85) η5.001.0 −= cbn

These four regression equations apply specifically to the CRWR test apparatus and 

cannot be used for any other values of RRs or RcR .  Furthermore, the constants in Equations 

(5.82) through (5.85) have units associated with them so that the dimensions used must 

be expressed in cm. 

 The above regression equations were used for the CRWR field test results 

obtained to determine the in-situ hydraulic conductivity and reported in Section 4.3.2.  

The PFC thickness used in the regression equations above is the average PFC thickness 

from all core specimens extracted for each roadway.  For Loop 360, the average thickness 
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is 4.013 cm; for FM 1431, the average thickness is 3.228 cm; and for RR 620, the 

average thickness is 3.499 cm.  Although these thicknesses are not precisely what exist in 

the field, it should give a good approximation to the actual thickness.  The results are 

reported in Table 5.6 below.  The field test location and date are provided together with 

the hydraulic conductivity and nonlinear Forchheimer coefficient obtained from the 

regression equations.  The resulting percent difference (P.D.) in the modified 

Forchheimer equations when compared to the values measured in the field are provided 

as well. 

 

Table 5.6 – Results of numerical simulations for CRWR field test 

Roadway Location Date K (cm/s) b (s2/cm2) P.D. in α P.D. in β 

Loop 360 Shoulder 6-29-08 3.46 0.429 0.65 -3.07 

Loop 360 Shoulder 6-29-08 2.78 0.495 0.50 -2.87 

Loop 360 Shoulder 9-25-08 2.96 0.451 0.64 -3.05 

Loop 360 Shoulder 9-25-08 3.26 0.493 0.72 -3.03 

Loop 360 Shoulder 11-9-08 7.61 0.505 0.11 -2.83 

Loop 360 Shoulder 11-23-08 7.07 0.346 -0.01 -2.92 

Loop 360 Shoulder 2-2-09 2.69 0.541 0.65 -2.95 

Loop 360 Travel Lane 2-2-09 3.59 0.547 0.58 -2.99 

Loop 360 Shoulder 2-5-10 3.43 0.448 0.90 -3.06 

Loop 360 Travel Lane 2-5-10 3.16 0.314 0.37 -2.97 

FM 1431 Travel Lane 2-2-09 0.58 5.209 -1.09 -3.38 

RR 620 Travel Lane 2-2-09 1.94 2.115 -0.30 -4.05 

RR 620 Travel Lane 2-5-10 1.00 2.462 -0.31 -4.08 

 

 The average percent difference in the modified linear Forchheimer coefficient is 

typically less than one percent, whereas the percent difference in the nonlinear coefficient 

is roughly three percent.  These results are much more accurate because the regression 

equations were developed for only one changing core dimension (bc).  The average 
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hydraulic conductivity on Loop 360 is roughly 3 cm/s.  This is of the same order of 

magnitude obtained for the core specimens extracted from Loop 360.  The core 

specimens have much more variability than the field data, which is the reason for 

conducting the field test in order to remove this variability.  There were two field tests on 

Loop 360 with significantly larger hydraulic conductivity of roughly 7 cm/s.  These two 

tests were conducted immediately after the constant head field tests described in Section 

4.2.3.  The large, sustained flow rates used during the constant head tests may have 

flushed some trapped sediment out of the pore space and/or caused a poor seal from the 

vacuum grease, resulting in an artificially large value of hydraulic conductivity. 

 The resulting hydraulic conductivity obtained on FM 1431 matches well with the 

value obtained in the laboratory.  The hydraulic conductivity obtained on RR 620 appears 

to be slightly larger than what was obtained in the laboratory.  There is no explanation for 

this variability, and further testing may be needed in order to verify these results.  As 

mentioned in Section 2.2.4, Kelkar (2000) suggests that the nonlinear Forchheimer 

coefficient is typically larger when observed in the field than in the laboratory.  A 

comparison of the experimental results presented above show that the field data do not 

result in significantly greater nonlinear coefficients.  Therefore, the claim made by Kelkar 

(2000) does not apply to this experimental data set. 

 In order to determine the uncertainty associated with using the average core 

specimen thickness as the roadway thickness in the above analysis, we can compare the 

estimates for the original Forchheimer coefficients using plus/minus one standard 

deviation of the core specimen thickness.  For Loop 360, the average thickness plus and 

minus one standard deviation is 4.588 cm and 3.438 cm, respectively.  The larger 

thickness provides the following estimates: K = 3.13 cm/s and b = 0.507 s2/cm2 with a 

percent difference in α of 1.78% and β of 0.43%.  The smaller thickness provides the 

following estimates: K = 3.89 cm/s and b = 0.354 s2/cm2 with a percent difference in α of 

-0.25% and β of -4.08%.  Therefore, using plus/minus one standard deviation in the PFC 

thickness provides minimal error in the results.  The percent difference in the modified 
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Forchheimer coefficients are of the same order of magnitude as before, suggesting that 

small changes in the PFC thickness are not expected to result in large errors. 

 In addition to the regression results obtained for the CRWR field test described 

above, a regression was also conducted for the field test described by Tan et al. (2002).  

Their field test has the following dimensions:  RRs = 7.5 cm and RcR  = 25 cm.  A range of 

PFC thicknesses were simulated to determine the following regression equations in order 

to estimate the original Forchheimer coefficients: 

         (5.86) α75.05.6 cba =

         (5.87) β5.1680 cbb =

        (5.88) ξ75.03102.6 −−×= cbK

        (5.89) η75.001.0 −= cbn

The above equations are specific to the field test used by Tan et al. (2002), and the 

constants have units associated with them.  Therefore, these equations can only be used 

for the Tan et al. field test when RRs and RcR  are expressed in cm.  Slightly different 

relationships are obtained for the Tan et al. field test when compared to the CRWR field 

test.  This is due to the varying dimensions of the test apparatus.  Unfortunately, Tan et 

al. do not provide their falling head data in such a way that these equations can be 

compared with their experimental results.  Therefore, a comparison between the proposed 

regression equations and the method used by Tan et al. cannot be conducted. 
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Chapter Six 

Analysis of Hydraulic Properties 
 

 

6.1 Statistical Objective and Data 
 The purpose for accurately measuring the hydraulic properties of PFC is to 

ultimately be able to determine when the benefits associated with driver safety and 

improved water quality will no longer persist.  Because the pore space of PFC becomes 

clogged with sediment over time, it is expected that the porosity and hydraulic 

conductivity will decrease over time as a result.  If the pore space becomes too clogged 

with sediment, it is expected that the benefits of the PFC will degrade.  Measuring the in-

situ hydraulic conductivity should be an indicator as to whether or not the PFC is 

adequately allowing for the drainage of stormwater runoff.  Therefore, analyzing the 

trends in hydraulic properties should give an indication as to how these properties are 

changing. 

 The objectives of the following statistical analyses are to determine whether the 

hydraulic properties – porosity and hydraulic conductivity – are changing over time and 

between each roadway location.  The two data sets that will be analyzed are the core 

specimen porosity and laboratory hydraulic conductivity.  Measurement of the porosity is 

described in detail in Chapter Three.  Measurement of hydraulic conductivity is 

determined based on laboratory evaluation of the modified Forchheimer coefficients 

(described in Chapter Three) and numerical modeling results to convert the modified 

coefficients to the hydraulic conductivity (described in Chapter Five).  Figures 6.1 and 

6.2 show the raw data for the porosity and hydraulic conductivity, respectively.  The 

statistical tests we will use compare the average of each set with the overall average.  

Therefore, in these figures, the colored horizontal lines correspond to the average value 

of each roadway for each year.  The thick dashed lines correspond to the overall average 

for each year, regardless of location.  Finally, the thin dotted line gives the overall 
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average of the hydraulic property regardless of year or location.  This helps to give an 

indication of the relative differences in averages. 
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Figure 6.1 – Raw porosity data (averages indicated by lines) 
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Figure 6.2 – Raw hydraulic conductivity data (averages indicated by lines) 

 

 In order to gain a clearer view of how the hydraulic properties are changing over 

time, Figures 6.3 and 6.4 show the average of porosity and hydraulic conductivity, 

respectively, for each year and each location.  The error bars show plus/minus one 

standard deviation of the data.  Based on Figure 6.3, we would expect that the porosity 

has decreased over time for each roadway and the variability in the porosity is not very 

large.  Figure 6.4 suggests that the hydraulic conductivity has remained relatively 

constant over time for each roadway but the variability in hydraulic conductivity is much 

larger.  The statistical tests described below will be used to determine whether the 

observed trends based on the data are statistically significant. 
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Figure 6.3 – Averaged porosity data 
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Figure 6.4 – Averaged hydraulic conductivity data 

 

 Another interesting way to look at the raw data is to compare the hydraulic 

conductivity as a function of porosity.  Ideally there would be some relationship between 

these two drainage properties so that it is possible to predict one property from the other.  

Figure 6.5 shows these two properties graphed together for each roadway.  There does 

not appear to be any correlation between these two properties.  In general, as the porosity 

increases, the hydraulic conductivity increases as well.  The large variability in this 

relationship means we cannot use one property to predict the other with any degree of 

confidence.  For this reason, the two properties must be analyzed separately. 
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Figure 6.5 – Comparison of hydraulic conductivity and porosity data 

 

 

6.2 Nonparametric Statistical Test Descriptions 
 In order to accomplish the above objective of this statistical analysis, we must use 

an appropriate statistical test.  Only three or six core specimens were extracted at each 

roadway location for a given year.  Therefore, the individual data sets we are interested in 

comparing are relatively small.  This means we cannot make any assumptions about the 

distribution of the data, and we cannot use a large sample approximation.  Due to this 

constraint, we must use an exact nonparametric statistical test.  In order to compare 

groups of data (three or more groups), we can use the Kruskal-Wallis test.  If we want to 

compare pairs of data we can use the Mann-Whitney test.  Both of these tests determine 

statistics based on the ranks of the data and do not make any assumptions about the 

distribution of the data.  If we had a large number of core specimens and could prove that 

the data were normally distributed, we would use the more common parametric ANOVA 
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(analysis of variance) test and Students t-test, respectively, instead of the nonparametric 

tests. 

 

6.2.1 Kruskal-Wallis Test 

 The Kruskal-Wallis test is used to determine whether three or more groups of data 

(either the three roadway locations for a given year or three years for a given roadway 

location) are statistically similar.  This is the nonparametric equivalent to the ANOVA 

test.  The Kruskal-Wallis test ranks the data and performs a nonparametric test on the 

ranks of the data.  No assumptions are made about the distribution of the data.  The null 

hypothesis of the Kruskal-Wallis test is: H0 = all three groups of data have identical 

distributions.  The alternative hypothesis is: Ha = at least one group differs in its 

distribution. 

 Helsel and Hirsch (2002) define the Kruskal-Wallis test statistic as follows: 
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In Equation (6.1), KW is the Kruskal-Wallis test statistic, N is the total number of data 

points, nj is the number of data points in group j, and RRj is the average of the ranks for 

group j.  RjR  is defined as follows: 
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In Equation (6.2), RRij is the rank of the i  data value in group j.  Equation (6.1) gives the 

exact test statistic when there are no ties in the data.  If ties occur, a correction must be 

made, but for the porosity and hydraulic conductivity data we will analyze, no ties will 

exist. 

th

 The test statistic can be compared to a table of critical KW values in order to 

determine the decision on the null hypothesis for a significance level α’.  If the calculated 

test statistic KWcalc value is greater than or equal to the critical statistic KWα’ obtained 

from the table for the given sample sizes and significance level α’, then the null 

hypothesis is rejected at that significance level and the groups cannot be shown to have 
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identical distributions.  In this event, the test gives no indication of which group differs 

from the others.  In order to determine which group is different from the others, the 

Mann-Whitney test must be conducted. 

 

6.2.2 Mann-Whitney Test 

 The Mann-Whitney test is also typically referred to as the Wilcoxon test or rank 

sum test.  It is an exact nonparametric test that compares the ranks of only two data 

groups.  This is the nonparametric equivalent of the Students t-test.  Again, no 

assumptions are made about the distribution of the data sets.  The null hypothesis of the 

Mann-Whitney test is: H0 = the means of the two groups are the same.  The alternative 

hypothesis is: Ha = the means of the two groups are not equal.  Due to the statement of 

the alternative hypothesis, we must consider a two tailed test. 

 Conover (1980) defines the Mann-Whitney test statistic as follows: 

         (6.3) ∑
=

=
n

i
iRT

1

In Equation (6.3), T is calculated for the smaller of the two groups with n data points.  

The larger of the two groups has m data points, for a total of N = n + m data points when 

combined.  Therefore, T is the sum of the ranks of each data point in the small group, RRi.  

If ties occur in the data, a correction must be made, but we will have no ties for the 

porosity and hydraulic conductivity data. 

 The test statistic can be compared to a table of critical values in order to 

determine the decision on the null hypothesis for a significance level α’.  Because we are 

using a two sided test, we must look at the critical test statistic at level α’/2.  If the 

calculated test statistic Tcalc is less than or equal to the critical test statistic Tα’/2 obtained 

from the table for the given sample sizes and significance level α’, then the null 

hypothesis is rejected at that significance level and the groups cannot be shown to have 

identical means.  In this event, the test suggests that the two group means are not equal, 

but does not give any indication of which mean is larger than the other.  This can, in 

general, be determined based on the value of the means. 
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6.2.3 Critical Test Statistics 

 Tables 6.1 and 6.2 give the critical test statistics for the Kruskal-Wallis test and 

Mann-Whitney test, respectively.  A significance level of α’ = 0.05 is used to make the 

decision on the null hypothesis.  Table 6.1 gives the critical values of KWα’ based on the 

number of data values in each group.  These critical values were taken from Kanji (2006) 

or Conover (1980) and only the critical values for the group sizes relevant for these data 

sets are provided. 

 

Table 6.1 – Critical test statistics for Kruskal-Wallis test 

n1 n2 n3 KW0.05 

2 2 2 4.571 

2 3 3 5.361 

2 6 6 5.410 

3 3 3 5.600 

3 3 6 5.615 

3 6 6 5.625 

 

 Table 6.2 gives the critical values of Tα’/2 based on the number of data points in 

each group.  These critical values were taken from Kanji (2006) or Conover (1980) and 

only the critical values relevant for the group sizes needed for these data are provided.  

Since we are using a two sided test, the test statistic is taken at a significance level of α’/2 

= 0.025, or α’ = 0.05. 
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Table 6.2 – Critical test statistics for Mann-Whitney test 

n m T0.025 

2 2 3.0 

2 3 3.0 

2 6 3.0 

3 3 6.0 

3 6 8.0 

6 6 27.0 

6 9 32.0 

9 9 62.0 

 

 

6.3 Statistical Test Results on Porosity 
6.3.1 Porosity Data Grouped by Year 

 The first step in analyzing the hydraulic data is to use the Kruskal-Wallis test on 

the porosity data grouped by year.  Each year will be investigated independently and the 

porosity data for each of the three roadways will be compared for a given year.  If the 

Kruskal-Wallis test shows that there is a difference in porosity for one of the years, we 

will reject the null hypothesis.  In this event, we can conduct the Mann-Whitney test to 

determine which group (roadway) is different from the others. 

 Table 6.3 provides the calculated Kruskal-Wallis test statistic for the porosity data 

grouped by year, together with the critical Kruskal-Wallis test statistic (obtained from 

Table 6.1) at a significance level of α’ = 0.05 and the decision on the null hypothesis.  We 

will reject the null hypothesis for  meaning one of the three groups is 

different from the others.  The core specimens extracted in the year 2010 are not included 

here as cores were extracted from only two roadways. 

05.0WWcalc KK ≥
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Table 6.3 – Kruskal-Wallis test results for porosity data grouped by year 

Year KWcalc KW0.05 Decision 

2007 5.422 5.600 Do Not Reject H0 

2008 9.346 5.615 Reject H0 

2009 7.462 5.615 Reject H0 

 

 For the porosity data in 2007, we do not have sufficient evidence to reject the null 

hypothesis at a significance level of 0.05.  This means that the data suggest that the 

porosity at each of the three roadways have identical distributions for the year 2007.  This 

result is a desirable outcome as it says that the porosity at all three roadways is roughly 

the same when we started collecting core specimens.  Therefore, all three roadways are 

starting at essentially the same porosity when the first core specimens were collected. 

 For the porosity data in 2008 and 2009, we reject the null hypothesis, meaning 

that at least one of the three roadways has a different porosity than the others.  Based on 

visual inspection of our porosity data, this result is to be expected since there are 

significant changes in the data.  If we would like to determine which road has a different 

porosity than the others, we must conduct the Mann-Whitney test.  These results are 

summarized in Tables 6.4 and 6.5 for the 2008 and 2009 porosity data, respectively.  We 

will reject the null hypothesis for 025.0TTcalc ≤ .  Table 6.6 shows the Mann-Whitney test 

results for the 2010 porosity data collected only at Loop 360 and RR 620. 

 

Table 6.4 – Mann-Whitney test results for 2008 porosity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & FM 1431 6.0 8.0 Reject H0 

Loop 360 & RR 620 6.0 8.0 Reject H0 

FM 1431 & RR 620 6.0 6.0 Reject H0 
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Table 6.5 – Mann-Whitney test results for 2009 porosity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & FM 1431 6.0 8.0 Reject H0 

Loop 360 & RR 620 7.0 8.0 Reject H0 

FM 1431 & RR 620 9.0 6.0 Do Not Reject H0 

 

Table 6.6 – Mann-Whitney test results for 2010 porosity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & RR 620 6.0 8.0 Reject H0 

 

 For the year 2008, the Mann-Whitney test suggests that all three roadways have 

different porosity from each other.  However, for 2009, the Mann-Whitney test suggests 

that FM 1431 and RR 620 have the same porosity.  This is due in part to the large 

variability we observed in the RR 620 porosity data.  Due to this large variability, the 

Mann-Whitney test cannot distinguish between the porosity at these two roadways, so we 

cannot reject the null hypothesis.  Furthermore, for the year 2010, the Mann-Whitney test 

suggests that the porosity at the two roadways where cores were extracted are different 

from each other. 

 This analysis allows for a comparison of porosity data between roadways for each 

given year core specimens were extracted.  Essentially, this tells us that the porosity (or 

changes in porosity) at a given roadway do not necessarily follow the same trends 

observed at another roadway.  This should be expected due to the varying traffic 

volumes, rainfall events, and various other factors that are different at each of the three 

roadways.  Furthermore, parametric tests can be conducted on these data (either the 

ANOVA test or Students t-test) which provide the same decisions on the null hypothesis 

as determined from the nonparametric tests described above at a significance level of 

0.05.  Therefore, although it is more appropriate to use a nonparametric test due to the 

small sample size, the corresponding parametric tests provide support for the same 

decisions on the null hypothesis. 
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6.3.2 Porosity Data Grouped by Location 

 We can repeat the above analysis for the data grouped by each roadway in order 

to determine how the porosity at a roadway changes in time.  The results of the Kruskal-

Wallis test are shown in Table 6.7 below.  For Loop 360 and RR 620, there are four years 

worth of data; whereas for FM 1431 there are three years worth of data.  However, due to 

difficulties in determining the critical test statistics for four or more groups, only the first 

three years worth of data (from 2007 to 2009) are analyzed.  All four years worth of data 

for Loop 360 and RR 620 will be analyzed by using the parametric ANOVA test. 

 

Table 6.7 – Kruskal-Wallis test results for porosity data from 2007 to 2009 grouped 

by roadway 

Roadway KWcalc KW0.05 Decision 

Loop 360 6.225 5.625 Reject H0 

FM 1431 5.600 5.600 Reject H0 

RR 620 5.956 5.600 Reject H0 

 

 For each roadway, we reject the null hypothesis suggesting that the porosity at 

each roadway location is changing through time from the year 2007 to 2009, which we 

observed from the original data.  Similarly, if we conduct the ANOVA test on these data, 

we obtain the same decisions on the null hypothesis at a significance level of 0.05.  In 

order to analyze all four years worth of porosity data from Loop 360 and RR 620, we are 

restricted to using the ANOVA test.  The results of that test are provided in Table 6.8.  

The p-value is provided, and the decision is made based on the magnitude of the p-value 

relative to the significance level.  If the p-value is greater than the significance level, we 

do not reject the null hypothesis, meaning the test suggests all four years worth of 

porosity data are the same. 
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Table 6.8 – ANOVA test results for porosity data from 2007 to 2010 grouped by 

roadway 

Roadway p-value Decision 

Loop 360 0.058 Do Not Reject H0 

RR 620 0.003 Reject H0 

 

 Table 6.8 suggests that the porosity on Loop 360 is constant over time, whereas 

the porosity on RR 620 is changing over time.  This matches our decision for RR 620 for 

the first three years worth of data.  However, for Loop 360, this contradicts our decision 

determined from the first three years worth of data and reported in Table 6.7.  There are 

several reasons for this discrepancy.  First, the parametric ANOVA test is not expected to 

be as precise as the Kruskal-Wallis test due the small number of data samples.  Second, 

we cannot determine if the data are normally distributed, as required by the ANOVA test.  

Finally, the calculated p-value of 0.058 is very nearly equal to our significance level of 

0.05.  This test suggests that we are 94.2% confident that the porosity data on Loop 360 

are changing over time.  Due to the assumptions made in using the ANOVA test, perhaps 

it is appropriate to increase the significance level to 0.10 for the parametric test.  In this 

case, we will reject the null hypothesis for the Loop 360 data suggesting the porosity 

changes over time, which agrees with our initial test findings for the nonparametric 

Kruskal-Wallis test. 

 From the Kruskal-Wallis test results and ANOVA test results provided above, we 

determined that the porosity has changed over time at each roadway.  If we would like to 

determine which year has porosity different from the other years, we must conduct the 

Mann-Whitney test.  The results for Loop 360, FM 1431, and RR 620 are shown in 

Tables 6.9, 6.10, and 6.11, respectively. 
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Table 6.9 – Mann-Whitney test results for Loop 360 porosity data 

Years Tcalc T0.025 Decision 

2007 & 2008 16.0 8.0 Do Not Reject H0 

2008 & 2009 26.0 27.0 Reject H0 

2009 & 2010 34.0 27.0 Do Not Reject H0 

 

Table 6.10 – Mann-Whitney test results for FM 1431 porosity data 

Years Tcalc T0.025 Decision 

2007 & 2008 6.0 6.0 Reject H0 

2008 & 2009 9.0 6.0 Do Not Reject H0 

 

Table 6.11 – Mann-Whitney test results for RR 620 porosity data 

Years Tcalc T0.025 Decision 

2007 & 2008 6.0 6.0 Reject H0 

2008 & 2009 8.0 6.0 Do Not Reject H0 

2009 & 2010 10.0 6.0 Do Not Reject H0 

 

 From the above Mann-Whitney test results, we can make the following 

observations based on our decisions on the null hypothesis.  On Loop 360, the porosity 

data remains constant from 2007 to 2008, decreases in 2009, and remains constant in 

2010.  For FM 1431, the porosity initially decreases from 2007 to 2008 but then remains 

constant from 2008 to 2009.  Similarly, on RR 620, the porosity initially decreases from 

2007 to 2008, but then remains constant for the years 2009 and 2010.  These are the 

general trends we would expect from our raw data, and confirm our decisions obtained 

from the Kruskal-Wallis test above.  This now provides a decision based on a statistical 

test to confirm our initial guesses.  In addition, the RR 620 data appear to increase from 

2008 to 2009 (based on Figure 6.3), but our Mann-Whitney test does not support this 

change in porosity due to the large variability in the 2009 data. 
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6.3.3 Travel Lane versus Shoulder Porosity 

 One final test to conduct in this research study has to deal with porosity in the 

travel lane versus porosity on the roadway shoulder.  Loop 360 has a large enough 

shoulder so that core specimens can be extracted from both the travel lane and shoulder.  

However, only cores extracted in 2008, 2009, and 2010 were obtained from both 

locations; the 2007 cores were only extracted from the travel lane.  Several researchers 

(c.f. Isenring et al., 1990; Van Heystraeten and Moraux, 1990; Berbee et al., 1999; and 

Pagotto et al., 2000) suggest that the pumping action of tires in the travel lane will help to 

remove trapped sediment in the PFC pore space, thereby increasing the porosity and 

hydraulic conductivity.  This is also a concern in terms of design speed on a roadway 

with a PFC overlay.  Typically, a larger design speed (80 km/hr) is considered more 

desirable due to this assumed pumping action of the tires which will help maintain 

adequate porosity.  In order to test whether our data support this claim, we can use our 

two statistical tests to make a decision on whether the porosity in the travel lane is larger 

than the porosity in the shoulder.  Figure 6.6 presents the porosity data from Loop 360 

divided by travel lane or shoulder.  These data are taken from the original data presented 

in Figure 6.1. 
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Figure 6.6 – Travel lane versus shoulder porosity data on Loop 360 

 

 We will start by analyzing the porosity data in the travel lane.  Because we only 

have porosity data in the shoulder for the last three years worth of data, we will only 

analyze these three years of data for the travel lane as well (2008 to 2010).  For the 

Kruskal-Wallis test, we obtain KWcalc = 3.289, which when compared to KW0.05 = 5.600, 

we do not reject the null hypothesis.  This suggests that the porosity in the travel lane has 

not changed over time for Loop 360 from 2008 to 2010 and might confirm our claim that 

the pumping action of tires helps to maintain porosity.  This seems to contradict our 

findings in Table 6.7 which suggest that the porosity does change over time for Loop 

360.  However, we are now looking at a different data set, which has more relative 

variability due to the smaller number of data points, making it more difficult for the 

Kruskal-Wallis test to reject the null hypothesis.  We can conduct a similar test on the 

three years of data for porosity in the shoulder also using the Kruskal-Wallis test.  This 
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test gives KWcalc = 3.467, which when compared to KW0.05 = 5.600, we do not reject the 

null hypothesis.  Again, this seems to contradict the previous claim that the porosity in 

Loop 360 decreases from 2008 to 2010.  However, we are again looking at a different 

data set with a smaller number of data points, meaning we have less confidence in our 

decision to reject the null hypothesis. 

 The above test results suggest that the porosity in the travel lane of Loop 360 has 

not changed with time over the years 2008 to 2010; similarly, the porosity in the shoulder 

of Loop 360 has not changed with time.  We can now compare the porosity in the travel 

lane to the porosity in the shoulder using the Mann-Whitney test.  The results of these 

data give Tcalc = 72.0, which when compared to T0.025 = 62.0, we do not reject the null 

hypothesis.  This suggests that for our limited data set, we cannot distinguish differences 

between the porosity in the travel lane and the shoulder.  The average porosity in the 

travel lane from the three years of data is 19.52%, whereas the average porosity in the 

shoulder for the three years of data is 20.39%.  This confirms that the two porosity values 

cannot be assumed to be different from one another.  Therefore, this statistical decision 

does not support the claim suggesting the pumping action of tires helps to remove 

sediment from the pore space.  However, due to the limited number of data available, 

there may not be sufficient information to make a reliable decision. 

 

 

6.4 Statistical Test Results on Hydraulic Conductivity 
6.4.1 Hydraulic Conductivity Data Grouped by Year 

 The same statistical analysis conducted on the porosity data shown above will be 

conducted on the hydraulic conductivity data of each core specimen.  The hydraulic 

conductivity is obtained through laboratory testing to determine the modified 

Forchheimer coefficients.  These data are then converted to the original Forchheimer 

coefficients through the use of numerical modeling, resulting in an accurate measurement 

of hydraulic conductivity, as reported in Section 5.5.4.  Each year will be investigated 

independently and the hydraulic conductivity data for each of the three roadways will be 
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compared for a given year.  If the Kruskal-Wallis test shows that there is a difference in 

hydraulic conductivity for one of the years, we will reject the null hypothesis.  In this 

event, we can conduct the Mann-Whitney test to determine which group is different from 

the others.  For the year 2010, only the Mann-Whitney test will be conducted since core 

specimens were extracted at only two roadways. 

 Table 6.12 provides the calculated Kruskal-Wallis test statistic for the hydraulic 

conductivity data grouped by year, together with the critical Kruskal-Wallis test statistic 

(obtained from Table 6.1) at a significance level of α’ = 0.05 and the decision on the null 

hypothesis.  We will reject the null hypothesis for , meaning one of the 

three groups is different from the others. 

05.0WWcalc KK ≥

 

Table 6.12 – Kruskal-Wallis test results for hydraulic conductivity data grouped by 

year 

Year KWcalc KW0.05 Decision 

2007 0.000 4.571 Do Not Reject H0 

2008 8.115 5.615 Reject H0 

2009 7.603 5.615 Reject H0 

 

 For the hydraulic conductivity data in 2007, we do not have sufficient evidence to 

reject the null hypothesis at a significance level of 0.05.  This means that the data suggest 

that the hydraulic conductivity at each of the three roadways have identical distributions 

for the year 2007.  This result is not necessarily expected due to the range of average 

hydraulic conductivity values at each roadway, but the variability within those averages 

is very large meaning we do not have sufficient evidence to reject the null hypothesis.  

This is the same result we determined from the porosity data for the year 2007. 

 For the hydraulic conductivity data in 2008 and 2009, we reject the null 

hypothesis meaning that at least one of the three roadways has a different hydraulic 

conductivity than the others.  Based on visual inspection of our hydraulic conductivity 

data, this result is to be expected since there are significant differences in the data and the 
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variability in the average data has decreased.  If we would like to determine which road 

has a different hydraulic conductivity than the others, we must conduct the Mann-

Whitney test.  These results are summarized in Tables 6.13, 6.14, and 6.15 for the 2008, 

2009, and 2010 hydraulic conductivity data, respectively.  We will reject the null 

hypothesis for . 025.0TTcalc ≤

 

Table 6.13 – Mann-Whitney test results for 2008 hydraulic conductivity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & FM 1431 8.0 8.0 Reject H0 

Loop 360 & RR 620 6.0 8.0 Reject H0 

FM 1431 & RR 620 6.0 6.0 Reject H0 

 

Table 6.14 – Mann-Whitney test results for 2009 hydraulic conductivity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & FM 1431 8.0 8.0 Reject H0 

Loop 360 & RR 620 6.0 8.0 Reject H0 

FM 1431 & RR 620 7.0 6.0 Do Not Reject H0 

 

Table 6.15 – Mann-Whitney test results for 2010 hydraulic conductivity data 

Roadways Tcalc T0.025 Decision 

Loop 360 & RR 620 6.0 8.0 Reject H0 

 

 For the year 2008, the Mann-Whitney test suggests that all three roadways have 

different hydraulic conductivities from each other.  However, for 2009, the Mann-

Whitney test suggests that FM 1431 and RR 620 have the same hydraulic conductivity.  

This is due in part to the large variability we observed in the FM 1431 hydraulic 

conductivity data.  Due to this variability, the Mann-Whitney test cannot distinguish 

between the hydraulic conductivity at these two roadways, so we cannot reject the null 

hypothesis.  For the year 2010, we reject the null hypothesis.  As expected, the hydraulic 
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conductivity at Loop 360 is greater than that at RR 620.  It is interesting to note that the 

decisions made based on the statistical analysis for the hydraulic conductivity data 

grouped by year is virtually the same as the decisions made on the porosity data. 

 This analysis provides a comparison of the hydraulic conductivity data between 

roadways for a given year in order to determine any statistical differences in the data.  In 

general, each roadway has a different hydraulic conductivity than the other roadways.  As 

with the porosity data, this suggests that the magnitudes of the hydraulic conductivity 

data, as well as any changes, vary depending on roadway location.  Of particular interest 

would be the initial hydraulic conductivity of each roadway immediately after 

construction of the PFC layer.  There are large differences in hydraulic conductivity at 

each roadway which may be attributed to varying construction methods.  Furthermore, as 

with the porosity data, the equivalent parametric statistical tests provide support for the 

decision on the null hypothesis as determined from the nonparametric tests. 

 

6.4.2 Hydraulic Conductivity Data Grouped by Location 

 We can repeat the above analysis for the data grouped by each roadway in order 

to determine how the hydraulic conductivity at a roadway changes in time.  The results of 

the Kruskal-Wallis test are shown in Table 6.16 below.  For Loop 360 and RR 620, there 

are four years worth of data; whereas for FM 1431 there are three years worth of data.  

As previously mentioned, due to difficulties in determining accurate critical test statistics 

for four or more groups, only the first three years worth of data (from 2007 to 2009) are 

analyzed with the Kruskal-Wallis test.  All four years worth of data for Loop 360 and RR 

620 will be analyzed using the ANOVA test. 
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Table 6.16 – Kruskal-Wallis test results for hydraulic conductivity data from 2007 

to 2009 grouped by roadway 

Roadway KWcalc KW0.05 Decision 

Loop 360 0.267 5.410 Do Not Reject H0 

FM 1431 0.556 5.361 Do Not Reject H0 

RR 620 4.694 5.361 Do Not Reject H0 

 

 For each roadway from 2007 to 2009, we do not reject the null hypothesis 

suggesting that the hydraulic conductivity at each roadway location is constant through 

time, which appears to be reasonable from the original data.  Therefore, although we 

observed a decrease in porosity at each roadway over time, the hydraulic conductivity has 

not been decreasing over time from a statistical standpoint.  Similarly, if we conduct the 

ANOVA test on these three years of data, for Loop 360 and FM 1431, we do not reject 

the null hypothesis.  However, the ANOVA test suggests we reject the null hypothesis for 

RR 620 with a p-value of 0.011.  This suggests that the hydraulic conductivity has 

changed from the year 2007 to 2009 and contradicts our decision based on the Kruskal-

Wallis test.  Due to the small sample size, it is expected that the nonparametric Kruskal-

Wallis test provides the more accurate decision. 

 We can also use the ANOVA test in order to analyze the four years of hydraulic 

conductivity data for Loop 360 and RR 620.  The decision of the ANOVA test and the 

corresponding p-value are provided in Table 6.17. 

 

Table 6.17 – ANOVA test results for hydraulic conductivity data from 2007 to 2010 

grouped by roadway 

Roadway p-value Decision 

Loop 360 0.868 Do Not Reject H0 

RR 620 0.008 Reject H0 
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 Table 6.17 suggests that the hydraulic conductivity on Loop 360 is constant over 

time, whereas the hydraulic conductivity on RR 620 is changing over time.  This matches 

our decision on Loop 360 for the first three years worth of data.  However, this 

contradicts our decision on RR 620 from the Kruskal-Wallis test. 

 In order to determine whether the hydraulic conductivity data on RR 620 is 

changing over time, we can conduct the Mann-Whitney test for all four years of data.  

Table 6.18 provides the analysis of the RR 620 data. 

 

Table 6.18 – Mann-Whitney test results for RR 620 hydraulic conductivity data 

Years Tcalc T0.025 Decision 

2007 & 2008 6.0 3.0 Do Not Reject H0 

2008 & 2009 8.0 6.0 Do Not Reject H0 

2009 & 2010 8.0 6.0 Do Not Reject H0 

 

 For the Mann-Whitney test, we do not reject the null hypothesis, meaning there is 

not sufficient evidence to determine whether there is a change in hydraulic conductivity.  

This suggests that the hydraulic conductivity data is constant on RR 620 from the year 

2007 to 2010.  This agrees with our Kruskal-Wallis test results, but contradicts the 

ANOVA test results.  It is expected due to the small sample size and lack of ability to 

determine whether the data are normally distributed that the nonparametric tests would 

provide a more accurate decision on the null hypothesis.  Therefore, it can be assumed 

that the hydraulic conductivity data on RR 620 is statistically constant over time, and 

there is not sufficient evidence to determine a change in hydraulic conductivity.  The 

above statistical analysis suggests that the hydraulic conductivity at each roadway has 

remained constant over time.  Although we observed a statistical decrease in porosity 

over time at each roadway, this does not correspond to a statistical decrease in hydraulic 

conductivity at this point in time.  The main reason we cannot determine a statistical 

decrease in hydraulic conductivity over time is the much larger variability in hydraulic 
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conductivity.  Because of this variability, the statistical tests do not have enough 

information to determine a trend in the data. 

 

6.4.3 Travel Lane versus Shoulder Hydraulic Conductivity 

 The final test to conduct on the hydraulic conductivity data is a comparison 

between the travel lane versus the roadway shoulder.  In order to test whether our data 

support the claim that the pumping action of vehicle tires result in a greater hydraulic 

conductivity, we can use our two statistical tests to make a decision on whether the 

hydraulic conductivity in the travel lane is larger than in the shoulder.  Figure 6.7 

presents the hydraulic conductivity data from Loop 360 divided by travel lane or 

shoulder.  These data are taken from the original data presented in Figure 6.2. 
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Figure 6.7 – Travel lane versus shoulder hydraulic conductivity data on Loop 360 
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 We will start by analyzing the hydraulic conductivity data in the travel lane.  

Because we only have hydraulic conductivity data in the shoulder for the last three years 

(2008 to 2010), we will only analyze these three years worth of data in the travel lane.  

For the Kruskal-Wallis test, we obtain KWcalc = 0.267, which when compared to KW0.05 = 

5.600, we do not reject the null hypothesis.  This suggests that the hydraulic conductivity 

in the travel lane has not changed over time for Loop 360.  This agrees with our findings 

in Tables 6.16 and 6.17 which suggest that the hydraulic conductivity remains constant 

over time for Loop 360.  We can conduct a similar test on the three years of data for 

hydraulic conductivity in the shoulder also using the Kruskal-Wallis test.  This test gives 

KWcalc = 0.622, which when compared to KW0.05 = 5.600, we do not reject the null 

hypothesis.  Again, this agrees with the previous claim that the hydraulic conductivity at 

Loop 360 remains constant with time. 

 The above test results suggest that the hydraulic conductivity in the travel lane of 

Loop 360 has not changed with time.  Similarly, the hydraulic conductivity in the 

shoulder of Loop 360 has not changed with time.  We can now compare the hydraulic 

conductivity in the travel lane to the hydraulic conductivity in the shoulder using the 

Mann-Whitney test.  The results of this data give Tcalc = 63.0, which when compared to 

T0.025 = 62.0, we do not reject the null hypothesis.  This suggests that for our limited data 

set, we cannot distinguish differences between the hydraulic conductivity in the travel 

lane and the shoulder.  The average hydraulic conductivity in the travel lane from the last 

three years of data is 1.08 cm/s, whereas the average hydraulic conductivity in the 

shoulder for the three years of data is 1.73 cm/s.  Although it appears the average 

hydraulic conductivity in the shoulder is greater than the average hydraulic conductivity 

in the travel lane, due to the variability in the data we do not have sufficient evidence to 

statistically distinguish between the two.  Therefore, this decision does not support the 

claim suggesting the pumping action of tires helps to remove sediment from the pore 

space.  However, due to the limited number of data available, there may not be sufficient 

information to make a reliable decision. 

 

  179 



6.5 Experimental Forchheimer Coefficients Compared to Empirical 

Equations 
 Various studies have been conducted in the past which attempt to approximate the 

original Forchheimer coefficients (a and b) from properties of the fluid and porous 

medium.  Although these empirical approximations typically work well for the material 

which was being studied, they do not translate to most other porous media that exhibit 

nonlinear flow.  Sidiropoulou et al. (2007) provide a good overview of many of the 

empirical equations used to estimate the Forchheimer coefficients.  These estimates 

typically depend on the porosity, particle diameter, and fluid properties being tested.  

Several of these empirical equations will be discussed here and compared to the 

experimental results obtained for this research study on PFC. 

 Ergun (1952) was one of the first researchers to develop equations to estimate the 

Forchheimer coefficients.  These equations are based on the Kozeny-Carman model and 

give the following empirical relations: 
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Equations (6.4) and (6.5) estimate the Forchheimer coefficients based on the fluid 

viscosity μ and density ρ as well as the porous medium porosity ne and particle diameter 

Dp.  For the purposes of this comparison, the PFC particle diameter that will be used is 

the d50 diameter obtained from the particle size distribution used for mix design given in 

TxDOT (2004b). 

 Ward (1964) suggests the following empirical equations to estimate the 

Forchheimer coefficients: 
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Although the above relationships worked well for the porous media tested, the empirical 

Equations (6.6) and (6.7) are not functions of the porosity.  Therefore, when compared to 

the PFC results, Ward’s equations will not change when the PFC porosity changes.  This 

is problematic because there is no way to measure Dp when the PFC porosity decreases.  

For comparisons with the PFC experimental data, it is expected that Ward’s equations 

will not produce reliable estimates.  For this reason, the empirical equations presented by 

Ward will not be compared to the PFC data. 

 Kovacs (1981) derived the following equations for spherical particles: 
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Equations (6.8) and (6.9) are very similar to the equations proposed by Ergun.  Therefore, 

we would expect that these two sets of equations produce similar results. 

 Finally, Kadlec and Knight (1996) present the following equations: 

 ( )
27.3

1255

pe

e

Dgn
n

a
ρ

μ −
=        (6.10) 

 ( )
pe

e

Dgn
n

b 3

12 −
=         (6.11) 

Again, these equations are similar in form to those proposed by Ergun and Kovacs with 

slightly different exponential terms.  As previously mentioned, the particle diameter used 

for the comparison is the d50 diameter obtained from the mix design for PFC.  A sieve 

analysis on typical PFC mixtures suggests a diameter of 9.525 mm correspond to a range 

of percent passing particles.  This range is from 35% to 60% passing.  Therefore, the 

range of values for d50 is between 8.5 mm and 10.5 mm based on the resulting gradation 

curves.  Using an average d50 of 9.5 mm for use as Dp in the equations above will 

provide a comparison to the empirical equations and the experimental values obtained for 

this research.  It should be noted that due to the entrapment of sediment in the pore space, 

the actual average particle diameter cannot be determined. 
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 Figures 6.8 and 6.9 show the measured PFC core specimen hydraulic conductivity 

and original nonlinear Forchheimer coefficient, respectively, as determined from the 

experimental data and numerical modeling compared to the empirical equations in the 

literature described above.  If the empirical equations agree well with the experimental 

PFC data, then the resulting graph should fall on a 1:1 line.  For the hydraulic 

conductivity data, the empirical equation proposed by Kadlec and Knight (1996) has the 

best agreement to the experimental data.  Although the Kadlec and Knight equation does 

not fall directly on the 1:1 line shown in Figure 6.8, it does give a same order of 

magnitude estimate of the hydraulic conductivity.  The empirical equations proposed by 

Ergun (1952) and Kovacs (1981) greatly overestimate the measured PFC hydraulic 

conductivity.  However, as expected, these two empirical equations produce nearly the 

same estimates.  In conclusion, the empirical equation proposed by Kadlec and Knight 

produce the same order of magnitude estimate of PFC hydraulic conductivity.  The Ergun 

and Kovacs equations are not recommended for estimating PFC hydraulic conductivity as 

they overestimate the hydraulic conductivity. 
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Figure 6.8 – Empirical equations for estimating hydraulic conductivity 
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Figure 6.9 – Empirical equations for estimating nonlinear Forchheimer coefficient 

 

 Figure 6.9 shows the measured and empirical nonlinear Forchheimer coefficient.  

Clearly, the empirical equations drastically underestimate the nonlinear coefficient when 

compared to the measured data.  Four measured values of b were so large that they were 

not included in the above graph.  All three empirical equations shown here result in 

roughly the same estimate.  Therefore, in general, these empirical equations for 

estimating the nonlinear coefficient do not apply to the measured PFC data. 

 

 

6.6 Sediment Removal Estimate 
 One of the critical questions remaining about the water quality benefits of PFC is 

whether the PFC is actually removing pollutants from the stormwater runoff, or simply 

reducing the source of the pollutants from being washed off of vehicles due to the 

reduced splash and spray.  The removal mechanism which results in an improvement in 
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water quality can be examined by investigating the change in porosity over time together 

with the expected volume of sediment removed from the stormwater runoff.  If the PFC 

overlay acts primarily as a filter in removing sediment, then the volume of sediment 

removed from the runoff will result in the observed decrease in porosity over time.  On 

the other hand, if the PFC overlay is simply reducing the source of the sediment by not 

washing sediment off of cars, then the volume of sediment removed from the runoff will 

be greater than the volume of sediment needed to decrease the observed porosity. 

 In this analysis, sediment removal will be estimated as a mass of sediment per 

surface area of pavement.  Two sediment removals will be estimated and then compared 

to one another.  The first sediment removal estimate is based on the observed decrease in 

core specimen porosity over time.  The mass of sediment per volume of PFC layer can be 

determined by multiplying the change in porosity times an assumed sediment density.  

This makes the assumption that all of the change in porosity is a result of trapped 

sediment volume.  A sediment density of 2.65 g/cm3 was used for this analysis.  The 

sediment mass per unit area is determined by multiplying the sediment mass per volume 

times the average PFC thickness.  The PFC thickness is determined from the thickness of 

the core specimens for all years.  Table 6.19 provides the change in porosity and resulting 

sediment mass per area needed to cause that observed change in porosity from the 2007 

cores to the 2010 cores.  In general, several hundred milligrams (mg) of sediment per 

square centimeter surface area of pavement are needed to clog the PFC pore space and 

result in the observed decrease in porosity. 

 

Table 6.19 – Sediment mass estimate for change in porosity 

 

Roadway 

Average 

Thickness (cm) 

Decrease in 

Porosity (%) 

Sediment Mass 

(mg/cm2) 

Loop 360 4.01 2.70 287 

FM 1431 3.23 5.65 483 

RR 620 3.50 6.53 606 
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 In order to determine the estimated sediment mass per area that we would expect 

from water quality data, we must investigate the rainfall over the time period together 

with the average total suspended solids (TSS) concentration and TSS removal observed 

due to the use of PFC.  The rainfall data we will use is specifically for a rain gage located 

near the core extraction site on Loop 360.  Precipitation data was collected from the 

Lower Colorado River Authority (LCRA) Hydromet data set at the “Bull Creek at Loop 

360, Austin” rain gage (LCRA, 2010).  Previous research conducted on the water quality 

benefits of PFC (Stanard, 2008 and Frasier, 2009) measured the TSS concentration in the 

runoff from a conventional impervious asphalt surface as well as a PFC overlay.  These 

results show that the TSS concentration from PFC runoff is approximately 90% less than 

from conventional pavement.  The difference between the conventional TSS 

concentration and the PFC TSS concentration is the assumed volume of sediment trapped 

within the PFC, which causes a decrease in porosity.  Therefore, with known values of 

rainfall depth, average TSS concentration from a conventional roadway, and TSS 

removal due to the PFC, we can determine the expected mass of sediment trapped per 

unit area of PFC. 

 The average TSS concentration from conventional pavement is roughly 135 mg/L 

as reported by Stanard (2008) and Frasier (2009).  This is a general average and varies 

from storm event to storm event, but is useful for an approximation of the amount of 

sediment that may be trapped in the PFC pore space.  If the PFC is assumed to remove 

90% of this concentration according to water quality measurements, then the TSS 

concentration from a PFC surface is 14 mg/L, meaning 121 mg/L of TSS is expected to 

be retained within the PFC pore space.  The average sediment retained per unit area can 

be determined by multiplying the TSS concentration times the rainfall for a given period 

of time.  The cumulative rainfall since the first core extraction date to the fourth and final 

core extraction date is 243.1 cm (LCRA, 2010).  This rainfall can be split based on core 

extraction dates.  The rainfall between the first and second set of cores is 97.4 cm for the 

year 2007.  The year 2008 had 42.6 cm of rain, and the year 2009 had 103.1 cm of 

rainfall.  The cumulative rainfall amount times the assumed average TSS concentration 
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retained within the PFC pore space (121 mg/L) results in an average sediment removal of 

29.5 mg/cm2.  Clearly this value, when compared to the estimated sediment mass 

required to change the observed porosity reported in Table 6.19, is significantly less.  

Therefore, the 90% removal of TSS does not produce nearly enough mass of sediment 

needed to cause the observed decrease in porosity. 

 Part of the problem with estimating the trapped mass of sediment in the PFC pore 

space is that this method only considers the entrapment of sediment in water produced 

from rainfall runoff.  Sediment may become trapped within the PFC pore space even 

when rainfall is not present.  This entrapment of solids during dry conditions is what has 

caused the PFC porosity to decrease over time.  The entrapment of particles during 

rainfall events most likely produces minimal decreases in porosity.  Although the results 

of this analysis do not provide any definite information on the removal mechanism of 

suspended solids from runoff, it does show that the observed change in porosity accounts 

for much more trapped sediment than is expected from water quality data.  If the opposite 

finding was observed, i.e. if the sediment mass from water quality data was greater than 

the change in porosity, then we could assume that PFC is simply reducing the source of 

pollutants from being washed off vehicles.  Since this finding did not occur, we can at 

least assume that the PFC has the capacity to retain 90% of the TSS concentration within 

the stormwater runoff. 
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Chapter Seven 

Conclusions 
 

 

7.1 Summary of Problem 
 Permeable Friction Course (PFC) is an innovative roadway material that allows 

rainfall to drain within the pavement as opposed to across the surface.  PFC is a layer of 

porous asphalt up to 50 mm thick overlain on a conventional impervious roadway surface 

so that the structural integrity of the entire roadway pavement system is not 

compromised.  Water flows by gravity at the underlying impervious boundary to the 

roadway shoulder.  The reduction of surface runoff improves driver safety by reducing 

splash and spray behind vehicles, improving visibility, reducing the chance of 

hydroplaning, and improving wet friction (i.e. decreasing stopping distance) when 

compared to conventional pavements.  In addition, PFC is also used for its environmental 

benefits as it has been shown to improve the stormwater quality and reduce the 

concentration of pollutants typically observed in highway runoff.  The Texas 

Commission on Environmental Quality (TCEQ) recently approved the use of PFC as a 

stormwater best management practice on uncurbed roads with a design speed of 80 km/hr 

or greater.  However, over time, the pore space of the PFC layer becomes clogged with 

trapped sediment resulting in an expected decrease in hydraulic properties (porosity and 

hydraulic conductivity).  This expected loss of drainage capacity over time suggests that 

the benefits of PFC may be lost at a faster rate than the structural deterioration of the 

pavement.  Therefore, accurate measurement of the hydraulic properties of PFC is 

necessary in order to ensure proper drainage capacity and maintain the driver safety and 

stormwater quality benefits associated with the use of PFC.  Specifically, a quick 

nondestructive field test is needed in order to measure the in-situ hydraulic conductivity 

at any given time so that the drainage capacity of the PFC layer can be assessed. 

 Hydraulic testing on PFC core specimens and roadway surfaces reveals a 

nonlinear flow relationship which can be characterized using the Forchheimer equation.  
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Nonlinear flow is created as a result of the large hydraulic conductivity and large pore 

space within the PFC layer as well as the large hydraulic gradients imposed on the core 

specimens during testing.  The two-dimensional flow pattern imposed during testing 

creates an additional complication which can be addressed through numerical modeling.  

Due to the two-dimensional diverging flow paths, a modified Forchheimer equation for 

the global conditions of the core specimen must be used.  The modified Forchheimer 

equation relates the change in head through the core specimen to the volumetric flow 

rate, as opposed to the original Forchheimer equation which relates the local hydraulic 

gradient and local specific discharge.  The modified Forchheimer coefficients obtained 

from experimental testing are related to the original Forchheimer coefficients through a 

finite difference numerical model of Forchheimer flow in two-dimensional cylindrical 

coordinates.  Proper modeling of the flow characteristics can relate the measurable PFC 

hydraulic characteristics to the hydraulic conductivity.  This is accomplished with the 

introduction of a scalar hydraulic conductivity ratio which allows for proper modeling of 

the original Forchheimer equation in two dimensions.  With an accurate measurement of 

hydraulic conductivity, the extent of clogging over the life of the pavement can be 

observed in order to determine when maintenance or replacement of the PFC layer, based 

on drainage capacity, is necessary.  Measurement of in-situ hydraulic conductivity is 

useful as an indicator as to when the driver safety and water quality benefits of the PFC 

layer are expected to decrease. 

 

 

7.2 Research Objective Conclusions 
 Four major research objectives are addressed in this dissertation and related 

research study.  The first objective addresses laboratory testing on PFC core specimens in 

order to measure its hydraulic properties: porosity and hydraulic conductivity.  The 

second objective develops a field test methodology for measurement of in-situ hydraulic 

conductivity.  The third objective investigates a numerical model of the two-dimensional 

nonlinear flow problem necessary to relate the measureable hydraulic characteristics to 
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the true hydraulic conductivity.  The fourth objective uses nonparametric statistical tests 

to analyze the measured hydraulic properties of PFC over time and at different locations 

in order to determine any trends or changes in the data which may give an indication of 

when the benefits of PFC are expected to degrade due to clogging of the pore space by 

trapped sediment. 

 

7.2.1 Conclusions for Evaluation of Hydraulic Properties in the Laboratory 

 The first research objective investigates laboratory testing on PFC core specimens 

extracted from three roadways (Loop 360, FM 1431, and RR 620) around Austin, Texas 

(TX) over the past four years (2007 to 2010) and provides a methodology for determining 

the porosity and hydraulic characteristics of flow through the core specimen.  The 

extraction of core specimens is accomplished by saw-cutting the roadway surface, which 

results in a cylindrical core specimen.  The PFC core specimen porosity is determined 

using either an image analysis method or a submerged unit weight method.  The 

submerged unit weight method is preferred as this method leaves the core intact and 

allows for additional hydraulic testing to be conducted. 

 Hydraulic testing of PFC core specimens in the laboratory consists of a series of 

constant head permeability tests.  The large hydraulic gradients imposed on the core 

specimen during testing, combined with the large pore volumes in the PFC cores, result 

in a nonlinear flow relationship which can be modeled using the Forchheimer equation.  

The Forchheimer equation was chosen to model the nonlinear effects due to its ability to 

approximate Darcy’s law for low hydraulic gradients and/or low specific discharge.  The 

upper and lower no flow boundary conditions imposed on the core specimen create a 

two-dimensional cylindrical flow pattern which results in an additional complication due 

to the inability to directly measure the hydraulic gradient or specific discharge.  This 

problem can be addressed by investigating the global conditions of the core specimen 

through the use of a modified Forchheimer equation (see Equation (3.4)).  The modified 

Forchheimer coefficients can be determined from the constant head tests but give no 

indication of the hydraulic conductivity. 
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 The PFC core specimen hydraulic conductivity can be determined through the use 

of numerical modeling.  The result is a well defined test procedure for determining the 

hydraulic characteristics of two-dimensional nonlinear flow through PFC core specimens, 

which is both repeatable and reliable.  Data collected on PFC core specimens over four 

years is reported.  Core porosity values range from roughly 12% to 23%.  A series of 

laboratory constant head tests allow for the determination of two modified Forchheimer 

coefficients, α and β, with the following ranges: α = 0.05 to 5.76 s/cm2 and β = 0.002 to 

3.01 s2/cm5.  Furthermore, falling head tests can be conducted on the core specimens, 

which result in roughly the same modified Forchheimer coefficients as determined from 

the constant head tests.  Through numerical modeling, the modified Forchheimer 

coefficients can be related to the original Forchheimer coefficients in order to accurately 

determine the core specimen isotropic hydraulic conductivity. 

 

7.2.2 Conclusions for Evaluation of Hydraulic Conductivity in the Field 

 Field testing on the PFC roadway surface can be conducted with a falling head 

test methodology in order to determine the in-situ hydraulic characteristics, which is the 

goal of the second research objective.  In-situ measurement of the hydraulic conductivity 

is necessary in order to ensure proper drainage capacity of the PFC layer.  If the hydraulic 

conductivity decreases due to trapped sediment in the pore space, the driver safety and 

water quality benefits are expected to degrade.  Therefore, periodic measurement of in-

situ hydraulic conductivity is required.  A field test apparatus has been developed at the 

Center for Research in Water Resources (CRWR) specifically for this research study 

which creates a similar test setup and boundary conditions used in the laboratory.  The 

upper no flow boundary is created with silicon vacuum grease placed on a metal support 

base, and the lower no flow boundary is imposed by the underlying impervious roadway 

surface.  These boundary conditions result in two-dimensional cylindrical flow and force 

water to flow within the PFC pore space as opposed to on the roadway surface.  The 

global flow characteristics can also be modeled with the modified Forchheimer equation 

for the two-dimensional flow pattern observed in the field.  The result of the second 
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research objective not only proposes a well defined test procedure for determining the in-

situ hydraulic conductivity, but also proposes a standard piece of equipment used for 

measurement purposes.  This equipment is both simple in design and requires very little 

instrumentation for proper measurements.  The use of a stopwatch with a split function is 

the only instrumentation needed in order to record the three time-depth measurements 

used to determine the modified Forchheimer coefficients, α and β, through Equation 

(4.1).  Therefore, any field technician can easily use this field test to accurately determine 

the in-situ hydraulic conductivity of the PFC layer. 

 Upon completion of the falling head test, the modified Forchheimer coefficients 

can be determined which have the following ranges: α = 0.01 to 0.14 s/cm2 and β = 

1.2×10-4 to 2.5×10-3 s2/cm5.  The simple, nondestructive field test proposed here is 

needed due to the additional time and effort needed to conduct tests on core specimens in 

the laboratory.  Furthermore, extraction of the core specimens for lab testing may disturb 

the PFC layer resulting in inaccurate hydraulic data.  The in-situ field test is much 

quicker and does not disturb the PFC layer. 

 

7.2.3 Conclusions for Numerical Modeling of Hydraulic Characteristics 

 The third research objective investigates numerical modeling of the continuity 

equation in two-dimensional cylindrical coordinates in order to relate the experimentally 

measured modified Forchheimer coefficients, α and β, to the original Forchheimer 

coefficients, a = 1/K and b, for determination of the hydraulic conductivity of a PFC core 

specimen.  Due to the nonlinear form of the Forchheimer equation in two dimensions, 

additional efforts must be made in order to properly model the flow.  Previous research 

has not fully addressed nonlinear flow in two dimensions.  Proper modeling of the flow is 

accomplished through the introduction of a new scalar hydraulic conductivity ratio in 

order to allow for appropriate invariance properties of the nonlinear equations.  The 

numerical model uses a finite difference scheme to solve the continuity equation in two-

dimensional cylindrical coordinates.  Expansion ratios are used in both the vertical and 
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radial directions in order to refine the grid near the inflow boundary, where the largest 

hydraulic gradients occur. 

 Input parameters to the numerical model are the core dimensions (RRs, RcR , and bc), 

the original Forchheimer coefficients (a and b), and the standpipe head (hs).  Both linear 

and nonlinear solutions of the head distribution through a core specimen are provided.  

The linear case uses Darcy’s law and is solved with an implicit Crank-Nicolson scheme.  

The linear numerical model results are compared to an approximate analytic solution 

provided by Carslaw and Jaeger (1959) in order to ensure the model is producing 

desirable results.  The nonlinear case models the Forchheimer equation and uses the 

iterative Gauss-Seidel method where the initial head value used to iterate about is the 

solution to the linear model.  With the nonlinear head distribution determined, the global 

flow characteristics can be calculated.  The outflow rate is determined from the outflow 

hydraulic gradient, and the results are fit to the modified Forchheimer equation using a 

regression equation to determine α and β.  In addition, the nonlinear model results 

approach the linear Darcy flow case for small values of standpipe head and/or small 

nonlinear coefficients.  Therefore, the Forchheimer equation approximates Darcy’s law 

for low hydraulic gradients or specific discharges.  This feature of the Forchheimer 

equation is the basis for choosing this equation to model the nonlinear flow effects.  The 

value of the scalar hydraulic conductivity ratio provides information as to the location in 

the core specimen in which nonlinear effects are significant.  As expected the hydraulic 

conductivity ratio shows the large nonlinear effects occur directly under the standpipe at 

the inflow boundary. 

 The results of the nonlinear numerical model are used to determine a relationship 

between the modified and original Forchheimer coefficients for a variety of core 

geometries.  The two linear coefficients, α and a, as well as the two nonlinear 

coefficients, β and b, are linearly related, where the slope of this relationship depends on 

the dimensions of the core specimen: RRs, RcR , and bc.  Regression equations using a power 

law model were developed from 64 numerical simulations of the core geometry and 

provide useful relationships for estimating the original Forchheimer coefficients based on 
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the measured modified Forchheimer coefficients.  Finally, regression equations 

developed specifically for the CRWR field test apparatus used in this research allow for 

accurate measurement of the in-situ hydraulic conductivity.  These regression equations 

provide very accurate estimates of the linear Forchheimer coefficient, but produce 

slightly larger errors in the estimate of the nonlinear Forchheimer coefficient.  The 

estimates of the original Forchheimer coefficients obtained from the regression equations 

can be used as inputs to the nonlinear numerical model in order to determine the 

corresponding modified Forchheimer coefficients.  A comparison of the modified 

Forchheimer coefficients obtained from the numerical model and the coefficients 

obtained from experimental data result in errors within an acceptable range of 

uncertainty.  This allows for an estimate of the hydraulic conductivity and nonlinear 

original Forchheimer coefficient based on the core geometry and measured modified 

Forchheimer coefficients from experimental data. 

 For the PFC core specimens tested in the laboratory, the hydraulic conductivity K 

and nonlinear Forchheimer coefficient b have the following ranges: K = 0.02 to 2.87 cm/s 

and b = 0.47 to 640 s2/cm2.  The in-situ hydraulic conductivity determined using the 

CRWR field test result in the following range of hydraulic conductivity and nonlinear 

Forchheimer coefficient: K = 0.6 to 3.6 cm/s and b = 0.31 to 5.21 s2/cm2. 

 

7.2.4 Conclusions for Analysis of Hydraulic Properties 

 With four years of porosity and hydraulic conductivity data collected at three 

roadway sites around Austin, TX, a statistical analysis of the data can be conducted to 

determine any trends or changes in the data as addressed in the fourth research objective.  

Nonparametric statistical tests must be conducted on the data due to the small sample size 

and inability to show the data are normally distributed.  The two nonparametric tests used 

are the Kruskal-Wallis test and Mann-Whitney test.  The results of these tests show there 

have been statistically significant observed decreases in porosity at each roadway 

location over time.  This suggests that the pore space of the PFC is becoming clogged 

with trapped sediment.  In addition, all three roadways have different porosity, suggesting 
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that the varying traffic conditions, construction methods, and environmental or 

hydrologic conditions at each site affect the porosity of the PFC layer.  However, despite 

the observed statistical decrease in porosity over time, there has been no observed 

statistically significant decrease in hydraulic conductivity over time.  Although the 

porosity is decreasing due to trapped sediment, this is not yet causing a significant 

decrease in hydraulic conductivity over time.  Each of the three roadways has a different 

hydraulic conductivity from the other roadways, but these values are not changing in time 

due primarily to the large variability in hydraulic conductivity data.  Furthermore, water 

quality monitoring from two roadway locations conducted by other researchers has 

shown the persistence of improved stormwater quality when compared to conventional 

roadway surfaces.  The measurement of hydraulic conductivity is used as an indicator of 

when these water quality benefits will decrease.  Since there has not been an observed 

decrease in hydraulic conductivity over time and water quality monitoring shows 

continued improved stormwater runoff quality to date, an indication of when we expect to 

see a degradation in drainage benefits due to a decrease in hydraulic conductivity has not 

been observed. 

 An estimate of the volume of sediment trapped within the pore space is presented 

based on the volume of sediment needed to result in the observed decrease in porosity 

versus the volume of sediment removed from stormwater runoff.  This estimate suggests 

that the removal of total suspended solids from stormwater runoff does not provide a 

large enough sediment volume to result in the observed decrease in porosity over time.  

Therefore, the majority of the observed decrease in porosity is due to dry deposition of 

sediment on the roadway surface between rainfall events.  Finally, the measured original 

Forchheimer coefficients are compared to empirical equations presented in the literature 

in order to determine the applicability of the empirical equations for use with PFC.  Only 

one empirical equation, presented by Kadlec and Knight (1996), for estimating the linear 

original Forchheimer coefficient produced reasonable results.  Therefore, the 

Forchheimer coefficients presented in previous literature do not generally apply to use in 

PFC materials.  In conclusion, nonparametric statistical tests conducted on the collected 
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hydraulic data of PFC core specimens show that the measured porosity has decreased 

over time, but no changes in hydraulic conductivity have been observed to date. 

 The results of this dissertation and associated research study are summarized here.  

A well-defined methodology for measurement of porosity and hydraulic conductivity on 

PFC core specimens in the laboratory using a series of constant head tests is presented.  

Testing involves two-dimensional nonlinear cylindrical flow and is modeled with a 

modified Forchheimer equation.  In order to measure the in-situ hydraulic conductivity, a 

field test apparatus has been developed using a falling head test with similar boundary 

conditions created in the laboratory.  The field test methodology is both simple and 

nondestructive allowing for accurate measurement of the modified Forchheimer 

coefficients.  Numerical modeling of the Forchheimer equation in two-dimensional 

cylindrical coordinates is accomplished through the introduction of a scalar hydraulic 

conductivity ratio.  This allows for a relationship between the measured modified 

Forchheimer coefficients and the original Forchheimer coefficients to be determined.  

Regression equations developed on a range of core dimensions allows for an estimate of 

the original Forchheimer coefficients from measured experimental data.  The results of 

the numerical model also show where nonlinear flow effects are dominate within the core 

specimen and provide an improved method of modeling nonlinear flow in two 

dimensions.  Finally, a statistical analysis on the measured hydraulic data suggest a 

decrease in porosity over time due to the entrapment of sediment, but the measured 

hydraulic conductivity has remained constant through time. 

 

 

7.3 Related Research and Future Work 
 Additional research is currently being conducted on other aspects of the use of 

PFC by researchers at The University of Texas at Austin.  Stormwater quality monitoring 

of three PFC sites on two separate roadways has shown that the improved water quality 

produced by PFC has persisted for nearly six years of operation.  This research has been 

the basis for the recent approval of PFC as a new stormwater best management practice 
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by TCEQ in the State of Texas.  It should be noted that no maintenance of the PFC layer 

has been conducted during this time.  Both water quality and rainfall runoff data have 

been collected at one of the stormwater monitoring sites.  These data show the measured 

inflow rate from rainfall together with the resulting outflow rate after the water passes 

through the PFC layer.  Research is also currently being conducted in the development of 

a finite volume numerical model of the entire roadway surface.  This model, named 

Permeable Friction Course Drainage Code (PERFCODE) and described by Eck (2010), 

couples subsurface porous media flow together with surface runoff.  The goal of 

PERFCODE is to model a time varying rainfall event for a given roadway geometry in 

order to determine the water surface elevation within the PFC layer, as well as to observe 

if, when, and where surface runoff will occur.  This code is useful for design purposes to 

determine the required PFC thickness needed to ensure surface runoff does not occur for 

a given roadway width and slope.  The model can be validated with collected rainfall 

runoff data at the stormwater monitoring site.  An important input to this model is the 

porosity and hydraulic conductivity of the PFC layer.  The present research study defines 

the test methodology needed in order to determine these input parameters. 

 With respect to the current research study, improvements can be made by 

incorporating an anisotropic hydraulic conductivity.  The current analysis assumes 

isotropic conditions and proves to work well for the data collected.  However, an 

improvement to this method would be to allow for anisotropic conditions in the event that 

there is a significant impact due to these effects.  Fully incorporating anisotropic effects 

would most likely have a minimal impact on the results due to the relatively thin PFC 

layers, but would be useful for other applications such as nonlinear modeling in aquifer 

systems.  In addition, the finite difference numerical model could be improved by using a 

finite volume approach.  This might provide an improvement in the flow rate 

calculations, but similar results and trends should be expected. 

 There are several areas in which future research can be conducted with respect to 

proper use of PFC.  One such area is to investigate effective maintenance methods.  

Currently, the PFC layer is not cleaned at regular intervals.  Although current research 
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has shown the drainage benefits will persist without cleaning maintenance, there is a 

possibility that if the PFC layer becomes clogged, cleaning will be required.  A second 

need for additional research is to determine the actual removal mechanisms with which 

PFC improves the stormwater quality.  There has been debate over whether the PFC layer 

is acting as a filter in removing pollutants or simply reducing the source of pollutants 

from being washed from vehicles.  Accurate measurement of both inflow and outflow 

pollutant concentrations will help determine the removal mechanisms which are taking 

place within the PFC layer.  Additional research is needed in the winter maintenance 

practices of PFC as well as the impacts of freezing conditions on the PFC layer.  

Although questions remain about the practices and applications of PFC, it has proven to 

be effective in improving driving conditions during rainfall events, as well as improving 

stormwater quality runoff.  For these reasons, PFC is an innovative roadway material that 

should be further investigated by researchers and practitioners in order to fully take 

advantage of these benefits.  
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Appendix A 

Numerical Model Code 
 

 

A.1 Module of Constants 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                            /////////////////////////////  ! 
!                                                                 BEGIN MODULE: CONSTANTS                                                                           ! 
!  ///////////////////////////                                                                                            \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
MODULE constants 
 
   ! This module is used by the main program and subroutines. 
   ! This module contains: 
   !           PFC core dimensions 
   !           Radial direction number of elements and initial step size 
   !           Vertical direction number of elements and expansion ratio 
   !           Time discretization size 
   !           Original Forchheimer coefficients 
   !           Convergence criteria values 
   !           Other miscellaneous constants 
 
   IMPLICIT NONE 
   SAVE 
 
   ! Define PFC core dimensions 
   CHARACTER*7 :: CoreID = '1‐i‐S'          ! Core identification number 
   REAL, PARAMETER :: Rs = 2.5               ! Standpipe radius (cm) 
   REAL, PARAMETER :: Rc = 10.               ! Core radius (cm) 
   REAL, PARAMETER :: bc = 5.                 ! Core thickness (cm) 
   REAL, PARAMETER :: hmax = 10.         ! Standpipe head (cm) 
 
   ! Define discretization size 
   INTEGER, PARAMETER :: nrs = 10              ! Number of elements under the standpipe in the radial direction 
   INTEGER, PARAMETER :: nrc = 30              ! Number of elements outside the standpipe in the radial direction 
   INTEGER, PARAMETER :: nr = nrs + nrc     ! Total number of elements in the radial direction 
   REAL, PARAMETER :: dr = 0.15                   ! Element step size at location of standpipe (cm) 
 
   REAL, PARAMETER :: rez = 1.1                   ! Expansion ratio for vertical spacing 
   INTEGER, PARAMETER :: nz = 40               ! Number of elements in the vertical direction 
 
   INTEGER, PARAMETER :: ntd = 99999        ! Maximum number of time steps for Darcy solution 
   INTEGER, PARAMETER :: ntf = 99999        ! Maximum number of iterations for Forchheimer solution 
   REAL, PARAMETER :: dtd = 1. / 100.          ! Time step size for Darcy solution 
 
   ! Define original Forchheimer coefficients 
   REAL, PARAMETER :: aa = 1.                       ! Original linear Forchheimer coefficient (s/cm) 
   REAL, PARAMETER :: bb = 10.                    ! Original nonlinear Forchheimer coefficient (s2/cm2) 
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   ! Define other miscellaneous constants 
   REAL, PARAMETER :: pi = 3.14159265359    ! Pi 
   REAL, PARAMETER :: epsd = 1.e‐6                 ! Convergence criteria for Darcy solution 
   REAL, PARAMETER :: epsf = 1.e‐6                  ! Convergence criteria for Forchheimer solution 
   INTEGER, PARAMETER :: ni = 100                  ! Number of image pairs used for method of images analytic solution 
 
END MODULE constants 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                        //////////////////////////////  ! 
!                                                                      END MODULE: CONSTANTS                                                                          ! 
!  ////////////////////////////                                                                                        \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 

 

 

A.2 Main Program 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                     ///////////////////////////////  ! 
!                                                                       BEGIN PROGRAM: MAIN                                                                              ! 
!  /////////////////////////////                                                                                     \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
PROGRAM main 
 
   ! This program uses the constants module. 
   ! This program calls the following subroutines: 
   !           S_MOIHead 
   !           S_DarcyHead 
   !           S_ForchHead 
   !           S_PhiFunc 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Declare additional variables as needed 
   CHARACTER*12 file10 
   CHARACTER*14 file20 
   CHARACTER*14 file30 
   CHARACTER*12 file40 
   CHARACTER*14 file50 
   CHARACTER*8 date 
   CHARACTER*10 time 
 
   REAL, ALLOCATABLE :: radi(:) 
   REAL, ALLOCATABLE :: vert(:) 
   REAL, ALLOCATABLE :: moi(:,:) 
   REAL, ALLOCATABLE :: hd(:,:) 
   REAL, ALLOCATABLE :: hf3(:,:,:) 
   REAL, ALLOCATABLE :: hf(:,:) 
   REAL, ALLOCATABLE :: phi(:,:) 
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   REAL rer1, rer2 
   REAL dz, dx 
   INTEGER i, j 
   INTEGER td, tf 
   REAL AQinL, AQoutL, DQinL, DQoutL, FQinL, FQoutL 
   REAL AQinN, AQoutN, DQinN, DQoutN, FQinN, FQoutN 
   REAL AQcjL, AQcjN, DQcjL, DQcjN, FQcjL, FQcjN 
   REAL AsfL, DsfL, FsfL 
   REAL AsfN, DsfN, FsfN 
 
   ! Record the date and time of compilation 
   CALL date_and_time(date,time) 
 
   ! Create .csv files for output 
   file10 = '3HeadMOI.csv' 
   file20 = '3HeadDarcy.csv' 
   file30 = '3HeadForch.csv' 
   file40 = '3PhiFunc.csv' 
   file50 = '3FlowRates.csv' 
 
   OPEN(10, FILE = file10, STATUS = 'unknown') 
   OPEN(20, FILE = file20, STATUS = 'unknown') 
   OPEN(30, FILE = file30, STATUS = 'unknown') 
   OPEN(40, FILE = file40, STATUS = 'unknown') 
   OPEN(50, FILE = file50, STATUS = 'unknown') 
 
   ! Define direction vector dimensions 
   ALLOCATE (radi(0:nr)) 
   ALLOCATE (vert(0:nz)) 
 
   ! Define array dimensions 
   ALLOCATE (moi(0:nr,0:nz)) 
   ALLOCATE (hd(0:nr,0:nz)) 
   ALLOCATE (hf3(0:nr,0:nz,0:ntf)) 
   ALLOCATE (hf(0:nr,0:nz)) 
   ALLOCATE (phi(0:nr,0:nz)) 
 
 
   !=======================================================================================! 
   !                                                               DEFINE SPACE AND TIME VECTORS                                                                   ! 
   !=======================================================================================! 
 
   ! Calculate initial step size based on expansion factor (cm) 
   IF (rez .EQ. 1.) THEN 
      dz = bc / nz 
   ELSE 
      dz = bc * (1. ‐ rez) / (1. ‐ rez ** nz) 
   END IF 
 
   ! Calculate expansion ratio under standpipe 
   rer1 = 1.1 
   DO i = 1,25 
      rer1 = rer1 + ((1. ‐ rer1) / (1. ‐ rer1 ** nrs) ‐ dr / Rs) * & 
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           & (rer1 ** nrs ‐ 1.) ** 2 / (rer1 ** nrs * (nrs ‐ 1.) ‐ rer1 ** (nrs ‐ 1) * nrs + 1.) 
   END DO 
   ! Calculate expansion ratio outside of standpipe 
   rer2 = 1.1 
   DO i = 1,25 
      rer2 = rer2 + ((1. ‐ rer2) / (1. ‐ rer2 ** nrc) ‐ dr / (Rc ‐ Rs)) * & 
           & (rer2 ** nrc ‐ 1.) ** 2 / (rer2 ** nrc * (nrc ‐ 1.) ‐ rer2 ** (nrc ‐ 1) * nrc + 1.) 
   END DO 
 
   ! Define radius vector 
   radi(nrs) = Rs 
   DO i = nrs‐1,1,‐1 
      radi(i) = radi(i+1) ‐ dr * rer1 ** (nrs‐1 ‐ i) 
   END DO 
   DO i = nrs+1,nr 
      radi(i) = radi(i‐1) + dr * rer2 ** (i ‐ (nrs+1)) 
   END DO 
   radi(0) = 0. 
   radi(nr) = Rc 
 
   ! Define vertical vector 
   vert(0) = 0. 
   DO j = 1,nz 
      vert(j) = vert(j‐1) + dz * rez ** (j‐1) 
   END DO 
 
 
   !=======================================================================================! 
   !                               DETERMINE HEAD DISTRIBUTIONS SOLUTIONS USING SUBROUTINES                                      ! 
   !=======================================================================================! 
 
   ! Use subroutine S_MOIHead to determine the analytic head distribution. 
   ! The result will be stored in the moi array. 
   CALL S_MOIHead(radi, vert, moi) 
 
      DO j = 0,nz 
         DO i = 0,nr 
            moi(i,j) = hmax * moi(i,j) 
         END DO 
      END DO 
 
   ! Use subroutine S_DarcyHead to determine the Darcy head distribution. 
   ! The result will be stored in the hd array. 
   CALL S_DarcyHead(radi, vert, hd, td) 
 
      DO j = 0,nz 
         DO i = 0,nr 
            hd(i,j) = hmax * hd(i,j) 
         END DO 
      END DO 
 
   ! Use subroutine S_ForchHead to determine the Forchheimer head distribution. 
   ! The result will be stored in the hf array. 
   ! The Darcy array is used as an input since this is used as the initial condition. 
   CALL S_ForchHead(radi, vert, hd, hf3, tf) 
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      ! Put the converged Forchheimer solution into a 2‐D array 
      DO j = 0,nz 
         DO i = 0,nr 
            hf(i,j) = hf3(i,j,tf) 
         END DO 
      END DO 
 
   ! Use subroutine S_PhiFunc to determine the Phi function distribution. 
   ! The result will be stored in the phi array. 
   CALL S_PhiFunc(radi, vert, hf, phi) 
 
 
   !=======================================================================================! 
   !                                              CALCULATE SHAPE FACTORS FOR EACH SOLUTION                                                        ! 
   !=======================================================================================! 
 
   ! Use subroutine S_LinearSF to determine the linear shape factor for each solution. 
   CALL S_LinearSF(radi, vert, moi, AsfL) 
   CALL S_LinearSF(radi, vert, hd, DsfL) 
   CALL S_LinearSF(radi, vert, hf, FsfL) 
 
   ! Use subroutine S_NonlinearSF to determine the nonlinear shape factor for each solution. 
   CALL S_NonlinearSF(radi, vert, moi, AsfN) 
   CALL S_NonlinearSF(radi, vert, hd, DsfN) 
   CALL S_NonlinearSF(radi, vert, hf, FsfN) 
 
 
   !=======================================================================================! 
   !                                                  CALCULATE FLOW RATES FOR EACH SOLUTION                                                          ! 
   !=======================================================================================! 
 
   ! Use subroutine S_LinearQout to determine the outflow rate using Darcy's Law. 
   CALL S_LinearQout(radi, vert, moi, AQoutL) 
   CALL S_LinearQout(radi, vert, hd, DQoutL) 
   CALL S_LinearQout(radi, vert, hf, FQoutL) 
 
   ! Use subroutine S_NonlinearQout to determine the outflow rate using Forchheimer's Equation. 
   CALL S_NonlinearQout(radi, vert, moi, AQoutN) 
   CALL S_NonlinearQout(radi, vert, hd, DQoutN) 
   CALL S_NonlinearQout(radi, vert, hf, FQoutN) 
 
   ! Calculate Carslaw and Jaeger flow rate from linear shape factor 
   AQcjL = 4. * Rs * AsfL / aa * hmax 
   DQcjL = 4. * Rs * DsfL / aa * hmax 
   FQcjL = 4. * Rs * FsfL / aa * hmax 
 
   ! Calculate Carslaw and Jaeger flow rate from nonlinear shape factor 
   AQcjN = 4. * Rs * AsfN / aa * hmax 
   DQcjN = 4. * Rs * DsfN / aa * hmax 
   FQcjN = 4. * Rs * FsfN / aa * hmax 
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   !=======================================================================================! 
   !                                                       WRITE TO ANALYTIC HEAD SOLUTION FILE                                                             ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (10,1001) date, time, file10, nrs, nr, nz, CoreID, Rs, bc, Rc, AsfL, AsfN, aa, bb, rer1, rer2, rez 
   1001 FORMAT ('Date,', a8, /, 'Time,', a10, /, /, 'Method of Images Analytic Solution', /, & 
               & 'Filename,', a12, /, 'Nrs=,', i4, /, 'Nr=,', i4, / 'Nz=,', i4, /, /,        & 
               & 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', /, 'bc=,', f8.4, ',cm', /, 'Rc=,',  & 
               & f8.4, ',cm', /, 'hs=,1.0,cm', /, 'AsfL=,', f10.8, /, 'AsfN=,', f14.8,       & 
               & /, 'aa=,', f7.4, ',s/cm', /, 'bb=,', f7.4, ',s2/cm2', /, 'rer1=,', f10.8, /,& 
               & 'rer2=,', f10.8, /, 'rez=,', f10.8) 
 
   ! Write Flow Rates 
   WRITE (10,1002) AQcjL, AQoutL, AQinL, AQcjN, AQoutN, AQinN 
   1002 FORMAT ('QcjL=,', f14.8, ',cm3/s', /, 'QoutL=,', f14.8, ',cm3/s', /,   & 
               & 'QinL=,', f14.8, ',cm3/s', /, 'QcjN=,', f14.8, ',cm3/s', /,   & 
               & 'QoutN=,', f14.8, ',cm3/s', /, 'QinN=,', f14.8, ',cm3/s') 
 
   ! Write method of images analytic solution to output file 
   WRITE (10,1003) radi(:) 
   1003 FORMAT (/, ',', 1000(f13.6, ',')) 
   DO j = 0,nz 
      WRITE (10,1004) vert(j), moi(:,j) 
      1004 FORMAT (f13.6, ',', 1000(f18.9, ',')) 
   END DO 
 
 
   !=======================================================================================! 
   !                                                              WRITE TO DARCY HEAD SOLUTION FILE                                                            ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (20,2001) date, time, file20, nrs, nr, nz, dtd, REAL(td)*dtd, & 
                 & CoreID, Rs, bc, Rc, DsfL, DsfN, aa, bb, rer1, rer2, rez 
   2001 FORMAT ('Date,', a8, /, 'Time,', a10, /, /, 'Darcy Head Solution', /,                & 
               & 'Filename,', a14, /, 'Nrs=,', i4, /, 'Nr=,', i4, /, 'Nz=,', i4, /,          & 
               & 'Dt=,', f8.6, ',sec', /, 'Steady State=,', f10.5, ',sec', /, /,             & 
               & 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', /, 'bc=,', f8.4, ',cm', /, 'Rc=,',  & 
               & f8.4, ',cm', /, 'hs=,1.0,cm', /, 'DsfL=,', f10.8, /, 'DsfN=,', f14.8,       & 
               & /, 'aa=,', f7.4, ',s/cm', /, 'bb=,', f7.4, ',s2/cm2', /, 'rer1=,', f10.8, /,& 
               & 'rer2=,', f10.8, /, 'rez=,', f10.8) 
 
   ! Write Flow Rates 
   WRITE (20,2002) DQcjL, DQoutL, DQinL, DQcjN, DQoutN, DQinN 
   2002 FORMAT ('QcjL=,', f14.8, ',cm3/s', /, 'QoutL=,', f14.8, ',cm3/s', /,   & 
               & 'QinL=,', f14.8, ',cm3/s', /, 'QcjN=,', f14.8, ',cm3/s', /,   & 
               & 'QoutN=,', f14.8, ',cm3/s', /, 'QinN=,', f14.8, ',cm3/s') 
 
   ! Write Darcy head solution to output file 
   WRITE (20,2003) radi(:) 
   2003 FORMAT (/, ',', 1000(f13.6, ',')) 
   DO j = 0,nz 
      WRITE (20,2004) vert(j), hd(:,j) 
      2004 FORMAT (f13.6, ',', 1000(f18.9, ',')) 
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   END DO 
 
 
   !=======================================================================================! 
   !                                                   WRITE TO FORCHHEIMER HEAD SOLUTION FILE                                                        ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (30,3001) date, time, file30, nrs, nr, nz, tf,                                      & 
                 & CoreID, Rs, bc, Rc, FsfL, FsfN, aa, bb, rer1, rer2, rez 
   3001 FORMAT ('Date,', a8, /, 'Time,', a10, /, /, 'Forchheimer Head Solution', /,          & 
               & 'Filename,', a14, /, 'Nrs=,', i4, /, 'Nr=,', i4, / 'Nz=,', i4, /,           & 
               & '# Iterations,', i6, /, /,                                                  & 
               & 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', /, 'bc=,', f8.4, ',cm', /, 'Rc=,',  & 
               & f8.4, ',cm', /, 'hs=,1.0,cm', /, 'FsfL=,', f10.8, /, 'FsfN=,', f14.8,       & 
               & /, 'aa=,', f7.4, ',s/cm', /, 'bb=,', f7.4, ',s2/cm2', /, 'rer1=,', f10.8, /,& 
               & 'rer2=,', f10.8, /, 'rez=,', f10.8) 
 
   ! Write Flow Rates 
   WRITE (30,3002) FQcjL, FQoutL, FQinL, FQcjN, FQoutN, FQinL 
   3002 FORMAT ('QcjL=,', f14.8, ',cm3/s', /, 'QoutL=,', f14.8, ',cm3/s', /,   & 
               & 'QinL=,', f14.8, ',cm3/s', /, 'QcjN=,', f14.8, ',cm3/s', /,   & 
               & 'QoutN=,', f14.8, ',cm3/s', /, 'QinN=,', f14.8, ',cm3/s') 
 
   ! Write Forchheimer head solution to output file 
   WRITE (30,3003) radi(:) 
   3003 FORMAT (/, ',', 1000(f13.6, ',')) 
   DO j = 0,nz 
      WRITE (30,3004) vert(j), hf(:,j) 
      3004 FORMAT (f13.6, ',', 1000(f18.9, ',')) 
   END DO 
 
 
   !=======================================================================================! 
   !                                                                WRITE TO PHI FUNCTION FILE                                                                           ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (40,4001) date, time, file40, nrs, nr, nz,                                          & 
                 & CoreID, Rs, bc, Rc, hmax, FsfL, FsfN, aa, bb, rer1, rer2, rez 
   4001 FORMAT ('Date,', a8, /, 'Time,', a10, /, /, 'Phi Function', /,                       & 
               & 'Filename,', a12, /, 'Nrs=,', i4, /, 'Nr=,', i4, /, 'Nz=,', i4, /, /,       & 
               & 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', /, 'bc=,', f8.4, ',cm', /, 'Rc=,',  & 
               & f8.4, ',cm', /, 'hs=,', f7.4, ',cm', /, 'FsfL=,', f10.8, /, 'FsfN=,', f14.8,& 
               & /, 'aa=,', f7.4, ',s/cm', /, 'bb=,', f7.4, ',s2/cm2', /, 'rer1=,', f10.8, /,& 
               & 'rer2=,', f10.8, /, 'rez=,', f10.8) 
 
   ! Write phi function to output file 
   WRITE (40,4002) radi(:) 
   4002 FORMAT (/, ',', 1000(f13.6, ',')) 
   DO j = 0,nz 
      WRITE (40,4003) vert(j), phi(:,j) 
      4003 FORMAT (f13.6, ',', 1000(f18.9, ',')) 
   END DO 
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   !=======================================================================================! 
   !                                                                      WRITE TO FLOW RATE FILE                                                                          ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (50,5001) date, time, file50, nrs, nr, nz,                                          & 
                 & CoreID, Rs, bc, Rc, rer1, rer2, rez, hmax, aa, bb 
   5001 FORMAT ('Date,', a8, /, 'Time,', a10, /, /, 'Flow Rates', /,                         & 
               & 'Filename,', a14, /, 'Nrs=,', i4, /, 'Nr=,', i4, /, 'Nz=,', i4, /, /,       & 
               & 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', /, 'bc=,', f8.4, ',cm', /, 'Rc=,',  & 
               & f8.4, ',cm', /, 'rer1=,', f10.8, /, 'rer2=,', f10.8, /, 'rez=,', f10.8, /,  & 
               & /, 'hs=,', f7.4, ',cm', /, 'aa=,', f7.4, ',s/cm', /, 'bb=,', f7.4, ',s2/cm2') 
 
   ! Write linear flow rates to output file 
   WRITE (50,5002) AQcjL, AQoutL, AQinL, DQcjL, DQoutL, DQinL, FQcjL, FQoutL, FQinL 
   5002 FORMAT (/, 'Linear Flow Rates', /, 'AQcjL,', f14.8, /, 'AQoutL,', f14.8, /,             & 
               & 'AQinL,', f14.8, /, /, 'DQcjL,', f14.8, /, 'DQoutL,', f14.8, /,                & 
               & 'DQinL,', f14.8, /, /, 'FQcjL,', f14.8, /, 'FQoutL,', f14.8, /, 'FQinL,', f14.8) 
 
   ! Write nonlinear flow rates to output file 
   WRITE (50,5003) AQcjN, AQoutN, AQinN, DQcjN, DQoutN, DQinN, FQcjN, FQoutN, FQinN 
   5003 FORMAT (/, 'Nonlinear Flow Rates', /, 'AQcjN,', f14.8, /, 'AQoutN,', f14.8, /,          & 
               & 'AQinN,', f14.8, /, /, 'DQcjN,', f14.8, /, 'DQoutN,', f14.8, /,                & 
               & 'DQinN,', f14.8, /, /, 'FQcjN,', f14.8, /, 'FQoutN,', f14.8, /, 'FQinN,', f14.8) 
 
   ! Write shape factors to output file 
   WRITE (50,5004) AsfL, DsfL, FsfL, AsfN, DsfN, FsfN 
   5004 FORMAT (/, 'Linear Shape Factors', /, 'AsfL,', f10.8, /, 'DsfL,', f10.8, /,          & 
               & 'FsfL,', f10.8, /, /, 'Nonlinear Shape Factors', /, 'AsfN,', f14.8, /,      & 
               & 'DsfN,', f14.8, /, 'FsfN,', f14.8) 
 
 
   CLOSE(10) 
   CLOSE(20) 
   CLOSE(30) 
   CLOSE(40) 
   CLOSE(50) 
 
END PROGRAM main 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                  ////////////////////////////////  ! 
!                                                                        END PROGRAM: MAIN                                                                                ! 
!  //////////////////////////////                                                                                 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
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A.3 Subroutine to Determine Method of Images Solution 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                  ///////////////////////////  ! 
!                                                              BEGIN SUBROUTINE: S_MOIHEAD                                                                     ! 
!  /////////////////////////                                                                                                  \\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the head distribution based on the analytic method of images. 
SUBROUTINE S_MOIHead(r, z, h) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(OUT) :: h 
 
   ! Define temporary variables 
   INTEGER i, j, k 
   REAL ha, hb 
   REAL sum1, arg 
 
   ! Define 'dimensional' method of images analytic solution 
   DO i = 0,nr 
      DO j = 0,nz 
         sum1 = 0. 
         DO k = ‐ni,ni 
            sum1 = sum1 + ASIN(2. * Rs / (                                    & 
                 &                        SQRT((r(i) ‐ Rs) ** 2. +            & 
                 &                             (z(j) + 2. * k * bc) ** 2.) +  & 
                 &                        SQRT((r(i) + Rs) ** 2. +            & 
                 &                             (z(j) + 2. * k * bc) ** 2.)    & 
                 &                        )                                   & 
                 &             ) 
         END DO 
         h(i,j) = 2. * sum1 / pi 
      END DO 
   END DO 
 
   ! Define heads used for normalization of method of images analytic solution 
   sum1 = 0. 
   DO k = ‐ni,ni 
      arg = 2. * Rs / (                                                         & 
          &            SQRT((Rs / SQRT(2.) ‐ Rs) ** 2. + (2. * k * bc) ** 2.) + & 
          &            SQRT((Rs / SQRT(2.) + Rs) ** 2. + (2. * k * bc) ** 2.)   & 
          &            ) 
      sum1 = sum1 + ASIN(arg) 
   END DO 
   ha = 2. / pi * sum1 
 
   sum1 = 0. 
   DO j = 0,nz 
      sum1 = sum1 + h(nr,j) 
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   END DO 
   hb = sum1 / (nz + 1.) 
 
   ! Define normalized unit method of images analytic solution 
   DO i = 0,nr 
      DO j = 0,nz 
         h(i,j) = (h(i,j) ‐ hb) / (ha ‐ hb) 
      END DO 
   END DO 
 
END SUBROUTINE S_MOIHead 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                               ///////////////////////////  ! 
!                                                                 END SUBROUTINE: S_MOIHEAD                                                                      ! 
!  ///////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 

 

 

A.4 Subroutine to Determine Darcy Solution 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\                                                                                                      ///////////////////////////  ! 
!                                                            BEGIN SUBROUTINE: S_DARCYHEAD                                                                   ! 
!  ///////////////////////                                                                                                      \\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the head distribution of a finite difference scheme 
!    for Darcy's Law using a Crank‐Nicolson scheme with banded LU decomposition. 
SUBROUTINE S_DarcyHead(r, z, h, t) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(OUT) :: h 
   INTEGER, INTENT(OUT) :: t 
 
   ! Define temporary variables 
   INTEGER i, j, k, m, ne 
   REAL nn, ss, ww, ee, pp 
   REAL maxdh 
   REAL rrr, zzz 
   REAL, ALLOCATABLE :: matA(:,:), RHS(:) 
 
   ne = (nr+1) * (nz+1) 
   ALLOCATE (matA(ne,ne), RHS(ne)) 
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   !=======================================================================================! 
   !                                                         INITIAL AND BOUNDARY CONDITIONS                                                                   ! 
   !=======================================================================================! 
 
   ! Define Initial Condition 
   DO j = 0,nz 
      DO i = 0,nr‐1 
         h(i,j) = 0.000001 
      END DO 
   END DO 
 
   ! Define Dirichlet Boundary Conditions 
   DO i = 0,nrs 
      h(i,0) = 1. 
   END DO 
   DO j = 0,nz 
      h(nr,j) = 0. 
   END DO 
 
   !=======================================================================================! 
   !                                                          CREATE MATRIX A AND LU DECOMPOSE                                                              ! 
   !=======================================================================================! 
 
   ! Inflow Boundary 
   DO j = 0,0 
      DO i = 0,nrs 
         k = i + 1 + j * (nr + 1) 
         matA(k,k) = 1. 
      END DO 
   END DO 
 
   ! Outflow Boundary 
   DO j = 0,nz 
      DO i = nr,nr 
         k = i + 1 + j * (nr + 1) 
         matA(k,k) = 1. 
      END DO 
   END DO 
 
   ! Upper No Flow Boundary   z(j‐1) = ‐z(j+1) 
   DO j = 0,0 
      DO i = nrs+1,nr‐1 
         k = i + 1 + j * (nr + 1) 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (z(j+1) + z(j+1)) * (z(j+1) ‐ z(j)) * (z(j) + z(j+1)) 
         ee = ‐1. * dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i) ‐ r(i‐1)) / rrr 
         ww = dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i+1) ‐ r(i)) / rrr 
         pp = 1. ‐ dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) + & 
            & dtd * (r(i+1) ‐ r(i‐1)) / rrr + dtd * (z(j+1) + z(j+1)) / zzz 
         ss = ‐1. * dtd * (z(j) + z(j+1)) / zzz 
         nn = ‐1. * dtd * (z(j+1) ‐ z(j)) / zzz 
 
         matA(k,k+1) = ee 
         matA(k,k‐1) = ww 
         matA(k,k) = pp 
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         matA(k,k+nr+1) = ss + nn 
      END DO 
   END DO 
 
   ! Lower No Flow Boundary   z(j+1) = 2*z(j) ‐ z(j‐1) 
   DO j = nz,nz 
      DO i = 1,nr‐1 
         k = i + 1 + j * (nr + 1) 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
         ee = ‐1. * dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i) ‐ r(i‐1)) / rrr 
         ww = dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i+1) ‐ r(i)) / rrr 
         pp = 1. ‐ dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) + & 
            & dtd * (r(i+1) ‐ r(i‐1)) / rrr + dtd * (2. * z(j) ‐ 2. * z(j‐1)) / zzz 
         ss = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
         nn = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
 
         matA(k,k+1) = ee 
         matA(k,k‐1) = ww 
         matA(k,k) = pp 
         matA(k,k‐nr‐1) = nn + ss 
      END DO 
   END DO 
 
   ! Bottom Center Node   z(j+1) = 2*z(j) ‐ z(j‐1)   and   r(i‐1) = ‐r(i+1) 
   DO j = nz,nz 
      DO i = 0,0 
         k = i + 1 + j * (nr + 1) 
         rrr = (r(i+1) + r(i+1)) * (r(i+1) ‐ r(i)) * (r(i) + r(i+1)) 
         zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
         ee = ‐2. * dtd * (r(i) + r(i+1)) / rrr 
         ww = ‐2. * dtd * (r(i+1) ‐ r(i)) / rrr 
         pp = 1. + 2. * dtd * (r(i+1) + r(i+1)) / rrr + dtd * (2. * z(j) ‐ 2. * z(j‐1)) / zzz 
         ss = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
         nn = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
 
         matA(k,k+1) = ee + ww 
         matA(k,k) = pp 
         matA(k,k‐nr‐1) = nn + ss 
      END DO 
   END DO 
 
   ! Symmetry No Flow Boundary for r = 0   r(i‐1) = ‐r(i+1) 
   DO j = 1,nz‐1 
      DO i = 0,0 
         k = i + 1 + j * (nr + 1) 
         rrr = (r(i+1) + r(i+1)) * (r(i+1) ‐ r(i)) * (r(i) + r(i+1)) 
         zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
         ee = ‐2. * dtd * (r(i) + r(i+1)) / rrr 
         ww = ‐2. * dtd * (r(i+1) ‐ r(i)) / rrr 
         pp = 1. + 2. * dtd * (r(i+1) + r(i+1)) / rrr + dtd * (z(j+1) ‐ z(j‐1)) / zzz 
         ss = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
         nn = ‐1. * dtd * (z(j+1) ‐ z(j)) / zzz 
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         matA(k,k+1) = ee + ww 
         matA(k,k) = pp 
         matA(k,k+nr+1) = ss 
         matA(k,k‐nr‐1) = nn 
      END DO 
   END DO 
 
   ! Interior Nodes 
   DO j = 1,nz‐1 
      DO i = 1,nr‐1 
         k = i + 1 + j * (nr + 1) 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
         ee = ‐1. * dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i) ‐ r(i‐1)) / rrr 
         ww = dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) ‐ dtd * (r(i+1) ‐ r(i)) / rrr 
         pp = 1. ‐ dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) + & 
            & dtd * (r(i+1) ‐ r(i‐1)) / rrr + dtd * (z(j+1) ‐ z(j‐1)) / zzz 
         ss = ‐1. * dtd * (z(j) ‐ z(j‐1)) / zzz 
         nn = ‐1. * dtd * (z(j+1) ‐ z(j)) / zzz 
 
         matA(k,k+1) = ee 
         matA(k,k‐1) = ww 
         matA(k,k) = pp 
         matA(k,k+nr+1) = ss 
         matA(k,k‐nr‐1) = nn 
      END DO 
   END DO 
 
   ! LU decomposition of banded matrix A 
   CALL S_LUDecomp(matA, ne) 
 
 
   !=======================================================================================! 
   !                SOLVE CRANK‐NICOLSON METHOD IN TIME, DETERMINE WHEN STEADY STATE IS ACHIEVED            ! 
   !=======================================================================================! 
 
   ! Start solving using Crank‐Nicolson method 
   DO m = 1,ntd 
 
      ! Define RHS Vector 
      RHS(:) = 0. 
 
      ! Inflow Boundary 
      DO j = 0,0 
         DO i = 0,nrs 
            k = i + 1 + j * (nr + 1) 
            RHS(k) = h(i,j) 
         END DO 
      END DO 
 
      ! Outflow Boundary 
      DO j = 0,nz 
         DO i = nr,nr 
            k = i + 1 + j * (nr + 1) 
            RHS(k) = h(i,j) 
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         END DO 
      END DO 
 
      ! Upper No Flow Boundary   z(j‐1) = ‐z(j+1) 
      DO j = 0,0 
         DO i = nrs+1,nr‐1 
            k = i + 1 + j * (nr + 1) 
            rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
            zzz = (z(j+1) + z(j+1)) * (z(j+1) ‐ z(j)) * (z(j) + z(j+1)) 
            ee = dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i) ‐ r(i‐1)) / rrr 
            ww = ‐1. * dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i+1) ‐ r(i)) / rrr 
            pp = 1. + dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) ‐ & 
               & dtd * (r(i+1) ‐ r(i‐1)) / rrr ‐ dtd * (z(j+1) + z(j+1)) / zzz 
            ss = dtd * (z(j) + z(j+1)) / zzz 
            nn = dtd * (z(j+1) ‐ z(j)) / zzz 
 
            RHS(k) = h(i+1,j) * ee + & 
                   & h(i‐1,j) * ww + & 
                   & h(i,j) * pp +   & 
                   & h(i,j+1) * ss + & 
                   & h(i,j+1) * nn 
         END DO 
      END DO 
 
      ! Lower No Flow Boundary   z(j+1) = 2*z(j) ‐ z(j‐1) 
      DO j = nz,nz 
         DO i = 1,nr‐1 
            k = i + 1 + j * (nr + 1) 
            rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
            zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
            ee = dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i) ‐ r(i‐1)) / rrr 
            ww = ‐1. * dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i+1) ‐ r(i)) / rrr 
            pp = 1. + dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) ‐ & 
               & dtd * (r(i+1) ‐ r(i‐1)) / rrr ‐ dtd * (2. * z(j) ‐ 2. * z(j‐1)) / zzz 
            ss = dtd * (z(j) ‐ z(j‐1)) / zzz 
            nn = dtd * (z(j) ‐ z(j‐1)) / zzz 
 
            RHS(k) = h(i+1,j) * ee + & 
                   & h(i‐1,j) * ww + & 
                   & h(i,j) * pp +   & 
                   & h(i,j‐1) * ss + & 
                   & h(i,j‐1) * nn 
         END DO 
      END DO 
 
      ! Bottom Center Node   z(j+1) = 2*z(j) ‐ z(j‐1)   and   r(i‐1) = ‐r(i+1) 
      DO j = nz,nz 
         DO i = 0,0 
            k = i + 1 + j * (nr + 1) 
            rrr = (r(i+1) + r(i+1)) * (r(i+1) ‐ r(i)) * (r(i) + r(i+1)) 
            zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
            ee = 2. * dtd * (r(i) + r(i+1)) / rrr 
            ww = 2. * dtd * (r(i+1) ‐ r(i)) / rrr 
            pp = 1. ‐ 2. * dtd * (r(i+1) + r(i+1)) / rrr ‐ dtd * (2. * z(j) ‐ 2. * z(j‐1)) / zzz 
            ss = dtd * (z(j) ‐ z(j‐1)) / zzz 
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            nn = dtd * (z(j) ‐ z(j‐1)) / zzz 
 
            RHS(k) = h(i+1,j) * ee + & 
                   & h(i+1,j) * ww + & 
                   & h(i,j) * pp +   & 
                   & h(i,j‐1) * ss + & 
                   & h(i,j‐1) * nn 
         END DO 
      END DO 
 
      ! Symmetry No Flow Boundary for r = 0   r(i‐1) = ‐r(i+1) 
      DO j = 1,nz‐1 
         DO i = 0,0 
            k = i + 1 + j * (nr + 1) 
            rrr = (r(i+1) + r(i+1)) * (r(i+1) ‐ r(i)) * (r(i) + r(i+1)) 
            zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
            ee = 2. * dtd * (r(i) + r(i+1)) / rrr 
            ww = 2. * dtd * (r(i+1) ‐ r(i)) / rrr 
            pp = 1. ‐ 2. * dtd * (r(i+1) + r(i+1)) / rrr ‐ dtd * (z(j+1) ‐ z(j‐1)) / zzz 
            ss = dtd * (z(j) ‐ z(j‐1)) / zzz 
            nn = dtd * (z(j+1) ‐ z(j)) / zzz 
 
            RHS(k) = h(i+1,j) * ee + & 
                   & h(i+1,j) * ww + & 
                   & h(i,j) * pp +   & 
                   & h(i,j+1) * ss + & 
                   & h(i,j‐1) * nn 
         END DO 
      END DO 
 
      ! Interior Nodes 
      DO j = 1,nz‐1 
         DO i = 1,nr‐1 
            k = i + 1 + j * (nr + 1) 
            rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
            zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
            ee = dtd * (r(i) ‐ r(i‐1)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i) ‐ r(i‐1)) / rrr 
            ww = ‐1. * dtd * (r(i+1) ‐ r(i)) ** 2 / (2. * r(i) * rrr) + dtd * (r(i+1) ‐ r(i)) / rrr 
            pp = 1. + dtd * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) / (2. * r(i) * rrr) ‐ & 
               & dtd * (r(i+1) ‐ r(i‐1)) / rrr ‐ dtd * (z(j+1) ‐ z(j‐1)) / zzz 
            ss = dtd * (z(j) ‐ z(j‐1)) / zzz 
            nn = dtd * (z(j+1) ‐ z(j)) / zzz 
 
            RHS(k) = h(i+1,j) * ee + & 
                   & h(i‐1,j) * ww + & 
                   & h(i,j) * pp +   & 
                   & h(i,j+1) * ss + & 
                   & h(i,j‐1) * nn 
         END DO 
      END DO 
 
      ! Use LU decomposition for backsubsitition 
      CALL S_LUBkSub(matA, RHS, ne) 
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      ! Determine if dh/dt = 0 
      maxdh = 0. 
      DO j = 0,nz 
         DO i = 0,nr‐1 
            k = i + 1 + j * (nr + 1) 
            IF (ABS(maxdh) .LT. ABS((RHS(k) ‐ h(i,j)) / RHS(k))) THEN 
               maxdh = ABS((RHS(k) ‐ h(i,j)) / RHS(k)) 
            END IF 
         END DO 
      END DO 
 
      ! Put solution into head array 
      DO j = 0,nz 
         DO i = 0,nr 
            k = i + 1 + j * (nr + 1) 
            h(i,j) = RHS(k) 
         END DO 
      END DO 
 
      WRITE (6,2101) m, maxdh 
      2101 FORMAT (' m = ', i6, ' Darcy Maxdh = ', f9.7) 
 
      t = m 
 
      IF (m .LT. ntd) THEN 
         IF (ABS(maxdh) .LT. epsd) THEN 
            WRITE (6,*) 'Darcy steady state achieved!' 
            EXIT 
         END IF 
      ELSE 
         WRITE (6,2102) m 
         2102 FORMAT (' !!!!WARNING!!!!', /, ' DARCY STEADY STATE NOT ACHIEVED IN ', i6, 'ITERATIONS!!!!!!!') 
         PAUSE 
      END IF 
   END DO 
 
END SUBROUTINE S_DarcyHead 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\                                                                                                  ////////////////////////////  ! 
!                                                             END SUBROUTINE: S_DARCYHEAD                                                                      ! 
!  ////////////////////////                                                                                                  \\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
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A.5 Subroutine to Determine Forchheimer Solution 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\                                                                                                      ///////////////////////////  ! 
!                                                            BEGIN SUBROUTINE: S_FORCHHEAD                                                                   ! 
!  ///////////////////////                                                                                                      \\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the head distribution of a finite difference scheme 
!    for Forchheimer's Equation using a Gauss‐Seidel iterative method. 
SUBROUTINE S_ForchHead(r, z, hd, h, t) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(IN) :: hd 
   REAL, DIMENSION(0:nr,0:nz,0:ntf), INTENT(OUT) :: h 
   INTEGER, INTENT(OUT) :: t 
 
   ! Define temporary variables 
   REAL, ALLOCATABLE :: hf(:,:) 
   REAL, ALLOCATABLE :: hs(:) 
   REAL, ALLOCATABLE :: Q(:) 
   REAL, ALLOCATABLE :: SF(:) 
   REAL Q2, Q3, Q4, hQ1, hQ2, alphar, betar 
   INTEGER i, j, k, m, kmax 
   REAL nn, ss, ee, pp, ww 
   REAL gradN, gradS, gradE, gradW, gradP 
   REAL phiN,  phiS,  phiE,  phiW,  phiP 
   REAL maxdh, rrr, zzz 
   CHARACTER*16 file60 
 
   file60 = '3ForchRegres.csv' 
   OPEN(60, FILE = file60, STATUS = 'unknown') 
 
   kmax = 1 
   ALLOCATE (hf(0:nr,0:nz)) 
   ALLOCATE (hs(kmax)) 
   ALLOCATE (Q(kmax)) 
   ALLOCATE (SF(kmax)) 
 
   ! Define head values that will be tested 
   hs(1) = hmax 
 
   ! For each head value determine the outflow rate 
   DO k = 1,kmax 
 
      ! Define Initial Condition as Darcy head distribution 
      DO i = 0,nr 
         DO j = 0,nz 
            h(i,j,0) = hd(i,j) 
         END DO 
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      END DO 
 
      ! Solve steady state solution using Gauss‐Seidel iterative method 
      DO m = 1,ntf 
 
         DO j = 0,nz 
            DO i = 0,nr 
               ! Inflow Boundary 
               IF (j .EQ. 0) THEN 
                  IF (i .LE. nrs ) THEN 
                     h(i,j,m) = hs(k) 
                  END IF 
               END IF 
 
               ! Outflow Boundary 
               IF (i .EQ. nr) THEN 
                  h(i,j,m) = 0. 
               END IF 
 
               ! Upper No Flow Boundary     z(j‐1) = ‐z(j+1) 
               !                            h(i,j‐1) = h(i,j+1) 
               IF (j .EQ. 0) THEN 
                  IF (i .GT. nrs) THEN 
                     IF (i .LT. nr) THEN 
                        rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
                        zzz = (z(j+1) + z(j+1)) * (z(j+1) ‐ z(j)) * (z(j) + z(j+1)) 
                        gradE = SQRT(((h(i+1,j,m‐1) ‐ h(i,j,m‐1)) / (r(i+1) ‐ r(i))) ** 2 + & 
                              & (((h(i+1,j+1,m‐1) + h(i,j+1,m‐1)) *                         & 
                              &      (z(j) + z(j+1)) ** 2 +                                 & 
                              & (h(i+1,j,m‐1) + h(i,j,m‐1)) *                               & 
                              &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) ‐        & 
                              & (h(i+1,j+1,m‐1) + h(i,j+1,m‐1)) *                           & 
                              &      (z(j+1) ‐ z(j)) ** 2) / (2. * zzz)) ** 2) 
                        gradW = SQRT(((h(i,j,m‐1) ‐ h(i‐1,j,m‐1)) / (r(i) ‐ r(i‐1))) ** 2 + & 
                              & (((h(i,j+1,m‐1) + h(i‐1,j+1,m‐1)) *                         & 
                              &      (z(j) + z(j+1)) ** 2 +                                 & 
                              & (h(i,j,m‐1) + h(i‐1,j,m‐1)) *                               & 
                              &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) ‐        & 
                              & (h(i,j+1,m‐1) + h(i‐1,j+1,m‐1)) *                           & 
                              &      (z(j+1) ‐ z(j)) ** 2) / (2. * zzz)) ** 2) 
                        gradP = SQRT(((h(i+1,j,m‐1) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j,m‐1) *   & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐             & 
                              & h(i‐1,j,m‐1) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
                              & ((h(i,j+1,m‐1) * (z(j) + z(j+1)) ** 2 + h(i,j,m‐1) *        & 
                              & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) ‐             & 
                              & h(i,j+1,m‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
                        gradS = SQRT(((h(i,j+1,m‐1) ‐ h(i,j,m‐1)) / (z(j+1) ‐ z(j))) ** 2 + & 
                              & (((h(i+1,j+1,m‐1) + h(i+1,j,m‐1)) *                         & 
                              &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                              & (h(i,j+1,m‐1) + h(i,j,m‐1)) *                               & 
                              &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                              & (h(i‐1,j+1,m‐1) + h(i‐1,j,m‐1)) *                           & 
                              &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                        gradN = SQRT(((h(i,j,m‐1) ‐ h(i,j+1,m‐1)) / (z(j) + z(j+1))) ** 2 + & 
                              & (((h(i+1,j,m‐1) + h(i+1,j+1,m‐1)) *                         & 
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                              &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                              & (h(i,j,m‐1) + h(i,j+1,m‐1)) *                               & 
                              &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                              & (h(i‐1,j,m‐1) + h(i‐1,j+1,m‐1)) *                           & 
                              &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                        phiE = aa ** 2 / (2. * bb * gradE) * (SQRT(1. + 4. * bb * gradE / aa ** 2) ‐ 1.) 
                        phiW = aa ** 2 / (2. * bb * gradW) * (SQRT(1. + 4. * bb * gradW / aa ** 2) ‐ 1.) 
                        phiP = aa ** 2 / (2. * bb * gradP) * (SQRT(1. + 4. * bb * gradP / aa ** 2) ‐ 1.) 
                        phiS = aa ** 2 / (2. * bb * gradS) * (SQRT(1. + 4. * bb * gradS / aa ** 2) ‐ 1.) 
                        phiN = aa ** 2 / (2. * bb * gradN) * (SQRT(1. + 4. * bb * gradN / aa ** 2) ‐ 1.) 
 
                        ee = phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                                  & 
                           & (r(i) * (r(i+1) ‐ r(i)) * rrr) + 2. * phiP * (r(i) ‐ r(i‐1)) ** 2 / (rrr ** 2) * & 
                           & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                        ww = phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 /                                  & 
                           & (r(i) * (r(i) ‐ r(i‐1)) * rrr) ‐ 2. * phiP * (r(i+1) ‐ r(i)) ** 2 / (rrr ** 2) * & 
                           & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                        pp = ‐1. * phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                            & 
                           & (r(i) * (r(i+1) ‐ r(i)) * rrr) ‐ phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 / & 
                           & (r(i) * (r(i) ‐ r(i‐1)) * rrr) + 2. * phiP / (rrr ** 2) *                        & 
                           & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ** 2 ‐                             & 
                           & 2. * phiS * (z(j) + z(j+1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) ‐                     & 
                           & 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) + z(j+1)) * zzz) +                     & 
                           & 2. * phiP / (zzz ** 2) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) ** 2 
                        ss = 2. * phiS * (z(j) + z(j+1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) +                     & 
                           & 2. * phiP * (z(j) + z(j+1)) ** 2 / (zzz ** 2) *                                  & 
                           & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) 
                        nn = 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) + z(j+1)) * zzz) ‐                     & 
                           & 2. * phiP * (z(j+1) ‐ z(j)) ** 2 / (zzz ** 2) *                                  & 
                           & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) + z(j+1)) ** 2) 
 
                        h(i,j,m) = ‐1. / pp * (        & 
                                 & h(i+1,j,m‐1) * ee + & 
                                 & h(i‐1,j,m  ) * ww + & 
                                 & h(i,j+1,m‐1) * ss + & 
                                 & h(i,j+1,m‐1) * nn) 
                     END IF 
                  END IF 
               END IF 
 
               ! Lower No Flow Boundary     z(j+1) = 2*z(j) ‐ z(j‐1) 
               !                            h(i,j+1) = h(i,j‐1) 
               IF (j .EQ. nz) THEN 
                  IF (i .GT. 0) THEN 
                     IF (i .LT. nr) THEN 
                           rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
                           zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
                           gradE = SQRT(((h(i+1,j,m‐1) ‐ h(i,j,m‐1)) / (r(i+1) ‐ r(i))) ** 2 + & 
                                 & (((h(i+1,j‐1,m‐1) + h(i,j‐1,m‐1)) *                         & 
                                 &      (z(j) ‐ z(j‐1)) ** 2 +                                 & 
                                 & (h(i+1,j,m‐1) + h(i,j,m‐1)) *                               & 
                                 &      ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐        & 
                                 & (h(i+1,j‐1,m‐1) + h(i,j‐1,m‐1)) *                           & 
                                 &      (z(j) ‐ z(j‐1)) ** 2) / (2. * zzz)) ** 2) 
                           gradW = SQRT(((h(i,j,m‐1) ‐ h(i‐1,j,m‐1)) / (r(i) ‐ r(i‐1))) ** 2 + & 
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                                 & (((h(i,j‐1,m‐1) + h(i‐1,j‐1,m‐1)) *                         & 
                                 &      (z(j) ‐ z(j‐1)) ** 2 +                                 & 
                                 & (h(i,j,m‐1) + h(i‐1,j,m‐1)) *                               & 
                                 &      ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐        & 
                                 & (h(i,j‐1,m‐1) + h(i‐1,j‐1,m‐1)) *                           & 
                                 &      (z(j) ‐ z(j‐1)) ** 2) / (2. * zzz)) ** 2) 
                           gradP = SQRT(((h(i+1,j,m‐1) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j,m‐1) *   & 
                                 & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐             & 
                                 & h(i‐1,j,m‐1) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
                                 & ((h(i,j‐1,m‐1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j,m‐1) *        & 
                                 & ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐             & 
                                 & h(i,j‐1,m‐1) * (z(j) ‐ z(j‐1)) ** 2) / zzz) ** 2) 
                           gradS = SQRT(((h(i,j‐1,m‐1) ‐ h(i,j,m‐1)) / (z(j) ‐ z(j‐1))) ** 2 + & 
                                 & (((h(i+1,j‐1,m‐1) + h(i+1,j,m‐1)) *                         & 
                                 &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                                 & (h(i,j‐1,m‐1) + h(i,j,m‐1)) *                               & 
                                 &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                                 & (h(i‐1,j‐1,m‐1) + h(i‐1,j,m‐1)) *                           & 
                                 &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                           gradN = SQRT(((h(i,j,m‐1) ‐ h(i,j‐1,m‐1)) / (z(j) ‐ z(j‐1))) ** 2 + & 
                                 & (((h(i+1,j,m‐1) + h(i+1,j‐1,m‐1)) *                         & 
                                 &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                                 & (h(i,j,m‐1) + h(i,j‐1,m‐1)) *                               & 
                                 &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                                 & (h(i‐1,j,m‐1) + h(i‐1,j‐1,m‐1)) *                           & 
                                 &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                           phiE = aa ** 2 / (2. * bb * gradE) * (SQRT(1. + 4. * bb * gradE / aa ** 2) ‐ 1.) 
                           phiW = aa ** 2 / (2. * bb * gradW) * (SQRT(1. + 4. * bb * gradW / aa ** 2) ‐ 1.) 
                           phiP = aa ** 2 / (2. * bb * gradP) * (SQRT(1. + 4. * bb * gradP / aa ** 2) ‐ 1.) 
                           phiS = aa ** 2 / (2. * bb * gradS) * (SQRT(1. + 4. * bb * gradS / aa ** 2) ‐ 1.) 
                           phiN = aa ** 2 / (2. * bb * gradN) * (SQRT(1. + 4. * bb * gradN / aa ** 2) ‐ 1.) 
 
                           ee = phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                                  & 
                              & (r(i) * (r(i+1) ‐ r(i)) * rrr) + 2. * phiP * (r(i) ‐ r(i‐1)) ** 2 / (rrr ** 2) * & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                           ww = phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 /                                  & 
                              & (r(i) * (r(i) ‐ r(i‐1)) * rrr) ‐ 2. * phiP * (r(i+1) ‐ r(i)) ** 2 / (rrr ** 2) * & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                           pp = ‐1. * phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                            & 
                              & (r(i) * (r(i+1) ‐ r(i)) * rrr) ‐ phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 / & 
                              & (r(i) * (r(i) ‐ r(i‐1)) * rrr) + 2. * phiP / (rrr ** 2) *                        & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ** 2 ‐                             & 
                              & 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                     & 
                              & 2. * phiN * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                     & 
                              & 2. * phiP / (zzz ** 2) * ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ** 2 
                           ss = 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                     & 
                              & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                                  & 
                              & ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
                           nn = 2. * phiN * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                     & 
                              & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                                  & 
                              & ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
 
                           h(i,j,m) = ‐1. / pp * (        & 
                                    & h(i+1,j,m‐1) * ee + & 
                                    & h(i‐1,j,m  ) * ww + & 
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                                    & h(i,j‐1,m  ) * ss + & 
                                    & h(i,j‐1,m  ) * nn) 
                     END IF 
                  END IF 
               END IF 
 
               ! Bottom Center Node    z(j+1) = 2*z(j) ‐ z(j‐1) 
               !                       h(i,j+1) = h(i,j‐1) 
               IF (j .EQ. nz) THEN 
                  IF (i .EQ. 0) THEN 
                     zzz = (2. * z(j) ‐ 2. * z(j‐1)) * (z(j) ‐ z(j‐1)) * (z(j) ‐ z(j‐1)) 
                     gradS = SQRT(((h(i,j‐1,m‐1) ‐ h(i,j,m‐1)) / (z(j) ‐ z(j‐1))) ** 2) 
                     gradN = SQRT(((h(i,j,m‐1) ‐ h(i,j‐1,m‐1)) / (z(j) ‐ z(j‐1))) ** 2) 
                     phiP = 1. 
                     phiS = aa ** 2 / (2. * bb * gradS) * (SQRT(1. + 4. * bb * gradS / aa ** 2) ‐ 1.) 
                     phiN = aa ** 2 / (2. * bb * gradN) * (SQRT(1. + 4. * bb * gradN / aa ** 2) ‐ 1.) 
 
                     ee = 4. * phiP / (r(i+1) ** 2) 
                     pp = ‐4. * phiP / (r(i+1) ** 2) ‐                                                & 
                        & 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                & 
                        & 2. * phiN * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                & 
                        & 2. * phiP / (zzz ** 2) * ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ** 2 
                     ss = 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                & 
                        & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                             & 
                        &      ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
                     nn = 2. * phiN * (z(j) ‐ z(j‐1)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                & 
                        & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                             & 
                        &      ((z(j) ‐ z(j‐1)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
 
                     h(i,j,m) = ‐1. / pp * (        & 
                              & h(i+1,j,m‐1) * ee + & 
                              & h(i,j‐1,m  ) * ss + & 
                              & h(i,j‐1,m  ) * nn) 
                  END IF 
               END IF 
 
               ! Symmetry No Flow Boundary for r = 0 
               IF (i .EQ. 0) THEN 
                  IF (j .GT. 0) THEN 
                     IF (j .LT. nz) THEN 
                        zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
                        gradP = SQRT(((h(i,j+1,m‐1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j,m‐1) * & 
                              &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐      & 
                              & h(i,j‐1,m‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
                        gradS = SQRT(((h(i,j+1,m‐1) ‐ h(i,j,m‐1)) / (z(j+1) ‐ z(j))) ** 2) 
                        gradN = SQRT(((h(i,j,m‐1) ‐ h(i,j‐1,m‐1)) / (z(j) ‐ z(j‐1))) ** 2) 
                        phiP = aa ** 2 / (2. * bb * gradP) * (SQRT(1. + 4. * bb * gradP / aa ** 2) ‐ 1.) 
                        phiS = aa ** 2 / (2. * bb * gradS) * (SQRT(1. + 4. * bb * gradS / aa ** 2) ‐ 1.) 
                        phiN = aa ** 2 / (2. * bb * gradN) * (SQRT(1. + 4. * bb * gradN / aa ** 2) ‐ 1.) 
 
                        ee = 4. * phiP / (r(i+1) ** 2) 
                        pp = ‐4. * phiP / (r(i+1) ** 2) ‐                                                & 
                           & 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) ‐                & 
                           & 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                & 
                           & 2. * phiP / (zzz ** 2) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ** 2 
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                        ss = 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) +                & 
                           & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                             & 
                           &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
                        nn = 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                & 
                           & 2. * phiP * (z(j+1) ‐ z(j)) ** 2 / (zzz ** 2) *                             & 
                           &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
 
                        h(i,j,m) = ‐1. / pp * (        & 
                                 & h(i+1,j,m‐1) * ee + & 
                                 & h(i,j+1,m‐1) * ss + & 
                                 & h(i,j‐1,m  ) * nn) 
                     END IF 
                  END IF 
               END IF 
 
               ! Interior Nodes 
               IF (i .GT. 0) THEN 
                  IF (i .LT. nr) THEN 
                     IF (j .GT. 0) THEN 
                        IF (j .LT. nz) THEN 
                           rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
                           zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
                           gradE = SQRT(((h(i+1,j,m‐1) ‐ h(i,j,m‐1)) / (r(i+1) ‐ r(i))) ** 2 + & 
                                 & (((h(i+1,j+1,m‐1) + h(i,j+1,m‐1)) *                         & 
                                 &      (z(j) ‐ z(j‐1)) ** 2 +                                 & 
                                 & (h(i+1,j,m‐1) + h(i,j,m‐1)) *                               & 
                                 &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐        & 
                                 & (h(i+1,j‐1,m‐1) + h(i,j‐1,m‐1)) *                           & 
                                 &      (z(j+1) ‐ z(j)) ** 2) / (2. * zzz)) ** 2) 
                           gradW = SQRT(((h(i,j,m‐1) ‐ h(i‐1,j,m‐1)) / (r(i) ‐ r(i‐1))) ** 2 + & 
                                 & (((h(i,j+1,m‐1) + h(i‐1,j+1,m‐1)) *                         & 
                                 &      (z(j) ‐ z(j‐1)) ** 2 +                                 & 
                                 & (h(i,j,m‐1) + h(i‐1,j,m‐1)) *                               & 
                                 &      ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐        & 
                                 & (h(i,j‐1,m‐1) + h(i‐1,j‐1,m‐1)) *                           & 
                                 &      (z(j+1) ‐ z(j)) ** 2) / (2. * zzz)) ** 2) 
                           gradP = SQRT(((h(i+1,j,m‐1) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j,m‐1) *   & 
                                 & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐             & 
                                 & h(i‐1,j,m‐1) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
                                 & ((h(i,j+1,m‐1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j,m‐1) *        & 
                                 & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ‐             & 
                                 & h(i,j‐1,m‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
                           gradS = SQRT(((h(i,j+1,m‐1) ‐ h(i,j,m‐1)) / (z(j+1) ‐ z(j))) ** 2 + & 
                                 & (((h(i+1,j+1,m‐1) + h(i+1,j,m‐1)) *                         & 
                                 &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                                 & (h(i,j+1,m‐1) + h(i,j,m‐1)) *                               & 
                                 &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                                 & (h(i‐1,j+1,m‐1) + h(i‐1,j,m‐1)) *                           & 
                                 &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                           gradN = SQRT(((h(i,j,m‐1) ‐ h(i,j‐1,m‐1)) / (z(j) ‐ z(j‐1))) ** 2 + & 
                                 & (((h(i+1,j,m‐1) + h(i+1,j‐1,m‐1)) *                         & 
                                 &      (r(i) ‐ r(i‐1)) ** 2 +                                 & 
                                 & (h(i,j,m‐1) + h(i,j‐1,m‐1)) *                               & 
                                 &      ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ‐        & 
                                 & (h(i‐1,j,m‐1) + h(i‐1,j‐1,m‐1)) *                           & 
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                                 &      (r(i+1) ‐ r(i)) ** 2) / (2. * rrr)) ** 2) 
                           phiE = aa ** 2 / (2. * bb * gradE) * (SQRT(1. + 4. * bb * gradE / aa ** 2) ‐ 1.) 
                           phiW = aa ** 2 / (2. * bb * gradW) * (SQRT(1. + 4. * bb * gradW / aa ** 2) ‐ 1.) 
                           phiP = aa ** 2 / (2. * bb * gradP) * (SQRT(1. + 4. * bb * gradP / aa ** 2) ‐ 1.) 
                           phiS = aa ** 2 / (2. * bb * gradS) * (SQRT(1. + 4. * bb * gradS / aa ** 2) ‐ 1.) 
                           phiN = aa ** 2 / (2. * bb * gradN) * (SQRT(1. + 4. * bb * gradN / aa ** 2) ‐ 1.) 
 
                           ee = phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                                  & 
                              & (r(i) * (r(i+1) ‐ r(i)) * rrr) + 2. * phiP * (r(i) ‐ r(i‐1)) ** 2 / (rrr ** 2) * & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                           ww = phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 /                                  & 
                              & (r(i) * (r(i) ‐ r(i‐1)) * rrr) ‐ 2. * phiP * (r(i+1) ‐ r(i)) ** 2 / (rrr ** 2) * & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) 
                           pp = ‐1. * phiE * (r(i+1) + r(i)) * (r(i) ‐ r(i‐1)) ** 2 /                            & 
                              & (r(i) * (r(i+1) ‐ r(i)) * rrr) ‐ phiW * (r(i‐1) + r(i)) * (r(i+1) ‐ r(i)) ** 2 / & 
                              & (r(i) * (r(i) ‐ r(i‐1)) * rrr) + 2. * phiP / (rrr ** 2) *                        & 
                              & ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i) ‐ r(i‐1)) ** 2) ** 2 ‐                             & 
                              & 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) ‐                     & 
                              & 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) +                     & 
                              & 2. * phiP / (zzz ** 2) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) ** 2 
                           ss = 2. * phiS * (z(j) ‐ z(j‐1)) ** 2 / ((z(j+1) ‐ z(j)) * zzz) +                     & 
                              & 2. * phiP * (z(j) ‐ z(j‐1)) ** 2 / (zzz ** 2) *                                  & 
                              & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
                           nn = 2. * phiN * (z(j+1) ‐ z(j)) ** 2 / ((z(j) ‐ z(j‐1)) * zzz) ‐                     & 
                              & 2. * phiP * (z(j+1) ‐ z(j)) ** 2 / (zzz ** 2) *                                  & 
                              & ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j) ‐ z(j‐1)) ** 2) 
 
                           h(i,j,m) = ‐1. / pp * (        & 
                                    & h(i+1,j,m‐1) * ee + & 
                                    & h(i‐1,j,m  ) * ww + & 
                                    & h(i,j+1,m‐1) * ss + & 
                                    & h(i,j‐1,m  ) * nn) 
                        END IF 
                     END IF 
                  END IF 
               END IF 
            END DO 
         END DO 
 
         ! Determine if dh/dt = 0 
         maxdh = 0. 
         DO j = 0,nz 
            DO i = 0,nr‐1 
               IF (ABS(maxdh) .LT. ABS((h(i,j,m) ‐ h(i,j,m‐1)) / h(i,j,m))) THEN 
                  maxdh = ABS((h(i,j,m) ‐ h(i,j,m‐1)) / h(i,j,m)) 
               END IF 
            END DO 
         END DO 
 
         WRITE (6,4103) k, m, maxdh 
         4103 FORMAT (' k = ', i2, ' m = ', i6, ' Forch Maxdh = ', f9.7) 
 
         t = m 
 
         IF (m .LT. ntf) THEN 
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            IF (ABS(maxdh) .LT. epsf) THEN 
               WRITE (6,*) 'Forchheimer steady state achieved!' 
               EXIT 
            END IF 
         ELSE 
            WRITE (6,4104) m 
            4104 FORMAT (' !!!!WARNING!!!!', /, ' FORCHHEIMER STEADY STATE NOT ACHIEVED IN ', i6, ' 
ITERATIONS!!!!!!!') 
            PAUSE 
         END IF 
      END DO 
 
      ! Put the converged Forchheimer solution into a 2‐D array 
      DO j = 0,nz 
         DO i = 0,nr 
            hf(i,j) = h(i,j,t) 
         END DO 
      END DO 
 
      ! Determine Nonlinear Outflow Rate 
      CALL S_NonlinearQout(r, z, hf, Q(k)) 
      ! Determine Nonlinear Shape Factor 
      CALL S_NonlinearSF(r, z, hf, SF(k), hs(k)) 
 
   END DO  ! end of k loop 
 
   ! Determine alpha and beta from regression of hs(k) versus Q(k) 
   DO k = 0,kmax 
      Q2 = Q2 + Q(k) ** 2 
      Q3 = Q3 + Q(k) ** 3 
      Q4 = Q4 + Q(k) ** 4 
      hQ1 = hQ1 + hs(k) * Q(k) 
      hQ2 = hQ2 + hs(k) * Q(k) ** 2 
   END DO 
 
   alphar = 1. / (Q2 * Q4 ‐ Q3 ** 2) * (Q4 * hQ1 ‐ Q3 * hQ2) 
   betar = 1. / (Q2 * Q4 ‐ Q3 ** 2) * (Q2 * hQ2 ‐ Q3 * hQ1) 
 
 
   !=======================================================================================! 
   !                                                                      WRITE TO REGRESSION FILE                                                                        ! 
   !=======================================================================================! 
 
   ! Write header to output file 
   WRITE (60,6101) file60, nrs, nr, nz, CoreID, Rs, bc, Rc, aa, bb 
   6101 FORMAT (/, 'Forchheimer Regression', /, 'Filename,', a16, /, 'Nrs=,', i4, /,      & 
               & 'Nr=,', i4, /, 'Nz=,', i4, /, /, 'Core ID,', a7, /, 'Rs=,', f8.4, ',cm', & 
               & /, 'bc=,', f8.4, ',cm', /, 'Rc=,', f8.4, ',cm', /, /,                    & 
               & 'aa=,', f14.8, ',s/cm', /, 'bb=,', f14.8, ',s2/cm2', /) 
 
   ! Write regression summary 
   WRITE (60,6103) Rs, Rc, bc, aa, bb, alphar, betar 
   6103 FORMAT ('Rs (cm),Rc (cm),bc (cm),aa (s/cm),bb (s2/cm2),alpha (s/cm2),beta (s2/cm5)', /, & 
               & f14.8, ',', f14.8, ',', f14.8, ',', f14.8, ',', f14.8, ',', f14.8, ',', f14.8, & 
               & /, /, 'Q (cm3/s),hs (cm),SF') 
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   ! Write standpipe head, nonlinear outflow rate, nonlinear shape factor 
   DO k = 1,kmax 
      WRITE (60,6104) Q(k), hs(k), SF(k) 
      6104 FORMAT (f15.10, ',', f15.10, ',', f15.10) 
   END DO 
 
   CLOSE (60) 
 
END SUBROUTINE S_ForchHead 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\                                                                                                  ////////////////////////////  ! 
!                                                          END SUBROUTINE: S_FORCHHEAD                                                                         ! 
!  ////////////////////////                                                                                                  \\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 

 

 

A.6 Subroutine to Calculation Hydraulic Conductivity Ratio 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\                                                                                                   ////////////////////////////  ! 
!                                                              BEGIN SUBROUTINE: S_PHIFUNC                                                                        ! 
!  ////////////////////////                                                                                                  \\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the phi function at each node using a second order finite 
!    difference scheme.  At the boundaries, a second order upwind scheme is used. 
SUBROUTINE S_PhiFunc(r, z, h, phi) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(IN) :: h 
   REAL, DIMENSION(0:nr,0:nz), INTENT(OUT) :: phi 
 
   ! Define temporary variables 
   REAL grad, rrr, zzz 
   INTEGER i, j 
 
   ! Upper Boundary 
   DO j = 0,0 
      DO i = 1,nr‐1 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) * (z(j+1) ‐ z(j)) 
         grad = SQRT(((h(i+1,j) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ & 
              &                     (r(i) ‐ r(i‐1)) ** 2) ‐ h(i‐1,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) ‐ (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) & 
              &      + h(i,j+1) * ((z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) + (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) ‐ & 
              &        h(i,j+2) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
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         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Top Center Node 
   DO j = 0,0 
      DO i = 0,0 
         rrr = (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) * (r(i+1) ‐ r(i)) 
         zzz = (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) * (z(j+1) ‐ z(j)) 
         grad = SQRT(((h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) ‐ (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) & 
              &      + h(i+1,j) * ((r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) + (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) ‐ & 
              &        h(i+2,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) ‐ (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) & 
              &      + h(i,j+1) * ((z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) + (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) ‐ & 
              &        h(i,j+2) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Outflow Boundary 
   DO j = 1,nz‐1 
      DO i = nr,nr 
         rrr = (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) * (r(i‐1) ‐ r(i)) 
         zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
         grad = SQRT(((h(i,j) * ((r(i‐1) ‐ r(i)) ** 2 ‐ (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) ‐ (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) & 
              &      + h(i‐1,j) * ((r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) + (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) ‐ & 
              &        h(i‐2,j) * (r(i‐1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j+1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ & 
              &                     (z(j) ‐ z(j‐1)) ** 2) ‐ h(i,j‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Top Radius Node 
   DO j = 0,0 
      DO i = nr,nr 
         rrr = (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) * (r(i‐1) ‐ r(i)) 
         zzz = (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) * (z(j+1) ‐ z(j)) 
         grad = SQRT(((h(i,j) * ((r(i‐1) ‐ r(i)) ** 2 ‐ (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) ‐ (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) & 
              &      + h(i‐1,j) * ((r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) + (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) ‐ & 
              &        h(i‐2,j) * (r(i‐1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ (z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) ‐ (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) & 
              &      + h(i,j+1) * ((z(j+2) ‐ z(j)) * (z(j+2) ‐ z(j+1)) + (z(j+2) ‐ z(j)) * (z(j+1) ‐ z(j))) ‐ & 
              &        h(i,j+2) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Bottom Radius Node 
   DO j = nz,nz 
      DO i = nr,nr 
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         rrr = (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) * (r(i‐1) ‐ r(i)) 
         zzz = (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) * (z(j‐1) ‐ z(j)) 
         grad = SQRT(((h(i,j) * ((r(i‐1) ‐ r(i)) ** 2 ‐ (r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) ‐ (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) & 
              &      + h(i‐1,j) * ((r(i‐2) ‐ r(i)) * (r(i‐2) ‐ r(i‐1)) + (r(i‐2) ‐ r(i)) * (r(i‐1) ‐ r(i))) ‐ & 
              &        h(i‐2,j) * (r(i‐1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j‐1) ‐ z(j)) ** 2 ‐ (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) ‐ (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) & 
              &      + h(i,j‐1) * ((z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) + (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) ‐ & 
              &        h(i,j‐2) * (z(j‐1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Lower No Flow Boundary 
   DO j = nz,nz 
      DO i = 1,nr‐1 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) * (z(j‐1) ‐ z(j)) 
         grad = SQRT(((h(i+1,j) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ & 
              &                     (r(i) ‐ r(i‐1)) ** 2) ‐ h(i‐1,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j‐1) ‐ z(j)) ** 2 ‐ (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) ‐ (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) & 
              &      + h(i,j‐1) * ((z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) + (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) ‐ & 
              &        h(i,j‐2) * (z(j‐1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Bottom Center Node 
   DO j = nz,nz 
      DO i = 0,0 
         rrr = (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) * (r(i+1) ‐ r(i)) 
         zzz = (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) * (z(j‐1) ‐ z(j)) 
         grad = SQRT(((h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) ‐ (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) & 
              &      + h(i+1,j) * ((r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) + (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) ‐ & 
              &        h(i+2,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j) * ((z(j‐1) ‐ z(j)) ** 2 ‐ (z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) ‐ (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) & 
              &      + h(i,j‐1) * ((z(j‐2) ‐ z(j)) * (z(j‐2) ‐ z(j‐1)) + (z(j‐2) ‐ z(j)) * (z(j‐1) ‐ z(j))) ‐ & 
              &        h(i,j‐2) * (z(j‐1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Symmetry No Flow Boundary for r = 0 
   DO j = 1,nz‐1 
      DO i = 0,0 
         rrr = (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) * (r(i+1) ‐ r(i)) 
         zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
         grad = SQRT(((h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ (r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) ‐ (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) & 
              &      + h(i+1,j) * ((r(i+2) ‐ r(i)) * (r(i+2) ‐ r(i+1)) + (r(i+2) ‐ r(i)) * (r(i+1) ‐ r(i))) ‐ & 
              &        h(i+2,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j+1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ & 
              &                     (z(j) ‐ z(j‐1)) ** 2) ‐ h(i,j‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
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                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
   ! Interior Nodes 
   DO j = 1,nz‐1 
      DO i = 1,nr‐1 
         rrr = (r(i+1) ‐ r(i‐1)) * (r(i+1) ‐ r(i)) * (r(i) ‐ r(i‐1)) 
         zzz = (z(j+1) ‐ z(j‐1)) * (z(j+1) ‐ z(j)) * (z(j) ‐ z(j‐1)) 
         grad = SQRT(((h(i+1,j) * (r(i) ‐ r(i‐1)) ** 2 + h(i,j) * ((r(i+1) ‐ r(i)) ** 2 ‐ & 
              &                     (r(i) ‐ r(i‐1)) ** 2) ‐ h(i‐1,j) * (r(i+1) ‐ r(i)) ** 2) / rrr) ** 2 + & 
              &      ((h(i,j+1) * (z(j) ‐ z(j‐1)) ** 2 + h(i,j) * ((z(j+1) ‐ z(j)) ** 2 ‐ & 
              &                     (z(j) ‐ z(j‐1)) ** 2) ‐ h(i,j‐1) * (z(j+1) ‐ z(j)) ** 2) / zzz) ** 2) 
         phi(i,j) = aa ** 2 / (2. * bb * grad) * & 
                  & (SQRT(1. + 4. * bb * grad / (aa ** 2)) ‐ 1.) 
      END DO 
   END DO 
 
END SUBROUTINE S_PhiFunc 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\                                                                                               /////////////////////////////  ! 
!                                                                END SUBROUTINE: S_PHIFUNC                                                                         ! 
!  /////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 

 

 

A.7 Subroutines to Determine Shape Factor 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\                                                                                                             //////////////////////////  ! 
!                                                            BEGIN SUBROUTINE: S_LINEARSF                                                                         ! 
!  ////////////////////                                                                                                             \\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the linear shape factor. 
SUBROUTINE S_LinearSF(r, z, h, f) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(IN) :: h 
   REAL, INTENT(OUT) :: f 
 
   ! Define temporary variables 
   INTEGER j 
 
   ! Top Node 
   f = pi * Rc / (2. * Rs * h(0,0)) * z(1) / (rez + 1.) * & 
     & (h(nr‐1,0) ‐ h(nr,0)) / (r(nr) ‐ r(nr‐1)) 
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   ! Interior Nodes 
   DO j = 1,nz‐1 
      f = f + pi * Rc / (2. * Rs * h(0,0)) * (h(nr‐1,j) ‐ h(nr,j)) / (r(nr) ‐ r(nr‐1)) * & 
        & (rez * (z(j) ‐ z(j‐1)) + z(j+1) ‐ z(j)) / (rez + 1.) 
   END DO 
 
   ! Bottom Node 
   f = f + pi * Rc / (2. * Rs * h(0,0)) * (h(nr‐1,nz) ‐ h(nr,nz)) / (r(nr) ‐ r(nr‐1)) * & 
     & rez * (z(nz) ‐ z(nz‐1)) / (rez + 1.) 
 
END SUBROUTINE S_LinearSF 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\                                                                                               /////////////////////////////  ! 
!                                                             END SUBROUTINE: S_LINEARSF                                                                           ! 
!  /////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 

 

 

A.8 Subroutine to Determine Outflow Rates 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\                                                                                                             //////////////////////////  ! 
!                                                        BEGIN SUBROUTINE: S_LINEARQOUT                                                                      ! 
!  ////////////////////                                                                                                             \\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the outflow rate using Darcy's Law. 
SUBROUTINE S_LinearQout(r, z, h, Q) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(IN) :: h 
   REAL, INTENT(OUT) :: Q 
 
   ! Define temporary variables 
   INTEGER j 
 
   ! Top Node 
   Q = 2. * pi * Rc / aa * (h(nr‐1,0) ‐ h(nr,0)) / (r(nr) ‐ r(nr‐1)) * z(1) / (rez + 1.) 
 
   ! Interior Nodes 
   DO j = 1,nz‐1 
      Q = Q + 2. * pi * Rc / aa * (h(nr‐1,j) ‐ h(nr,j)) / (r(nr) ‐ r(nr‐1)) * & 
        & (rez * (z(j) ‐ z(j‐1)) + z(j+1) ‐ z(j)) / (rez + 1.) 
   END DO 
 
   ! Bottom Node 
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   Q = Q + 2. * pi * Rc / aa * (h(nr‐1,nz) ‐ h(nr,nz)) / (r(nr) ‐ r(nr‐1)) * & 
     & rez * (z(nz) ‐ z(nz‐1)) / (rez + 1.) 
 
END SUBROUTINE S_LinearQout 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\                                                                                               /////////////////////////////  ! 
!                                                           END SUBROUTINE: S_LINEARQOUT                                                                       ! 
!  /////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\                                                                                                             //////////////////////////  ! 
!                                                       BEGIN SUBROUTINE: S_NONLINEARQOUT                                                               ! 
!  ////////////////////                                                                                                             \\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine calculates the outflow rate using Forchheimer's Equation. 
SUBROUTINE S_NonlinearQout(r, z, h, Q) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(0:nr), INTENT(IN) :: r 
   REAL, DIMENSION(0:nz), INTENT(IN) :: z 
   REAL, DIMENSION(0:nr,0:nz), INTENT(IN) :: h 
   REAL, INTENT(OUT) :: Q 
 
   ! Define temporary variables 
   INTEGER j 
 
   ! Top Node 
   Q = pi * Rc * aa / bb * z(1) / (rez + 1.) * (                                      & 
     & SQRT(1. + 4. * bb * (h(nr‐1,0) ‐ h(nr,0)) / (aa ** 2 * (r(nr) ‐ r(nr‐1)))) ‐ 1.) 
 
   ! Interior Nodes 
   DO j = 1,nz‐1 
      Q = Q + pi * Rc * aa / bb * (z(j+1) ‐ z(j) + rez * (z(j) ‐ z(j‐1))) / (rez + 1.) *  & 
        & (SQRT(1. + 4. * bb * (h(nr‐1,j) ‐ h(nr,j)) / (aa ** 2 * (r(nr) ‐ r(nr‐1)))) ‐ 1.) 
   END DO 
 
   ! Bottom Node 
   Q = Q + pi * Rc * aa / bb * rez * (z(nz) ‐ z(nz‐1)) *                                 & 
     & (SQRT(1. + 4. * bb * (h(nr‐1,nz) ‐ h(nr,nz)) / (aa ** 2 * (r(nr) ‐ r(nr‐1)))) ‐ 1.) 
 
END SUBROUTINE S_NonlinearQout 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\\                                                                                               /////////////////////////////  ! 
!                                                        END SUBROUTINE: S_NONLINEARQOUT                                                                 ! 
!  /////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
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A.9 Matrix Operations 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\                                                                                                    ////////////////////////////  ! 
!                                                           BEGIN SUBROUTINE: S_LUDECOMP                                                                      ! 
!  ///////////////////////                                                                                                     \\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine finds the LU decomposition for a banded matrix A. 
SUBROUTINE S_LUDecomp(A, n) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(n,n), INTENT(INOUT) :: A 
   INTEGER, INTENT(IN) :: n 
 
   ! Define temporary variables 
   INTEGER i, j, k 
   INTEGER p, q 
 
   p = nr + 1            ! Lower bandwidth 
   q = nz + 1            ! Upper bandwidth 
 
   ! LU decomposition of banded matrix A 
   DO k = 1,n‐1 
      DO i = k+1,MIN(k+p,n) 
         A(i,k) = A(i,k) / A(k,k) 
      END DO 
      DO i = k+1,MIN(k+p,n) 
         DO j = k+1,MIN(k+q,n) 
            A(i,j) = A(i,j) ‐ A(i,k) * A(k,j) 
         END DO 
      END DO 
   END DO 
 
END SUBROUTINE S_LUDecomp 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\                                                                                                 /////////////////////////////  ! 
!                                                            END SUBROUTINE: S_LUDECOMP                                                                         ! 
!  ////////////////////////                                                                                                 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
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!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\                                                                                                   /////////////////////////////  ! 
!                                                      BEGIN SUBROUTINE: S_LUBKSUB                                                                                ! 
!  ///////////////////////                                                                                                   \\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
 
! This subroutine does the backsubstitution for an LU decomposed banded matrix A. 
SUBROUTINE S_LUBkSub(A, x, n) 
 
   USE constants 
   IMPLICIT NONE 
 
   ! Define dummy variables 
   REAL, DIMENSION(n,n), INTENT(IN) :: A 
   REAL, DIMENSION(n), INTENT(INOUT) :: x 
   INTEGER, INTENT(IN) :: n 
 
   ! Define temporary variables 
   INTEGER i, j, k 
   INTEGER p, q 
   REAL sum1, sum2, arg 
 
   p = nr + 1            ! Lower bandwidth 
   q = nz + 1            ! Upper bandwidth 
 
   ! Forward substitution for Ly=b 
   DO i = 1,n 
      sum1 = 0. 
      DO j = MAX(1,i‐p),i‐1 
         sum1 = sum1 + A(i,j) * x(j) 
      END DO 
      x(i) = x(i) ‐ sum1 
   END DO 
 
   ! Back substitution for Ux=b 
   DO i = n,1,‐1 
      sum2 = 0. 
      DO j = i+1,MIN(i+q,n) 
         sum2 = sum2 + A(i,j) * x(j) 
      END DO 
      x(i) = (x(i) ‐ sum2) / A(i,i) 
   END DO 
 
END SUBROUTINE S_LUBkSub 
 
!=======================================================================================! 
!  \\\\\\\\\\\\\\\\\\\\\\\\                                                                                               //////////////////////////////  ! 
!                                                             END SUBROUTINE: S_LUBKSUB                                                                            ! 
!  ////////////////////////                                                                                               \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  ! 
!=======================================================================================! 
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Appendix B 

Collected Data 
 

 

B.1 2008 Core Specimen Porosity Data 
Core ID Ws (g) Wsub,total (g) Wsub,solid (g) 

1-1-T 3082.0 1385.0 1774.8 

1-1-S 2673.3 1229.8 1542.6 

1-2-T 3309.7 1473.5 1891.5 

1-2-S 2450.1 1158.5 1420.3 

1-3-T 2746.7 1313.9 1579.4 

1-3-S 2283.1 1047.1 1313.0 

2-1-T 2190.9 1100.0 1272.0 

2-2-T 2206.1 1083.6 1270.1 

2-3-T 1991.7 992.7 1154.3 

3-1-T 2446.1 1254.0 1401.5 

3-2-T 2060.8 1046.7 1176.6 

3-3-T 2455.7 1233.5 1410.6 
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B.2 2009 Core Specimen Porosity Data 
Core ID Ws (g) Wsub,total (g) Wsub,solid (g) 

1-i-T 2831.5 1360.0 1610.0 

1-i-S 2164.4 1017.0 1252.0 

1-ii-T 2856.4 1362.0 1633.0 

1-ii-S 1928.6 928.0 1120.0 

1-iii-T 2965.2 1405.0 1698.0 

1-iii-S 2040.1 971.0 1182.0 

2-i-T 2133.5 1073.0 1238.0 

2-ii-T 2254.9 1121.0 1305.0 

2-iii-T 2271.6 1133.0 1314.0 

3-i-T 2546.2 1288.0 1451.0 

3-ii-T 2694.1 1363.0 1542.0 

3-iii-T 2638.5 1257.0 1505.0 
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B.3 2010 Core Specimen Porosity Data 
Core ID Ws (g) Wsub,total (g) Wsub,solid (g) 

1-a-T 1519.1 738.4 880.8 

1-a-S 1179.2 559.6 689.4 

1-b-T 1484.3 670.8 855.2 

1-b-S 1191.4 567.7 692.1 

1-c-T 1573.8 769.3 902.8 

1-c-S 1167.5 560.3 679.8 

3-a-T 1376.2 699.1 789.4 

3-b-T 1345.7 683.1 773.2 

3-c-T 1371.3 697.3 791.3 

 

 

B.4 2008 Core Specimen Constant Head Data 
Core 1-1-T 

Q (cm3/s) hs (cm) 
1.46 0.12 
7.53 1.26 
9.97 2.03 
14.57 3.89 
17.23 5.07 
19.87 7.22 
23.22 8.43 
26.22 11.06 
28.51 11.95 
31.59 14.03 
34.09 15.65 
36.59 17.60 

 

 

  232 



Core 1-1-S 

Q (cm3/s) hs (cm) 
1.45 0.11 
5.20 0.40 
7.42 0.65 
9.35 0.94 
11.48 1.33 
14.11 1.79 
16.16 2.25 
18.33 2.79 
20.12 3.21 
22.08 3.80 
24.81 4.61 
26.12 5.05 
27.78 5.56 
29.72 6.31 
32.04 7.05 
33.68 7.90 
34.99 8.34 
36.37 8.84 

 

Core 1-2-T 

Q (cm3/s) hs (cm) 
1.44 0.14 
5.28 0.91 
7.26 1.47 
9.19 2.15 
11.68 3.13 
14.11 4.29 
16.04 5.32 
18.11 6.51 
19.70 7.41 
21.81 8.73 
24.22 10.38 
26.15 11.76 
27.79 12.91 
29.88 14.72 
31.76 16.23 
33.40 17.81 
34.88 19.03 
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36.37 20.27 
 

Core 1-2-S 

Q (cm3/s) hs (cm) 
1.42 0.09 
4.93 0.66 
7.43 1.19 
9.02 1.62 
11.68 2.41 
14.18 3.33 
15.97 4.11 
18.01 4.94 
19.85 5.83 
22.73 7.22 
24.36 8.28 
25.98 9.14 
27.51 10.05 
29.62 11.19 
31.60 12.47 
33.24 13.59 
35.11 14.76 
36.44 15.78 

 

Core 1-3-T 

Q (cm3/s) hs (cm) 
1.44 0.10 
4.90 0.52 
7.02 0.84 
9.35 1.35 
11.97 1.88 
14.40 2.64 
16.22 3.17 
17.94 3.71 
19.90 4.37 
22.28 5.41 
24.23 6.22 
25.85 6.89 
27.57 7.66 
29.52 8.52 
31.65 9.52 
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33.48 10.37 
35.04 11.09 
36.00 11.69 

 

Core 1-3-S 

Q (cm3/s) hs (cm) 
1.43 0.07 
4.69 0.41 
7.41 0.76 
9.35 1.09 
11.36 1.49 
14.03 2.02 
16.31 2.53 
17.76 2.88 
19.50 3.34 
21.97 4.08 
24.54 4.76 
25.90 5.27 
27.13 5.66 
29.21 6.46 
31.42 7.17 
33.18 8.00 
34.62 8.49 
36.00 9.08 

 

Core 2-1-T 

Q (cm3/s) hs (cm) 
1.48 0.34 
5.12 1.53 
7.33 2.66 
9.39 3.94 
11.72 5.69 
13.99 7.55 
16.07 9.37 
17.71 11.06 
19.72 13.13 
22.17 15.88 
24.33 18.53 
25.94 20.47 
27.12 21.92 
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29.17 24.70 
35.52 33.47 
36.82 35.94 
38.08 38.68 
39.96 41.19 

 

Core 2-2-T 

Q (cm3/s) hs (cm) 
1.51 0.18 
5.20 0.86 
8.34 1.74 
10.58 2.47 
12.90 3.43 
15.09 4.41 
17.77 5.84 
19.46 6.69 
21.45 7.74 
23.16 8.87 
24.67 9.75 
26.97 11.12 
29.30 13.07 
30.89 14.11 
32.17 15.11 
34.54 16.88 
36.87 18.91 
38.99 21.18 

 

Core 2-3-T 

Q (cm3/s) hs (cm) 
1.45 0.32 
4.68 1.44 
7.46 2.88 
9.40 4.18 
11.57 5.72 
13.72 7.59 
16.23 9.73 
18.50 12.00 
20.43 14.22 
22.07 15.73 
23.82 17.76 
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26.15 20.87 
28.42 23.77 
30.19 26.32 
31.39 28.01 
33.62 31.10 
35.56 34.41 
37.88 37.73 

 

Core 3-1-T 

Q (cm3/s) hs (cm) 
1.55 3.12 
3.96 13.74 
6.02 26.08 
8.37 40.13 
9.65 49.83 

 

Core 3-2-T 

Q (cm3/s) hs (cm) 
1.48 5.97 
4.02 25.12 
6.22 49.29 

 

Core 3-3-T 

Q (cm3/s) hs (cm) 
1.50 0.68 
5.28 4.21 
7.89 8.28 
9.82 11.90 
11.82 17.19 
14.65 23.82 
16.62 29.22 
18.60 35.81 
20.34 41.56 
22.13 47.00 
24.39 54.97 
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B.5 2009 Core Specimen Constant Head Data 
Core 1-i-T 

Q (cm3/s) hs (cm) 
1.29 0.11 
1.53 0.08 
2.22 0.15 
3.15 0.27 
3.93 0.40 
4.66 0.51 
5.07 0.52 
5.32 0.63 
6.25 0.76 
7.79 1.15 
7.91 1.19 
8.13 1.06 
10.25 1.58 
12.50 2.13 
14.53 2.79 
16.68 3.48 
19.19 4.44 
21.39 5.23 
23.45 6.08 
25.31 6.86 
27.18 7.82 
28.99 8.80 
31.50 10.25 
32.98 11.07 
34.17 12.09 
36.15 13.38 
38.92 15.11 

 

Core 1-i-S 

Q (cm3/s) hs (cm) 
1.21 0.06 
1.48 0.09 
2.22 0.12 
2.97 0.17 
3.63 0.22 
4.36 0.30 
5.06 0.38 
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5.31 0.43 
5.89 0.47 
7.56 0.66 
7.57 0.65 
7.86 0.68 
9.78 0.79 
11.87 1.14 
14.51 1.49 
16.22 1.84 
18.20 2.16 
20.04 2.47 
22.30 2.91 
24.25 3.40 
25.74 3.71 
27.97 4.31 
29.49 4.74 
31.60 5.37 
33.29 5.89 
34.50 6.33 
35.63 6.76 

 

Core 1-ii-T 

Q (cm3/s) hs (cm) 
1.53 0.24 
2.03 0.35 
3.14 0.63 
4.07 0.89 
4.79 1.16 
5.17 1.48 
5.43 1.46 
6.24 1.77 
7.32 2.27 
8.25 2.92 
8.92 2.99 
9.03 3.06 
10.38 4.28 
12.38 5.56 
14.64 7.09 
17.00 8.82 
19.05 10.48 
21.18 10.78 
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22.72 12.34 
24.29 13.96 
27.03 17.10 
28.95 19.17 
30.88 21.37 
32.31 22.97 
34.28 25.20 
35.94 27.79 
38.09 30.51 

 

Core 1-ii-S 

Q (cm3/s) hs (cm) 
1.46 0.12 
1.51 0.12 
2.71 0.23 
3.86 0.36 
4.65 0.46 
4.83 0.46 
5.33 0.59 
6.18 0.72 
7.05 0.88 
8.11 1.03 
8.93 1.31 
8.97 1.32 
10.32 1.50 
12.34 1.96 
14.42 2.55 
16.28 3.10 
18.36 3.75 
21.45 4.87 
23.16 5.50 
24.66 6.20 
26.65 6.71 
28.41 7.55 
30.49 8.63 
32.20 9.57 
34.21 10.59 
35.89 12.19 
37.70 13.32 
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Core 1-iii-T 

Q (cm3/s) hs (cm) 
1.42 0.10 
1.63 0.10 
3.02 0.24 
3.88 0.38 
4.68 0.49 
4.68 0.47 
5.43 0.56 
6.15 0.72 
7.07 0.87 
7.77 1.04 
8.98 1.24 
9.03 1.31 
9.54 1.32 
11.55 1.74 
13.69 2.23 
15.84 2.82 
18.34 3.46 
20.80 4.24 
23.00 5.03 
23.99 5.40 
25.49 5.77 
27.07 6.42 
29.45 7.34 
31.94 8.46 
34.15 9.29 
35.31 9.80 
36.89 10.51 

 

Core 1-iii-S 

Q (cm3/s) hs (cm) 
1.46 0.22 
1.53 0.22 
3.02 0.48 
3.89 0.72 
4.63 0.91 
5.05 1.14 
5.45 1.19 
6.17 1.43 
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7.23 1.79 
8.03 1.89 
8.48 2.33 
9.08 2.57 
10.11 2.71 
12.12 3.75 
14.43 5.11 
16.78 6.53 
19.32 8.18 
20.75 9.10 
22.17 10.18 
23.93 11.53 
26.05 13.14 
28.51 15.22 
30.79 17.12 
32.24 19.47 
33.88 21.20 
35.61 23.10 
38.85 26.77 

 

Core 2-i-T 

Q (cm3/s) hs (cm) 
1.30 0.47 
1.43 0.55 
2.83 1.18 
3.78 1.68 
4.48 2.19 
4.62 2.52 
5.19 2.70 
5.89 3.28 
6.78 3.97 
7.53 4.71 
8.14 5.11 
8.69 5.60 
9.52 6.51 
11.75 12.64 
13.88 14.88 
16.38 18.40 
18.40 21.13 
20.44 24.68 
21.78 26.60 
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23.45 29.33 
25.68 32.62 
28.32 37.26 
30.21 41.04 
31.82 42.24 
33.27 45.24 
35.07 49.01 
38.16 55.49 

 

Core 2-ii-T 

Q (cm3/s) hs (cm) 
1.42 0.24 
1.58 0.35 
2.79 0.58 
3.59 0.81 
4.29 0.99 
4.84 1.48 
5.04 1.21 
5.98 1.54 
6.97 1.90 
7.87 3.06 
8.68 3.18 
8.72 2.81 
9.87 4.18 
12.01 5.34 
14.31 6.74 
16.70 8.12 
18.38 9.25 
20.21 10.52 
21.90 11.64 
23.62 13.18 
26.15 15.31 
28.23 16.42 
29.66 17.71 
31.66 19.48 
33.82 21.34 
36.01 23.39 
37.54 25.25 
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Core 2-iii-T 

Q (cm3/s) hs (cm) 
1.54 0.18 
1.54 0.18 
2.79 0.43 
3.63 0.55 
4.31 0.70 
4.85 0.80 
5.11 0.88 
5.88 1.04 
6.78 1.24 
7.88 1.55 
8.22 1.62 
8.60 1.74 
10.43 2.28 
12.13 2.86 
14.80 3.83 
16.66 4.61 
18.78 5.86 
21.62 7.29 
23.94 8.50 
25.92 9.70 
27.69 10.86 
29.79 12.08 
31.76 13.45 
33.35 14.63 
35.57 16.23 
37.56 17.76 
40.41 19.84 

 

Core 3-i-T 

Q (cm3/s) hs (cm) 
1.41 2.08 
1.73 2.225 
2.67 3.61 
3.40 5.185 
4.01 6.61 
4.77 8.72 
4.80 9.43 
5.74 11.91 
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6.30 14.13 
7.66 18.76 
7.99 20.37 
8.19 18.68 
9.78 23.98 
10.87 29.49 
12.58 34.60 
14.36 44.90 
15.68 52.85 

 

Core 3-ii-T 

Q (cm3/s) hs (cm) 
1.49 1.02 
1.55 1.11 
2.57 2.02 
3.42 2.94 
3.98 3.72 
4.63 4.74 
5.15 4.74 
5.50 5.83 
6.27 6.98 
7.48 8.91 
7.98 9.29 
8.11 10.20 
9.76 12.64 
11.85 16.63 
14.35 20.31 
16.61 26.15 
18.68 31.90 
20.70 37.77 
22.16 42.16 
24.59 49.62 
25.89 56.06 

 

Core 3-iii-T 

Q (cm3/s) hs (cm) 
1.54 0.85 
1.55 0.86 
2.53 1.65 
3.37 2.34 
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3.94 3.04 
4.64 3.91 
4.83 4.52 
5.29 4.77 
6.20 5.94 
7.49 8.17 
7.70 9.50 
8.16 9.62 
9.68 13.58 
11.85 16.11 
13.49 20.98 
15.76 27.59 
17.35 32.34 
19.32 39.11 
21.07 45.64 
22.61 50.66 

 

 

B.6 Select 2008 and 2009 Core Specimen Falling Head Data 
Core ID t1 (sec) t2 (sec) α (s/cm2) β (s2/cm5) 

1-1-S 3.55±0.05 10.18±0.02 0.1505 0.0050 

1-2-T 5.42±0.21 14.84±0.16 0.1480 0.0135 

1-2-S 4.81±0.10 13.09±0.26 0.1188 0.0110 

2-1-T 11.14±0.10 31.43±0.20 0.4161 0.0516 

2-i-T 9.72±0.05 25.90±0.04 0.4057 0.0405 

2-iii-T 4.10±0.09 11.89±0.16 0.1873 0.0064 

3-i-T 21.56±0.38 62.08±0.34 0.9443 0.1799 

3-ii-T 13.21±0.07 37.43±0.12 0.5112 0.0715 

3-iii-T 14.23±0.21 40.24±0.62 0.5413 0.0836 
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B.7 2010 Core Specimen Falling Head Data 
Core ID t1 (sec) t2 (sec) α (s/cm2) β (s2/cm5) 

1-a-T 11.16±0.13 30.53±0.17 0.2997 0.0576 

1-a-S 2.91±0.15 8.02±0.19 0.0868 0.0038 

1-b-T 3.09±0.13 8.24±0.16 0.0524 0.0049 

1-b-S 2.57±0.10 7.08±0.09 0.0750 0.0030 

1-c-T 6.23±0.13 17.16±0.21 0.1804 0.0176 

1-c-S 2.26±0.07 6.28±0.03 0.0737 0.0022 

3-a-T 18.93±0.07 52.09±0.57 0.5464 0.1627 

3-b-T 97.34±9.10 295.17±22.37 5.7616 3.0130 

3-c-T 37.84±1.76 105.28±4.63 1.2329 0.6265 
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Symbology 
 

 

α  linear modified Forchheimer coefficient 

α’  significance level used for statistical decisions 

β  nonlinear modified Forchheimer coefficient 

ε  convergence criteria 

η  transformed nonlinear modified Forchheimer coefficient 

θ  θ-direction 

μ  fluid dynamic viscosity 

ξ  transformed linear Forchheimer coefficient 

ρ  fluid density 

Ф  hydraulic conductivity ratio 

 

a  linear original Forchheimer coefficient 

A  cross-sectional area 

b  nonlinear original Forchheimer coefficient 

b*  transformed nonlinear original Forchheimer coefficient 

bc  core specimen thickness 

c1  slope relating linear Forchheimer coefficients 

c2  slope relating nonlinear Forchheimer coefficients 

c3  slope relating transformed linear Forchheimer coefficients 

c4  slope relating transformed nonlinear Forchheimer coefficients 

cw  empirical constant for nonlinear porous media flow 

d  characteristic length scale 

d10  smallest 10% grain diameter 

d50  mean grain diameter 

Dp  particle diameter 

e  eastern half node 
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E  coefficient for east computational node 

E  ratio of liquid-solid interaction pressure gradient to total pressure gradient 

F  linear shape factor 

fk  friction factor 

Fo  Forchheimer number 

g  gravitational constant 

h  hydraulic head 

h*  head distribution for infinite core 

H0  null hypothesis 

Ha  alternate hypothesis 

hb  average head at outflow boundary 

hs  standpipe head 

hsd  measured standpipe head data 

hsm  modeled standpipe head 

Hu  normalized unit head difference 

i  index for radial direction 

I  hydraulic gradient 

Ir  radial direction hydraulic gradient 

Ix  x-direction hydraulic gradient 

Iy  y-direction hydraulic gradient 

Iz  vertical hydraulic gradient 

j  index for vertical direction 

k  intrinsic permeability 

k0  intrinsic permeability for zero discharge 

K  hydraulic conductivity 

KF  effective Forchheimer hydraulic conductivity 

Kr  radial hydraulic conductivity 

KW  Kruskal-Wallis test statistic 

Kz  vertical hydraulic conductivity 
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L  length dimension 

L∞  norm used for convergence criteria 

m  power term for Izbash equation 

n  northern half node 

n  transformed nonlinear original Forchheimer coefficient or time level 

N  coefficient for north computational node 

N  number of data points 

Ni  number of image pairs 

ne  effective porosity 

nr  number of elements in the radial direction 

nz  number of elements in the vertical direction 

p  fluid pressure or convergence rate 

P  coefficient for computational node 

P.D.  percent difference 

q  specific discharge 

Q  volumetric flow rate 

qD  Darcy specific discharge 

qF  Forchheimer specific discharge 

qr  radial specific discharge 

qz  vertical specific discharge 

r  radial direction 

R  data value rank 

Δr  radial difference 

RRc  core specimen radius 

Re  Reynolds number 

Rek  Reynolds number based on intrinsic permeability 

rer  radial expansion ratio 

rer1  radial expansion ratio under standpipe 

rer2  radial expansion ratio outside of standpipe 
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rez  vertical expansion ratio 

ri  radial node location 

RRs  standpipe radius 

RRw  well radius 

s  southern half node 

s  roadway slope 

S  coefficient for south computational node 

S.E.  standard error 

t  time 

T  Mann-Whitney test statistic 

Δt  time step 

t0  initial time measurement 

t1  middle time measurement 

t2  final time measurement 

ta  confined aquifer thickness 

v  average fluid velocity 

Vs  volume of solids in core specimen 

Vt  total core specimen volume 

w  western half node 

W  coefficient for west computational node 

Wb  weight of plastic bag 

Ws  oven dry weight of solids 

Wsub,solid submerged weight of core specimen 

Wsub,total submerged weight of core specimen and plastic bag 

z  vertical direction or elevation head 

zj  vertical node location  
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Acronyms 
 

 

ANOVA Analysis of Variance 

BMP  Best Management Practice 

CDS  Central Difference Scheme 

CRWR  Center for Research in Water Resources 

HMAC Hot Mix Asphalt Concrete 

LID  Low Impact Development 

OGFC  Open-Graded Friction Course 

PFC  Permeable Friction Course 

RHS  Right Hand Side 

TCEQ  Texas Commission on Environmental Quality 

TSS  Total Suspended Solids 

TX  Texas 

TxDOT Texas Department of Transportation 

 

   

  252 



Works Cited 
 

 

ASCE (1992): Design and Construction of Urban Stormwater Management Systems, 

American Society of Civil Engineers, prepared by the Urban Water Resources 

Research Council and the Water Environment Federation, Reston, Virginia. 

Barrett, M.E., P. Kearfott, and J.F. Malina (2006): “Stormwater Quality Benefits of a 

Porous Friction Course and Its Effects on Pollutant Removal by Roadside 

Shoulders,” Water Environmental Research, Vol. 78, No. 11, pg. 2177-2185. 

Barrett, M.E. and C.B. Shaw (2007): “Benefits of Porous Asphalt Overlay on Storm 

Water Quality,” Transportation Research Record, No. 2025, pg. 127-134. 

Bear, J. (1972): Dynamics of Fluids in Porous Media, American Elsevier Publishing 

Company, Inc., New York. 

Bear, J. (1979): Hydraulics of Groundwater, McGraw-Hill, New York. 

Bendtsen, H. and B. Andersen (2005): “Report 141: Noise Reducing Pavements – State 

of the Art in Denmark,” Road Directorate, Danish Road Institute, Denmark 

Ministry of Transport. 

Berbee, R., G. Rijs, R. de Brouwer, and L. van Velzen (1999): “Characterization and 

Treatment of Runoff from Highways in the Netherlands Paved with Impervious 

and Pervious Asphalt,” Water Environment Research, Vol. 71, No. 2, pg. 183-

190. 

Bordier, C. and D. Zimmer (2000): “Drainage Equations and Non-Darcian Modelling in 

Coarse Porous Media or Geosynthetic Materials,” Journal of Hydrology, Vol. 

228, pg. 174-187. 

Caltrans (2009): Open and/or Gap Graded Asphalt Pavements Water Quality Project: 

Visual Inspection of Monitoring Location Pavements, California Department of 

Transportation, Division of Environmental Analysis, Storm Water Program MS-

27, Sacramento, CA. 

  253 



Camacho-V., R.G. and M. Vasquez-C. (1992): “Comment on ‘Analytical Solution 

Incorporating Nonlinear Radial Flow in Confined Aquifers’ by Zekai Sen,” Water 

Resources Research, Vol. 28, No. 12, pg. 3337-3338. 

CAMPO (2009): “TxDOT 5 County AADT Counts: 1990-2005,” 20 April 2009, Capital 

Area Metropolitan Planning Organization, Austin, Texas, 

<http://www.campotexas.org/programs_rd_traffic_counts.php>. 

Candaele, R.M. (2008): Porous Friction Course: A Laboratory Evaluation of Hydraulic 

Properties, M.S. Thesis in Engineering, The University of Texas at Austin. 

Carslaw, H.S. and J.C. Jaeger (1959): Conduction of Heat in Solids, Second Ed., Oxford 

University Press, Amen House, London. 

Chai, K.C., S.A. Tan, and T.F. Fwa (2004): “Finite Element Analysis of Runoff Flow 

Within Porous Pavement System,” Journal of the Institution of Engineers, 

Singapore, Vol. 44, Issue 2, pg. 10-28. 

Charbeneau, R.J. (2000): Groundwater Hydraulics and Pollutant Transport, Prentice-

Hall, Upper Saddle River, NJ. 

Charbeneau, R.J. and M.E. Barrett (2008): “Drainage Hydraulics of Permeable Friction 

Courses,” Water Resources Research, Vol. 44, W04417. 

Charbeneau, R.J., J.B. Klenzendorf, and M.E. Barrett (in press): “Methodology for 

Determining Laboratory and In-Situ Hydraulic Conductivity of Asphalt 

Permeable Friction Course,” Journal of Hydraulic Engineering. 

Chen, Z., S.L. Lyons, and G. Qin (2001): “Derivation of the Forchheimer Law via 

Homogenization,” Transport in Porous Media, Vol. 44, pg. 325-335. 

Collins, R.E. (1961): Flow of Fluids Through Porous Materials, Reinhold, New York. 

Conover, W.J. (1980): Practical Nonparametric Statistics, Second Ed., John Wiley & 

Sons, New York. 

Darcy, H. (1856): The Public Fountains of the City of Dijon, English Translation by 

Patricia Bobeck (2004), Kendall/Hunt Publishing Company, Dubuque, Iowa. 

  254 



Eck, B.J. (2010): Drainage Hydraulics of Porous Pavements: Coupling Surface and 

Subsurface Flow, PhD Dissertation in Engineering, The University of Texas at 

Austin. 

Eck, B.J., M.E. Barrett, and R.J. Charbeneau (in press): “Note on Modeling Surface 

Discharge from Permeable Friction Courses,” Water Resources Research. 

Ergun, S. (1952): “Fluid Flow Through Packed Columns,” Chemical Engineering 

Progress, Vol. 48, No. 2, pg. 89-94. 

Ewing, R.E., R.D. Lazarov, S.L. Lyons, D.V. Papavassiliou, J. Pasciak, and G. Qin 

(1999): “Numerical Well Model for Non-Darcy Flow Through Isotropic Porous 

Media,” Computational Geosciences, Vol. 3, pg. 185-204. 

Ferziger, J.H. and M. Peric (2002): Computational Methods for Fluid Dynamics, Third 

Ed., Springer-Verlag, Berlin. 

Fetter, C.W. (1994): Applied Hydrogeology, Third Ed., Macmillan College Publishing 

Company, New York. 

Field, R., H. Masters, and M. Singer (1982): “Status of Porous Pavement Research,” 

Water Research, Vol. 16, No. 6, pg. 849-858. 

Forchheimer, P. (1901): “Wasserbewegung dur Bodem,” Zeitschrift des Verbundes der 

deutschen Ingenieurs, Vol. 45, pg. 1782-1788. 

Frasier, P.M. (2009): Stormwater Quality Benefits of Permeable Friction Course, M.S. 

Thesis in Engineering, The University of Texas at Austin. 

Fwa, T.F., S.A. Tan, and C.T. Chuai (1998): “Permeability Measurement of Base 

Materials Using Falling-Head Test Apparatus,” Transportation Research Record, 

No. 1615, pg. 94-99. 

Fwa, T.F., S.A. Tan, and Y.K Guwe (1999): “Laboratory Evaluation of Clogging 

Potential of Porous Asphalt Mixtures,” Transportation Research Record, No. 

1681, pg. 43-49. 

Fwa, T.F., S.A. Tan, C.T. Chuai, and Y.K. Guwe (2001a): “Expedient Permeability 

Measurement for Porous Pavement Surface,” International Journal of Pavement 

Engineering, Vol. 2, pg. 259-270. 

  255 



Fwa, T.F., S.A. Tan, and Y.K. Guwe (2001b): “Rational Basis for Evaluation and Design 

of Pavement Drainage Layers,” Transportation Research Record, No. 1772, pg. 

174-180. 

Giorgi, T. (1997): “Derivation of the Forchheimer Law via Matched Asymptotic 

Expansions,” Transport in Porous Media, Vol. 29, pg. 191-206. 

Goggin, D.J., R.L. Thrasher, and L.W. Lake (1988): “A Theoretical and Experimental 

Analysis of Minipermeameter Response Including Gas Slippage and High 

Velocity Flow Effects,” In Situ, Vol. 12, No. 1&2, pg. 79-116. 

Hassan, H.F., A.A. Rawas, A.W. Hago, A. Jamrah, A. Al-Futaisi, and T. Al-Sabqi 

(2008): “Investigation of Permeability and Leaching of Hot Mix Asphalt Concrete 

Containing Oil-Contaminated Soils,” Construction and Building Materials, Vol. 

22, pg. 1239-1246. 

Hassanizadeh, S.M. and W.G. Gray (1987): “High Velocity Flow in Porous Media,” 

Transport in Porous Media, Vol. 2, pg. 521-531. 

Helsel, D.R. and R.M. Hirsch (2002): “Statistical Methods in Water Resources,” 

Techniques of Water-Resources Investigations of the United States Geological 

Survey, Book 4, Hydrologic Analysis and Interpretation, Chapter A3. 

Hwang, H.C. and R.J. Houghtalen (1996): Fundamentals of Hydraulic Engineering 

Systems, Third Ed., Prentice Hall, Upper Saddle River, NJ. 

Irmay, S. (1958): “On the Theoretical Derivation of Darcy and Forchheimer Formulas,” 

Journal of Geophysical Research, Vol. 39, pg. 702-707. 

Isenring, T., H. Koster and I. Scazziga (1990): “Experiences with Porous Asphalt in 

Switzerland,” Transportation Research Record, No. 1265, pg. 41-53. 

Izbash, S. (1931): O Filtracii Kropnozernstom Materiale, Leningrad, USSR. 

Jackson, T.J. and R.M. Ragan (1974): “Hydrology of Porous Pavement Parking Lots,” 

Journal of the Hydraulic Division, Vol. 100, HY 12, pg. 1739-1752. 

Kadlec, H.R. and L.R. Knight (1996): Treatment Wetlands, CRC Press Lewis Publishers, 

Boca Raton, Florida. 

Kanji, G.K. (2006): 100 Statistical Tests, Third Ed., SAGE Publications Ltd, London. 

  256 



Kelkar, M.G. (2000): “Estimation of Turbulence Coefficient Based on Field 

Observations,” SPE Reservoir Evaluation and Engineering, Vol. 3, No. 2, pg. 

160-164. 

Kovacs, G. (1981): Seepage Hydraulics, Elsevier Scientific Publishing Company, 

Amsterdam. 

Krishnan, J.M. and C.L. Rao (2001): “Permeability and Bleeding of Asphalt Concrete 

Using Mixture Theory,” International Journal of Engineering Science, Vol. 39, 

pg. 611-627. 

LCRA (2010): “Hydromet,” 15 February 2010, Lower Colorado River Authority, Austin, 

Texas, <http://hydromet.lcra.org/>. 

Li, D. and T.W. Engler (2001): “Literature Review on Correlations of the Non-Darcy 

Coefficient,” SPE 70015, Proceedings of the SPE Permian Basin Oil and Gas 

Recovery Conference, Midland, Texas, USA, May 15-16. 

Loaiciga, H.A. (2005): “Steady State Phreatic Surfaces in Sloping Aquifers,” Water 

Resources Research, Vol. 41, W08402. 

Ma, H. and D.W. Ruth (1993): “The Microscopic Analysis of High Forchheimer Number 

Flow in Porous Media,” Transport in Porous Media, Vol. 13, pg. 139-160. 

Masad, E., B. Muhunthan, N. Shashidhar, and T. Harman (1999): “Internal Structure 

Characterization of Asphalt Concrete Using Image Analysis,” Journal of 

Computing in Civil Engineering, Vol. 13, No. 2, pg. 88-95. 

Masad, E., B. Birgisson, A. Al-Omari, and A. Cooley (2004): “Analytical Derivation of 

Permeability and Numerical Simulation of Fluid Flow in Hot-Mix Asphalt,” 

Journal of Materials in Civil Engineering, Vol. 16, No. 5, pg. 487-496. 

Mathias, S.A., A.P. Butler, and H. Zhan (2008): “Approximate Solutions for Forchheimer 

Flow to a Well,” Journal of Hydraulic Engineering, Vol. 134, No. 9, pg. 1318-

1325. 

Moutsopoulos, K.N. and V.A. Tsihrintzis (2005): “Approximate Analytical Solutions of 

the Forchheimer Equation,” Journal of Hydrology, Vol. 309, pg. 93-103. 

  257 



Muskat, M. (1982): The Flow of Homogenous Fluids Through Porous Media, 

International Human Resources Development Corporation, Boston, MA. 

Pagotto, C., M. Legret, and P. le Cloirec (2000): “Comparison of the Hydraulic 

Behaviour and the Quality of Highway Runoff Water According to the Type of 

Pavement,” Water Research, Vol. 34, No. 18, pg. 4446-4454. 

Ranchet, J. (1995): “Impacts of Porous Pavements on the Hydraulic Behaviour and the 

Cleansing of Water” (in French), Techniques Sciences et Methodes, Vol. 11, pg. 

869-871. 

Ranieri, V. (2002): “Runoff Control in Porous Pavements,” Transportation Research 

Record, No. 1789, pg. 46-55. 

Ranieri, V. (2007): “The Functional Design of Porous Friction Courses,” 2007 Annual 

Meeting of the Transportation Research Board. 

Reddy, N.B.P. and P. Rama Mohan Rao (2006): “Effect of Convergence on Nonlinear 

Flow in Porous Media,” Journal of Hydraulic Engineering, Vol. 132, No. 4, pg. 

420-427. 

Regimand, A. and L. James (2004): “Systems and Methods for Determining the Porosity 

and/or Effective Air Void Content of Compacted Material,” U.S. Patent 6,684,684 

B2, Feb. 3, 2004. 

Reynolds, O. (1900): “Papers on Mechanical and Physical Subjects,” Cambridge 

University Press. 

Ruth, D. and H. Ma (1992): “On the Derivation of the Forchheimer Equation by Means 

of the Averaging Theorem,” Transport in Porous Media, Vol. 7, pg. 255-264. 

Sen, Z. (1987): “Non-Darcian Flow in Fractured Rocks with a Linear Flow Pattern,” 

Journal of Hydrology, Vol. 92, pg. 43-57. 

Sen, Z. (1988): “Analytical Solution Incorporating Nonlinear Radial Flow in Confined 

Aquifers,” Water Resources Research, Vol. 24, No. 4, pg. 601-606. 

Sen, Z. (1990): “Nonlinear Radial Flow in Confined Aquifers Toward Large-Diameter 

Wells,” Water Resources Research, Vol. 26, No. 5, pg. 1103-1109. 

Sen, Z. (1992): “Reply,” Water Resources Research, Vol. 28, No. 12, pg. 3339-3340. 

  258 



Sidiropoulou, M.G., K.N. Moutsopoulos, and V.A. Tsihrintzis (2007): “Determination of 

Forchheimer Equation Coefficients a and b,” Hydrological Processes, Vol. 21, 

pg. 534-554. 

Smith, G.D. (1965): Numerical Solution of Partial Differential Equations, Oxford 

University Press, Amen House, London. 

Srivastava, R. (2009): “Discussion of ‘Effect of Convergence on Nonlinear Flow in 

Porous Media’ by N. Bhanu Prakasham Reddy and P. Rama Mohan Rao,” 

Journal of Hydraulic Engineering, Vol. 135, No. 6, pg. 533-535. 

Stanard, C.E. (2008): Stormwater Quality Benefits of a Permeable Friction Course, M.S. 

Thesis in Engineering, The University of Texas at Austin. 

Stanard, C.E., M.E. Barrett, and R.J. Charbeneau (2008): Stormwater Quality Benefits of 

a Permeable Friction Course, CRWR Online Report 08-03, Center for Research 

in Water Resources, The University of Texas at Austin. 

Stotz, G. and K. Krauth (1994): “The Pollution of Effluents from Pervious Pavements of 

an Experimental Highway Section: First Results,” The Science of the Total 

Environment, Vol. 146-147, pg. 465-470. 

Tan, S.A., T.F. Fwa, and C.T. Chuai (1997): “A New Apparatus for Measuring the 

Drainage Properties of Porous Asphalt Mixes,” Journal of Testing and 

Evaluation, Vol. 25, No. 4, pg. 370-377. 

Tan, S.A., T.F. Fwa, and C.T. Chuai (1999): “Automatic Field Permeameter for Drainage 

Properties of Porous Asphalt Mixes,” Journal of Testing and Evaluation, Vol. 27, 

No. 1, pg. 57-62. 

Tan, S.A., T.F. Fwa, and Y.K. Guwe (2000): “Laboratory Measurements and Analysis of 

Clogging Mechanism of Porous Asphalt Mixes,” Journal of Testing and 

Evaluation, Vol. 28, No. 3, pg. 207-216. 

Tan, S.A., T.F. Fwa, and C.T. Chuai (2002): “Drainage Testing of Porous Asphalt Road 

Mixes,” U.S. Patent 6,367,310 B1, Apr. 9, 2002. 

Tan, S.A., T.F. Fwa, and C.T. Han (2003): “Clogging Evaluation of Permeable Bases,” 

Journal of Transportation Engineering, Vol. 129, No. 3, pg. 309-315. 

  259 



Tan, S.A., T.F. Fwa, and K.C. Chai (2004): “Drainage Considerations for Porous Asphalt 

Surface Course Design,” Transportation Research Record, No. 1868, pg. 142-

149. 

Tarefder, R.A., L. White, and M. Zaman (2005): “Neural Network Model for Asphalt 

Concrete Permeability,” Journal of Materials in Civil Engineering, Vol. 17, No. 

1, pg. 19-27. 

Thauvin, F. and K.K. Mohanty (1998): “Network Modeling of Non-Darcy Flow Through 

Porous Media,” Transport in Porous Media, Vol. 31, pg. 19-37. 

Theis, C.V. (1935): “The Lowering of the Piezometer Surface and the Rate and 

Discharge of a Well Using Groundwater Storage,” Transactions, American 

Geophysical Union, Vol. 16, pg. 519-524. 

Thiruvengadam, M. and G.N. Pradip Kumar (1997): “Validity of Forchheimer Equation 

in Radial Flow Through Coarse Granular Media,” Journal of Engineering 

Mechanics, Vol. 123, No. 7, pg. 696-705. 

TRB (2009): Construction and Maintenance Practices for Permeable Friction Courses, 

National Cooperative Highway Research Program Report 640, Transportation 

Research Board of the National Academies, Washington, D.C. 

TxDOT (1993): Special Specification 3231 – Porous Friction Course, Texas Department 

of Transportation, Austin, TX. 

TxDOT (2004a): Test Procedure for Permeability or Water Flow of Hot Mix Asphalt, 

Texas Department of Transportation, Construction Division, Designation Tex-

246-F, Austin, TX. 

TxDOT (2004b): Item 342 – Permeable Friction Course (PFC), Texas Department of 

Transportation, Austin, TX. 

Van Heystraeten, G. and C. Moraux (1990): “Ten Years’ Experience of Porous Asphalt 

in Belgium,” Transportation Research Record, No. 1265, pg. 34-40. 

Venkataraman, P. and P. Rama Mohan Rao (1998): “Darcian, Transitional, and Turbulent 

Flow Through  Porous Media,” Journal of Hydraulic Engineering, Vol. 124, No. 

8, pg. 840-846. 

  260 



Venkataraman, P. and P. Rama Mohan Rao (2000): “Validation of Forchheimer’s Law 

for Flow Through Porous Media with Converging Boundaries,” Journal of 

Hydraulic Engineering, Vol. 126, No. 1, pg. 63-71. 

Wang, X., F. Thauvin, K.K. Mohanty (1999): “Non-Darcy Flow Through Anisotropic 

Porous Media,” Chemical Engineering Science, Vol. 54, pg. 1859-1869.’ 

Ward, J.C. (1964): “Turbulent Flow in Porous Media,” Journal of the Hydraulic 

Division, Vol. 90, HY 5, pg. 1-12. 

Wiles, T.J. and J.M. Sharp (2008): “The Secondary Permeability of Impervious Cover,” 

Environmental and Engineering Geoscience, Vol. 14, No. 4, pg. 251-265. 

Wu, Y.S. (2002): “An Approximate Analytical Solution for Non-Darcy Flow Toward a 

Well in Fractured Media,” Water Resources Research, Vol. 38, No. 3, 1023. 

Yates, S.R., A.W. Warrick, and D.O. Lomen (1985a): “Hillside Seepage: An Analytical 

Solution to a Nonlinear Dupuit-Forchheimer Problem,” Water Resources 

Research, Vol. 21, No. 3, pg. 331-336. 

Yates, S.R., D.O. Lomen, and A.W. Warrick (1985b): “Solutions for a Dupuit Aquifer 

with Sloping Substratum and Areal Recharge,” Computers and Geosciences, Vol. 

11, No. 4, pg. 477-469. 

Zeng, Z. and R. Grigg (2006): “A Criterion for Non-Darcy Flow in Porous Media,” 

Transport in Porous Media, Vol. 63. pg. 57-69. 

   

  261 


	CRWR Report Front Matter_revised2.pdf
	CRWR Online Report 10-01 PFC Hydraulic Conductivity.pdf
	CRWR Report Front Matter_revised
	CRWR Online Report 10-01 PFC Hydraulic Conductivity_revised
	CRWR Report Front Matter.pdf
	Klenzendorf, 2010 - PFC Hydraulics Dissertation.pdf
	0BChapter One
	13B1.1 Background and Motivation
	14B1.2 Research Objectives
	58B1.2.1 Evaluate Hydraulic Properties in the Laboratory
	59B1.2.2 Evaluate Hydraulic Conductivity in the Field
	60B1.2.3 Numerical Modeling of Hydraulic Characteristics
	61B1.2.4 Analyze Hydraulic Properties based on Location and Time

	15B1.3 Dissertation Organization

	1BChapter Two
	16B2.1 Linear Flow Through Porous Media
	17B2.2 Nonlinear Flow Through Porous Media
	62B2.2.1 Forchheimer Equation
	63B2.2.2 Izbash Equation
	64B2.2.3 Transition to Nonlinear Flow
	65B2.2.4 Estimation of Forchheimer Coefficients
	66B2.2.5 Causes of Nonlinear Flow
	67B2.2.6 Nonlinear Flow Solution in a Confined Aquifer
	68B2.2.7 Nonlinear Flow Investigation of Converging Boundaries

	18B2.3 Permeable Friction Course Review
	69B2.3.1 Water Depth Solutions
	70B2.3.2 Hydraulic Conductivity Measurements
	71B2.3.3 Water Quality Benefits

	19B2.4 Hydraulic Characteristics of Conventional Pavements
	20B2.5 Contribution of Research Study

	2BChapter Three
	21B3.1 PFC Core Specimen Extraction
	72B3.1.1 Coring Process
	73B3.1.2 Loop 360 Site
	74B3.1.3 FM 1431 Site
	75B3.1.4 RR 620 Site
	76B3.1.5 Core Specimen Naming System

	22B3.2 Porosity Measurements
	23B3.3 Laboratory Measurements
	77B3.3.1 Laboratory Setup and Constant Head Test Procedure
	78B3.3.2 Modified Forchheimer Equation
	79B3.3.3 Falling Head Lab Test Procedure
	80B3.3.4 Establishment of No Flow Boundaries

	24B3.4 Lab Test Results
	81B3.4.1 Constant Head Lab Results
	82B3.4.2 Falling Head Lab Results


	3BChapter Four
	25B4.1 Need for Improved Field Test
	26B4.2 Field Measurements
	83B4.2.1 Falling Head Test Procedure
	84B4.2.2 Investigation of Saturated Pore Space
	85B4.2.3 Comparison with Constant Head Field Test
	86B4.2.4 Effect of Roadway Slope
	87B4.2.5 Establishment of No Flow Boundary

	27B4.3 Field Test Results
	88B4.3.1 TxDOT Field Test Results
	89B4.3.2 CRWR Field Test Results
	90B4.3.3 Sensitivity of Time Measurement
	91B4.3.4 Comparison to Video Results


	4BChapter Five
	28B5.1 Purpose of Numerical Model
	29B5.2 Modeling of Linear Flow
	92B5.2.1 Approximate Analytical Solution
	93B5.2.2 Overview of Linear Numerical Model
	94B5.2.3 Grid Generation
	95B5.2.4 Singularity Removal for Linear Model
	96B5.2.5 Linear Model Differencing Scheme
	97B5.2.6 Linear Numerical Model Results

	30B5.3 Modeling of Nonlinear Flow
	98B5.3.1 Overview of Nonlinear Numerical Model
	99B5.3.2 Invariance Properties of Forchheimer Equation
	100B5.3.3 Governing Continuity Equation for Forchheimer Flow
	101B5.3.4 Analysis of Hydraulic Conductivity Ratio
	102B5.3.5 Singularity Removal for Nonlinear Model
	103B5.3.6 Nonlinear Model Differencing Scheme
	104B5.3.7 Nonlinear Numerical Model Results

	31B5.4 Model Characteristics
	105B5.4.1 Grid Refinement
	106B5.4.2 Nonlinear Solution Limits

	32B5.5 Impact of Core Specimen Geometry
	107B5.5.1 Methodology for Investigating Impact of Core Geometry
	108B5.5.2 Regression of Linear Forchheimer Coefficients
	109B5.5.3 Regression of Nonlinear Modified Forchheimer Coefficients
	110B5.5.4 Determination of Hydraulic Conductivity for Core Specimens
	111B5.5.5 Determination of Hydraulic Conductivity for Field Test Apparatus


	5BChapter Six
	33B6.1 Statistical Objective and Data
	34B6.2 Nonparametric Statistical Test Descriptions
	112B6.2.1 Kruskal-Wallis Test
	113B6.2.2 Mann-Whitney Test
	114B6.2.3 Critical Test Statistics

	35B6.3 Statistical Test Results on Porosity
	115B6.3.1 Porosity Data Grouped by Year
	116B6.3.2 Porosity Data Grouped by Location
	117B6.3.3 Travel Lane versus Shoulder Porosity

	36B6.4 Statistical Test Results on Hydraulic Conductivity
	118B6.4.1 Hydraulic Conductivity Data Grouped by Year
	119B6.4.2 Hydraulic Conductivity Data Grouped by Location
	120B6.4.3 Travel Lane versus Shoulder Hydraulic Conductivity

	37B6.5 Experimental Forchheimer Coefficients Compared to Empirical Equations
	38B6.6 Sediment Removal Estimate

	6BChapter Seven
	39B7.1 Summary of Problem
	40B7.2 Research Objective Conclusions
	121B7.2.1 Conclusions for Evaluation of Hydraulic Properties in the Laboratory
	122B7.2.2 Conclusions for Evaluation of Hydraulic Conductivity in the Field
	123B7.2.3 Conclusions for Numerical Modeling of Hydraulic Characteristics
	124B7.2.4 Conclusions for Analysis of Hydraulic Properties

	41B7.3 Related Research and Future Work

	7BAppendix A
	42BA.1 Module of Constants
	43BA.2 Main Program
	44BA.3 Subroutine to Determine Method of Images Solution
	45BA.4 Subroutine to Determine Darcy Solution
	46BA.5 Subroutine to Determine Forchheimer Solution
	47BA.6 Subroutine to Calculation Hydraulic Conductivity Ratio
	48BA.7 Subroutines to Determine Shape Factor
	49BA.8 Subroutine to Determine Outflow Rates
	50BA.9 Matrix Operations

	8BAppendix B
	51BB.1 2008 Core Specimen Porosity Data
	52BB.2 2009 Core Specimen Porosity Data
	53BB.3 2010 Core Specimen Porosity Data
	54BB.4 2008 Core Specimen Constant Head Data
	55BB.5 2009 Core Specimen Constant Head Data
	56BB.6 Select 2008 and 2009 Core Specimen Falling Head Data
	57BB.7 2010 Core Specimen Falling Head Data

	9BSymbology
	10BAcronyms
	11BWorks Cited
	12BVita






