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Vol. 32 (2001) ACTA PHYSICA POLONICA B No 3
SUPERDEFORMATION, HYPERDEFORMATION ANDCLUSTERING IN THE ACTINIDE REGION�A. Krasznahorkaya, D. Habsb, M. Hunyadia, D. GassmannbM. Csatlósa, Y. Eisermannb, T. Faestermannb, G. GrawbJ. Gulyása, R. Hertenbergerb, H.J. Maierb, Z. Mátéa, A. MetzbJ. Ottb, P. Thirolfb and S.Y. van der Werfa Institute of Nulear Researh of the Hungarian Aademy of Sienes4001 Debreen, P.O. Box 51, Hungaryb Sektion Physik, Universität Münhen, Garhing, Germany Kernfysish Versneller Instituut, 9747 AA Groningen, The Netherlands(Reeived November 2, 2000)Exited states in the seond minimum of 240Pu were populated by the238U(�; 2n) reation at E�=25 MeV. Conversion eletrons from eletro-magneti transitions preeding the �ssion of the 3.7 ns 240fPu shape isomerhave been measured. In a ombined analysis of e� and high resolution -rayspetrosopy data previously established otupole bands ould be studied inmore detail. In order to study higher lying states in the seond and thirdminimum the 239Pu(d; pf)240Pu, and the 233U(d; pf)234U reations havebeen studied with high energy resolution. The observed �ssion resonaneswere desribed as members of rotational bands with rotational parametersharateristi to super- and hyperdeformed nulear shapes. The level den-sity of the most strongly exited states has been ompared to the preditionof the bak-shifted Fermi-gas formula and the energy of the ground statein third minimum has been estimated for the �rst time in 234U. The �ssionfragment mass distribution of the hyperdeformed states in 236U has alsobeen measured. The width of the mass distribution, oinident with thehyperdeformed bands, is signi�antly smaller than the ones obtained in o-inidene with bakground regions below and above the resonanes, whihsuggests a pear-shaped di-nulear on�guration of 236U in the third well ofthe potential barrier.PACS numbers: 21.10.Re, 24.30.Gd, 25.85.Ge, 27.90.+b� Presented at the XXXV Zakopane Shool of Physis �Trends in Nulear Physis�,Zakopane, Poland, September 5�13, 2000.(657)



658 A. Krasznahorkay et al.1. IntrodutionStudying nulei with exoti nulear shapes is one of the most vital �eldsin modern nulear struture physis and espeially in the last few yearsstudying super- and hyperdeformed states in the atinide region beameone of the frontiers of this �eld.The nulear �ssion in this region presents a very rih variety of nulearshapes whih an be desribed by a ontinuous sequene of nulear surfaeshapes from a more or less spherial to one whih elongates, beomes super-and/or hyperdeformed than neks in and splits into two �ssion fragments.
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Fig. 1. Shemati representation of the �ssion pathes of 236U aording toHambsh [1℄.A very shemati representation of the energy surfae of 236U is shownin Fig. 1. At this beautiful plae we may ompare the potential energysurfaes to the best plaes of the Tatra mountain. We may haraterizethe �ssion proess in the following way. From the ground state minimuma ommon path limbs to the inner �rst saddle point and then desends tothe seond minimum. On further elongation the nuleus may hoose to stayeither re�etion symmetri or asymmetri. The symmetri path has to oastover a seond saddle point and slopes down a long valley until the sissionpoint is reahed. For the asymmetri path there is, to start with, a seondsaddle, whih ontains two third minima. Again the nuleus has to deidewhih way to go. One path is moderately asymmetri and rather short,while the other path is more pronouned asymmetri and somewhat longer.



Superdeformation, Hyperdeformation and Clustering in the : : : 659The main aim of this work is to study the exited states in the seondand third minimum of the potential barrier but in addition to these exotishapes it is also an interesting and longstanding question, at whih pointsof the �ssion path the mass and energy distributions of the �ssion fragmentsare determined [1℄. Can we get di�erent mass distributions after the �ssionof the super- and hyperdeformed states as suggested by �wiok et al. [2℄?2.  and onversion eletron spetrosopy in the seond minimumThe �rst superdeformed (SD) states have been found in the atinide re-gion. They were the so alled �ssion isomeri states disovered by Polikanovet al. [3℄ almost 40 years ago. Their half-lifes go from a few ns's to a ouple ofms's. Ten years after the disovery of these interesting isomeri states Spehtand oworkers [4℄ were able to prove spetrosopially that they are reallySD states. They measured the �rst onversion eletron spetrum ontaininga SD rotational band. Their interpretation of being the result of mirosopishell orretions on top of the marosopi liquid drop potential was givenby Strutinsky [5℄. Up till now the seond minimum of the potential energysurfae is well established both theoretially and experimentally [6, 7℄.The -spetrosopi studies of the SD states turned out to be very dif-�ult in the atinide region beause of the low ross setions and the highbakground produed by the �ssion fragments. In spite of that, reentlynie results have been obtained using six EUROBALL-type luster dete-tors [8, 9℄.For an unambiguous interpretation of these data, espeially for the deter-mination of the multipolarity, a onversion eletron measurement was arriedout in Munih. We used the same 238U(�; 2n) reation at E� = 25 MeV asSpeht et al. [4℄ in their pioneering onversion eletron work, whih led tothe identi�ation of the rotational ground state band built on the �ssionisomer.The main experimental hallenge was to isolate an e�ient trigger on de-layed �ssion events against a huge bakground of prompt �ssion dominatingby 5 to 6 orders of magnitude. This was ahieved by using the reoil shadowtehnique introdued by Speht et al. [4℄, where the target was plaed insidethe 4mm hole of an annular Si-surfae barrier detetor. The (�; 2n)-reationtakes plae where the detetor annot see the prompt �ssion produts, whilethe reoils in the isomeri state �y on the average 1.8 mm out of the targetand then deay in front of the detetor. The onversion eletrons are guidedwith Mini-Orange magneti transport and �lter systems to nitrogen-ooledSi(Li) detetors.



660 A. Krasznahorkay et al.
0

200

400

600

800

1000

1200

1400

02

2 3

32

(1)

4

4 5 7 9

4 7

10

5

6

6

6

8

8

0

5

10

15

25

20

10

10

5

0

25

20

15

30

0 100 200 300 400 500 600 700 800 900 1000

380 400 500480460440420 520 540 600 620 640 660 680

0

100

200

520 540 560 580 600

300

5
24

Ic (I + 1) -
a 2

4
5

3

6

Ic I -
a

-50
0

50
100
150
200
250

760 780 800 820 840 860

3-
a 4+

g 3-
a 2+

g

I-b (I+1)
+
g

I
-

b
I
+
g

I-
b (I- 1)

+
g7

246
8
1 3 5 7

5 3 1

2
-
a 2

+
g

2
-
a 2

+
g

25

20

15

10

5

0
100 200

6

4

2

0

12

10

8

II

400300 500 600 700 800 900 1000

K

γ

electron energy [keV]

electron energy [keV]electron energy [keV]

E [keV]

co
un

ts
 / 

1.
8 

ke
V

co
un

ts
 / 

1.
8 

ke
V

co
un

ts
 / 

1.
8 

ke
V

co
un

ts
 / 

1 
ke

V 786.1 keV

K
E =121.8 keV

I

I

I

I

I

I
tr

an
sm

is
si

on
 e

ff
ic

ie
nc

y 
/ %

L-lines

K L M

K-lines

I

I

I

I

I I

b

b

a

β gs

c

c

c

β

β

gs

gs
b)

c)

a)

Fig. 2. (a) -ray spetrum in oinidene with delayed �ssion of 240fPu from [9℄.The inserts show enlarged regions of transitions onneting the - and a-band andthe a- and ground-state-band, respetively. (b) Conversion eletron spetrum fromthe present work in oinidene with delayed �ssion of 240fPu shifted by the eletronbinding energy of EK=121.8 keV. The summed transmission e�ieny (weighedaverage of the two experiments) of the 3 Mini-Orange spetrometers is representedby the solid line. () Enlarged parts of the eletron spetrum with �tted line spetraand transition assignments.The prompt -ray spetrum from Ref. [9℄ and the eletron spetrumshown in Fig. 2(a) and 2(b), respetively, were measured in oinidenewith delayed �ssion of 240fPu.



Superdeformation, Hyperdeformation and Clustering in the : : : 661The same reation and beam energy was used in both experiments. Ele-tron lines from K-onversion are lower in energy as ompared to the orre-sponding -ray transitions by the K-binding energy of 121.8 keV. This shiftis taken into aount by the displaement of Fig. 2(b).The dedued level sheme based on the -ray and onversion eletronspetrosopi studies is shown in Fig. 3.
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Fig. 3. Level sheme of 240Pu in the seond minimum. The auray of the Dopplerorreted transition energy is given in round parenthesis ( ), the absolute -rayintensity with respet to the isomeri �ssion deay in retangular parenthesis [ ℄and the dominant multipolarity together with the absolute eletron intensity inround parenthesis ( ). Transitions observed in the eletron spetrum are markedby thik arrows. Levels with energies in parenthesis were introdued by a smoothextrapolation of the moment of inertia.



662 A. Krasznahorkay et al.3. Study of the higher-lying states by measuringtransmission resonanesIn a program whih aims at studying the super- and hyperdeformedstates in the atinides we have already studied the SD states in 240Pu [10℄and the HD ones in 231Th, 234U [11℄ and in 236U [12℄. We are presentingnow two examples for the SD and HD states in 240Pu and in 234U.Our method of studying the above exoti states is based on the resonanetunneling through the �ssion barrier. The �ssion probability as a funtionof exitation energy shows sub-barrier transmission resonanes in the rangelose to the top of the �ssion barrier at energies of quasi-bound states inthe seond and third minimum of the potential barrier. By measuring thisfuntion one an map the SD and HD states. Early attempts of studyingthese transmission resonanes ritially su�ered from either a limited energyresolution or statistial signi�ane.In order to study the transmission resonanes proton��ssion fragmentoinidene measurements have been performed in (d; pf) reations. Theenergy of the outgoing protons from the di�erent (d; p) reations was ana-lyzed with high energy resolution in oinidene with the �ssion fragments.The experiments were arried out at the Debreen 103 m isohronousylotron with deuterons of Ed = 9.73 MeV and in Munih with deuteronsof 12.5 MeV obtained from the Munih Tandem aelerator. Enrihed(97.6%�99.89%) 30�250 �g/m2 thik targets were used.The energy of the outgoing protons was analyzed by a Split-pole mag-neti spetrograph in Debreen and by a Q3D magneti spetrograph [13℄ inMunih, whih were set at �L = 130Æ and 140Æ with respet to the inomingbeam diretion [12℄.The �ssion fragments were deteted by two Position Sensitive AvalanheDetetors (PSAD) [14℄ having two wire planes (with delay-line read-out)orresponding to the horizontal and vertial diretions. The solid angle ofthe detetors varied between 10% and 30% of 4� in the di�erent experiments.The mass distribution of the �ssion fragments has been determined byusing the time di�erene method. The �ssion fragments were deteted withtwo PSAD's having ative areas of 16x16 m2 and distanes of 23 m fromthe target resulting in a relatively large solid angle of 4% of 4�. The angleof the detetors was 55Æ and 125Æ with respet to the beam diretion.3.1. High-lying super deformed states in 240PuIn order to study higher-lying multi-phonon vibrational resonanes the�ssion probability of 240Pu has been measured with high energy resolutionusing the (d; pf) reation. The spetrum of outoming protons in oinidenewith the �ssion fragments is shown in Fig. 4(a).



Superdeformation, Hyperdeformation and Clustering in the : : : 663Two enhaned strutures of highly damped vibrational resonanes atE� = 4.5 MeV and 5.1 MeV exitation energies have been resolved with goodstatistis into sub-states due to the underlying ompound states oupled tothe �-vibrations. For the �rst time rotational bands with spins 0+, 2+, 4+ould be identi�ed for transmission resonanes in 240Pu [10, 15℄.
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664 A. Krasznahorkay et al.ond well should be muh broader than those of the HD states due to thestrong oupling to the normal deformed states. The widths of the HD statesdue to the higher outer barriers of the third well remain below the atualexperimental resolution of �5 keV.
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666 A. Krasznahorkay et al.4. Clustering in the atinide regionThe lustering phenomenon is a dramati manifestation of the shell stru-ture at very large deformations. From suh a di-nulear system one mayexpet a strong �ssion deay to the omponents similarly to the ase of theenhaned � deay of the light �-partile nulei.Reently, we have repeated the 235U(d; pf)236U experiment [12℄ in Debre-en and measured the mass distribution in oinidene with the HD bandsfound previously at 5.28, 5.37 and 5.47 MeV.
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