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Abstract

In correspondence analysis (CA), rows and columns of a data matrix are depicted as points
in low-dimensional space. The row and column profiles are approximated by minimizing the
so-called weighted chi-squared distance between the original profiles and their approxima-
tions, see for example, [Theory and applications of correspondence analysis, Academic Press,
New York, 1984]. In this paper, we will study the inverse CA problem, that is, the possibilities
for retrieving one or more data matrices from a low-dimensional CA solution. We will show
that there exists a nonempty closed and bounded polyhedron of such matrices. We also present
two algorithms to find the vertices of the polyhedron: an exact algorithm that finds all vertices
and a heuristic approach for larger sized problems that will find some of the vertices. A proof
that the maximum of the Pearson chi-squared statistic is attained at one of the vertices is
given. In addition, it is discussed how extra equality constraints on some elements of the data
matrix can be imposed on the inverse CA problem. As a special case, we present a method for
imposing integer restrictions on the data matrix as well. The approach to inverse CA followed
here is similar to the one employed by De Leeuw and Groenen [J. Classification 14 (1997) 3]
in their inverse multidimensional scaling problem.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In correspondence analysis (CA), the rows and columns of a data matrix F are
depicted as points in low-dimensional space. Most often, F is a contingency matrix,
but this need not be the case. The only restriction on F is that its elements are non-
negative. A CA solution is obtained by simultaneously approximating the row and
column profiles through minimization of the so-called chi-squared distance. It is
well known that the CA solution for both the rows and columns can be obtained
immediately from the singular value decomposition of the scaled data matrix.

Much is known about the properties of CA (see, for example [4,5,10]). In this
paper, we concentrate on a problem that has not been treated before. Given a low
dimensional CA solution, which matrices F would have produced the current solu-
tion as a CA solution? We call this problem the inverse CA problem.

There are several reasons to investigate the inverse CA problem. First of all, the
size of the set of matrices F may reveal information about the uniqueness of the
original solution. If this set is large, then there are many nonnegative matrices F
that yield the same CA solution. Thus, even though the data have lead to a perfectly
normal CA solution, it is good to realize that there are many other data sets that would
have led to exactly the same solution. On the other hand, if the set is small, there are
far fewer nonnegative matrices F yielding the solution of the original problem. In
particular, if the set only consists of the original data, then we know that there is a
unique relation between the CA solution and the data. Second, when CA solutions
are reported in the literature, the original data are not always presented. The solution
of the inverse CA problem enables us to generate data that has the original CA solu-
tion as its CA solution. These generated data can then be used in simulation studies,
for example, to investigate stability of the solution or to apply novel extensions to
the technique of CA. Thirdly, we believe that the study of inverse CA deepens our
understanding of CA. Finally, through inverse CA, we are able to derive the upper
bound of the Pearson chi-square given marginal frequencies but unknown data.

To study the inverse CA problem, we will follow a similar approach to the one
proposed by De Leeuw and Groenen [2], in their treatment of the inverse multi-
dimensional scaling problem (see also [6]).

This paper is organized as follows. First, we introduce notation for CA. Then we
formalize the inverse CA problem. Next, we present a computational method for
computing the inverse CA solution. Then, we discuss where the upper bound of the
Pearson chi-square statistic is attained. The next section discusses how additional
equality and integer constraints can be imposed. We illustrate our method by an
example. This paper is ended with some concluding remarks.

2. The correspondence analysis problem

Before we start with the inverse CA problem, let us introduce notation needed
for CA. Let F denote an nr × nc matrix of nonnegative elements on which CA is
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performed. Let r be the vector of row sums of F, that is, r = F1 and c the vector
of column sums, c = F′1, where 1 denotes a vector of ones of appropriate length.
Furthermore, define n as the sum of all elements of F, that is, n = 1′F1.

Define the scaled data matrix F̃ as F̃ = D−1/2
r FD−1/2

c , where Dr and Dc are diag-
onal scaling matrices with, respectively, the elements of r and c on their diagonal.
The task of CA is to find k-dimensional coordinates matrices Rk and Ck for row and
column points such that the loss function

φ(Rk, Ck) = ‖F̃ − D1/2
r RkC′

kD1/2
c ‖2 (1)

is minimized, where ‖A‖2 denotes the sum of squared elements of A. Consider the
(complete) singular value decomposition

F̃ = U�V′, where U′U = Inr , V′V = Inc , (2)

where Ii denotes the i × i identity matrix. Then, by Eckart and Young [3] we can
minimize φ(Rk, Ck) by

Rk = D−1/2
r Uk�

α
k and Ck = D−1/2

c Vk�
1−α
k ,

where Uk and Vk are respectively the nr × k and nc × k matrices of singular vectors
corresponding to the k largest singular values gathered, in decreasing order, in the
k × k diagonal matrix �k , and α is a nonnegative scalar. Clearly,

R′
kDrRk = �2α

k and C′
kDcCk = �2(1−α)

k .

For α = 1, we obtain row principal coordinates and for α = 0 column principal
coordinates.

Now, suppose that the marginals r and c and the coordinates Rk and Ck are given.
Then, the inverse CA problem is concerned with the question what matrix F could
have produced Rk and Ck as its CA solution. In other words, given a CA solution, can
we find one or more matrices F that have the given CA solution as its CA solution?

In the next section, we shall investigate the properties of the set F satisfying the
requirements for inverse CA. Necessarily, F must contain the original data matrix F
as an element. We assume, without loss of generality, that nr � nc, so that the rank
of F equals nc or less. If k = nc, the inverse CA problem is trivial and set F only
contains F. For k < nc, however, the problem is not trivial and is discussed below.

3. Formalizing the inverse correspondence analysis problem

Suppose that we have a CA solution Rk and Ck in k dimensions. In addition, we
will assume throughout this paper that the row and column sums of F are known, so
that the scaling matrices Dr and Dc are known. Note that these vectors of row and
column totals are of great importance in CA. Not only do they provide the proper
scaling for the coordinates, they also define the so-called trivial solution that cor-
responds to the independence model for two categorical variables (see, e.g., [5]).
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This trivial solution corresponds to the rank one approximation of F̃ and is equal
to n−1D1/2

r 11′D1/2
c that can be obtained by choosing R1 = n−1/2D1/2

r 1 and C1 =
n−1/2D1/2

c 1 where R1 is nr × 1 and C1 is nc × 1. Typically, one ignores this trivial
solution, which can be done by simply discarding the solution, or by considering
the singular value decomposition of D−1/2

r (F − n−1rc′)D−1/2
c rather than that of

D−1/2
r FD−1/2

c . In the following, we will assume that the trivial solution is contained
in the coordinate matrices Rk and Ck . Hence, we will consider the singular value
decomposition of F̃ for 1 � k � nc.

In the inverse CA problem, we look for set F of all F that have

1. column sum c and row sum r, that is, F1 = c and 1′F = r,
2. Rk and Ck in its CA solution, and
3. only nonnegative elements.

Note that condition 2 does not imply that CA on a particular F yields Rk and Ck as
the first k dimensions. Condition 2 only tells us that Rk and Ck will be among the CA
dimensions. In the strict inverse CA problem with set Fstrict, the additional condition
imposed is that Rk and Ck must be the first k dimensions. In the remainder of this
section, we investigate properties of the (strict) inverse CA problem.

Recall the complete singular value decomposition

F̃ = U�V′, where U′U = Inr , V′V = Inc . (3)

Let

U = [Uk | Uc], V = [Vk | Vc] and � =
[
�k 0
0 �c

]

,

where Uc is nr × (nr − k), Vc is nc × (nc − k) and �c is an (nr − k) × (nc − k)

matrix that can be partitioned as �c = [�̃c 0]′ where �̃c is diagonal of order (nc −
k) × (nc − k) and, generically, 0 denotes a matrix of zeros of appropriate order. Fur-
thermore, as U′U = Inr and V′V = Inc it follows that

U′
kUc = 0 and V′

kVc = 0. (4)

Assuming for the moment that F is known, then the complete singular value decom-
position for the scaled matrix F̃ = D−1/2

r FD−1/2
c can be expressed in the following

way

F̃ = U�V′ = Uk�kV′
k + Uc�cV′

c.

Now assume that F and thus F̃ are unknown, but Rk, Ck, Dr , Dc and thus Uk�kV′
k

are known. From the orthogonality restrictions (4) we can obtain matrices Ũc = UcT
and Ṽc = VcQ, where T and Q are unknown orthogonal matrices of the appropriate
orders. Then, F̃ is decomposed into two orthogonal parts

F̃ = Uk�kV′
k + ŨcGṼ′

c, (5)
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where G = T′�cQ. From (5) it can easily be derived that F can be reconstructed as

F = D1/2
r (Uk�kV′

k + ŨcGṼ′
c)D

1/2
c . (6)

Therefore, in the inverse CA problem, we search for those matrices G for which F
reconstructed by (6) satisfies the three earlier mentioned conditions.

Lemma 1. For any G, the matrix F̃ reconstructed by (5) has singular values �k

and corresponding matrices of singular vectors Uk and Vk.

Proof. The matrices of singular vectors Uk and Vk , are matrices of eigenvectors
of F̃F̃′ and F̃′F̃ respectively. From (4) it follows immediately that for any F̃ recon-
structed using (5) we have F̃F̃′Uk = Uk�2

k and F̃′F̃Vk = Vk�2
k . �

Lemma 2. For any G, the matrix F reconstructed by (6) has row sums equal to r
and column sums equal to c.

Proof. It is easily verified that u = n−1/2D1/2
r 1 and v = n−1/2D1/2

c 1 are standard-
ized eigenvectors of F̃F̃′ and F̃′F̃ respectively, both corresponding to the eigenvalue
λ = 1. As λ = 1 is the largest eigenvalue (for a proof of this property, see [11]),
the upper left element of �k equals one, and u and v are the first columns of Uk

and Vk respectively. (Note that this first dimension is the trivial solution.) From the
orthonormality of V it follows that Ṽ′

cv = 0 and V′
kv = (1, 0, . . . , 0)′. Hence, for the

row sums of F reconstructed by (6) we have

F1 = D1/2
r (Uk�kV′

k + ŨcGṼ′
c)D

1/2
c 1

= D1/2
r (Uk�kV′

k + ŨcGṼ′
c)n

1/2v

= n1/2D1/2
r u

= D1/2
r D1/2

r 1

= r.

In a similar fashion it can be shown that the vector with the column sums of F
reconstructed by (6) is c. �

Lemma 1 tells us that any G inserted in (6) gives a CA decomposition that in-
cludes the original Rk and Ck . However, without any additional constraints on G
some of the elements of F may become negative. Thus, we have additional restric-
tions on G to make the elements of F nonnegative. Note that if G is constrained so
that all elements of F̃ are nonnegative, then F must have nonnegative elements as
well, since F = D−1/2

r F̃D−1/2
c and Dr and Dc have nonnegative elements only. To

meet these extra constraints all elements of ŨcGṼ′
c must be larger than (or equal to)

the corresponding elements of −Uk�kV′
k .
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Let g = vec(G), where the vec operator stacks the columns of G below each other.
Using the relationship

vec(ŨcGṼ′
c) = (Ṽc ⊗ Ũc) vec(G) (7)

between the vec operator and the Kronecker product, we can express the nonnegativ-
ity restrictions as

Cg � −d, (8)

where C = Ṽc ⊗ Ũc and d = vec(Uk�kV′
k).

Lemma 3. The system of inequalities (8) is consistent.

Proof. Choosing G = T′�cQ reconstructs the original F. Therefore, the set of matri-
ces G or vectors g satisfying (8) is nonempty. Thus, the system of inequalities (8) is
consistent. �

Theorem 4. The solution set F of the inverse CA problem is a convex set.

Proof. Each inequality in (8) defines a convex half space. The intersection of convex
sets is convex, so that F is convex, too. �

Theorem 5. The set F is a bounded closed polyhedron.

Proof. The fact that F is a closed polyhedron follows immediately since it is an
intersection of half spaces defined by the system of inequalities (8). Boundedness
can be established if it can be proved that F does not contain a ray. If F contains a
ray, then there exists a G1 in F such that βG1 ∈ F for β > 0. Let Ft denote the trivial
solution, that is, Ft = n−1D1/2

r 11′D1/2
c , and let Fc = ŨcGṼ′

c. From (4) it follows that
F′

tFc = 0(nc×nc) and FtF′
c = 0(nr×nr ). As Ft is strictly positive, that is, all its elements

are greater than zero, it follows immediately that each row and column of Fc must
contain at least one negative element. Multiplying Fc = UcGV′

c with a sufficiently
large β will make F contain one or more negative values so that F falls outside the
polyhedron. Therefore, F does not contain a ray and is consequently bounded. �

Let the convex hull of a polyhedron be defined here as those points in F for which
at least one of the inequalities of (8) is an equality and the remaining inequalities of
(8) hold. Note that each inequality in (8) defines a half space where the inequal-
ity is satisfied, a half space where it is not satisfied, and an (nr − k)(nc − k) − 1
dimensional hyperplane that separates these two half spaces. Therefore, each face of
a polyhedron is a part of such a hyperplane where at least one inequality is an exact
equality.

A vertex of a polyhedron is defined here as a point where exactly (nr − k)(nc − k)

equalities in (8) hold and the remaining inequalities are satisfied. Geometrically, a
vertex may be seen as a corner point of the polyhedron where (nr − k)(nc − k) faces



P.J.F. Groenen, M. van de Velden / Linear Algebra and its Applications 388 (2004) 221–238 227

meet. A vertex is also an extremal point because it cannot be expressed as a convex
combination of any two other points in the polyhedron [8, p. 162].

Lemma 6. Each F at the convex hull of the polyhedron has at least one element
equal to zero and each vertex has (nr − k)(nc − k) values equal to zero.

Proof. The system of inequalities (8) is derived from the nonnegativity restrictions
on the elements of F. Since G is an (nr − k) × (nc − k) matrix, there are (nr −
k)(nc − k) independent elements in g. Any F at the convex hull of the polyhedron
corresponds to a g for which at least one of the inequalities is an equality. Since
an equality in (8) corresponds to a zero element in F, any g on the convex hull
corresponds to a zero element in F.

Because a vertex is the meeting point of (nr − k)(nc − k) faces of the convex
hull, there are at least (nr − k)(nc − k) elements of F equal to zero. �

Theorem 7. The set Fstrict defined by strict inverse CA is a bounded convex set.

Proof. Set Fstrict is an intersection between F and the set G of matrices G with
singular values smaller than or equal to λk . To prove that the latter set is convex, we
use a result of Magnus and Neudecker [7, p. 205] stating that the largest eigenvalue
λ2

max of G′G defines a convex function. Therefore, the set G of matrices G with
λ2

max � λ2
k is convex. This property also holds for strict monotone functions of λ2

max
such as the square root. Therefore, the set G of G’s with λmax � λk is convex as
well. The intersection of two convex sets is also convex, so that the intersection of F

and G is convex. Since F is bounded, Fstrict must also be bounded. �

4. Computing the inverse map

In De Leeuw and Groenen [2], a similar problem was investigated, the so-called
inverse multidimensional scaling problem. Here, we take a similar computational
approach.

To reconstruct F is equivalent to specifying the polyhedron. We shall do this by
searching for all of the vertices of the polyhedron. Any convex combination of the
vertices will produce a g that is in the polyhedron and from which a valid F can be
reconstructed through (6) that is a solution to the inverse CA problem.

The basic idea is to check all potential vertices of the system of inequalities
defined by Cg � −d. We make use of Lemma 6 that states that any vertex must
have at least m = (nr − k)(nc − k) rows for which the inequalities in Cg � −d are
equalities. For an arbitrary selection ψ of m rows, we solve the system Cψgψ � −dψ

by gψ = −C−1
ψ d. To see whether the candidate vertex gψ is valid, the remaining

inequalities are checked. If Cgψ � −d holds for all rows, then gψ is a valid vertex
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of the polyhedron, otherwise it is discarded. To find all vertices, we check for all(
nrnc

m

)

combinations of m rows whether the combination defines a valid vertex.

This approach amounts to complete enumeration of all potential vertices of the
polyhedron and it can be summarized by the following algorithm.

The inverse CA algorithm:
1. Let the set of vertices V of the polyhedron be empty.

2. Do for all

(
nrnc

m

)

combinations ψ :

3. Let Cψ and dψ be the m rows of C and d respectively defined by ψ .

• Let gψ be the solution of the system Cψg = dψ .
• Check if Cgψ � d. If so, then add gψ to the set of vertices V .

4. End do.
5. Compute for each gψ in V an Fψ by (6). Any convex combination of the Fψ ’s

satisfies the requirements for inverse CA.

Note that if Cψ is not of full rank, then there is no unique solution of Cψg = dψ .
Because a vertex must be an extremal point, it is by definition unique. Therefore, if
Cψ is not of full rank, then ψ cannot define a vertex, so it is simply discarded.

If CA is applied to any Fψ found by the inverse CA algorithm or their convex
combination, it will have Rk and Ck as its row and column coordinates. Note that
the inverse CA algorithm gives the solution to the inverse CA problem, not to the
strict inverse CA problem. Consequently, the algorithm above cannot guarantee that
Rk and Ck appear as the first k dimensions in the CA solution.

The complete enumeration approach in the inverse CA algorithm may require a
large computational effort, even for small sized CA problems. We discuss this issue
in more detail in Section 8 where also a heuristic approach is presented for inverse
CA.

5. A strict upper bound for the Pearson chi-squared statistic

Let χ2 denote the Pearson chi-squared statistic for testing independence. That
is, χ2(F) = ∑

i

∑

j (fij − eij )
2/eij with eij = ricj /n. Note that the r and c

are known in advance. Now we can make use of the results for inverse CA to obtain
the upper bound of the chi-squared statistic under the independence model. How-
ever, we first consider the general case of the maximum chi-squared statistic in
inverse CA.

Theorem 8. The maximum of χ2 over the inverse CA set F is attained at one of the
vertices of the polyhedron defined by (8).
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Proof. Clearly, χ2(F) is quadratic in F so it is a convex function. Because F is
determined by G through (6) and G must be in the convex set F , F lies in a convex
set too. Rockafellar [8, Theorem 32.3, p. 344] states that the maximum of a convex
function over a convex set is obtained at an extremal point. An extremal point of
a convex set is a point that cannot be expressed as a convex combination of other
points in the convex set [8, p. 162]. The extremal points of a polyhedron are the
vertices. Because F is a polyhedron, the maximum χ2 is obtained at a vertex. �

This theorem can be used to find a matrix F for which the chi-squared statistic for
testing independence is a maximum. Hence, if only the marginal frequencies r and
c are given and no other CA dimension is known, we can construct a matrix F that
yields the upper bound for the chi-squared statistic for testing independence. Again,
the value of χ2 is bounded above and the maximum is attained at one of the vertices.
This situation arises in the inverse CA problem when only the trivial dimension is
given so that k = 1. To obtain the maximum value, the algorithm from Section 4
can be used, although computationally (much) faster methods may exist that make
efficient use of the additional structure in the restrictions. Note that the strict lower
bound of χ2 = 0 is obtained at fij = eij for all i, j .

6. Additional constraints in inverse CA

We now consider the case where, in addition to the marginals, extra information
concerning elements of F is available. First we discuss the case where one or more
elements of F are known. Then we present an algorithm that can be used to reduce
the original set F under the restriction that the elements of the original matrix need
to be integers.

6.1. Equality constraints

It may occur that one or more elements of F are known a priori. For example,
if a certain event cannot occur, the corresponding value in F must be zero. Assume
that p values of F, and hence, of F̃, are known. Let φ denote the row indices of C
for which the equality constraints are imposed, so that the rows of the p × m matrix
Cφ match the constrained rows of C. Furthermore, let f̃φ denote the p × 1 vector of
corresponding (known) values of F̃ and let dφ denote the corresponding rows of d.
The new constraints can be expressed as

Cφg = f̃φ − dφ. (9)

Theorem 9. Assume that the constraints also hold for the original data that were
used to compute the CA solution. Then, the solution of constrained inverse CA is a
nonempty bounded convex polyhedron.



230 P.J.F. Groenen, M. van de Velden / Linear Algebra and its Applications 388 (2004) 221–238

Proof. By Theorem 5, the solution of the inverse CA problem defines a bounded
convex polyhedron. The equality constraints defined by (9) are linear and thus con-
vex. The union of a bounded polyhedron and a linear subspace is again a bounded
polyhedron. Because original data follow the constraints by assumption, there is at
least one F that falls in the polyhedron and satisfies the constraints. �

We distinguish three cases that may occur with respect to the constraints as ex-
pressed in (9):

(a) p < m: There are fewer constraints than free elements in g. We can implement
the restrictions in our algorithm in the following way.

The constrained inverse CA algorithm:
1. Let the set of vertices V be empty.

2. Do for all

(
nrnc − p

m − p

)

combinations ψ∗, where each combination contains

φ, i.e. ψ∗ =
(

φ

ψ

)

:

3. Let Cψ∗ =
(

Cφ

Cψ

)

and dψ∗ =
(

f̃φ − dφ

−dψ

)

be the m rows of C and d, defined

by ψ∗ and the constrained values f̃φ .
• Let gψ∗ be the solution of the system Cψ∗g = dψ∗ .
• Check if Cgψ∗ � d. If so, then add gψ∗ to the set of vertices V .

4. End do.

(b) p = m: The number of constraints is equal to the number of unknown elements.
Therefore, if the corresponding matrix Cφ is nonsingular, that is, if C−1

φ exists,
we obtain a unique solution for g. Thus, if F reconstructed using (6) is nonneg-
ative, we have a valid unique solution. Else, if an element of the reconstructed
matrix F is negative, the solution set F is empty.
If Cφ is singular, that is, if some constraints are linearly dependent and hence
redundant, we cannot uniquely determine g. We thus have a similar situation
as in (a). We can obtain vertices satisfying the equality and nonnegativity con-
straints in the following way: Let p∗ denote the rank of Cφ . Then, consider

for all

(
nrnc − p

m − p∗
)

combinations of rows of C that contain Cφ , the following

system of equations:

Cφ∗g = f̃φ∗ − dφ∗

where Cφ∗ is a (2p − p∗) × m matrix with as first p rows independent rows of
C corresponding to the equality constraints, f̃φ∗ is the vector f̃φ supplemented
with p − p∗ zeros and dφ∗ is the vector of appropriate elements of d.
Then, for each Cφ∗ that has rank m, we can calculate g as g = (C′

φ∗Cφ∗)−1C′
φ∗×
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(f̃φ∗ − dφ∗). Upon checking the nonnegativity constraints Cg � d, we add or
discard the vertices to our solution set. Note that, if Cφ∗ is not of full column
rank then φ∗ cannot be a vertex and we can simply discard it.

(c) p > m: There are more constraints than free elements, so that the matrix Cφ

has more rows than columns. Then, assuming that Cφ has full column rank, g
can be calculated as g = (C′

φCφ)−1C′
φ(f̃φ − dφ). In order for g to be a valid

solution, F reconstructed using (6) must be nonnegative. Else, the solution set
F is empty.
If the rank of Cφ is smaller than m, we have essentially the same situation as
described under (b) and we can apply the same procedure to obtain vertices.

Note that, by imposing the additional constraints, we have decreased the number
of inequalities to be checked. Therefore, with a sufficient number of constraints even
large inverse CA problems become computationally feasible.

6.2. Integer constraints

Suppose we know that the elements of the original matrix F are integers. For
example, we may know F to be a contingency matrix. This information can be used
to reduce the solution set F in the following way.

Let Fh denote the reconstructed matrix for the hth vertex gh, that is Fh =
D−1/2

r (Uk�kV′
k + ŨcGhṼ′

c)D
−1/2
c , where vec(Gh) = gh and let f h

ij denote the ij th

element of Fh. Define int+(x) as the first integer larger than x and int−(x) as the first
integer smaller than x. Furthermore, let minh(f

h
ij ) denote the smallest ij th element

over all vertices, and let maxh(f
h
ij ) denote the largest ij th element over all verti-

ces. Using these definitions we construct a matrix Fmin which has as its elements
int+(minh(f

h
ij )), and, similarly, a matrix Fmax with elements int−(maxh(f

h
ij )).

Theorem 10. When F is restricted to have elements fij that are integer, then ele-
ments of F are bounded below by Fmin and bounded above by Fmax.

Proof. As the solution set F is convex, the true matrix F can be expressed as a
convex combination of the vertices. That is, F = ∑

h ahFh, where
∑

h ah = 1, and
0 � ah � 1. Hence, the ij th element of F lies between minh(f

h
ij ) and maxh(f

h
ij ).

Therefore, if the elements of F are integers, the smallest possible value for the ij th
element of F is the first integer larger than (or equal to) minh(f

h
ij ), and the largest

possible value for the ij th element of F is the first integer smaller than (or equal to)
maxh(f

h
ij ). �

Define F̃min = D−1/2
r FminD−1/2

c , F̃max = D−1/2
r FmaxD−1/2

c , f̃max = vec(̃Fmax),
and f̃min = vec(̃Fmin). Using (6), we must have

F̃min − Uk�kV′
k � ŨcGṼ′

c � F̃max − Uk�kV′
k,
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or in vec notation

f̃min − d � Cg � f̃max − d.

These additional integer restrictions can be implemented as follows:

The integer constrained inverse CA algorithm:
1. Find an initial set of vertices V by the Inverse CA Algorithm of Section 4.
2. Repeat until V does not change:

(a) Compute f̃min and f̃max as described above.

(b) Do for all

(
nrnc

m

)

combinations ψ .

(c) Let Cψ and dψ be the rows of C and d defined by ψ .
• Let gψ1 be the solution of the system Cψg = (f̃max − d)ψ .

• Check if (f̃min − d) � Cgψ1 � (f̃max − d). If so, then add gψ1 to the set of
vertices V .

• Let gψ2 be the solution of the system Cψg = (f̃min − d)ψ .

• Check if (f̃min − d) � Cgψ2 � (f̃max − d). If so, then add gψ2 to the set of
vertices V .

(d) End do.

As this procedure imposes additional restrictions, the number of vertices may
increase. The solution space, however, becomes smaller. Moreover, the matrices Fmin
and Fmax provide us with lower and upper bounds for the integer elements of F.

7. An illustrative example

To illustrate our method, consider the artificial smoking data of Greenacre [5] (see
Table 1).

Table 1
Artificial smoking data of Greenacre [5]

Staff group Smoking category Row total r
None Light Medium Heavy

Senior managers 4 2 3 2 11
Junior managers 4 3 7 4 18
Senior employees 25 10 12 4 51
Junior employees 18 24 33 13 88
Secretaries 10 6 7 2 25

Column total c′ 61 45 62 25 193

The Pearson chi-squared statistic for independence is χ2 = 16.44.
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Table 2
Vertices and reconstructed F by (6) of inverse CA of the smoking data using k = 3

Vertex Reconstructed F χ2

g1 =
[−0.1821
−0.2974

]

H1 =









4.11 0.00 6.21 0.68
3.87 5.43 3.09 5.61

25.11 8.00 15.22 2.67
18.15 21.22 37.47 11.16
9.76 10.36 0.00 4.88









χ2
1 = 39.83

g2 =
[−0.1821

0.1993

]

H2 =









4.11 0.00 6.21 0.68
3.96 3.74 5.80 4.49

24.83 13.14 6.95 6.08
17.94 25.13 31.18 13.75
10.17 2.98 11.86 0.00









χ2
2 = 30.43

g3 =
[

0.2084
−0.2812

]

H3 =









3.90 3.87 0.00 3.24
4.02 2.66 7.55 3.77

25.22 6.00 18.44 1.35
18.10 22.13 36.01 11.76
9.76 10.36 0.00 4.88









χ2
3 = 40.00

g4 =
[

0.2084
0.2155

]

H4 =









3.90 3.87 0.00 3.24
4.11 0.97 10.26 2.66

24.94 11.14 10.16 4.76
17.89 26.04 29.72 14.35
10.17 2.98 11.86 0.00









χ2
4 = 33.71

Suppose that in addition to the marginals r and c, we have the 2-dimensional CA
solution for these data. That is, in our notation, k = 3 and Rk and Ck are 5 × 3 and
4 × 3 matrices with as their first column the trivial solutions. We can derive Ũc and
Ṽc from R′

kŨc = 0 and C′
kṼc = 0.

Applying the Inverse CA Algorithm described in Section 4 with C = Ṽc ⊗ Ũc

and d = vec(D1/2
r RkC′

kD1/2
c ), four valid solutions for g are obtained. Table 2 con-

tains the four vertices and the corresponding reconstructed F matrices. Thus, any
convex combination of these four vertices yields a CA solution with Rk and Ck , the
marginals are r and c, and the elements of F are nonnegative. It may be verified that
the convex combination 0.1962H1 + 0.2866H2 + 0.2134H3 + 0.3038H4 yields the
original contingency matrix in Table 1.

Because g only contains two elements, a visual representation of the inverse CA
solution can easily be obtained (see Fig. 1). The axes represent the elements of g, that
is, g1 and g2. For a g of this size, the set with λmax < λk can be graphed as circle.

For the same data, suppose that we want to impose the additional restriction that
element i = 1 and j = 4 is fixed to 2. Clearly, the problem becomes the constrained
inverse CA problem. The vertices of the constrained inverse CA solution are pre-
sented in Table 3. Again it may be verified that for every convex combination of
the two vertices the marginals are r and c, a CA solution contains Rk and Ck , the
elements of F are nonnegative, and element i = 1 and j = 4 equals 2.
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Fig. 1. Polyhedron defined by inverse CA on the smoking data using k = 3. The vertices are indicated
by crosses. The dimensions are g1 and g2. The circle indicates those g that satisfy the strict inverse CA
condition.

Table 3
Vertices and reconstructed F by (6) of constrained inverse CA of the smoking data using k = 3, where
element i = 1 and j = 4 is fixed to 2

Vertex Reconstructed F χ2

g1 =
[

0.0199
−0.2890

]

H1 =









4.00 2.00 3.00 2.00
3.95 4.00 5.40 4.66

25.17 6.96 16.88 1.99
18.13 21.69 36.72 11.47
9.76 10.36 0.00 4.88









χ2
1 = 32.56

g2 =
[

0.0199
0.2077

]

H2 =









4.00 2.00 3.00 2.00
4.04 2.31 8.11 3.54

24.88 12.11 8.61 5.40
17.91 25.60 30.42 14.06
10.17 2.98 11.86 0.00









χ2
2 = 24.76

Finally, suppose it is known that the original matrix is a contingency matrix. Then,
using Theorem 10 we can obtain matrices with lower and upper (integer) bounds
for the values of F. These matrices, based on the four reconstructed F matrices
from Table 2, are presented in Table 4. Applying the algorithm described in Section
6.2 immediately yields one vertex g = [0.0199, 0.0043]′, with as corresponding F
matrix the original contingency table in Table 1.
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Table 4
Lower and upper bounds for the smoking data

Staff group Lower bounds Upper bounds
None Light Medium Heavy None Light Medium Heavy

Senior managers 4 0 0 1 4 3 6 3
Junior managers 4 1 4 3 4 5 10 5
Senior employees 25 6 7 2 25 13 18 6
Junior employees 18 22 30 12 18 26 37 14
Secretaries 10 3 0 0 10 10 11 4

8. A heuristic approach to computing the inverse map

Since finding the vertices of a polyhedron is a combinatorial problem, the compu-
tational effort may be prohibitive, even for small sized inverse CA problems. Table
5 gives an overview of the number of vertices that need to be checked as a function
of the number of rows nr , the number of columns nc, and the dimensionality k.
As k includes the trivial dimension, the table gives the number of combinations for
k = 2, 3, and 4. It is clear that even for a reasonably sized CA problem with nr = 8,

Table 5
Number of vertices to be checked by the complete enumeration approach as a function of the dimension-
ality k, the number of rows nr , and the number of columns nc

nr nc

3 4 5 6 7 8

k = 2
3 9
4 66 1820
5 455 38,760 2,042,975
6 3060 735,471 86,493,225 7,307,872,110
7 20,349 13,123,110 3,247,943,160 5.1379×1011 6.3205×1013

8 134,596 225,792,840 1.1338×1011 3.2247×1013 6.6464×1015 1.1188×1018

k = 3
4 16
5 190 12,650
6 2024 593,775 94,143,280
7 20,475 23,535,820 1.1058×1010 3.3481×1012

8 201,376 847,660,528 1.0933×1012 7.8561×1014 4.0104×1017

k = 4
5 25
6 435 58,905
7 6545 5,245,786 2,054,455,634
8 91,390 377,348,994 5.5838×1011 4.8853×1014



236 P.J.F. Groenen, M. van de Velden / Linear Algebra and its Applications 388 (2004) 221–238

nc = 8, and k = 3, the computational task of enumerating 4.0104×1017 vertices is
prohibitive. Therefore, we propose a heuristic method that is not guaranteed to find
all vertices but it may give a reasonable set of vertices with limited computational
effort.

The heuristic approach is based on the idea that we would like to find the vertices
by function optimization subject to the inequality constraints. From the proof of
Theorem 8 we know that a linear function over a polyhedron reaches its optimum at
a vertex. Define an m = (nr − k)(nc − k) vector a of length one to give a random
direction. Then, the maximum of the linear program a′g subject to Cg � d will be
reached at a vertex. Repeatedly doing so for different random a may yield different
vertices. This leads to the heuristic inverse CA algorithm.

The heuristic inverse CA algorithm:
1. Let the set of vertices V of the polyhedron be empty. Set the number of random

direction Ndir to some large integer.
2. Do for i = 1 to Ndir :
3. Draw a random direction a as follows. Let θ be an m − 1 vector with random

values on the interval [0, 2π] for θ1 and [−π, π] for θi with 2 � i � m − 1.
Using polar coordinates, define a1 = sin θ1, ai = (

∏i−1
j=1 cos θj ) sin θi for 2 �

i � m − 1, and am = (
∏m−1

j=1 cos θj ) so that a is randomly distributed on a
sphere of length 1.

4. Solve the linear program a′g subject to Cg � d. Let g∗ be the solution.
5. If g∗ is not in V then add g∗ to V .
6. End do.
7. Compute for each g in V an F by (6). Any convex combination of these F’s

satisfies the requirements for inverse CA.

It cannot be guaranteed that this heuristic procedure finds all vertices but as Ndir
increases, the polyhedron reconstructed by this heuristic method will approximate
the true polyhedron better. The way of constructing a in Step 3 ensures that every
direction is equally likely. To solve the linear program, we use the standard linear
program solver in MatLab 6.1 that is based on the simplex method of Dantzig et al.
[1].

To see how well the heuristic approach is able to find the vertices, we applied the
approach to the smoking data in Table 1 using k = 2. For this choice of k, the inverse
CA algorithm took 11 CPU seconds to check 38,760 potential vertices of which 45
were indeed vertices of the polyhedron defined by inverse CA. The heuristic inverse
CA algorithm took 7.7 CPU seconds using 300 random directions and found the
same 45 vertices.

This example illustrates that the heuristic approach can find all correct vertices
within a reasonable time if the inverse CA problem is relatively small. However, for
larger inverse CA problems, the number of possible vertices also rapidly increases.
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In such cases, the heuristic method proposed here should only be seen as a crude
way to obtain an estimate of the polyhedron defined by the inverse CA problem.

9. Conclusion and discussion

In this paper, we have specified the set of matrices that all yield a given low-
dimensional configuration in its CA solution. This set is a nonempty bounded closed
polyhedron. Computing the vertices of the polyhedron is a computationally very
demanding task, even for relatively small CA problems. One way to reduce this task
is to impose a number of additional constraints on the elements. However, in practice
additional constraints may not be available or there may not be enough constraints to
seriously reduce the computational task. We also specified a strict upper bound for
the Pearson chi-squared statistic, not limited to inverse CA, but also to the special
case of the independence model where only the margins of the data matrix are avail-
able. Furthermore, we showed that if the data matrix is known to have integer values
(as in a contingency table), then lower and upper integer bounds for the elements of
the original unknown contingency table can be obtained. In this case, the inverse CA
solution set may be significantly reduced and can be unique.

Throughout this paper, we have assumed that the row and column marginals were
known in advance together with the low-dimensional CA solution. This choice can
easily be justified by recognizing that the marginals can be directly derived from
the trivial CA dimension. An extension of the inverse CA problem to a situation
where the marginals are unknown a priori, would lead to a much more complicated
situation with a set that does not have the nice mathematical properties as in this
paper.

The specification of the inverse set is available for some other multivariate analy-
sis techniques such as multidimensional scaling [2,6] and principal components anal-
ysis [9], or could be developed in the same spirit as the present paper. We believe that
investigation of the inverse set yields better understanding of the original problem.
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