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AP2 complex protein is an essential clathrin adaptor protein during clathrin 

mediated endocytosis.  However, this view has been challenged in simple organisms.  

To gain insight into this conflict, the role of AP2 in clathrin localization and other 

clathrin related processes were assessed in Dictyostelium discoideum.  In Dictyostelium, 

deleting function AP2 caused mild phenotypes in clathrin membrane localization, 

cytokinesis, osmoregulation and cell development.  This supported the idea that AP2 

have significant roles in multicellular organisms but not in unicellular system.   

Clathrin mediated processes carries important function not only on the plasma 

membrane but also on some internal organelles.  But clathrin coated vesicles on internal 

organelles are not as well studied as on the plasma membrane.  To understand more of 

the clathrin coated vesicles on internal organelles, the clathrin coated vesicles on 

Dictyostelium discoideum contractile vacuole were studied.  Contractile vacuole 

associated clathrin coated vesicles contained clathrin adaptor proteins AP2, AP180, and 
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epsin but not Hip1r.  The absence of AP180 or AP2 produced abnormal large vacuoles, 

but the absence of epsin did not cause any detectable contractile vacuole abnormality. 

The enlarged contractile vacuoles in AP180 minus cells were caused by excessive 

homotypic fusion among contractile vacuoles.  Using both GST-pull down and 

immunostaining AP180 was identified as the possible adaptor protein for a contractile 

vacuole-associated SNARE protein, Vamp7B.  Therefore recycling Vamp7B from 

contractile vacuole by AP180 through clathrin coated vesicles could be an efficient way 

to prevent excessive homotypic fusions among contractile vacuoles.  Dictyostelium 

contractile vacuoles offer a valuable system to study clathrin coated vesicles on cell 

internal organelles. 
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Chapter 1:  Introduction 

1.1 THE CLINICAL SIGNIFICANCE OF CLATHRIN MEDIATED ENDOCYTOSIS 

Clathrin mediated endocytosis is the major pathway for eukaryotic cells to 

internalize important hormones and nutrients, such as EGF (epidermal growth factor) and 

LDL (low density lipoprotein) through clathrin coated vesicles. This process involves 

many proteins, membranes and the actin cytoskeleton (Brodsky et al., 2001; Smythe and 

Ayscough, 2006).  The formation of clathrin coated vesicles during endocytosis occurs 

when clathrin adaptor proteins recognize specific transmembrane receptors on the 

cytosolic surface of the plasma membrane. After vesicles bud and pinch off from the 

plasma membrane, internalized materials are then transported to either endosomes, where 

the vesicle contents are either sent lysosomes or recycled back to the cell surface 

(Mousavi et al., 2004).  

Clathrin and other clathrin coated components have been implicated in various 

human diseases.  It is well known that the LDL (low density lipoprotein) receptor is 

internalized into cells in clathrin coated vesicles to remove LDL from the blood stream. 

Defects in LDL receptor internalization can cause hypercholesterolemia, a condition  

that can lead to atherosclerosis (Anderson et al., 1977).  In Alzheimer’s disease patients’ 

the expression level of the clathrin adaptor protein AP2 decreases in the frontal cortex of 

the brain (Yao et al., 2000).  In addition to AP2, the clathrin assembly protein AP180 is 

linked to human diseases: AP180 punctae are reduced in the superior frontal gyrus in the 

brains of Alzheimer's disease patients while the AP180 non-neuron homologue CALM 

has been identified as a lymphoid myeloid leukemia gene (Dreyling et al., 1996; Yao et 

al., 1999).  The expression level of synaptojanin, a molecule that plays roles in clathrin-

mediated synaptic vesicle endocytosis, is significantly elevated in the cerebral cortex of 
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patients with Down syndrome (Arai et al., 2002).  In multiple  recent studies, clathrin 

assembly protein epsin 4 has been demonstrated to be significantly associated with 

schizophrenia (Liou et al., 2006; Tang et al., 2006). Another clathrin coated vesicle 

component, Hip1r, is also linked to Huntington’s disease and bipolar disorder (Provencal 

et al., 2004; Legendre-Guillemin et al., 2005).  In addition, there are multiple lines of 

evidence showing that clathrin mediated endocytosis is also involved in the 

internalization of influenza and hepatitis C viruses into cells (DeTulleo and Kirchhausen, 

1998; Blanchard et al., 2006).   

 

1.2 THREE LAYERS OF CLATHRIN COATED VESICLES ON THE PLASMA MEMBRANE 

1.2.1 Clathrin coat---the outer layer 

Since clathrin was first identified in 1970s by Barbara Pearse using pig brain 

extracts, clathrin coats have been well studied (Pearse, 1975). Studies showed that 

clathrin is a heterodimer of clathrin heavy chain (~190KDa) and clathrin light chain 

(~25KDa) (Kirchhausen et al., 1983; Ungewickell, 1983).  Three clathrin heavy chains 

with their own associated clathrin light chains trimerize to form triskelia which serve as 

building blocks from which the clathrin polyhedral lattices are formed (Kirchhausen and 

Harrison, 1981; Ungewickell and Branton, 1981; Kirchhausen, 2000; Edeling et al., 

2006).  These clathrin lattices make up the outer layer of the clathrin coated vesicles 

(Figure 1.1A).  

The amino acid sequence of clathrin heavy chain is highly conserved from yeasts 

to mammals.  Crystallography revealed that clathrin heavy chain has a globular N-

terminal terminal domain, a curved region, a linker, a proximal helical leg and a C-

terminal end (Ungewickell, 1999).  C-terminal domains of three clathrin heavy chain 



protein molecules join together to form the hub of a triskelion.  Heavy chain proximal 

leg domains then intertwine with adjacent triskelia to form a clathrin lattice (Fotin et al., 

2004).  The N-terminal domain forms a seven-bladed -propeller which contains 

binding sites for various endocytic proteins, including the AP2 complex.  Most of the 

clathrin interaction proteins bind clathrin heavy chain through their clathrin binding box 

(ter Haar et al., 1998) (Figure1.1B). 

 

 

 

 
Figure 1.1 Clathrin (A). Clathrin-cage reconstructions. In the left panel, three clathrin 

triskelia, pink, yellow and green, intertwine with each other. In the right panel, a clathrin 

barrel with a single triskelion is highlighted in blue. (B). A clathrin triskelion, various 

domains are highlighted using different colors.  

( Both Figure 1.1 A and B are adapted from Edeling et al., 2006) 

 

Mammalian cells have two clathrin light chains homologues, each of which is 

encoded by an independent gene (Jackson et al., 1987; Kirchhausen et al., 1987; Jackson 

and Parham, 1988).  An acidic motif at the N-terminus of the light chain binds to the 

proximal legs of clathrin heavy chain and the C-terminus lies adjacent to the vertex of the 

heavy chain triskelion (Kirchhausen et al., 1983; Ungewickell, 1983; Liu et al., 1995).  

 3
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Despite being much smaller than the heavy chain, clathrin light chain contributes to the 

regulation of triskelion assembly.  Clathrin assembly occurs spontaneously in vitro at 

low pH and is mediated by clathrin assembly proteins in vivo at physiological pH.  

Clathrin light chains can inhibit clathrin heavy chains assembly through inhibiting high 

affinity salt bridge formation at physiological pH.  This allows clathrin coat formation to 

be accurately regulated by additional cellular factors (Ybe et al., 1998).  In vivo studies 

in budding yeast and Dictyostelium showed that missing functional clathrin light chain 

compromises clathrin function and causes some mutant phenotypes, suggesting an 

important contribution of the light chain to clathrin functions (Huang et al., 1997; Wang 

et al., 2003).   

 

1.2.2 Clathrin adaptor proteins ---the middle layer 

In clathrin coated vesicles, many clathrin related proteins, including clathrin 

adaptor proteins and other accessory proteins, build the middle layer of clathrin coated 

vesicles, connecting the outer layer clathrin coat and the inner layer transmembrane 

cargo.  Clathrin adaptor proteins are required to recognize transmembrane sorting 

signals, assemble clathrin cages, catalyze membrane curvature and to recruit other 

important proteins to facilitate the internalization of clathrin coated vesicles.  The 

following are clathrin adaptor proteins that were studied in my Ph.D project.   

 

1.2.2.1 AP2 

The tetrameric adaptor protein complex AP2 is the second most abundant 

component, after clathrin, in clathrin coated vesicles. AP2 binds clathrin, plasma 

membrane phospholipids, sorting signals and other accessory proteins (Owen et al., 
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2004).  It is thought that clathrin mediated endocytosis is triggered by the recruitment of 

AP2 onto the plasma membrane from cytosol.  AP2 then binds the sorting signals of 

transmembrane cargo and recruits clathrin onto the membrane.  After clathrin coated 

vesicles bud off from the plasma membrane, clathrin and AP2 dissociate from the 

vesicles (Conner and Schmid, 2003).  

The AP2 complex consists of two large subunits, α and 2 (~100kDa each), a 

medium subunit, 2 (~50kDa), and a small subunit, δ2 (~16kDa) (Figure1.2).  The α 

and 2 subunits each contain an N-terminal trunk domain and a globular C-terminal 

appendage domain connected by a flexible hinge domain.  Both AP2α and 2 

appendage domains recruit clathrin accessory proteins, while the 2 subunit also interacts 

with clathrin and promotes clathrin assembly (Collins et al., 2002; Kirchhausen, 2002; 

Mousavi et al., 2004).  The 2 subunit is primarily responsible for cargo binding: its C-

terminus binds to tyrosine-based sorting signals in transferrin receptor, LDL receptor and 

EGF receptor (Ohno et al., 1995).  There are two plasma membrane PtdIns-4,5-P2 

binding sites on the AP2 complex.  The interaction between the N-terminal domain of 

the α subunit and PtdIns-4,5-P2 is the initial and essential step, while the second step, 

interaction of  and PtdIns-4,5-P2, stabilizes the AP2/plasma membrane association 

(Honing et al., 2005). 

 

 

 



 

 
Figure 1.2 AP2  (A). Tetrameric AP2 complex has four subunits. , 2,  and sigma 

2. AP2 binds to clathrin throught it 2 hinge domain. (B). Models of AP2 were are 

revealed by X-ray crystallography. (Both Figure 1.1 A and B are adapted from Edeling et 

al., 2006) 

 

1.2.2.2 AP180 

In addition to AP2, the clathrin adaptor protein AP180 can also assemble clathrin 

lattice (Ford et al., 2001).  This makes AP180 another important player in clathrin 

mediated endocytosis.  AP180/CALM is implicated in the efficient assembly of 

uniformly sized clathrin cages (Ahle and Ungewickell, 1986; Heuser et al., 1987; Prasad 

and Lippoldt, 1988; Ye and Lafer, 1995; Zhang et al., 1998; Ford et al., 2002).  A 

conserved N-terminal ANTH (AP180 N-terminal homology) domain recruits 

AP180/CALM to PtdIns(4,5)P2 at the plasma membrane (Norris et al., 1995; Ye et al., 

1995; Ford et al., 2001; Mao et al., 2001).  AP180/CALM binds directly to clathrin 

through its conserved clathrin motifs, DLL and/or L(L,I)(D,E,N)(L,F)(D,E) (Morgan et 

al., 2000; ter Haar et al., 2000).  It also contains DPW/DPF motifs which bind both α 

and 2 subunits of AP2 (Owen et al., 1999; Owen et al., 2000).  

 6
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Direct binding between AP2 and AP180 has been shown in vitro and accounts for 

their synergistic clathrin assembly activity.  AP180 alone assembles clathrin monomers 

into lattices about four times better than AP2 alone, but when combined with AP2, their 

assembly activity is greater than the simple adding of assembly ability of each protein 

(Lindner and Ungewickell, 1992; Hao et al., 1999).  Immunofluorescence images also 

show colocalization of the two proteins within punctae (Hinrichsen et al., 2003; 

Meyerholz et al., 2005).  However a reduction of AP2 in HeLa cells only moderately 

reduces the membrane associated AP180/CALM, suggesting that the interaction between 

AP2 and AP180 is not critical for AP180/CALM function (Hinrichsen et al., 2003).  

AP180/CALM is also implicated in cargo internalization: knocking down AP180/CALM 

in HeLa cells affects the internalization of EGF receptors but not transferrin receptor 

(Huang et al., 2004).  This finding also puts AP180/CALM as one possible candidate 

that can recognize and internalize some clathrin mediated endocytosis cargo.  

  

1.2.2.3 Epsin  

The epsin ENTH (Epsin N-terminal Homology) domain is highly related to the 

AP180 ANTH domain (Ford et al., 2002).  Similarly, the ENTH domain binds 

specifically to PtdIns (4, 5) P2 at the plasma membrane and promotes clathrin assembly.  

Unlike AP180, which can only assemble a flat clathrin lattice, part of the epsin ENTH 

domain inserts into the plasma membrane bilayer and induces membrane curvature and 

clathrin coated pit invagination in vitro (Itoh et al., 2001; Ford et al., 2002).  At the 

carboxyl-terminus, epsin binds clathrin and AP2 through similar motifs as AP180 

(Dell'Angelica, 2001).  This has also been shown in immunofluorescence images in 

which epsin colocalizes with both clathrin and AP2.  In addition, epsin punctae are 

reduced in AP2  depleted cells (Hinrichsen et al., 2003; Motley et al., 2003).  It has 



 8

been suggested that epsin could interact with some ubiquintinated cargo such as EGF 

receptors through its Ubiquitin Interacting Motifs (UIMs) (Nakashima et al., 1999; 

Hofmann and Falquet, 2001; Polo et al., 2002; Aguilar et al., 2003; Barriere et al., 2006). 

In addition, in Drosophila and C. elegans, epsin is also important for the Notch/Delta 

pathway (Overstreet et al., 2003; Overstreet et al., 2004; Tian et al., 2004).  Only after 

epsin-dependent internalization is the Delta ligand able to activate Notch (Wang and 

Struhl, 2004; Wang and Struhl, 2005).  All these data suggest that, like AP2, epsin could 

also help select and internalize cargo from the plasma membrane.  

 

1.2.2.3 The Sla2/Hip1 family 

Sla2/Hip1 family members include yeast Sla2p, mammalian Hip1 and Hip1r.  

These family members also contain an N-terminal ANTH domain which interacts with PI 

(4, 5) P2 in the plasma membrane (Itoh et al., 2001; De Camilli et al., 2002; Legendre-

Guillemin et al., 2004).  Adjacent to the ANTH domain Sla2/Hip1 has a coiled-coil 

domain which binds to clathrin (Engqvist-Goldstein et al., 1999; Mishra et al., 2001; 

Henry et al., 2002).  At the C-terminus, Sla/Hip1 has a THATCH (Talin-Hip1/R/Sla2p 

Actin-Tethering C-Terminal Homology) domain which binds to F-actin (McCann and 

Craig, 1997; Yang et al., 1999; Brett et al., 2006).  

Yeast Sla2p mutants are deficient in endocytosis and the central coiled-coil 

domain binds to clathrin light chain (Raths et al., 1993; Henry et al., 2002). The Sla2p 

THATCH domain interacts with yeast epsin which suggested a close relationship 

between epsin and Sla2p/Hip1 family members (Baggett et al., 2003).  Hip1 (Huntingtin 

Interacting Protein 1), mostly expressed in neurons, binds to AP2 and clathrin light chain 

through binding motifs and can also promote clathrin assembly (Kalchman et al., 1997; 

Wanker et al., 1997; Legendre-Guillemin et al., 2002).  Hip1r, the Hip1 related protein, 
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colocalizes with both AP2 and clathrin (Engqvist-Goldstein et al., 1999; Engqvist-

Goldstein et al., 2001).  Strong evidence has shown that Hip1r can link actin filaments 

to the clathrin coat (Chen and Brodsky, 2005).  Therefore, Hip1r offers a very important 

tool to study the actin dynamics involved in clathrin mediated trafficking.  

 

1.3 ACTIN IN CLATHRIN MEDIATED TRAFFICKING  

The dynamic polymerization of the actin cytoskeleton has direct roles during the 

formation of clathrin coated vesicles.  In both mammalian cells and S.cerevisiae, 

inhibiting actin filament assembly blocks endocytosis (Ayscough, 2000; Fujimoto et al., 

2000).  Further experiments demonstrated that clathrin coated vesicle invagination in 

mammalian cells can initiate without actin, but efficient vesicle scission requires 

functional actin (Yarar et al., 2005).  In contrast, S.cerevisiae cells need actin for both 

vesicle invagination and scission (Kaksonen et al., 2003).  In addition, the localization 

of actin also suggests an important function of actin in endocytosis.  Immunostaining in 

S.cerevisiae cells showed a colocalization between actin patches and many endocytic 

proteins (Engqvist-Goldstein and Drubin, 2003).  Moreover, electron micrographs from 

mammalian cells also revealed a possible association between clathrin coated vesicles 

and action filaments (Salisbury et al., 1980).  Finally, actin filaments were also found at 

the sites of clathrin mediated endocytosis in neuronal synapses, further suggesting an 

important role for actin for clathrin function (Shupliakov et al., 2002). 

Actin has the ability to generate mechanical forces through two different 

mechanisms, one of which is directly driven by F-actin polymerization.  This kind of 

polymerization-driven force is responsible for the motility of certain pathogens inside of 

their host cells, such as Listeria and Shigella (Frischknecht and Way, 2001; Gouin et al., 

2005).  It has also been proposed that during endocytosis, the nucleation of actin 
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filaments is activated at the edges of the invagination pits.  These continuously growing 

actin filaments then bind to the endocytic coat and form an F-actin network that drags 

endocytic coated pits into invagination (Mulholland et al., 1994; Rodal et al., 2005).  In 

support of this theory, recent studies have identified several proteins that link the clathrin 

coat and F-actin, such as Sla2/Hip1r family and Pan1/Eps15 (Engqvist-Goldstein et al., 

1999; Kaksonen et al., 2003). 

The second mechanism of generation of actin forces is through motor proteins, 

such as myosin VI.  Evidence suggests that myosin VI colocalizes with clathrin pits and 

is able to pull endocytic vesicles away from the plasma membrane (Buss et al., 2001a; 

Buss et al., 2001b; Spudich et al., 2007).  Thus myosin VI may also facilitate clathrin 

coated vesicle budding.  

 

1.4 LIFE CYCLE OF CLATHRIN COATED VESICLES 

The formation of clathrin coated vesicles is initiated at specific and limited 

assembly spots on the plasma membrane (Santini et al., 2002).  The life cycle of clathrin 

coated vesicles during endocytosis is a dynamic process which involves many proteins, 

plasma membrane and actin filaments.  Despite the variations among different 

organisms, the basic steps of the life cycle of the vesicles are very similar: clathrin coat 

assembly, clathrin coated pits invagination, scission and uncoating.  

 

1.4.1 Clathrin coat assembly  

The assembly of clathrin triskelia into clathrin lattice is the first step of clathrin 

mediated endocytosis. Although clathrin triskelia have some self assembly ability, 

clathrin assembly proteins are required to regulate this process (Liu et al., 1995; Brodsky 
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et al., 2001).  Adaptor protein complex AP2 is believed to be able to specify the sites of 

clathrin assembly (Brodsky, 1988).  AP2 binds to plasma membrane through its two 

plasma membrane phosphoinositide binding sites, one on α subunit and one on  

subunit.  In addition, AP2 also binds to the internalization signals on the transmembrane 

receptors, the cargo of the clathrin coated vesicles that will ultimately be internalized.  

Together, the binding of phosphoinositides and transmembrane receptors recruit AP2 

onto the plasma membrane and also determine the initiation sites for clathrin assembly 

(Pearse and Crowther, 1987; Iacopetta et al., 1988; Zhang et al., 1994; West et al., 1997; 

Jost et al., 1998; Gaidarov and Keen, 1999).   

After AP2 specifies the location of clathrin assembly on the plasma membrane, 

the AP2 2 subunit hinge domain binds clathrin heavy chain and promotes clathrin lattice 

polymerization (Shih et al., 1995; Gaidarov and Keen, 1999).  However, AP2’s central 

role in clathrin assembly nucleation has been challenged.  Depletion of AP2 complexes 

from S.cerevisiae by genetic knockout does not abolish clathrin coated vesicles (Huang et 

al., 1999; Yeung et al., 1999).  So it is now believed that, at least in some organisms, 

clathrin assembly on the plasma membrane could be AP2 independent. 

Other than AP2, AP180/CALM is also an important player on the assembly of 

plasma membrane clathrin.  AP180/CALM could be acting as a regulator of vesicle size 

(Ahle and Ungewickell, 1986; Heuser et al., 1987; Prasad and Lippoldt, 1988; Ye and 

Lafer, 1995; Zhang et al., 1998).  In addition, having the ability to promote clathrin 

assembly, AP180 binds to AP2 such that the resulting AP180-AP2 complexes assemble 

clathrin lattice with higher efficiency than the simple addition of each protein (Lindner 

and Ungewickell, 1992).  
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1.4.2 Clathrin coated pit invagination 

There are two steps of clathrin coated pit invagination: the early formation of 

shallow coated pits and the later formation of deeply invaginated pits. These two steps 

both require certain degrees of membrane deformation (McMahon and Gallop, 2005).  

There are three important factors involved during the formation of shallow coated 

pits on the plasma membrane.  One major factor is clathrin coat assembly which has 

been suggested to provide the driving force for membrane invagination (Moore et al., 

1987; Mahaffey et al., 1989; Jin and Nossal, 1993; Hinrichsen et al., 2006).  However, 

others have argued that forces other than clathrin also drive the invagination.  One of 

these forces is the asymmetry of two plasma membrane leaflets.  Being asymmetric, the 

two layers of the plasma membrane could respond differently to various perturbations.  

This differential response can cause one leaflet to expand more than the other and 

therefore induce membrane curvature.  For example, the insertion of epsin ENTH 

domain can cause membrane curvature under this mechanism.  Epsin has showed to be 

able to tubulate liposomes and promote the formation of clathrin coated pits on 

monolayer membranes.  The epsin ENTH domain helix 0 inserts into the inner leaflet of 

the plasma membrane bilayer causing an increase in the surface of the leaflet, thus 

inducing membrane bending (Ford et al., 2002).  

The formation of deep clathrin coated pits involves a different set of proteins such 

as endophilin and dynamin.  When endophilin function was interrupted in lamprey 

synaptic vesicle invagination stopped at a shallow stage (Ringstad et al., 1999).  In 

addition, dynamin rescued the formation of deeply invaginated clathrin coated pits 

inhibited by overexpression of the SH3 domain of amphiphysin, a linker protein of 

dynamin and clathrin coats.  This suggests that the requirement of dynamin is in the 

later  stage of vesicle budding (Hill et al., 2001).  
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After full invagination from the plasma membrane, clathrin coated vesicles get 

ready to detach from the membrane.  

 

1.4.3 Scission--Detachment of clathrin coated vesicles  

The neck of a deeply invaginated vesicle specifies the site of vesicle scission. This 

vesicle neck must be constricted sufficiently to release the vesicle from the plasma 

membrane.  During vesicle scission, dynamin, a GTPase, is recruited to the clathrin 

coated pits by amphiphysin.  Dynamin induces its own GTP hydrolysis and triggers 

conformational changes that provide mechanical forces around the neck of the 

invaginated pits to complete vesicle scission (Baba et al., 1995; Hinshaw and Schmid, 

1995).  In addition to GTP hydrolysis, dynamin may also recruit and activate other 

effectors, such as endophilin which can drive vesicle scission through its lipid 

transferase activity (Kozlov, 2001).  Dynamin also interacts with many actin binding 

proteins including Arp2/3, WASP, profilin, Abp1. Thus, it has been proposed that 

dynamin is important for vesicle scission because it regulates actin filament 

polymerization which provides the ultimate mechanic forces to the scission of clathrin 

coated vesicles (Witke et al., 1998; McNiven et al., 2000; Kessels et al., 2001).   

 

1.4.4 Uncoating  

After clathrin coated vesicles are released from the plasma membrane, clathrin 

lattices are disassembled while the vesicles are being transported to next organelle.  

During this uncoating process, Hsc70 and auxillin are targeted onto clathrin coated 

vesicles and then drive ATP hydrolysis.  This ATP hydrolysis provides the energy 

required for clathrin coat disassembly.  At the same time, phosphorylated AP2  
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subunit also prevents the adaptor complex from binding clathrin once AP2 leaves the 

vesicle (Schlossman et al., 1984; Ungewickell et al., 1995; Umeda et al., 2000).  

 

1.5 CLATHRIN ON INTERNAL ORGANELLES   

Clathrin coated vesicles are not limited to the plasma membrane. 

Immunoflurescence images have localized clathrin onto the trans-Golgi network (TGN) 

and endosomes.  

At the TGN, clathrin coated vesicle deliver newly synthesized lysosomal 

hydrolases to the endosomal compartments (Friend and Farquhar, 1967; von Figura and 

Weber, 1978; Gonzalez-Noriega et al., 1980).  The life cycle at the TGN is similar to 

that of the plasma membrane with some different proteins involved. The differences are 

highlighted as following. 

Clathrin coat assembly at the trans-Golgi network is activated by the recruitment 

of ARF1, a GTPase to the membrane.  When activated by binding GTP, ARF1 recruits 

clathrin adaptor proteins AP1 and GGAs, a class of monomeric clathrin adaptor proteins  

to the TGN (Stamnes and Rothman, 1993; Seaman et al., 1996; Donaldson et al., 2005).  

The monomeric GGAs and the tetrameric AP family member AP1 serve as adaptor 

proteins at the TGN and they bind the sorting signal of trans-Golgi membrane receptors.  

GGAs bind to Asp-X-X-Leu-Leu motifs whereas AP1 binds with (DE)XXXL(LI) motifs 

(Austin et al., 2002; Crottet et al., 2002; Shiba et al., 2002).  In addition AP1 interacts 

with phosphatidylinositol-4-monophosphate (PI4P) and assembles clathrin into lattice on 

TGN membranes (Doray and Kornfeld, 2001; Heldwein et al., 2004).  GGAs can also 

assembly clathrin into lattice, but a recent study done with GGA1 showed that 10% of the 

clathrin structure it assembles is in the form of clathrin tubules, suggesting a unique 

assembly ability for GGAs (Zhang et al., 2007).  After been recruited to the TGN, AP1 
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and GGAs also recruit a complex of clathrin accessory/regulatory proteins that are unique 

for TGN clathrin coated vesicle formation, including epsinR, Eps15 (Kent et al., 2002; 

Hirst et al., 2003; Lui et al., 2003).  However, the later stages of the clathrin coated 

vesicles budding and scission at TGN involve similar proteins as on the plasma 

membrane, including Hip1r, dynamin, endophilin and actin cytoskeleton (reviewed by 

(McNiven and Thompson, 2006)). 

Other than the plasma membrane and the TGN localization, clathrin coated 

vesicles are also localized on endosomes in mammalian cells with AP1 being the only 

known endosomal adaptor.  First observed in 1996, clathrin coated vesicles associated 

with endosomes are smaller than those on the plasma membrane (Stoorvogel et al., 

1996).  AP1 was localized onto endosome when retrograde transport between the Golgi 

and endosomes was blocked by BFA, suggesting a role for AP1 on the endosomes 

(Mallard et al., 1998; Hinners and Tooze, 2003).  At the endosome, clathrin coated 

vesicles are involved in sorting Shiga toxin from late endosomes to the TGN (Lauvrak et 

al., 2004).  However, a different study also suggests that endosome associated clathrin 

coated pits are responsible for the recycling of the transferrin receptors back to the 

plasma membrane (van Dam and Stoorvogel, 2002).  It was suggested that AP3 may 

play a role on the endosomes as well.  But whether AP3 is related to clathrin function is 

still under debate (reviewed by (Robinson and Bonifacino, 2001)).   

Recent studies in tobacco cells, revealed that clathrin localized to another internal 

cell organelle, the phragmoplast during the late stage of cell division (late anaphase and 

telophase) (Tahara et al., 2007).  The phragmoplast is a plant-cell-specific organelle that 

serves as a scaffold for cell plate assembly and formation of a new cell wall separating 

the two daughter cells during late cytokinesis.  The localization of clathrin on the 

phragmoplast suggests a possible role for clathrin in the organization of the phragmoplast 

http://en.wikipedia.org/wiki/Plant_cell
http://en.wikipedia.org/wiki/Cell_plate
http://en.wikipedia.org/wiki/Cell_wall
http://en.wikipedia.org/wiki/Cytokinesis
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during cytokinesis in tobacco cells.  However, how clathrin functions and which clathrin 

adaptor proteins participate at this cell stage remain undetermined.  

 

1.6 CLATHRIN AND ITS PARTNERS IN DICTYOSTELIUM DISCOIDEUM 

The slime mode Dictyostelium discoideum is a social amoeba with six 

chromosomes and a 34Mb genome (Cox et al., 1990; Loomis et al., 1995).  In the 

natural world, Dictyostelium cells exist as two phases: a vegetative phase and a 

developmental phase.  Upon starvation, the vegetative Dictyostelium cells enter a 

developmental program in which about 100,000 amoebae cells aggregate, differentiate 

and then form a multicellular fruiting body consisting of a sorus full of spores on the top 

of a stalk. Aggregation is mediated by chemotaxis to cAMP produced by starving cells 

(Kessin, 2001).  Dictyostelium discoideum is a unique model system with powerful 

molecular genetic tools for studying some fundamental cellular pathways.  First, many 

of Dictyostelium genes show a high degree of sequence similarity to genes in vertebrate 

species.  Secondly, relative to yeast, Dictyostelium cells are very accessible for 

fluorescence and electron microscopy because of their large size (~10 micron) and lack 

of a cell wall.  Third, Dictyostelium is a haploid system in its vegetative state and the 

entire genome has already been sequenced which makes genes disruption very 

manageable.  Finally, it is relatively inexpensive and easy to grow Dictyostelium in the 

large quantities necessary for biochemical analysis.  

Previous studies of clathrin mediated processes in Dictyostelium discoideum 

revealed that cells clathrin-coated pits are associated with the plasma membrane and 

clathrin is important for pinocytosis, cytokinesis, osmoregulation and development 

(O'Halloran and Anderson, 1992b; Niswonger and O'Halloran, 1997b, 1997a; Gerald et 

al., 2001; Wang et al., 2006).  
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Furthermore, various clathrin related endocytic proteins have been cloned and 

studied in Dictyostelium, including AP1  and 1 subunit, AP180, epsin, and Hip1r.  

AP1 in Dictyostelium colocalizes with clathrin on the TGN and is required for the 

biogenesis of contractile vacuole, an osmoregulatary system.  Deleting AP1 also causes 

a delay in the developmental cycle in Dictyostelium (Lefkir et al., 2003).  Dictyostelium 

AP180 colocalizes with clathrin at the plasma membrane and at the contractile vacuole 

and is also involved in contractile vacuole function.  AP180 depleted cells have enlarged 

contractile vacuoles and are osmosensitive (Stavrou and O'Halloran, 2006).  Two other 

clathrin accessory proteins, epsin and Hip1r, also colocalize with clathrin on the plasma 

membrane.  However, unlike other clathrin adaptor proteins, epsin and Hip1r are 

involved in Dictyostelium spore formation.  Cells missing epsin or Hip1r produce round 

and fragile spores instead of the ovoid and robust spores from wild type cells (Repass et 

al., 2007; Brady et al., 2008).   

 

1.7 DICTYOSTELIUM CONTRACTILE VACUOLES  

1.7.1 Overview of the contractile vacuole system in Dictyostelium discoideum 

Living in soil, the protozoa Dictyostelium has a well characterized osmoregulatory 

organelle called the contractile vacuole complex which collects and expels excess water 

from inside of the cell.  The contractile vacuole (CV) complex is a highly dynamic 

organelle consisting of bladders (cisternae) connected by a network of tubules.  The 

contractile vacuole tubules and bladders in Dictyostelium cells are interconvertable, and 

the numbers of bladders and tubules also vary as needed (Gerisch et al., 2002) (Figure 

1.3).  At the beginning of the contractile vacuole life cycle, the expansion phase, water 

is collected into lenticular shaped bladders via proton pumps (v-H+ATPase).  V-ATPase 



is found throughout the whole contractile vacuole system membrane and is believed to 

drive the water exchange between the cell cytosol and contractile vacuole by creating a 

positive charge inside of the contractile vacuole.  This electrical charge can cause anions  

 

 
Figure 1.3 EM picture of interior of a Dictyostelium amoeba showing an extensive, 

interconnected contractile vacuole system. One swollen cisterna being partially filled at 

the moment of cell fixation are indicated with asterisk. Visible cytoskeletal structures are 

also showed with arrowheads. Bar, 1m (Heuser et al., 1993).  
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and water to flow into the contractile vacuole following their concentration gradients 

(Heuser et al., 1993).  At the end of this expansion stage, the lenticular bladder rounds 

up to form a vacuole-like compartment.  Soon after the bladder reaches its maximum 

size, it moves toward the cell surface before it fuses with the plasma membrane forming a 

temporary pore and discharging its contents into the extracellular space (Figure 1.4 A and 

B).  During expulsion, the bladder membrane folds back into tubules (Heuser et al., 

1993; Gerisch et al., 2002).  Despite the brief contact between contractile vacuole 

membrane and the plasma membrane, evidence has shown that these two membranes 

actually never mix.  A contractile vacuole membrane marker (GFP-Dajumin) does not 

mix with the plasma membrane after contractile vacuole discharge (Gabriel et al., 1999).  

In addition, in contrast to the plasma membrane, the contractile vacuole membrane is full 

of proton pumps and devoid of actin filaments and myosin (Clarke et al., 2002; Gerisch 

et al., 2002; Heuser, 2006).  

Contractile vacuoles are known to accumulate and expel water for the cell, but the 

internal contents of contractile vacuoles are not fully understood.  One study done in the 

amoeba C.carolinensis showed that contractile vacuoles contain a very high 

concentration of Na+ and a very low concentration of K+ compared to the cytosol (20mM 

Na+ and 4.6mM K+ in contractile vacuole compared to the 0.6mM of Na+ and 31mM of 

K+ in cytosol) (Riddick, 1968).  Heuser et al further proposed that in order to maintain 

the ion balance inside of cells when contractile vacuole continuously release Na+ and K+, 

the cells may exchange the byproduct of respiration and nitrogen metabolism (Heuser et 

al., 1993).  

Some studies have also proposed a role for the contractile vacuole in the 

regulation of intracellular Ca2+ concentration.  For example, the Ca2+ binding protein 

calmodulin has been localized onto contractile vacuoles.  Furthermore, it has been 



shown that purified contractile vacuoles can store and release Ca2+ (Zhu and Clarke, 

1992; Malchow et al., 2006).  

 

 
Figure 1.4 Contractile vacuole cycle. (A). Time-lapse video microscopy of a 

Dictyostelium cell for showing the cycle of contractile vacuole from expansion to expel. 

Recording starts in the upper left panel and proceeds to the lower right (4 seconds 

intervals). Contractile vacuoles complexes appear dark against the lighter grey of the cell 
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bottom. Arrows indicate the onsets of three discharge events. A particularly example of a 

tubulo-cisternal intermediate in this process is indicated at the asterisk.arm. (B). 

Proposed cycle of contractile vacuole filling and discharge in Dictyostelium. In (a) is a 

swelling of a particular contractile vacuole bladder from water accumulation. The volume 

of the bladder in (b) increases while the tubules also expanded and shortened. Then the 

shortened tubules merged into the main bladder and become one round vacuole. This 

vacuole then moves close to the plasma membrane and opened a temporary pore to dump 

its content and collapses at the plasma membrane in (d).  (Adapted from Heuser et al., 

1993). 

 

 

Upon discharging, contractile bladder must contact with the plasma membrane at 

an appropriate site and this step probably involves SNARE proteins, suggesting a 

possible role of SNARE protein for normal contractile vacuole functions.  In addition, 

the observation of homotypic fusion among dispersed contractile vacuole parts in mitotic 

cells suggests a role for SNAREs in this process (Gabriel et al., 1999).  Although some 

SNAREs have been identified, including a Syntaxin 7 homologue and α and gamma-

SNAP in Dictyostelium cells, the roles of SNARE proteins in contractile vacuoles has not 

been elucidated (Bogdanovic et al., 2000; Weidenhaupt et al., 2000; Bogdanovic et al., 

2002; Bennett et al., 2008). 

    

1.7.2 Contractile vacuole resident proteins 

Many proteins have been localized onto the contractile vacuole systems in 

Dictyostelium.  Among those, calmodulin, Rab-11 like protein, GFP-fused Dajumin and 

Rh50 are four proteins that localize specifically on contractile vacuoles.  Calmodulin, a 

calcium binding protein is the first protein identified on the contractile vacuole (Zhu and 
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Clarke, 1992).  Dictyostelium Rab-11, a relative of mammalian Rab-11 protein, also 

specifically localizes to the contractile vacuole (Harris et al., 2001).  GFP-fused dajumin 

provides a very useful fluorescent marker for observing contractile vacuole activities in 

living Dictyostelium cells while dajumin by itself is not a contractile vacuole related 

protein (Gabriel et al., 1999).  Rh50, a protein related to the member of the human 

Rhesus complex is the specific contractile maker used in this study (Benghezal et al., 

2001).  

There are also proteins enriched in the contractile vacuoles that are also found in 

other cellular localization.  The proton pump v-ATPase is one of them.  Antibodies 

against v-ATPase subunits and GFP labeled v-ATPase subunits have localized v-ATPase 

to both contractile vacuoles and endo-lysosomal compartments (Heuser et al., 1993; 

Clarke et al., 2002).  The Dictyostelium Rab4-like protein and LvsA, a protein related to 

the mammalian beige/LYST family are also enriched on the contractile vacuoles in 

addition to endocytic compartments (Bush et al., 1994; Gerald et al., 2002).   

Lipophilic styryl dyes, such as FM4-64, FM1-43, FM2-10 are also used to label 

contractile vacuoles. These dyes diffuse into contractile vacuole membrane within the 

first two minutes after they integrate into the plasma membrane.   

 

1.7.3 Clathrin and clathrin adaptor protein in contractile vacuoles 

Despite the fact that the contractile vacuole complex shares some proteins with 

endo-lysosomes, those two systems appear to be physically separate from each other.  

So it seems a little surprising when studies in the contractile vacuoles revealed some 

important roles for endocytic protein clathrin and clathrin adaptor proteins in contractile 

vacuoles.  Initial studies with Dictyostelium cells suggested a role for clathrin in the 

biogenesis of contractile vacuole complex.  In clathrin heavy chain deficient cells, large 
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contractile vacuoles were replaced by much smaller dispersed vacuoles.  Moreover, 

when placed in water, clathrin heavy chain mutant cells swelled and rounded up while 

wild type cells maintained their original shape (O'Halloran and Anderson, 1992b).  In 

support of a role for clathrin function at the contractile vacuole, later studies also showed 

that clathrin light chain is also required for the normal contractile vacuole function.  

Clathrin light chain-depleted Dictyostelium cells are also osmosensitive and have slightly 

enlarged contractile vacuoles (Wang et al., 2003).  Under certain conditions, such as in 

cells with latrunculin-disrupted actin filaments, clathrin was observed on the contractile 

vacuole (Heuser, 2006).  Moreover, using GFP tagged clathrin light chain, Starvrou 

clearly localized clathrin onto both pumping the contractile vacuoles bladder and tubules 

in Dictyostelium (Stavrou and O'Halloran, 2006).   

Other than clathrin, two clathrin adaptor proteins, AP1 and AP180, have been also 

linked to contractile vacuoles in Dictyostelium cells. Similar to clathrin heavy chain- 

deficient cells, AP1 1 null cells do not have large contractile vacuole like in wild type 

cells.  On the other hand, the 1 null cells are osmosensitive and contractile vacuole 

marker Rh50 is mislocalized into the Golgi area.  All these data suggests that in addition 

to clathrin, AP1 is also required for the biogenesis of contractile vacuoles in 

Dictyostelium (Lefkir et al., 2003).   

On the other hand, AP180 null cells have a different contractile vacuole 

phenotype than AP1 mull cells: AP180 null cell have abnormally enlarged contractile 

vacuoles and are also osmosensitive.  In addition, GFP-tagged AP180 punctae were 

localized onto both the contractile vacuole bladder and tubule (Stavrou and O'Halloran, 

2006).   

Despite all the studies that have been done, the composition and functions of 

clathrin coated vesicles on contractile vacuoles still remains unknown.  
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1.8 SNARE PROTEINS 

In the past two decades, SNARE (soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor) proteins have been identified as key elements during 

different membrane fusion events.  During membrane fusion, SNARE proteins from 

opposite membranes intertwine into a complex. This led to the old classification of 

SNARE proteins as v-SNAREs (vesicle membrane SNAREs) or t-SNAREs (target 

membrane SNAREs) (Sollner et al., 1993).  However, this terminology now is 

considered somehow misleading because of the discovery of homotypic fusion events in 

which SNARE protein serves both on the “vesicle membrane” and the “target membrane” 

(McNew et al., 2000). As described below, a newer terminology has emerged that 

classifies SNARE proteins as either “R-SNAREs” or “Q-SNAREs” based on their amino 

acid sequence. 

 

1.8.1 SNARE protein structure 

Most SNARE protein family members contain a transmembrane domain on the C-

terminus, a SNARE motif and an independent folded domain on the N-terminus 

(Fasshauer, 2003; Hong, 2005; Jahn and Scheller, 2006). During membrane fusion, the 

SNARE motif mediates SNARE protein complex formation from two opposite 

membranes.  SNARE motifs remain as non-folded domains before they meet their 

appropriate counterparts.  When SNARE proteins from two sides, vesicle membrane 

and target membrane, combine, the SNARE motifs spontaneously intertwine with each 

other and form a stable helical core complex (Fasshauer, 2003).  Despite the sequence 

differences among different SNARE motifs, the crystal structures of core complexes are 

highly conserved.  In each core complex, four SNARE motifs, one from the vesicle 

membrane, three from the target membrane, each contribute an α-helix to intertwine into 



a coiled coil structure (Sutton et al., 1998; Antonin et al., 2002).  The coiled coil region 

of the SNARE core complex contains three highly conserved glutamine (Q) residues and 

one conserved arginine (R) residue.  Therefore there is a new classification for SNARE 

proteins into Q-SNARE’s and R-SNARE’s according to the distribution of these Q or R 

residues (Fasshauer et al., 1998). 

Unlike the highly conserved SNARE motifs, the N-terminal domains of SNARE 

proteins are variable.  Q-SNAREs proteins each contain three helix bundles which are 

connected to their SNARE motif through a flexible linker (Misura et al., 2002; Dietrich et 

al., 2003).  On the other hand, the R-SNAREs have conserved profilin-like longin 

domains and some studies suggested that these longin domains may serve as a SNARE 

protein recruitment sites (Toonen and Verhage, 2003; Pryor et al., 2008) (Figure 1.5).  

 

 

 
Figure 1.5  The structures of SNAREs. The domain structure of the SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) subfamilies.  Dashed 

domain borders highlight domains that are missing in some subfamily members. Qa-
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SNAREs have N-terminal antiparallel three-helix bundles. The various N-terminal 

domains of Qb-, Qc- and R-SNAREs are represented by a basic oval shape. Qbc-

SNAREs represent a small subfamily of SNAREs (the SNAP-25 subfamily) that contain 

one Qb-SNARE motif and one Qc-SNARE motif. These motifs are connected by a linker 

that is frequently palmitoylated (zig-zag lines in the figure), and most of the members of 

this subfamily function in constitutive or regulated exocytosis. (Jahn, 2006) 

 

 

1.8.2 SNARE proteins during membrane fusion 

It has been suggested that SNARE core complex assembly might be the ultimate 

driving force for membrane fusion.  The association of SNAREs from the two 

membranes directly initiates fusion.  During this step, SNAREs must assemble as a 

trans-complex in which each fusion membrane contributes at least one SNARE domain, 

and this assembly process starts from the N-terminus SNARE motifs to the C-terminus 

transmembrane domains (Jahn and Scheller, 2006).  As a result of the direct and close 

contact between the two membranes, and the mechanical force caused by the assembly of 

SNARE complexes, a fusion pore is formed connecting the outer layers of the two 

membrane leaflets (Jahn and Grubmuller, 2002) (Figure 1.6).  After fusion, all SNAREs 

of the SNARE complex are on the same fused membranes, resulting in a cis-SNARE 

complex.  The disassembly of the cis-SNARE complex involves several steps, requiring 

NSF and the energy provided by ATP-hydrolysis (Sollner et al., 1993).  After 

disassembly, SNARE proteins can be recycled back to be reused.  

 

 

     



 

 
Figure 1.6  The SNARE conformational cycle during vesicle docking and fusion. In this 

example, three Q-SNAREs on an acceptor membrane and an R-SNARE on a vesicle. Q-

SNAREs, which are organized in clusters (top left), assemble into acceptor complexes. 

Acceptor complexes interact with the vesicular R-SNAREs through the N-terminal end of 

the SNARE motifs, and this nucleates the formation of a four-helical trans complex. 

Trans-complexes proceed from a loose state (in which only the N-terminal portion of the 

SNARE motifs are ‘zipped up’) to a tight state (in which the zippering process is mostly 

completed), and this is followed by the opening of the fusion pore. During fusion, the 

strained trans-complex relaxes into a cis-configuration. Cis-complexes are disassembled 

by NSF (N-ethylmaleimide-sensitive factor) together with SNAPs (soluble NSF 

attachment proteins). The R- and Q-SNAREs are then separated by sorting (Jahn,2006). 

 

 

1.8.3 Trafficking of SNARE proteins 
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To ensure proper fusion, SNARE proteins are constantly sorted to their initial 

target membranes.  In addition, some SNARE proteins need to be recycled back to their 
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resident membrane to be reused.  Moreover, in some cases, some SNARE proteins get 

mislocalized and must be retrieved back to their correct resident membrane. Therefore, 

SNARE protein trafficking/recycling is a very important process for cells to maintain 

normal cellular function (Black and Pelham, 2001).  

Multiple studies have suggested that clathrin adaptor proteins are involved in the 

trafficking of SNAREs.  Earlier studies revealed that the vesicle-associated membrane 

SNARE protein Vamp4 contain recognizable di-leucine motif that can bind to the AP1 

adaptor complex and this di-leucine motif is required for Vamp4 localization (Peden et 

al., 2001).  But studies in different organisms have given conflicting results for another 

vesicle SNARE protein, Vamp7.  It has been also reported that in Dictyostelium cells 

AP2 and AP3 regulate the localization of Vamp7 through di-leucine motif, a known 

clathrin adaptor protein binding motif.  Later sequence analysis revealed that Vamp4 

and Vamp7 might be the only two SNARE proteins carrying this clathrin adaptor binding 

motifs.  On the other hand, another study revealed that the longin domain of human 

Vamp7, which does not contain any standard adaptor binding motif including the di-

leucine motif, is actually responsible for the SNARE protein’s localization and AP3 

binding (Martinez-Arca et al., 2003; Bennett et al., 2008).   

This raises the question of how SNAREs interact with clathrin associated 

proteins.  There are two possibilities, one is that SNARE proteins interacts with clathrin 

adaptor proteins in a non-traditional manner, such as the binding between Vamp7 longin 

domain and AP3.  The second possibility is that SNAREs interact directly with some 

non-conventional cargo binding adaptor proteins, such as AP180/CALM and epsin.  

Many studies have suggested the second possibility.  In both Drosophila and C.elegans, 

clathrin assembly protein AP180 is required for recycling the SNARE synaptobrevin 

back to synaptic vesicles (Nonet et al., 1999; Bao et al., 2005).  CALM, the AP180 non-
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neuron homologue is also important for the endocytosis of synaptobrevin 2 (Vamp2) in 

mammalian cell culture (Harel et al., 2008).  Using crystallography, another non-

conventional cargo binding protein, epsinR, was shown to bind t-SNARE protein Vti1 

helical Habc domain mediated through a surface-surface interaction (Miller et al., 2007).  

Additionally, a recent study with mammalian Vamp7 revealed an interesting result that 

the ARF GAP Hrb, a clathrin and AP2 binding protein, is required for Vamp7 

localization.  In the same study, crystal structures revealed that the Hrb unstructured C-

terminal tail wraps around the Vamp7 longin domain (Pryor et al., 2008).  However, 

those two crystallography studied also point out that the interactions of Vamp7/Hrb and 

Vti1/epsinR are thought to be unique for the specific SNARE-adaptor protein 

combination.  This uniqueness of the interaction between clathrin components and 

SNARE proteins highlights the complexity and importance of the related research.    

 

1.9 THE GOAL OF MY PH.D STUDY 

As a central clathrin adaptor protein, AP2 complex binds to multiple components 

during clathrin mediated endocytosis including other clathrin adaptor proteins, clathrin, 

plasma membrane lipids and transmembrane cargos.  In addition, AP2 is required for 

clathrin mediated endocytosis and targeting clathrin onto plasma membrane in complex 

systems.  Moreover, in Dictyostelium cells, studies have shown that clathrin and clathrin 

adaptor proteins including AP180, epsin and Hip1r also play very important roles in other 

cellular processes, such as in osmoregulation, developmental cycles and cytokinesis.   

However whether AP2 also functions in these cellular pathways has not been assessed.   

Therefore the goal of the first part of my study was to understand the contribution of AP2 

not only to membrane clathrin recruitment but also to other clathrin related cellular 

processes.  This will help to further evaluate the role of AP2 as a clathrin adaptor 
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protein. My hypothesis was that AP2 contributes to the recruitment of plasma membrane 

associated clathrin and also functions in other clathrin related cellular process.   

Clathrin coated vesicles have been found on different internal organelles, 

including the Dictyostelium contractile vacuole.  But the composition and the function 

of these contractile vacuole-associated clathrin coated vesicles have not been well 

studied.  AP180, a clathrin adaptor protein is also observed on the contractile vacuole 

along with clathrin and deleting AP180 caused an enlarged contractile vacuole 

phenotype.  Additionally, AP180 is also important to the proper localization of a 

SNARE protein, synaptobrevin, in C.elegans, Drosophila and mammalian cells.  But 

how AP180 controls the contractile vacuole size and whether this function is related to 

synaptobrevin had not been studied.  Therefore the goal for the second part of my study 

was to investigate the function of these clathrin coated vesicles on contractile vacuoles, 

including the relationship of AP180 and synaptobrevin.  I hypothesized that AP180 

controls contractile vacuoles by trafficking a synaptobrevin Dictyostelium homologue at 

contractile vacuoles.  
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Chapter 2:  Clathrin Adaptor Protein AP2 Complex in Dictyostelium 
Clathrin Related Processes 

2.1 INTRODUCTION 

Considered a central clathrin adaptor and clathrin assembly protein, the 

importance of AP2 has been highlighted by different experimental approaches.  In HeLa 

cells, RNAi knockdown of various subunits of AP2 decreases the association of clathrin 

with the plasma membrane by 10 fold and inhibits the endocytosis of the transferrin 

receptor and EGF receptor but not LDL receptors (Hinrichsen et al., 2003; Motley et al., 

2003).  However, a different study using a method favoring clathrin-independent uptake 

showed that the internalization of EGF receptor is not AP2-dependant (Huang et al., 

2004).  In mice, homozygous mutants in the  subunit are embryonic lethal at an early 

stage (Mitsunari et al., 2005).  In C. elegans oocytes RNAi depletion of either the α or 

2 subunit results in defects in endocytosis and the resulting mutant embryos are inviable 

(Grant and Hirsh, 1999).  D. melanogaster carrying an α subunit mutation die at the 

pupae stage.  The synapses of these mutant embryos lack vesicles and plasma membrane 

coated pits (Gonzalez-Gaitan and Jackle, 1997).  

Interestingly, there is also evidence showing that AP2 is not always an essential 

clathrin adaptor protein.  In S. cerevisiae, disruption of AP2 subunits has no effects on 

endocytosis (Huang et al., 1999; Yeung et al., 1999).  In a wide variety of organisms, 

other clathrin adaptor proteins, such as epsin, AP180/CALM,-arrestin, Hip1, Dab2, and 

ARH can all bind to both clathrin and plasma membrane (Gaidarov et al., 1999; Ford et 

al., 2001; Mishra et al., 2001; Ford et al., 2002; Mishra et al., 2002).  Some of these 

proteins may also have the ability to recognize their specific cargo in the absence of an 

intact AP2 complex.  Epsin, for example, has ubiquitin-interacting motifs (UIMs) that 
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may help internalize the ubiquitinated EGF receptor.  Knocking down AP180/CALM in 

HeLa cells affects the internalization of EGF receptors.  Additionally, Dab2 and ARH, 

can recognize the NPXY motifs LDL receptor family, suggesting other clathrin adaptor 

proteins can recognize endocytosis cargo and recruit clathrin onto plasma membrane in 

AP2-independent ways (Morinaka et al., 1999; Bonifacino and Traub, 2003).  Taken 

together, AP2 may not be the only adaptor protein that recruits cargo into clathrin coated 

vesicles, especially in some organisms.  

Previous studies done in our lab using Dictyostelium discoideum as a model 

system revealed that clathrin is involved in other important cellular pathways.  Clathrin 

heavy chain null Dictyostelium are unable to perform pinocytosis.  Clathrin heavy chain 

null cells are missing contractile vacuoles and swell in hypotonic solutions while clathrin 

light chain null cells have enlarged contractile vacuoles.  In addition, clathrin heavy 

chain null cells have severe cytokinesis defects and become multinucleated when grown 

in suspension culture.  Moreover, clathrin is required for Dictyostelium cell 

development.  The Dictyostelium developmental cycle is initiated under conditions of 

starvation.  During the developmental phases about 100,000 nutrients deprived 

vegetative Dictyostelium cells aggregate and differentiate, form a multicellular organism 

which ultimately becomes a fruiting body made up of spores on top of a stalk.  Clathrin 

heavy chain mutant cells are not able to initiate the development cycle (O'Halloran and 

Anderson, 1992b; Niswonger and O'Halloran, 1997b, 1997a; Gerald et al., 2001; Wang et 

al., 2003).   

Multiple clathrin accessory proteins have been previously implicated in some of 

the above clathrin related processes in Dictyostelium cells.  AP180 and AP1 null cells 

are both osmosensitive.  Furthermore, epsin null cells and Hip1r null cells make round 

fragile spores instead of the typical robust ovoid spores made by wild type Dictyostelium 
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cells during development (Lefkir et al., 2003; Stavrou and O'Halloran, 2006; Repass et 

al., 2007; Brady et al., 2008).  However, as the central clathrin adaptor protein, whether 

AP2 contributes to these clathrin related cellular processes remained unsolved. 

I will demonstrate in this chapter that in Dictyostelium cells, AP2 is required for 

the localization of a significant amount of the clathrin (~40%) at the plasma membrane in 

the wild type strain Ax2.  In addition, I will provide evidence that AP2 also plays roles 

in both cytokinesis and cell developmental cycles.  How AP2 functions in cell 

osmoregulation will be discussed in more detail in Chapter 3.  
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2.2 RESULTS 

2.2.1 Identification of Dictyostelium AP2  

A BLAST search of the Dictyostelium genome with the human AP2α subunit 

gene sequence identified the closest related protein: the Dictyostelium homologue of AP2 

α-subunit gene, AP2A1.  The full length Dictyostelium AP2A1 gene encoded a protein 

with a predicted open reading frame of 943 amino acids with a predicted molecular 

weight of 105 kDa. The predicted sequence shared 48% identity of amino acid sequence 

with the human AP2α subunit. 

To determine whether Dictyostelium AP2 also shared functional similarity with 

mammalian AP2, I first examined the cellular localization of AP2 in Dictyostelium cells.  

To do this, I raised a polyclonal antibody against the α subunit for immunofluorescence 

staining of AP2.  In mammalian cells, AP2 localizes mainly at the plasma membrane 

and colocalizes significantly with clathrin at the plasma membrane (Hinrichsen et al., 

2003; Motley et al., 2003).  Similarly, wild type Dictyostelium cells stained with anti-

AP2α subunit revealed that AP2 localized to strong punctate spots at the cell membrane 

and weakly in the cytoplasm (Figure 2.1A top panel).  Neither the membrane-associated 

nor the cytoplasmic puncta were seen in AP2 null cells (bottom panel).  To examine 

whether AP2 was associated with clathrin, I then stained Dictyostelium cells expressing 

Green Fluorescent Protein (GFP) tagged clathrin light chain with the same anti-α subunit 

antibody.  AP2 positive puncta colocalized extensively with clathrin on the cell 

membrane but not with clathrin puncta in the cytoplasm (Figure 2.1B).  Occasionally 

there were clathrin puncta on the plasma membrane that were not labeled with AP2.  I 

quantified 244 clathrin labeled puncta at the periphery of 25 cells and found that 208 

(85%) clathrin puncta colocalized with AP2 while 36 (15%) peripheral clathrin puncta 



were not AP2 positive.  Based on sequence homology and its localization I concluded 

that AP2A1 was the Dictyostelium homologue of AP2α subunit.  

 

 

 
Figure 2.1 (A). Localization of Dictyostelium AP2 in wild type cells. Wild type cells 

were stained with anti-α subunit antibody (top panel). Dictyostelium AP2 localized to 

strong punctate spots at cell membrane and weakly in the cytoplasm. Neither the 

membrane-associated nor the cytoplasmic puncta were seen in AP2 null cells (bottom 

panel) (B). Dictyostelium AP2 colocalized with clathrin at the plasma membrane. Wild 
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type cells expressing GFP-CLC (clathrin light chain) stained with anti- α subunit 

antibody. Arrows indicate the co-localization between AP2 and clathrin at the cell 

peripheral. Scale bar, 10m.  

 

2.2.2 The AP2 complex loses its ability to associate with clathrin or the plasma 
membrane in the α subunit null cells.  

To further explore the function of AP2, I used homologous recombination to 

completely delete the whole α subunit gene, AP2A1, one of the two large subunits of AP2 

in Dictyostelium Ax2 wild type cells.  Western blots probed with anti-α subunit 

antibody confirmed the absence of the α subunit in the AP2α subunit null (AP2 α-) cell 

line that I generated (Figure 2.2A).  To establish the validity of using this AP2α- cell 

line as an AP2 complex mutant cell line, I first addressed the question of whether the 

remaining subunits of the AP2 complex retained some AP2 function in the absence of the 

α subunit.  As a test case, I examined the fate of the  subunit in AP2α null cells.  I 

constructed a plasmid expressing the  subunit tagged with GFP to visualize its 

localization in AP2α- cells.  Similar to the localization of AP2α subunit that was shown 

by anti-α subunit immunostaining antibody in wild type cells, the GFP- subunit fusion 

protein formed discrete puncta both on plasma membrane and in the cytoplasm (Figure 

2.2 B).  The GFP- subunit colocalized with α subunit in wild type cells which means 

the GFP- subunit fusion protein was able to assemble into AP2 complexes (data not 

shown).  When I introduced this GFP- subunit fusion protein into AP2α- cells, it 

remained as discrete spots in the cytoplasm but lost its ability to associate with the cell 

periphery, suggesting a loss of binding to the plasma membrane (Figure 2.2B).  In 

addition, I examined the ability of the incomplete AP2 complex to associate with clathrin 

in AP2α- cells.  In wild type cells, the GFP- subunit colocalized with clathrin. Using 



clathrin light chain antibody staining, I quantified 305 clathrin puncta on the periphery of 

24 wild type cells expressing GFP tagged  subunit using clathrin light chain antibody 

staining.  50% (153 out of 304 clathrin puncta in 24 cells) of those clathrin puncta 

colocalized with GFP-.  However in AP2α- cells, the association between incomplete 

AP2 complex and clathrin disappeared almost completely (Figure 2.2B).  In AP2α- cells 

only 1% (5 out of 362 clathrin puncta in 23 cells) of the cell peripheral clathrin puncta 

were GFP- labeled.  Taken together, those results indicate that the other subunits of 

the AP2 complex have lost their ability to bind the plasma membranes and to associate 

with clathrin in the α subunit null cells.  

 

 

 

 
Figure 2.2 (A).Western blots probed with anti-α subunit antibody confirmed the absence 

of α subunit protein in the AP2α subunit null cells (AP2α-).  (B).  subunit in AP2α 

subunit null cells lost its ability to associate with either the plasma membrane or the 

clathrin. Both wild type cells and AP2α subunit null cells expressing GFP- subunit 

were stained with anti-clathrin light chain antibody (anti-clathrin).  Arrows indicate the 

co-localization between -GFP and clathrin at the plasma membrane in wild type cells. 

Scale bar, 10m.   
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2.2.3 AP2 is responsible for recruiting ~40% of plasma membrane associated 
clathrin  

In HeLa cells, deletion of either the α subunit or  subunit abolishes the 

localization of almost all of the plasma membrane associated clathrin.  To test whether 

the absence of the α subunit also alters the localization of clathrin on the plasma 

membrane in Dictyostelium cells, I labeled both wild type cells and AP2α- cells with an 

anti-clathrin light chain polyclonal antibody.  Clathrin localized both on cell membrane 

and in cytoplasm in both wild type cells and in AP2α- cells (Figure 2.3A).  However, 

compared to wild type cells, AP2α- cells had less cell periphery associated clathrin.  To 

confirm this observation I quantified the amount of plasma membrane associated clathrin 

using confocal microscopy images to calculate the fluorescence intensity per plasma 

membrane area in 100 representative cells of both wild type cells and AP2α- cells.  My 

data showed that in Dictyostelium cells there was an approximately 35%-40% (39% & 

35% in two independent experiments) decrease of clathrin on plasma membrane when the 

α subunit was absent (Figure 2.3A).  This decrease was not caused by the different 

clathrin expression level (Figure 2.3B).  The influence of AP2 on clathrin may be cell 

line dependent as in a different Dictyostelium cell line, DH1 cells, I only observed about 

a 20% decrease of membrane associated clathrin in the absence of α subunit (see Chapter 

3 for more detail).     

The loss of ~35%-40% of clathrin on the plasma membrane raised the question of 

which protein(s) recruit the remaining 60% of the membrane associated clathrin in AP2α- 

cells.  AP180/CALM and epsin are two clathrin accessory proteins that can bind clathrin 

and plasma membrane PI (4, 5) P2.  These adaptor proteins have the potential to serve 

as alternative clathrin recruiters to target clathrin to the plasma membrane during 

endocytosis.  To test that possibility, I examined the association between clathrin and 



AP180 in wild type cells as well as in AP2α- cells.  First I introduced GFP-tagged 

AP180 into AP2α- cells and stained those cells with an anti- clathrin light chain antibody.  

In wild type cells, AP180 colocalized with clathrin significantly (Figure 2.3C): 130 

(88%) out of 147 peripheral clathrin positive puncta also labeled with GFP-AP180 in 

wild type cells (n=11 cells).  Similarly, in AP2α- cells, AP180 was observed to 

colocalize normally with clathrin on the cell periphery: 181 puncta (87%) out of the 207 

clathrin labeled puncta on the cell periphery colocalized with AP180 (n=15 cells).  This 

suggests that AP180 is able to associate with clathrin on the plasma membrane in an 

AP2-independent way.  In a separate study, epsin also has been shown to colocalize 

with clathrin in the absence of α subunit (Brady et al., 2008). 
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Figure 2.3 (A). AP2α null cells show 40% less membrane associated clathrin compared 

to wild type cells.  Left: wild type Ax2 cells and α subunit null cells were stained with 

anti-CLC antibody. Right: top membrane associated clathrin images of both wild type 

cells (n=116) and AP2 α- cells (n=108) were quantified (intensity/area). Standard errors 

between every cell line within the same cell line were used as error bars. (B). Western 

blot showed that both wild type and AP2α subunit null cells have similar clathrin 

expression.  In each lane, whole cell lysates (1x106 cells) were blotted with anti-clathrin 

heavy chain.  Anti-Aurora antibody served as a loading control in this experiment. (C). 

Clathrin still colocalized with AP180 in the AP2α subunit null cells. Wild type and AP2α 

subunit null cells expressing GFP-AP180 were stained with anti-clathrin light chain 

antibody. Arrows indicate the co-localization between clathrin and AP180. Scale bar, 

10m. 

 

2.2.4 AP2 and AP180 still co-assemble into plasma membrane puncta in the absence 
of clathrin  

To further understand the role of AP2 during clathrin-mediated endocytosis, I 

examined whether clathrin is required to cluster AP2 onto the plasma membrane.  In 

HeLa cells, localization of AP2 is not significantly different when clathrin heavy chain is 

knocked down by RNAi (Hinrichsen et al., 2003).  To observe how the absence of 

clathrin affects the localization of AP2 in Dictyostelium cells, I stained clathrin heavy 

chain null cells with anti α subunit antibody.  In wild type cells, AP2 localized to puncta 

on the cell periphery and in the cytoplasm as I showed before.  In clathrin heavy chain 

null cells, AP2 still clustered to puncta but the depletion of clathrin heavy chain abolished 

almost all of the cytoplasmic AP2 puncta (Figure 2.4).  In wild type cells, AP2 

colocalized with AP180 significantly, which indicates that AP2 co-assembled with 

AP180 on the plasma membrane (Figure 2.4).  I quantified 240 AP2-labeled and 173 



AP180-labeled cell peripheral puncta from 15 cells.  58% of the AP2 puncta colocalized 

with AP180 while 81% of the AP180 puncta were AP2-labeled. Interestingly, in clathrin 

heavy chain null cells, AP2 puncta still colocalized with AP180 on the plasma 

membrane.  I did the same quantification in the clathrin heavy chain null cells. 76% of 

the 356 AP2 puncta and 89% of the 305 AP180 puncta on 21 cell peripheries colocalized 

with each other (Figure 2.4).  The high extent of co-localization between AP2 and 

AP180 indicates that the association between AP2 and AP180 at the plasma membrane is 

clathrin-independent. 

 

 

 
Figure 2.4 Co-localization of AP2 and AP180 in the absence of clathrin. Wild type and 

clathrin heavy chain null cells (chc- cells) expressing GFP-AP180 were stained with an 

anti α-adaptin antibody. AP2 and AP180 colocalized significantly in wild type cells as 

well as in the chc- cells (arrows). Scale bar, 10µm. 

 

2.2.5 AP2α subunit null mutants have mild phenotypes in clathrin related pathways  

Clathrin is implicated in Dictyostelium cell pinocytosis, cytokinesis in suspension, 

osmoregulation and the developmental cycle (O'Halloran and Anderson, 1992b; 
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Niswonger and O'Halloran, 1997b, 1997a).  To evaluate whether AP2 also plays 

important roles in these clathrin related processes, I assessed each process in AP2α 

subunit null cells. 

To test whether the AP2 complex functions in the fluid-phase endocytosis, I 

examined the internalization of fluid phase markers in both wild type cells and AP2α null 

cells.  Unlike clathrin heavy chain mutant cells, AP2α- cells internalized fluid as 

efficiently as wild type cells (Figure2.5A).  

Dictyostelium discoideum cells use two distinct cytokinesis mechanisms.  When 

grown in suspension, Dictyostelium cells go through a myosin II dependent cell division; 

when grown on substrates they use an adhesion-dependent but myosin II-independent 

mechanism (Nagasaki et al., 2001).  Clathrin heavy chain mutant also can not complete 

cytokinesis when grown in suspension (Niswonger and O'Halloran, 1997b; Gerald et al., 

2001).  When placed on a substrate, only 1% of wild type cells had more than one 

nucleus.  But surprisingly, in AP2α- cells about 35% of the cells were multinucleate 

(Figure 2.5B).  However, AP2α null cells did not have an apparent cytokinesis defect 

when placed in suspension culture.  This indicates that AP2α- cells also have a myosin 

II-independent cytokinesis defect. 

I also examined the developmental cycle of AP2α- cell lines.  AP2α subunit null 

cells had a full development cycle and formed fruiting bodies like wild type cells but 

were slightly smaller (Figure 2.5C).  Strikingly, during chemotaxis AP2α- cells formed 

multiple pseudopods while wild type Dictyostelium cells had only two protrusions with 

one leading edge and one tail.  The mutant cells did form aggregation centers, but most 

of the aggregation centers were much smaller compared to wild type cells suggesting a 

possible role of AP2 in Dictyostelium aggregation (Figure 2.5D). 

 



 

 
Figure 2.5 Characterizing AP2α subunit null cells in clathrin-related cellular pathways. 

(A). Fluid-phase endocytosis in wild type and AP2α null cells. Both wild type and AP2α 

null cells were incubated with 2mg/ml FITC-Dextran and the uptake of the FITC-Dextran 

were measured by a fluorometer. AP2α null cells (black circle) internalized the FITC-

Dextran as efficiently as the wild type cells (white square). (B). AP2α null cells had 

multinucleated cells when grown on plate. Wild type and AP2α null cells were stained 

with DAPI. 35% of the AP2α null cells had more than one nucleus and only 1% of the 

wild type cells have more than one nucleus (n=100 cells for each cell line). Scale bar, 

10µm. (C). AP2α null cells formed fruiting bodies during development. Both wild type 

and AP2α null cells were plated on a starvation plates and incubated at 180C for ~48 hrs.  

Both wild type cells and AP2α null cells differentiated into fruiting bodies, but the 

fruiting bodies made of AP2α null cells were slightly smaller. Scale bar, 0.5mm. (D). 

AP2α null cells formed multiple pseudopods during aggregation. Both wild type and 

AP2α null cells were incubated in glass chambers in PDF buffer at 180C for 15hrs-21hrs. 

At 15hrs, AP2α null cells formed multiple pseudopods while wild type cells only had one 

leading edge and one tail. Scale bar, 20µm. At 21hrs, wild type cells formed large 
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aggregation centers with long, smooth and thick cell streams, but the AP2α null cells 

formed smaller aggregation centers with shorter and thinner streams. Scale bar, 100µm. 
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2.3 DISCUSSION 

In this chapter, I identified, cloned and localized the AP2α subunit from 

Dictyostelium discoideum. I found that AP2 in the Dictyostelium Ax2 strain is 

responsible for recruiting about 40% of the plasma membrane-associated clathrin.  

Lastly, I showed that AP2 is involved in some, but not all, clathrin-related cellular 

processes.  

 

2.3.1 AP2 is important but not required for targeting clathrin onto the plasma 
membrane during clathrin mediated endocytosis 

In Dictyostelium Ax2 wild type cells, AP2 is responsible for targeting around 

40% of the plasma membrane associated clathrin. Moreover, other clathrin related 

proteins, AP180 as well as epsin, can still associate with clathrin on the plasma 

membrane in α-adaptin null cells (Brady et al., 2008).  In addition, in Dictyostelium, 

clathrin colocalized with AP2 extensively on the plasma membrane but there remained 

some clathrin puncta without AP2.  All of these results indicate that there are alternative 

clathrin adaptors other than AP2, such as AP180 and epsin, that recruit clathrin onto the 

plasma membrane.  These alternative adaptors might be responsible for recruiting the 

rest (60%) of the membrane clathrin in an AP2-independent way and different adaptors 

may be responsible for internalizing their own specific cargo.  However, the influence 

of AP2 on clathrin recruitment could be cell line-dependent as in DH1 cells I only found 

a ~20% decrease of plasma membrane-associated clathrin signal in AP2α subunit null 

cells. 

Secondly, I showed that the AP2 complex was recruited onto the plasma 

membrane even in the absence of clathrin.  This suggests that the AP2 complex could be 
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targeted to the plasma membrane before clathrin.  This binding between AP2 and 

plasma membrane could be driven by the binding force between AP2 and sorting signals 

of transmembrane cargo and/or binding between AP2 and plasma membrane 

phosphoinositide.  Without clathrin, AP2 can target to the plasma membrane and can 

also assemble with AP180 within puncta at the plasma membrane.  One possible 

explanation is that AP2 and other clathrin accessory protein form “pre-pits” before 

clathrin is recruited to the plasma membrane.  However, the internalization of those 

“pre-pits” can not be accomplished without clathrin.  Using electron microscopy (EM), 

this kind of clathrin deprived “pre-pits” or “sub-domains” were also observed by 

Hinrichsen in mammalian cells (Hinrichsen et al., 2006).  

After clathrin coated vesicles pinch off from the plasma membrane, AP2 

dissociates from the vesicles.  When I stained Dictyostelium wild type cells with an anti 

α-adaptin antibody, I observed that AP2 fluorescent signals were more intense on the 

plasma membrane than in the cytoplasm.  This suggests that AP2 leaves the clathrin 

coated vesicles once the vesicles get internalized and the process of uncoating AP2 from 

the clathrin coated vesicles occurrs in a relatively slow and gradual way.   

 

2.3.2 AP2 is essential for clathrin function only in multi-cellular systems but not in 
simple organisms 

 For many years, AP2 has been considered as the essential adaptor for clathrin 

during endocytosis.  In multicellular organisms, such as C.elegans, D.melanogaster and 

mice, disruption of the AP2 complex results in embryonic lethality and inhibition of 

clathrin mediated endocytosis (Gonzalez-Gaitan and Jackle, 1997; Grant and Hirsh, 1999; 

Mitsunari et al., 2005).  In HeLa cell culture, depletion of AP2 abolished almost all of 

the plasma membrane associated clathrin (Hinrichsen et al., 2003; Motley et al., 2003).  
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In contrast, depletion of AP2 subunits in S. cerevisiae, a unicelluar system, has no effect 

on cell viability or endocytosis (Huang et al., 1999; Yeung et al., 1999).  Deletion of 

full length AP2α subunit gene using homologous recombination in Dictyostelium Ax2 

cells resulted in loss of only about 40% of plasma membrane associated clathrin. This 

Dictyostelium AP2 mutant cell line also showed mild defects in cytokinesis and 

development.  AP2α subunit null phenotypes in Dictyostelium cells were less severe 

than in multi-cellular systems but more severe than in S. cerevisiae.  Therefore in simple 

organisms AP2 is functionally redundant with other clathrin accessory proteins.  

However, in multi-cellular organism, AP2 has evolved to be the clathrin adaptor protein 

specialized and important for recognizing cargo and recruiting clathrin onto plasma 

membrane.  

 

2.3.3  subunit is required for the AP2 complex to bind plasma membrane 

 AP2 binds to plasma membrane PI (4,5) P2 through two sites on the α and  

subunits.  I want to know if either of the two sites are independently sufficient for AP2 

binding the plasma membrane.  Results from tissue culture cells using an in vitro 

membrane binding assay suggest that the PIP2 binding site on the α-subunit is essential in 

the initial recruitment of AP2 onto the plasma membrane.  The PIP2 binding site on the 

 subunit further strengthens the association between AP2 and the plasma membrane 

(Honing et al., 2005).  In Dictyostelium cells, the  subunit completely lost its 

membrane localization in the absence of α subunit which further supports that the 

membrane binding site on α-subunit is also crucial for targeting AP2 onto the plasma 

membrane in vivo.   
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2.3.4 AP2 is also involved in Dictyostelium cell chemotaxis 

Upon starvation, around 100,000 Dictyostelium cells use pulse of cAMP to signal 

and move into an aggregate, ultimately generating a multicellular structure.  During 

aggregation, Dictyostelium cells polarize by projecting a single pseudopod through actin 

filaments polymerization in the direction of the cAMP source (Kessin, 2001).   

PI (4,5) P2 is a regulator of actin polymerization through the action of different 

regulatory proteins.  It activates the WASP family proteins which leads to Arp2/3 

complex induced actin filament polymerization (Rohatgi et al., 1999).  Aside from this 

function, PI (4,5) P2 also binds actin filament capping proteins such as CapZ and gelsolin 

and dissociates them from actin filaments.  This dissociation can stimulate actin 

filament polymerization (reviewed by (Cooper and Schafer, 2000) ).  

AP2α subunit null Dictyostelium cells extended multiple pseudopods during 

aggregation stage.  Clathrin heavy chain null cells have an increase in roundness and a 

reduction in polarity during chemotaxis (O'Halloran and Anderson, 1992b).  Why do 

AP2α subunit null cells have a totally different phenotype than the clathrin mutant cells 

during cell aggregation?  One explanation is that AP2 has two binding sites for plasma 

membrane PI (4,5)P2 while clathrin does not have any known plasma membrane binding 

sites.  In AP2α subunit null cells, more free PI (4,5) P2 may be exposed on the plasma 

membrane.  This may cause an increased amount of PI (4,5) P2 molecules available to 

stimulate the actin filament organization and result in the formation of multiple 

pseudopods in the AP2α null cells.  

Alternatively, PtdIns (3,4,5) P3 is a phosphoinositide produced from PI (4,5) P2 

by PI3 kinases and degraded by PtdIns (3,4,5) P3 phosphatase (PTEN).  PI (3,4,5) P3 is 

important for recruiting many PH domain-containing proteins including those proteins 

essential for pseudopod formation during chemotaxis.  Restricting the formation of 
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PtdIns (3,4,5) P3 is one important way for cells to control lateral pseudopods extension.  

Dictyostelium cells with depletion of PtdIns (3,4,5)P3 phosphatase (PTEN) form many 

pseudopods and move indirectly towards the chemoattractant (Funamoto et al., 2002; 

Iijima and Devreotes, 2002).  In AP2α subunit null Dictyostelium cells, more free PI 

(4,5) P2 may be exposed on the plasma membrane providing PI3 kinase with more 

substrate molecules to produce PI (3,4,5) P3.  This may cause an abnormally high level 

of PI (3,4,5) P3 on the plasma membrane of AP2α subunit null cells and, under these 

conditions, PI (3,4,5) P3 maybe able to recruit more PH-domain proteins which results in 

an increased number of pseudopods.  Either of these scenarios suggest that one novel 

function for AP2, suggested by my studies, is to regulate the amount of free PI (4,5) P2 

that is exposed on the plasma membrane.  

These possibilities are not the only explanation. Many other proteins contribute to 

Dictyostelium chemotaxis, including Protein Kinase B, PI3 kinase, p21-activated kinase 

(PAK) (reviewed by (Kimmel and Parent, 2003)).  If AP2α subunit is involved in 

regulating any of these proteins, then the absence of the α subunit may cause the multiple 

pseudopod phenotype during aggregation.  Therefore how AP2 regulates Dictyostelium 

pesudopods number needs to be further studied.  
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Chapter 3 Study of Clathrin Coated Vesicles on Dictyostelium 
Contractile Vacuole Complex 

3.1 INTRODUCTION 

Eukaryotic cells internalize both receptors and nutrients from the plasma 

membrane through clathrin coated vesicles.  During endocytosis, receptors concentrate 

within clathrin coated vesicles via interactions with different clathrin adaptors.  In 

addition to binding specific receptors, clathrin adaptors, or clathrin accessory proteins, 

also promote clathrin assembly on membranes.  After the clathrin coat is assembled, the 

coated vesicle buds and pinches off from the plasma membrane.  The internalized cargo 

is subsequently transported to endosomes or recycling compartments (reviewed by 

(Kirchhausen, 2000; Brodsky et al., 2001; Mousavi et al., 2004; Royle, 2006)).  

The physiological contributions of clathrin adaptors and accessory proteins are 

diverse and some are well documented.  AP2 (a tetrameric AP family member), epsin 

and AP180/CALM assemble clathrin triskelia into lattices of hexagons and pentagons on 

the plasma membrane (Ahle and Ungewickell, 1986; Keen, 1987; Prasad and Lippoldt, 

1988; Lindner and Ungewickell, 1992; Ye et al., 1995; Ye and Lafer, 1995; Hirst and 

Robinson, 1998; Hao et al., 1999; Ford et al., 2002; Owen, 2004; Edeling et al., 2006; 

Rodemer and Haucke, 2008).  In addition to their clathrin assembly ability, AP2, 

AP180/CALM and epsin also have additional distinct roles.  AP2 recognizes discrete 

sorting signals formed from peptide motifs on transmembrane cargo (Ohno et al., 1995; 

Owen and Evans, 1998; Owen et al., 2001; Boll et al., 2002; Kelly et al., 2008).  

AP180/CALM is implicated in the efficient assembly of clathrin cages of uniform size 

(Ahle and Ungewickell, 1986; Prasad and Lippoldt, 1988; Ye and Lafer, 1995; Zhang et 

al., 1998; Nonet et al., 1999; Ford et al., 2001; Ford et al., 2002).  Epsin can induce 
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plasma membrane curvature during vesicle invagination in vitro (Itoh et al., 2001; Ford et 

al., 2002). Sla2/Hip1 family members also play an important role during clathrin 

mediated endocytosis and serve as linkers between clathrin and F-actin (McCann and 

Craig, 1997; Wesp et al., 1997; Engqvist-Goldstein et al., 1999; Yang et al., 1999; 

Engqvist-Goldstein et al., 2001; Itoh et al., 2001; Mishra et al., 2001; De Camilli et al., 

2002; Henry et al., 2002; Legendre-Guillemin et al., 2004; Brett et al., 2006).  

In addition to the plasma membrane, clathrin coated vesicles are observed on 

internal organelles, including the trans-Golgi network (TGN) and endosomes (Friend and 

Farquhar, 1967; Stoorvogel et al., 1996).  At the TGN, clathrin coated vesicles transport 

lysosomal hydrolases to endosomes (Friend and Farquhar, 1967; von Figura and Weber, 

1978; Gonzalez-Noriega et al., 1980).  The endosome associated clathrin coated vesicles 

are involved in sorting Shiga toxin from late endosomes to the TGN (Lauvrak et al., 

2004). In addition to transporting cargo to the TGN, endosome-associated clathrin coated 

pits have been shown to function in the recycling of transferrin receptors back to the 

plasma membrane (van Dam and Stoorvogel, 2002).  As with coated pits on the plasma 

membrane, clathrin associated proteins also found on coated vesicles that originate from 

internal organelles.  Monomeric GGAs and the tetrameric AP family member AP1 serve 

as adaptor proteins and bind sorting signals on TGN membrane receptors (Austin et al., 

2002; Crottet et al., 2002; Mishra et al., 2002; Shiba et al., 2002).  AP1 also localizes 

onto endosomes when retrograde transport between Golgi apparatus and endosomes is 

blocked (Mallard et al., 1998).  With its ability to promote clathrin assembly, AP1 

probably also serves as a clathrin assembly protein on TGN and endosomes (Keen, 

1987).  The AP family member AP3 may play a role on the endosomes; but whether 

AP3 is related to clathrin function is still under debate (reviewed by (Robinson and 

Bonifacino, 2001) and (Nakatsu and Ohno, 2003)).  Recent studies in tobacco cells, 
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revealed that clathrin localized to another internal cell organelle, the phragmoplast during 

the late stage of cell division(late anaphase and telophase) (Tahara et al., 2007).  The 

localization of clathrin on the phragmoplast suggests a possible role for clathrin in the 

organization of the phragmoplast in cytokinesis plant cells.  To date, how clathrin 

accessory proteins contribute to coated vesicle function on internal organelles is much 

less understood than with plasma membrane coated pits.  

Contractile vacuoles are internal organelles found in protists that are important for 

osmoregulation (reviewed by (Allen and Naitoh, 2002)).  In Dictyostelium cells, the 

contractile vacuole is formed from a dynamic labyrinth of membranous tubules and 

bladders (cisternae) that interconnect in a complex network.  In hypo-osmotic 

conditions, contractile vacuoles collect excess water through tubules which rounds up to 

bladders that subsequently fuses with plasma membrane and contracts to expel the water 

into the extracellular space (Gerisch et al., 2002).  

Clathrin puncta have been found on Dictyostelium contractile vacuoles (Heuser, 

2006; Stavrou and O'Halloran, 2006).  Clathrin also contributes to Dictyostelium 

contractile vacuole function as clathrin light chain mutant null cells display abnormally 

large and dysfunctional contractile vacuoles while clathrin heavy chain mutants contain a 

dispersed contractile vacuole system (O'Halloran and Anderson, 1992b; Wang et al., 

2003).  Clathrin assembly proteins, AP180 and AP1, are also linked to contractile 

vacuole function.  AP180 labels Dictyostelium contractile vacuoles and AP180 null cells 

display abnormally large contractile vacuoles (Stavrou and O'Halloran, 2006).  AP1 was 

not found on the contractile vacuole but AP1 1 subunit null mutants are osmosensitive 

(Lefkir et al., 2003).  At present it is not clear how these clathrin accessory proteins 

contribute to contractile vacuole function, or how AP180 and clathrin limit the size of 

contractile vacuoles.  
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In this study, I found that clathrin coated vesicles on contractile vacuole bladders 

contain adaptor proteins AP180, AP2 and epsin but not Hip1r.  I also identified an 

interaction between AP180 and a contractile vacuole SNARE, Vamp7B.  These results 

suggest a mechanism how AP180 and coated vesicles contribute to size regulation of 

contractile vacuoles by regulating the internal distribution of fusion-competent SNARE 

proteins.   

 

3.2 REUSLTS 

3.2.1 Clathrin coated vesicles on the contractile vacuoles contain AP2, AP180, epsin 
but not Hip1r 

To explore the diversity of clathrin adaptors on the contractile vacuole I 

developed reagents that allowed us to determine the distribution of clathrin, AP2, AP180, 

epsin and Hip1r in Dictyostelium (Materials and Methods) and (Stavrou and O'Halloran, 

2006; Repass et al., 2007; Brady et al., 2008).  To compare the distribution of these 

clathrin adaptors on the contractile vacuole versus the plasma membrane I performed 

double and triple staining immunofluorescence experiments on wild type Dictyostelium 

cells.  Conceivably clathrin could assemble on membranes by using either assembly 

protein AP180 or AP2.  To determine whether individual clathrin punctae contain one or 

both of these assembly proteins, I did a triple staining experiment.  Cells co-expressing 

Red Fluorescent Protein-tagged clathrin light chain (RFP-CLC) and Green Fluorescent 

Protein-tagged AP180 (GFP-AP180) were immunostained with our anti-α subunit 

polyclonal antibody and secondary antibody conjugated with Pacific Blue. We found that 

78% (n=221 clathrin punctae on 27 cells) of plasma membrane associated clathrin 

punctae contained AP2, and 69% of these clathrin punctae contained both AP2 and 
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AP180.  This extensive co-localization indicated that the majority of plasma membrane 

clathrin coated vesicles have both AP2 and AP180 (Figure 3.1A).    

I also examined the composition of assembly protein in clathrin coated vesicles on 

Dictyostelium contractile vacuoles.  To enhance contractile vacuole activity, I immersed 

cells immersed in water, and then fixed them for immunofluorescence microscopy.  

Cells expressing RFP (red fluorescent protein)-tagged clathrin light chain and GFP-

tagged AP180 were fixed and stained with anti-α subunit antibody followed by a 

secondary antibody conjugated with Pacific Blue. I found that similar to plasma 

membrane, 85% of clathrin punctae (n=67 clathrin punctae on 13 contractile vacuoles) on 

contractile vacuoles were labeled with AP2, and 82% of these clathrin punctae contained 

both AP2 and AP180 (Figure 3.1B).  

The presence of AP2 and AP180 on clathrin coated vesicles raised the question of 

whether clathrin coated vesicles on the contractile vacuoles contained all the clathrin 

accessory proteins normally found at the plasma membrane.  I therefore investigated 

whether epsin or Hip1r are also on contractile vacuoles.  I co-expressed RFP-tagged 

epsin with GFP-AP180 in wild type cells and stained these cells with an antibody against 

the contractile vacuole marker Rh50 (Benghezal et al., 2001).  I found that epsin is also 

found on the contractile vacuole and colocalized with AP180 (Figure 3.1C).  To 

determine whether Hip1r localizes on contractile vacuoles, I stained wild type cells 

expressing GFP-AP180 with an anti-Hip1r polyclonal antibody.  In contrast with epsin, 

Hip1r was absent from contractile vacuoles despite the presence of AP180 (Figure 3.1D).  

My data suggested that the contractile vacuole is an unusual organelle in that it 

contains three of the clathrin adaptors normally associated with the plasma membrane: 

AP2, AP180 and epsin.  In contrast, Hip1r was only on the plasma membrane but not on 

contractile vacuoles.  This result suggested that clathrin coated vesicles on the 



contractile vacuoles have a similar, but not identical, composition to coated vesicles on 

the plasma membrane.  

 

 

 
Figure 3.1.  (A,B) The majority of clathrin punctae on the plasma membrane and the 

contractile vacuole contain both AP2 and AP180. Wild type cells expressing GFP-AP180 

(green) and RFP-clathrin light chain (red) were immunostained for AP2 subunit (blue). 

(C) Epsin localizes on GFP-AP180-labeled contractile vacuoles. Wild type cells 

expressing GFP-AP180 (green) and epsin-RFP (red) were immunostained with a 

contractile vacuole marker, Rh50 (blue). (D) Hip1r does not localize on AP180-labeled 

contractile vacuoles. Wild type cells expressing GFP-AP180 (green) were immunostained 

for Hip1r (red). Contractile vacuoles in (B, C, D) are indicated by arrows. Scale bar, 10 

m. 
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3.2.2 Generation of AP2α subunit null, AP180 null, epsin null, AP2α/AP180 double 
null, AP2α/epsin double null cell line in Dictyostelium DH1 cell line background 

In Chapter 2, I described how I generated an AP2α subunit null cell line in 

Dictyostelium Ax2 wild type cell background.  To further study the role of AP2, AP180 

and epsin in Dictyostelium contractile vacuole, I decided to generate AP2α/AP180 double 

mutant and AP2/epsin double mutant cell lines in addition to single mutant cell lines.  

Because of the limited selective markers in the Ax2 background, I switched to a different 

Dictyostelium DH1 wild type cell line with more selective markers.  I first generated an 

AP2α subunit null cell line in DH1 cells through homologue recombination utilizing the 

same construct I used to generate the AP2α subunit null cells in Ax2 cells.  AP2α 

subunit/AP180 double mutant cell line (AP2α/AP180 DKO) and AP2α/epsin double 

mutant cell line (AP2α/epsin DKO) were generated by further deleting AP180 or epsin in 

the α subunit null cell line using the same method as generating the single mutant cell 

lines in previous studies (Stavrou and O'Halloran, 2006; Brady et al., 2008). The AP180 

single null, epsin single null cell lines in DH1 cells were generated by Irene Stavrou and 

Rebecca Brady respectively.  The absence of the products of the AP2α subunit, AP180 

or epsin genes was confirmed using western blot analysis (Figure 3.2 A and B).  

 

 

 

 
Figure 3.2 Generation of mutant cell lines. (A) An immunoblot of whole cell lysates of 

the wild type (WT) and AP2 subunit null (AP2-), AP180 null (AP180-), AP2 subunit 

 56



 57

and AP180 double null (AP2/AP180 DKO) stained with anti-AP2 subunit and anti-

AP180 antibodies. A non-specific protein band recognized by anti-AP180 antibody was 

used as a loading control. (B) An immunoblot of whole cell lysates of the wild type (WT) 

and AP2 subunit null (AP2-), epsin null (epsin-), AP2α subunit and epsin double null 

(AP2/epsin DKO) stained with anti-AP2 subunit and anti-epsin antibodies. Anti-

myosin-heavy-chain (MHC) antibody was used as a loading control. 

 

3.2.3 Depletion of AP2 and AP180 cause synergistic defects in osmoregulation  

To investigate whether AP2, AP180 and epsin contribute to contractile vacuole 

function, we generated single mutants in AP2 (α-subunit), AP180, and epsin.  I also 

generated AP2α/AP180 double mutant and AP2α/epsin double mutant cell lines.  

Inspection of these cell lines in a hypotonic environment revealed that they all contained 

prominent contractile vacuoles.  This is in contrast to clathrin heavy chain null cells or 

AP1 (μ1 subunit) null cells that lack large contractile vacuoles (Lefkir et al., 2003) .  

Thus, while clathrin and AP1 play a role in the biogenesis of the contractile vacuole, 

clathrin and the other adaptors could contribute a separate function on contractile 

vacuoles after they have formed. 

It has been showed previously that loss of clathrin light chain or AP180 leads to 

enlarged contractile vacuoles (Wang et al., 2003; Stavrou and O'Halloran, 2006).  To 

investigate whether loss of AP2 and epsin also influences contractile vacuole size, I 

measured contractile vacuoles in various mutant cell lines in two different osmotic 

environments (Figure 3.3A).  In isotonic nutrient medium, the maximum average 

diameter of contractile vacuoles in wild type cells was 3.39±0.10 µm (n=32 contractile 

vacuoles).  Epsin null cells displayed contractile vacuoles of similar size (3.41+0.15µm, 

n=20 contractile vacuoles). In contrast, AP2α subunit null, AP180 null and the 
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AP2α/AP180 DKO cells had enlarged contractile vacuoles (AP2α-,3.59 ±0.14 µm, n=21 

contractile vacuoles; AP180-, 4.05 ±0.20 µm, n=28 contractile vacuoles, AP2α/AP180 

DKO, 4.88±0.22 µm, n=24 contractile vacuoles).  Among all the mutant cells, 

AP2α/AP180 DKO cells displayed the largest contractile vacuoles whereas AP2α/epsin 

DKO cells had contractile vacuoles similar in size to those in AP2α single null cells 

(3.70+0.14µm,n=21 contractile vacuoles) (Figure 3.3B).  

In water, cells displayed similar defects in their contractile vacuoles.  Contractile 

vacuoles in wild type cell and epsin null cells reached a similar maximum size (wild type, 

3.48 ±0.09 µm, n=52 contractile vacuoles; epsin-, 3.36+0.07 µm, n=57 contractile 

vacuoles).  However, AP2 and AP180 mutants displayed larger contractile vacuoles 

(AP2α-,3.99 ±0.13 µm, n=40 contractile vacuoles; AP180-, 4.24 ±0.09 µm, n=61 

contractile vacuoles; AP2α/AP180 DKO, 5.20 ±0.11 µm, n=56 contractile vacuoles). 

While the AP2α/AP180 DKO cells in hypo-osmotic environment exhibited the largest 

contractile vacuoles AP2α/epsin DKO displayed contractile vacuole similar in size to 

AP2A1α single null cells with a size of 3.91+0.12µm (n=45 contractile vacuoles) (Figure 

3.3B).  

Thus, among all clathrin adaptors, only the loss of AP2 or AP180 contributed to 

contractile vacuole size.  Loss of epsin did not affect contractile vacuole size in single or 

double mutants.  Since the AP2α/AP180 double null mutant exhibited an enhanced 

contractile vacuole size phenotype relative to the single mutants, I postulated that AP180 

and AP2 contributed individual functions in controlling contractile vacuole size. 

Therefore, we explored in more detail the role of AP2 and AP180 on contractile vacuole 

function.   



 

 

Figure 3.3  AP2 and AP180 mutant cell lines have enlarged contractile vacuoles. (A) 

DIC images of wild type (WT), epsin null (epsin-), AP2 subunit null (AP2-), AP180 

null (AP180-), AP2 subunit and AP180 double null (AP2/AP180 DKO), AP2 

subunit and epsin double null (AP2/epsin DKO) cell lines in both isotonic medium (top 

panel) and in water (bottom panel). Arrowheads indicate contractile vacuoles. Scale bar, 

10 m. (B) Quantification of contractile vacuole diameters in both isotonic (medium) and 

hypotonic condition (H2O). Error bar, standard error; n=20-61 contractile vacuoles for 

each condition.  

 

3.2.4 Both AP2 and AP180 recruit clathrin onto contractile vacuoles  

To explore the contribution of AP2 and AP180 to clathrin recruitment onto the 

contractile vacuoles, Irene Stavrou, a former lab member imaged living cells in water that 
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expressed GFP-tagged clathrin light chain (CLC).  In wild type cells, AP2α null and 

AP180 null cells, she frequently observed punctae of clathrin that outlined the 

circumference of the bladder and remained until the bladder discharged.  However, 

clathrin punctae were rarely found on the contractile vacuoles in AP2α/AP180 DKO 

cells.  I then quantified how many contractile vacuole bladders were labeled with 

clathrin.   I scored a contractile vacuole as clathrin-positive if at least one clathrin 

punctae associated with the bladder for at least 9 seconds during its lifetime, a method 

has been used by Stavrou in 2006 (Stavrou and O’Halloran, 2006).  In wild type cells, 

56% contractile vacuoles were clathrin positive. In the AP2α null and AP180 null, I 

observed a decrease in clathrin-labeled contractile vacuoles (30% contractile vacuole in 

AP2α cells and 35% in AP180 null were labeled by clathrin, n=20 cells) (Figure 3.4A).  

In AP2α/AP180 DKO cells, clathrin was associated with only 15% (n=20 cells) of their 

contractile vacuoles (Figure 3.4A).  These differences in the association of clathrin with 

contractile vacuoles were not caused by different expression level of clathrin construct 

(Figure 3.4B).  Therefore, the enhanced phenotype in clathrin recruitment in the double 

mutant further suggests that both AP2 and AP180 contribute to the recruitment of clathrin 

to the contractile vacuole.  

 



 

 
Figure 3.4  The association of clathrin at the contractile vacuole is reduced in the 

absence of AP2 subunit and/or AP180. (A) Living wild type, AP2-, AP180- and 

AP2/AP180 DKO cells expressing GFP-clathrin light chain in hypotonic condition 

(water) were imaged using fluorescence microscopy. GFP-CLC punctae decorated some 

number of contractile vacuoles in all four cell lines (arrows). Scale bar, 10μm. (B) 

Quantification of clathrin labeled contractile vacuoles in wild type, AP2-, AP180- and 

AP2/AP180 DKO cells. Error bar, standard error, n=20 cells for each cell line. (C) 

Western blots show equivalent expression levels of clathrin in all four cell lines. In each 

lane, whole cell lysates (1x106 cells) were blotted with anti-clathrin heavy chain. Anti-

Aurora antibody served as a loading control in this experiment.  
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3.2.5 Loss of AP180 but not AP2 causes an increase in fusion among contractile 
vacuoles  

To determine how the loss of AP2 and AP180 influenced the formation of 

enlarged contractile vacuoles, we monitored the dynamic behavior of contractile vacuoles 

in different cell lines by Differential Interference Contrast (DIC) microscopy.  In wild 

type cells, contractile vacuoles became round as they filled, reached a maximum size and 

moved to the membrane to contract and discharge their contents to the extra-cellular 

space.  Occasionally one contractile vacuole would fuse with another and form a single 

larger contractile vacuole.  In mutant cells, contractile vacuoles exhibited similar 

phases: expansion, contact with the plasma membrane, and discharge.  Strikingly, I also 

observed that contractile vacuoles fused more frequently with each other in the AP180 

single null cells and AP2α/AP180 double null cells but not in AP2α subunit null cells 

(Figure 3.5A and data not shown).  I quantified the fusion frequency by recording how 

many times two contractile vacuoles fused in each cycle of contractile vacuole expansion 

and discharge.  In both wild type cells and AP2α subunit single null cells, the fusion 

frequency was 0.10 event per vacuole life time  (0.10 +0.02 events in wild type cells, 

0.12+0.01 events in AP2α subunit null cells, n=3 independent experiments, 34 contractile 

vacuoles of each cell line in each experiment were quantified).  But in AP180 single and 

double mutant cells, the fusion frequency increased five times to ~0.5 event per vacuole 

(0.45+0.02 in AP180 single null, 0.55+0.04 in AP2α/AP180 DKO, n=3 independent 

experiments, 34 contractile vacuoles of each cell line in each experiment were quantified) 

(Figure 3.5B).  These data suggest that the abnormally enlarged contractile vacuoles in 

cells lacking AP180 are the result of an increase in fusion events among their contractile 

vacuoles.  However, the cause of the enlarged contractile vacuoles in AP2α subunit null 

cells remains unclear.  



 

 

Figure 3.5  Contractile vacuoles fused with each other more frequently in the absence 

of AP180. (A) Time lapse of living wild type cells and AP2/AP180 DKO cells in water. 

In wild type cells (WT), a whole life cycle of one contractile vacuole (arrow) is shown, 

from expansion to contraction. In AP2/AP180 DKO cells (AP2/AP180 DKO) two 

contractile vacuoles (arrows) fuse into a single contractile vacuole (arrow). Scale bar, 

10μm. See supplemental video1.mov and video2.mov for the corresponding time lapse 

movies. (B) Quantification of the homotypic fusion rates of contractile vacuoles in wild 

type, AP2-, AP180- and AP2/AP180 DKO cells. Error bar, standard error, n=3 

independent experiments, 34 contractile vacuoles for each cell lines were quantified in 

each experiment.   

 

3.2.6 Loss of AP180 leads to an increase in Vamp7B on contractile vacuoles  

I postulated that the increase in fusion among contractile vacuoles in AP180 

mutants could be caused by a defect in SNARE protein traffic.  Soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are groups of 

transmembrane proteins that drive membrane fusion events in many organelles 
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(O'Halloran and Anderson, 1992b; Lefkir et al., 2003).  Previous studies have linked 

AP180 to traffic of the v-SNARE, synaptobrevin.  In both Drosophila and C.elegans, 

AP180 is required for recycling synaptobrevin back to synaptic vesicles from the plasma 

membrane (Wang et al., 2003; Stavrou and O'Halloran, 2006).  CALM, the AP180 non-

neuron homologue is also important for the endocytosis of synaptobrevin 2 (Vamp2) in 

cultured mammalian cells (Chen and Scheller, 2001).  I therefore tested whether the loss 

of AP180 led to a defect in the traffic of a synaptobrevin-like protein on the contractile 

vacuole. 

Kevin Bersuker in Dr. Arturo De Lozanne lab did a BLAST search of the 

Dictyostelium genome with the C. elegans synaptobrevin sequence which revealed that 

the closest related protein was Dictyostelium Vamp7B (DDB_G0277173).  Then Kevin 

Bersuker also cloned Vamp7B into a GFP expressing vector.  Expression of GFP-tagged 

Vamp7B in wild type cells revealed that this protein is localized on postlysosomes, 

secretory vesicles of the late endosomal pathway (Figure 3.6A).  In addition, GFP-

Vamp7B was also found on the contractile vacuole where it colocalized with clathrin and 

the vacuole marker Rh50 (Figure 3.6B).  In contrast, a related SNARE protein, 

Vamp7A, was found only on endosomal vesicles but not on the contractile vacuole (data 

not shown and (Bennett et al., 2008)).  Thus, GFP-Vamp7B is a good candidate for a 

synaptobrevin-related protein that may be regulated by AP180 on the contractile vacuole.  

Expression of GFP-Vamp7B in AP2 and AP180 mutant cells demonstrated that 

this SNARE protein sorted properly to their contractile vacuoles.  However, there was 

an important difference in the intensity and localization of GFP-Vamp7B on the 

contractile vacuoles of AP180-null cells compared to that of wild type or AP2-null cells. 

In wild type cells, the postlysosomes (p80 positive compartments (Ravanel et al., 2001; 

Mercanti et al., 2006)) were labeled more strongly by GFP-Vamp7B than the contractile 
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vacuole (Figure 3.6A).  The same relative intensity was observed in AP2α subunit null 

cells (Figure 5A).  In contrast, the contractile vacuoles of cells lacking AP180 (AP180 

null and AP2α/AP180 double null) were labeled by GFP-Vamp7B with almost equal 

intensity as the postlysosomes (Figure 3.6A).  Not only was the staining more intense 

for contractile vacuoles in AP180 null cells, but more contractile vacuoles were labeled. 

In wild type cell, GFP-Vamp7B labeled 63+2% of the contractile vacuoles bladders (n=3 

independent experiments. In each experiment 32-75 contractile vacuoles in each cell line 

were scored). Similar to wild type cells, 56% +4% contractile vacuoles in AP2α subunit 

cells were labeled with GFP-Vamp7B.  In contrast, AP180 single mutant and the 

AP2α/AP180 DKO displayed 90% of the contractile vacuoles labeled with GFP-Vamp7B 

(92+2% in AP180 null, 87+3% in AP2α/AP180 DKO,n=3 independent experiments. In 

each experiment 32-75 contractile vacuoles in each cell line were scored) (Figure 3.6C).  

Western blotting of the cells lines demonstrated that the different cell lines expressed 

similar amounts of GFP-Vamp7B (Figure 3.6D).  The increase in the amount of 

Vamp7B on the contractile vacuole in the absence of AP180 suggests that AP180 may be 

important to retrieve Vamp7B from the contractile vacuole.  

In addition to Vamp7B, I also examined Vti1, a second SNARE protein that also 

localized to the contractile vacuole. This Vtil-GFP plasmid was also constructed by 

Kevin Bersuker. Vtil allowed me to test whether the requirement for AP180 was specific 

for Vamp7B, by determining whether the localization of Vti1 required AP180 or AP2.  I 

found that the distribution of Vti1 in the contractile vacuole of AP180 or AP2α null cells 

was indistinguishable from that of wild type cells (Figure 3.7). The similar distribution of 

Vti1 on the contractile vacuoles in wild type and mutant cells suggested that the defect 

for Vamp7B in AP180 null cells was specific for that SNARE and not a general deficit in 

SNARE-trafficking on the contractile vacuole. 



 

 

 
Figure 3.6 Vamp7B localizes to contractile vacuoles and postlysosomes and is enriched 

on the contractile vacuoles of AP180 null cells. (A) Cells expressing GFP-Vamp7B 

(green) were immunostained with the contractile vacuole marker, Rh50 (red) and the 

endosomal marker, p80 (blue). Scale bar, 10μm. (B) Vamp7B-containing contractile 

vacuoles label with clathrin. Wild type cells expression GFP-Vamp7B (green) were 

immunostained with anti clathrin light chain (clathrin) (red) and with a contractile 

vacuole marker, Rh50 (blue). Scale bar, 10μm. (C) Quantification of Vamp7B-labled 

contractile vacuoles in wild type, AP2-, AP180- and AP2/AP180 DKO cells. Error 

bar, standard error, n=3 independent experiments. In each experiment 32-75 contractile 

vacuoles in each cell line were scored. (D) Western blot showed an equivalent expression 

levels of GFP-Vamp7B. In each lane, whole cell lysates (1x106 cells) were stained with 

anti-GFP antibody. Anti-myosin-heavy-chain (MHC) antibody was used as a loading 

control.  

 

    

 

 66



 

 
Figure 3.7  The SNARE protein Vti1 localizes equivalently on the contractile vacuoles 

of wild type and mutant cells. Wild type, AP2-, AP180- and AP2/AP180 DKO cells 

expressing GFP-Vti1 (green) were immunostained with the contractile vacuole marker 

Rh50 (red). In all four cell lines, GFP-Vti1 labels all the contractile vacuole(arrows). 

Scale bar, 10μm. 

 

My results suggested that AP180 may participate in the trafficking of Vamp7B 

perhaps by retrieving Vamp7B from the contractile vacuole.  To test whether AP180 

interacted physically with Vamp7B, I performed a pull down assay.  I used the cytosolic 

domain of Vamp7B(1-558aa) fused to GST as a bait to pull down interacting proteins 

from Dictyostelium cell lysates.  For comparison purposes I used lysates from cells 

expressing GFP-AP180 or GFP alone as a control.  As expected, GST-Vamp7B (1-

558aa) were not able to pull down the control GFP alone (Figure 3.8B).  In contrast, I 

found that GFP-AP180 was specifically pulled down by GST-Vamp7B (1-558aa) but not 

by GST alone, confirming a physical interaction between the two proteins (Figure 3.8A).  

This interaction with Vamp7B is unique to AP180 since the other two clathrin adaptor 
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proteins epsin and AP2 were not pulled down by GST-Vamp7B in the same assay(Figure  

3.8B).  

 

 

 
Figure 3.8  Interaction of AP180 with the Vamp7B cytosolic domain. Either the 

purified GST-Vamp7B cytosolic domain (GST-Vamp7Bctyo) protein or GST (negative 

control) was incubated with lysates of wild type cells expressing GFP-AP180. The whole 

cell lysate (Input) and fractions that did not bind (Unbound; UnB) or that did bind 

(Bound; B) to the glutathione beads were immunoblotted for GFP-AP180, for AP2 2 

subunit, or epsin. To exclude a nonspecific interaction of the GFP tag with the GST-

Vamp7B cytosolic domain, the purified GST-Vamp7B cytosolic domain was also 

incubated with wild type cells expressing GFP only cell lysate (GFP).  

 

3.2.7 Characteristics of AP2α subunit null, AP180 null, epsin null, AP2α/AP180 
double null, AP2α/epsin double null cell line at the plasma membrane   

3.2.7.1 AP180 is still associated with plasma membrane clathrin in the absence of AP2, 
vice versa; AP180 helps stabilize plasma membrane AP2   

In Dictyostelium cells, clathrin and AP2 assemble into puncta on the plasma 

membrane in epsin null cells and epsin does not require AP2 to associate with clathrin at 

the plasma membrane.  Epsin formed ~20% fewer puncta on the plasma membrane of 

AP2α subunit null cells (Brady et al., 2008).  To examine whether the AP2 interacts 
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with AP180 in the same way as epsin, I examined the localization of AP180 in wild type 

and AP2α null cells expressing GFP-AP180.  In both strains, GFP-AP180 localized as 

punctae on the plasma membrane, within the cytoplasm and in the perinuclear area.  To 

examine whether AP180 and clathrin continued to cluster within the same punctae on the 

plasma membrane in AP2 mutant cells, I stained both cell lines with an antibody against 

clathrin light chain (Wang et al., 2003).  In both wild type and mutant cells, AP180 and 

clathrin colocalized extensively (80% of the 107 plasma membrane associated clathrin 

punctae in AP2α null cells, 87% of 131 plasma membrane associated clathrin punctae in 

wild type cells colocalized with AP180) into same punctae (Figure 3.9A).   

To examine whether AP180 affects the cellular distribution of AP2, I also stained 

wild type DH1 cells and AP180 null cells generated in DH1 cells with the anti AP2α 

subunit antibody and examined the cells with fluorescence microscopy. While the total 

number of AP2 punctae in wild type and AP180 null cells remained similar, the 

distribution of AP2 punctae was different in the two cell lines.  Wild type cells had 49% 

of 522 AP2 total punctae on their plasma membrane whereas AP180 null cells had fewer 

(30% of 638 total AP2 punctae) punctae on their plasma membrane (Figure 3.9B).  

Furthermore, staining with clathrin antibody revealed that these decrease plasma 

membrane AP2 punctae still colocalized with clathrin to the similar extent as in wild type 

cells (75% of the 108 plasma membrane clathrin punctae I quantified colocalized with 

AP2 in AP180 null cells, and 79% of the 88 plasma membrane clathrin punctae 

colocalized with AP2 in wild type cells) (Figure 3.9B).  

 



 

 
Figure 3.9  (A) AP180 does not require AP2 to localize normally and to cluster with 

clathrin at the same sites. Wild type and AP2α subunit null cells expressing GFP-AP180 

cells were stained with clathrin light chain antibody. Arrows indicate the co-localization 

of AP180 and clathrin at the plasma membrane. Scale bar, 10μm. (B) Less AP2 were 

targeted to the plasma membrane in the absence of AP180 but AP2 still colocalized with 

clathrin in the absence of AP180. Wild type and AP180 null cells expressing GFP-CLC 

were stained with anti-AP2α subunit antibody.  Scale bars, 10μm. 

 

3.2.7.2 The plasma membrane association of clathrin is reduced in the absence of AP2 
and/or AP180, the absence epsin does not affect the plasma membrane clathrin 

AP2 and AP180 synergistically promote maximum clathrin assembly activity in 

vitro (Lindner and Ungewickell, 1992; Hao et al., 1999).  To examine how the absence 

of two major adaptor proteins affect the association of clathrin with the plasma 

membrane in living cells, I stained wild type, AP2α-, AP180-, epsin-, AP2α/AP180 DKO 

and AP2α/epsin DKO cell lines with an antibody against clathrin light chain, and imaged 

the cells using confocal microscopy.  In all the cell lines, clathrin localized to punctae at 
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the periphery and in the cytoplasm of the cells; however in AP2α/AP180 DKO cells, 

fewer clathrin punctae were seen on the plasma membrane (Figure 3.10A).  To quantify 

the decrease of the clathrin punctae at the plasma membrane, I calculated the intensity of 

fluorescence per area in confocal sections focused on the plasma membrane (the same 

method as in Chapter 2).  I found 17% and 23% reduction in clathrin association with 

the plasma membrane in AP2 and AP180 single mutant cells respectively, while in the 

AP2α/AP180 DKO cells I found 31% decrease in clathrin at the plasma membrane 

(Figure 3.10B).  Interestingly I did not observe any plasma membrane clathrin deduction 

in the epsin null cells.  These results indicated that clathrin has lost some, but not all, of 

its ability to associate with the plasma membrane in the absence of both AP2 and AP180, 

but not epsin.  More importantly, the decrease of plasma membrane associated clathrin 

in the AP2α/AP180 DKO (31%) is close to the simple addition of AP2 and AP180 single 

mutant cells (17%, 23%).  Thus I conclude that in vivo, AP2 works additively with 

AP180 but not epsin to recruit clathrin onto the plasma membrane.  



 
Figure 3.10 The membrane association of clathrin is reduced in AP2α subunit null and/or 

AP180 null cells but not in epsin single null cells. Wild type, AP2α null, AP180 null, 

epsin null and AP2α/AP180 double null, AP2α/epsin cells were fixed and stained with an 

antibody against clathrin light chain  (A) The images were focused on the top of the 

cells in order to compare clathrin association at the plasma membrane in the different 

cells lines. Scale bars 10μm. 90-110 cells were quantified in each cell lines. Scale bars, 

10μm.  Clathrin punctae were quantified in each cell line indicated (B) The membrane 

association of clathrin was reduced by 17% in AP2α null cells, 23% in AP180 null cells 

and 31% in AP2α/AP180 double null cells. But deletion of epsin did not have an effect 

on clathrin on the plasma membrane. Error bar, standard error among cells within the 

same cell line. 
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3.2.8 Characteristics of AP2α subunit null, AP180 null, epsin null, AP2α/AP180 
double null, AP2α/epsin double null cell line in cytokinesis and cell development 

Dictyostelium discoideum cells use two distinct cytokinesis mechanisms. Cells 

use a myosin II-dependent cell division in suspension and an adhesion-dependent but 

myosin II-independent mechanism on substrates (Nagasaki et al., 2001).  Clathrin heavy 

chain mutants have a severe growth defect with multinucleated cells in suspension which 

links clathrin function to cytokinesis (Niswonger and O'Halloran, 1997b; Gerald et al., 

2001).  Interestingly, similarly to clathrin heavy chain null cells, epsin null cells also 

accumulated multinuclei when grow in suspension media ((Brady et al., 2008) and Figure 

3.11 A and B).  However, in suspension AP2α null, along with AP180 null and 

AP2α/AP180 double null cells, were mostly single nucleated like wild type cells. 

AP2α/epsin double null cells displayed a cytokinesis defect to the same extend as epsin 

single null cells.  I quantified the average number of nuclei in each cell line and 

compared the different cell lines.  When grown in suspension, wild type cells, AP2α null 

cell, AP180 null cells and AP2 α/AP180 DKO cells all had 2 + 0 nuclei/cell in average.  

In contrast, epsin null had 5 +1 nuclei/cell, and AP2α/epsin DKO had 4 +1 nuclei/cell.   

In contrast with growth in suspension, AP2α subunit null cells had a cytokinesis 

defects when grown on substrates (Chapter 2 and (Figure 3.11A,B)).  I then quantified 

how many nuclei each cell had when grown on substrate.  Wild type, AP180 null, epsin 

null all had 1 +0 nuclei/cell whereas all three AP2α mutant cell lines had 2 +0 nuclei/cell. 

This result suggested that AP2 works in the same myosin II-independent cytokinesis 

pathway whereas epsin, along with clathrin, is clearly involved in the myosin II-

dependent pathway.  

Dictyostelium cells exist as two phases: vegetative phase and development phase. 

Upon starvation, the Dictyostelium cells enter a developmental program in which about 
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100,000 amoebae cells aggregate and differentiate, form a multicellular organism and 

construct a fruiting body made up by oblong spores on the top of a stalk (Kessin, 2001). 

Clathrin heavy chain mutant cells are not able to initiate the development cycle 

(O'Halloran and Anderson, 1992b).  When all our six cell lines in this study were put 

into starvation condition, they all developed into fruiting bodies.  AP2α mutant cells 

including the AP2α/AP180 DKO and the AP2α/epsin DKO cells made fruiting bodies but 

with shorter stems (Figure 3.11C top panel).  

Two of the clathrin accessory proteins in Dictyostelium, Hip1r and epsin null cell 

lines develop normal looking fruiting bodies but contain abnormally round spores 

(Repass et al., 2007) (Brady et al, 2008, submitted).  In this study I also noted that the 

spores produced by AP2α null cells were slightly rounder (Figure 3.11C bottom panel).  

On the other hand, the AP180 null cells formed normal oblong spores whereas the 

AP2/AP180 DKO cells behaved similarly to AP2α subunit null cells.  Moreover, the 

AP2/epsin DKO cells produced round spores similar to epsin null cells.  To be able to 

compare the spore shape among cell lines, I measured the width:length ratio of spores 

(Figure 3.11D).  The ratio of wild type spores was 0.65 ± 0.02 (n=42; mean ± SE); 

spores derived from epsin null mutants had a ratio of 0.84 ± 0.01 (n=45; mean ± SE).  

AP2α mutant spores were slightly round with the number of 0.79 ±0.02 (n=38; mean ± 

SE) whereas AP180 mutant spores were wild type shape with the number of 0.65 ±0.01 

(n=40; mean ± SE). However, I did not observe an additive effect of AP2 and epsin in the 

AP2α/epsin DKO spore: the ratio of this AP2α/epsin DKO spores was very close to the 

epsin single mutant spores with a ratio of 0.86±0.02 (n=40; mean ± SE).  

Since the plasma membrane localization of epsin is important for its function to 

maintain normal spore shape (Brady, personal communication) and the absence of AP2 



abolished about 20% of the plasma membrane associated epsin, I conclude here that AP2 

affects the spore morphology through mislocalizing epsin.  

The short stem phenotype I observed in the DH1 AP2α subunit null cells is 

different from the AP2α null mutant cells in Ax2 background as I demonstrated in 

Chapter 2. AP2α null cells generated in Ax2 wild type cells make normal height stems 

with smaller fruiting bodies during development.  I think this conflicting result was 

caused by cell line differences between Ax2 and DH1 cell line. 
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Figure 3.11 Characterizing different Dictyostelium mutants in cytokinesis and cell 

development. (A) Cells grown either attached to Petri dish or in suspension medium for 

72 hours were stained with DAPI for nuclei. Scale bars 50μm. (B) Nuclei per cell were 

quantified in all six different cell lines grown on substrates or in suspension medium. 

220-450 cells were quantified in each cell line for three independent experiments.  Error 

bar, standard error of three independent experiments. (C) Upper panel shows that AP2α 
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subunit mutant cell lines make fruiting bodies with short stems.  Dictyostelium cells 

were starved on the starvation plates to induce cell development and visualized after 24 

hours.  Scale bars 100μm. Lower panel shows both AP2α null and epsin null cells had 

rounder spores. Spores from developed Dictyostelium cells fruiting bodies were collected 

and visualized. Scale bars 10μm. (D) Quantification of the spore morphology by 

calculating the ratio of spores width: length indicates that epsin null cells and the AP2 

α/epsin double null cells have the roundest spores among all the cell lines. AP2α null cell 

lines, including AP2α/AP180 double null cells, had slightly round spores. 38~45 spores 

were quantified for each cell lines. Error bar, standard error among different spores 

within the same cell lines. 



 78

3.3 DISCUSSION 

In this Chapter, I first showed that contractile vacuole associated clathrin coated 

vesicles share several clathrin adaptors in common with the ones on the plasma 

membrane, one of which, AP180, regulates the amount of the Vamp7B SNARE at the 

contractile vacuole.  Of all clathrin adaptor proteins described in Dictyostelium AP180, 

AP2 and epsin were found on both plasma membrane and contractile vacuoles, while 

Hip1r was found only on the plasma membrane.  It is clear that clathrin coated vesicles 

budding from the contractile vacuole are important for the function of this organelle, as 

mutations in AP180 and AP2 produce abnormal vacuoles.  In addition, using both GST 

pull down and immunostaining, I identified AP180 as the possible adaptor protein for 

Vamp7B trafficking in clathrin coated vesicles.  Furthermore, I disclosed the 

mechanism of the abnormally large contractile vacuoles in AP180 null cells: excessive 

homotypic fusion among contractile vacuoles. Recycling Vamp7B from contractile 

vacuole through clathrin coated vesicles is an efficient way to prevent those excessive 

fusions.  

In this Chapter, I have also shown that AP2 works additively with AP180 in 

recruiting ~31% of plasma membrane associated clathrin in DH1 cell line background.  

In addition, AP2, AP180 and epsin behave differently in clathrin related cytokinesis, cell 

development.  

 

3.3.1 AP180 serves as a clathrin adaptor protein that retrieves Vamp7B from 
contractile vacuoles  

Previous studies have shown that AP180 is required for the proper localization of 

synaptobrevin in metazoans (Nonet et al., 1999; Bao et al., 2005; Harel et al., 2008).  I 
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demonstrated that AP180 is required for retrieval of the synaptobrevin homologue, 

Vamp7B from Dictyostelium contractile vacuoles.  Loss of AP180 caused an increase in 

the labeling of contractile vacuoles with Vamp7B.  Concomitant with the increase in 

Vamp7B, I observed an increase in the homotypic fusion among contractile vacuoles 

leading to the formation of enlarged vacuoles in AP180 mutant cells.  This role of 

AP180 is specific for Vamp7B, since another contractile vacuole-associated SNARE 

protein, Vtil, was not affected in AP180 mutant cells. In addition, the GST-Vamp7B 

cytosolic domain pulled down AP180 but not other contractile vacuole associated AP2 

and epsin from cell lysates, indicating a physical interaction between AP180 and 

Vamp7B.  It is known that SNARE proteins lack the known linear peptide binding-

motifs for clathrin adaptors.  However, recent studies have revealed the possible 

mechanism by which clathrin adaptors bind to SNARE proteins.  A surface-to-surface 

interaction between SNARE protein Vtilb and epsinR has been suggested by 

crystallography (Miller et al., 2007).  In addition, the mammalian clathrin adaptor 

protein Hrb directly mediates the internalization of Vamp7 through the adaptor protein’s 

unstructured tail domain (Pryor et al., 2008).  My results provide evidence that AP180 

also serves as adaptor to retrieve SNARE protein Vamp7B in clathrin coated vesicles.  

Since the identified association between Vamp7 and Hrb, EpsinR and Vtilb are believed 

to be unique for the specific SNARE adaptor protein combination, how exactly AP180 

associates with Vamp7B in Dictyostelium cells needs to be further determined.  

In this study, I showed that in wild type cells, Vamp7B labels ~60% of contractile 

vacuoles.  How is Vamp7B delivered to the contractile vacuole and where does 

Vamp7B go once it is retrieved from the contractile vacuole?  Mammalian Vamp7 is 

required for the heterotypic fusion between late endosomes and lysosomes and also 

during the fusion between lysosomes and plasma membrane (reviewed by (Luzio et al., 
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2007)).  I observed that Dictyostelium Vamp7B is found not only on contractile 

vacuoles but also on vesicles of the endocytic pathway (the postlysosome) where it 

probably plays a role similar to mammalian Vamp7B.  I propose that Vamp7B has an 

additional role during the heterotypic fusion of vesicles transporting components to the 

contractile vacuole.  Among these are Golgi-derived vesicles with newly synthesized 

proteins (Schneider et al., 2000; Gerisch et al., 2004) and plasma membrane-derived 

vesicles that recycle contractile vacuole proteins (Mercanti et al., 2006).  After those 

vesicles fuse with contractile vacuoles, Vamp7B molecules are left on the contractile 

vacuoles where NSF may then break apart the resulting SNARE complexes.  Once on 

contractile vacuoles, Vamp7B may participate in a normal basal level of homotypic 

fusion among contractile vacuoles.   Many groups have described the dynamic behavior 

of contractile vacuole networks including homotypic fusion (Clarke et al., 2002).  

However, an increase in the amount of Vamp7B on contractile vacuoles would lead to an 

increase in fusion rates and the formation of abnormally large contractile vacuoles.  To 

prevent this situation, AP180 recruits Vamp7B into clathrin coated vesicles to recycle the 

SNARE to its originating compartment, probably endocytic compartments.  Therefore, 

clathrin fulfills one of its tasks on contractile vacuoles: recycle one important SNARE 

proteins through AP180.  Considering the much more severe contractile phenotype of 

clathrin heavy chain mutant cells, I believe that there are more uncovered roles of clathrin 

coated vesicles on contractile vacuoles.  

 

3.3.2 The role of AP2, epsin and Hip1r in contractile vacuole function 

I demonstrated that the adaptor protein AP2 also plays an important role in the 

regulation of contractile vacuole size, but the localization of Vamp7B was not altered on 

the contractile vacuoles of AP2α subunit null cells and GST-Vamp7B was not able to 
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pull down AP2 from whole cell lysate.  Accordingly, the contractile vacuoles of AP2α 

subunit null cells did not fuse abnormally.  In addition, the contractile vacuoles of AP2α 

subunit null cells were enlarged only in a hypotonic environment whereas the vacuoles of 

AP180 null cells were large in both isotonic and hypotonic environments.  Significantly, 

the contractile vacuoles of the double mutant cells were significantly larger than those of 

the single mutant cells, indicating a cumulative effect.  These differences between AP2α 

subunit null and AP180 null cells suggest that AP2 has a different role in the contractile 

vacuole than AP180.  One possibility is that AP2 regulates v-ATPase proton pumps. 

The v-ATPase proton pump is universally found on acidic vesicles of the 

endolysosomal pathway but is also found on other organelles.  The v-ATPase is also a 

major component of contractile vacuole membranes, found both on the bladder and the 

tubule network (Bush et al., 1994).  The v-ATPase is important to drive water 

accumulation from the cytosol into the contractile vacuoles (Clarke et al., 2002).  

Interestingly, it has been shown that the v-ATPase is present at the plasma membrane in 

association with clathrin (Marquez-Sterling et al., 1991), and that the AP2  subunit, the 

cargo-binding subunit of AP2, binds to v-ATPase in vitro (Myers and Forgac, 1993; Liu 

et al., 1994).  Thus, it is possible that on Dictyostelium contractile vacuoles, AP2 is 

involved in recycling certain amount v-ATPase from the contractile vacuole membrane 

through clathrin coated vesicles to other organelles, such as endosomes.  When AP2 is 

missing, v-ATPase proteins may accumulate on the contractile vacuole resulting in an 

increase in water transport into the bladder, but only when the cells are exposed to a 

hypotonic environment.  This model of AP2 function needs to be tested by developing 

tools to study the rate of water transport into the vacuoles of AP2 null cells. 

It has been reported that AP2 and AP3 regulate the localization of another 

Dictyostelium synaptobrevin homologue, Vamp7A (Bennett et al., 2008).  Since I found 
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that AP2 does not control the localization of Vamp7B, my results suggest that two 

Vamp7 homologues in Dictyostelium are sorted through different clathrin adaptors into 

clathrin coated vesicles.  

The clathrin accessory protein epsin is the third protein I observed on contractile 

vacuoles.  Unlike AP2 and AP180, I did not find any contractile vacuole related 

phenotype in epsin null cells.  On the plasma membrane epsin inserts its ENTH domain 

into the plasma membrane bilayer and induces the membrane curvature and clathrin 

coated pit invagination.  In Dictyostelium cells, the localization of clathrin on the plasma 

membrane and clathrin-related fluid phase uptake were not affected in epsin null cells 

which suggests a limited role of Dictyostelium epsin on plasma membrane clathrin coated 

vesicle invagination (Brady et al., 2008).  On the contractile vacuole, epsin may also 

play a non-essential role in promoting membrane curvature to facilitate the clathrin 

coated vesicle formation just like it does on plasma membrane.  This could explain why 

we observed epsin on contractile vacuoles, but we did not find any contractile vacuole 

related phenotypes in epsin null cells.  

Actin filaments play a very important role during clathrin coated vesicle scission. 

Clathrin coated vesicles internalization is inhibited by addition of latrunculin (Kaksonen 

et al., 2003).  Clathrin accessory protein Hip1r links the clathrin coated vesicles with 

cortical actin filaments during endocytosis (McCann and Craig, 1997; Yang et al., 1999; 

Brett et al., 2006).  But unlike on the plasma membrane, I did not detect Hip1r on the 

contractile vacuoles membranes.  This leads to the possibility that the scission of 

clathrin coated vesicle from the contractile vacuole membrane is not actin dependent.  
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3.3.3 The contractile vacuole, a novel system for studying clathrin mediated traffic  

The contractile vacuole offers a unique system for the study of how clathrin 

coated vesicles can remodel the membrane of a particular organelle.  In addition to the 

plasma membrane, clathrin coated vesicles have been observed in multiple internal 

organelles including the TGN, endosomes, and lysosomes.  In addition to Dictyostelium 

cells, clathrin coated vesicles have been found on the contractile vacuoles of a wide 

variety of protists including the alga Vacuolaria virescens (Heywood, 1978; Patterson, 

1980).  Our identification of a population of functional clathrin coated vesicles with 

multiple clathrin accessory proteins on the Dictyostelium contractile vacuoles offers an 

experimental system to dissect the contribution of individual proteins of coated pits to 

contractile vacuoles in a genetically tractable system.  

 

3.3.4 Dictyostelium cell line difference in contractile vacuole sizes  

In contrast with my results, Stavrou et al. reported a different result in 2006. 

When she examined AP180 null cells created from Ax2 wild type Dictyostelium cells 

background, she concluded that there is a 43% increase of clathrin-associated contractile 

vacuoles (47% in wild type Ax2 cells, 90% in AP180 null) (Stavrou and O'Halloran, 

2006).  To explain the discrepancy, I first compared the contractile vacuole sizes in the 

cells lines from different background.  In Ax2 wild type background, the difference 

between contractile vacuoles diameters at their maximum sizes in wild type cells and 

AP180 nulls is around 1.7 μm.  So even though the increase of the association between 

clathrin and contractile vacuoles may reflect an increased time for clathrin cage assembly 

in the absence of AP180, it is also possibly caused by the increased size of contractile 

vacuoles in the mutant cells as well.  Moreover, this factor may totally compensate for 

the loss of clathrin on contractile vacuoles caused by the absence of AP180.  However, 
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in the DH1 wild type background, the contractile vacuole size difference between wild 

type cells and AP180 null cells is only 0.7μm in diameter, much smaller than in the Ax2 

background.  Therefore in this study, I observed a loss of clathrin in the contractile 

vacuoles when I deleted AP180 in the DH1 background. 
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Chapter 4 Conclusions and Future Direction 

AP2 is considered an essential adaptor protein during clathrin mediated 

endocytosis in multicellular systems, but AP2 is not required for normal clathrin function 

in yeast.  Thus the contribution AP2 to clathrin function remains inconclusive.  In 

Chapter 2, I reported that I identified the AP2α subunit and assessed an α subunit null 

mutant strain in the unicellular organism, the social ameba Dictyostelium discoideum.  I 

concluded that AP2 is important, but not essential, for Dictyostelium cells:  it is required 

for recruiting a percentage of the total clathrin assembled on the plasma membrane and 

AP2 also contributes to several clathrin related cellular processes including cytokinesis 

and the cell developmental cycle.  

 In addition to the plasma membrane localization, clathrin coated vesicles are 

found on some internal organelles, including Dictyostelium contractile vacuoles.  But 

the composition and function of these contractile vacuole associated clathrin coated 

vesicles is not clear.  In the second part of my Ph.D study (Chapter 3), I studied the role 

of clathrin and its adaptor proteins to the organization and function of the contractile 

vacuole complex.  I concluded that clathrin coated vesicles on contractile vacuoles 

contain clathrin adaptor proteins AP2, AP180 and epsin but not Hip1r.  I found that 

AP180 could serve as an adaptor protein to traffic the v-SNARE protein Vamp7B away 

from the vacuole in clathrin coated vesicles.  Thus AP180 prevents excessive homotypic 

fusion among contractile vacuoles.  To a lesser degree, AP2 is required to limit 

contractile vacuole size, but the mechanism is unknown.  On the other hand, I did not 

find a role for epsin in contributing to contractile vacuole organization or function.  

 



 86

4.1 POSSIBLE EVOLUTION PATH OF AP2 IN CLATHRIN MEDIATED ENDOCYTOSIS 

Clathrin adaptor proteins bind both clathrin and the plasma membrane 

simultaneously.  This group of proteins includes AP family members, CALM/AP180 

and epsin.  Even though these clathrin adaptor proteins do not share prominent sequence 

similarities, they all share a common structural design: the large subunits of AP family 

members, CALM/AP180 and epsin all have distinct folded domain(s) connected to a long 

flexible linker (Evans and Owen, 2002).  These folded domains bind to cargo, 

membranes and other adaptor proteins while the linkers have binding motifs for clathrin.  

This structural design allows these adaptor proteins to link clathrin to the plasma 

membrane and establish a complex dynamic network (Schmid and McMahon, 2007).  

The similarity in structure also provides the potential for clathrin adaptor proteins to be 

functionally redundant when it is necessary and this may explain why in single cell 

organism such as yeast and Dictyostelium, AP2 and/or AP180 are not required for 

clathrin related cellular pathways including clathrin localization (Gonzalez-Gaitan and 

Jackle, 1997; Grant and Hirsh, 1999; Huang et al., 1999; Yeung et al., 1999; Mitsunari et 

al., 2005).  In unicellular organisms, other clathrin adaptor proteins, such as epsin and/or 

AP180 may share functional redundancy with AP2 and they all traffic their own specific 

cargo and recruit clathrin onto the plasma membrane in their own rights.  When AP2 is 

missing, other adaptor proteins with similar structural design may compensate for the loss 

of AP2 to some extent.  Through evolution, it is possible that individual clathrin adaptor 

proteins gained their unique roles during endocytosis: AP2 became the most important 

adaptor protein to recognize cargo and recruit clathrin onto the plasma membrane; AP180 

became specialized in regulating clathrin coated vesicle size and epsin functions 

specifically in membrane invagination.  Since these clathrin adaptors do not share 

sequence similarity, it is likely that it is a parallel evolution of similar domains.  
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Because of the greater functional specificity, in complex systems, AP2 mutants my 

display very severe phenotypes and clathrin adaptor proteins are not functionally 

interchangeable with AP2.   

 

4.2 VAMP7B IN CONTRACTILE VACUOLES 

4.2.1 Vamp7B mediates contractile vacuole homotypic fusion 

In Chapter 3, I proposed that loss of AP180 resulted in an excessive amount of 

Vamp7B on the contractile vacuole.  This excessive Vamp7B induces an increase in 

homotypic fusion among contractile vacuoles, resulting in the abnormally large 

contractile vacuoles I observed in AP180 null cell lines.  However, whether Vamp7B 

can induce contractile vacuole homotypic fusion has not been directly tested.  One 

experiment to examine whether Vamp7B can directly induce contractile vacuole fusion is 

to assess the contractile vacuole fusion rate in cells over-expressing Vamp7B.  I predict 

that wild type cells over-expressing Vamp7B would exhibit an increased fusion rate of 

contractile vacuoles homotypic fusion.  But when I assessed the contractile vacuole size 

and fusion rates in wild type cells over-expressing GFP-Vamp7B, I failed to observe any 

increase of the contractile vacuole size or homotypic fusion rate (data not shown).  This 

seemingly conflicting result can be explained by several possibilities.  The first possible 

reason is that since membrane fusion is initiated the direct association of SNAREs from 

the two membranes; Vamp7B may need an equal amount of a second contractile vacuole 

associated SNARE protein to accomplish the contractile vacuole homotypic fusion.  

However, in wild type cells with over-expressed Vamp7B, the increased level of 

Vamp7B may not be accompanied by an increase in its SNARE partner.  This wild type 

level of this Vamp7B partner could be the limiting factor to induce more fusion in those 
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over-expressed cells.   If this is the reason, then why in AP180 null cells, does an 

increased number of contractile vacuole associated Vamp7B cause more fusion?  This 

can be explained if AP180 traffics the SNARE partner of Vamp7B, as well as Vamp7B.  

If this is the case, in AP180 null cells, both Vamp7B and its SNARE partner would be 

enriched on contractile vacuoles.  The second possibility to explain the normal 

contractile vacuole fusion rate in wild type cells over-expressing GFP-Vamp7B is that the 

GFP tag on the N-terminal, also the cytoplasmic terminal, of Vamp7B interferes with 

Vamp7B normal function to intertwine with its partner during fusion.  GFP tagged 

Vamp7B may be sorted properly, but it may not be fully functional.  To address this 

possibility, we will need to test whether GFP-Vamp7B can fully rescue Vamp7B mutant 

phenotypes once the Vamp7B mutant cell line is available.    

Another way to elucidate whether Vamp7B can initiate homotypic fusion is to 

examine the contractile vacuole fusion in Vamp7B-depleted cells.  Since Vamp7B is 

involved in the fusion among endocytic compartments, deleting the Vamp7B gene could 

be lethal to Dictyostelium cells.  Therefore measuring the contractile vacuole fusion 

rates in Vamp7B RNAi knockdown cell line with reduced Vamp7B level may be able to 

answer this question.  Generating Vamp7B RNAi knockdown cell line is in progress in 

Dr. Arturo De Lozanne’s lab.  However, since the contractile vacuole fusion rate in wild 

type cells is already very low (0.1 event/contractile vacuole), it could be difficult to detect 

a possible decrease in the fusion rate in the Vamp7B null cells.   

 

4.2.2 The partner of Vamp7B on the contractile vacuoles 

If Vamp7B can directly induce the homotypic fusion among contractile vacuoles, 

which SNARE protein is the partner of Vamp7B?  One candidate is the t-SNARE 

protein Vti1.  A previous study has identified Dictyostelium v-SNARE Vamp7A and t-
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SNARE Vti1 in the same SNARE complex (Bogdanovic et al., 2002).  In addition, I 

also observed a contractile vacuole localization of Vti1 in Dictyostelium wild type cells 

(Figure 3.7).  Is Vtil the partner for Vamp7B on the contractile vacuoles?  One way to 

answer this question is to examine whether there is a direct interaction between Vamp7B 

and Vti1 using in vitro binding assay.  Since both Vamp7B and Vti1 are transmembrane 

proteins, their cytosolic domains would be purified and used for this assay and tethering 

factors should also be added in this assay.    

If Vtil is the partner for Vamp7B on the contractile vacuoles, the next question is 

which clathrin adaptor protein mediates Vti1 trafficking?  Even though I did not observe 

a mislocalization of Vti1 in the absence of AP180, it is still possible that Vtil is 

transported by AP180.  Since Vti1 is abundant on the contractile vacuoles (100% of the 

contractile vacuoles are strongly labeled with GFP-Vti1), the amount of mislocalized Vtil 

caused by the absence of AP180 may not be detected with immunofluorescence 

microscopy.  A GST pull down assay to examine whether Vtil has a direct interaction 

with AP180 could evaluate this possibility.  

 

4.3 REVEAL THE MECHANISM OF AP180 AND VAMP7B INTERACTION 

Surface to surface interactions between SNARE protein Vtilb N-terminal Habc 

domain and the epsinR ENTH domain have been suggested by crystallography (Miller et 

al., 2007).  In addition, the mammalian clathrin adaptor protein Hrb mediates the 

trafficking of the Vamp7 by binding its unstructured C-terminal 20 residues to the 

Vamp7 N-terminal longin domain (Pryor et al., 2008).  However the binding modes 

between Vamp7/Hrb and epsinR/Vtilb are believed to be unique for the specific SNARE 

adaptor protein combination. Thus how AP180 associates with Dictyostelium Vamp7B 

needs further investigation.  
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To understand the interaction between AP180 and Vamp7B, it is important to 

investigate which domains contribute to the binding between these two proteins.  Epsin 

ENTH domain and AP180 ANTH domain are two plasma membrane binding domains 

with similar structures (Ford et al., 2002).  Since the ENTH domain of epsinR directly 

binds Vti1, it is possible that the AP180 ANTH domain similarly binds the SNARE 

protein Vamp7B.  An in vitro binding assay using purified AP180 ANTH domain and 

Vamp7B cytosolic domain would help to elucidate this possibility.  However, since the 

binding mode between epsinR and Vti1b is probably unique, other domains of AP180 

could interact with Vamp7B.   

To thoroughly understand the interaction between AP180 and Vamp7B it is also 

important to reveal which domain of Vamp7B contributes to the AP180/Vamp7B 

binding.  The longin domain of mammalian Vamp7 is responsible for the binding 

between the SNARE protein and clathrin adaptor protein Hrb.  Therefore the N-terminal 

longin domain of Vamp7B could be the domain that binds to AP180.  In vitro binding 

assays using purified Vamp7B longin domain and purified AP180 could be used to 

examine whether Vamp7B longin domain has the ability to interact with AP180 directly.  

Once the binding sites on both AP180 and Vamp7B for this SNARE protein/clathrin 

adaptor complex are determined, crystallography can help to reveal the exact binding 

mode and further help to understand the relationship between SNARE proteins and 

clathrin adaptor proteins.   

AP180 has been considered as a non-cargo binding protein although an earlier 

study has linked its function to the endocytosis of EGF receptor in HeLa cells (Huang et 

al., 2004).  Understanding the interaction between AP180 and Vamp7B will also help 

to re-evaluate AP180 as a possible cargo binding adaptor protein during clathrin 

mediated pathways.  
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4.4 CLATHRIN COATED VESICLES ARE REQUIRED FOR CONTRACTILE VACUOLES 
RESIDENT PROTEINS TRAFFICKING 

Clathrin coated vesicles have been observed on Dictyostelium cells in multiple 

studies (Heuser, 2006; Stavrou and O'Halloran, 2006).  However, the exact function of 

clathrin coated vesicles on the contractile vacuole is not very well understood.  In this 

study, I proposed that clathrin coated vesicle recycles Vamp7B away from the contractile 

vacuole in an AP180 dependant fashion.  However, it is believed that clathrin may 

facilitate the trafficking of other contractile vacuole related proteins.  In support of that, 

it has been shown that, unlike the enlarged contractile vacuoles in AP180 null cells, 

clathrin heavy chain null cells do not have organized contractile vacuole complexes.  

Instead, these cells have only dispersed small vacuoles, which indicates a critical role of 

clathrin in contractile vacuole organization (O'Halloran and Anderson, 1992b; Stavrou 

and O'Halloran, 2006).  In addition, in clathrin adaptor protein AP1 mutant cells, several 

contractile vacuole markers are mislocalized (Lefkir et al., 2003) which suggests that 

clathrin mediated trafficking is required for transporting resident proteins to the 

contractile vacuole.  Moreover, Heuser also observed that after contractile vacuoles 

collapse at the plasma membrane, clathrin coated vesicles can re-internalize important 

contractile vacuole components to regenerate contractile vacuoles (Heuser, 2006).  

Together, these data strongly suggest an important role of clathrin in contractile vacuole 

biogenesis.  To understand how clathrin contributes to contractile vacuole function, 

more contractile vacuole associated cargos of clathrin mediated trafficking need to be 

identified.  Vti1 and v-ATPase are two possible candidate cargos for clathrin mediated 

trafficking.  It has been shown that Vti1 and v-ATPase proton pumps are two 

Dictyostelium contractile vacuole resident proteins and are also associated with clathrin 

coated vesicle components in mammalian cells: Vti1 binds epsinR and v-ATPase can 
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bind AP2 complex  subunit (Marquez-Sterling et al., 1991; Myers and Forgac, 1993; 

Liu et al., 1994; Miller et al., 2007).  The function of Vti1 on contractile vacuole is still 

unknown, but it is known to promote fusion at endosomal membranes and trans-Golgi 

network, therefore it could be an important SNARE protein that promotes fusion during 

the formation of contractile vacuoles (Pryor et al., 2004; Murray et al., 2005).  

Dictyostelium v-ATPase is required for contractile vacuoles function: it drives water from 

the cytosol into the contractile vacuoles (Clarke et al., 2002).  Therefore further studies 

to test whether clathrin and its adaptors mediate the trafficking of Vti1 and v-ATPase will 

help to understand more about the function of clathrin coated vesicles in contractile 

vacuole biogenesis.  
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Chapter 5 Experimental Procedures 

5.1 MATERIAL AND METHODS 

5.1.1 Electroporation   

Plasmids were transformed into wild type and mutant cells by electroporation.  

5x106 cells were washed twice with ice-cold H-50 Buffer (pH 7.0 20mM HEPES, 50mM 

KCl, 10mM NaCl, 1mM MgSO4, 5mM NaHCO3, 1mM NaH2PO4).  Then the cells were 

resuspended in 100µl of cold H-50 buffer and the plasmids were transformed by 

electroporation using a gene pulser (75kv, 25µF) (BioRad, Hercules, CA).  

Transformants were selected with 10µg/ml G418 (geniticin; GIBCO BRL, Grand Island, 

NY).  All the plasmids used in this study were introduced into Dictyostelium cells using 

electroporation. 

 

5.1.2 Clone of Dictyostelium AP2α subunit and the generation of anti AP2α subunit 
polyclonal antibody 

The AP2A1 gene encoding the α subunit gene (~3.1kb) was identified from a 

Dictyostelium genome database (www.dictybase.org) using BLAST with the full amino 

acid sequence of mammalian α subunit gene.  In the DH1 wild type cells we used in this 

study, there is only one copy of this AP2A1 gene.  The α subunit gene (AP2A1) was 

amplified from a cDNA library using the Polymerase Chain Reaction (PCR) with primers 

selected from the coding region.  The 5’ primer, 5’-CGGGGTACCATGAG-

TATGAATGTTACAAATC-3’ carried a KpnI site in the beginning while the 3’ primer, 

5-CGGGGTACCAGCAGCAGCAGCAGCAGCTTGTAAATGAGAGATTAATAA-

ATT-3’ carried a six alanine linker and also a KpnI cutting site.  The resulting 3.1kb 

http://www.dictybase.org/
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piece was cloned into pTX-GFP expression vector using the KpnI site.  The AP2A1 

gene was then subcloned from the pTX-GFP vector (Levi et al., 2000) into the 

glutathione-S-transferase bacterial expression vector pGEX-2T (Smith and Johnson, 

1988) using EcoRI and BamHI sites. GST-AP2A1 was transformed into E.coli BL21 

cells.   

2L E.coli BL21 expressing the plasmid pGEX-2T-GST-AP2A1 cells were induced 

at 37oC with 0.5mM IPTG for 12 hours and the E.coli cells were collected and 

resuspended in 20ml lysis buffer (50mM Tris-HCL, pH7.5, 100mM NaCl, 5mM MgCl2, 

0.5% TritonX-100).  Cell were lysed with a sonicator at 4 oC for 5 minutes. Then the 

supernatant of the bacterial cell lysates was collected and incubated in 2 ml lysis buffer 

with 75mg glutathione beads for 1 hour at 4 oC.  The beads-cell lysate mix was washed 

with 10ml lysis buffer three times.  The elution was collected with elution buffer (5mM 

reduced glutathione in lysis buffer) for three 1 ml fractions (O'Halloran and Anderson, 

1992a).  The purified protein was sent to Cocalico Biologicals (Reamstown, PA, USA) 

for immunization and generation of rabbit polyclonal antisera. 

 

5.1.3 Generation of mutant cell lines using homologous recombination  

I first generated a single AP2α null cell line in Ax2 wild type cells.  Genomic 

sequences flanking the Dictyostelium α subunit gene, AP2A1 were selected and amplified 

by Polymerase Chain Reaction (PCR).  To amplify the ~1.08kb 5’ flanking region of the 

AP2A1 gene, I used primers 5’-CAAATTCAAAAACAACAA-GGAATACCCG-3’ and 

5’-GGGTGAAAGATTATCAA-ATGAA-TTGCAC-3’. To amplify the ~1.10kb 3’ 

flanking region of the AP2A1 gene, I used the primers 5’-

TTATAACCACAACTCCCAAATCCTTTTTCAC-3’ and 5’-CCCCAATACCACT 

TAAATAAATTGTTGC-3’.  Each PCR product was initially cloned into the pCR2.1-
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TOPO vector and then subcloned into the pSP72Bsr vector (Wang et al., 2002), a 

derivative of pBluescriptII that encodes a 1.4kb blasticidin (Bsr) resistance gene.  Then 

the resulting plasmid pSP72-Bsr-ΔAP2A1 was linearized with XhoI and EcoRV and 

introduced into wild type Ax2 cells by electroporation as described previously.  Each 

transformation reaction was diluted into HL-5 medium with 5µg/ml Bsr and plated into 

six 96-well plates.  Resulting clones were expanded and were assessed of the disruption 

of the gene by PCR and western blots.  

Using the same pSP72-Bsr-ΔAP2A1 construct, I also generated an AP2α subunit 

null cell line in Dictyostelium DH1 wild type cells.  In order to disrupt both AP2A1 

(gene encoding the α subunit of AP2) and clmA (the gene encoding AP180) or epnA (the 

gene encoding epsin) (Stavrou and O'Halloran, 2006; Brady et al., 2008) in Dictyostelium 

cells, I first disrupted AP2A1 gene in wild type DH1 cells.  I subcloned the 5’ (~1.08kb) 

and 3’ (~1.10kb ) flanking regions from the pSP72-Bsr-ΔAP2A1 construct into pSP72-

pyr plasmid using the HindIII/XhoI and EcoRI sites respectively. The pSP72-pyr plasmid 

is a derivative of the pSP72BSR vector and has the blasticidin gene replaced by a ~1.5Kb 

pyr (pyrimidine biosynthetic) gene from the pRHI30 vector (Insall et al., 1996).  The 

resulting pSP72-pyr-ΔAP2A1, was linearized with XhoI and BglII, and introduced into 

wild type DH1 cells by electroporation.   Each transformation reaction was diluted into 

FM minimal medium (Formedium LTD. Norwich England NR13, 4HY) and plated into 

six 96-well plates. Resulting clones were expanded and were assessed for the absence of 

AP2α subunit by western blot analysis.    

To generate the AP2 α/AP180 double null cell line, I then further deleted the clmA 

gene in the AP2α subunit null cells.  To do so, pSP72-Bsr-ΔAP180 (Stavrou and 

O'Halloran, 2006) was linearized with a BamHI and XhoI digestion and transformed in 

the AP2α subunit nulls cells via electroporation.  Transformed cells were diluted in FM 
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minimal medium supplemented with 5g/ml blasticidin (Bsr) and plated in 96-well 

plates.  Resulting clones were screened for the absence of both AP180 and AP2α 

subunit by western blot analysis.  

Using the same pSP72-Bsr-ΔAP180 construct, Irene Stavrou also generated the 

AP180 single null cell line in DH1 wild type cells by homologous recombination using 

electroporation.  Transformed cells were selected in HL-5 media supplemented with 

5g/ml blasticidin and verified for the absence of the AP180 protein by western blot as 

described before.  

For generating the AP2α/epsin double knock out cells, I deleted the epnA gene in 

the AP2α subunit null cells.  To do so, pSP72-Bsr-EpsinKO (Brady et al., 2008) was 

linearized using XhoI/HindIII and EcoRI digestion and transformed in the AP2A1 nulls 

cells via electroporation.  Transformed cells were diluted in FM minimal medium 

supplemented with 5g/ml blasticidin (Bsr) and plated in 96-well plates.  Resulting 

clones were screened for the absence of both epsin and AP2α subunit by western blot 

analysis.  Using the same pSP72-Bsr-EpsinKO construct, Rebecca Brady also generated 

epsin single null cells in DH1 wild type cells by homologous recombination using 

electroporation.  Transformed cells were selected in HL-5 media supplemented with 

5g/ml blasticidin and verified for the absence of the epsin protein by western blot as 

described before.  

 

5.1.4 Clone of Dictyostelium AP2 μ2 subunit and the generation of the anti-μ 
antibody 

The AP2 2 subunit gene (439bp) was identified from a Dictyostelium genome 

database (www.dictybase.org) using BLAST with the full amino acid sequence of 

mammalian 2 subunit gene.  The 2 subunit gene was amplified from a cDNA library 
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using the Polymerase Chain Reaction (PCR) with primers selected from the coding 

region. The 5’ primer is 5’-CGCGGATCCATGATTAGTGCA TTATTCTTAATG-3’ 

and the 3’ primer is 5’-TCCCCC GGGTTTTAAATACG ATTTTGATAGGTACCAG-

3’.  The result ~450 bp piece was subcloned into the TA cloning vector PCR2.1 

(Invitrogen) first and then subcloned into the pTX-GFP vector (Levi et al., 2000) using 

the BamHI site.  

 For generating the anti-2 polyclonal antibody, the 2 gene was cloned from 

the pTX-GFP-2 into pMAL-C2X (NEW ENGLAND Biolabs, Ipswich, MA) using 

BamHI sites and was transformed into E.coli BL21 cells and the expressed protein was 

purified from bacterial lysates as previously described for generating the anti- subunit 

antibody.  The purified protein was sent to Cocalico Biologicals (Reamstown, PA, 

USA) for immunization and generation of rabbit polyclonal antisera. 

 

5.1.5 Strains and cell culture 

Dictyostelium discoideum wild type cells (Ax2 and DH1) and all mutant cells 

were grown on petri dishes in HL-5 nutrient media supplemented with 0.6% penicillin-

streptomycin (GIBCO BRL, Gaithersburg, MD) at 200C.  Clathrin heavy chain mutants 

were derived from Ax2 wild type cells and clathrin light chain mutants were derived from 

the wild type axenic strain NC4A2 (Niswonger and O'Halloran, 1997a; Wang et al., 

2003).  AP2α subunit mutants and AP180 mutants used in the Chapter 2 were derived 

from Ax2 cells (Stavrou and O'Halloran, 2006).  AP2α subunit mutants, AP180 mutants, 

epsin mutants, AP2 α/AP180 double mutants and AP2 α/epsin double mutants used in the 

Chapter 3 were derived from DH1 cells.  

Cells expressing fluorescence plasmids were all maintained in HL-5 nutrient 

media supplemented with 0.6% penicillin-streptomycin and 10μg/ml G418 (geniticin; 
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GIBCO BRL, Grand Island, NY).  All the plasmids in this study were introduced in 

Dictyostelium cells through electroporation as described before (Wang et al., 2003). 

pTX-GFP-AP180 was cloned by Irene Stavrou; pTX-epsin-RFP and pmmars- 

RFP-clathrin light chain  constructs were cloned by Rebecca Brady; pTX-GFP-clathrin 

light chain was cloned by Jinshan Wang; pTX-GFP-Vamp7B (full length) and pTX-GFP-

Vtil were cloned by Kevin Bersuker.  

 

5.1.6 Western blot analysis 

For western blots, cell lysates were prepared by resuspending cells into hot 

sample buffer. 1x106cells/lane were analyzed on 10% SDS polyacrylamide gel and 

transferred to a nitrocellulose membrane (0.2 micron, BioRad, Hercules, CA).  The 

membrane was probed with rabbit polyclonal antibody followed by a goat anti-rabbit 

secondary antibody conjugated to horseradish peroxidase. Signal was detected using ECL 

kit (Pierce Biotechnology, Rockford, IL, USA).  When more than one primary antibody 

was used, the membrane was washed three times with TBS (150mM NaCl, 50mM Tris, 

pH7.5) before probing with another antibody.  

To compare the expression levels of clathrin and Vamp7B in wild type, AP2α 

null, AP180 null and AP2α/AP180 double null cell lines, ~1.6x107 cells from each cell 

line were first collected and washed once with PDF (2mM KCl, 1.1 mM K2HPO4, 

1.32mM KH2PO4, 0.1mM CaCl2, 0.25 mM MgSO4, pH6.7).  Then ~4x106 cells were 

taken from the total samples and lysed with 0.2% TritonX-100 at room temperature for 

10 minutes.  The protein concentration of all cell samples was measured using BioRad 

protein Assay (BioRad, Hercules, CA).  The remaining unlysed (~1.2x107) cells of each 

cell line were spun down and resuspended in hot sample buffer to 20mg/ml according to 

the protein sample concentration.  Using those samples the protein levels of clathrin 
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were detected by western blot using anti-clathrin heavy chain polyclonal antibody.  

Anti-aurora antibody was used (Li et al., 2008) as the loading control for examining  

clathrin expression level, anti-myosin heavy chain antibody (Burns et al., 1995) were 

used for examining expression level of pTX-GFP-Vamp7B. 

 

5.1.7 Immunostaining and microscopy 

Cells were allowed to attach to coverslips for 15 minutes. The attached cells were 

washed once with PDF buffer and flattened by overlaying a thin layer of 2% agar NA 

(Amersham Biosciences, Uppsala, Sweden).  Then cells were fixed with 1% 

formaldehyde in 100% methanol at -200C for 5 minutes and blocked with 3% BSA in 

PBS at 370C for 15 minutes.  For examining the localization of epsin or Hip1r, cells 

were fixed with a two step fixation protocol.  Cells were fixed with 2% formaldehyde 

and 0.01% Triton-X 100 in PDF (2 mM KCL, 1.1 mM K2HPO4, 1.32 mM KH2PO4, 0.1 

mM CaCL2, 0.25 mM MgSO4, pH 6.7) at room temperature for 15 minutes and then in 

100% methanol at -20°C for 5 minutes.  

Primary antibody was added to the fixed cells and cells were incubated at 370C 

for 45 minutes followed by four washes with phosphate-buffered saline (PBS).  The 

cells were then incubated with secondary antibody with either a Texas Red tag or Pacific 

Blue tag (30µg/ml; Molecular Probes, Eugene, OR) at 370C for 45 minutes in dark. 

Following four gentle washes with PBS, the cells were rinsed briefly in distilled water 

and mounted on microscope slides with mounting media (MOWIOL, Calbiochem, EMD 

Biosciences, Inc. La Jolla, CA).  

Anti-AP2α subunit antibody was prepared by pre-absorption as following: α 

subunit null cells were grown in suspension to a density of 2x108cells/ml.  Cells were 

spun down at 1500 rpm for 5minutes and resuspended, in 2% formaldehyde in phosphate-
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buffered saline (PBS) for 5 minutes at room temperature.   The cells then were 

centrifuged at 2000 rpm for 5 minutes and resuspended in 1% formaldehyde in 100% 

methanol, incubated at -200C for 5 minutes.  Next, the cells were centrifuged at 2000 

rpm for 5 minutes and resuspended in 1.5 ml of 3% Bovine Serum Albumin (BSA) 

(Fisher Scientific, Fair Lawn, NJ) in PBS with 0.02% sodium azide. Anti-α subunit 

antiserum was added to prepared cells at a 1:500 dilution and incubated at 40C overnight.  

The supernatant of this antibody-cell mix was added to a new aliqout of prepared AP2α 

subunit null cells and incubated at 40C overnight.  This was repeated at least three times.  

Clathrin light chain antibody was prepared in the same way as anti-α subunit antibody but 

using clathrin light chain null cells to pre-absorb.  Affinity purified Hip1r antibody was 

a gift from Shannon Repass (Repass et al., 2007).  Monoclonal antibody p80 and 

polyclonal antibody Rh50 were gifts from Dr.Pierre Cosson.  

Cells were visualized using differential interference contrast microscopy (DIC) 

and fluorescence microscopy on a NIKON Eclipse TE 200 microscope.  Images were 

acquired on a Photometrics cooled CCD camera, processed using Metamorph 5.0 

software (Universal Imaging Co. Downington, PA USA).  For imaging contractile 

vacuole dynamics under DIC, cells were allowed to attach in microscopy chambers in 

nutrient media.  Another set of cells were allowed to attach in chambers, first in nutrient 

media, and then in distilled water to provide a hypotonic environment.  Images of living 

cells were captured every 6 seconds for about 10 minutes and compiled into quick time 

movies using Metamorph software played at 6 frames per second.  Still images from 

timelapse microscopy were used to measure the diameter of fully expanded, round 

contractile vacuoles.  The maximum diameter of contractile vacuoles was measured 

using the 100x calibrated distance tool in Metamorph software.  Cells expressing and 

GFP-CLC were imaged in the same way except that low fluorescence media 
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(http:dictybase.org/techniques/media/lowfl o_medium.html) was used instead of nutrient 

HL-5 media and the movies were taken every 3 seconds instead of every 6 seconds. 

Membrane-associated clathrin was quantified using a Leica scanning laser 

confocal microscope (TCS-SP2) and processed using Leica software.  Images of cell 

membranes were taken under the Alexa 633 filter by focusing only on the top of the cells. 

Differential Interference Contrast (DIC) images were also used to make sure I was 

focusing on the top of the cell.  Clathrin light chain null cells were used as a control for 

non-specific binding of the antibody and all images were scaled the same.  To quantify 

the membrane association of clathrin, I collected images from 100 cells for each cell line.  

I used the Leica light software to circle the fluorescent area of each cell (outlining the 

plasma membrane) and then calculated the sum of fluorescence intensity of clathrin 

punctae on the cell surface.  I then calculated the intensity over the area for each cell 

using Microsoft Excel and obtained an average for all the cells analyzed.  The mean 

intensity/area value for each cell line was normalized against the background value of 

clathrin light chain cells.  The value for wild type cells was used as the maximum 

(100%) intensity/area value. The difference in intensity/area between wildtype DH1, 

AP2α subunit null cells, AP180 null cells, AP2 α/AP180 double null cells and AP2 

α/epsin double null cells were compared and standard errors between every cell within 

the same cell line were used as error bars. 

 

 5.1.8 Endocytosis assay 

Fluid-phase endocytosis was measured by uptake FITC-Dextran (m.w 70kDa). 

2mg/ml of FITC-Dextran was added to 3 x106 cells growing in suspension HL-5 medium. 

Samples were taken at 0, 15, 30, 60, 90 and 120 minutes and spun down at 1100 rpm at 4 

oC. To stop the uptake, cells were washed twice and resuspended in HL-5 medium 
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containing 0.02% sodium azide and incubated on ice until all samples were collected. 

Then all samples were centrifuged at 1100rpm at 4 oC for 5 minutes and the cells were 

resuspended in cold Na2HPO4 buffer.  After that, the cells were lysed with 20% Triton 

X-100 and fluorescence uptake was analyzed immediately by a BioRad VersaFluor 

fluorometer. Protein concentration of all cell samples were measured using BioRad 

protein Assay (BioRad, Hercules, CA) after lysis. 

 

5.1.9 DAPI staining  

For examining the growth in suspension, cells were diluted to 1x105/ml and 

grown in HL-5 medium on a rotary shaker at 220 rpm at 180C for 72-84 hours. To 

examine growth on a substrate, cells were diluted to 1x105/ml and grown on Petri dishes 

in HL-5 medium at 180C for 72-84 hours. 

Cells were allowed to attach to coverslips for 15 minutes and washed once with 

PDF buffer and flattened using 2% agar NA.  Then cells were fixed with 1% 

formaldehyde in methanol at -200C for 5 minutes as described before. Cells were then 

stained with 0.1% µg/ml DAPI (4,6-Diamidino-2-phenylindole) at room temperature for 

10 minutes, followed by two washes with PBS.  Then cells were mounted on 

microscope slides with mounting media and imaged using differential interference 

contrast microscopy and fluorescence microscopy on a NIKON Eclipse TE 200 

microscope as described before.  

 
5.1.10 Cell aggregation and development 

To examine cell behavior during aggregation, 0.5x106 cells were harvested and 

washed twice with 1xPDF. Then cells were resuspended in 1.5ml of PDF buffer and 

placed into 2 well glass chambers (Lab-Tek, Rochester, NY) at 180C for 15 to 21 hours 
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before imaging. For development on agar plates, 1-2x108 cells were harvested and 

washed once with starvation buffer (20mM MES, 0.2mMCaCl2, 2mMMgSO4) and 

resuspended to 2x107/ml in the same starvation buffer.  9 ml of the cell suspension was 

plated on 1% Noble agar (Difco Laboratories, Inc.) plates made with starvation buffer.  

The cells were allowed to attach on the plates for 30 minutes. After the liquid was 

aspirated from the plates, the plates were allowed to dry with the lid off for 40mins. Then 

the cells were incubated in dark at 180C for ~40 hours for observing the formation of 

fruiting bodies.  

Spores were harvested from development plates by picking up individual fruiting 

body heads using sterile toothpicks and resuspending spores in PDF. Spores were then 

plated on glass coverslips and settled.  Spores were imaged using NIKON Eclipse TE 

200 microscope. 

 

5.1.11 GST pull down assay 

The Dictyostelium Vamp7B cytosolic domain is found within the  N-terminus 

(amino acids 1-189 ;(Bogdanovic, et al., 2002).  The first 1-186 amino acids of this 

cytosolic domain were amplified by the Polymerase Chain Reaction (PCR) using the 

Vamp7B full length sequence in the pTX-GFP-Vamp7B construct as a template.  

Primers were selected from the coding region of the gene: 5’ primer, 5’-

CGCGGATCCATGCC TATTATCTATTC-3’ carried a BamHI site in the beginning, 

while the 3’ primer, 5’-CGCGGATCCTCATTTCCACCACATTGCAC-3’ carried a stop 

codon and also a BamHI cutting site.  The resulting 558bp piece was cloned into into 

the glutathione-S-transferase bacterial expression vector pGEX-2T (Smith and Johnson, 

1988) using EcoRI and BamHI sites.  To express the GST-Vamp7B cytosolic domain, 

the plasmid was transformed into E.coli BL21 cells and the expressed protein was 
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purified from bacterial lysates using the same method as in purifying AP2 subunit 

previously described in 5.1.2.  

 For doing the GST pull-down assay, 5x106 DH1 wild type cells expressing pTX-

GFP-AP180 (Stavrou and O'Halloran, 2006) were collected and lysed in 1ml binding 

buffer (Vithalani et al., 1998).  1ml of supernatant of the cell lysate was collected and 

incubated for 2 hours at 40C with 400l Glutathione agarose beads saturated with purified 

Vamp7B cytosolic domain peptide.  The beads were then collected, the flow-through 

from the beads were collected ( the unbound fraction).  The collected beads were 

washed 10 times with 1ml of the same binding buffer at 40C.  Elution samples were 

collected by boiling the beads with 400l hot sample buffer for 5 minutes.  In western 

blots, 10l of the elution sample was loaded as the bound sample. 10l of the flow-

through solution was mixed with sample buffer and loaded as the unbound sample; and 

10l  of the lysis sample was mixed with sample buffer and loaded.  Beads saturated 

with GST protein and DH1 cells expressing only pTX-GFP were used as negative 

controls.   



5.2 PLASMIDS, ANTIBODIES AND CELL LINES 

Table 5.1: Plasmids used in this study 

Plasmid       Description 

pGEX-2T-AP2A1 Full length AP2α subunit cloned from 

cDNA into bacterial expression vector for 

protein purification and antibody production 

pGEX-2T-Vamp7b(1-558bp) Vamp7b cytosolic domain cloned into 

bacterial expression vector for protein 

purification and GST pull down assays 

pMAL-C2X-AP2 Full length AP2  subunit cloned into 

bacterial expression vector for protein 

purification and antibody production 

pTX-GFP-AP180 Full length AP180 cloned into pTX vector 

by Irene Stavrou. N-terminal GFP tag, G418 

resistance (Stavrou and O'Halloran, 2006). 

pTX-GFP-CLC Full length clathrin light chain cloned into 

pTX vector by Jingshan Wang. N-terminal 

GFP tag, G418 resistance (Wang et al., 

2003). 

pmmars-RFP-CLC Full length clathrin light chain cloned into 

mRFPmars expression vector by Rebecca 

Brady. N-terminal RFP tag, Bsr resistance.  
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pTX-GFP- Full length AP2 2 subunit cloned into the 

pTX vector. N-terminal GFP tag, G418 

resistance. 

pTX-GFP-Vamp7B Full length Vamp7B cloned into the pTX 

vector by Kevin Bersuker. N-terminal GFP 

tag, G418 resistance. 

pTX-GFP-Vtil Full length Vtil cloned into pTX vector by 

Kevin Bersuker. N-terminal GFP tag, G418 

resistance. 

pSP72-pyr-ΔAP2A1 1.08 kb AP2A1 gene 5’ UTR fragments and 

1.10kb 3’ UTR fragment flanking the 

pyrimidine biosynthetic (pyr) gene cassette 

to replace the AP2A1 gene.  

pSP72-Bsr-ΔAP180  1.3 kb clmA gene 5’ UTR fragments and 

1.6kb 3’ UTR fragment flanking the 

blasticidin resistance gene cassette to 

replace the clmA gene (Stavrou and 

O'Halloran, 2006). 

pSP72-Bsr-epsinKO epnA gene 5’ UTR fragments and 3’ UTR 

fragment flanking the blasticidin resistance 

gene cassette to replace the epnA gene 

(Brady et al., 2008). 
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Table 5.2 Cell lines and Antibodies used in this study 

Cell lines      Description 

Ax2 Wild type axenic strain, grows in HL-5 

supplemented with 0.6% Pen Strep. 

DH1 Derived from Ax3 wild type axenic strain, 

with the pyr5-6 gene depleted, uracil 

auxotroph, grow in HL-5 media but not 

minimum FM media. 

AP2α null (6A5) AP2α subunit null cells derived from Ax2 

wild type strain, Bsr resistant.  

AP2α null (3E1) AP2α subunit null cells derived from DH1 

wild type strain, uracil auxotroph, grow in 

HL-5 media and minimum FM media.  

AP180 null (5H11) AP180 null cells derived from Ax2 cells, 

Bsr resistant. Generated by Irene Stavrou 

(Stavrou and O'Halloran, 2006). 

AP180 null (4B8) AP180 null cells derived from DH1 cells, 

Bsr resistant, grow in HL-5 media but not 

FM media. Generated by Irene Stavrou. 

Epsin null (4B1) Epsin null cells derived from DH1 cells, 

Bsr resistant, grown in HL-5 media but not 

FM media. Generated by Rebecca Brady. 

AP2 α/AP180 DKO(2H5) AP2α subunit and AP180 double null cells 

derived from DH1 cells. Bsr resistant and 

can grow in both HL-5 and FM media. 
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AP2 α/epsin DKO(1A9) AP2α subunit and epsin double null cells 

derived from DH1 cells. Bsr resistant and 

can grow in both HL-5 and FM media. 

CHC null(5E2) Clathrin heavy chain null cells derived from 

Ax2 wild type cells. Bsr resistant and grow 

in HL-5 media (Niswonger and O'Halloran, 

1997a). 

 

Antibodies       Description 

Anti-AP2α subunit Rabbit polyclonal antibody (UT371). Use 

1:2000 for western blot. Used at 1:500 for 

immunostaining after pre-absorped with 

AP2α null cells. This antibody is NOT stable 

for immunostaining, store at 4 0C up to 1 

month after pre-absorption.  

Anti-AP2 mu2 subunit Rabbit polyclonal antibody (UT451). Use 

1:2000 for western blot.  I have not tested it 

for immunostaining.  

Anti-AP180 Rabbit polyclonal antibody made by Irene 

Stavrou. Use the UT 325 test bleed, number 

4 (UT325-4) 1:2000 for western blot. 

Anti-Hip1r Affinity purified polyclonal rabbit anti-Hip1r 

antibody, made by Shannon Repass and used 
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at 1μg/ml for immunostaining (Repass et al., 

2007).  

Anti-CLC Rabbit polyclonal anti clathrin light chain 

antibody. Used 1:1000 for western blot. Used 

at 1:500 for immunostaining after pre-

absorption with clathrin light chain null cells.  

Anti-Rh50   Purified rabbit polyclonal antibody Rh50 is 

a gift from Dr. Pierre Cosson.  Used at 

1:1000 for immunostaining 

Anti-p80 Monoclonal antibody p80 is a gift from Dr. 

Pierre Cosson. Used at 1:500 for 

immunostaining 

Anti-GFP Rabbit polyclonal antibody was generated 

by Hui Li. Used at 1:2000 for western blots 

Anti-Aurora Rabbit polyclonal antibody was generated 

by Hui Li (Li et al., 2008). Used at 1:2000 

for western blots 

Anti-MHC Rabbit polyclonal antibody (Burns et al., 

1995). Used at 1:2000 for western blots. 
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Appendices 

The DPF AP2 binding motif is not necessary for AP180 to bind AP2 in 
Dictyostelium 

AP180 orthologs contain a DPW/DPF motif which has been shown to bind to the 

both α and 2 subunits of AP2 (Iannolo et al., 1997; Owen et al., 1999; Owen et al., 

2000).  This direct binding between AP2 and AP180 accounts for their cooperative 

clathrin assembly activity.  Dictyostelium AP180 has only one DPF motif.  To test 

whether this DPF motif is essential to the binding between AP2 and AP180, two amino 

acids of this motif were mutated (from DPF to APA) and a plasmid expressing mutated 

AP180 was transformed into AP180- cells (Stavrou and O’Halloran, unpublished data).   

I first examined whether this mutated AP180 had a physical interaction with AP2 

in vivo using both immunoprecipitation and immunostaining microscopy.  Surprisingly, 

AP180- cells with this mutated motif still co-immunoprecipitated with AP2 (FigD1 A) 

and colocalized with AP2 on both plasma membrane and on contractile vacuoles. 

Furthermore, these cells with mutated AP180 still had wild type size contractile vacuoles 

(FigD1 B,C,D).  All these results highly suggest that in Dictyostelium cells, the DPF 

motif is not required either for binding AP2 or for controlling the size of contractile 

vacuoles. 

Thus there must be an unidentified AP2 binding motif in Dictyostelium AP180.  

Earlier studies have suggested that motifs in clathrin adaptor proteins, such as DxF/W, 

FxDxF and Wxx (F/W) x (D/E) could also bind to AP2 (Brett et al., 2002; Mishra et al., 

2004; Praefcke et al., 2004).  I searched the Dictyostelium AP180 sequence and found 

three DxF (x, any amino acids) sequences which may be able to serve as AP2 binding site 

substitute in the DPF mutant cells.  

 



 

 
Figure 1D. AP2 DPF binding motif on Dictyostelium AP180 is not required for AP180 

function or the association with AP2. (A). Immunoprecipitation experiments shows that 

AP180 with a mutated DPF motif (DPF->APA) can still associate with AP2 in vivo.  

Wild type cells expressing either wild type AP180(AP180) or AP180 with a mutated DPF 

motif (DPF mutant AP180) were lysed.  Whole cell lysates were then incubated with 

polyclonal anti-AP2 antibody.  (B). AP180 with a mutated DPF motif can still 

colocalize with AP2 at the plasma membrane. Cell expressing either GFP tagged wild 

type AP180 (AP180) or GFP-tagged AP180 with a mutated DPF motif (DPF mutant 

AP180) were fixed and immunostained with anti-AP2 antibody.  (C). AP180 with a 

mutated DPF motif can still colocalize with AP2 at the plasma membrane. Cell 

expressing either GFP-tagged wild type AP180 (AP180) or GFP-tagged AP180 with a 

mutated DPF motif (DPF mutant AP180) were fixed and immunostained with anti-AP2 

antibody. (D). The enlarged contractile vacuoles in the AP180 null cells were rescued by 

wild type AP180 as well as AP180 with a mutated DPF. 
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TIRF—Is AP2 or AP180 involved in regulating actin dynamics during clathrin 
mediated endocytosis? 

Dynamic actin is required in the late stage of clathrin coated pits formation and 

pits internalization.  Rebecca Brady has showed that in Dictyostelium cells, epsin and 

Hip1r are required for actin polymerization at the clathrin internalization sites.  In the 

absence of either of epsin or Hip1r cells, actin punctae are diffuse and mobile on the 

plasma membrane.  In addition, the association between actin punctae and clathrin 

punctae at the plasma membrane are also reduced and clathrin punctae take longer time to 

internalize in epsin or Hip1r null cells (Brady and O’Halloran, unpublished data).   

To investigate whether other clathrin adaptor proteins AP2 and AP180 are also 

required for the actin dynamic during clathrin mediated endocytosis, I examined wild 

type cells and AP2α/AP180 double mutant cells co-expressing an actin marker 

LimEΔcoil tagged with GFP and RFP-clathrin light chain using TIRF microscopy.  In 

wild type cells, plasma membrane associated clathrin coated vesicles internalized with 

clathrin puncta quickly disappearing from the cell surface.  During this period of time, 

there was very little lateral movement of the clathrin punctae.  Frequently, this 

disappearance of clathrin puncta was accompanied by the appearance of  LimEΔcoil 

GFP labeled actin puncta.  In contrast to the wild type cells, in AP2 α/AP180 double 

null cells, actin puncta were laterally mobile and clathrin puncta spent more time on the 

plasma membrane before they got internalized (movie data not shown). This phenotype 

resembles epsin and Hip1r null cells suggesting AP2 or/and AP180 could also be 

involved in regulating actin dynamic, directly or indirectly.  

However, I have not been able to examine AP2α subunit or AP180 single null 

cells to see whether AP2 and/or AP180 was responsible for this phenotype.  
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